ext4: track all extent status in extent status tree
[linux-2.6.git] / fs / ext4 / extents.c
blobbe0b1b3eed97dabc11ea230e623af664376dd0df
1 /*
2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
5 * Architecture independence:
6 * Copyright (c) 2005, Bull S.A.
7 * Written by Pierre Peiffer <pierre.peiffer@bull.net>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public Licens
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
24 * Extents support for EXT4
26 * TODO:
27 * - ext4*_error() should be used in some situations
28 * - analyze all BUG()/BUG_ON(), use -EIO where appropriate
29 * - smart tree reduction
32 #include <linux/fs.h>
33 #include <linux/time.h>
34 #include <linux/jbd2.h>
35 #include <linux/highuid.h>
36 #include <linux/pagemap.h>
37 #include <linux/quotaops.h>
38 #include <linux/string.h>
39 #include <linux/slab.h>
40 #include <linux/falloc.h>
41 #include <asm/uaccess.h>
42 #include <linux/fiemap.h>
43 #include "ext4_jbd2.h"
44 #include "ext4_extents.h"
45 #include "xattr.h"
47 #include <trace/events/ext4.h>
50 * used by extent splitting.
52 #define EXT4_EXT_MAY_ZEROOUT 0x1 /* safe to zeroout if split fails \
53 due to ENOSPC */
54 #define EXT4_EXT_MARK_UNINIT1 0x2 /* mark first half uninitialized */
55 #define EXT4_EXT_MARK_UNINIT2 0x4 /* mark second half uninitialized */
57 #define EXT4_EXT_DATA_VALID1 0x8 /* first half contains valid data */
58 #define EXT4_EXT_DATA_VALID2 0x10 /* second half contains valid data */
60 static __le32 ext4_extent_block_csum(struct inode *inode,
61 struct ext4_extent_header *eh)
63 struct ext4_inode_info *ei = EXT4_I(inode);
64 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
65 __u32 csum;
67 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)eh,
68 EXT4_EXTENT_TAIL_OFFSET(eh));
69 return cpu_to_le32(csum);
72 static int ext4_extent_block_csum_verify(struct inode *inode,
73 struct ext4_extent_header *eh)
75 struct ext4_extent_tail *et;
77 if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
78 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
79 return 1;
81 et = find_ext4_extent_tail(eh);
82 if (et->et_checksum != ext4_extent_block_csum(inode, eh))
83 return 0;
84 return 1;
87 static void ext4_extent_block_csum_set(struct inode *inode,
88 struct ext4_extent_header *eh)
90 struct ext4_extent_tail *et;
92 if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
93 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
94 return;
96 et = find_ext4_extent_tail(eh);
97 et->et_checksum = ext4_extent_block_csum(inode, eh);
100 static int ext4_split_extent(handle_t *handle,
101 struct inode *inode,
102 struct ext4_ext_path *path,
103 struct ext4_map_blocks *map,
104 int split_flag,
105 int flags);
107 static int ext4_split_extent_at(handle_t *handle,
108 struct inode *inode,
109 struct ext4_ext_path *path,
110 ext4_lblk_t split,
111 int split_flag,
112 int flags);
114 static int ext4_find_delayed_extent(struct inode *inode,
115 struct ext4_ext_cache *newex);
117 static int ext4_ext_truncate_extend_restart(handle_t *handle,
118 struct inode *inode,
119 int needed)
121 int err;
123 if (!ext4_handle_valid(handle))
124 return 0;
125 if (handle->h_buffer_credits > needed)
126 return 0;
127 err = ext4_journal_extend(handle, needed);
128 if (err <= 0)
129 return err;
130 err = ext4_truncate_restart_trans(handle, inode, needed);
131 if (err == 0)
132 err = -EAGAIN;
134 return err;
138 * could return:
139 * - EROFS
140 * - ENOMEM
142 static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
143 struct ext4_ext_path *path)
145 if (path->p_bh) {
146 /* path points to block */
147 return ext4_journal_get_write_access(handle, path->p_bh);
149 /* path points to leaf/index in inode body */
150 /* we use in-core data, no need to protect them */
151 return 0;
155 * could return:
156 * - EROFS
157 * - ENOMEM
158 * - EIO
160 #define ext4_ext_dirty(handle, inode, path) \
161 __ext4_ext_dirty(__func__, __LINE__, (handle), (inode), (path))
162 static int __ext4_ext_dirty(const char *where, unsigned int line,
163 handle_t *handle, struct inode *inode,
164 struct ext4_ext_path *path)
166 int err;
167 if (path->p_bh) {
168 ext4_extent_block_csum_set(inode, ext_block_hdr(path->p_bh));
169 /* path points to block */
170 err = __ext4_handle_dirty_metadata(where, line, handle,
171 inode, path->p_bh);
172 } else {
173 /* path points to leaf/index in inode body */
174 err = ext4_mark_inode_dirty(handle, inode);
176 return err;
179 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
180 struct ext4_ext_path *path,
181 ext4_lblk_t block)
183 if (path) {
184 int depth = path->p_depth;
185 struct ext4_extent *ex;
188 * Try to predict block placement assuming that we are
189 * filling in a file which will eventually be
190 * non-sparse --- i.e., in the case of libbfd writing
191 * an ELF object sections out-of-order but in a way
192 * the eventually results in a contiguous object or
193 * executable file, or some database extending a table
194 * space file. However, this is actually somewhat
195 * non-ideal if we are writing a sparse file such as
196 * qemu or KVM writing a raw image file that is going
197 * to stay fairly sparse, since it will end up
198 * fragmenting the file system's free space. Maybe we
199 * should have some hueristics or some way to allow
200 * userspace to pass a hint to file system,
201 * especially if the latter case turns out to be
202 * common.
204 ex = path[depth].p_ext;
205 if (ex) {
206 ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex);
207 ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block);
209 if (block > ext_block)
210 return ext_pblk + (block - ext_block);
211 else
212 return ext_pblk - (ext_block - block);
215 /* it looks like index is empty;
216 * try to find starting block from index itself */
217 if (path[depth].p_bh)
218 return path[depth].p_bh->b_blocknr;
221 /* OK. use inode's group */
222 return ext4_inode_to_goal_block(inode);
226 * Allocation for a meta data block
228 static ext4_fsblk_t
229 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode,
230 struct ext4_ext_path *path,
231 struct ext4_extent *ex, int *err, unsigned int flags)
233 ext4_fsblk_t goal, newblock;
235 goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
236 newblock = ext4_new_meta_blocks(handle, inode, goal, flags,
237 NULL, err);
238 return newblock;
241 static inline int ext4_ext_space_block(struct inode *inode, int check)
243 int size;
245 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
246 / sizeof(struct ext4_extent);
247 #ifdef AGGRESSIVE_TEST
248 if (!check && size > 6)
249 size = 6;
250 #endif
251 return size;
254 static inline int ext4_ext_space_block_idx(struct inode *inode, int check)
256 int size;
258 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
259 / sizeof(struct ext4_extent_idx);
260 #ifdef AGGRESSIVE_TEST
261 if (!check && size > 5)
262 size = 5;
263 #endif
264 return size;
267 static inline int ext4_ext_space_root(struct inode *inode, int check)
269 int size;
271 size = sizeof(EXT4_I(inode)->i_data);
272 size -= sizeof(struct ext4_extent_header);
273 size /= sizeof(struct ext4_extent);
274 #ifdef AGGRESSIVE_TEST
275 if (!check && size > 3)
276 size = 3;
277 #endif
278 return size;
281 static inline int ext4_ext_space_root_idx(struct inode *inode, int check)
283 int size;
285 size = sizeof(EXT4_I(inode)->i_data);
286 size -= sizeof(struct ext4_extent_header);
287 size /= sizeof(struct ext4_extent_idx);
288 #ifdef AGGRESSIVE_TEST
289 if (!check && size > 4)
290 size = 4;
291 #endif
292 return size;
296 * Calculate the number of metadata blocks needed
297 * to allocate @blocks
298 * Worse case is one block per extent
300 int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
302 struct ext4_inode_info *ei = EXT4_I(inode);
303 int idxs;
305 idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
306 / sizeof(struct ext4_extent_idx));
309 * If the new delayed allocation block is contiguous with the
310 * previous da block, it can share index blocks with the
311 * previous block, so we only need to allocate a new index
312 * block every idxs leaf blocks. At ldxs**2 blocks, we need
313 * an additional index block, and at ldxs**3 blocks, yet
314 * another index blocks.
316 if (ei->i_da_metadata_calc_len &&
317 ei->i_da_metadata_calc_last_lblock+1 == lblock) {
318 int num = 0;
320 if ((ei->i_da_metadata_calc_len % idxs) == 0)
321 num++;
322 if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0)
323 num++;
324 if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) {
325 num++;
326 ei->i_da_metadata_calc_len = 0;
327 } else
328 ei->i_da_metadata_calc_len++;
329 ei->i_da_metadata_calc_last_lblock++;
330 return num;
334 * In the worst case we need a new set of index blocks at
335 * every level of the inode's extent tree.
337 ei->i_da_metadata_calc_len = 1;
338 ei->i_da_metadata_calc_last_lblock = lblock;
339 return ext_depth(inode) + 1;
342 static int
343 ext4_ext_max_entries(struct inode *inode, int depth)
345 int max;
347 if (depth == ext_depth(inode)) {
348 if (depth == 0)
349 max = ext4_ext_space_root(inode, 1);
350 else
351 max = ext4_ext_space_root_idx(inode, 1);
352 } else {
353 if (depth == 0)
354 max = ext4_ext_space_block(inode, 1);
355 else
356 max = ext4_ext_space_block_idx(inode, 1);
359 return max;
362 static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext)
364 ext4_fsblk_t block = ext4_ext_pblock(ext);
365 int len = ext4_ext_get_actual_len(ext);
367 if (len == 0)
368 return 0;
369 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len);
372 static int ext4_valid_extent_idx(struct inode *inode,
373 struct ext4_extent_idx *ext_idx)
375 ext4_fsblk_t block = ext4_idx_pblock(ext_idx);
377 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1);
380 static int ext4_valid_extent_entries(struct inode *inode,
381 struct ext4_extent_header *eh,
382 int depth)
384 unsigned short entries;
385 if (eh->eh_entries == 0)
386 return 1;
388 entries = le16_to_cpu(eh->eh_entries);
390 if (depth == 0) {
391 /* leaf entries */
392 struct ext4_extent *ext = EXT_FIRST_EXTENT(eh);
393 while (entries) {
394 if (!ext4_valid_extent(inode, ext))
395 return 0;
396 ext++;
397 entries--;
399 } else {
400 struct ext4_extent_idx *ext_idx = EXT_FIRST_INDEX(eh);
401 while (entries) {
402 if (!ext4_valid_extent_idx(inode, ext_idx))
403 return 0;
404 ext_idx++;
405 entries--;
408 return 1;
411 static int __ext4_ext_check(const char *function, unsigned int line,
412 struct inode *inode, struct ext4_extent_header *eh,
413 int depth)
415 const char *error_msg;
416 int max = 0;
418 if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
419 error_msg = "invalid magic";
420 goto corrupted;
422 if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
423 error_msg = "unexpected eh_depth";
424 goto corrupted;
426 if (unlikely(eh->eh_max == 0)) {
427 error_msg = "invalid eh_max";
428 goto corrupted;
430 max = ext4_ext_max_entries(inode, depth);
431 if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
432 error_msg = "too large eh_max";
433 goto corrupted;
435 if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
436 error_msg = "invalid eh_entries";
437 goto corrupted;
439 if (!ext4_valid_extent_entries(inode, eh, depth)) {
440 error_msg = "invalid extent entries";
441 goto corrupted;
443 /* Verify checksum on non-root extent tree nodes */
444 if (ext_depth(inode) != depth &&
445 !ext4_extent_block_csum_verify(inode, eh)) {
446 error_msg = "extent tree corrupted";
447 goto corrupted;
449 return 0;
451 corrupted:
452 ext4_error_inode(inode, function, line, 0,
453 "bad header/extent: %s - magic %x, "
454 "entries %u, max %u(%u), depth %u(%u)",
455 error_msg, le16_to_cpu(eh->eh_magic),
456 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
457 max, le16_to_cpu(eh->eh_depth), depth);
459 return -EIO;
462 #define ext4_ext_check(inode, eh, depth) \
463 __ext4_ext_check(__func__, __LINE__, inode, eh, depth)
465 int ext4_ext_check_inode(struct inode *inode)
467 return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode));
470 static int __ext4_ext_check_block(const char *function, unsigned int line,
471 struct inode *inode,
472 struct ext4_extent_header *eh,
473 int depth,
474 struct buffer_head *bh)
476 int ret;
478 if (buffer_verified(bh))
479 return 0;
480 ret = ext4_ext_check(inode, eh, depth);
481 if (ret)
482 return ret;
483 set_buffer_verified(bh);
484 return ret;
487 #define ext4_ext_check_block(inode, eh, depth, bh) \
488 __ext4_ext_check_block(__func__, __LINE__, inode, eh, depth, bh)
490 #ifdef EXT_DEBUG
491 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
493 int k, l = path->p_depth;
495 ext_debug("path:");
496 for (k = 0; k <= l; k++, path++) {
497 if (path->p_idx) {
498 ext_debug(" %d->%llu", le32_to_cpu(path->p_idx->ei_block),
499 ext4_idx_pblock(path->p_idx));
500 } else if (path->p_ext) {
501 ext_debug(" %d:[%d]%d:%llu ",
502 le32_to_cpu(path->p_ext->ee_block),
503 ext4_ext_is_uninitialized(path->p_ext),
504 ext4_ext_get_actual_len(path->p_ext),
505 ext4_ext_pblock(path->p_ext));
506 } else
507 ext_debug(" []");
509 ext_debug("\n");
512 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
514 int depth = ext_depth(inode);
515 struct ext4_extent_header *eh;
516 struct ext4_extent *ex;
517 int i;
519 if (!path)
520 return;
522 eh = path[depth].p_hdr;
523 ex = EXT_FIRST_EXTENT(eh);
525 ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino);
527 for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
528 ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block),
529 ext4_ext_is_uninitialized(ex),
530 ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex));
532 ext_debug("\n");
535 static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path,
536 ext4_fsblk_t newblock, int level)
538 int depth = ext_depth(inode);
539 struct ext4_extent *ex;
541 if (depth != level) {
542 struct ext4_extent_idx *idx;
543 idx = path[level].p_idx;
544 while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) {
545 ext_debug("%d: move %d:%llu in new index %llu\n", level,
546 le32_to_cpu(idx->ei_block),
547 ext4_idx_pblock(idx),
548 newblock);
549 idx++;
552 return;
555 ex = path[depth].p_ext;
556 while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) {
557 ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n",
558 le32_to_cpu(ex->ee_block),
559 ext4_ext_pblock(ex),
560 ext4_ext_is_uninitialized(ex),
561 ext4_ext_get_actual_len(ex),
562 newblock);
563 ex++;
567 #else
568 #define ext4_ext_show_path(inode, path)
569 #define ext4_ext_show_leaf(inode, path)
570 #define ext4_ext_show_move(inode, path, newblock, level)
571 #endif
573 void ext4_ext_drop_refs(struct ext4_ext_path *path)
575 int depth = path->p_depth;
576 int i;
578 for (i = 0; i <= depth; i++, path++)
579 if (path->p_bh) {
580 brelse(path->p_bh);
581 path->p_bh = NULL;
586 * ext4_ext_binsearch_idx:
587 * binary search for the closest index of the given block
588 * the header must be checked before calling this
590 static void
591 ext4_ext_binsearch_idx(struct inode *inode,
592 struct ext4_ext_path *path, ext4_lblk_t block)
594 struct ext4_extent_header *eh = path->p_hdr;
595 struct ext4_extent_idx *r, *l, *m;
598 ext_debug("binsearch for %u(idx): ", block);
600 l = EXT_FIRST_INDEX(eh) + 1;
601 r = EXT_LAST_INDEX(eh);
602 while (l <= r) {
603 m = l + (r - l) / 2;
604 if (block < le32_to_cpu(m->ei_block))
605 r = m - 1;
606 else
607 l = m + 1;
608 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
609 m, le32_to_cpu(m->ei_block),
610 r, le32_to_cpu(r->ei_block));
613 path->p_idx = l - 1;
614 ext_debug(" -> %u->%lld ", le32_to_cpu(path->p_idx->ei_block),
615 ext4_idx_pblock(path->p_idx));
617 #ifdef CHECK_BINSEARCH
619 struct ext4_extent_idx *chix, *ix;
620 int k;
622 chix = ix = EXT_FIRST_INDEX(eh);
623 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
624 if (k != 0 &&
625 le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
626 printk(KERN_DEBUG "k=%d, ix=0x%p, "
627 "first=0x%p\n", k,
628 ix, EXT_FIRST_INDEX(eh));
629 printk(KERN_DEBUG "%u <= %u\n",
630 le32_to_cpu(ix->ei_block),
631 le32_to_cpu(ix[-1].ei_block));
633 BUG_ON(k && le32_to_cpu(ix->ei_block)
634 <= le32_to_cpu(ix[-1].ei_block));
635 if (block < le32_to_cpu(ix->ei_block))
636 break;
637 chix = ix;
639 BUG_ON(chix != path->p_idx);
641 #endif
646 * ext4_ext_binsearch:
647 * binary search for closest extent of the given block
648 * the header must be checked before calling this
650 static void
651 ext4_ext_binsearch(struct inode *inode,
652 struct ext4_ext_path *path, ext4_lblk_t block)
654 struct ext4_extent_header *eh = path->p_hdr;
655 struct ext4_extent *r, *l, *m;
657 if (eh->eh_entries == 0) {
659 * this leaf is empty:
660 * we get such a leaf in split/add case
662 return;
665 ext_debug("binsearch for %u: ", block);
667 l = EXT_FIRST_EXTENT(eh) + 1;
668 r = EXT_LAST_EXTENT(eh);
670 while (l <= r) {
671 m = l + (r - l) / 2;
672 if (block < le32_to_cpu(m->ee_block))
673 r = m - 1;
674 else
675 l = m + 1;
676 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
677 m, le32_to_cpu(m->ee_block),
678 r, le32_to_cpu(r->ee_block));
681 path->p_ext = l - 1;
682 ext_debug(" -> %d:%llu:[%d]%d ",
683 le32_to_cpu(path->p_ext->ee_block),
684 ext4_ext_pblock(path->p_ext),
685 ext4_ext_is_uninitialized(path->p_ext),
686 ext4_ext_get_actual_len(path->p_ext));
688 #ifdef CHECK_BINSEARCH
690 struct ext4_extent *chex, *ex;
691 int k;
693 chex = ex = EXT_FIRST_EXTENT(eh);
694 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
695 BUG_ON(k && le32_to_cpu(ex->ee_block)
696 <= le32_to_cpu(ex[-1].ee_block));
697 if (block < le32_to_cpu(ex->ee_block))
698 break;
699 chex = ex;
701 BUG_ON(chex != path->p_ext);
703 #endif
707 int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
709 struct ext4_extent_header *eh;
711 eh = ext_inode_hdr(inode);
712 eh->eh_depth = 0;
713 eh->eh_entries = 0;
714 eh->eh_magic = EXT4_EXT_MAGIC;
715 eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0));
716 ext4_mark_inode_dirty(handle, inode);
717 ext4_ext_invalidate_cache(inode);
718 return 0;
721 struct ext4_ext_path *
722 ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block,
723 struct ext4_ext_path *path)
725 struct ext4_extent_header *eh;
726 struct buffer_head *bh;
727 short int depth, i, ppos = 0, alloc = 0;
728 int ret;
730 eh = ext_inode_hdr(inode);
731 depth = ext_depth(inode);
733 /* account possible depth increase */
734 if (!path) {
735 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2),
736 GFP_NOFS);
737 if (!path)
738 return ERR_PTR(-ENOMEM);
739 alloc = 1;
741 path[0].p_hdr = eh;
742 path[0].p_bh = NULL;
744 i = depth;
745 /* walk through the tree */
746 while (i) {
747 ext_debug("depth %d: num %d, max %d\n",
748 ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
750 ext4_ext_binsearch_idx(inode, path + ppos, block);
751 path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx);
752 path[ppos].p_depth = i;
753 path[ppos].p_ext = NULL;
755 bh = sb_getblk(inode->i_sb, path[ppos].p_block);
756 if (unlikely(!bh)) {
757 ret = -ENOMEM;
758 goto err;
760 if (!bh_uptodate_or_lock(bh)) {
761 trace_ext4_ext_load_extent(inode, block,
762 path[ppos].p_block);
763 ret = bh_submit_read(bh);
764 if (ret < 0) {
765 put_bh(bh);
766 goto err;
769 eh = ext_block_hdr(bh);
770 ppos++;
771 if (unlikely(ppos > depth)) {
772 put_bh(bh);
773 EXT4_ERROR_INODE(inode,
774 "ppos %d > depth %d", ppos, depth);
775 ret = -EIO;
776 goto err;
778 path[ppos].p_bh = bh;
779 path[ppos].p_hdr = eh;
780 i--;
782 ret = ext4_ext_check_block(inode, eh, i, bh);
783 if (ret < 0)
784 goto err;
787 path[ppos].p_depth = i;
788 path[ppos].p_ext = NULL;
789 path[ppos].p_idx = NULL;
791 /* find extent */
792 ext4_ext_binsearch(inode, path + ppos, block);
793 /* if not an empty leaf */
794 if (path[ppos].p_ext)
795 path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext);
797 ext4_ext_show_path(inode, path);
799 return path;
801 err:
802 ext4_ext_drop_refs(path);
803 if (alloc)
804 kfree(path);
805 return ERR_PTR(ret);
809 * ext4_ext_insert_index:
810 * insert new index [@logical;@ptr] into the block at @curp;
811 * check where to insert: before @curp or after @curp
813 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
814 struct ext4_ext_path *curp,
815 int logical, ext4_fsblk_t ptr)
817 struct ext4_extent_idx *ix;
818 int len, err;
820 err = ext4_ext_get_access(handle, inode, curp);
821 if (err)
822 return err;
824 if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) {
825 EXT4_ERROR_INODE(inode,
826 "logical %d == ei_block %d!",
827 logical, le32_to_cpu(curp->p_idx->ei_block));
828 return -EIO;
831 if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries)
832 >= le16_to_cpu(curp->p_hdr->eh_max))) {
833 EXT4_ERROR_INODE(inode,
834 "eh_entries %d >= eh_max %d!",
835 le16_to_cpu(curp->p_hdr->eh_entries),
836 le16_to_cpu(curp->p_hdr->eh_max));
837 return -EIO;
840 if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
841 /* insert after */
842 ext_debug("insert new index %d after: %llu\n", logical, ptr);
843 ix = curp->p_idx + 1;
844 } else {
845 /* insert before */
846 ext_debug("insert new index %d before: %llu\n", logical, ptr);
847 ix = curp->p_idx;
850 len = EXT_LAST_INDEX(curp->p_hdr) - ix + 1;
851 BUG_ON(len < 0);
852 if (len > 0) {
853 ext_debug("insert new index %d: "
854 "move %d indices from 0x%p to 0x%p\n",
855 logical, len, ix, ix + 1);
856 memmove(ix + 1, ix, len * sizeof(struct ext4_extent_idx));
859 if (unlikely(ix > EXT_MAX_INDEX(curp->p_hdr))) {
860 EXT4_ERROR_INODE(inode, "ix > EXT_MAX_INDEX!");
861 return -EIO;
864 ix->ei_block = cpu_to_le32(logical);
865 ext4_idx_store_pblock(ix, ptr);
866 le16_add_cpu(&curp->p_hdr->eh_entries, 1);
868 if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) {
869 EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!");
870 return -EIO;
873 err = ext4_ext_dirty(handle, inode, curp);
874 ext4_std_error(inode->i_sb, err);
876 return err;
880 * ext4_ext_split:
881 * inserts new subtree into the path, using free index entry
882 * at depth @at:
883 * - allocates all needed blocks (new leaf and all intermediate index blocks)
884 * - makes decision where to split
885 * - moves remaining extents and index entries (right to the split point)
886 * into the newly allocated blocks
887 * - initializes subtree
889 static int ext4_ext_split(handle_t *handle, struct inode *inode,
890 unsigned int flags,
891 struct ext4_ext_path *path,
892 struct ext4_extent *newext, int at)
894 struct buffer_head *bh = NULL;
895 int depth = ext_depth(inode);
896 struct ext4_extent_header *neh;
897 struct ext4_extent_idx *fidx;
898 int i = at, k, m, a;
899 ext4_fsblk_t newblock, oldblock;
900 __le32 border;
901 ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
902 int err = 0;
904 /* make decision: where to split? */
905 /* FIXME: now decision is simplest: at current extent */
907 /* if current leaf will be split, then we should use
908 * border from split point */
909 if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) {
910 EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!");
911 return -EIO;
913 if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
914 border = path[depth].p_ext[1].ee_block;
915 ext_debug("leaf will be split."
916 " next leaf starts at %d\n",
917 le32_to_cpu(border));
918 } else {
919 border = newext->ee_block;
920 ext_debug("leaf will be added."
921 " next leaf starts at %d\n",
922 le32_to_cpu(border));
926 * If error occurs, then we break processing
927 * and mark filesystem read-only. index won't
928 * be inserted and tree will be in consistent
929 * state. Next mount will repair buffers too.
933 * Get array to track all allocated blocks.
934 * We need this to handle errors and free blocks
935 * upon them.
937 ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS);
938 if (!ablocks)
939 return -ENOMEM;
941 /* allocate all needed blocks */
942 ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
943 for (a = 0; a < depth - at; a++) {
944 newblock = ext4_ext_new_meta_block(handle, inode, path,
945 newext, &err, flags);
946 if (newblock == 0)
947 goto cleanup;
948 ablocks[a] = newblock;
951 /* initialize new leaf */
952 newblock = ablocks[--a];
953 if (unlikely(newblock == 0)) {
954 EXT4_ERROR_INODE(inode, "newblock == 0!");
955 err = -EIO;
956 goto cleanup;
958 bh = sb_getblk(inode->i_sb, newblock);
959 if (unlikely(!bh)) {
960 err = -ENOMEM;
961 goto cleanup;
963 lock_buffer(bh);
965 err = ext4_journal_get_create_access(handle, bh);
966 if (err)
967 goto cleanup;
969 neh = ext_block_hdr(bh);
970 neh->eh_entries = 0;
971 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
972 neh->eh_magic = EXT4_EXT_MAGIC;
973 neh->eh_depth = 0;
975 /* move remainder of path[depth] to the new leaf */
976 if (unlikely(path[depth].p_hdr->eh_entries !=
977 path[depth].p_hdr->eh_max)) {
978 EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!",
979 path[depth].p_hdr->eh_entries,
980 path[depth].p_hdr->eh_max);
981 err = -EIO;
982 goto cleanup;
984 /* start copy from next extent */
985 m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++;
986 ext4_ext_show_move(inode, path, newblock, depth);
987 if (m) {
988 struct ext4_extent *ex;
989 ex = EXT_FIRST_EXTENT(neh);
990 memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m);
991 le16_add_cpu(&neh->eh_entries, m);
994 ext4_extent_block_csum_set(inode, neh);
995 set_buffer_uptodate(bh);
996 unlock_buffer(bh);
998 err = ext4_handle_dirty_metadata(handle, inode, bh);
999 if (err)
1000 goto cleanup;
1001 brelse(bh);
1002 bh = NULL;
1004 /* correct old leaf */
1005 if (m) {
1006 err = ext4_ext_get_access(handle, inode, path + depth);
1007 if (err)
1008 goto cleanup;
1009 le16_add_cpu(&path[depth].p_hdr->eh_entries, -m);
1010 err = ext4_ext_dirty(handle, inode, path + depth);
1011 if (err)
1012 goto cleanup;
1016 /* create intermediate indexes */
1017 k = depth - at - 1;
1018 if (unlikely(k < 0)) {
1019 EXT4_ERROR_INODE(inode, "k %d < 0!", k);
1020 err = -EIO;
1021 goto cleanup;
1023 if (k)
1024 ext_debug("create %d intermediate indices\n", k);
1025 /* insert new index into current index block */
1026 /* current depth stored in i var */
1027 i = depth - 1;
1028 while (k--) {
1029 oldblock = newblock;
1030 newblock = ablocks[--a];
1031 bh = sb_getblk(inode->i_sb, newblock);
1032 if (unlikely(!bh)) {
1033 err = -ENOMEM;
1034 goto cleanup;
1036 lock_buffer(bh);
1038 err = ext4_journal_get_create_access(handle, bh);
1039 if (err)
1040 goto cleanup;
1042 neh = ext_block_hdr(bh);
1043 neh->eh_entries = cpu_to_le16(1);
1044 neh->eh_magic = EXT4_EXT_MAGIC;
1045 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1046 neh->eh_depth = cpu_to_le16(depth - i);
1047 fidx = EXT_FIRST_INDEX(neh);
1048 fidx->ei_block = border;
1049 ext4_idx_store_pblock(fidx, oldblock);
1051 ext_debug("int.index at %d (block %llu): %u -> %llu\n",
1052 i, newblock, le32_to_cpu(border), oldblock);
1054 /* move remainder of path[i] to the new index block */
1055 if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) !=
1056 EXT_LAST_INDEX(path[i].p_hdr))) {
1057 EXT4_ERROR_INODE(inode,
1058 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!",
1059 le32_to_cpu(path[i].p_ext->ee_block));
1060 err = -EIO;
1061 goto cleanup;
1063 /* start copy indexes */
1064 m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++;
1065 ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
1066 EXT_MAX_INDEX(path[i].p_hdr));
1067 ext4_ext_show_move(inode, path, newblock, i);
1068 if (m) {
1069 memmove(++fidx, path[i].p_idx,
1070 sizeof(struct ext4_extent_idx) * m);
1071 le16_add_cpu(&neh->eh_entries, m);
1073 ext4_extent_block_csum_set(inode, neh);
1074 set_buffer_uptodate(bh);
1075 unlock_buffer(bh);
1077 err = ext4_handle_dirty_metadata(handle, inode, bh);
1078 if (err)
1079 goto cleanup;
1080 brelse(bh);
1081 bh = NULL;
1083 /* correct old index */
1084 if (m) {
1085 err = ext4_ext_get_access(handle, inode, path + i);
1086 if (err)
1087 goto cleanup;
1088 le16_add_cpu(&path[i].p_hdr->eh_entries, -m);
1089 err = ext4_ext_dirty(handle, inode, path + i);
1090 if (err)
1091 goto cleanup;
1094 i--;
1097 /* insert new index */
1098 err = ext4_ext_insert_index(handle, inode, path + at,
1099 le32_to_cpu(border), newblock);
1101 cleanup:
1102 if (bh) {
1103 if (buffer_locked(bh))
1104 unlock_buffer(bh);
1105 brelse(bh);
1108 if (err) {
1109 /* free all allocated blocks in error case */
1110 for (i = 0; i < depth; i++) {
1111 if (!ablocks[i])
1112 continue;
1113 ext4_free_blocks(handle, inode, NULL, ablocks[i], 1,
1114 EXT4_FREE_BLOCKS_METADATA);
1117 kfree(ablocks);
1119 return err;
1123 * ext4_ext_grow_indepth:
1124 * implements tree growing procedure:
1125 * - allocates new block
1126 * - moves top-level data (index block or leaf) into the new block
1127 * - initializes new top-level, creating index that points to the
1128 * just created block
1130 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
1131 unsigned int flags,
1132 struct ext4_extent *newext)
1134 struct ext4_extent_header *neh;
1135 struct buffer_head *bh;
1136 ext4_fsblk_t newblock;
1137 int err = 0;
1139 newblock = ext4_ext_new_meta_block(handle, inode, NULL,
1140 newext, &err, flags);
1141 if (newblock == 0)
1142 return err;
1144 bh = sb_getblk(inode->i_sb, newblock);
1145 if (unlikely(!bh))
1146 return -ENOMEM;
1147 lock_buffer(bh);
1149 err = ext4_journal_get_create_access(handle, bh);
1150 if (err) {
1151 unlock_buffer(bh);
1152 goto out;
1155 /* move top-level index/leaf into new block */
1156 memmove(bh->b_data, EXT4_I(inode)->i_data,
1157 sizeof(EXT4_I(inode)->i_data));
1159 /* set size of new block */
1160 neh = ext_block_hdr(bh);
1161 /* old root could have indexes or leaves
1162 * so calculate e_max right way */
1163 if (ext_depth(inode))
1164 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1165 else
1166 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1167 neh->eh_magic = EXT4_EXT_MAGIC;
1168 ext4_extent_block_csum_set(inode, neh);
1169 set_buffer_uptodate(bh);
1170 unlock_buffer(bh);
1172 err = ext4_handle_dirty_metadata(handle, inode, bh);
1173 if (err)
1174 goto out;
1176 /* Update top-level index: num,max,pointer */
1177 neh = ext_inode_hdr(inode);
1178 neh->eh_entries = cpu_to_le16(1);
1179 ext4_idx_store_pblock(EXT_FIRST_INDEX(neh), newblock);
1180 if (neh->eh_depth == 0) {
1181 /* Root extent block becomes index block */
1182 neh->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0));
1183 EXT_FIRST_INDEX(neh)->ei_block =
1184 EXT_FIRST_EXTENT(neh)->ee_block;
1186 ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
1187 le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
1188 le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block),
1189 ext4_idx_pblock(EXT_FIRST_INDEX(neh)));
1191 le16_add_cpu(&neh->eh_depth, 1);
1192 ext4_mark_inode_dirty(handle, inode);
1193 out:
1194 brelse(bh);
1196 return err;
1200 * ext4_ext_create_new_leaf:
1201 * finds empty index and adds new leaf.
1202 * if no free index is found, then it requests in-depth growing.
1204 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
1205 unsigned int flags,
1206 struct ext4_ext_path *path,
1207 struct ext4_extent *newext)
1209 struct ext4_ext_path *curp;
1210 int depth, i, err = 0;
1212 repeat:
1213 i = depth = ext_depth(inode);
1215 /* walk up to the tree and look for free index entry */
1216 curp = path + depth;
1217 while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
1218 i--;
1219 curp--;
1222 /* we use already allocated block for index block,
1223 * so subsequent data blocks should be contiguous */
1224 if (EXT_HAS_FREE_INDEX(curp)) {
1225 /* if we found index with free entry, then use that
1226 * entry: create all needed subtree and add new leaf */
1227 err = ext4_ext_split(handle, inode, flags, path, newext, i);
1228 if (err)
1229 goto out;
1231 /* refill path */
1232 ext4_ext_drop_refs(path);
1233 path = ext4_ext_find_extent(inode,
1234 (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1235 path);
1236 if (IS_ERR(path))
1237 err = PTR_ERR(path);
1238 } else {
1239 /* tree is full, time to grow in depth */
1240 err = ext4_ext_grow_indepth(handle, inode, flags, newext);
1241 if (err)
1242 goto out;
1244 /* refill path */
1245 ext4_ext_drop_refs(path);
1246 path = ext4_ext_find_extent(inode,
1247 (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1248 path);
1249 if (IS_ERR(path)) {
1250 err = PTR_ERR(path);
1251 goto out;
1255 * only first (depth 0 -> 1) produces free space;
1256 * in all other cases we have to split the grown tree
1258 depth = ext_depth(inode);
1259 if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
1260 /* now we need to split */
1261 goto repeat;
1265 out:
1266 return err;
1270 * search the closest allocated block to the left for *logical
1271 * and returns it at @logical + it's physical address at @phys
1272 * if *logical is the smallest allocated block, the function
1273 * returns 0 at @phys
1274 * return value contains 0 (success) or error code
1276 static int ext4_ext_search_left(struct inode *inode,
1277 struct ext4_ext_path *path,
1278 ext4_lblk_t *logical, ext4_fsblk_t *phys)
1280 struct ext4_extent_idx *ix;
1281 struct ext4_extent *ex;
1282 int depth, ee_len;
1284 if (unlikely(path == NULL)) {
1285 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1286 return -EIO;
1288 depth = path->p_depth;
1289 *phys = 0;
1291 if (depth == 0 && path->p_ext == NULL)
1292 return 0;
1294 /* usually extent in the path covers blocks smaller
1295 * then *logical, but it can be that extent is the
1296 * first one in the file */
1298 ex = path[depth].p_ext;
1299 ee_len = ext4_ext_get_actual_len(ex);
1300 if (*logical < le32_to_cpu(ex->ee_block)) {
1301 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1302 EXT4_ERROR_INODE(inode,
1303 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!",
1304 *logical, le32_to_cpu(ex->ee_block));
1305 return -EIO;
1307 while (--depth >= 0) {
1308 ix = path[depth].p_idx;
1309 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1310 EXT4_ERROR_INODE(inode,
1311 "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!",
1312 ix != NULL ? le32_to_cpu(ix->ei_block) : 0,
1313 EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ?
1314 le32_to_cpu(EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block) : 0,
1315 depth);
1316 return -EIO;
1319 return 0;
1322 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1323 EXT4_ERROR_INODE(inode,
1324 "logical %d < ee_block %d + ee_len %d!",
1325 *logical, le32_to_cpu(ex->ee_block), ee_len);
1326 return -EIO;
1329 *logical = le32_to_cpu(ex->ee_block) + ee_len - 1;
1330 *phys = ext4_ext_pblock(ex) + ee_len - 1;
1331 return 0;
1335 * search the closest allocated block to the right for *logical
1336 * and returns it at @logical + it's physical address at @phys
1337 * if *logical is the largest allocated block, the function
1338 * returns 0 at @phys
1339 * return value contains 0 (success) or error code
1341 static int ext4_ext_search_right(struct inode *inode,
1342 struct ext4_ext_path *path,
1343 ext4_lblk_t *logical, ext4_fsblk_t *phys,
1344 struct ext4_extent **ret_ex)
1346 struct buffer_head *bh = NULL;
1347 struct ext4_extent_header *eh;
1348 struct ext4_extent_idx *ix;
1349 struct ext4_extent *ex;
1350 ext4_fsblk_t block;
1351 int depth; /* Note, NOT eh_depth; depth from top of tree */
1352 int ee_len;
1354 if (unlikely(path == NULL)) {
1355 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1356 return -EIO;
1358 depth = path->p_depth;
1359 *phys = 0;
1361 if (depth == 0 && path->p_ext == NULL)
1362 return 0;
1364 /* usually extent in the path covers blocks smaller
1365 * then *logical, but it can be that extent is the
1366 * first one in the file */
1368 ex = path[depth].p_ext;
1369 ee_len = ext4_ext_get_actual_len(ex);
1370 if (*logical < le32_to_cpu(ex->ee_block)) {
1371 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1372 EXT4_ERROR_INODE(inode,
1373 "first_extent(path[%d].p_hdr) != ex",
1374 depth);
1375 return -EIO;
1377 while (--depth >= 0) {
1378 ix = path[depth].p_idx;
1379 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1380 EXT4_ERROR_INODE(inode,
1381 "ix != EXT_FIRST_INDEX *logical %d!",
1382 *logical);
1383 return -EIO;
1386 goto found_extent;
1389 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1390 EXT4_ERROR_INODE(inode,
1391 "logical %d < ee_block %d + ee_len %d!",
1392 *logical, le32_to_cpu(ex->ee_block), ee_len);
1393 return -EIO;
1396 if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) {
1397 /* next allocated block in this leaf */
1398 ex++;
1399 goto found_extent;
1402 /* go up and search for index to the right */
1403 while (--depth >= 0) {
1404 ix = path[depth].p_idx;
1405 if (ix != EXT_LAST_INDEX(path[depth].p_hdr))
1406 goto got_index;
1409 /* we've gone up to the root and found no index to the right */
1410 return 0;
1412 got_index:
1413 /* we've found index to the right, let's
1414 * follow it and find the closest allocated
1415 * block to the right */
1416 ix++;
1417 block = ext4_idx_pblock(ix);
1418 while (++depth < path->p_depth) {
1419 bh = sb_bread(inode->i_sb, block);
1420 if (bh == NULL)
1421 return -EIO;
1422 eh = ext_block_hdr(bh);
1423 /* subtract from p_depth to get proper eh_depth */
1424 if (ext4_ext_check_block(inode, eh,
1425 path->p_depth - depth, bh)) {
1426 put_bh(bh);
1427 return -EIO;
1429 ix = EXT_FIRST_INDEX(eh);
1430 block = ext4_idx_pblock(ix);
1431 put_bh(bh);
1434 bh = sb_bread(inode->i_sb, block);
1435 if (bh == NULL)
1436 return -EIO;
1437 eh = ext_block_hdr(bh);
1438 if (ext4_ext_check_block(inode, eh, path->p_depth - depth, bh)) {
1439 put_bh(bh);
1440 return -EIO;
1442 ex = EXT_FIRST_EXTENT(eh);
1443 found_extent:
1444 *logical = le32_to_cpu(ex->ee_block);
1445 *phys = ext4_ext_pblock(ex);
1446 *ret_ex = ex;
1447 if (bh)
1448 put_bh(bh);
1449 return 0;
1453 * ext4_ext_next_allocated_block:
1454 * returns allocated block in subsequent extent or EXT_MAX_BLOCKS.
1455 * NOTE: it considers block number from index entry as
1456 * allocated block. Thus, index entries have to be consistent
1457 * with leaves.
1459 static ext4_lblk_t
1460 ext4_ext_next_allocated_block(struct ext4_ext_path *path)
1462 int depth;
1464 BUG_ON(path == NULL);
1465 depth = path->p_depth;
1467 if (depth == 0 && path->p_ext == NULL)
1468 return EXT_MAX_BLOCKS;
1470 while (depth >= 0) {
1471 if (depth == path->p_depth) {
1472 /* leaf */
1473 if (path[depth].p_ext &&
1474 path[depth].p_ext !=
1475 EXT_LAST_EXTENT(path[depth].p_hdr))
1476 return le32_to_cpu(path[depth].p_ext[1].ee_block);
1477 } else {
1478 /* index */
1479 if (path[depth].p_idx !=
1480 EXT_LAST_INDEX(path[depth].p_hdr))
1481 return le32_to_cpu(path[depth].p_idx[1].ei_block);
1483 depth--;
1486 return EXT_MAX_BLOCKS;
1490 * ext4_ext_next_leaf_block:
1491 * returns first allocated block from next leaf or EXT_MAX_BLOCKS
1493 static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path)
1495 int depth;
1497 BUG_ON(path == NULL);
1498 depth = path->p_depth;
1500 /* zero-tree has no leaf blocks at all */
1501 if (depth == 0)
1502 return EXT_MAX_BLOCKS;
1504 /* go to index block */
1505 depth--;
1507 while (depth >= 0) {
1508 if (path[depth].p_idx !=
1509 EXT_LAST_INDEX(path[depth].p_hdr))
1510 return (ext4_lblk_t)
1511 le32_to_cpu(path[depth].p_idx[1].ei_block);
1512 depth--;
1515 return EXT_MAX_BLOCKS;
1519 * ext4_ext_correct_indexes:
1520 * if leaf gets modified and modified extent is first in the leaf,
1521 * then we have to correct all indexes above.
1522 * TODO: do we need to correct tree in all cases?
1524 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
1525 struct ext4_ext_path *path)
1527 struct ext4_extent_header *eh;
1528 int depth = ext_depth(inode);
1529 struct ext4_extent *ex;
1530 __le32 border;
1531 int k, err = 0;
1533 eh = path[depth].p_hdr;
1534 ex = path[depth].p_ext;
1536 if (unlikely(ex == NULL || eh == NULL)) {
1537 EXT4_ERROR_INODE(inode,
1538 "ex %p == NULL or eh %p == NULL", ex, eh);
1539 return -EIO;
1542 if (depth == 0) {
1543 /* there is no tree at all */
1544 return 0;
1547 if (ex != EXT_FIRST_EXTENT(eh)) {
1548 /* we correct tree if first leaf got modified only */
1549 return 0;
1553 * TODO: we need correction if border is smaller than current one
1555 k = depth - 1;
1556 border = path[depth].p_ext->ee_block;
1557 err = ext4_ext_get_access(handle, inode, path + k);
1558 if (err)
1559 return err;
1560 path[k].p_idx->ei_block = border;
1561 err = ext4_ext_dirty(handle, inode, path + k);
1562 if (err)
1563 return err;
1565 while (k--) {
1566 /* change all left-side indexes */
1567 if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
1568 break;
1569 err = ext4_ext_get_access(handle, inode, path + k);
1570 if (err)
1571 break;
1572 path[k].p_idx->ei_block = border;
1573 err = ext4_ext_dirty(handle, inode, path + k);
1574 if (err)
1575 break;
1578 return err;
1582 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
1583 struct ext4_extent *ex2)
1585 unsigned short ext1_ee_len, ext2_ee_len, max_len;
1588 * Make sure that either both extents are uninitialized, or
1589 * both are _not_.
1591 if (ext4_ext_is_uninitialized(ex1) ^ ext4_ext_is_uninitialized(ex2))
1592 return 0;
1594 if (ext4_ext_is_uninitialized(ex1))
1595 max_len = EXT_UNINIT_MAX_LEN;
1596 else
1597 max_len = EXT_INIT_MAX_LEN;
1599 ext1_ee_len = ext4_ext_get_actual_len(ex1);
1600 ext2_ee_len = ext4_ext_get_actual_len(ex2);
1602 if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
1603 le32_to_cpu(ex2->ee_block))
1604 return 0;
1607 * To allow future support for preallocated extents to be added
1608 * as an RO_COMPAT feature, refuse to merge to extents if
1609 * this can result in the top bit of ee_len being set.
1611 if (ext1_ee_len + ext2_ee_len > max_len)
1612 return 0;
1613 #ifdef AGGRESSIVE_TEST
1614 if (ext1_ee_len >= 4)
1615 return 0;
1616 #endif
1618 if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2))
1619 return 1;
1620 return 0;
1624 * This function tries to merge the "ex" extent to the next extent in the tree.
1625 * It always tries to merge towards right. If you want to merge towards
1626 * left, pass "ex - 1" as argument instead of "ex".
1627 * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1628 * 1 if they got merged.
1630 static int ext4_ext_try_to_merge_right(struct inode *inode,
1631 struct ext4_ext_path *path,
1632 struct ext4_extent *ex)
1634 struct ext4_extent_header *eh;
1635 unsigned int depth, len;
1636 int merge_done = 0;
1637 int uninitialized = 0;
1639 depth = ext_depth(inode);
1640 BUG_ON(path[depth].p_hdr == NULL);
1641 eh = path[depth].p_hdr;
1643 while (ex < EXT_LAST_EXTENT(eh)) {
1644 if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
1645 break;
1646 /* merge with next extent! */
1647 if (ext4_ext_is_uninitialized(ex))
1648 uninitialized = 1;
1649 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1650 + ext4_ext_get_actual_len(ex + 1));
1651 if (uninitialized)
1652 ext4_ext_mark_uninitialized(ex);
1654 if (ex + 1 < EXT_LAST_EXTENT(eh)) {
1655 len = (EXT_LAST_EXTENT(eh) - ex - 1)
1656 * sizeof(struct ext4_extent);
1657 memmove(ex + 1, ex + 2, len);
1659 le16_add_cpu(&eh->eh_entries, -1);
1660 merge_done = 1;
1661 WARN_ON(eh->eh_entries == 0);
1662 if (!eh->eh_entries)
1663 EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!");
1666 return merge_done;
1670 * This function does a very simple check to see if we can collapse
1671 * an extent tree with a single extent tree leaf block into the inode.
1673 static void ext4_ext_try_to_merge_up(handle_t *handle,
1674 struct inode *inode,
1675 struct ext4_ext_path *path)
1677 size_t s;
1678 unsigned max_root = ext4_ext_space_root(inode, 0);
1679 ext4_fsblk_t blk;
1681 if ((path[0].p_depth != 1) ||
1682 (le16_to_cpu(path[0].p_hdr->eh_entries) != 1) ||
1683 (le16_to_cpu(path[1].p_hdr->eh_entries) > max_root))
1684 return;
1687 * We need to modify the block allocation bitmap and the block
1688 * group descriptor to release the extent tree block. If we
1689 * can't get the journal credits, give up.
1691 if (ext4_journal_extend(handle, 2))
1692 return;
1695 * Copy the extent data up to the inode
1697 blk = ext4_idx_pblock(path[0].p_idx);
1698 s = le16_to_cpu(path[1].p_hdr->eh_entries) *
1699 sizeof(struct ext4_extent_idx);
1700 s += sizeof(struct ext4_extent_header);
1702 memcpy(path[0].p_hdr, path[1].p_hdr, s);
1703 path[0].p_depth = 0;
1704 path[0].p_ext = EXT_FIRST_EXTENT(path[0].p_hdr) +
1705 (path[1].p_ext - EXT_FIRST_EXTENT(path[1].p_hdr));
1706 path[0].p_hdr->eh_max = cpu_to_le16(max_root);
1708 brelse(path[1].p_bh);
1709 ext4_free_blocks(handle, inode, NULL, blk, 1,
1710 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
1714 * This function tries to merge the @ex extent to neighbours in the tree.
1715 * return 1 if merge left else 0.
1717 static void ext4_ext_try_to_merge(handle_t *handle,
1718 struct inode *inode,
1719 struct ext4_ext_path *path,
1720 struct ext4_extent *ex) {
1721 struct ext4_extent_header *eh;
1722 unsigned int depth;
1723 int merge_done = 0;
1725 depth = ext_depth(inode);
1726 BUG_ON(path[depth].p_hdr == NULL);
1727 eh = path[depth].p_hdr;
1729 if (ex > EXT_FIRST_EXTENT(eh))
1730 merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1);
1732 if (!merge_done)
1733 (void) ext4_ext_try_to_merge_right(inode, path, ex);
1735 ext4_ext_try_to_merge_up(handle, inode, path);
1739 * check if a portion of the "newext" extent overlaps with an
1740 * existing extent.
1742 * If there is an overlap discovered, it updates the length of the newext
1743 * such that there will be no overlap, and then returns 1.
1744 * If there is no overlap found, it returns 0.
1746 static unsigned int ext4_ext_check_overlap(struct ext4_sb_info *sbi,
1747 struct inode *inode,
1748 struct ext4_extent *newext,
1749 struct ext4_ext_path *path)
1751 ext4_lblk_t b1, b2;
1752 unsigned int depth, len1;
1753 unsigned int ret = 0;
1755 b1 = le32_to_cpu(newext->ee_block);
1756 len1 = ext4_ext_get_actual_len(newext);
1757 depth = ext_depth(inode);
1758 if (!path[depth].p_ext)
1759 goto out;
1760 b2 = le32_to_cpu(path[depth].p_ext->ee_block);
1761 b2 &= ~(sbi->s_cluster_ratio - 1);
1764 * get the next allocated block if the extent in the path
1765 * is before the requested block(s)
1767 if (b2 < b1) {
1768 b2 = ext4_ext_next_allocated_block(path);
1769 if (b2 == EXT_MAX_BLOCKS)
1770 goto out;
1771 b2 &= ~(sbi->s_cluster_ratio - 1);
1774 /* check for wrap through zero on extent logical start block*/
1775 if (b1 + len1 < b1) {
1776 len1 = EXT_MAX_BLOCKS - b1;
1777 newext->ee_len = cpu_to_le16(len1);
1778 ret = 1;
1781 /* check for overlap */
1782 if (b1 + len1 > b2) {
1783 newext->ee_len = cpu_to_le16(b2 - b1);
1784 ret = 1;
1786 out:
1787 return ret;
1791 * ext4_ext_insert_extent:
1792 * tries to merge requsted extent into the existing extent or
1793 * inserts requested extent as new one into the tree,
1794 * creating new leaf in the no-space case.
1796 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
1797 struct ext4_ext_path *path,
1798 struct ext4_extent *newext, int flag)
1800 struct ext4_extent_header *eh;
1801 struct ext4_extent *ex, *fex;
1802 struct ext4_extent *nearex; /* nearest extent */
1803 struct ext4_ext_path *npath = NULL;
1804 int depth, len, err;
1805 ext4_lblk_t next;
1806 unsigned uninitialized = 0;
1807 int flags = 0;
1809 if (unlikely(ext4_ext_get_actual_len(newext) == 0)) {
1810 EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0");
1811 return -EIO;
1813 depth = ext_depth(inode);
1814 ex = path[depth].p_ext;
1815 if (unlikely(path[depth].p_hdr == NULL)) {
1816 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1817 return -EIO;
1820 /* try to insert block into found extent and return */
1821 if (ex && !(flag & EXT4_GET_BLOCKS_PRE_IO)
1822 && ext4_can_extents_be_merged(inode, ex, newext)) {
1823 ext_debug("append [%d]%d block to %u:[%d]%d (from %llu)\n",
1824 ext4_ext_is_uninitialized(newext),
1825 ext4_ext_get_actual_len(newext),
1826 le32_to_cpu(ex->ee_block),
1827 ext4_ext_is_uninitialized(ex),
1828 ext4_ext_get_actual_len(ex),
1829 ext4_ext_pblock(ex));
1830 err = ext4_ext_get_access(handle, inode, path + depth);
1831 if (err)
1832 return err;
1835 * ext4_can_extents_be_merged should have checked that either
1836 * both extents are uninitialized, or both aren't. Thus we
1837 * need to check only one of them here.
1839 if (ext4_ext_is_uninitialized(ex))
1840 uninitialized = 1;
1841 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1842 + ext4_ext_get_actual_len(newext));
1843 if (uninitialized)
1844 ext4_ext_mark_uninitialized(ex);
1845 eh = path[depth].p_hdr;
1846 nearex = ex;
1847 goto merge;
1850 depth = ext_depth(inode);
1851 eh = path[depth].p_hdr;
1852 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
1853 goto has_space;
1855 /* probably next leaf has space for us? */
1856 fex = EXT_LAST_EXTENT(eh);
1857 next = EXT_MAX_BLOCKS;
1858 if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block))
1859 next = ext4_ext_next_leaf_block(path);
1860 if (next != EXT_MAX_BLOCKS) {
1861 ext_debug("next leaf block - %u\n", next);
1862 BUG_ON(npath != NULL);
1863 npath = ext4_ext_find_extent(inode, next, NULL);
1864 if (IS_ERR(npath))
1865 return PTR_ERR(npath);
1866 BUG_ON(npath->p_depth != path->p_depth);
1867 eh = npath[depth].p_hdr;
1868 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
1869 ext_debug("next leaf isn't full(%d)\n",
1870 le16_to_cpu(eh->eh_entries));
1871 path = npath;
1872 goto has_space;
1874 ext_debug("next leaf has no free space(%d,%d)\n",
1875 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
1879 * There is no free space in the found leaf.
1880 * We're gonna add a new leaf in the tree.
1882 if (flag & EXT4_GET_BLOCKS_PUNCH_OUT_EXT)
1883 flags = EXT4_MB_USE_ROOT_BLOCKS;
1884 err = ext4_ext_create_new_leaf(handle, inode, flags, path, newext);
1885 if (err)
1886 goto cleanup;
1887 depth = ext_depth(inode);
1888 eh = path[depth].p_hdr;
1890 has_space:
1891 nearex = path[depth].p_ext;
1893 err = ext4_ext_get_access(handle, inode, path + depth);
1894 if (err)
1895 goto cleanup;
1897 if (!nearex) {
1898 /* there is no extent in this leaf, create first one */
1899 ext_debug("first extent in the leaf: %u:%llu:[%d]%d\n",
1900 le32_to_cpu(newext->ee_block),
1901 ext4_ext_pblock(newext),
1902 ext4_ext_is_uninitialized(newext),
1903 ext4_ext_get_actual_len(newext));
1904 nearex = EXT_FIRST_EXTENT(eh);
1905 } else {
1906 if (le32_to_cpu(newext->ee_block)
1907 > le32_to_cpu(nearex->ee_block)) {
1908 /* Insert after */
1909 ext_debug("insert %u:%llu:[%d]%d before: "
1910 "nearest %p\n",
1911 le32_to_cpu(newext->ee_block),
1912 ext4_ext_pblock(newext),
1913 ext4_ext_is_uninitialized(newext),
1914 ext4_ext_get_actual_len(newext),
1915 nearex);
1916 nearex++;
1917 } else {
1918 /* Insert before */
1919 BUG_ON(newext->ee_block == nearex->ee_block);
1920 ext_debug("insert %u:%llu:[%d]%d after: "
1921 "nearest %p\n",
1922 le32_to_cpu(newext->ee_block),
1923 ext4_ext_pblock(newext),
1924 ext4_ext_is_uninitialized(newext),
1925 ext4_ext_get_actual_len(newext),
1926 nearex);
1928 len = EXT_LAST_EXTENT(eh) - nearex + 1;
1929 if (len > 0) {
1930 ext_debug("insert %u:%llu:[%d]%d: "
1931 "move %d extents from 0x%p to 0x%p\n",
1932 le32_to_cpu(newext->ee_block),
1933 ext4_ext_pblock(newext),
1934 ext4_ext_is_uninitialized(newext),
1935 ext4_ext_get_actual_len(newext),
1936 len, nearex, nearex + 1);
1937 memmove(nearex + 1, nearex,
1938 len * sizeof(struct ext4_extent));
1942 le16_add_cpu(&eh->eh_entries, 1);
1943 path[depth].p_ext = nearex;
1944 nearex->ee_block = newext->ee_block;
1945 ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext));
1946 nearex->ee_len = newext->ee_len;
1948 merge:
1949 /* try to merge extents */
1950 if (!(flag & EXT4_GET_BLOCKS_PRE_IO))
1951 ext4_ext_try_to_merge(handle, inode, path, nearex);
1954 /* time to correct all indexes above */
1955 err = ext4_ext_correct_indexes(handle, inode, path);
1956 if (err)
1957 goto cleanup;
1959 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
1961 cleanup:
1962 if (npath) {
1963 ext4_ext_drop_refs(npath);
1964 kfree(npath);
1966 ext4_ext_invalidate_cache(inode);
1967 return err;
1970 static int ext4_fill_fiemap_extents(struct inode *inode,
1971 ext4_lblk_t block, ext4_lblk_t num,
1972 struct fiemap_extent_info *fieinfo)
1974 struct ext4_ext_path *path = NULL;
1975 struct ext4_ext_cache newex;
1976 struct ext4_extent *ex;
1977 ext4_lblk_t next, next_del, start = 0, end = 0;
1978 ext4_lblk_t last = block + num;
1979 int exists, depth = 0, err = 0;
1980 unsigned int flags = 0;
1981 unsigned char blksize_bits = inode->i_sb->s_blocksize_bits;
1983 while (block < last && block != EXT_MAX_BLOCKS) {
1984 num = last - block;
1985 /* find extent for this block */
1986 down_read(&EXT4_I(inode)->i_data_sem);
1988 if (path && ext_depth(inode) != depth) {
1989 /* depth was changed. we have to realloc path */
1990 kfree(path);
1991 path = NULL;
1994 path = ext4_ext_find_extent(inode, block, path);
1995 if (IS_ERR(path)) {
1996 up_read(&EXT4_I(inode)->i_data_sem);
1997 err = PTR_ERR(path);
1998 path = NULL;
1999 break;
2002 depth = ext_depth(inode);
2003 if (unlikely(path[depth].p_hdr == NULL)) {
2004 up_read(&EXT4_I(inode)->i_data_sem);
2005 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2006 err = -EIO;
2007 break;
2009 ex = path[depth].p_ext;
2010 next = ext4_ext_next_allocated_block(path);
2011 ext4_ext_drop_refs(path);
2013 flags = 0;
2014 exists = 0;
2015 if (!ex) {
2016 /* there is no extent yet, so try to allocate
2017 * all requested space */
2018 start = block;
2019 end = block + num;
2020 } else if (le32_to_cpu(ex->ee_block) > block) {
2021 /* need to allocate space before found extent */
2022 start = block;
2023 end = le32_to_cpu(ex->ee_block);
2024 if (block + num < end)
2025 end = block + num;
2026 } else if (block >= le32_to_cpu(ex->ee_block)
2027 + ext4_ext_get_actual_len(ex)) {
2028 /* need to allocate space after found extent */
2029 start = block;
2030 end = block + num;
2031 if (end >= next)
2032 end = next;
2033 } else if (block >= le32_to_cpu(ex->ee_block)) {
2035 * some part of requested space is covered
2036 * by found extent
2038 start = block;
2039 end = le32_to_cpu(ex->ee_block)
2040 + ext4_ext_get_actual_len(ex);
2041 if (block + num < end)
2042 end = block + num;
2043 exists = 1;
2044 } else {
2045 BUG();
2047 BUG_ON(end <= start);
2049 if (!exists) {
2050 newex.ec_block = start;
2051 newex.ec_len = end - start;
2052 newex.ec_start = 0;
2053 } else {
2054 newex.ec_block = le32_to_cpu(ex->ee_block);
2055 newex.ec_len = ext4_ext_get_actual_len(ex);
2056 newex.ec_start = ext4_ext_pblock(ex);
2057 if (ext4_ext_is_uninitialized(ex))
2058 flags |= FIEMAP_EXTENT_UNWRITTEN;
2062 * Find delayed extent and update newex accordingly. We call
2063 * it even in !exists case to find out whether newex is the
2064 * last existing extent or not.
2066 next_del = ext4_find_delayed_extent(inode, &newex);
2067 if (!exists && next_del) {
2068 exists = 1;
2069 flags |= FIEMAP_EXTENT_DELALLOC;
2071 up_read(&EXT4_I(inode)->i_data_sem);
2073 if (unlikely(newex.ec_len == 0)) {
2074 EXT4_ERROR_INODE(inode, "newex.ec_len == 0");
2075 err = -EIO;
2076 break;
2080 * This is possible iff next == next_del == EXT_MAX_BLOCKS.
2081 * we need to check next == EXT_MAX_BLOCKS because it is
2082 * possible that an extent is with unwritten and delayed
2083 * status due to when an extent is delayed allocated and
2084 * is allocated by fallocate status tree will track both of
2085 * them in a extent.
2087 * So we could return a unwritten and delayed extent, and
2088 * its block is equal to 'next'.
2090 if (next == next_del && next == EXT_MAX_BLOCKS) {
2091 flags |= FIEMAP_EXTENT_LAST;
2092 if (unlikely(next_del != EXT_MAX_BLOCKS ||
2093 next != EXT_MAX_BLOCKS)) {
2094 EXT4_ERROR_INODE(inode,
2095 "next extent == %u, next "
2096 "delalloc extent = %u",
2097 next, next_del);
2098 err = -EIO;
2099 break;
2103 if (exists) {
2104 err = fiemap_fill_next_extent(fieinfo,
2105 (__u64)newex.ec_block << blksize_bits,
2106 (__u64)newex.ec_start << blksize_bits,
2107 (__u64)newex.ec_len << blksize_bits,
2108 flags);
2109 if (err < 0)
2110 break;
2111 if (err == 1) {
2112 err = 0;
2113 break;
2117 block = newex.ec_block + newex.ec_len;
2120 if (path) {
2121 ext4_ext_drop_refs(path);
2122 kfree(path);
2125 return err;
2128 static void
2129 ext4_ext_put_in_cache(struct inode *inode, ext4_lblk_t block,
2130 __u32 len, ext4_fsblk_t start)
2132 struct ext4_ext_cache *cex;
2133 BUG_ON(len == 0);
2134 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
2135 trace_ext4_ext_put_in_cache(inode, block, len, start);
2136 cex = &EXT4_I(inode)->i_cached_extent;
2137 cex->ec_block = block;
2138 cex->ec_len = len;
2139 cex->ec_start = start;
2140 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
2144 * ext4_ext_put_gap_in_cache:
2145 * calculate boundaries of the gap that the requested block fits into
2146 * and cache this gap
2148 static void
2149 ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path,
2150 ext4_lblk_t block)
2152 int depth = ext_depth(inode);
2153 unsigned long len;
2154 ext4_lblk_t lblock;
2155 struct ext4_extent *ex;
2157 ex = path[depth].p_ext;
2158 if (ex == NULL) {
2159 /* there is no extent yet, so gap is [0;-] */
2160 lblock = 0;
2161 len = EXT_MAX_BLOCKS;
2162 ext_debug("cache gap(whole file):");
2163 } else if (block < le32_to_cpu(ex->ee_block)) {
2164 lblock = block;
2165 len = le32_to_cpu(ex->ee_block) - block;
2166 ext_debug("cache gap(before): %u [%u:%u]",
2167 block,
2168 le32_to_cpu(ex->ee_block),
2169 ext4_ext_get_actual_len(ex));
2170 } else if (block >= le32_to_cpu(ex->ee_block)
2171 + ext4_ext_get_actual_len(ex)) {
2172 ext4_lblk_t next;
2173 lblock = le32_to_cpu(ex->ee_block)
2174 + ext4_ext_get_actual_len(ex);
2176 next = ext4_ext_next_allocated_block(path);
2177 ext_debug("cache gap(after): [%u:%u] %u",
2178 le32_to_cpu(ex->ee_block),
2179 ext4_ext_get_actual_len(ex),
2180 block);
2181 BUG_ON(next == lblock);
2182 len = next - lblock;
2183 } else {
2184 lblock = len = 0;
2185 BUG();
2188 ext_debug(" -> %u:%lu\n", lblock, len);
2189 ext4_ext_put_in_cache(inode, lblock, len, 0);
2193 * ext4_ext_in_cache()
2194 * Checks to see if the given block is in the cache.
2195 * If it is, the cached extent is stored in the given
2196 * cache extent pointer.
2198 * @inode: The files inode
2199 * @block: The block to look for in the cache
2200 * @ex: Pointer where the cached extent will be stored
2201 * if it contains block
2203 * Return 0 if cache is invalid; 1 if the cache is valid
2205 static int
2206 ext4_ext_in_cache(struct inode *inode, ext4_lblk_t block,
2207 struct ext4_extent *ex)
2209 struct ext4_ext_cache *cex;
2210 int ret = 0;
2213 * We borrow i_block_reservation_lock to protect i_cached_extent
2215 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
2216 cex = &EXT4_I(inode)->i_cached_extent;
2218 /* has cache valid data? */
2219 if (cex->ec_len == 0)
2220 goto errout;
2222 if (in_range(block, cex->ec_block, cex->ec_len)) {
2223 ex->ee_block = cpu_to_le32(cex->ec_block);
2224 ext4_ext_store_pblock(ex, cex->ec_start);
2225 ex->ee_len = cpu_to_le16(cex->ec_len);
2226 ext_debug("%u cached by %u:%u:%llu\n",
2227 block,
2228 cex->ec_block, cex->ec_len, cex->ec_start);
2229 ret = 1;
2231 errout:
2232 trace_ext4_ext_in_cache(inode, block, ret);
2233 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
2234 return ret;
2238 * ext4_ext_rm_idx:
2239 * removes index from the index block.
2241 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
2242 struct ext4_ext_path *path, int depth)
2244 int err;
2245 ext4_fsblk_t leaf;
2247 /* free index block */
2248 depth--;
2249 path = path + depth;
2250 leaf = ext4_idx_pblock(path->p_idx);
2251 if (unlikely(path->p_hdr->eh_entries == 0)) {
2252 EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0");
2253 return -EIO;
2255 err = ext4_ext_get_access(handle, inode, path);
2256 if (err)
2257 return err;
2259 if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) {
2260 int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx;
2261 len *= sizeof(struct ext4_extent_idx);
2262 memmove(path->p_idx, path->p_idx + 1, len);
2265 le16_add_cpu(&path->p_hdr->eh_entries, -1);
2266 err = ext4_ext_dirty(handle, inode, path);
2267 if (err)
2268 return err;
2269 ext_debug("index is empty, remove it, free block %llu\n", leaf);
2270 trace_ext4_ext_rm_idx(inode, leaf);
2272 ext4_free_blocks(handle, inode, NULL, leaf, 1,
2273 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
2275 while (--depth >= 0) {
2276 if (path->p_idx != EXT_FIRST_INDEX(path->p_hdr))
2277 break;
2278 path--;
2279 err = ext4_ext_get_access(handle, inode, path);
2280 if (err)
2281 break;
2282 path->p_idx->ei_block = (path+1)->p_idx->ei_block;
2283 err = ext4_ext_dirty(handle, inode, path);
2284 if (err)
2285 break;
2287 return err;
2291 * ext4_ext_calc_credits_for_single_extent:
2292 * This routine returns max. credits that needed to insert an extent
2293 * to the extent tree.
2294 * When pass the actual path, the caller should calculate credits
2295 * under i_data_sem.
2297 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks,
2298 struct ext4_ext_path *path)
2300 if (path) {
2301 int depth = ext_depth(inode);
2302 int ret = 0;
2304 /* probably there is space in leaf? */
2305 if (le16_to_cpu(path[depth].p_hdr->eh_entries)
2306 < le16_to_cpu(path[depth].p_hdr->eh_max)) {
2309 * There are some space in the leaf tree, no
2310 * need to account for leaf block credit
2312 * bitmaps and block group descriptor blocks
2313 * and other metadata blocks still need to be
2314 * accounted.
2316 /* 1 bitmap, 1 block group descriptor */
2317 ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb);
2318 return ret;
2322 return ext4_chunk_trans_blocks(inode, nrblocks);
2326 * How many index/leaf blocks need to change/allocate to modify nrblocks?
2328 * if nrblocks are fit in a single extent (chunk flag is 1), then
2329 * in the worse case, each tree level index/leaf need to be changed
2330 * if the tree split due to insert a new extent, then the old tree
2331 * index/leaf need to be updated too
2333 * If the nrblocks are discontiguous, they could cause
2334 * the whole tree split more than once, but this is really rare.
2336 int ext4_ext_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
2338 int index;
2339 int depth;
2341 /* If we are converting the inline data, only one is needed here. */
2342 if (ext4_has_inline_data(inode))
2343 return 1;
2345 depth = ext_depth(inode);
2347 if (chunk)
2348 index = depth * 2;
2349 else
2350 index = depth * 3;
2352 return index;
2355 static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
2356 struct ext4_extent *ex,
2357 ext4_fsblk_t *partial_cluster,
2358 ext4_lblk_t from, ext4_lblk_t to)
2360 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2361 unsigned short ee_len = ext4_ext_get_actual_len(ex);
2362 ext4_fsblk_t pblk;
2363 int flags = 0;
2365 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2366 flags |= EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET;
2367 else if (ext4_should_journal_data(inode))
2368 flags |= EXT4_FREE_BLOCKS_FORGET;
2371 * For bigalloc file systems, we never free a partial cluster
2372 * at the beginning of the extent. Instead, we make a note
2373 * that we tried freeing the cluster, and check to see if we
2374 * need to free it on a subsequent call to ext4_remove_blocks,
2375 * or at the end of the ext4_truncate() operation.
2377 flags |= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER;
2379 trace_ext4_remove_blocks(inode, ex, from, to, *partial_cluster);
2381 * If we have a partial cluster, and it's different from the
2382 * cluster of the last block, we need to explicitly free the
2383 * partial cluster here.
2385 pblk = ext4_ext_pblock(ex) + ee_len - 1;
2386 if (*partial_cluster && (EXT4_B2C(sbi, pblk) != *partial_cluster)) {
2387 ext4_free_blocks(handle, inode, NULL,
2388 EXT4_C2B(sbi, *partial_cluster),
2389 sbi->s_cluster_ratio, flags);
2390 *partial_cluster = 0;
2393 #ifdef EXTENTS_STATS
2395 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2396 spin_lock(&sbi->s_ext_stats_lock);
2397 sbi->s_ext_blocks += ee_len;
2398 sbi->s_ext_extents++;
2399 if (ee_len < sbi->s_ext_min)
2400 sbi->s_ext_min = ee_len;
2401 if (ee_len > sbi->s_ext_max)
2402 sbi->s_ext_max = ee_len;
2403 if (ext_depth(inode) > sbi->s_depth_max)
2404 sbi->s_depth_max = ext_depth(inode);
2405 spin_unlock(&sbi->s_ext_stats_lock);
2407 #endif
2408 if (from >= le32_to_cpu(ex->ee_block)
2409 && to == le32_to_cpu(ex->ee_block) + ee_len - 1) {
2410 /* tail removal */
2411 ext4_lblk_t num;
2413 num = le32_to_cpu(ex->ee_block) + ee_len - from;
2414 pblk = ext4_ext_pblock(ex) + ee_len - num;
2415 ext_debug("free last %u blocks starting %llu\n", num, pblk);
2416 ext4_free_blocks(handle, inode, NULL, pblk, num, flags);
2418 * If the block range to be freed didn't start at the
2419 * beginning of a cluster, and we removed the entire
2420 * extent, save the partial cluster here, since we
2421 * might need to delete if we determine that the
2422 * truncate operation has removed all of the blocks in
2423 * the cluster.
2425 if (pblk & (sbi->s_cluster_ratio - 1) &&
2426 (ee_len == num))
2427 *partial_cluster = EXT4_B2C(sbi, pblk);
2428 else
2429 *partial_cluster = 0;
2430 } else if (from == le32_to_cpu(ex->ee_block)
2431 && to <= le32_to_cpu(ex->ee_block) + ee_len - 1) {
2432 /* head removal */
2433 ext4_lblk_t num;
2434 ext4_fsblk_t start;
2436 num = to - from;
2437 start = ext4_ext_pblock(ex);
2439 ext_debug("free first %u blocks starting %llu\n", num, start);
2440 ext4_free_blocks(handle, inode, NULL, start, num, flags);
2442 } else {
2443 printk(KERN_INFO "strange request: removal(2) "
2444 "%u-%u from %u:%u\n",
2445 from, to, le32_to_cpu(ex->ee_block), ee_len);
2447 return 0;
2452 * ext4_ext_rm_leaf() Removes the extents associated with the
2453 * blocks appearing between "start" and "end", and splits the extents
2454 * if "start" and "end" appear in the same extent
2456 * @handle: The journal handle
2457 * @inode: The files inode
2458 * @path: The path to the leaf
2459 * @start: The first block to remove
2460 * @end: The last block to remove
2462 static int
2463 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
2464 struct ext4_ext_path *path, ext4_fsblk_t *partial_cluster,
2465 ext4_lblk_t start, ext4_lblk_t end)
2467 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2468 int err = 0, correct_index = 0;
2469 int depth = ext_depth(inode), credits;
2470 struct ext4_extent_header *eh;
2471 ext4_lblk_t a, b;
2472 unsigned num;
2473 ext4_lblk_t ex_ee_block;
2474 unsigned short ex_ee_len;
2475 unsigned uninitialized = 0;
2476 struct ext4_extent *ex;
2478 /* the header must be checked already in ext4_ext_remove_space() */
2479 ext_debug("truncate since %u in leaf to %u\n", start, end);
2480 if (!path[depth].p_hdr)
2481 path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
2482 eh = path[depth].p_hdr;
2483 if (unlikely(path[depth].p_hdr == NULL)) {
2484 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2485 return -EIO;
2487 /* find where to start removing */
2488 ex = EXT_LAST_EXTENT(eh);
2490 ex_ee_block = le32_to_cpu(ex->ee_block);
2491 ex_ee_len = ext4_ext_get_actual_len(ex);
2493 trace_ext4_ext_rm_leaf(inode, start, ex, *partial_cluster);
2495 while (ex >= EXT_FIRST_EXTENT(eh) &&
2496 ex_ee_block + ex_ee_len > start) {
2498 if (ext4_ext_is_uninitialized(ex))
2499 uninitialized = 1;
2500 else
2501 uninitialized = 0;
2503 ext_debug("remove ext %u:[%d]%d\n", ex_ee_block,
2504 uninitialized, ex_ee_len);
2505 path[depth].p_ext = ex;
2507 a = ex_ee_block > start ? ex_ee_block : start;
2508 b = ex_ee_block+ex_ee_len - 1 < end ?
2509 ex_ee_block+ex_ee_len - 1 : end;
2511 ext_debug(" border %u:%u\n", a, b);
2513 /* If this extent is beyond the end of the hole, skip it */
2514 if (end < ex_ee_block) {
2515 ex--;
2516 ex_ee_block = le32_to_cpu(ex->ee_block);
2517 ex_ee_len = ext4_ext_get_actual_len(ex);
2518 continue;
2519 } else if (b != ex_ee_block + ex_ee_len - 1) {
2520 EXT4_ERROR_INODE(inode,
2521 "can not handle truncate %u:%u "
2522 "on extent %u:%u",
2523 start, end, ex_ee_block,
2524 ex_ee_block + ex_ee_len - 1);
2525 err = -EIO;
2526 goto out;
2527 } else if (a != ex_ee_block) {
2528 /* remove tail of the extent */
2529 num = a - ex_ee_block;
2530 } else {
2531 /* remove whole extent: excellent! */
2532 num = 0;
2535 * 3 for leaf, sb, and inode plus 2 (bmap and group
2536 * descriptor) for each block group; assume two block
2537 * groups plus ex_ee_len/blocks_per_block_group for
2538 * the worst case
2540 credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb));
2541 if (ex == EXT_FIRST_EXTENT(eh)) {
2542 correct_index = 1;
2543 credits += (ext_depth(inode)) + 1;
2545 credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
2547 err = ext4_ext_truncate_extend_restart(handle, inode, credits);
2548 if (err)
2549 goto out;
2551 err = ext4_ext_get_access(handle, inode, path + depth);
2552 if (err)
2553 goto out;
2555 err = ext4_remove_blocks(handle, inode, ex, partial_cluster,
2556 a, b);
2557 if (err)
2558 goto out;
2560 if (num == 0)
2561 /* this extent is removed; mark slot entirely unused */
2562 ext4_ext_store_pblock(ex, 0);
2564 ex->ee_len = cpu_to_le16(num);
2566 * Do not mark uninitialized if all the blocks in the
2567 * extent have been removed.
2569 if (uninitialized && num)
2570 ext4_ext_mark_uninitialized(ex);
2572 * If the extent was completely released,
2573 * we need to remove it from the leaf
2575 if (num == 0) {
2576 if (end != EXT_MAX_BLOCKS - 1) {
2578 * For hole punching, we need to scoot all the
2579 * extents up when an extent is removed so that
2580 * we dont have blank extents in the middle
2582 memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) *
2583 sizeof(struct ext4_extent));
2585 /* Now get rid of the one at the end */
2586 memset(EXT_LAST_EXTENT(eh), 0,
2587 sizeof(struct ext4_extent));
2589 le16_add_cpu(&eh->eh_entries, -1);
2590 } else
2591 *partial_cluster = 0;
2593 err = ext4_ext_dirty(handle, inode, path + depth);
2594 if (err)
2595 goto out;
2597 ext_debug("new extent: %u:%u:%llu\n", ex_ee_block, num,
2598 ext4_ext_pblock(ex));
2599 ex--;
2600 ex_ee_block = le32_to_cpu(ex->ee_block);
2601 ex_ee_len = ext4_ext_get_actual_len(ex);
2604 if (correct_index && eh->eh_entries)
2605 err = ext4_ext_correct_indexes(handle, inode, path);
2608 * If there is still a entry in the leaf node, check to see if
2609 * it references the partial cluster. This is the only place
2610 * where it could; if it doesn't, we can free the cluster.
2612 if (*partial_cluster && ex >= EXT_FIRST_EXTENT(eh) &&
2613 (EXT4_B2C(sbi, ext4_ext_pblock(ex) + ex_ee_len - 1) !=
2614 *partial_cluster)) {
2615 int flags = EXT4_FREE_BLOCKS_FORGET;
2617 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2618 flags |= EXT4_FREE_BLOCKS_METADATA;
2620 ext4_free_blocks(handle, inode, NULL,
2621 EXT4_C2B(sbi, *partial_cluster),
2622 sbi->s_cluster_ratio, flags);
2623 *partial_cluster = 0;
2626 /* if this leaf is free, then we should
2627 * remove it from index block above */
2628 if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
2629 err = ext4_ext_rm_idx(handle, inode, path, depth);
2631 out:
2632 return err;
2636 * ext4_ext_more_to_rm:
2637 * returns 1 if current index has to be freed (even partial)
2639 static int
2640 ext4_ext_more_to_rm(struct ext4_ext_path *path)
2642 BUG_ON(path->p_idx == NULL);
2644 if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
2645 return 0;
2648 * if truncate on deeper level happened, it wasn't partial,
2649 * so we have to consider current index for truncation
2651 if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
2652 return 0;
2653 return 1;
2656 static int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start,
2657 ext4_lblk_t end)
2659 struct super_block *sb = inode->i_sb;
2660 int depth = ext_depth(inode);
2661 struct ext4_ext_path *path = NULL;
2662 ext4_fsblk_t partial_cluster = 0;
2663 handle_t *handle;
2664 int i = 0, err = 0;
2666 ext_debug("truncate since %u to %u\n", start, end);
2668 /* probably first extent we're gonna free will be last in block */
2669 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, depth + 1);
2670 if (IS_ERR(handle))
2671 return PTR_ERR(handle);
2673 again:
2674 ext4_ext_invalidate_cache(inode);
2676 trace_ext4_ext_remove_space(inode, start, depth);
2679 * Check if we are removing extents inside the extent tree. If that
2680 * is the case, we are going to punch a hole inside the extent tree
2681 * so we have to check whether we need to split the extent covering
2682 * the last block to remove so we can easily remove the part of it
2683 * in ext4_ext_rm_leaf().
2685 if (end < EXT_MAX_BLOCKS - 1) {
2686 struct ext4_extent *ex;
2687 ext4_lblk_t ee_block;
2689 /* find extent for this block */
2690 path = ext4_ext_find_extent(inode, end, NULL);
2691 if (IS_ERR(path)) {
2692 ext4_journal_stop(handle);
2693 return PTR_ERR(path);
2695 depth = ext_depth(inode);
2696 /* Leaf not may not exist only if inode has no blocks at all */
2697 ex = path[depth].p_ext;
2698 if (!ex) {
2699 if (depth) {
2700 EXT4_ERROR_INODE(inode,
2701 "path[%d].p_hdr == NULL",
2702 depth);
2703 err = -EIO;
2705 goto out;
2708 ee_block = le32_to_cpu(ex->ee_block);
2711 * See if the last block is inside the extent, if so split
2712 * the extent at 'end' block so we can easily remove the
2713 * tail of the first part of the split extent in
2714 * ext4_ext_rm_leaf().
2716 if (end >= ee_block &&
2717 end < ee_block + ext4_ext_get_actual_len(ex) - 1) {
2718 int split_flag = 0;
2720 if (ext4_ext_is_uninitialized(ex))
2721 split_flag = EXT4_EXT_MARK_UNINIT1 |
2722 EXT4_EXT_MARK_UNINIT2;
2725 * Split the extent in two so that 'end' is the last
2726 * block in the first new extent
2728 err = ext4_split_extent_at(handle, inode, path,
2729 end + 1, split_flag,
2730 EXT4_GET_BLOCKS_PRE_IO |
2731 EXT4_GET_BLOCKS_PUNCH_OUT_EXT);
2733 if (err < 0)
2734 goto out;
2738 * We start scanning from right side, freeing all the blocks
2739 * after i_size and walking into the tree depth-wise.
2741 depth = ext_depth(inode);
2742 if (path) {
2743 int k = i = depth;
2744 while (--k > 0)
2745 path[k].p_block =
2746 le16_to_cpu(path[k].p_hdr->eh_entries)+1;
2747 } else {
2748 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1),
2749 GFP_NOFS);
2750 if (path == NULL) {
2751 ext4_journal_stop(handle);
2752 return -ENOMEM;
2754 path[0].p_depth = depth;
2755 path[0].p_hdr = ext_inode_hdr(inode);
2756 i = 0;
2758 if (ext4_ext_check(inode, path[0].p_hdr, depth)) {
2759 err = -EIO;
2760 goto out;
2763 err = 0;
2765 while (i >= 0 && err == 0) {
2766 if (i == depth) {
2767 /* this is leaf block */
2768 err = ext4_ext_rm_leaf(handle, inode, path,
2769 &partial_cluster, start,
2770 end);
2771 /* root level has p_bh == NULL, brelse() eats this */
2772 brelse(path[i].p_bh);
2773 path[i].p_bh = NULL;
2774 i--;
2775 continue;
2778 /* this is index block */
2779 if (!path[i].p_hdr) {
2780 ext_debug("initialize header\n");
2781 path[i].p_hdr = ext_block_hdr(path[i].p_bh);
2784 if (!path[i].p_idx) {
2785 /* this level hasn't been touched yet */
2786 path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
2787 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
2788 ext_debug("init index ptr: hdr 0x%p, num %d\n",
2789 path[i].p_hdr,
2790 le16_to_cpu(path[i].p_hdr->eh_entries));
2791 } else {
2792 /* we were already here, see at next index */
2793 path[i].p_idx--;
2796 ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
2797 i, EXT_FIRST_INDEX(path[i].p_hdr),
2798 path[i].p_idx);
2799 if (ext4_ext_more_to_rm(path + i)) {
2800 struct buffer_head *bh;
2801 /* go to the next level */
2802 ext_debug("move to level %d (block %llu)\n",
2803 i + 1, ext4_idx_pblock(path[i].p_idx));
2804 memset(path + i + 1, 0, sizeof(*path));
2805 bh = sb_bread(sb, ext4_idx_pblock(path[i].p_idx));
2806 if (!bh) {
2807 /* should we reset i_size? */
2808 err = -EIO;
2809 break;
2811 if (WARN_ON(i + 1 > depth)) {
2812 err = -EIO;
2813 break;
2815 if (ext4_ext_check_block(inode, ext_block_hdr(bh),
2816 depth - i - 1, bh)) {
2817 err = -EIO;
2818 break;
2820 path[i + 1].p_bh = bh;
2822 /* save actual number of indexes since this
2823 * number is changed at the next iteration */
2824 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
2825 i++;
2826 } else {
2827 /* we finished processing this index, go up */
2828 if (path[i].p_hdr->eh_entries == 0 && i > 0) {
2829 /* index is empty, remove it;
2830 * handle must be already prepared by the
2831 * truncatei_leaf() */
2832 err = ext4_ext_rm_idx(handle, inode, path, i);
2834 /* root level has p_bh == NULL, brelse() eats this */
2835 brelse(path[i].p_bh);
2836 path[i].p_bh = NULL;
2837 i--;
2838 ext_debug("return to level %d\n", i);
2842 trace_ext4_ext_remove_space_done(inode, start, depth, partial_cluster,
2843 path->p_hdr->eh_entries);
2845 /* If we still have something in the partial cluster and we have removed
2846 * even the first extent, then we should free the blocks in the partial
2847 * cluster as well. */
2848 if (partial_cluster && path->p_hdr->eh_entries == 0) {
2849 int flags = EXT4_FREE_BLOCKS_FORGET;
2851 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2852 flags |= EXT4_FREE_BLOCKS_METADATA;
2854 ext4_free_blocks(handle, inode, NULL,
2855 EXT4_C2B(EXT4_SB(sb), partial_cluster),
2856 EXT4_SB(sb)->s_cluster_ratio, flags);
2857 partial_cluster = 0;
2860 /* TODO: flexible tree reduction should be here */
2861 if (path->p_hdr->eh_entries == 0) {
2863 * truncate to zero freed all the tree,
2864 * so we need to correct eh_depth
2866 err = ext4_ext_get_access(handle, inode, path);
2867 if (err == 0) {
2868 ext_inode_hdr(inode)->eh_depth = 0;
2869 ext_inode_hdr(inode)->eh_max =
2870 cpu_to_le16(ext4_ext_space_root(inode, 0));
2871 err = ext4_ext_dirty(handle, inode, path);
2874 out:
2875 ext4_ext_drop_refs(path);
2876 kfree(path);
2877 if (err == -EAGAIN) {
2878 path = NULL;
2879 goto again;
2881 ext4_journal_stop(handle);
2883 return err;
2887 * called at mount time
2889 void ext4_ext_init(struct super_block *sb)
2892 * possible initialization would be here
2895 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2896 #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS)
2897 printk(KERN_INFO "EXT4-fs: file extents enabled"
2898 #ifdef AGGRESSIVE_TEST
2899 ", aggressive tests"
2900 #endif
2901 #ifdef CHECK_BINSEARCH
2902 ", check binsearch"
2903 #endif
2904 #ifdef EXTENTS_STATS
2905 ", stats"
2906 #endif
2907 "\n");
2908 #endif
2909 #ifdef EXTENTS_STATS
2910 spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
2911 EXT4_SB(sb)->s_ext_min = 1 << 30;
2912 EXT4_SB(sb)->s_ext_max = 0;
2913 #endif
2918 * called at umount time
2920 void ext4_ext_release(struct super_block *sb)
2922 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
2923 return;
2925 #ifdef EXTENTS_STATS
2926 if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
2927 struct ext4_sb_info *sbi = EXT4_SB(sb);
2928 printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
2929 sbi->s_ext_blocks, sbi->s_ext_extents,
2930 sbi->s_ext_blocks / sbi->s_ext_extents);
2931 printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
2932 sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
2934 #endif
2937 /* FIXME!! we need to try to merge to left or right after zero-out */
2938 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex)
2940 ext4_fsblk_t ee_pblock;
2941 unsigned int ee_len;
2942 int ret;
2944 ee_len = ext4_ext_get_actual_len(ex);
2945 ee_pblock = ext4_ext_pblock(ex);
2947 ret = sb_issue_zeroout(inode->i_sb, ee_pblock, ee_len, GFP_NOFS);
2948 if (ret > 0)
2949 ret = 0;
2951 return ret;
2955 * ext4_split_extent_at() splits an extent at given block.
2957 * @handle: the journal handle
2958 * @inode: the file inode
2959 * @path: the path to the extent
2960 * @split: the logical block where the extent is splitted.
2961 * @split_flags: indicates if the extent could be zeroout if split fails, and
2962 * the states(init or uninit) of new extents.
2963 * @flags: flags used to insert new extent to extent tree.
2966 * Splits extent [a, b] into two extents [a, @split) and [@split, b], states
2967 * of which are deterimined by split_flag.
2969 * There are two cases:
2970 * a> the extent are splitted into two extent.
2971 * b> split is not needed, and just mark the extent.
2973 * return 0 on success.
2975 static int ext4_split_extent_at(handle_t *handle,
2976 struct inode *inode,
2977 struct ext4_ext_path *path,
2978 ext4_lblk_t split,
2979 int split_flag,
2980 int flags)
2982 ext4_fsblk_t newblock;
2983 ext4_lblk_t ee_block;
2984 struct ext4_extent *ex, newex, orig_ex;
2985 struct ext4_extent *ex2 = NULL;
2986 unsigned int ee_len, depth;
2987 int err = 0;
2989 BUG_ON((split_flag & (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)) ==
2990 (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2));
2992 ext_debug("ext4_split_extents_at: inode %lu, logical"
2993 "block %llu\n", inode->i_ino, (unsigned long long)split);
2995 ext4_ext_show_leaf(inode, path);
2997 depth = ext_depth(inode);
2998 ex = path[depth].p_ext;
2999 ee_block = le32_to_cpu(ex->ee_block);
3000 ee_len = ext4_ext_get_actual_len(ex);
3001 newblock = split - ee_block + ext4_ext_pblock(ex);
3003 BUG_ON(split < ee_block || split >= (ee_block + ee_len));
3005 err = ext4_ext_get_access(handle, inode, path + depth);
3006 if (err)
3007 goto out;
3009 if (split == ee_block) {
3011 * case b: block @split is the block that the extent begins with
3012 * then we just change the state of the extent, and splitting
3013 * is not needed.
3015 if (split_flag & EXT4_EXT_MARK_UNINIT2)
3016 ext4_ext_mark_uninitialized(ex);
3017 else
3018 ext4_ext_mark_initialized(ex);
3020 if (!(flags & EXT4_GET_BLOCKS_PRE_IO))
3021 ext4_ext_try_to_merge(handle, inode, path, ex);
3023 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3024 goto out;
3027 /* case a */
3028 memcpy(&orig_ex, ex, sizeof(orig_ex));
3029 ex->ee_len = cpu_to_le16(split - ee_block);
3030 if (split_flag & EXT4_EXT_MARK_UNINIT1)
3031 ext4_ext_mark_uninitialized(ex);
3034 * path may lead to new leaf, not to original leaf any more
3035 * after ext4_ext_insert_extent() returns,
3037 err = ext4_ext_dirty(handle, inode, path + depth);
3038 if (err)
3039 goto fix_extent_len;
3041 ex2 = &newex;
3042 ex2->ee_block = cpu_to_le32(split);
3043 ex2->ee_len = cpu_to_le16(ee_len - (split - ee_block));
3044 ext4_ext_store_pblock(ex2, newblock);
3045 if (split_flag & EXT4_EXT_MARK_UNINIT2)
3046 ext4_ext_mark_uninitialized(ex2);
3048 err = ext4_ext_insert_extent(handle, inode, path, &newex, flags);
3049 if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
3050 if (split_flag & (EXT4_EXT_DATA_VALID1|EXT4_EXT_DATA_VALID2)) {
3051 if (split_flag & EXT4_EXT_DATA_VALID1)
3052 err = ext4_ext_zeroout(inode, ex2);
3053 else
3054 err = ext4_ext_zeroout(inode, ex);
3055 } else
3056 err = ext4_ext_zeroout(inode, &orig_ex);
3058 if (err)
3059 goto fix_extent_len;
3060 /* update the extent length and mark as initialized */
3061 ex->ee_len = cpu_to_le16(ee_len);
3062 ext4_ext_try_to_merge(handle, inode, path, ex);
3063 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3064 goto out;
3065 } else if (err)
3066 goto fix_extent_len;
3068 out:
3069 ext4_ext_show_leaf(inode, path);
3070 return err;
3072 fix_extent_len:
3073 ex->ee_len = orig_ex.ee_len;
3074 ext4_ext_dirty(handle, inode, path + depth);
3075 return err;
3079 * ext4_split_extents() splits an extent and mark extent which is covered
3080 * by @map as split_flags indicates
3082 * It may result in splitting the extent into multiple extents (upto three)
3083 * There are three possibilities:
3084 * a> There is no split required
3085 * b> Splits in two extents: Split is happening at either end of the extent
3086 * c> Splits in three extents: Somone is splitting in middle of the extent
3089 static int ext4_split_extent(handle_t *handle,
3090 struct inode *inode,
3091 struct ext4_ext_path *path,
3092 struct ext4_map_blocks *map,
3093 int split_flag,
3094 int flags)
3096 ext4_lblk_t ee_block;
3097 struct ext4_extent *ex;
3098 unsigned int ee_len, depth;
3099 int err = 0;
3100 int uninitialized;
3101 int split_flag1, flags1;
3103 depth = ext_depth(inode);
3104 ex = path[depth].p_ext;
3105 ee_block = le32_to_cpu(ex->ee_block);
3106 ee_len = ext4_ext_get_actual_len(ex);
3107 uninitialized = ext4_ext_is_uninitialized(ex);
3109 if (map->m_lblk + map->m_len < ee_block + ee_len) {
3110 split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT;
3111 flags1 = flags | EXT4_GET_BLOCKS_PRE_IO;
3112 if (uninitialized)
3113 split_flag1 |= EXT4_EXT_MARK_UNINIT1 |
3114 EXT4_EXT_MARK_UNINIT2;
3115 if (split_flag & EXT4_EXT_DATA_VALID2)
3116 split_flag1 |= EXT4_EXT_DATA_VALID1;
3117 err = ext4_split_extent_at(handle, inode, path,
3118 map->m_lblk + map->m_len, split_flag1, flags1);
3119 if (err)
3120 goto out;
3123 ext4_ext_drop_refs(path);
3124 path = ext4_ext_find_extent(inode, map->m_lblk, path);
3125 if (IS_ERR(path))
3126 return PTR_ERR(path);
3128 if (map->m_lblk >= ee_block) {
3129 split_flag1 = split_flag & (EXT4_EXT_MAY_ZEROOUT |
3130 EXT4_EXT_DATA_VALID2);
3131 if (uninitialized)
3132 split_flag1 |= EXT4_EXT_MARK_UNINIT1;
3133 if (split_flag & EXT4_EXT_MARK_UNINIT2)
3134 split_flag1 |= EXT4_EXT_MARK_UNINIT2;
3135 err = ext4_split_extent_at(handle, inode, path,
3136 map->m_lblk, split_flag1, flags);
3137 if (err)
3138 goto out;
3141 ext4_ext_show_leaf(inode, path);
3142 out:
3143 return err ? err : map->m_len;
3147 * This function is called by ext4_ext_map_blocks() if someone tries to write
3148 * to an uninitialized extent. It may result in splitting the uninitialized
3149 * extent into multiple extents (up to three - one initialized and two
3150 * uninitialized).
3151 * There are three possibilities:
3152 * a> There is no split required: Entire extent should be initialized
3153 * b> Splits in two extents: Write is happening at either end of the extent
3154 * c> Splits in three extents: Somone is writing in middle of the extent
3156 * Pre-conditions:
3157 * - The extent pointed to by 'path' is uninitialized.
3158 * - The extent pointed to by 'path' contains a superset
3159 * of the logical span [map->m_lblk, map->m_lblk + map->m_len).
3161 * Post-conditions on success:
3162 * - the returned value is the number of blocks beyond map->l_lblk
3163 * that are allocated and initialized.
3164 * It is guaranteed to be >= map->m_len.
3166 static int ext4_ext_convert_to_initialized(handle_t *handle,
3167 struct inode *inode,
3168 struct ext4_map_blocks *map,
3169 struct ext4_ext_path *path)
3171 struct ext4_sb_info *sbi;
3172 struct ext4_extent_header *eh;
3173 struct ext4_map_blocks split_map;
3174 struct ext4_extent zero_ex;
3175 struct ext4_extent *ex;
3176 ext4_lblk_t ee_block, eof_block;
3177 unsigned int ee_len, depth;
3178 int allocated, max_zeroout = 0;
3179 int err = 0;
3180 int split_flag = 0;
3182 ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical"
3183 "block %llu, max_blocks %u\n", inode->i_ino,
3184 (unsigned long long)map->m_lblk, map->m_len);
3186 sbi = EXT4_SB(inode->i_sb);
3187 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3188 inode->i_sb->s_blocksize_bits;
3189 if (eof_block < map->m_lblk + map->m_len)
3190 eof_block = map->m_lblk + map->m_len;
3192 depth = ext_depth(inode);
3193 eh = path[depth].p_hdr;
3194 ex = path[depth].p_ext;
3195 ee_block = le32_to_cpu(ex->ee_block);
3196 ee_len = ext4_ext_get_actual_len(ex);
3197 allocated = ee_len - (map->m_lblk - ee_block);
3199 trace_ext4_ext_convert_to_initialized_enter(inode, map, ex);
3201 /* Pre-conditions */
3202 BUG_ON(!ext4_ext_is_uninitialized(ex));
3203 BUG_ON(!in_range(map->m_lblk, ee_block, ee_len));
3206 * Attempt to transfer newly initialized blocks from the currently
3207 * uninitialized extent to its left neighbor. This is much cheaper
3208 * than an insertion followed by a merge as those involve costly
3209 * memmove() calls. This is the common case in steady state for
3210 * workloads doing fallocate(FALLOC_FL_KEEP_SIZE) followed by append
3211 * writes.
3213 * Limitations of the current logic:
3214 * - L1: we only deal with writes at the start of the extent.
3215 * The approach could be extended to writes at the end
3216 * of the extent but this scenario was deemed less common.
3217 * - L2: we do not deal with writes covering the whole extent.
3218 * This would require removing the extent if the transfer
3219 * is possible.
3220 * - L3: we only attempt to merge with an extent stored in the
3221 * same extent tree node.
3223 if ((map->m_lblk == ee_block) && /*L1*/
3224 (map->m_len < ee_len) && /*L2*/
3225 (ex > EXT_FIRST_EXTENT(eh))) { /*L3*/
3226 struct ext4_extent *prev_ex;
3227 ext4_lblk_t prev_lblk;
3228 ext4_fsblk_t prev_pblk, ee_pblk;
3229 unsigned int prev_len, write_len;
3231 prev_ex = ex - 1;
3232 prev_lblk = le32_to_cpu(prev_ex->ee_block);
3233 prev_len = ext4_ext_get_actual_len(prev_ex);
3234 prev_pblk = ext4_ext_pblock(prev_ex);
3235 ee_pblk = ext4_ext_pblock(ex);
3236 write_len = map->m_len;
3239 * A transfer of blocks from 'ex' to 'prev_ex' is allowed
3240 * upon those conditions:
3241 * - C1: prev_ex is initialized,
3242 * - C2: prev_ex is logically abutting ex,
3243 * - C3: prev_ex is physically abutting ex,
3244 * - C4: prev_ex can receive the additional blocks without
3245 * overflowing the (initialized) length limit.
3247 if ((!ext4_ext_is_uninitialized(prev_ex)) && /*C1*/
3248 ((prev_lblk + prev_len) == ee_block) && /*C2*/
3249 ((prev_pblk + prev_len) == ee_pblk) && /*C3*/
3250 (prev_len < (EXT_INIT_MAX_LEN - write_len))) { /*C4*/
3251 err = ext4_ext_get_access(handle, inode, path + depth);
3252 if (err)
3253 goto out;
3255 trace_ext4_ext_convert_to_initialized_fastpath(inode,
3256 map, ex, prev_ex);
3258 /* Shift the start of ex by 'write_len' blocks */
3259 ex->ee_block = cpu_to_le32(ee_block + write_len);
3260 ext4_ext_store_pblock(ex, ee_pblk + write_len);
3261 ex->ee_len = cpu_to_le16(ee_len - write_len);
3262 ext4_ext_mark_uninitialized(ex); /* Restore the flag */
3264 /* Extend prev_ex by 'write_len' blocks */
3265 prev_ex->ee_len = cpu_to_le16(prev_len + write_len);
3267 /* Mark the block containing both extents as dirty */
3268 ext4_ext_dirty(handle, inode, path + depth);
3270 /* Update path to point to the right extent */
3271 path[depth].p_ext = prev_ex;
3273 /* Result: number of initialized blocks past m_lblk */
3274 allocated = write_len;
3275 goto out;
3279 WARN_ON(map->m_lblk < ee_block);
3281 * It is safe to convert extent to initialized via explicit
3282 * zeroout only if extent is fully insde i_size or new_size.
3284 split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3286 if (EXT4_EXT_MAY_ZEROOUT & split_flag)
3287 max_zeroout = sbi->s_extent_max_zeroout_kb >>
3288 inode->i_sb->s_blocksize_bits;
3290 /* If extent is less than s_max_zeroout_kb, zeroout directly */
3291 if (max_zeroout && (ee_len <= max_zeroout)) {
3292 err = ext4_ext_zeroout(inode, ex);
3293 if (err)
3294 goto out;
3296 err = ext4_ext_get_access(handle, inode, path + depth);
3297 if (err)
3298 goto out;
3299 ext4_ext_mark_initialized(ex);
3300 ext4_ext_try_to_merge(handle, inode, path, ex);
3301 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3302 goto out;
3306 * four cases:
3307 * 1. split the extent into three extents.
3308 * 2. split the extent into two extents, zeroout the first half.
3309 * 3. split the extent into two extents, zeroout the second half.
3310 * 4. split the extent into two extents with out zeroout.
3312 split_map.m_lblk = map->m_lblk;
3313 split_map.m_len = map->m_len;
3315 if (max_zeroout && (allocated > map->m_len)) {
3316 if (allocated <= max_zeroout) {
3317 /* case 3 */
3318 zero_ex.ee_block =
3319 cpu_to_le32(map->m_lblk);
3320 zero_ex.ee_len = cpu_to_le16(allocated);
3321 ext4_ext_store_pblock(&zero_ex,
3322 ext4_ext_pblock(ex) + map->m_lblk - ee_block);
3323 err = ext4_ext_zeroout(inode, &zero_ex);
3324 if (err)
3325 goto out;
3326 split_map.m_lblk = map->m_lblk;
3327 split_map.m_len = allocated;
3328 } else if (map->m_lblk - ee_block + map->m_len < max_zeroout) {
3329 /* case 2 */
3330 if (map->m_lblk != ee_block) {
3331 zero_ex.ee_block = ex->ee_block;
3332 zero_ex.ee_len = cpu_to_le16(map->m_lblk -
3333 ee_block);
3334 ext4_ext_store_pblock(&zero_ex,
3335 ext4_ext_pblock(ex));
3336 err = ext4_ext_zeroout(inode, &zero_ex);
3337 if (err)
3338 goto out;
3341 split_map.m_lblk = ee_block;
3342 split_map.m_len = map->m_lblk - ee_block + map->m_len;
3343 allocated = map->m_len;
3347 allocated = ext4_split_extent(handle, inode, path,
3348 &split_map, split_flag, 0);
3349 if (allocated < 0)
3350 err = allocated;
3352 out:
3353 return err ? err : allocated;
3357 * This function is called by ext4_ext_map_blocks() from
3358 * ext4_get_blocks_dio_write() when DIO to write
3359 * to an uninitialized extent.
3361 * Writing to an uninitialized extent may result in splitting the uninitialized
3362 * extent into multiple initialized/uninitialized extents (up to three)
3363 * There are three possibilities:
3364 * a> There is no split required: Entire extent should be uninitialized
3365 * b> Splits in two extents: Write is happening at either end of the extent
3366 * c> Splits in three extents: Somone is writing in middle of the extent
3368 * One of more index blocks maybe needed if the extent tree grow after
3369 * the uninitialized extent split. To prevent ENOSPC occur at the IO
3370 * complete, we need to split the uninitialized extent before DIO submit
3371 * the IO. The uninitialized extent called at this time will be split
3372 * into three uninitialized extent(at most). After IO complete, the part
3373 * being filled will be convert to initialized by the end_io callback function
3374 * via ext4_convert_unwritten_extents().
3376 * Returns the size of uninitialized extent to be written on success.
3378 static int ext4_split_unwritten_extents(handle_t *handle,
3379 struct inode *inode,
3380 struct ext4_map_blocks *map,
3381 struct ext4_ext_path *path,
3382 int flags)
3384 ext4_lblk_t eof_block;
3385 ext4_lblk_t ee_block;
3386 struct ext4_extent *ex;
3387 unsigned int ee_len;
3388 int split_flag = 0, depth;
3390 ext_debug("ext4_split_unwritten_extents: inode %lu, logical"
3391 "block %llu, max_blocks %u\n", inode->i_ino,
3392 (unsigned long long)map->m_lblk, map->m_len);
3394 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3395 inode->i_sb->s_blocksize_bits;
3396 if (eof_block < map->m_lblk + map->m_len)
3397 eof_block = map->m_lblk + map->m_len;
3399 * It is safe to convert extent to initialized via explicit
3400 * zeroout only if extent is fully insde i_size or new_size.
3402 depth = ext_depth(inode);
3403 ex = path[depth].p_ext;
3404 ee_block = le32_to_cpu(ex->ee_block);
3405 ee_len = ext4_ext_get_actual_len(ex);
3407 split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3408 split_flag |= EXT4_EXT_MARK_UNINIT2;
3409 if (flags & EXT4_GET_BLOCKS_CONVERT)
3410 split_flag |= EXT4_EXT_DATA_VALID2;
3411 flags |= EXT4_GET_BLOCKS_PRE_IO;
3412 return ext4_split_extent(handle, inode, path, map, split_flag, flags);
3415 static int ext4_convert_unwritten_extents_endio(handle_t *handle,
3416 struct inode *inode,
3417 struct ext4_map_blocks *map,
3418 struct ext4_ext_path *path)
3420 struct ext4_extent *ex;
3421 ext4_lblk_t ee_block;
3422 unsigned int ee_len;
3423 int depth;
3424 int err = 0;
3426 depth = ext_depth(inode);
3427 ex = path[depth].p_ext;
3428 ee_block = le32_to_cpu(ex->ee_block);
3429 ee_len = ext4_ext_get_actual_len(ex);
3431 ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical"
3432 "block %llu, max_blocks %u\n", inode->i_ino,
3433 (unsigned long long)ee_block, ee_len);
3435 /* If extent is larger than requested then split is required */
3436 if (ee_block != map->m_lblk || ee_len > map->m_len) {
3437 err = ext4_split_unwritten_extents(handle, inode, map, path,
3438 EXT4_GET_BLOCKS_CONVERT);
3439 if (err < 0)
3440 goto out;
3441 ext4_ext_drop_refs(path);
3442 path = ext4_ext_find_extent(inode, map->m_lblk, path);
3443 if (IS_ERR(path)) {
3444 err = PTR_ERR(path);
3445 goto out;
3447 depth = ext_depth(inode);
3448 ex = path[depth].p_ext;
3451 err = ext4_ext_get_access(handle, inode, path + depth);
3452 if (err)
3453 goto out;
3454 /* first mark the extent as initialized */
3455 ext4_ext_mark_initialized(ex);
3457 /* note: ext4_ext_correct_indexes() isn't needed here because
3458 * borders are not changed
3460 ext4_ext_try_to_merge(handle, inode, path, ex);
3462 /* Mark modified extent as dirty */
3463 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3464 out:
3465 ext4_ext_show_leaf(inode, path);
3466 return err;
3469 static void unmap_underlying_metadata_blocks(struct block_device *bdev,
3470 sector_t block, int count)
3472 int i;
3473 for (i = 0; i < count; i++)
3474 unmap_underlying_metadata(bdev, block + i);
3478 * Handle EOFBLOCKS_FL flag, clearing it if necessary
3480 static int check_eofblocks_fl(handle_t *handle, struct inode *inode,
3481 ext4_lblk_t lblk,
3482 struct ext4_ext_path *path,
3483 unsigned int len)
3485 int i, depth;
3486 struct ext4_extent_header *eh;
3487 struct ext4_extent *last_ex;
3489 if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
3490 return 0;
3492 depth = ext_depth(inode);
3493 eh = path[depth].p_hdr;
3496 * We're going to remove EOFBLOCKS_FL entirely in future so we
3497 * do not care for this case anymore. Simply remove the flag
3498 * if there are no extents.
3500 if (unlikely(!eh->eh_entries))
3501 goto out;
3502 last_ex = EXT_LAST_EXTENT(eh);
3504 * We should clear the EOFBLOCKS_FL flag if we are writing the
3505 * last block in the last extent in the file. We test this by
3506 * first checking to see if the caller to
3507 * ext4_ext_get_blocks() was interested in the last block (or
3508 * a block beyond the last block) in the current extent. If
3509 * this turns out to be false, we can bail out from this
3510 * function immediately.
3512 if (lblk + len < le32_to_cpu(last_ex->ee_block) +
3513 ext4_ext_get_actual_len(last_ex))
3514 return 0;
3516 * If the caller does appear to be planning to write at or
3517 * beyond the end of the current extent, we then test to see
3518 * if the current extent is the last extent in the file, by
3519 * checking to make sure it was reached via the rightmost node
3520 * at each level of the tree.
3522 for (i = depth-1; i >= 0; i--)
3523 if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr))
3524 return 0;
3525 out:
3526 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3527 return ext4_mark_inode_dirty(handle, inode);
3531 * ext4_find_delalloc_range: find delayed allocated block in the given range.
3533 * Return 1 if there is a delalloc block in the range, otherwise 0.
3535 int ext4_find_delalloc_range(struct inode *inode,
3536 ext4_lblk_t lblk_start,
3537 ext4_lblk_t lblk_end)
3539 struct extent_status es;
3541 ext4_es_find_delayed_extent(inode, lblk_start, &es);
3542 if (es.es_len == 0)
3543 return 0; /* there is no delay extent in this tree */
3544 else if (es.es_lblk <= lblk_start &&
3545 lblk_start < es.es_lblk + es.es_len)
3546 return 1;
3547 else if (lblk_start <= es.es_lblk && es.es_lblk <= lblk_end)
3548 return 1;
3549 else
3550 return 0;
3553 int ext4_find_delalloc_cluster(struct inode *inode, ext4_lblk_t lblk)
3555 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3556 ext4_lblk_t lblk_start, lblk_end;
3557 lblk_start = lblk & (~(sbi->s_cluster_ratio - 1));
3558 lblk_end = lblk_start + sbi->s_cluster_ratio - 1;
3560 return ext4_find_delalloc_range(inode, lblk_start, lblk_end);
3564 * Determines how many complete clusters (out of those specified by the 'map')
3565 * are under delalloc and were reserved quota for.
3566 * This function is called when we are writing out the blocks that were
3567 * originally written with their allocation delayed, but then the space was
3568 * allocated using fallocate() before the delayed allocation could be resolved.
3569 * The cases to look for are:
3570 * ('=' indicated delayed allocated blocks
3571 * '-' indicates non-delayed allocated blocks)
3572 * (a) partial clusters towards beginning and/or end outside of allocated range
3573 * are not delalloc'ed.
3574 * Ex:
3575 * |----c---=|====c====|====c====|===-c----|
3576 * |++++++ allocated ++++++|
3577 * ==> 4 complete clusters in above example
3579 * (b) partial cluster (outside of allocated range) towards either end is
3580 * marked for delayed allocation. In this case, we will exclude that
3581 * cluster.
3582 * Ex:
3583 * |----====c========|========c========|
3584 * |++++++ allocated ++++++|
3585 * ==> 1 complete clusters in above example
3587 * Ex:
3588 * |================c================|
3589 * |++++++ allocated ++++++|
3590 * ==> 0 complete clusters in above example
3592 * The ext4_da_update_reserve_space will be called only if we
3593 * determine here that there were some "entire" clusters that span
3594 * this 'allocated' range.
3595 * In the non-bigalloc case, this function will just end up returning num_blks
3596 * without ever calling ext4_find_delalloc_range.
3598 static unsigned int
3599 get_reserved_cluster_alloc(struct inode *inode, ext4_lblk_t lblk_start,
3600 unsigned int num_blks)
3602 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3603 ext4_lblk_t alloc_cluster_start, alloc_cluster_end;
3604 ext4_lblk_t lblk_from, lblk_to, c_offset;
3605 unsigned int allocated_clusters = 0;
3607 alloc_cluster_start = EXT4_B2C(sbi, lblk_start);
3608 alloc_cluster_end = EXT4_B2C(sbi, lblk_start + num_blks - 1);
3610 /* max possible clusters for this allocation */
3611 allocated_clusters = alloc_cluster_end - alloc_cluster_start + 1;
3613 trace_ext4_get_reserved_cluster_alloc(inode, lblk_start, num_blks);
3615 /* Check towards left side */
3616 c_offset = lblk_start & (sbi->s_cluster_ratio - 1);
3617 if (c_offset) {
3618 lblk_from = lblk_start & (~(sbi->s_cluster_ratio - 1));
3619 lblk_to = lblk_from + c_offset - 1;
3621 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to))
3622 allocated_clusters--;
3625 /* Now check towards right. */
3626 c_offset = (lblk_start + num_blks) & (sbi->s_cluster_ratio - 1);
3627 if (allocated_clusters && c_offset) {
3628 lblk_from = lblk_start + num_blks;
3629 lblk_to = lblk_from + (sbi->s_cluster_ratio - c_offset) - 1;
3631 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to))
3632 allocated_clusters--;
3635 return allocated_clusters;
3638 static int
3639 ext4_ext_handle_uninitialized_extents(handle_t *handle, struct inode *inode,
3640 struct ext4_map_blocks *map,
3641 struct ext4_ext_path *path, int flags,
3642 unsigned int allocated, ext4_fsblk_t newblock)
3644 int ret = 0;
3645 int err = 0;
3646 ext4_io_end_t *io = ext4_inode_aio(inode);
3648 ext_debug("ext4_ext_handle_uninitialized_extents: inode %lu, logical "
3649 "block %llu, max_blocks %u, flags %x, allocated %u\n",
3650 inode->i_ino, (unsigned long long)map->m_lblk, map->m_len,
3651 flags, allocated);
3652 ext4_ext_show_leaf(inode, path);
3654 trace_ext4_ext_handle_uninitialized_extents(inode, map, flags,
3655 allocated, newblock);
3657 /* get_block() before submit the IO, split the extent */
3658 if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
3659 ret = ext4_split_unwritten_extents(handle, inode, map,
3660 path, flags);
3661 if (ret <= 0)
3662 goto out;
3664 * Flag the inode(non aio case) or end_io struct (aio case)
3665 * that this IO needs to conversion to written when IO is
3666 * completed
3668 if (io)
3669 ext4_set_io_unwritten_flag(inode, io);
3670 else
3671 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3672 map->m_flags |= EXT4_MAP_UNWRITTEN;
3673 if (ext4_should_dioread_nolock(inode))
3674 map->m_flags |= EXT4_MAP_UNINIT;
3675 goto out;
3677 /* IO end_io complete, convert the filled extent to written */
3678 if ((flags & EXT4_GET_BLOCKS_CONVERT)) {
3679 ret = ext4_convert_unwritten_extents_endio(handle, inode, map,
3680 path);
3681 if (ret >= 0) {
3682 ext4_update_inode_fsync_trans(handle, inode, 1);
3683 err = check_eofblocks_fl(handle, inode, map->m_lblk,
3684 path, map->m_len);
3685 } else
3686 err = ret;
3687 goto out2;
3689 /* buffered IO case */
3691 * repeat fallocate creation request
3692 * we already have an unwritten extent
3694 if (flags & EXT4_GET_BLOCKS_UNINIT_EXT) {
3695 map->m_flags |= EXT4_MAP_UNWRITTEN;
3696 goto map_out;
3699 /* buffered READ or buffered write_begin() lookup */
3700 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3702 * We have blocks reserved already. We
3703 * return allocated blocks so that delalloc
3704 * won't do block reservation for us. But
3705 * the buffer head will be unmapped so that
3706 * a read from the block returns 0s.
3708 map->m_flags |= EXT4_MAP_UNWRITTEN;
3709 goto out1;
3712 /* buffered write, writepage time, convert*/
3713 ret = ext4_ext_convert_to_initialized(handle, inode, map, path);
3714 if (ret >= 0)
3715 ext4_update_inode_fsync_trans(handle, inode, 1);
3716 out:
3717 if (ret <= 0) {
3718 err = ret;
3719 goto out2;
3720 } else
3721 allocated = ret;
3722 map->m_flags |= EXT4_MAP_NEW;
3724 * if we allocated more blocks than requested
3725 * we need to make sure we unmap the extra block
3726 * allocated. The actual needed block will get
3727 * unmapped later when we find the buffer_head marked
3728 * new.
3730 if (allocated > map->m_len) {
3731 unmap_underlying_metadata_blocks(inode->i_sb->s_bdev,
3732 newblock + map->m_len,
3733 allocated - map->m_len);
3734 allocated = map->m_len;
3738 * If we have done fallocate with the offset that is already
3739 * delayed allocated, we would have block reservation
3740 * and quota reservation done in the delayed write path.
3741 * But fallocate would have already updated quota and block
3742 * count for this offset. So cancel these reservation
3744 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
3745 unsigned int reserved_clusters;
3746 reserved_clusters = get_reserved_cluster_alloc(inode,
3747 map->m_lblk, map->m_len);
3748 if (reserved_clusters)
3749 ext4_da_update_reserve_space(inode,
3750 reserved_clusters,
3754 map_out:
3755 map->m_flags |= EXT4_MAP_MAPPED;
3756 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) {
3757 err = check_eofblocks_fl(handle, inode, map->m_lblk, path,
3758 map->m_len);
3759 if (err < 0)
3760 goto out2;
3762 out1:
3763 if (allocated > map->m_len)
3764 allocated = map->m_len;
3765 ext4_ext_show_leaf(inode, path);
3766 map->m_pblk = newblock;
3767 map->m_len = allocated;
3768 out2:
3769 if (path) {
3770 ext4_ext_drop_refs(path);
3771 kfree(path);
3773 return err ? err : allocated;
3777 * get_implied_cluster_alloc - check to see if the requested
3778 * allocation (in the map structure) overlaps with a cluster already
3779 * allocated in an extent.
3780 * @sb The filesystem superblock structure
3781 * @map The requested lblk->pblk mapping
3782 * @ex The extent structure which might contain an implied
3783 * cluster allocation
3785 * This function is called by ext4_ext_map_blocks() after we failed to
3786 * find blocks that were already in the inode's extent tree. Hence,
3787 * we know that the beginning of the requested region cannot overlap
3788 * the extent from the inode's extent tree. There are three cases we
3789 * want to catch. The first is this case:
3791 * |--- cluster # N--|
3792 * |--- extent ---| |---- requested region ---|
3793 * |==========|
3795 * The second case that we need to test for is this one:
3797 * |--------- cluster # N ----------------|
3798 * |--- requested region --| |------- extent ----|
3799 * |=======================|
3801 * The third case is when the requested region lies between two extents
3802 * within the same cluster:
3803 * |------------- cluster # N-------------|
3804 * |----- ex -----| |---- ex_right ----|
3805 * |------ requested region ------|
3806 * |================|
3808 * In each of the above cases, we need to set the map->m_pblk and
3809 * map->m_len so it corresponds to the return the extent labelled as
3810 * "|====|" from cluster #N, since it is already in use for data in
3811 * cluster EXT4_B2C(sbi, map->m_lblk). We will then return 1 to
3812 * signal to ext4_ext_map_blocks() that map->m_pblk should be treated
3813 * as a new "allocated" block region. Otherwise, we will return 0 and
3814 * ext4_ext_map_blocks() will then allocate one or more new clusters
3815 * by calling ext4_mb_new_blocks().
3817 static int get_implied_cluster_alloc(struct super_block *sb,
3818 struct ext4_map_blocks *map,
3819 struct ext4_extent *ex,
3820 struct ext4_ext_path *path)
3822 struct ext4_sb_info *sbi = EXT4_SB(sb);
3823 ext4_lblk_t c_offset = map->m_lblk & (sbi->s_cluster_ratio-1);
3824 ext4_lblk_t ex_cluster_start, ex_cluster_end;
3825 ext4_lblk_t rr_cluster_start;
3826 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
3827 ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
3828 unsigned short ee_len = ext4_ext_get_actual_len(ex);
3830 /* The extent passed in that we are trying to match */
3831 ex_cluster_start = EXT4_B2C(sbi, ee_block);
3832 ex_cluster_end = EXT4_B2C(sbi, ee_block + ee_len - 1);
3834 /* The requested region passed into ext4_map_blocks() */
3835 rr_cluster_start = EXT4_B2C(sbi, map->m_lblk);
3837 if ((rr_cluster_start == ex_cluster_end) ||
3838 (rr_cluster_start == ex_cluster_start)) {
3839 if (rr_cluster_start == ex_cluster_end)
3840 ee_start += ee_len - 1;
3841 map->m_pblk = (ee_start & ~(sbi->s_cluster_ratio - 1)) +
3842 c_offset;
3843 map->m_len = min(map->m_len,
3844 (unsigned) sbi->s_cluster_ratio - c_offset);
3846 * Check for and handle this case:
3848 * |--------- cluster # N-------------|
3849 * |------- extent ----|
3850 * |--- requested region ---|
3851 * |===========|
3854 if (map->m_lblk < ee_block)
3855 map->m_len = min(map->m_len, ee_block - map->m_lblk);
3858 * Check for the case where there is already another allocated
3859 * block to the right of 'ex' but before the end of the cluster.
3861 * |------------- cluster # N-------------|
3862 * |----- ex -----| |---- ex_right ----|
3863 * |------ requested region ------|
3864 * |================|
3866 if (map->m_lblk > ee_block) {
3867 ext4_lblk_t next = ext4_ext_next_allocated_block(path);
3868 map->m_len = min(map->m_len, next - map->m_lblk);
3871 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 1);
3872 return 1;
3875 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 0);
3876 return 0;
3881 * Block allocation/map/preallocation routine for extents based files
3884 * Need to be called with
3885 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
3886 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
3888 * return > 0, number of of blocks already mapped/allocated
3889 * if create == 0 and these are pre-allocated blocks
3890 * buffer head is unmapped
3891 * otherwise blocks are mapped
3893 * return = 0, if plain look up failed (blocks have not been allocated)
3894 * buffer head is unmapped
3896 * return < 0, error case.
3898 int ext4_ext_map_blocks(handle_t *handle, struct inode *inode,
3899 struct ext4_map_blocks *map, int flags)
3901 struct ext4_ext_path *path = NULL;
3902 struct ext4_extent newex, *ex, *ex2;
3903 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3904 ext4_fsblk_t newblock = 0;
3905 int free_on_err = 0, err = 0, depth;
3906 unsigned int allocated = 0, offset = 0;
3907 unsigned int allocated_clusters = 0;
3908 struct ext4_allocation_request ar;
3909 ext4_io_end_t *io = ext4_inode_aio(inode);
3910 ext4_lblk_t cluster_offset;
3911 int set_unwritten = 0;
3913 ext_debug("blocks %u/%u requested for inode %lu\n",
3914 map->m_lblk, map->m_len, inode->i_ino);
3915 trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
3917 /* check in cache */
3918 if (ext4_ext_in_cache(inode, map->m_lblk, &newex)) {
3919 if (!newex.ee_start_lo && !newex.ee_start_hi) {
3920 if ((sbi->s_cluster_ratio > 1) &&
3921 ext4_find_delalloc_cluster(inode, map->m_lblk))
3922 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3924 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3926 * block isn't allocated yet and
3927 * user doesn't want to allocate it
3929 goto out2;
3931 /* we should allocate requested block */
3932 } else {
3933 /* block is already allocated */
3934 if (sbi->s_cluster_ratio > 1)
3935 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3936 newblock = map->m_lblk
3937 - le32_to_cpu(newex.ee_block)
3938 + ext4_ext_pblock(&newex);
3939 /* number of remaining blocks in the extent */
3940 allocated = ext4_ext_get_actual_len(&newex) -
3941 (map->m_lblk - le32_to_cpu(newex.ee_block));
3942 goto out;
3946 /* find extent for this block */
3947 path = ext4_ext_find_extent(inode, map->m_lblk, NULL);
3948 if (IS_ERR(path)) {
3949 err = PTR_ERR(path);
3950 path = NULL;
3951 goto out2;
3954 depth = ext_depth(inode);
3957 * consistent leaf must not be empty;
3958 * this situation is possible, though, _during_ tree modification;
3959 * this is why assert can't be put in ext4_ext_find_extent()
3961 if (unlikely(path[depth].p_ext == NULL && depth != 0)) {
3962 EXT4_ERROR_INODE(inode, "bad extent address "
3963 "lblock: %lu, depth: %d pblock %lld",
3964 (unsigned long) map->m_lblk, depth,
3965 path[depth].p_block);
3966 err = -EIO;
3967 goto out2;
3970 ex = path[depth].p_ext;
3971 if (ex) {
3972 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
3973 ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
3974 unsigned short ee_len;
3977 * Uninitialized extents are treated as holes, except that
3978 * we split out initialized portions during a write.
3980 ee_len = ext4_ext_get_actual_len(ex);
3982 trace_ext4_ext_show_extent(inode, ee_block, ee_start, ee_len);
3984 /* if found extent covers block, simply return it */
3985 if (in_range(map->m_lblk, ee_block, ee_len)) {
3986 newblock = map->m_lblk - ee_block + ee_start;
3987 /* number of remaining blocks in the extent */
3988 allocated = ee_len - (map->m_lblk - ee_block);
3989 ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk,
3990 ee_block, ee_len, newblock);
3993 * Do not put uninitialized extent
3994 * in the cache
3996 if (!ext4_ext_is_uninitialized(ex)) {
3997 ext4_ext_put_in_cache(inode, ee_block,
3998 ee_len, ee_start);
3999 goto out;
4001 allocated = ext4_ext_handle_uninitialized_extents(
4002 handle, inode, map, path, flags,
4003 allocated, newblock);
4004 goto out3;
4008 if ((sbi->s_cluster_ratio > 1) &&
4009 ext4_find_delalloc_cluster(inode, map->m_lblk))
4010 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4013 * requested block isn't allocated yet;
4014 * we couldn't try to create block if create flag is zero
4016 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
4018 * put just found gap into cache to speed up
4019 * subsequent requests
4021 ext4_ext_put_gap_in_cache(inode, path, map->m_lblk);
4022 goto out2;
4026 * Okay, we need to do block allocation.
4028 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
4029 newex.ee_block = cpu_to_le32(map->m_lblk);
4030 cluster_offset = map->m_lblk & (sbi->s_cluster_ratio-1);
4033 * If we are doing bigalloc, check to see if the extent returned
4034 * by ext4_ext_find_extent() implies a cluster we can use.
4036 if (cluster_offset && ex &&
4037 get_implied_cluster_alloc(inode->i_sb, map, ex, path)) {
4038 ar.len = allocated = map->m_len;
4039 newblock = map->m_pblk;
4040 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4041 goto got_allocated_blocks;
4044 /* find neighbour allocated blocks */
4045 ar.lleft = map->m_lblk;
4046 err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft);
4047 if (err)
4048 goto out2;
4049 ar.lright = map->m_lblk;
4050 ex2 = NULL;
4051 err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright, &ex2);
4052 if (err)
4053 goto out2;
4055 /* Check if the extent after searching to the right implies a
4056 * cluster we can use. */
4057 if ((sbi->s_cluster_ratio > 1) && ex2 &&
4058 get_implied_cluster_alloc(inode->i_sb, map, ex2, path)) {
4059 ar.len = allocated = map->m_len;
4060 newblock = map->m_pblk;
4061 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4062 goto got_allocated_blocks;
4066 * See if request is beyond maximum number of blocks we can have in
4067 * a single extent. For an initialized extent this limit is
4068 * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is
4069 * EXT_UNINIT_MAX_LEN.
4071 if (map->m_len > EXT_INIT_MAX_LEN &&
4072 !(flags & EXT4_GET_BLOCKS_UNINIT_EXT))
4073 map->m_len = EXT_INIT_MAX_LEN;
4074 else if (map->m_len > EXT_UNINIT_MAX_LEN &&
4075 (flags & EXT4_GET_BLOCKS_UNINIT_EXT))
4076 map->m_len = EXT_UNINIT_MAX_LEN;
4078 /* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */
4079 newex.ee_len = cpu_to_le16(map->m_len);
4080 err = ext4_ext_check_overlap(sbi, inode, &newex, path);
4081 if (err)
4082 allocated = ext4_ext_get_actual_len(&newex);
4083 else
4084 allocated = map->m_len;
4086 /* allocate new block */
4087 ar.inode = inode;
4088 ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk);
4089 ar.logical = map->m_lblk;
4091 * We calculate the offset from the beginning of the cluster
4092 * for the logical block number, since when we allocate a
4093 * physical cluster, the physical block should start at the
4094 * same offset from the beginning of the cluster. This is
4095 * needed so that future calls to get_implied_cluster_alloc()
4096 * work correctly.
4098 offset = map->m_lblk & (sbi->s_cluster_ratio - 1);
4099 ar.len = EXT4_NUM_B2C(sbi, offset+allocated);
4100 ar.goal -= offset;
4101 ar.logical -= offset;
4102 if (S_ISREG(inode->i_mode))
4103 ar.flags = EXT4_MB_HINT_DATA;
4104 else
4105 /* disable in-core preallocation for non-regular files */
4106 ar.flags = 0;
4107 if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE)
4108 ar.flags |= EXT4_MB_HINT_NOPREALLOC;
4109 newblock = ext4_mb_new_blocks(handle, &ar, &err);
4110 if (!newblock)
4111 goto out2;
4112 ext_debug("allocate new block: goal %llu, found %llu/%u\n",
4113 ar.goal, newblock, allocated);
4114 free_on_err = 1;
4115 allocated_clusters = ar.len;
4116 ar.len = EXT4_C2B(sbi, ar.len) - offset;
4117 if (ar.len > allocated)
4118 ar.len = allocated;
4120 got_allocated_blocks:
4121 /* try to insert new extent into found leaf and return */
4122 ext4_ext_store_pblock(&newex, newblock + offset);
4123 newex.ee_len = cpu_to_le16(ar.len);
4124 /* Mark uninitialized */
4125 if (flags & EXT4_GET_BLOCKS_UNINIT_EXT){
4126 ext4_ext_mark_uninitialized(&newex);
4127 map->m_flags |= EXT4_MAP_UNWRITTEN;
4129 * io_end structure was created for every IO write to an
4130 * uninitialized extent. To avoid unnecessary conversion,
4131 * here we flag the IO that really needs the conversion.
4132 * For non asycn direct IO case, flag the inode state
4133 * that we need to perform conversion when IO is done.
4135 if ((flags & EXT4_GET_BLOCKS_PRE_IO))
4136 set_unwritten = 1;
4137 if (ext4_should_dioread_nolock(inode))
4138 map->m_flags |= EXT4_MAP_UNINIT;
4141 err = 0;
4142 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0)
4143 err = check_eofblocks_fl(handle, inode, map->m_lblk,
4144 path, ar.len);
4145 if (!err)
4146 err = ext4_ext_insert_extent(handle, inode, path,
4147 &newex, flags);
4149 if (!err && set_unwritten) {
4150 if (io)
4151 ext4_set_io_unwritten_flag(inode, io);
4152 else
4153 ext4_set_inode_state(inode,
4154 EXT4_STATE_DIO_UNWRITTEN);
4157 if (err && free_on_err) {
4158 int fb_flags = flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE ?
4159 EXT4_FREE_BLOCKS_NO_QUOT_UPDATE : 0;
4160 /* free data blocks we just allocated */
4161 /* not a good idea to call discard here directly,
4162 * but otherwise we'd need to call it every free() */
4163 ext4_discard_preallocations(inode);
4164 ext4_free_blocks(handle, inode, NULL, ext4_ext_pblock(&newex),
4165 ext4_ext_get_actual_len(&newex), fb_flags);
4166 goto out2;
4169 /* previous routine could use block we allocated */
4170 newblock = ext4_ext_pblock(&newex);
4171 allocated = ext4_ext_get_actual_len(&newex);
4172 if (allocated > map->m_len)
4173 allocated = map->m_len;
4174 map->m_flags |= EXT4_MAP_NEW;
4177 * Update reserved blocks/metadata blocks after successful
4178 * block allocation which had been deferred till now.
4180 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
4181 unsigned int reserved_clusters;
4183 * Check how many clusters we had reserved this allocated range
4185 reserved_clusters = get_reserved_cluster_alloc(inode,
4186 map->m_lblk, allocated);
4187 if (map->m_flags & EXT4_MAP_FROM_CLUSTER) {
4188 if (reserved_clusters) {
4190 * We have clusters reserved for this range.
4191 * But since we are not doing actual allocation
4192 * and are simply using blocks from previously
4193 * allocated cluster, we should release the
4194 * reservation and not claim quota.
4196 ext4_da_update_reserve_space(inode,
4197 reserved_clusters, 0);
4199 } else {
4200 BUG_ON(allocated_clusters < reserved_clusters);
4201 /* We will claim quota for all newly allocated blocks.*/
4202 ext4_da_update_reserve_space(inode, allocated_clusters,
4204 if (reserved_clusters < allocated_clusters) {
4205 struct ext4_inode_info *ei = EXT4_I(inode);
4206 int reservation = allocated_clusters -
4207 reserved_clusters;
4209 * It seems we claimed few clusters outside of
4210 * the range of this allocation. We should give
4211 * it back to the reservation pool. This can
4212 * happen in the following case:
4214 * * Suppose s_cluster_ratio is 4 (i.e., each
4215 * cluster has 4 blocks. Thus, the clusters
4216 * are [0-3],[4-7],[8-11]...
4217 * * First comes delayed allocation write for
4218 * logical blocks 10 & 11. Since there were no
4219 * previous delayed allocated blocks in the
4220 * range [8-11], we would reserve 1 cluster
4221 * for this write.
4222 * * Next comes write for logical blocks 3 to 8.
4223 * In this case, we will reserve 2 clusters
4224 * (for [0-3] and [4-7]; and not for [8-11] as
4225 * that range has a delayed allocated blocks.
4226 * Thus total reserved clusters now becomes 3.
4227 * * Now, during the delayed allocation writeout
4228 * time, we will first write blocks [3-8] and
4229 * allocate 3 clusters for writing these
4230 * blocks. Also, we would claim all these
4231 * three clusters above.
4232 * * Now when we come here to writeout the
4233 * blocks [10-11], we would expect to claim
4234 * the reservation of 1 cluster we had made
4235 * (and we would claim it since there are no
4236 * more delayed allocated blocks in the range
4237 * [8-11]. But our reserved cluster count had
4238 * already gone to 0.
4240 * Thus, at the step 4 above when we determine
4241 * that there are still some unwritten delayed
4242 * allocated blocks outside of our current
4243 * block range, we should increment the
4244 * reserved clusters count so that when the
4245 * remaining blocks finally gets written, we
4246 * could claim them.
4248 dquot_reserve_block(inode,
4249 EXT4_C2B(sbi, reservation));
4250 spin_lock(&ei->i_block_reservation_lock);
4251 ei->i_reserved_data_blocks += reservation;
4252 spin_unlock(&ei->i_block_reservation_lock);
4258 * Cache the extent and update transaction to commit on fdatasync only
4259 * when it is _not_ an uninitialized extent.
4261 if ((flags & EXT4_GET_BLOCKS_UNINIT_EXT) == 0) {
4262 ext4_ext_put_in_cache(inode, map->m_lblk, allocated, newblock);
4263 ext4_update_inode_fsync_trans(handle, inode, 1);
4264 } else
4265 ext4_update_inode_fsync_trans(handle, inode, 0);
4266 out:
4267 if (allocated > map->m_len)
4268 allocated = map->m_len;
4269 ext4_ext_show_leaf(inode, path);
4270 map->m_flags |= EXT4_MAP_MAPPED;
4271 map->m_pblk = newblock;
4272 map->m_len = allocated;
4273 out2:
4274 if (path) {
4275 ext4_ext_drop_refs(path);
4276 kfree(path);
4279 out3:
4280 trace_ext4_ext_map_blocks_exit(inode, map, err ? err : allocated);
4282 return err ? err : allocated;
4285 void ext4_ext_truncate(struct inode *inode)
4287 struct address_space *mapping = inode->i_mapping;
4288 struct super_block *sb = inode->i_sb;
4289 ext4_lblk_t last_block;
4290 handle_t *handle;
4291 loff_t page_len;
4292 int err = 0;
4295 * finish any pending end_io work so we won't run the risk of
4296 * converting any truncated blocks to initialized later
4298 ext4_flush_unwritten_io(inode);
4301 * probably first extent we're gonna free will be last in block
4303 err = ext4_writepage_trans_blocks(inode);
4304 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, err);
4305 if (IS_ERR(handle))
4306 return;
4308 if (inode->i_size % PAGE_CACHE_SIZE != 0) {
4309 page_len = PAGE_CACHE_SIZE -
4310 (inode->i_size & (PAGE_CACHE_SIZE - 1));
4312 err = ext4_discard_partial_page_buffers(handle,
4313 mapping, inode->i_size, page_len, 0);
4315 if (err)
4316 goto out_stop;
4319 if (ext4_orphan_add(handle, inode))
4320 goto out_stop;
4322 down_write(&EXT4_I(inode)->i_data_sem);
4323 ext4_ext_invalidate_cache(inode);
4325 ext4_discard_preallocations(inode);
4328 * TODO: optimization is possible here.
4329 * Probably we need not scan at all,
4330 * because page truncation is enough.
4333 /* we have to know where to truncate from in crash case */
4334 EXT4_I(inode)->i_disksize = inode->i_size;
4335 ext4_mark_inode_dirty(handle, inode);
4337 last_block = (inode->i_size + sb->s_blocksize - 1)
4338 >> EXT4_BLOCK_SIZE_BITS(sb);
4339 err = ext4_es_remove_extent(inode, last_block,
4340 EXT_MAX_BLOCKS - last_block);
4341 err = ext4_ext_remove_space(inode, last_block, EXT_MAX_BLOCKS - 1);
4343 /* In a multi-transaction truncate, we only make the final
4344 * transaction synchronous.
4346 if (IS_SYNC(inode))
4347 ext4_handle_sync(handle);
4349 up_write(&EXT4_I(inode)->i_data_sem);
4351 out_stop:
4353 * If this was a simple ftruncate() and the file will remain alive,
4354 * then we need to clear up the orphan record which we created above.
4355 * However, if this was a real unlink then we were called by
4356 * ext4_delete_inode(), and we allow that function to clean up the
4357 * orphan info for us.
4359 if (inode->i_nlink)
4360 ext4_orphan_del(handle, inode);
4362 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4363 ext4_mark_inode_dirty(handle, inode);
4364 ext4_journal_stop(handle);
4367 static void ext4_falloc_update_inode(struct inode *inode,
4368 int mode, loff_t new_size, int update_ctime)
4370 struct timespec now;
4372 if (update_ctime) {
4373 now = current_fs_time(inode->i_sb);
4374 if (!timespec_equal(&inode->i_ctime, &now))
4375 inode->i_ctime = now;
4378 * Update only when preallocation was requested beyond
4379 * the file size.
4381 if (!(mode & FALLOC_FL_KEEP_SIZE)) {
4382 if (new_size > i_size_read(inode))
4383 i_size_write(inode, new_size);
4384 if (new_size > EXT4_I(inode)->i_disksize)
4385 ext4_update_i_disksize(inode, new_size);
4386 } else {
4388 * Mark that we allocate beyond EOF so the subsequent truncate
4389 * can proceed even if the new size is the same as i_size.
4391 if (new_size > i_size_read(inode))
4392 ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4398 * preallocate space for a file. This implements ext4's fallocate file
4399 * operation, which gets called from sys_fallocate system call.
4400 * For block-mapped files, posix_fallocate should fall back to the method
4401 * of writing zeroes to the required new blocks (the same behavior which is
4402 * expected for file systems which do not support fallocate() system call).
4404 long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
4406 struct inode *inode = file->f_path.dentry->d_inode;
4407 handle_t *handle;
4408 loff_t new_size;
4409 unsigned int max_blocks;
4410 int ret = 0;
4411 int ret2 = 0;
4412 int retries = 0;
4413 int flags;
4414 struct ext4_map_blocks map;
4415 unsigned int credits, blkbits = inode->i_blkbits;
4417 /* Return error if mode is not supported */
4418 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
4419 return -EOPNOTSUPP;
4421 if (mode & FALLOC_FL_PUNCH_HOLE)
4422 return ext4_punch_hole(file, offset, len);
4424 ret = ext4_convert_inline_data(inode);
4425 if (ret)
4426 return ret;
4429 * currently supporting (pre)allocate mode for extent-based
4430 * files _only_
4432 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4433 return -EOPNOTSUPP;
4435 trace_ext4_fallocate_enter(inode, offset, len, mode);
4436 map.m_lblk = offset >> blkbits;
4438 * We can't just convert len to max_blocks because
4439 * If blocksize = 4096 offset = 3072 and len = 2048
4441 max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits)
4442 - map.m_lblk;
4444 * credits to insert 1 extent into extent tree
4446 credits = ext4_chunk_trans_blocks(inode, max_blocks);
4447 mutex_lock(&inode->i_mutex);
4448 ret = inode_newsize_ok(inode, (len + offset));
4449 if (ret) {
4450 mutex_unlock(&inode->i_mutex);
4451 trace_ext4_fallocate_exit(inode, offset, max_blocks, ret);
4452 return ret;
4454 flags = EXT4_GET_BLOCKS_CREATE_UNINIT_EXT;
4455 if (mode & FALLOC_FL_KEEP_SIZE)
4456 flags |= EXT4_GET_BLOCKS_KEEP_SIZE;
4458 * Don't normalize the request if it can fit in one extent so
4459 * that it doesn't get unnecessarily split into multiple
4460 * extents.
4462 if (len <= EXT_UNINIT_MAX_LEN << blkbits)
4463 flags |= EXT4_GET_BLOCKS_NO_NORMALIZE;
4465 /* Prevent race condition between unwritten */
4466 ext4_flush_unwritten_io(inode);
4467 retry:
4468 while (ret >= 0 && ret < max_blocks) {
4469 map.m_lblk = map.m_lblk + ret;
4470 map.m_len = max_blocks = max_blocks - ret;
4471 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
4472 credits);
4473 if (IS_ERR(handle)) {
4474 ret = PTR_ERR(handle);
4475 break;
4477 ret = ext4_map_blocks(handle, inode, &map, flags);
4478 if (ret <= 0) {
4479 #ifdef EXT4FS_DEBUG
4480 ext4_warning(inode->i_sb,
4481 "inode #%lu: block %u: len %u: "
4482 "ext4_ext_map_blocks returned %d",
4483 inode->i_ino, map.m_lblk,
4484 map.m_len, ret);
4485 #endif
4486 ext4_mark_inode_dirty(handle, inode);
4487 ret2 = ext4_journal_stop(handle);
4488 break;
4490 if ((map.m_lblk + ret) >= (EXT4_BLOCK_ALIGN(offset + len,
4491 blkbits) >> blkbits))
4492 new_size = offset + len;
4493 else
4494 new_size = ((loff_t) map.m_lblk + ret) << blkbits;
4496 ext4_falloc_update_inode(inode, mode, new_size,
4497 (map.m_flags & EXT4_MAP_NEW));
4498 ext4_mark_inode_dirty(handle, inode);
4499 if ((file->f_flags & O_SYNC) && ret >= max_blocks)
4500 ext4_handle_sync(handle);
4501 ret2 = ext4_journal_stop(handle);
4502 if (ret2)
4503 break;
4505 if (ret == -ENOSPC &&
4506 ext4_should_retry_alloc(inode->i_sb, &retries)) {
4507 ret = 0;
4508 goto retry;
4510 mutex_unlock(&inode->i_mutex);
4511 trace_ext4_fallocate_exit(inode, offset, max_blocks,
4512 ret > 0 ? ret2 : ret);
4513 return ret > 0 ? ret2 : ret;
4517 * This function convert a range of blocks to written extents
4518 * The caller of this function will pass the start offset and the size.
4519 * all unwritten extents within this range will be converted to
4520 * written extents.
4522 * This function is called from the direct IO end io call back
4523 * function, to convert the fallocated extents after IO is completed.
4524 * Returns 0 on success.
4526 int ext4_convert_unwritten_extents(struct inode *inode, loff_t offset,
4527 ssize_t len)
4529 handle_t *handle;
4530 unsigned int max_blocks;
4531 int ret = 0;
4532 int ret2 = 0;
4533 struct ext4_map_blocks map;
4534 unsigned int credits, blkbits = inode->i_blkbits;
4536 map.m_lblk = offset >> blkbits;
4538 * We can't just convert len to max_blocks because
4539 * If blocksize = 4096 offset = 3072 and len = 2048
4541 max_blocks = ((EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) -
4542 map.m_lblk);
4544 * credits to insert 1 extent into extent tree
4546 credits = ext4_chunk_trans_blocks(inode, max_blocks);
4547 while (ret >= 0 && ret < max_blocks) {
4548 map.m_lblk += ret;
4549 map.m_len = (max_blocks -= ret);
4550 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, credits);
4551 if (IS_ERR(handle)) {
4552 ret = PTR_ERR(handle);
4553 break;
4555 ret = ext4_map_blocks(handle, inode, &map,
4556 EXT4_GET_BLOCKS_IO_CONVERT_EXT);
4557 if (ret <= 0)
4558 ext4_warning(inode->i_sb,
4559 "inode #%lu: block %u: len %u: "
4560 "ext4_ext_map_blocks returned %d",
4561 inode->i_ino, map.m_lblk,
4562 map.m_len, ret);
4563 ext4_mark_inode_dirty(handle, inode);
4564 ret2 = ext4_journal_stop(handle);
4565 if (ret <= 0 || ret2 )
4566 break;
4568 return ret > 0 ? ret2 : ret;
4572 * If newex is not existing extent (newex->ec_start equals zero) find
4573 * delayed extent at start of newex and update newex accordingly and
4574 * return start of the next delayed extent.
4576 * If newex is existing extent (newex->ec_start is not equal zero)
4577 * return start of next delayed extent or EXT_MAX_BLOCKS if no delayed
4578 * extent found. Leave newex unmodified.
4580 static int ext4_find_delayed_extent(struct inode *inode,
4581 struct ext4_ext_cache *newex)
4583 struct extent_status es;
4584 ext4_lblk_t block, next_del;
4586 ext4_es_find_delayed_extent(inode, newex->ec_block, &es);
4588 if (newex->ec_start == 0) {
4590 * No extent in extent-tree contains block @newex->ec_start,
4591 * then the block may stay in 1)a hole or 2)delayed-extent.
4593 if (es.es_len == 0)
4594 /* A hole found. */
4595 return 0;
4597 if (es.es_lblk > newex->ec_block) {
4598 /* A hole found. */
4599 newex->ec_len = min(es.es_lblk - newex->ec_block,
4600 newex->ec_len);
4601 return 0;
4604 newex->ec_len = es.es_lblk + es.es_len - newex->ec_block;
4607 block = newex->ec_block + newex->ec_len;
4608 ext4_es_find_delayed_extent(inode, block, &es);
4609 if (es.es_len == 0)
4610 next_del = EXT_MAX_BLOCKS;
4611 else
4612 next_del = es.es_lblk;
4614 return next_del;
4616 /* fiemap flags we can handle specified here */
4617 #define EXT4_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
4619 static int ext4_xattr_fiemap(struct inode *inode,
4620 struct fiemap_extent_info *fieinfo)
4622 __u64 physical = 0;
4623 __u64 length;
4624 __u32 flags = FIEMAP_EXTENT_LAST;
4625 int blockbits = inode->i_sb->s_blocksize_bits;
4626 int error = 0;
4628 /* in-inode? */
4629 if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4630 struct ext4_iloc iloc;
4631 int offset; /* offset of xattr in inode */
4633 error = ext4_get_inode_loc(inode, &iloc);
4634 if (error)
4635 return error;
4636 physical = iloc.bh->b_blocknr << blockbits;
4637 offset = EXT4_GOOD_OLD_INODE_SIZE +
4638 EXT4_I(inode)->i_extra_isize;
4639 physical += offset;
4640 length = EXT4_SB(inode->i_sb)->s_inode_size - offset;
4641 flags |= FIEMAP_EXTENT_DATA_INLINE;
4642 brelse(iloc.bh);
4643 } else { /* external block */
4644 physical = EXT4_I(inode)->i_file_acl << blockbits;
4645 length = inode->i_sb->s_blocksize;
4648 if (physical)
4649 error = fiemap_fill_next_extent(fieinfo, 0, physical,
4650 length, flags);
4651 return (error < 0 ? error : 0);
4655 * ext4_ext_punch_hole
4657 * Punches a hole of "length" bytes in a file starting
4658 * at byte "offset"
4660 * @inode: The inode of the file to punch a hole in
4661 * @offset: The starting byte offset of the hole
4662 * @length: The length of the hole
4664 * Returns the number of blocks removed or negative on err
4666 int ext4_ext_punch_hole(struct file *file, loff_t offset, loff_t length)
4668 struct inode *inode = file->f_path.dentry->d_inode;
4669 struct super_block *sb = inode->i_sb;
4670 ext4_lblk_t first_block, stop_block;
4671 struct address_space *mapping = inode->i_mapping;
4672 handle_t *handle;
4673 loff_t first_page, last_page, page_len;
4674 loff_t first_page_offset, last_page_offset;
4675 int credits, err = 0;
4678 * Write out all dirty pages to avoid race conditions
4679 * Then release them.
4681 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4682 err = filemap_write_and_wait_range(mapping,
4683 offset, offset + length - 1);
4685 if (err)
4686 return err;
4689 mutex_lock(&inode->i_mutex);
4690 /* It's not possible punch hole on append only file */
4691 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
4692 err = -EPERM;
4693 goto out_mutex;
4695 if (IS_SWAPFILE(inode)) {
4696 err = -ETXTBSY;
4697 goto out_mutex;
4700 /* No need to punch hole beyond i_size */
4701 if (offset >= inode->i_size)
4702 goto out_mutex;
4705 * If the hole extends beyond i_size, set the hole
4706 * to end after the page that contains i_size
4708 if (offset + length > inode->i_size) {
4709 length = inode->i_size +
4710 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
4711 offset;
4714 first_page = (offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
4715 last_page = (offset + length) >> PAGE_CACHE_SHIFT;
4717 first_page_offset = first_page << PAGE_CACHE_SHIFT;
4718 last_page_offset = last_page << PAGE_CACHE_SHIFT;
4720 /* Now release the pages */
4721 if (last_page_offset > first_page_offset) {
4722 truncate_pagecache_range(inode, first_page_offset,
4723 last_page_offset - 1);
4726 /* Wait all existing dio workers, newcomers will block on i_mutex */
4727 ext4_inode_block_unlocked_dio(inode);
4728 err = ext4_flush_unwritten_io(inode);
4729 if (err)
4730 goto out_dio;
4731 inode_dio_wait(inode);
4733 credits = ext4_writepage_trans_blocks(inode);
4734 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4735 if (IS_ERR(handle)) {
4736 err = PTR_ERR(handle);
4737 goto out_dio;
4742 * Now we need to zero out the non-page-aligned data in the
4743 * pages at the start and tail of the hole, and unmap the buffer
4744 * heads for the block aligned regions of the page that were
4745 * completely zeroed.
4747 if (first_page > last_page) {
4749 * If the file space being truncated is contained within a page
4750 * just zero out and unmap the middle of that page
4752 err = ext4_discard_partial_page_buffers(handle,
4753 mapping, offset, length, 0);
4755 if (err)
4756 goto out;
4757 } else {
4759 * zero out and unmap the partial page that contains
4760 * the start of the hole
4762 page_len = first_page_offset - offset;
4763 if (page_len > 0) {
4764 err = ext4_discard_partial_page_buffers(handle, mapping,
4765 offset, page_len, 0);
4766 if (err)
4767 goto out;
4771 * zero out and unmap the partial page that contains
4772 * the end of the hole
4774 page_len = offset + length - last_page_offset;
4775 if (page_len > 0) {
4776 err = ext4_discard_partial_page_buffers(handle, mapping,
4777 last_page_offset, page_len, 0);
4778 if (err)
4779 goto out;
4784 * If i_size is contained in the last page, we need to
4785 * unmap and zero the partial page after i_size
4787 if (inode->i_size >> PAGE_CACHE_SHIFT == last_page &&
4788 inode->i_size % PAGE_CACHE_SIZE != 0) {
4790 page_len = PAGE_CACHE_SIZE -
4791 (inode->i_size & (PAGE_CACHE_SIZE - 1));
4793 if (page_len > 0) {
4794 err = ext4_discard_partial_page_buffers(handle,
4795 mapping, inode->i_size, page_len, 0);
4797 if (err)
4798 goto out;
4802 first_block = (offset + sb->s_blocksize - 1) >>
4803 EXT4_BLOCK_SIZE_BITS(sb);
4804 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4806 /* If there are no blocks to remove, return now */
4807 if (first_block >= stop_block)
4808 goto out;
4810 down_write(&EXT4_I(inode)->i_data_sem);
4811 ext4_ext_invalidate_cache(inode);
4812 ext4_discard_preallocations(inode);
4814 err = ext4_es_remove_extent(inode, first_block,
4815 stop_block - first_block);
4816 err = ext4_ext_remove_space(inode, first_block, stop_block - 1);
4818 ext4_ext_invalidate_cache(inode);
4819 ext4_discard_preallocations(inode);
4821 if (IS_SYNC(inode))
4822 ext4_handle_sync(handle);
4824 up_write(&EXT4_I(inode)->i_data_sem);
4826 out:
4827 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4828 ext4_mark_inode_dirty(handle, inode);
4829 ext4_journal_stop(handle);
4830 out_dio:
4831 ext4_inode_resume_unlocked_dio(inode);
4832 out_mutex:
4833 mutex_unlock(&inode->i_mutex);
4834 return err;
4837 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4838 __u64 start, __u64 len)
4840 ext4_lblk_t start_blk;
4841 int error = 0;
4843 if (ext4_has_inline_data(inode)) {
4844 int has_inline = 1;
4846 error = ext4_inline_data_fiemap(inode, fieinfo, &has_inline);
4848 if (has_inline)
4849 return error;
4852 /* fallback to generic here if not in extents fmt */
4853 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4854 return generic_block_fiemap(inode, fieinfo, start, len,
4855 ext4_get_block);
4857 if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS))
4858 return -EBADR;
4860 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
4861 error = ext4_xattr_fiemap(inode, fieinfo);
4862 } else {
4863 ext4_lblk_t len_blks;
4864 __u64 last_blk;
4866 start_blk = start >> inode->i_sb->s_blocksize_bits;
4867 last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits;
4868 if (last_blk >= EXT_MAX_BLOCKS)
4869 last_blk = EXT_MAX_BLOCKS-1;
4870 len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1;
4873 * Walk the extent tree gathering extent information
4874 * and pushing extents back to the user.
4876 error = ext4_fill_fiemap_extents(inode, start_blk,
4877 len_blks, fieinfo);
4880 return error;