Merge tag 'gpio-v3.13-3' of git://git.kernel.org/pub/scm/linux/kernel/git/linusw...
[linux-2.6.git] / fs / ext4 / extents.c
blob35f65cf4f318d72bce4e79995ddbc85d0e4bbfa3
1 /*
2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
5 * Architecture independence:
6 * Copyright (c) 2005, Bull S.A.
7 * Written by Pierre Peiffer <pierre.peiffer@bull.net>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public Licens
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
24 * Extents support for EXT4
26 * TODO:
27 * - ext4*_error() should be used in some situations
28 * - analyze all BUG()/BUG_ON(), use -EIO where appropriate
29 * - smart tree reduction
32 #include <linux/fs.h>
33 #include <linux/time.h>
34 #include <linux/jbd2.h>
35 #include <linux/highuid.h>
36 #include <linux/pagemap.h>
37 #include <linux/quotaops.h>
38 #include <linux/string.h>
39 #include <linux/slab.h>
40 #include <linux/falloc.h>
41 #include <asm/uaccess.h>
42 #include <linux/fiemap.h>
43 #include "ext4_jbd2.h"
44 #include "ext4_extents.h"
45 #include "xattr.h"
47 #include <trace/events/ext4.h>
50 * used by extent splitting.
52 #define EXT4_EXT_MAY_ZEROOUT 0x1 /* safe to zeroout if split fails \
53 due to ENOSPC */
54 #define EXT4_EXT_MARK_UNINIT1 0x2 /* mark first half uninitialized */
55 #define EXT4_EXT_MARK_UNINIT2 0x4 /* mark second half uninitialized */
57 #define EXT4_EXT_DATA_VALID1 0x8 /* first half contains valid data */
58 #define EXT4_EXT_DATA_VALID2 0x10 /* second half contains valid data */
60 static __le32 ext4_extent_block_csum(struct inode *inode,
61 struct ext4_extent_header *eh)
63 struct ext4_inode_info *ei = EXT4_I(inode);
64 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
65 __u32 csum;
67 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)eh,
68 EXT4_EXTENT_TAIL_OFFSET(eh));
69 return cpu_to_le32(csum);
72 static int ext4_extent_block_csum_verify(struct inode *inode,
73 struct ext4_extent_header *eh)
75 struct ext4_extent_tail *et;
77 if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
78 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
79 return 1;
81 et = find_ext4_extent_tail(eh);
82 if (et->et_checksum != ext4_extent_block_csum(inode, eh))
83 return 0;
84 return 1;
87 static void ext4_extent_block_csum_set(struct inode *inode,
88 struct ext4_extent_header *eh)
90 struct ext4_extent_tail *et;
92 if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
93 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
94 return;
96 et = find_ext4_extent_tail(eh);
97 et->et_checksum = ext4_extent_block_csum(inode, eh);
100 static int ext4_split_extent(handle_t *handle,
101 struct inode *inode,
102 struct ext4_ext_path *path,
103 struct ext4_map_blocks *map,
104 int split_flag,
105 int flags);
107 static int ext4_split_extent_at(handle_t *handle,
108 struct inode *inode,
109 struct ext4_ext_path *path,
110 ext4_lblk_t split,
111 int split_flag,
112 int flags);
114 static int ext4_find_delayed_extent(struct inode *inode,
115 struct extent_status *newes);
117 static int ext4_ext_truncate_extend_restart(handle_t *handle,
118 struct inode *inode,
119 int needed)
121 int err;
123 if (!ext4_handle_valid(handle))
124 return 0;
125 if (handle->h_buffer_credits > needed)
126 return 0;
127 err = ext4_journal_extend(handle, needed);
128 if (err <= 0)
129 return err;
130 err = ext4_truncate_restart_trans(handle, inode, needed);
131 if (err == 0)
132 err = -EAGAIN;
134 return err;
138 * could return:
139 * - EROFS
140 * - ENOMEM
142 static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
143 struct ext4_ext_path *path)
145 if (path->p_bh) {
146 /* path points to block */
147 return ext4_journal_get_write_access(handle, path->p_bh);
149 /* path points to leaf/index in inode body */
150 /* we use in-core data, no need to protect them */
151 return 0;
155 * could return:
156 * - EROFS
157 * - ENOMEM
158 * - EIO
160 int __ext4_ext_dirty(const char *where, unsigned int line, handle_t *handle,
161 struct inode *inode, struct ext4_ext_path *path)
163 int err;
164 if (path->p_bh) {
165 ext4_extent_block_csum_set(inode, ext_block_hdr(path->p_bh));
166 /* path points to block */
167 err = __ext4_handle_dirty_metadata(where, line, handle,
168 inode, path->p_bh);
169 } else {
170 /* path points to leaf/index in inode body */
171 err = ext4_mark_inode_dirty(handle, inode);
173 return err;
176 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
177 struct ext4_ext_path *path,
178 ext4_lblk_t block)
180 if (path) {
181 int depth = path->p_depth;
182 struct ext4_extent *ex;
185 * Try to predict block placement assuming that we are
186 * filling in a file which will eventually be
187 * non-sparse --- i.e., in the case of libbfd writing
188 * an ELF object sections out-of-order but in a way
189 * the eventually results in a contiguous object or
190 * executable file, or some database extending a table
191 * space file. However, this is actually somewhat
192 * non-ideal if we are writing a sparse file such as
193 * qemu or KVM writing a raw image file that is going
194 * to stay fairly sparse, since it will end up
195 * fragmenting the file system's free space. Maybe we
196 * should have some hueristics or some way to allow
197 * userspace to pass a hint to file system,
198 * especially if the latter case turns out to be
199 * common.
201 ex = path[depth].p_ext;
202 if (ex) {
203 ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex);
204 ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block);
206 if (block > ext_block)
207 return ext_pblk + (block - ext_block);
208 else
209 return ext_pblk - (ext_block - block);
212 /* it looks like index is empty;
213 * try to find starting block from index itself */
214 if (path[depth].p_bh)
215 return path[depth].p_bh->b_blocknr;
218 /* OK. use inode's group */
219 return ext4_inode_to_goal_block(inode);
223 * Allocation for a meta data block
225 static ext4_fsblk_t
226 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode,
227 struct ext4_ext_path *path,
228 struct ext4_extent *ex, int *err, unsigned int flags)
230 ext4_fsblk_t goal, newblock;
232 goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
233 newblock = ext4_new_meta_blocks(handle, inode, goal, flags,
234 NULL, err);
235 return newblock;
238 static inline int ext4_ext_space_block(struct inode *inode, int check)
240 int size;
242 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
243 / sizeof(struct ext4_extent);
244 #ifdef AGGRESSIVE_TEST
245 if (!check && size > 6)
246 size = 6;
247 #endif
248 return size;
251 static inline int ext4_ext_space_block_idx(struct inode *inode, int check)
253 int size;
255 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
256 / sizeof(struct ext4_extent_idx);
257 #ifdef AGGRESSIVE_TEST
258 if (!check && size > 5)
259 size = 5;
260 #endif
261 return size;
264 static inline int ext4_ext_space_root(struct inode *inode, int check)
266 int size;
268 size = sizeof(EXT4_I(inode)->i_data);
269 size -= sizeof(struct ext4_extent_header);
270 size /= sizeof(struct ext4_extent);
271 #ifdef AGGRESSIVE_TEST
272 if (!check && size > 3)
273 size = 3;
274 #endif
275 return size;
278 static inline int ext4_ext_space_root_idx(struct inode *inode, int check)
280 int size;
282 size = sizeof(EXT4_I(inode)->i_data);
283 size -= sizeof(struct ext4_extent_header);
284 size /= sizeof(struct ext4_extent_idx);
285 #ifdef AGGRESSIVE_TEST
286 if (!check && size > 4)
287 size = 4;
288 #endif
289 return size;
293 * Calculate the number of metadata blocks needed
294 * to allocate @blocks
295 * Worse case is one block per extent
297 int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
299 struct ext4_inode_info *ei = EXT4_I(inode);
300 int idxs;
302 idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
303 / sizeof(struct ext4_extent_idx));
306 * If the new delayed allocation block is contiguous with the
307 * previous da block, it can share index blocks with the
308 * previous block, so we only need to allocate a new index
309 * block every idxs leaf blocks. At ldxs**2 blocks, we need
310 * an additional index block, and at ldxs**3 blocks, yet
311 * another index blocks.
313 if (ei->i_da_metadata_calc_len &&
314 ei->i_da_metadata_calc_last_lblock+1 == lblock) {
315 int num = 0;
317 if ((ei->i_da_metadata_calc_len % idxs) == 0)
318 num++;
319 if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0)
320 num++;
321 if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) {
322 num++;
323 ei->i_da_metadata_calc_len = 0;
324 } else
325 ei->i_da_metadata_calc_len++;
326 ei->i_da_metadata_calc_last_lblock++;
327 return num;
331 * In the worst case we need a new set of index blocks at
332 * every level of the inode's extent tree.
334 ei->i_da_metadata_calc_len = 1;
335 ei->i_da_metadata_calc_last_lblock = lblock;
336 return ext_depth(inode) + 1;
339 static int
340 ext4_ext_max_entries(struct inode *inode, int depth)
342 int max;
344 if (depth == ext_depth(inode)) {
345 if (depth == 0)
346 max = ext4_ext_space_root(inode, 1);
347 else
348 max = ext4_ext_space_root_idx(inode, 1);
349 } else {
350 if (depth == 0)
351 max = ext4_ext_space_block(inode, 1);
352 else
353 max = ext4_ext_space_block_idx(inode, 1);
356 return max;
359 static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext)
361 ext4_fsblk_t block = ext4_ext_pblock(ext);
362 int len = ext4_ext_get_actual_len(ext);
364 if (len == 0)
365 return 0;
366 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len);
369 static int ext4_valid_extent_idx(struct inode *inode,
370 struct ext4_extent_idx *ext_idx)
372 ext4_fsblk_t block = ext4_idx_pblock(ext_idx);
374 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1);
377 static int ext4_valid_extent_entries(struct inode *inode,
378 struct ext4_extent_header *eh,
379 int depth)
381 unsigned short entries;
382 if (eh->eh_entries == 0)
383 return 1;
385 entries = le16_to_cpu(eh->eh_entries);
387 if (depth == 0) {
388 /* leaf entries */
389 struct ext4_extent *ext = EXT_FIRST_EXTENT(eh);
390 while (entries) {
391 if (!ext4_valid_extent(inode, ext))
392 return 0;
393 ext++;
394 entries--;
396 } else {
397 struct ext4_extent_idx *ext_idx = EXT_FIRST_INDEX(eh);
398 while (entries) {
399 if (!ext4_valid_extent_idx(inode, ext_idx))
400 return 0;
401 ext_idx++;
402 entries--;
405 return 1;
408 static int __ext4_ext_check(const char *function, unsigned int line,
409 struct inode *inode, struct ext4_extent_header *eh,
410 int depth, ext4_fsblk_t pblk)
412 const char *error_msg;
413 int max = 0;
415 if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
416 error_msg = "invalid magic";
417 goto corrupted;
419 if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
420 error_msg = "unexpected eh_depth";
421 goto corrupted;
423 if (unlikely(eh->eh_max == 0)) {
424 error_msg = "invalid eh_max";
425 goto corrupted;
427 max = ext4_ext_max_entries(inode, depth);
428 if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
429 error_msg = "too large eh_max";
430 goto corrupted;
432 if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
433 error_msg = "invalid eh_entries";
434 goto corrupted;
436 if (!ext4_valid_extent_entries(inode, eh, depth)) {
437 error_msg = "invalid extent entries";
438 goto corrupted;
440 /* Verify checksum on non-root extent tree nodes */
441 if (ext_depth(inode) != depth &&
442 !ext4_extent_block_csum_verify(inode, eh)) {
443 error_msg = "extent tree corrupted";
444 goto corrupted;
446 return 0;
448 corrupted:
449 ext4_error_inode(inode, function, line, 0,
450 "pblk %llu bad header/extent: %s - magic %x, "
451 "entries %u, max %u(%u), depth %u(%u)",
452 (unsigned long long) pblk, error_msg,
453 le16_to_cpu(eh->eh_magic),
454 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
455 max, le16_to_cpu(eh->eh_depth), depth);
456 return -EIO;
459 #define ext4_ext_check(inode, eh, depth, pblk) \
460 __ext4_ext_check(__func__, __LINE__, (inode), (eh), (depth), (pblk))
462 int ext4_ext_check_inode(struct inode *inode)
464 return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode), 0);
467 static struct buffer_head *
468 __read_extent_tree_block(const char *function, unsigned int line,
469 struct inode *inode, ext4_fsblk_t pblk, int depth,
470 int flags)
472 struct buffer_head *bh;
473 int err;
475 bh = sb_getblk(inode->i_sb, pblk);
476 if (unlikely(!bh))
477 return ERR_PTR(-ENOMEM);
479 if (!bh_uptodate_or_lock(bh)) {
480 trace_ext4_ext_load_extent(inode, pblk, _RET_IP_);
481 err = bh_submit_read(bh);
482 if (err < 0)
483 goto errout;
485 if (buffer_verified(bh) && !(flags & EXT4_EX_FORCE_CACHE))
486 return bh;
487 err = __ext4_ext_check(function, line, inode,
488 ext_block_hdr(bh), depth, pblk);
489 if (err)
490 goto errout;
491 set_buffer_verified(bh);
493 * If this is a leaf block, cache all of its entries
495 if (!(flags & EXT4_EX_NOCACHE) && depth == 0) {
496 struct ext4_extent_header *eh = ext_block_hdr(bh);
497 struct ext4_extent *ex = EXT_FIRST_EXTENT(eh);
498 ext4_lblk_t prev = 0;
499 int i;
501 for (i = le16_to_cpu(eh->eh_entries); i > 0; i--, ex++) {
502 unsigned int status = EXTENT_STATUS_WRITTEN;
503 ext4_lblk_t lblk = le32_to_cpu(ex->ee_block);
504 int len = ext4_ext_get_actual_len(ex);
506 if (prev && (prev != lblk))
507 ext4_es_cache_extent(inode, prev,
508 lblk - prev, ~0,
509 EXTENT_STATUS_HOLE);
511 if (ext4_ext_is_uninitialized(ex))
512 status = EXTENT_STATUS_UNWRITTEN;
513 ext4_es_cache_extent(inode, lblk, len,
514 ext4_ext_pblock(ex), status);
515 prev = lblk + len;
518 return bh;
519 errout:
520 put_bh(bh);
521 return ERR_PTR(err);
525 #define read_extent_tree_block(inode, pblk, depth, flags) \
526 __read_extent_tree_block(__func__, __LINE__, (inode), (pblk), \
527 (depth), (flags))
530 * This function is called to cache a file's extent information in the
531 * extent status tree
533 int ext4_ext_precache(struct inode *inode)
535 struct ext4_inode_info *ei = EXT4_I(inode);
536 struct ext4_ext_path *path = NULL;
537 struct buffer_head *bh;
538 int i = 0, depth, ret = 0;
540 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
541 return 0; /* not an extent-mapped inode */
543 down_read(&ei->i_data_sem);
544 depth = ext_depth(inode);
546 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1),
547 GFP_NOFS);
548 if (path == NULL) {
549 up_read(&ei->i_data_sem);
550 return -ENOMEM;
553 /* Don't cache anything if there are no external extent blocks */
554 if (depth == 0)
555 goto out;
556 path[0].p_hdr = ext_inode_hdr(inode);
557 ret = ext4_ext_check(inode, path[0].p_hdr, depth, 0);
558 if (ret)
559 goto out;
560 path[0].p_idx = EXT_FIRST_INDEX(path[0].p_hdr);
561 while (i >= 0) {
563 * If this is a leaf block or we've reached the end of
564 * the index block, go up
566 if ((i == depth) ||
567 path[i].p_idx > EXT_LAST_INDEX(path[i].p_hdr)) {
568 brelse(path[i].p_bh);
569 path[i].p_bh = NULL;
570 i--;
571 continue;
573 bh = read_extent_tree_block(inode,
574 ext4_idx_pblock(path[i].p_idx++),
575 depth - i - 1,
576 EXT4_EX_FORCE_CACHE);
577 if (IS_ERR(bh)) {
578 ret = PTR_ERR(bh);
579 break;
581 i++;
582 path[i].p_bh = bh;
583 path[i].p_hdr = ext_block_hdr(bh);
584 path[i].p_idx = EXT_FIRST_INDEX(path[i].p_hdr);
586 ext4_set_inode_state(inode, EXT4_STATE_EXT_PRECACHED);
587 out:
588 up_read(&ei->i_data_sem);
589 ext4_ext_drop_refs(path);
590 kfree(path);
591 return ret;
594 #ifdef EXT_DEBUG
595 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
597 int k, l = path->p_depth;
599 ext_debug("path:");
600 for (k = 0; k <= l; k++, path++) {
601 if (path->p_idx) {
602 ext_debug(" %d->%llu", le32_to_cpu(path->p_idx->ei_block),
603 ext4_idx_pblock(path->p_idx));
604 } else if (path->p_ext) {
605 ext_debug(" %d:[%d]%d:%llu ",
606 le32_to_cpu(path->p_ext->ee_block),
607 ext4_ext_is_uninitialized(path->p_ext),
608 ext4_ext_get_actual_len(path->p_ext),
609 ext4_ext_pblock(path->p_ext));
610 } else
611 ext_debug(" []");
613 ext_debug("\n");
616 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
618 int depth = ext_depth(inode);
619 struct ext4_extent_header *eh;
620 struct ext4_extent *ex;
621 int i;
623 if (!path)
624 return;
626 eh = path[depth].p_hdr;
627 ex = EXT_FIRST_EXTENT(eh);
629 ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino);
631 for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
632 ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block),
633 ext4_ext_is_uninitialized(ex),
634 ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex));
636 ext_debug("\n");
639 static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path,
640 ext4_fsblk_t newblock, int level)
642 int depth = ext_depth(inode);
643 struct ext4_extent *ex;
645 if (depth != level) {
646 struct ext4_extent_idx *idx;
647 idx = path[level].p_idx;
648 while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) {
649 ext_debug("%d: move %d:%llu in new index %llu\n", level,
650 le32_to_cpu(idx->ei_block),
651 ext4_idx_pblock(idx),
652 newblock);
653 idx++;
656 return;
659 ex = path[depth].p_ext;
660 while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) {
661 ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n",
662 le32_to_cpu(ex->ee_block),
663 ext4_ext_pblock(ex),
664 ext4_ext_is_uninitialized(ex),
665 ext4_ext_get_actual_len(ex),
666 newblock);
667 ex++;
671 #else
672 #define ext4_ext_show_path(inode, path)
673 #define ext4_ext_show_leaf(inode, path)
674 #define ext4_ext_show_move(inode, path, newblock, level)
675 #endif
677 void ext4_ext_drop_refs(struct ext4_ext_path *path)
679 int depth = path->p_depth;
680 int i;
682 for (i = 0; i <= depth; i++, path++)
683 if (path->p_bh) {
684 brelse(path->p_bh);
685 path->p_bh = NULL;
690 * ext4_ext_binsearch_idx:
691 * binary search for the closest index of the given block
692 * the header must be checked before calling this
694 static void
695 ext4_ext_binsearch_idx(struct inode *inode,
696 struct ext4_ext_path *path, ext4_lblk_t block)
698 struct ext4_extent_header *eh = path->p_hdr;
699 struct ext4_extent_idx *r, *l, *m;
702 ext_debug("binsearch for %u(idx): ", block);
704 l = EXT_FIRST_INDEX(eh) + 1;
705 r = EXT_LAST_INDEX(eh);
706 while (l <= r) {
707 m = l + (r - l) / 2;
708 if (block < le32_to_cpu(m->ei_block))
709 r = m - 1;
710 else
711 l = m + 1;
712 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
713 m, le32_to_cpu(m->ei_block),
714 r, le32_to_cpu(r->ei_block));
717 path->p_idx = l - 1;
718 ext_debug(" -> %u->%lld ", le32_to_cpu(path->p_idx->ei_block),
719 ext4_idx_pblock(path->p_idx));
721 #ifdef CHECK_BINSEARCH
723 struct ext4_extent_idx *chix, *ix;
724 int k;
726 chix = ix = EXT_FIRST_INDEX(eh);
727 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
728 if (k != 0 &&
729 le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
730 printk(KERN_DEBUG "k=%d, ix=0x%p, "
731 "first=0x%p\n", k,
732 ix, EXT_FIRST_INDEX(eh));
733 printk(KERN_DEBUG "%u <= %u\n",
734 le32_to_cpu(ix->ei_block),
735 le32_to_cpu(ix[-1].ei_block));
737 BUG_ON(k && le32_to_cpu(ix->ei_block)
738 <= le32_to_cpu(ix[-1].ei_block));
739 if (block < le32_to_cpu(ix->ei_block))
740 break;
741 chix = ix;
743 BUG_ON(chix != path->p_idx);
745 #endif
750 * ext4_ext_binsearch:
751 * binary search for closest extent of the given block
752 * the header must be checked before calling this
754 static void
755 ext4_ext_binsearch(struct inode *inode,
756 struct ext4_ext_path *path, ext4_lblk_t block)
758 struct ext4_extent_header *eh = path->p_hdr;
759 struct ext4_extent *r, *l, *m;
761 if (eh->eh_entries == 0) {
763 * this leaf is empty:
764 * we get such a leaf in split/add case
766 return;
769 ext_debug("binsearch for %u: ", block);
771 l = EXT_FIRST_EXTENT(eh) + 1;
772 r = EXT_LAST_EXTENT(eh);
774 while (l <= r) {
775 m = l + (r - l) / 2;
776 if (block < le32_to_cpu(m->ee_block))
777 r = m - 1;
778 else
779 l = m + 1;
780 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
781 m, le32_to_cpu(m->ee_block),
782 r, le32_to_cpu(r->ee_block));
785 path->p_ext = l - 1;
786 ext_debug(" -> %d:%llu:[%d]%d ",
787 le32_to_cpu(path->p_ext->ee_block),
788 ext4_ext_pblock(path->p_ext),
789 ext4_ext_is_uninitialized(path->p_ext),
790 ext4_ext_get_actual_len(path->p_ext));
792 #ifdef CHECK_BINSEARCH
794 struct ext4_extent *chex, *ex;
795 int k;
797 chex = ex = EXT_FIRST_EXTENT(eh);
798 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
799 BUG_ON(k && le32_to_cpu(ex->ee_block)
800 <= le32_to_cpu(ex[-1].ee_block));
801 if (block < le32_to_cpu(ex->ee_block))
802 break;
803 chex = ex;
805 BUG_ON(chex != path->p_ext);
807 #endif
811 int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
813 struct ext4_extent_header *eh;
815 eh = ext_inode_hdr(inode);
816 eh->eh_depth = 0;
817 eh->eh_entries = 0;
818 eh->eh_magic = EXT4_EXT_MAGIC;
819 eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0));
820 ext4_mark_inode_dirty(handle, inode);
821 return 0;
824 struct ext4_ext_path *
825 ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block,
826 struct ext4_ext_path *path, int flags)
828 struct ext4_extent_header *eh;
829 struct buffer_head *bh;
830 short int depth, i, ppos = 0, alloc = 0;
831 int ret;
833 eh = ext_inode_hdr(inode);
834 depth = ext_depth(inode);
836 /* account possible depth increase */
837 if (!path) {
838 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2),
839 GFP_NOFS);
840 if (!path)
841 return ERR_PTR(-ENOMEM);
842 alloc = 1;
844 path[0].p_hdr = eh;
845 path[0].p_bh = NULL;
847 i = depth;
848 /* walk through the tree */
849 while (i) {
850 ext_debug("depth %d: num %d, max %d\n",
851 ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
853 ext4_ext_binsearch_idx(inode, path + ppos, block);
854 path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx);
855 path[ppos].p_depth = i;
856 path[ppos].p_ext = NULL;
858 bh = read_extent_tree_block(inode, path[ppos].p_block, --i,
859 flags);
860 if (IS_ERR(bh)) {
861 ret = PTR_ERR(bh);
862 goto err;
865 eh = ext_block_hdr(bh);
866 ppos++;
867 if (unlikely(ppos > depth)) {
868 put_bh(bh);
869 EXT4_ERROR_INODE(inode,
870 "ppos %d > depth %d", ppos, depth);
871 ret = -EIO;
872 goto err;
874 path[ppos].p_bh = bh;
875 path[ppos].p_hdr = eh;
878 path[ppos].p_depth = i;
879 path[ppos].p_ext = NULL;
880 path[ppos].p_idx = NULL;
882 /* find extent */
883 ext4_ext_binsearch(inode, path + ppos, block);
884 /* if not an empty leaf */
885 if (path[ppos].p_ext)
886 path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext);
888 ext4_ext_show_path(inode, path);
890 return path;
892 err:
893 ext4_ext_drop_refs(path);
894 if (alloc)
895 kfree(path);
896 return ERR_PTR(ret);
900 * ext4_ext_insert_index:
901 * insert new index [@logical;@ptr] into the block at @curp;
902 * check where to insert: before @curp or after @curp
904 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
905 struct ext4_ext_path *curp,
906 int logical, ext4_fsblk_t ptr)
908 struct ext4_extent_idx *ix;
909 int len, err;
911 err = ext4_ext_get_access(handle, inode, curp);
912 if (err)
913 return err;
915 if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) {
916 EXT4_ERROR_INODE(inode,
917 "logical %d == ei_block %d!",
918 logical, le32_to_cpu(curp->p_idx->ei_block));
919 return -EIO;
922 if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries)
923 >= le16_to_cpu(curp->p_hdr->eh_max))) {
924 EXT4_ERROR_INODE(inode,
925 "eh_entries %d >= eh_max %d!",
926 le16_to_cpu(curp->p_hdr->eh_entries),
927 le16_to_cpu(curp->p_hdr->eh_max));
928 return -EIO;
931 if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
932 /* insert after */
933 ext_debug("insert new index %d after: %llu\n", logical, ptr);
934 ix = curp->p_idx + 1;
935 } else {
936 /* insert before */
937 ext_debug("insert new index %d before: %llu\n", logical, ptr);
938 ix = curp->p_idx;
941 len = EXT_LAST_INDEX(curp->p_hdr) - ix + 1;
942 BUG_ON(len < 0);
943 if (len > 0) {
944 ext_debug("insert new index %d: "
945 "move %d indices from 0x%p to 0x%p\n",
946 logical, len, ix, ix + 1);
947 memmove(ix + 1, ix, len * sizeof(struct ext4_extent_idx));
950 if (unlikely(ix > EXT_MAX_INDEX(curp->p_hdr))) {
951 EXT4_ERROR_INODE(inode, "ix > EXT_MAX_INDEX!");
952 return -EIO;
955 ix->ei_block = cpu_to_le32(logical);
956 ext4_idx_store_pblock(ix, ptr);
957 le16_add_cpu(&curp->p_hdr->eh_entries, 1);
959 if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) {
960 EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!");
961 return -EIO;
964 err = ext4_ext_dirty(handle, inode, curp);
965 ext4_std_error(inode->i_sb, err);
967 return err;
971 * ext4_ext_split:
972 * inserts new subtree into the path, using free index entry
973 * at depth @at:
974 * - allocates all needed blocks (new leaf and all intermediate index blocks)
975 * - makes decision where to split
976 * - moves remaining extents and index entries (right to the split point)
977 * into the newly allocated blocks
978 * - initializes subtree
980 static int ext4_ext_split(handle_t *handle, struct inode *inode,
981 unsigned int flags,
982 struct ext4_ext_path *path,
983 struct ext4_extent *newext, int at)
985 struct buffer_head *bh = NULL;
986 int depth = ext_depth(inode);
987 struct ext4_extent_header *neh;
988 struct ext4_extent_idx *fidx;
989 int i = at, k, m, a;
990 ext4_fsblk_t newblock, oldblock;
991 __le32 border;
992 ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
993 int err = 0;
995 /* make decision: where to split? */
996 /* FIXME: now decision is simplest: at current extent */
998 /* if current leaf will be split, then we should use
999 * border from split point */
1000 if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) {
1001 EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!");
1002 return -EIO;
1004 if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
1005 border = path[depth].p_ext[1].ee_block;
1006 ext_debug("leaf will be split."
1007 " next leaf starts at %d\n",
1008 le32_to_cpu(border));
1009 } else {
1010 border = newext->ee_block;
1011 ext_debug("leaf will be added."
1012 " next leaf starts at %d\n",
1013 le32_to_cpu(border));
1017 * If error occurs, then we break processing
1018 * and mark filesystem read-only. index won't
1019 * be inserted and tree will be in consistent
1020 * state. Next mount will repair buffers too.
1024 * Get array to track all allocated blocks.
1025 * We need this to handle errors and free blocks
1026 * upon them.
1028 ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS);
1029 if (!ablocks)
1030 return -ENOMEM;
1032 /* allocate all needed blocks */
1033 ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
1034 for (a = 0; a < depth - at; a++) {
1035 newblock = ext4_ext_new_meta_block(handle, inode, path,
1036 newext, &err, flags);
1037 if (newblock == 0)
1038 goto cleanup;
1039 ablocks[a] = newblock;
1042 /* initialize new leaf */
1043 newblock = ablocks[--a];
1044 if (unlikely(newblock == 0)) {
1045 EXT4_ERROR_INODE(inode, "newblock == 0!");
1046 err = -EIO;
1047 goto cleanup;
1049 bh = sb_getblk(inode->i_sb, newblock);
1050 if (unlikely(!bh)) {
1051 err = -ENOMEM;
1052 goto cleanup;
1054 lock_buffer(bh);
1056 err = ext4_journal_get_create_access(handle, bh);
1057 if (err)
1058 goto cleanup;
1060 neh = ext_block_hdr(bh);
1061 neh->eh_entries = 0;
1062 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1063 neh->eh_magic = EXT4_EXT_MAGIC;
1064 neh->eh_depth = 0;
1066 /* move remainder of path[depth] to the new leaf */
1067 if (unlikely(path[depth].p_hdr->eh_entries !=
1068 path[depth].p_hdr->eh_max)) {
1069 EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!",
1070 path[depth].p_hdr->eh_entries,
1071 path[depth].p_hdr->eh_max);
1072 err = -EIO;
1073 goto cleanup;
1075 /* start copy from next extent */
1076 m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++;
1077 ext4_ext_show_move(inode, path, newblock, depth);
1078 if (m) {
1079 struct ext4_extent *ex;
1080 ex = EXT_FIRST_EXTENT(neh);
1081 memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m);
1082 le16_add_cpu(&neh->eh_entries, m);
1085 ext4_extent_block_csum_set(inode, neh);
1086 set_buffer_uptodate(bh);
1087 unlock_buffer(bh);
1089 err = ext4_handle_dirty_metadata(handle, inode, bh);
1090 if (err)
1091 goto cleanup;
1092 brelse(bh);
1093 bh = NULL;
1095 /* correct old leaf */
1096 if (m) {
1097 err = ext4_ext_get_access(handle, inode, path + depth);
1098 if (err)
1099 goto cleanup;
1100 le16_add_cpu(&path[depth].p_hdr->eh_entries, -m);
1101 err = ext4_ext_dirty(handle, inode, path + depth);
1102 if (err)
1103 goto cleanup;
1107 /* create intermediate indexes */
1108 k = depth - at - 1;
1109 if (unlikely(k < 0)) {
1110 EXT4_ERROR_INODE(inode, "k %d < 0!", k);
1111 err = -EIO;
1112 goto cleanup;
1114 if (k)
1115 ext_debug("create %d intermediate indices\n", k);
1116 /* insert new index into current index block */
1117 /* current depth stored in i var */
1118 i = depth - 1;
1119 while (k--) {
1120 oldblock = newblock;
1121 newblock = ablocks[--a];
1122 bh = sb_getblk(inode->i_sb, newblock);
1123 if (unlikely(!bh)) {
1124 err = -ENOMEM;
1125 goto cleanup;
1127 lock_buffer(bh);
1129 err = ext4_journal_get_create_access(handle, bh);
1130 if (err)
1131 goto cleanup;
1133 neh = ext_block_hdr(bh);
1134 neh->eh_entries = cpu_to_le16(1);
1135 neh->eh_magic = EXT4_EXT_MAGIC;
1136 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1137 neh->eh_depth = cpu_to_le16(depth - i);
1138 fidx = EXT_FIRST_INDEX(neh);
1139 fidx->ei_block = border;
1140 ext4_idx_store_pblock(fidx, oldblock);
1142 ext_debug("int.index at %d (block %llu): %u -> %llu\n",
1143 i, newblock, le32_to_cpu(border), oldblock);
1145 /* move remainder of path[i] to the new index block */
1146 if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) !=
1147 EXT_LAST_INDEX(path[i].p_hdr))) {
1148 EXT4_ERROR_INODE(inode,
1149 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!",
1150 le32_to_cpu(path[i].p_ext->ee_block));
1151 err = -EIO;
1152 goto cleanup;
1154 /* start copy indexes */
1155 m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++;
1156 ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
1157 EXT_MAX_INDEX(path[i].p_hdr));
1158 ext4_ext_show_move(inode, path, newblock, i);
1159 if (m) {
1160 memmove(++fidx, path[i].p_idx,
1161 sizeof(struct ext4_extent_idx) * m);
1162 le16_add_cpu(&neh->eh_entries, m);
1164 ext4_extent_block_csum_set(inode, neh);
1165 set_buffer_uptodate(bh);
1166 unlock_buffer(bh);
1168 err = ext4_handle_dirty_metadata(handle, inode, bh);
1169 if (err)
1170 goto cleanup;
1171 brelse(bh);
1172 bh = NULL;
1174 /* correct old index */
1175 if (m) {
1176 err = ext4_ext_get_access(handle, inode, path + i);
1177 if (err)
1178 goto cleanup;
1179 le16_add_cpu(&path[i].p_hdr->eh_entries, -m);
1180 err = ext4_ext_dirty(handle, inode, path + i);
1181 if (err)
1182 goto cleanup;
1185 i--;
1188 /* insert new index */
1189 err = ext4_ext_insert_index(handle, inode, path + at,
1190 le32_to_cpu(border), newblock);
1192 cleanup:
1193 if (bh) {
1194 if (buffer_locked(bh))
1195 unlock_buffer(bh);
1196 brelse(bh);
1199 if (err) {
1200 /* free all allocated blocks in error case */
1201 for (i = 0; i < depth; i++) {
1202 if (!ablocks[i])
1203 continue;
1204 ext4_free_blocks(handle, inode, NULL, ablocks[i], 1,
1205 EXT4_FREE_BLOCKS_METADATA);
1208 kfree(ablocks);
1210 return err;
1214 * ext4_ext_grow_indepth:
1215 * implements tree growing procedure:
1216 * - allocates new block
1217 * - moves top-level data (index block or leaf) into the new block
1218 * - initializes new top-level, creating index that points to the
1219 * just created block
1221 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
1222 unsigned int flags,
1223 struct ext4_extent *newext)
1225 struct ext4_extent_header *neh;
1226 struct buffer_head *bh;
1227 ext4_fsblk_t newblock;
1228 int err = 0;
1230 newblock = ext4_ext_new_meta_block(handle, inode, NULL,
1231 newext, &err, flags);
1232 if (newblock == 0)
1233 return err;
1235 bh = sb_getblk(inode->i_sb, newblock);
1236 if (unlikely(!bh))
1237 return -ENOMEM;
1238 lock_buffer(bh);
1240 err = ext4_journal_get_create_access(handle, bh);
1241 if (err) {
1242 unlock_buffer(bh);
1243 goto out;
1246 /* move top-level index/leaf into new block */
1247 memmove(bh->b_data, EXT4_I(inode)->i_data,
1248 sizeof(EXT4_I(inode)->i_data));
1250 /* set size of new block */
1251 neh = ext_block_hdr(bh);
1252 /* old root could have indexes or leaves
1253 * so calculate e_max right way */
1254 if (ext_depth(inode))
1255 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1256 else
1257 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1258 neh->eh_magic = EXT4_EXT_MAGIC;
1259 ext4_extent_block_csum_set(inode, neh);
1260 set_buffer_uptodate(bh);
1261 unlock_buffer(bh);
1263 err = ext4_handle_dirty_metadata(handle, inode, bh);
1264 if (err)
1265 goto out;
1267 /* Update top-level index: num,max,pointer */
1268 neh = ext_inode_hdr(inode);
1269 neh->eh_entries = cpu_to_le16(1);
1270 ext4_idx_store_pblock(EXT_FIRST_INDEX(neh), newblock);
1271 if (neh->eh_depth == 0) {
1272 /* Root extent block becomes index block */
1273 neh->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0));
1274 EXT_FIRST_INDEX(neh)->ei_block =
1275 EXT_FIRST_EXTENT(neh)->ee_block;
1277 ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
1278 le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
1279 le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block),
1280 ext4_idx_pblock(EXT_FIRST_INDEX(neh)));
1282 le16_add_cpu(&neh->eh_depth, 1);
1283 ext4_mark_inode_dirty(handle, inode);
1284 out:
1285 brelse(bh);
1287 return err;
1291 * ext4_ext_create_new_leaf:
1292 * finds empty index and adds new leaf.
1293 * if no free index is found, then it requests in-depth growing.
1295 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
1296 unsigned int mb_flags,
1297 unsigned int gb_flags,
1298 struct ext4_ext_path *path,
1299 struct ext4_extent *newext)
1301 struct ext4_ext_path *curp;
1302 int depth, i, err = 0;
1304 repeat:
1305 i = depth = ext_depth(inode);
1307 /* walk up to the tree and look for free index entry */
1308 curp = path + depth;
1309 while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
1310 i--;
1311 curp--;
1314 /* we use already allocated block for index block,
1315 * so subsequent data blocks should be contiguous */
1316 if (EXT_HAS_FREE_INDEX(curp)) {
1317 /* if we found index with free entry, then use that
1318 * entry: create all needed subtree and add new leaf */
1319 err = ext4_ext_split(handle, inode, mb_flags, path, newext, i);
1320 if (err)
1321 goto out;
1323 /* refill path */
1324 ext4_ext_drop_refs(path);
1325 path = ext4_ext_find_extent(inode,
1326 (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1327 path, gb_flags);
1328 if (IS_ERR(path))
1329 err = PTR_ERR(path);
1330 } else {
1331 /* tree is full, time to grow in depth */
1332 err = ext4_ext_grow_indepth(handle, inode, mb_flags, newext);
1333 if (err)
1334 goto out;
1336 /* refill path */
1337 ext4_ext_drop_refs(path);
1338 path = ext4_ext_find_extent(inode,
1339 (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1340 path, gb_flags);
1341 if (IS_ERR(path)) {
1342 err = PTR_ERR(path);
1343 goto out;
1347 * only first (depth 0 -> 1) produces free space;
1348 * in all other cases we have to split the grown tree
1350 depth = ext_depth(inode);
1351 if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
1352 /* now we need to split */
1353 goto repeat;
1357 out:
1358 return err;
1362 * search the closest allocated block to the left for *logical
1363 * and returns it at @logical + it's physical address at @phys
1364 * if *logical is the smallest allocated block, the function
1365 * returns 0 at @phys
1366 * return value contains 0 (success) or error code
1368 static int ext4_ext_search_left(struct inode *inode,
1369 struct ext4_ext_path *path,
1370 ext4_lblk_t *logical, ext4_fsblk_t *phys)
1372 struct ext4_extent_idx *ix;
1373 struct ext4_extent *ex;
1374 int depth, ee_len;
1376 if (unlikely(path == NULL)) {
1377 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1378 return -EIO;
1380 depth = path->p_depth;
1381 *phys = 0;
1383 if (depth == 0 && path->p_ext == NULL)
1384 return 0;
1386 /* usually extent in the path covers blocks smaller
1387 * then *logical, but it can be that extent is the
1388 * first one in the file */
1390 ex = path[depth].p_ext;
1391 ee_len = ext4_ext_get_actual_len(ex);
1392 if (*logical < le32_to_cpu(ex->ee_block)) {
1393 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1394 EXT4_ERROR_INODE(inode,
1395 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!",
1396 *logical, le32_to_cpu(ex->ee_block));
1397 return -EIO;
1399 while (--depth >= 0) {
1400 ix = path[depth].p_idx;
1401 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1402 EXT4_ERROR_INODE(inode,
1403 "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!",
1404 ix != NULL ? le32_to_cpu(ix->ei_block) : 0,
1405 EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ?
1406 le32_to_cpu(EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block) : 0,
1407 depth);
1408 return -EIO;
1411 return 0;
1414 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1415 EXT4_ERROR_INODE(inode,
1416 "logical %d < ee_block %d + ee_len %d!",
1417 *logical, le32_to_cpu(ex->ee_block), ee_len);
1418 return -EIO;
1421 *logical = le32_to_cpu(ex->ee_block) + ee_len - 1;
1422 *phys = ext4_ext_pblock(ex) + ee_len - 1;
1423 return 0;
1427 * search the closest allocated block to the right for *logical
1428 * and returns it at @logical + it's physical address at @phys
1429 * if *logical is the largest allocated block, the function
1430 * returns 0 at @phys
1431 * return value contains 0 (success) or error code
1433 static int ext4_ext_search_right(struct inode *inode,
1434 struct ext4_ext_path *path,
1435 ext4_lblk_t *logical, ext4_fsblk_t *phys,
1436 struct ext4_extent **ret_ex)
1438 struct buffer_head *bh = NULL;
1439 struct ext4_extent_header *eh;
1440 struct ext4_extent_idx *ix;
1441 struct ext4_extent *ex;
1442 ext4_fsblk_t block;
1443 int depth; /* Note, NOT eh_depth; depth from top of tree */
1444 int ee_len;
1446 if (unlikely(path == NULL)) {
1447 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1448 return -EIO;
1450 depth = path->p_depth;
1451 *phys = 0;
1453 if (depth == 0 && path->p_ext == NULL)
1454 return 0;
1456 /* usually extent in the path covers blocks smaller
1457 * then *logical, but it can be that extent is the
1458 * first one in the file */
1460 ex = path[depth].p_ext;
1461 ee_len = ext4_ext_get_actual_len(ex);
1462 if (*logical < le32_to_cpu(ex->ee_block)) {
1463 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1464 EXT4_ERROR_INODE(inode,
1465 "first_extent(path[%d].p_hdr) != ex",
1466 depth);
1467 return -EIO;
1469 while (--depth >= 0) {
1470 ix = path[depth].p_idx;
1471 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1472 EXT4_ERROR_INODE(inode,
1473 "ix != EXT_FIRST_INDEX *logical %d!",
1474 *logical);
1475 return -EIO;
1478 goto found_extent;
1481 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1482 EXT4_ERROR_INODE(inode,
1483 "logical %d < ee_block %d + ee_len %d!",
1484 *logical, le32_to_cpu(ex->ee_block), ee_len);
1485 return -EIO;
1488 if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) {
1489 /* next allocated block in this leaf */
1490 ex++;
1491 goto found_extent;
1494 /* go up and search for index to the right */
1495 while (--depth >= 0) {
1496 ix = path[depth].p_idx;
1497 if (ix != EXT_LAST_INDEX(path[depth].p_hdr))
1498 goto got_index;
1501 /* we've gone up to the root and found no index to the right */
1502 return 0;
1504 got_index:
1505 /* we've found index to the right, let's
1506 * follow it and find the closest allocated
1507 * block to the right */
1508 ix++;
1509 block = ext4_idx_pblock(ix);
1510 while (++depth < path->p_depth) {
1511 /* subtract from p_depth to get proper eh_depth */
1512 bh = read_extent_tree_block(inode, block,
1513 path->p_depth - depth, 0);
1514 if (IS_ERR(bh))
1515 return PTR_ERR(bh);
1516 eh = ext_block_hdr(bh);
1517 ix = EXT_FIRST_INDEX(eh);
1518 block = ext4_idx_pblock(ix);
1519 put_bh(bh);
1522 bh = read_extent_tree_block(inode, block, path->p_depth - depth, 0);
1523 if (IS_ERR(bh))
1524 return PTR_ERR(bh);
1525 eh = ext_block_hdr(bh);
1526 ex = EXT_FIRST_EXTENT(eh);
1527 found_extent:
1528 *logical = le32_to_cpu(ex->ee_block);
1529 *phys = ext4_ext_pblock(ex);
1530 *ret_ex = ex;
1531 if (bh)
1532 put_bh(bh);
1533 return 0;
1537 * ext4_ext_next_allocated_block:
1538 * returns allocated block in subsequent extent or EXT_MAX_BLOCKS.
1539 * NOTE: it considers block number from index entry as
1540 * allocated block. Thus, index entries have to be consistent
1541 * with leaves.
1543 static ext4_lblk_t
1544 ext4_ext_next_allocated_block(struct ext4_ext_path *path)
1546 int depth;
1548 BUG_ON(path == NULL);
1549 depth = path->p_depth;
1551 if (depth == 0 && path->p_ext == NULL)
1552 return EXT_MAX_BLOCKS;
1554 while (depth >= 0) {
1555 if (depth == path->p_depth) {
1556 /* leaf */
1557 if (path[depth].p_ext &&
1558 path[depth].p_ext !=
1559 EXT_LAST_EXTENT(path[depth].p_hdr))
1560 return le32_to_cpu(path[depth].p_ext[1].ee_block);
1561 } else {
1562 /* index */
1563 if (path[depth].p_idx !=
1564 EXT_LAST_INDEX(path[depth].p_hdr))
1565 return le32_to_cpu(path[depth].p_idx[1].ei_block);
1567 depth--;
1570 return EXT_MAX_BLOCKS;
1574 * ext4_ext_next_leaf_block:
1575 * returns first allocated block from next leaf or EXT_MAX_BLOCKS
1577 static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path)
1579 int depth;
1581 BUG_ON(path == NULL);
1582 depth = path->p_depth;
1584 /* zero-tree has no leaf blocks at all */
1585 if (depth == 0)
1586 return EXT_MAX_BLOCKS;
1588 /* go to index block */
1589 depth--;
1591 while (depth >= 0) {
1592 if (path[depth].p_idx !=
1593 EXT_LAST_INDEX(path[depth].p_hdr))
1594 return (ext4_lblk_t)
1595 le32_to_cpu(path[depth].p_idx[1].ei_block);
1596 depth--;
1599 return EXT_MAX_BLOCKS;
1603 * ext4_ext_correct_indexes:
1604 * if leaf gets modified and modified extent is first in the leaf,
1605 * then we have to correct all indexes above.
1606 * TODO: do we need to correct tree in all cases?
1608 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
1609 struct ext4_ext_path *path)
1611 struct ext4_extent_header *eh;
1612 int depth = ext_depth(inode);
1613 struct ext4_extent *ex;
1614 __le32 border;
1615 int k, err = 0;
1617 eh = path[depth].p_hdr;
1618 ex = path[depth].p_ext;
1620 if (unlikely(ex == NULL || eh == NULL)) {
1621 EXT4_ERROR_INODE(inode,
1622 "ex %p == NULL or eh %p == NULL", ex, eh);
1623 return -EIO;
1626 if (depth == 0) {
1627 /* there is no tree at all */
1628 return 0;
1631 if (ex != EXT_FIRST_EXTENT(eh)) {
1632 /* we correct tree if first leaf got modified only */
1633 return 0;
1637 * TODO: we need correction if border is smaller than current one
1639 k = depth - 1;
1640 border = path[depth].p_ext->ee_block;
1641 err = ext4_ext_get_access(handle, inode, path + k);
1642 if (err)
1643 return err;
1644 path[k].p_idx->ei_block = border;
1645 err = ext4_ext_dirty(handle, inode, path + k);
1646 if (err)
1647 return err;
1649 while (k--) {
1650 /* change all left-side indexes */
1651 if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
1652 break;
1653 err = ext4_ext_get_access(handle, inode, path + k);
1654 if (err)
1655 break;
1656 path[k].p_idx->ei_block = border;
1657 err = ext4_ext_dirty(handle, inode, path + k);
1658 if (err)
1659 break;
1662 return err;
1666 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
1667 struct ext4_extent *ex2)
1669 unsigned short ext1_ee_len, ext2_ee_len;
1672 * Make sure that both extents are initialized. We don't merge
1673 * uninitialized extents so that we can be sure that end_io code has
1674 * the extent that was written properly split out and conversion to
1675 * initialized is trivial.
1677 if (ext4_ext_is_uninitialized(ex1) || ext4_ext_is_uninitialized(ex2))
1678 return 0;
1680 ext1_ee_len = ext4_ext_get_actual_len(ex1);
1681 ext2_ee_len = ext4_ext_get_actual_len(ex2);
1683 if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
1684 le32_to_cpu(ex2->ee_block))
1685 return 0;
1688 * To allow future support for preallocated extents to be added
1689 * as an RO_COMPAT feature, refuse to merge to extents if
1690 * this can result in the top bit of ee_len being set.
1692 if (ext1_ee_len + ext2_ee_len > EXT_INIT_MAX_LEN)
1693 return 0;
1694 #ifdef AGGRESSIVE_TEST
1695 if (ext1_ee_len >= 4)
1696 return 0;
1697 #endif
1699 if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2))
1700 return 1;
1701 return 0;
1705 * This function tries to merge the "ex" extent to the next extent in the tree.
1706 * It always tries to merge towards right. If you want to merge towards
1707 * left, pass "ex - 1" as argument instead of "ex".
1708 * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1709 * 1 if they got merged.
1711 static int ext4_ext_try_to_merge_right(struct inode *inode,
1712 struct ext4_ext_path *path,
1713 struct ext4_extent *ex)
1715 struct ext4_extent_header *eh;
1716 unsigned int depth, len;
1717 int merge_done = 0;
1719 depth = ext_depth(inode);
1720 BUG_ON(path[depth].p_hdr == NULL);
1721 eh = path[depth].p_hdr;
1723 while (ex < EXT_LAST_EXTENT(eh)) {
1724 if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
1725 break;
1726 /* merge with next extent! */
1727 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1728 + ext4_ext_get_actual_len(ex + 1));
1730 if (ex + 1 < EXT_LAST_EXTENT(eh)) {
1731 len = (EXT_LAST_EXTENT(eh) - ex - 1)
1732 * sizeof(struct ext4_extent);
1733 memmove(ex + 1, ex + 2, len);
1735 le16_add_cpu(&eh->eh_entries, -1);
1736 merge_done = 1;
1737 WARN_ON(eh->eh_entries == 0);
1738 if (!eh->eh_entries)
1739 EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!");
1742 return merge_done;
1746 * This function does a very simple check to see if we can collapse
1747 * an extent tree with a single extent tree leaf block into the inode.
1749 static void ext4_ext_try_to_merge_up(handle_t *handle,
1750 struct inode *inode,
1751 struct ext4_ext_path *path)
1753 size_t s;
1754 unsigned max_root = ext4_ext_space_root(inode, 0);
1755 ext4_fsblk_t blk;
1757 if ((path[0].p_depth != 1) ||
1758 (le16_to_cpu(path[0].p_hdr->eh_entries) != 1) ||
1759 (le16_to_cpu(path[1].p_hdr->eh_entries) > max_root))
1760 return;
1763 * We need to modify the block allocation bitmap and the block
1764 * group descriptor to release the extent tree block. If we
1765 * can't get the journal credits, give up.
1767 if (ext4_journal_extend(handle, 2))
1768 return;
1771 * Copy the extent data up to the inode
1773 blk = ext4_idx_pblock(path[0].p_idx);
1774 s = le16_to_cpu(path[1].p_hdr->eh_entries) *
1775 sizeof(struct ext4_extent_idx);
1776 s += sizeof(struct ext4_extent_header);
1778 memcpy(path[0].p_hdr, path[1].p_hdr, s);
1779 path[0].p_depth = 0;
1780 path[0].p_ext = EXT_FIRST_EXTENT(path[0].p_hdr) +
1781 (path[1].p_ext - EXT_FIRST_EXTENT(path[1].p_hdr));
1782 path[0].p_hdr->eh_max = cpu_to_le16(max_root);
1784 brelse(path[1].p_bh);
1785 ext4_free_blocks(handle, inode, NULL, blk, 1,
1786 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET |
1787 EXT4_FREE_BLOCKS_RESERVE);
1791 * This function tries to merge the @ex extent to neighbours in the tree.
1792 * return 1 if merge left else 0.
1794 static void ext4_ext_try_to_merge(handle_t *handle,
1795 struct inode *inode,
1796 struct ext4_ext_path *path,
1797 struct ext4_extent *ex) {
1798 struct ext4_extent_header *eh;
1799 unsigned int depth;
1800 int merge_done = 0;
1802 depth = ext_depth(inode);
1803 BUG_ON(path[depth].p_hdr == NULL);
1804 eh = path[depth].p_hdr;
1806 if (ex > EXT_FIRST_EXTENT(eh))
1807 merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1);
1809 if (!merge_done)
1810 (void) ext4_ext_try_to_merge_right(inode, path, ex);
1812 ext4_ext_try_to_merge_up(handle, inode, path);
1816 * check if a portion of the "newext" extent overlaps with an
1817 * existing extent.
1819 * If there is an overlap discovered, it updates the length of the newext
1820 * such that there will be no overlap, and then returns 1.
1821 * If there is no overlap found, it returns 0.
1823 static unsigned int ext4_ext_check_overlap(struct ext4_sb_info *sbi,
1824 struct inode *inode,
1825 struct ext4_extent *newext,
1826 struct ext4_ext_path *path)
1828 ext4_lblk_t b1, b2;
1829 unsigned int depth, len1;
1830 unsigned int ret = 0;
1832 b1 = le32_to_cpu(newext->ee_block);
1833 len1 = ext4_ext_get_actual_len(newext);
1834 depth = ext_depth(inode);
1835 if (!path[depth].p_ext)
1836 goto out;
1837 b2 = le32_to_cpu(path[depth].p_ext->ee_block);
1838 b2 &= ~(sbi->s_cluster_ratio - 1);
1841 * get the next allocated block if the extent in the path
1842 * is before the requested block(s)
1844 if (b2 < b1) {
1845 b2 = ext4_ext_next_allocated_block(path);
1846 if (b2 == EXT_MAX_BLOCKS)
1847 goto out;
1848 b2 &= ~(sbi->s_cluster_ratio - 1);
1851 /* check for wrap through zero on extent logical start block*/
1852 if (b1 + len1 < b1) {
1853 len1 = EXT_MAX_BLOCKS - b1;
1854 newext->ee_len = cpu_to_le16(len1);
1855 ret = 1;
1858 /* check for overlap */
1859 if (b1 + len1 > b2) {
1860 newext->ee_len = cpu_to_le16(b2 - b1);
1861 ret = 1;
1863 out:
1864 return ret;
1868 * ext4_ext_insert_extent:
1869 * tries to merge requsted extent into the existing extent or
1870 * inserts requested extent as new one into the tree,
1871 * creating new leaf in the no-space case.
1873 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
1874 struct ext4_ext_path *path,
1875 struct ext4_extent *newext, int gb_flags)
1877 struct ext4_extent_header *eh;
1878 struct ext4_extent *ex, *fex;
1879 struct ext4_extent *nearex; /* nearest extent */
1880 struct ext4_ext_path *npath = NULL;
1881 int depth, len, err;
1882 ext4_lblk_t next;
1883 int mb_flags = 0;
1885 if (unlikely(ext4_ext_get_actual_len(newext) == 0)) {
1886 EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0");
1887 return -EIO;
1889 depth = ext_depth(inode);
1890 ex = path[depth].p_ext;
1891 eh = path[depth].p_hdr;
1892 if (unlikely(path[depth].p_hdr == NULL)) {
1893 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1894 return -EIO;
1897 /* try to insert block into found extent and return */
1898 if (ex && !(gb_flags & EXT4_GET_BLOCKS_PRE_IO)) {
1901 * Try to see whether we should rather test the extent on
1902 * right from ex, or from the left of ex. This is because
1903 * ext4_ext_find_extent() can return either extent on the
1904 * left, or on the right from the searched position. This
1905 * will make merging more effective.
1907 if (ex < EXT_LAST_EXTENT(eh) &&
1908 (le32_to_cpu(ex->ee_block) +
1909 ext4_ext_get_actual_len(ex) <
1910 le32_to_cpu(newext->ee_block))) {
1911 ex += 1;
1912 goto prepend;
1913 } else if ((ex > EXT_FIRST_EXTENT(eh)) &&
1914 (le32_to_cpu(newext->ee_block) +
1915 ext4_ext_get_actual_len(newext) <
1916 le32_to_cpu(ex->ee_block)))
1917 ex -= 1;
1919 /* Try to append newex to the ex */
1920 if (ext4_can_extents_be_merged(inode, ex, newext)) {
1921 ext_debug("append [%d]%d block to %u:[%d]%d"
1922 "(from %llu)\n",
1923 ext4_ext_is_uninitialized(newext),
1924 ext4_ext_get_actual_len(newext),
1925 le32_to_cpu(ex->ee_block),
1926 ext4_ext_is_uninitialized(ex),
1927 ext4_ext_get_actual_len(ex),
1928 ext4_ext_pblock(ex));
1929 err = ext4_ext_get_access(handle, inode,
1930 path + depth);
1931 if (err)
1932 return err;
1934 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1935 + ext4_ext_get_actual_len(newext));
1936 eh = path[depth].p_hdr;
1937 nearex = ex;
1938 goto merge;
1941 prepend:
1942 /* Try to prepend newex to the ex */
1943 if (ext4_can_extents_be_merged(inode, newext, ex)) {
1944 ext_debug("prepend %u[%d]%d block to %u:[%d]%d"
1945 "(from %llu)\n",
1946 le32_to_cpu(newext->ee_block),
1947 ext4_ext_is_uninitialized(newext),
1948 ext4_ext_get_actual_len(newext),
1949 le32_to_cpu(ex->ee_block),
1950 ext4_ext_is_uninitialized(ex),
1951 ext4_ext_get_actual_len(ex),
1952 ext4_ext_pblock(ex));
1953 err = ext4_ext_get_access(handle, inode,
1954 path + depth);
1955 if (err)
1956 return err;
1958 ex->ee_block = newext->ee_block;
1959 ext4_ext_store_pblock(ex, ext4_ext_pblock(newext));
1960 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1961 + ext4_ext_get_actual_len(newext));
1962 eh = path[depth].p_hdr;
1963 nearex = ex;
1964 goto merge;
1968 depth = ext_depth(inode);
1969 eh = path[depth].p_hdr;
1970 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
1971 goto has_space;
1973 /* probably next leaf has space for us? */
1974 fex = EXT_LAST_EXTENT(eh);
1975 next = EXT_MAX_BLOCKS;
1976 if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block))
1977 next = ext4_ext_next_leaf_block(path);
1978 if (next != EXT_MAX_BLOCKS) {
1979 ext_debug("next leaf block - %u\n", next);
1980 BUG_ON(npath != NULL);
1981 npath = ext4_ext_find_extent(inode, next, NULL, 0);
1982 if (IS_ERR(npath))
1983 return PTR_ERR(npath);
1984 BUG_ON(npath->p_depth != path->p_depth);
1985 eh = npath[depth].p_hdr;
1986 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
1987 ext_debug("next leaf isn't full(%d)\n",
1988 le16_to_cpu(eh->eh_entries));
1989 path = npath;
1990 goto has_space;
1992 ext_debug("next leaf has no free space(%d,%d)\n",
1993 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
1997 * There is no free space in the found leaf.
1998 * We're gonna add a new leaf in the tree.
2000 if (gb_flags & EXT4_GET_BLOCKS_METADATA_NOFAIL)
2001 mb_flags = EXT4_MB_USE_RESERVED;
2002 err = ext4_ext_create_new_leaf(handle, inode, mb_flags, gb_flags,
2003 path, newext);
2004 if (err)
2005 goto cleanup;
2006 depth = ext_depth(inode);
2007 eh = path[depth].p_hdr;
2009 has_space:
2010 nearex = path[depth].p_ext;
2012 err = ext4_ext_get_access(handle, inode, path + depth);
2013 if (err)
2014 goto cleanup;
2016 if (!nearex) {
2017 /* there is no extent in this leaf, create first one */
2018 ext_debug("first extent in the leaf: %u:%llu:[%d]%d\n",
2019 le32_to_cpu(newext->ee_block),
2020 ext4_ext_pblock(newext),
2021 ext4_ext_is_uninitialized(newext),
2022 ext4_ext_get_actual_len(newext));
2023 nearex = EXT_FIRST_EXTENT(eh);
2024 } else {
2025 if (le32_to_cpu(newext->ee_block)
2026 > le32_to_cpu(nearex->ee_block)) {
2027 /* Insert after */
2028 ext_debug("insert %u:%llu:[%d]%d before: "
2029 "nearest %p\n",
2030 le32_to_cpu(newext->ee_block),
2031 ext4_ext_pblock(newext),
2032 ext4_ext_is_uninitialized(newext),
2033 ext4_ext_get_actual_len(newext),
2034 nearex);
2035 nearex++;
2036 } else {
2037 /* Insert before */
2038 BUG_ON(newext->ee_block == nearex->ee_block);
2039 ext_debug("insert %u:%llu:[%d]%d after: "
2040 "nearest %p\n",
2041 le32_to_cpu(newext->ee_block),
2042 ext4_ext_pblock(newext),
2043 ext4_ext_is_uninitialized(newext),
2044 ext4_ext_get_actual_len(newext),
2045 nearex);
2047 len = EXT_LAST_EXTENT(eh) - nearex + 1;
2048 if (len > 0) {
2049 ext_debug("insert %u:%llu:[%d]%d: "
2050 "move %d extents from 0x%p to 0x%p\n",
2051 le32_to_cpu(newext->ee_block),
2052 ext4_ext_pblock(newext),
2053 ext4_ext_is_uninitialized(newext),
2054 ext4_ext_get_actual_len(newext),
2055 len, nearex, nearex + 1);
2056 memmove(nearex + 1, nearex,
2057 len * sizeof(struct ext4_extent));
2061 le16_add_cpu(&eh->eh_entries, 1);
2062 path[depth].p_ext = nearex;
2063 nearex->ee_block = newext->ee_block;
2064 ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext));
2065 nearex->ee_len = newext->ee_len;
2067 merge:
2068 /* try to merge extents */
2069 if (!(gb_flags & EXT4_GET_BLOCKS_PRE_IO))
2070 ext4_ext_try_to_merge(handle, inode, path, nearex);
2073 /* time to correct all indexes above */
2074 err = ext4_ext_correct_indexes(handle, inode, path);
2075 if (err)
2076 goto cleanup;
2078 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
2080 cleanup:
2081 if (npath) {
2082 ext4_ext_drop_refs(npath);
2083 kfree(npath);
2085 return err;
2088 static int ext4_fill_fiemap_extents(struct inode *inode,
2089 ext4_lblk_t block, ext4_lblk_t num,
2090 struct fiemap_extent_info *fieinfo)
2092 struct ext4_ext_path *path = NULL;
2093 struct ext4_extent *ex;
2094 struct extent_status es;
2095 ext4_lblk_t next, next_del, start = 0, end = 0;
2096 ext4_lblk_t last = block + num;
2097 int exists, depth = 0, err = 0;
2098 unsigned int flags = 0;
2099 unsigned char blksize_bits = inode->i_sb->s_blocksize_bits;
2101 while (block < last && block != EXT_MAX_BLOCKS) {
2102 num = last - block;
2103 /* find extent for this block */
2104 down_read(&EXT4_I(inode)->i_data_sem);
2106 if (path && ext_depth(inode) != depth) {
2107 /* depth was changed. we have to realloc path */
2108 kfree(path);
2109 path = NULL;
2112 path = ext4_ext_find_extent(inode, block, path, 0);
2113 if (IS_ERR(path)) {
2114 up_read(&EXT4_I(inode)->i_data_sem);
2115 err = PTR_ERR(path);
2116 path = NULL;
2117 break;
2120 depth = ext_depth(inode);
2121 if (unlikely(path[depth].p_hdr == NULL)) {
2122 up_read(&EXT4_I(inode)->i_data_sem);
2123 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2124 err = -EIO;
2125 break;
2127 ex = path[depth].p_ext;
2128 next = ext4_ext_next_allocated_block(path);
2129 ext4_ext_drop_refs(path);
2131 flags = 0;
2132 exists = 0;
2133 if (!ex) {
2134 /* there is no extent yet, so try to allocate
2135 * all requested space */
2136 start = block;
2137 end = block + num;
2138 } else if (le32_to_cpu(ex->ee_block) > block) {
2139 /* need to allocate space before found extent */
2140 start = block;
2141 end = le32_to_cpu(ex->ee_block);
2142 if (block + num < end)
2143 end = block + num;
2144 } else if (block >= le32_to_cpu(ex->ee_block)
2145 + ext4_ext_get_actual_len(ex)) {
2146 /* need to allocate space after found extent */
2147 start = block;
2148 end = block + num;
2149 if (end >= next)
2150 end = next;
2151 } else if (block >= le32_to_cpu(ex->ee_block)) {
2153 * some part of requested space is covered
2154 * by found extent
2156 start = block;
2157 end = le32_to_cpu(ex->ee_block)
2158 + ext4_ext_get_actual_len(ex);
2159 if (block + num < end)
2160 end = block + num;
2161 exists = 1;
2162 } else {
2163 BUG();
2165 BUG_ON(end <= start);
2167 if (!exists) {
2168 es.es_lblk = start;
2169 es.es_len = end - start;
2170 es.es_pblk = 0;
2171 } else {
2172 es.es_lblk = le32_to_cpu(ex->ee_block);
2173 es.es_len = ext4_ext_get_actual_len(ex);
2174 es.es_pblk = ext4_ext_pblock(ex);
2175 if (ext4_ext_is_uninitialized(ex))
2176 flags |= FIEMAP_EXTENT_UNWRITTEN;
2180 * Find delayed extent and update es accordingly. We call
2181 * it even in !exists case to find out whether es is the
2182 * last existing extent or not.
2184 next_del = ext4_find_delayed_extent(inode, &es);
2185 if (!exists && next_del) {
2186 exists = 1;
2187 flags |= (FIEMAP_EXTENT_DELALLOC |
2188 FIEMAP_EXTENT_UNKNOWN);
2190 up_read(&EXT4_I(inode)->i_data_sem);
2192 if (unlikely(es.es_len == 0)) {
2193 EXT4_ERROR_INODE(inode, "es.es_len == 0");
2194 err = -EIO;
2195 break;
2199 * This is possible iff next == next_del == EXT_MAX_BLOCKS.
2200 * we need to check next == EXT_MAX_BLOCKS because it is
2201 * possible that an extent is with unwritten and delayed
2202 * status due to when an extent is delayed allocated and
2203 * is allocated by fallocate status tree will track both of
2204 * them in a extent.
2206 * So we could return a unwritten and delayed extent, and
2207 * its block is equal to 'next'.
2209 if (next == next_del && next == EXT_MAX_BLOCKS) {
2210 flags |= FIEMAP_EXTENT_LAST;
2211 if (unlikely(next_del != EXT_MAX_BLOCKS ||
2212 next != EXT_MAX_BLOCKS)) {
2213 EXT4_ERROR_INODE(inode,
2214 "next extent == %u, next "
2215 "delalloc extent = %u",
2216 next, next_del);
2217 err = -EIO;
2218 break;
2222 if (exists) {
2223 err = fiemap_fill_next_extent(fieinfo,
2224 (__u64)es.es_lblk << blksize_bits,
2225 (__u64)es.es_pblk << blksize_bits,
2226 (__u64)es.es_len << blksize_bits,
2227 flags);
2228 if (err < 0)
2229 break;
2230 if (err == 1) {
2231 err = 0;
2232 break;
2236 block = es.es_lblk + es.es_len;
2239 if (path) {
2240 ext4_ext_drop_refs(path);
2241 kfree(path);
2244 return err;
2248 * ext4_ext_put_gap_in_cache:
2249 * calculate boundaries of the gap that the requested block fits into
2250 * and cache this gap
2252 static void
2253 ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path,
2254 ext4_lblk_t block)
2256 int depth = ext_depth(inode);
2257 unsigned long len = 0;
2258 ext4_lblk_t lblock = 0;
2259 struct ext4_extent *ex;
2261 ex = path[depth].p_ext;
2262 if (ex == NULL) {
2264 * there is no extent yet, so gap is [0;-] and we
2265 * don't cache it
2267 ext_debug("cache gap(whole file):");
2268 } else if (block < le32_to_cpu(ex->ee_block)) {
2269 lblock = block;
2270 len = le32_to_cpu(ex->ee_block) - block;
2271 ext_debug("cache gap(before): %u [%u:%u]",
2272 block,
2273 le32_to_cpu(ex->ee_block),
2274 ext4_ext_get_actual_len(ex));
2275 if (!ext4_find_delalloc_range(inode, lblock, lblock + len - 1))
2276 ext4_es_insert_extent(inode, lblock, len, ~0,
2277 EXTENT_STATUS_HOLE);
2278 } else if (block >= le32_to_cpu(ex->ee_block)
2279 + ext4_ext_get_actual_len(ex)) {
2280 ext4_lblk_t next;
2281 lblock = le32_to_cpu(ex->ee_block)
2282 + ext4_ext_get_actual_len(ex);
2284 next = ext4_ext_next_allocated_block(path);
2285 ext_debug("cache gap(after): [%u:%u] %u",
2286 le32_to_cpu(ex->ee_block),
2287 ext4_ext_get_actual_len(ex),
2288 block);
2289 BUG_ON(next == lblock);
2290 len = next - lblock;
2291 if (!ext4_find_delalloc_range(inode, lblock, lblock + len - 1))
2292 ext4_es_insert_extent(inode, lblock, len, ~0,
2293 EXTENT_STATUS_HOLE);
2294 } else {
2295 BUG();
2298 ext_debug(" -> %u:%lu\n", lblock, len);
2302 * ext4_ext_rm_idx:
2303 * removes index from the index block.
2305 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
2306 struct ext4_ext_path *path, int depth)
2308 int err;
2309 ext4_fsblk_t leaf;
2311 /* free index block */
2312 depth--;
2313 path = path + depth;
2314 leaf = ext4_idx_pblock(path->p_idx);
2315 if (unlikely(path->p_hdr->eh_entries == 0)) {
2316 EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0");
2317 return -EIO;
2319 err = ext4_ext_get_access(handle, inode, path);
2320 if (err)
2321 return err;
2323 if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) {
2324 int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx;
2325 len *= sizeof(struct ext4_extent_idx);
2326 memmove(path->p_idx, path->p_idx + 1, len);
2329 le16_add_cpu(&path->p_hdr->eh_entries, -1);
2330 err = ext4_ext_dirty(handle, inode, path);
2331 if (err)
2332 return err;
2333 ext_debug("index is empty, remove it, free block %llu\n", leaf);
2334 trace_ext4_ext_rm_idx(inode, leaf);
2336 ext4_free_blocks(handle, inode, NULL, leaf, 1,
2337 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
2339 while (--depth >= 0) {
2340 if (path->p_idx != EXT_FIRST_INDEX(path->p_hdr))
2341 break;
2342 path--;
2343 err = ext4_ext_get_access(handle, inode, path);
2344 if (err)
2345 break;
2346 path->p_idx->ei_block = (path+1)->p_idx->ei_block;
2347 err = ext4_ext_dirty(handle, inode, path);
2348 if (err)
2349 break;
2351 return err;
2355 * ext4_ext_calc_credits_for_single_extent:
2356 * This routine returns max. credits that needed to insert an extent
2357 * to the extent tree.
2358 * When pass the actual path, the caller should calculate credits
2359 * under i_data_sem.
2361 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks,
2362 struct ext4_ext_path *path)
2364 if (path) {
2365 int depth = ext_depth(inode);
2366 int ret = 0;
2368 /* probably there is space in leaf? */
2369 if (le16_to_cpu(path[depth].p_hdr->eh_entries)
2370 < le16_to_cpu(path[depth].p_hdr->eh_max)) {
2373 * There are some space in the leaf tree, no
2374 * need to account for leaf block credit
2376 * bitmaps and block group descriptor blocks
2377 * and other metadata blocks still need to be
2378 * accounted.
2380 /* 1 bitmap, 1 block group descriptor */
2381 ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb);
2382 return ret;
2386 return ext4_chunk_trans_blocks(inode, nrblocks);
2390 * How many index/leaf blocks need to change/allocate to add @extents extents?
2392 * If we add a single extent, then in the worse case, each tree level
2393 * index/leaf need to be changed in case of the tree split.
2395 * If more extents are inserted, they could cause the whole tree split more
2396 * than once, but this is really rare.
2398 int ext4_ext_index_trans_blocks(struct inode *inode, int extents)
2400 int index;
2401 int depth;
2403 /* If we are converting the inline data, only one is needed here. */
2404 if (ext4_has_inline_data(inode))
2405 return 1;
2407 depth = ext_depth(inode);
2409 if (extents <= 1)
2410 index = depth * 2;
2411 else
2412 index = depth * 3;
2414 return index;
2417 static inline int get_default_free_blocks_flags(struct inode *inode)
2419 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2420 return EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET;
2421 else if (ext4_should_journal_data(inode))
2422 return EXT4_FREE_BLOCKS_FORGET;
2423 return 0;
2426 static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
2427 struct ext4_extent *ex,
2428 long long *partial_cluster,
2429 ext4_lblk_t from, ext4_lblk_t to)
2431 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2432 unsigned short ee_len = ext4_ext_get_actual_len(ex);
2433 ext4_fsblk_t pblk;
2434 int flags = get_default_free_blocks_flags(inode);
2437 * For bigalloc file systems, we never free a partial cluster
2438 * at the beginning of the extent. Instead, we make a note
2439 * that we tried freeing the cluster, and check to see if we
2440 * need to free it on a subsequent call to ext4_remove_blocks,
2441 * or at the end of the ext4_truncate() operation.
2443 flags |= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER;
2445 trace_ext4_remove_blocks(inode, ex, from, to, *partial_cluster);
2447 * If we have a partial cluster, and it's different from the
2448 * cluster of the last block, we need to explicitly free the
2449 * partial cluster here.
2451 pblk = ext4_ext_pblock(ex) + ee_len - 1;
2452 if ((*partial_cluster > 0) &&
2453 (EXT4_B2C(sbi, pblk) != *partial_cluster)) {
2454 ext4_free_blocks(handle, inode, NULL,
2455 EXT4_C2B(sbi, *partial_cluster),
2456 sbi->s_cluster_ratio, flags);
2457 *partial_cluster = 0;
2460 #ifdef EXTENTS_STATS
2462 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2463 spin_lock(&sbi->s_ext_stats_lock);
2464 sbi->s_ext_blocks += ee_len;
2465 sbi->s_ext_extents++;
2466 if (ee_len < sbi->s_ext_min)
2467 sbi->s_ext_min = ee_len;
2468 if (ee_len > sbi->s_ext_max)
2469 sbi->s_ext_max = ee_len;
2470 if (ext_depth(inode) > sbi->s_depth_max)
2471 sbi->s_depth_max = ext_depth(inode);
2472 spin_unlock(&sbi->s_ext_stats_lock);
2474 #endif
2475 if (from >= le32_to_cpu(ex->ee_block)
2476 && to == le32_to_cpu(ex->ee_block) + ee_len - 1) {
2477 /* tail removal */
2478 ext4_lblk_t num;
2479 unsigned int unaligned;
2481 num = le32_to_cpu(ex->ee_block) + ee_len - from;
2482 pblk = ext4_ext_pblock(ex) + ee_len - num;
2484 * Usually we want to free partial cluster at the end of the
2485 * extent, except for the situation when the cluster is still
2486 * used by any other extent (partial_cluster is negative).
2488 if (*partial_cluster < 0 &&
2489 -(*partial_cluster) == EXT4_B2C(sbi, pblk + num - 1))
2490 flags |= EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER;
2492 ext_debug("free last %u blocks starting %llu partial %lld\n",
2493 num, pblk, *partial_cluster);
2494 ext4_free_blocks(handle, inode, NULL, pblk, num, flags);
2496 * If the block range to be freed didn't start at the
2497 * beginning of a cluster, and we removed the entire
2498 * extent and the cluster is not used by any other extent,
2499 * save the partial cluster here, since we might need to
2500 * delete if we determine that the truncate operation has
2501 * removed all of the blocks in the cluster.
2503 * On the other hand, if we did not manage to free the whole
2504 * extent, we have to mark the cluster as used (store negative
2505 * cluster number in partial_cluster).
2507 unaligned = pblk & (sbi->s_cluster_ratio - 1);
2508 if (unaligned && (ee_len == num) &&
2509 (*partial_cluster != -((long long)EXT4_B2C(sbi, pblk))))
2510 *partial_cluster = EXT4_B2C(sbi, pblk);
2511 else if (unaligned)
2512 *partial_cluster = -((long long)EXT4_B2C(sbi, pblk));
2513 else if (*partial_cluster > 0)
2514 *partial_cluster = 0;
2515 } else
2516 ext4_error(sbi->s_sb, "strange request: removal(2) "
2517 "%u-%u from %u:%u\n",
2518 from, to, le32_to_cpu(ex->ee_block), ee_len);
2519 return 0;
2524 * ext4_ext_rm_leaf() Removes the extents associated with the
2525 * blocks appearing between "start" and "end", and splits the extents
2526 * if "start" and "end" appear in the same extent
2528 * @handle: The journal handle
2529 * @inode: The files inode
2530 * @path: The path to the leaf
2531 * @partial_cluster: The cluster which we'll have to free if all extents
2532 * has been released from it. It gets negative in case
2533 * that the cluster is still used.
2534 * @start: The first block to remove
2535 * @end: The last block to remove
2537 static int
2538 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
2539 struct ext4_ext_path *path,
2540 long long *partial_cluster,
2541 ext4_lblk_t start, ext4_lblk_t end)
2543 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2544 int err = 0, correct_index = 0;
2545 int depth = ext_depth(inode), credits;
2546 struct ext4_extent_header *eh;
2547 ext4_lblk_t a, b;
2548 unsigned num;
2549 ext4_lblk_t ex_ee_block;
2550 unsigned short ex_ee_len;
2551 unsigned uninitialized = 0;
2552 struct ext4_extent *ex;
2553 ext4_fsblk_t pblk;
2555 /* the header must be checked already in ext4_ext_remove_space() */
2556 ext_debug("truncate since %u in leaf to %u\n", start, end);
2557 if (!path[depth].p_hdr)
2558 path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
2559 eh = path[depth].p_hdr;
2560 if (unlikely(path[depth].p_hdr == NULL)) {
2561 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2562 return -EIO;
2564 /* find where to start removing */
2565 ex = path[depth].p_ext;
2566 if (!ex)
2567 ex = EXT_LAST_EXTENT(eh);
2569 ex_ee_block = le32_to_cpu(ex->ee_block);
2570 ex_ee_len = ext4_ext_get_actual_len(ex);
2572 trace_ext4_ext_rm_leaf(inode, start, ex, *partial_cluster);
2574 while (ex >= EXT_FIRST_EXTENT(eh) &&
2575 ex_ee_block + ex_ee_len > start) {
2577 if (ext4_ext_is_uninitialized(ex))
2578 uninitialized = 1;
2579 else
2580 uninitialized = 0;
2582 ext_debug("remove ext %u:[%d]%d\n", ex_ee_block,
2583 uninitialized, ex_ee_len);
2584 path[depth].p_ext = ex;
2586 a = ex_ee_block > start ? ex_ee_block : start;
2587 b = ex_ee_block+ex_ee_len - 1 < end ?
2588 ex_ee_block+ex_ee_len - 1 : end;
2590 ext_debug(" border %u:%u\n", a, b);
2592 /* If this extent is beyond the end of the hole, skip it */
2593 if (end < ex_ee_block) {
2595 * We're going to skip this extent and move to another,
2596 * so if this extent is not cluster aligned we have
2597 * to mark the current cluster as used to avoid
2598 * accidentally freeing it later on
2600 pblk = ext4_ext_pblock(ex);
2601 if (pblk & (sbi->s_cluster_ratio - 1))
2602 *partial_cluster =
2603 -((long long)EXT4_B2C(sbi, pblk));
2604 ex--;
2605 ex_ee_block = le32_to_cpu(ex->ee_block);
2606 ex_ee_len = ext4_ext_get_actual_len(ex);
2607 continue;
2608 } else if (b != ex_ee_block + ex_ee_len - 1) {
2609 EXT4_ERROR_INODE(inode,
2610 "can not handle truncate %u:%u "
2611 "on extent %u:%u",
2612 start, end, ex_ee_block,
2613 ex_ee_block + ex_ee_len - 1);
2614 err = -EIO;
2615 goto out;
2616 } else if (a != ex_ee_block) {
2617 /* remove tail of the extent */
2618 num = a - ex_ee_block;
2619 } else {
2620 /* remove whole extent: excellent! */
2621 num = 0;
2624 * 3 for leaf, sb, and inode plus 2 (bmap and group
2625 * descriptor) for each block group; assume two block
2626 * groups plus ex_ee_len/blocks_per_block_group for
2627 * the worst case
2629 credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb));
2630 if (ex == EXT_FIRST_EXTENT(eh)) {
2631 correct_index = 1;
2632 credits += (ext_depth(inode)) + 1;
2634 credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
2636 err = ext4_ext_truncate_extend_restart(handle, inode, credits);
2637 if (err)
2638 goto out;
2640 err = ext4_ext_get_access(handle, inode, path + depth);
2641 if (err)
2642 goto out;
2644 err = ext4_remove_blocks(handle, inode, ex, partial_cluster,
2645 a, b);
2646 if (err)
2647 goto out;
2649 if (num == 0)
2650 /* this extent is removed; mark slot entirely unused */
2651 ext4_ext_store_pblock(ex, 0);
2653 ex->ee_len = cpu_to_le16(num);
2655 * Do not mark uninitialized if all the blocks in the
2656 * extent have been removed.
2658 if (uninitialized && num)
2659 ext4_ext_mark_uninitialized(ex);
2661 * If the extent was completely released,
2662 * we need to remove it from the leaf
2664 if (num == 0) {
2665 if (end != EXT_MAX_BLOCKS - 1) {
2667 * For hole punching, we need to scoot all the
2668 * extents up when an extent is removed so that
2669 * we dont have blank extents in the middle
2671 memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) *
2672 sizeof(struct ext4_extent));
2674 /* Now get rid of the one at the end */
2675 memset(EXT_LAST_EXTENT(eh), 0,
2676 sizeof(struct ext4_extent));
2678 le16_add_cpu(&eh->eh_entries, -1);
2679 } else if (*partial_cluster > 0)
2680 *partial_cluster = 0;
2682 err = ext4_ext_dirty(handle, inode, path + depth);
2683 if (err)
2684 goto out;
2686 ext_debug("new extent: %u:%u:%llu\n", ex_ee_block, num,
2687 ext4_ext_pblock(ex));
2688 ex--;
2689 ex_ee_block = le32_to_cpu(ex->ee_block);
2690 ex_ee_len = ext4_ext_get_actual_len(ex);
2693 if (correct_index && eh->eh_entries)
2694 err = ext4_ext_correct_indexes(handle, inode, path);
2697 * Free the partial cluster only if the current extent does not
2698 * reference it. Otherwise we might free used cluster.
2700 if (*partial_cluster > 0 &&
2701 (EXT4_B2C(sbi, ext4_ext_pblock(ex) + ex_ee_len - 1) !=
2702 *partial_cluster)) {
2703 int flags = get_default_free_blocks_flags(inode);
2705 ext4_free_blocks(handle, inode, NULL,
2706 EXT4_C2B(sbi, *partial_cluster),
2707 sbi->s_cluster_ratio, flags);
2708 *partial_cluster = 0;
2711 /* if this leaf is free, then we should
2712 * remove it from index block above */
2713 if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
2714 err = ext4_ext_rm_idx(handle, inode, path, depth);
2716 out:
2717 return err;
2721 * ext4_ext_more_to_rm:
2722 * returns 1 if current index has to be freed (even partial)
2724 static int
2725 ext4_ext_more_to_rm(struct ext4_ext_path *path)
2727 BUG_ON(path->p_idx == NULL);
2729 if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
2730 return 0;
2733 * if truncate on deeper level happened, it wasn't partial,
2734 * so we have to consider current index for truncation
2736 if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
2737 return 0;
2738 return 1;
2741 int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start,
2742 ext4_lblk_t end)
2744 struct super_block *sb = inode->i_sb;
2745 int depth = ext_depth(inode);
2746 struct ext4_ext_path *path = NULL;
2747 long long partial_cluster = 0;
2748 handle_t *handle;
2749 int i = 0, err = 0;
2751 ext_debug("truncate since %u to %u\n", start, end);
2753 /* probably first extent we're gonna free will be last in block */
2754 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, depth + 1);
2755 if (IS_ERR(handle))
2756 return PTR_ERR(handle);
2758 again:
2759 trace_ext4_ext_remove_space(inode, start, end, depth);
2762 * Check if we are removing extents inside the extent tree. If that
2763 * is the case, we are going to punch a hole inside the extent tree
2764 * so we have to check whether we need to split the extent covering
2765 * the last block to remove so we can easily remove the part of it
2766 * in ext4_ext_rm_leaf().
2768 if (end < EXT_MAX_BLOCKS - 1) {
2769 struct ext4_extent *ex;
2770 ext4_lblk_t ee_block;
2772 /* find extent for this block */
2773 path = ext4_ext_find_extent(inode, end, NULL, EXT4_EX_NOCACHE);
2774 if (IS_ERR(path)) {
2775 ext4_journal_stop(handle);
2776 return PTR_ERR(path);
2778 depth = ext_depth(inode);
2779 /* Leaf not may not exist only if inode has no blocks at all */
2780 ex = path[depth].p_ext;
2781 if (!ex) {
2782 if (depth) {
2783 EXT4_ERROR_INODE(inode,
2784 "path[%d].p_hdr == NULL",
2785 depth);
2786 err = -EIO;
2788 goto out;
2791 ee_block = le32_to_cpu(ex->ee_block);
2794 * See if the last block is inside the extent, if so split
2795 * the extent at 'end' block so we can easily remove the
2796 * tail of the first part of the split extent in
2797 * ext4_ext_rm_leaf().
2799 if (end >= ee_block &&
2800 end < ee_block + ext4_ext_get_actual_len(ex) - 1) {
2801 int split_flag = 0;
2803 if (ext4_ext_is_uninitialized(ex))
2804 split_flag = EXT4_EXT_MARK_UNINIT1 |
2805 EXT4_EXT_MARK_UNINIT2;
2808 * Split the extent in two so that 'end' is the last
2809 * block in the first new extent. Also we should not
2810 * fail removing space due to ENOSPC so try to use
2811 * reserved block if that happens.
2813 err = ext4_split_extent_at(handle, inode, path,
2814 end + 1, split_flag,
2815 EXT4_EX_NOCACHE |
2816 EXT4_GET_BLOCKS_PRE_IO |
2817 EXT4_GET_BLOCKS_METADATA_NOFAIL);
2819 if (err < 0)
2820 goto out;
2824 * We start scanning from right side, freeing all the blocks
2825 * after i_size and walking into the tree depth-wise.
2827 depth = ext_depth(inode);
2828 if (path) {
2829 int k = i = depth;
2830 while (--k > 0)
2831 path[k].p_block =
2832 le16_to_cpu(path[k].p_hdr->eh_entries)+1;
2833 } else {
2834 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1),
2835 GFP_NOFS);
2836 if (path == NULL) {
2837 ext4_journal_stop(handle);
2838 return -ENOMEM;
2840 path[0].p_depth = depth;
2841 path[0].p_hdr = ext_inode_hdr(inode);
2842 i = 0;
2844 if (ext4_ext_check(inode, path[0].p_hdr, depth, 0)) {
2845 err = -EIO;
2846 goto out;
2849 err = 0;
2851 while (i >= 0 && err == 0) {
2852 if (i == depth) {
2853 /* this is leaf block */
2854 err = ext4_ext_rm_leaf(handle, inode, path,
2855 &partial_cluster, start,
2856 end);
2857 /* root level has p_bh == NULL, brelse() eats this */
2858 brelse(path[i].p_bh);
2859 path[i].p_bh = NULL;
2860 i--;
2861 continue;
2864 /* this is index block */
2865 if (!path[i].p_hdr) {
2866 ext_debug("initialize header\n");
2867 path[i].p_hdr = ext_block_hdr(path[i].p_bh);
2870 if (!path[i].p_idx) {
2871 /* this level hasn't been touched yet */
2872 path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
2873 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
2874 ext_debug("init index ptr: hdr 0x%p, num %d\n",
2875 path[i].p_hdr,
2876 le16_to_cpu(path[i].p_hdr->eh_entries));
2877 } else {
2878 /* we were already here, see at next index */
2879 path[i].p_idx--;
2882 ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
2883 i, EXT_FIRST_INDEX(path[i].p_hdr),
2884 path[i].p_idx);
2885 if (ext4_ext_more_to_rm(path + i)) {
2886 struct buffer_head *bh;
2887 /* go to the next level */
2888 ext_debug("move to level %d (block %llu)\n",
2889 i + 1, ext4_idx_pblock(path[i].p_idx));
2890 memset(path + i + 1, 0, sizeof(*path));
2891 bh = read_extent_tree_block(inode,
2892 ext4_idx_pblock(path[i].p_idx), depth - i - 1,
2893 EXT4_EX_NOCACHE);
2894 if (IS_ERR(bh)) {
2895 /* should we reset i_size? */
2896 err = PTR_ERR(bh);
2897 break;
2899 /* Yield here to deal with large extent trees.
2900 * Should be a no-op if we did IO above. */
2901 cond_resched();
2902 if (WARN_ON(i + 1 > depth)) {
2903 err = -EIO;
2904 break;
2906 path[i + 1].p_bh = bh;
2908 /* save actual number of indexes since this
2909 * number is changed at the next iteration */
2910 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
2911 i++;
2912 } else {
2913 /* we finished processing this index, go up */
2914 if (path[i].p_hdr->eh_entries == 0 && i > 0) {
2915 /* index is empty, remove it;
2916 * handle must be already prepared by the
2917 * truncatei_leaf() */
2918 err = ext4_ext_rm_idx(handle, inode, path, i);
2920 /* root level has p_bh == NULL, brelse() eats this */
2921 brelse(path[i].p_bh);
2922 path[i].p_bh = NULL;
2923 i--;
2924 ext_debug("return to level %d\n", i);
2928 trace_ext4_ext_remove_space_done(inode, start, end, depth,
2929 partial_cluster, path->p_hdr->eh_entries);
2931 /* If we still have something in the partial cluster and we have removed
2932 * even the first extent, then we should free the blocks in the partial
2933 * cluster as well. */
2934 if (partial_cluster > 0 && path->p_hdr->eh_entries == 0) {
2935 int flags = get_default_free_blocks_flags(inode);
2937 ext4_free_blocks(handle, inode, NULL,
2938 EXT4_C2B(EXT4_SB(sb), partial_cluster),
2939 EXT4_SB(sb)->s_cluster_ratio, flags);
2940 partial_cluster = 0;
2943 /* TODO: flexible tree reduction should be here */
2944 if (path->p_hdr->eh_entries == 0) {
2946 * truncate to zero freed all the tree,
2947 * so we need to correct eh_depth
2949 err = ext4_ext_get_access(handle, inode, path);
2950 if (err == 0) {
2951 ext_inode_hdr(inode)->eh_depth = 0;
2952 ext_inode_hdr(inode)->eh_max =
2953 cpu_to_le16(ext4_ext_space_root(inode, 0));
2954 err = ext4_ext_dirty(handle, inode, path);
2957 out:
2958 ext4_ext_drop_refs(path);
2959 kfree(path);
2960 if (err == -EAGAIN) {
2961 path = NULL;
2962 goto again;
2964 ext4_journal_stop(handle);
2966 return err;
2970 * called at mount time
2972 void ext4_ext_init(struct super_block *sb)
2975 * possible initialization would be here
2978 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2979 #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS)
2980 printk(KERN_INFO "EXT4-fs: file extents enabled"
2981 #ifdef AGGRESSIVE_TEST
2982 ", aggressive tests"
2983 #endif
2984 #ifdef CHECK_BINSEARCH
2985 ", check binsearch"
2986 #endif
2987 #ifdef EXTENTS_STATS
2988 ", stats"
2989 #endif
2990 "\n");
2991 #endif
2992 #ifdef EXTENTS_STATS
2993 spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
2994 EXT4_SB(sb)->s_ext_min = 1 << 30;
2995 EXT4_SB(sb)->s_ext_max = 0;
2996 #endif
3001 * called at umount time
3003 void ext4_ext_release(struct super_block *sb)
3005 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
3006 return;
3008 #ifdef EXTENTS_STATS
3009 if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
3010 struct ext4_sb_info *sbi = EXT4_SB(sb);
3011 printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
3012 sbi->s_ext_blocks, sbi->s_ext_extents,
3013 sbi->s_ext_blocks / sbi->s_ext_extents);
3014 printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
3015 sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
3017 #endif
3020 static int ext4_zeroout_es(struct inode *inode, struct ext4_extent *ex)
3022 ext4_lblk_t ee_block;
3023 ext4_fsblk_t ee_pblock;
3024 unsigned int ee_len;
3026 ee_block = le32_to_cpu(ex->ee_block);
3027 ee_len = ext4_ext_get_actual_len(ex);
3028 ee_pblock = ext4_ext_pblock(ex);
3030 if (ee_len == 0)
3031 return 0;
3033 return ext4_es_insert_extent(inode, ee_block, ee_len, ee_pblock,
3034 EXTENT_STATUS_WRITTEN);
3037 /* FIXME!! we need to try to merge to left or right after zero-out */
3038 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex)
3040 ext4_fsblk_t ee_pblock;
3041 unsigned int ee_len;
3042 int ret;
3044 ee_len = ext4_ext_get_actual_len(ex);
3045 ee_pblock = ext4_ext_pblock(ex);
3047 ret = sb_issue_zeroout(inode->i_sb, ee_pblock, ee_len, GFP_NOFS);
3048 if (ret > 0)
3049 ret = 0;
3051 return ret;
3055 * ext4_split_extent_at() splits an extent at given block.
3057 * @handle: the journal handle
3058 * @inode: the file inode
3059 * @path: the path to the extent
3060 * @split: the logical block where the extent is splitted.
3061 * @split_flags: indicates if the extent could be zeroout if split fails, and
3062 * the states(init or uninit) of new extents.
3063 * @flags: flags used to insert new extent to extent tree.
3066 * Splits extent [a, b] into two extents [a, @split) and [@split, b], states
3067 * of which are deterimined by split_flag.
3069 * There are two cases:
3070 * a> the extent are splitted into two extent.
3071 * b> split is not needed, and just mark the extent.
3073 * return 0 on success.
3075 static int ext4_split_extent_at(handle_t *handle,
3076 struct inode *inode,
3077 struct ext4_ext_path *path,
3078 ext4_lblk_t split,
3079 int split_flag,
3080 int flags)
3082 ext4_fsblk_t newblock;
3083 ext4_lblk_t ee_block;
3084 struct ext4_extent *ex, newex, orig_ex, zero_ex;
3085 struct ext4_extent *ex2 = NULL;
3086 unsigned int ee_len, depth;
3087 int err = 0;
3089 BUG_ON((split_flag & (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)) ==
3090 (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2));
3092 ext_debug("ext4_split_extents_at: inode %lu, logical"
3093 "block %llu\n", inode->i_ino, (unsigned long long)split);
3095 ext4_ext_show_leaf(inode, path);
3097 depth = ext_depth(inode);
3098 ex = path[depth].p_ext;
3099 ee_block = le32_to_cpu(ex->ee_block);
3100 ee_len = ext4_ext_get_actual_len(ex);
3101 newblock = split - ee_block + ext4_ext_pblock(ex);
3103 BUG_ON(split < ee_block || split >= (ee_block + ee_len));
3104 BUG_ON(!ext4_ext_is_uninitialized(ex) &&
3105 split_flag & (EXT4_EXT_MAY_ZEROOUT |
3106 EXT4_EXT_MARK_UNINIT1 |
3107 EXT4_EXT_MARK_UNINIT2));
3109 err = ext4_ext_get_access(handle, inode, path + depth);
3110 if (err)
3111 goto out;
3113 if (split == ee_block) {
3115 * case b: block @split is the block that the extent begins with
3116 * then we just change the state of the extent, and splitting
3117 * is not needed.
3119 if (split_flag & EXT4_EXT_MARK_UNINIT2)
3120 ext4_ext_mark_uninitialized(ex);
3121 else
3122 ext4_ext_mark_initialized(ex);
3124 if (!(flags & EXT4_GET_BLOCKS_PRE_IO))
3125 ext4_ext_try_to_merge(handle, inode, path, ex);
3127 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3128 goto out;
3131 /* case a */
3132 memcpy(&orig_ex, ex, sizeof(orig_ex));
3133 ex->ee_len = cpu_to_le16(split - ee_block);
3134 if (split_flag & EXT4_EXT_MARK_UNINIT1)
3135 ext4_ext_mark_uninitialized(ex);
3138 * path may lead to new leaf, not to original leaf any more
3139 * after ext4_ext_insert_extent() returns,
3141 err = ext4_ext_dirty(handle, inode, path + depth);
3142 if (err)
3143 goto fix_extent_len;
3145 ex2 = &newex;
3146 ex2->ee_block = cpu_to_le32(split);
3147 ex2->ee_len = cpu_to_le16(ee_len - (split - ee_block));
3148 ext4_ext_store_pblock(ex2, newblock);
3149 if (split_flag & EXT4_EXT_MARK_UNINIT2)
3150 ext4_ext_mark_uninitialized(ex2);
3152 err = ext4_ext_insert_extent(handle, inode, path, &newex, flags);
3153 if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
3154 if (split_flag & (EXT4_EXT_DATA_VALID1|EXT4_EXT_DATA_VALID2)) {
3155 if (split_flag & EXT4_EXT_DATA_VALID1) {
3156 err = ext4_ext_zeroout(inode, ex2);
3157 zero_ex.ee_block = ex2->ee_block;
3158 zero_ex.ee_len = cpu_to_le16(
3159 ext4_ext_get_actual_len(ex2));
3160 ext4_ext_store_pblock(&zero_ex,
3161 ext4_ext_pblock(ex2));
3162 } else {
3163 err = ext4_ext_zeroout(inode, ex);
3164 zero_ex.ee_block = ex->ee_block;
3165 zero_ex.ee_len = cpu_to_le16(
3166 ext4_ext_get_actual_len(ex));
3167 ext4_ext_store_pblock(&zero_ex,
3168 ext4_ext_pblock(ex));
3170 } else {
3171 err = ext4_ext_zeroout(inode, &orig_ex);
3172 zero_ex.ee_block = orig_ex.ee_block;
3173 zero_ex.ee_len = cpu_to_le16(
3174 ext4_ext_get_actual_len(&orig_ex));
3175 ext4_ext_store_pblock(&zero_ex,
3176 ext4_ext_pblock(&orig_ex));
3179 if (err)
3180 goto fix_extent_len;
3181 /* update the extent length and mark as initialized */
3182 ex->ee_len = cpu_to_le16(ee_len);
3183 ext4_ext_try_to_merge(handle, inode, path, ex);
3184 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3185 if (err)
3186 goto fix_extent_len;
3188 /* update extent status tree */
3189 err = ext4_zeroout_es(inode, &zero_ex);
3191 goto out;
3192 } else if (err)
3193 goto fix_extent_len;
3195 out:
3196 ext4_ext_show_leaf(inode, path);
3197 return err;
3199 fix_extent_len:
3200 ex->ee_len = orig_ex.ee_len;
3201 ext4_ext_dirty(handle, inode, path + depth);
3202 return err;
3206 * ext4_split_extents() splits an extent and mark extent which is covered
3207 * by @map as split_flags indicates
3209 * It may result in splitting the extent into multiple extents (up to three)
3210 * There are three possibilities:
3211 * a> There is no split required
3212 * b> Splits in two extents: Split is happening at either end of the extent
3213 * c> Splits in three extents: Somone is splitting in middle of the extent
3216 static int ext4_split_extent(handle_t *handle,
3217 struct inode *inode,
3218 struct ext4_ext_path *path,
3219 struct ext4_map_blocks *map,
3220 int split_flag,
3221 int flags)
3223 ext4_lblk_t ee_block;
3224 struct ext4_extent *ex;
3225 unsigned int ee_len, depth;
3226 int err = 0;
3227 int uninitialized;
3228 int split_flag1, flags1;
3229 int allocated = map->m_len;
3231 depth = ext_depth(inode);
3232 ex = path[depth].p_ext;
3233 ee_block = le32_to_cpu(ex->ee_block);
3234 ee_len = ext4_ext_get_actual_len(ex);
3235 uninitialized = ext4_ext_is_uninitialized(ex);
3237 if (map->m_lblk + map->m_len < ee_block + ee_len) {
3238 split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT;
3239 flags1 = flags | EXT4_GET_BLOCKS_PRE_IO;
3240 if (uninitialized)
3241 split_flag1 |= EXT4_EXT_MARK_UNINIT1 |
3242 EXT4_EXT_MARK_UNINIT2;
3243 if (split_flag & EXT4_EXT_DATA_VALID2)
3244 split_flag1 |= EXT4_EXT_DATA_VALID1;
3245 err = ext4_split_extent_at(handle, inode, path,
3246 map->m_lblk + map->m_len, split_flag1, flags1);
3247 if (err)
3248 goto out;
3249 } else {
3250 allocated = ee_len - (map->m_lblk - ee_block);
3253 * Update path is required because previous ext4_split_extent_at() may
3254 * result in split of original leaf or extent zeroout.
3256 ext4_ext_drop_refs(path);
3257 path = ext4_ext_find_extent(inode, map->m_lblk, path, 0);
3258 if (IS_ERR(path))
3259 return PTR_ERR(path);
3260 depth = ext_depth(inode);
3261 ex = path[depth].p_ext;
3262 uninitialized = ext4_ext_is_uninitialized(ex);
3263 split_flag1 = 0;
3265 if (map->m_lblk >= ee_block) {
3266 split_flag1 = split_flag & EXT4_EXT_DATA_VALID2;
3267 if (uninitialized) {
3268 split_flag1 |= EXT4_EXT_MARK_UNINIT1;
3269 split_flag1 |= split_flag & (EXT4_EXT_MAY_ZEROOUT |
3270 EXT4_EXT_MARK_UNINIT2);
3272 err = ext4_split_extent_at(handle, inode, path,
3273 map->m_lblk, split_flag1, flags);
3274 if (err)
3275 goto out;
3278 ext4_ext_show_leaf(inode, path);
3279 out:
3280 return err ? err : allocated;
3284 * This function is called by ext4_ext_map_blocks() if someone tries to write
3285 * to an uninitialized extent. It may result in splitting the uninitialized
3286 * extent into multiple extents (up to three - one initialized and two
3287 * uninitialized).
3288 * There are three possibilities:
3289 * a> There is no split required: Entire extent should be initialized
3290 * b> Splits in two extents: Write is happening at either end of the extent
3291 * c> Splits in three extents: Somone is writing in middle of the extent
3293 * Pre-conditions:
3294 * - The extent pointed to by 'path' is uninitialized.
3295 * - The extent pointed to by 'path' contains a superset
3296 * of the logical span [map->m_lblk, map->m_lblk + map->m_len).
3298 * Post-conditions on success:
3299 * - the returned value is the number of blocks beyond map->l_lblk
3300 * that are allocated and initialized.
3301 * It is guaranteed to be >= map->m_len.
3303 static int ext4_ext_convert_to_initialized(handle_t *handle,
3304 struct inode *inode,
3305 struct ext4_map_blocks *map,
3306 struct ext4_ext_path *path,
3307 int flags)
3309 struct ext4_sb_info *sbi;
3310 struct ext4_extent_header *eh;
3311 struct ext4_map_blocks split_map;
3312 struct ext4_extent zero_ex;
3313 struct ext4_extent *ex, *abut_ex;
3314 ext4_lblk_t ee_block, eof_block;
3315 unsigned int ee_len, depth, map_len = map->m_len;
3316 int allocated = 0, max_zeroout = 0;
3317 int err = 0;
3318 int split_flag = 0;
3320 ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical"
3321 "block %llu, max_blocks %u\n", inode->i_ino,
3322 (unsigned long long)map->m_lblk, map_len);
3324 sbi = EXT4_SB(inode->i_sb);
3325 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3326 inode->i_sb->s_blocksize_bits;
3327 if (eof_block < map->m_lblk + map_len)
3328 eof_block = map->m_lblk + map_len;
3330 depth = ext_depth(inode);
3331 eh = path[depth].p_hdr;
3332 ex = path[depth].p_ext;
3333 ee_block = le32_to_cpu(ex->ee_block);
3334 ee_len = ext4_ext_get_actual_len(ex);
3335 zero_ex.ee_len = 0;
3337 trace_ext4_ext_convert_to_initialized_enter(inode, map, ex);
3339 /* Pre-conditions */
3340 BUG_ON(!ext4_ext_is_uninitialized(ex));
3341 BUG_ON(!in_range(map->m_lblk, ee_block, ee_len));
3344 * Attempt to transfer newly initialized blocks from the currently
3345 * uninitialized extent to its neighbor. This is much cheaper
3346 * than an insertion followed by a merge as those involve costly
3347 * memmove() calls. Transferring to the left is the common case in
3348 * steady state for workloads doing fallocate(FALLOC_FL_KEEP_SIZE)
3349 * followed by append writes.
3351 * Limitations of the current logic:
3352 * - L1: we do not deal with writes covering the whole extent.
3353 * This would require removing the extent if the transfer
3354 * is possible.
3355 * - L2: we only attempt to merge with an extent stored in the
3356 * same extent tree node.
3358 if ((map->m_lblk == ee_block) &&
3359 /* See if we can merge left */
3360 (map_len < ee_len) && /*L1*/
3361 (ex > EXT_FIRST_EXTENT(eh))) { /*L2*/
3362 ext4_lblk_t prev_lblk;
3363 ext4_fsblk_t prev_pblk, ee_pblk;
3364 unsigned int prev_len;
3366 abut_ex = ex - 1;
3367 prev_lblk = le32_to_cpu(abut_ex->ee_block);
3368 prev_len = ext4_ext_get_actual_len(abut_ex);
3369 prev_pblk = ext4_ext_pblock(abut_ex);
3370 ee_pblk = ext4_ext_pblock(ex);
3373 * A transfer of blocks from 'ex' to 'abut_ex' is allowed
3374 * upon those conditions:
3375 * - C1: abut_ex is initialized,
3376 * - C2: abut_ex is logically abutting ex,
3377 * - C3: abut_ex is physically abutting ex,
3378 * - C4: abut_ex can receive the additional blocks without
3379 * overflowing the (initialized) length limit.
3381 if ((!ext4_ext_is_uninitialized(abut_ex)) && /*C1*/
3382 ((prev_lblk + prev_len) == ee_block) && /*C2*/
3383 ((prev_pblk + prev_len) == ee_pblk) && /*C3*/
3384 (prev_len < (EXT_INIT_MAX_LEN - map_len))) { /*C4*/
3385 err = ext4_ext_get_access(handle, inode, path + depth);
3386 if (err)
3387 goto out;
3389 trace_ext4_ext_convert_to_initialized_fastpath(inode,
3390 map, ex, abut_ex);
3392 /* Shift the start of ex by 'map_len' blocks */
3393 ex->ee_block = cpu_to_le32(ee_block + map_len);
3394 ext4_ext_store_pblock(ex, ee_pblk + map_len);
3395 ex->ee_len = cpu_to_le16(ee_len - map_len);
3396 ext4_ext_mark_uninitialized(ex); /* Restore the flag */
3398 /* Extend abut_ex by 'map_len' blocks */
3399 abut_ex->ee_len = cpu_to_le16(prev_len + map_len);
3401 /* Result: number of initialized blocks past m_lblk */
3402 allocated = map_len;
3404 } else if (((map->m_lblk + map_len) == (ee_block + ee_len)) &&
3405 (map_len < ee_len) && /*L1*/
3406 ex < EXT_LAST_EXTENT(eh)) { /*L2*/
3407 /* See if we can merge right */
3408 ext4_lblk_t next_lblk;
3409 ext4_fsblk_t next_pblk, ee_pblk;
3410 unsigned int next_len;
3412 abut_ex = ex + 1;
3413 next_lblk = le32_to_cpu(abut_ex->ee_block);
3414 next_len = ext4_ext_get_actual_len(abut_ex);
3415 next_pblk = ext4_ext_pblock(abut_ex);
3416 ee_pblk = ext4_ext_pblock(ex);
3419 * A transfer of blocks from 'ex' to 'abut_ex' is allowed
3420 * upon those conditions:
3421 * - C1: abut_ex is initialized,
3422 * - C2: abut_ex is logically abutting ex,
3423 * - C3: abut_ex is physically abutting ex,
3424 * - C4: abut_ex can receive the additional blocks without
3425 * overflowing the (initialized) length limit.
3427 if ((!ext4_ext_is_uninitialized(abut_ex)) && /*C1*/
3428 ((map->m_lblk + map_len) == next_lblk) && /*C2*/
3429 ((ee_pblk + ee_len) == next_pblk) && /*C3*/
3430 (next_len < (EXT_INIT_MAX_LEN - map_len))) { /*C4*/
3431 err = ext4_ext_get_access(handle, inode, path + depth);
3432 if (err)
3433 goto out;
3435 trace_ext4_ext_convert_to_initialized_fastpath(inode,
3436 map, ex, abut_ex);
3438 /* Shift the start of abut_ex by 'map_len' blocks */
3439 abut_ex->ee_block = cpu_to_le32(next_lblk - map_len);
3440 ext4_ext_store_pblock(abut_ex, next_pblk - map_len);
3441 ex->ee_len = cpu_to_le16(ee_len - map_len);
3442 ext4_ext_mark_uninitialized(ex); /* Restore the flag */
3444 /* Extend abut_ex by 'map_len' blocks */
3445 abut_ex->ee_len = cpu_to_le16(next_len + map_len);
3447 /* Result: number of initialized blocks past m_lblk */
3448 allocated = map_len;
3451 if (allocated) {
3452 /* Mark the block containing both extents as dirty */
3453 ext4_ext_dirty(handle, inode, path + depth);
3455 /* Update path to point to the right extent */
3456 path[depth].p_ext = abut_ex;
3457 goto out;
3458 } else
3459 allocated = ee_len - (map->m_lblk - ee_block);
3461 WARN_ON(map->m_lblk < ee_block);
3463 * It is safe to convert extent to initialized via explicit
3464 * zeroout only if extent is fully insde i_size or new_size.
3466 split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3468 if (EXT4_EXT_MAY_ZEROOUT & split_flag)
3469 max_zeroout = sbi->s_extent_max_zeroout_kb >>
3470 (inode->i_sb->s_blocksize_bits - 10);
3472 /* If extent is less than s_max_zeroout_kb, zeroout directly */
3473 if (max_zeroout && (ee_len <= max_zeroout)) {
3474 err = ext4_ext_zeroout(inode, ex);
3475 if (err)
3476 goto out;
3477 zero_ex.ee_block = ex->ee_block;
3478 zero_ex.ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex));
3479 ext4_ext_store_pblock(&zero_ex, ext4_ext_pblock(ex));
3481 err = ext4_ext_get_access(handle, inode, path + depth);
3482 if (err)
3483 goto out;
3484 ext4_ext_mark_initialized(ex);
3485 ext4_ext_try_to_merge(handle, inode, path, ex);
3486 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3487 goto out;
3491 * four cases:
3492 * 1. split the extent into three extents.
3493 * 2. split the extent into two extents, zeroout the first half.
3494 * 3. split the extent into two extents, zeroout the second half.
3495 * 4. split the extent into two extents with out zeroout.
3497 split_map.m_lblk = map->m_lblk;
3498 split_map.m_len = map->m_len;
3500 if (max_zeroout && (allocated > map->m_len)) {
3501 if (allocated <= max_zeroout) {
3502 /* case 3 */
3503 zero_ex.ee_block =
3504 cpu_to_le32(map->m_lblk);
3505 zero_ex.ee_len = cpu_to_le16(allocated);
3506 ext4_ext_store_pblock(&zero_ex,
3507 ext4_ext_pblock(ex) + map->m_lblk - ee_block);
3508 err = ext4_ext_zeroout(inode, &zero_ex);
3509 if (err)
3510 goto out;
3511 split_map.m_lblk = map->m_lblk;
3512 split_map.m_len = allocated;
3513 } else if (map->m_lblk - ee_block + map->m_len < max_zeroout) {
3514 /* case 2 */
3515 if (map->m_lblk != ee_block) {
3516 zero_ex.ee_block = ex->ee_block;
3517 zero_ex.ee_len = cpu_to_le16(map->m_lblk -
3518 ee_block);
3519 ext4_ext_store_pblock(&zero_ex,
3520 ext4_ext_pblock(ex));
3521 err = ext4_ext_zeroout(inode, &zero_ex);
3522 if (err)
3523 goto out;
3526 split_map.m_lblk = ee_block;
3527 split_map.m_len = map->m_lblk - ee_block + map->m_len;
3528 allocated = map->m_len;
3532 allocated = ext4_split_extent(handle, inode, path,
3533 &split_map, split_flag, flags);
3534 if (allocated < 0)
3535 err = allocated;
3537 out:
3538 /* If we have gotten a failure, don't zero out status tree */
3539 if (!err)
3540 err = ext4_zeroout_es(inode, &zero_ex);
3541 return err ? err : allocated;
3545 * This function is called by ext4_ext_map_blocks() from
3546 * ext4_get_blocks_dio_write() when DIO to write
3547 * to an uninitialized extent.
3549 * Writing to an uninitialized extent may result in splitting the uninitialized
3550 * extent into multiple initialized/uninitialized extents (up to three)
3551 * There are three possibilities:
3552 * a> There is no split required: Entire extent should be uninitialized
3553 * b> Splits in two extents: Write is happening at either end of the extent
3554 * c> Splits in three extents: Somone is writing in middle of the extent
3556 * One of more index blocks maybe needed if the extent tree grow after
3557 * the uninitialized extent split. To prevent ENOSPC occur at the IO
3558 * complete, we need to split the uninitialized extent before DIO submit
3559 * the IO. The uninitialized extent called at this time will be split
3560 * into three uninitialized extent(at most). After IO complete, the part
3561 * being filled will be convert to initialized by the end_io callback function
3562 * via ext4_convert_unwritten_extents().
3564 * Returns the size of uninitialized extent to be written on success.
3566 static int ext4_split_unwritten_extents(handle_t *handle,
3567 struct inode *inode,
3568 struct ext4_map_blocks *map,
3569 struct ext4_ext_path *path,
3570 int flags)
3572 ext4_lblk_t eof_block;
3573 ext4_lblk_t ee_block;
3574 struct ext4_extent *ex;
3575 unsigned int ee_len;
3576 int split_flag = 0, depth;
3578 ext_debug("ext4_split_unwritten_extents: inode %lu, logical"
3579 "block %llu, max_blocks %u\n", inode->i_ino,
3580 (unsigned long long)map->m_lblk, map->m_len);
3582 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3583 inode->i_sb->s_blocksize_bits;
3584 if (eof_block < map->m_lblk + map->m_len)
3585 eof_block = map->m_lblk + map->m_len;
3587 * It is safe to convert extent to initialized via explicit
3588 * zeroout only if extent is fully insde i_size or new_size.
3590 depth = ext_depth(inode);
3591 ex = path[depth].p_ext;
3592 ee_block = le32_to_cpu(ex->ee_block);
3593 ee_len = ext4_ext_get_actual_len(ex);
3595 split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3596 split_flag |= EXT4_EXT_MARK_UNINIT2;
3597 if (flags & EXT4_GET_BLOCKS_CONVERT)
3598 split_flag |= EXT4_EXT_DATA_VALID2;
3599 flags |= EXT4_GET_BLOCKS_PRE_IO;
3600 return ext4_split_extent(handle, inode, path, map, split_flag, flags);
3603 static int ext4_convert_unwritten_extents_endio(handle_t *handle,
3604 struct inode *inode,
3605 struct ext4_map_blocks *map,
3606 struct ext4_ext_path *path)
3608 struct ext4_extent *ex;
3609 ext4_lblk_t ee_block;
3610 unsigned int ee_len;
3611 int depth;
3612 int err = 0;
3614 depth = ext_depth(inode);
3615 ex = path[depth].p_ext;
3616 ee_block = le32_to_cpu(ex->ee_block);
3617 ee_len = ext4_ext_get_actual_len(ex);
3619 ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical"
3620 "block %llu, max_blocks %u\n", inode->i_ino,
3621 (unsigned long long)ee_block, ee_len);
3623 /* If extent is larger than requested it is a clear sign that we still
3624 * have some extent state machine issues left. So extent_split is still
3625 * required.
3626 * TODO: Once all related issues will be fixed this situation should be
3627 * illegal.
3629 if (ee_block != map->m_lblk || ee_len > map->m_len) {
3630 #ifdef EXT4_DEBUG
3631 ext4_warning("Inode (%ld) finished: extent logical block %llu,"
3632 " len %u; IO logical block %llu, len %u\n",
3633 inode->i_ino, (unsigned long long)ee_block, ee_len,
3634 (unsigned long long)map->m_lblk, map->m_len);
3635 #endif
3636 err = ext4_split_unwritten_extents(handle, inode, map, path,
3637 EXT4_GET_BLOCKS_CONVERT);
3638 if (err < 0)
3639 goto out;
3640 ext4_ext_drop_refs(path);
3641 path = ext4_ext_find_extent(inode, map->m_lblk, path, 0);
3642 if (IS_ERR(path)) {
3643 err = PTR_ERR(path);
3644 goto out;
3646 depth = ext_depth(inode);
3647 ex = path[depth].p_ext;
3650 err = ext4_ext_get_access(handle, inode, path + depth);
3651 if (err)
3652 goto out;
3653 /* first mark the extent as initialized */
3654 ext4_ext_mark_initialized(ex);
3656 /* note: ext4_ext_correct_indexes() isn't needed here because
3657 * borders are not changed
3659 ext4_ext_try_to_merge(handle, inode, path, ex);
3661 /* Mark modified extent as dirty */
3662 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3663 out:
3664 ext4_ext_show_leaf(inode, path);
3665 return err;
3668 static void unmap_underlying_metadata_blocks(struct block_device *bdev,
3669 sector_t block, int count)
3671 int i;
3672 for (i = 0; i < count; i++)
3673 unmap_underlying_metadata(bdev, block + i);
3677 * Handle EOFBLOCKS_FL flag, clearing it if necessary
3679 static int check_eofblocks_fl(handle_t *handle, struct inode *inode,
3680 ext4_lblk_t lblk,
3681 struct ext4_ext_path *path,
3682 unsigned int len)
3684 int i, depth;
3685 struct ext4_extent_header *eh;
3686 struct ext4_extent *last_ex;
3688 if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
3689 return 0;
3691 depth = ext_depth(inode);
3692 eh = path[depth].p_hdr;
3695 * We're going to remove EOFBLOCKS_FL entirely in future so we
3696 * do not care for this case anymore. Simply remove the flag
3697 * if there are no extents.
3699 if (unlikely(!eh->eh_entries))
3700 goto out;
3701 last_ex = EXT_LAST_EXTENT(eh);
3703 * We should clear the EOFBLOCKS_FL flag if we are writing the
3704 * last block in the last extent in the file. We test this by
3705 * first checking to see if the caller to
3706 * ext4_ext_get_blocks() was interested in the last block (or
3707 * a block beyond the last block) in the current extent. If
3708 * this turns out to be false, we can bail out from this
3709 * function immediately.
3711 if (lblk + len < le32_to_cpu(last_ex->ee_block) +
3712 ext4_ext_get_actual_len(last_ex))
3713 return 0;
3715 * If the caller does appear to be planning to write at or
3716 * beyond the end of the current extent, we then test to see
3717 * if the current extent is the last extent in the file, by
3718 * checking to make sure it was reached via the rightmost node
3719 * at each level of the tree.
3721 for (i = depth-1; i >= 0; i--)
3722 if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr))
3723 return 0;
3724 out:
3725 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3726 return ext4_mark_inode_dirty(handle, inode);
3730 * ext4_find_delalloc_range: find delayed allocated block in the given range.
3732 * Return 1 if there is a delalloc block in the range, otherwise 0.
3734 int ext4_find_delalloc_range(struct inode *inode,
3735 ext4_lblk_t lblk_start,
3736 ext4_lblk_t lblk_end)
3738 struct extent_status es;
3740 ext4_es_find_delayed_extent_range(inode, lblk_start, lblk_end, &es);
3741 if (es.es_len == 0)
3742 return 0; /* there is no delay extent in this tree */
3743 else if (es.es_lblk <= lblk_start &&
3744 lblk_start < es.es_lblk + es.es_len)
3745 return 1;
3746 else if (lblk_start <= es.es_lblk && es.es_lblk <= lblk_end)
3747 return 1;
3748 else
3749 return 0;
3752 int ext4_find_delalloc_cluster(struct inode *inode, ext4_lblk_t lblk)
3754 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3755 ext4_lblk_t lblk_start, lblk_end;
3756 lblk_start = lblk & (~(sbi->s_cluster_ratio - 1));
3757 lblk_end = lblk_start + sbi->s_cluster_ratio - 1;
3759 return ext4_find_delalloc_range(inode, lblk_start, lblk_end);
3763 * Determines how many complete clusters (out of those specified by the 'map')
3764 * are under delalloc and were reserved quota for.
3765 * This function is called when we are writing out the blocks that were
3766 * originally written with their allocation delayed, but then the space was
3767 * allocated using fallocate() before the delayed allocation could be resolved.
3768 * The cases to look for are:
3769 * ('=' indicated delayed allocated blocks
3770 * '-' indicates non-delayed allocated blocks)
3771 * (a) partial clusters towards beginning and/or end outside of allocated range
3772 * are not delalloc'ed.
3773 * Ex:
3774 * |----c---=|====c====|====c====|===-c----|
3775 * |++++++ allocated ++++++|
3776 * ==> 4 complete clusters in above example
3778 * (b) partial cluster (outside of allocated range) towards either end is
3779 * marked for delayed allocation. In this case, we will exclude that
3780 * cluster.
3781 * Ex:
3782 * |----====c========|========c========|
3783 * |++++++ allocated ++++++|
3784 * ==> 1 complete clusters in above example
3786 * Ex:
3787 * |================c================|
3788 * |++++++ allocated ++++++|
3789 * ==> 0 complete clusters in above example
3791 * The ext4_da_update_reserve_space will be called only if we
3792 * determine here that there were some "entire" clusters that span
3793 * this 'allocated' range.
3794 * In the non-bigalloc case, this function will just end up returning num_blks
3795 * without ever calling ext4_find_delalloc_range.
3797 static unsigned int
3798 get_reserved_cluster_alloc(struct inode *inode, ext4_lblk_t lblk_start,
3799 unsigned int num_blks)
3801 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3802 ext4_lblk_t alloc_cluster_start, alloc_cluster_end;
3803 ext4_lblk_t lblk_from, lblk_to, c_offset;
3804 unsigned int allocated_clusters = 0;
3806 alloc_cluster_start = EXT4_B2C(sbi, lblk_start);
3807 alloc_cluster_end = EXT4_B2C(sbi, lblk_start + num_blks - 1);
3809 /* max possible clusters for this allocation */
3810 allocated_clusters = alloc_cluster_end - alloc_cluster_start + 1;
3812 trace_ext4_get_reserved_cluster_alloc(inode, lblk_start, num_blks);
3814 /* Check towards left side */
3815 c_offset = lblk_start & (sbi->s_cluster_ratio - 1);
3816 if (c_offset) {
3817 lblk_from = lblk_start & (~(sbi->s_cluster_ratio - 1));
3818 lblk_to = lblk_from + c_offset - 1;
3820 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to))
3821 allocated_clusters--;
3824 /* Now check towards right. */
3825 c_offset = (lblk_start + num_blks) & (sbi->s_cluster_ratio - 1);
3826 if (allocated_clusters && c_offset) {
3827 lblk_from = lblk_start + num_blks;
3828 lblk_to = lblk_from + (sbi->s_cluster_ratio - c_offset) - 1;
3830 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to))
3831 allocated_clusters--;
3834 return allocated_clusters;
3837 static int
3838 ext4_ext_handle_uninitialized_extents(handle_t *handle, struct inode *inode,
3839 struct ext4_map_blocks *map,
3840 struct ext4_ext_path *path, int flags,
3841 unsigned int allocated, ext4_fsblk_t newblock)
3843 int ret = 0;
3844 int err = 0;
3845 ext4_io_end_t *io = ext4_inode_aio(inode);
3847 ext_debug("ext4_ext_handle_uninitialized_extents: inode %lu, logical "
3848 "block %llu, max_blocks %u, flags %x, allocated %u\n",
3849 inode->i_ino, (unsigned long long)map->m_lblk, map->m_len,
3850 flags, allocated);
3851 ext4_ext_show_leaf(inode, path);
3854 * When writing into uninitialized space, we should not fail to
3855 * allocate metadata blocks for the new extent block if needed.
3857 flags |= EXT4_GET_BLOCKS_METADATA_NOFAIL;
3859 trace_ext4_ext_handle_uninitialized_extents(inode, map, flags,
3860 allocated, newblock);
3862 /* get_block() before submit the IO, split the extent */
3863 if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
3864 ret = ext4_split_unwritten_extents(handle, inode, map,
3865 path, flags);
3866 if (ret <= 0)
3867 goto out;
3869 * Flag the inode(non aio case) or end_io struct (aio case)
3870 * that this IO needs to conversion to written when IO is
3871 * completed
3873 if (io)
3874 ext4_set_io_unwritten_flag(inode, io);
3875 else
3876 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3877 map->m_flags |= EXT4_MAP_UNWRITTEN;
3878 if (ext4_should_dioread_nolock(inode))
3879 map->m_flags |= EXT4_MAP_UNINIT;
3880 goto out;
3882 /* IO end_io complete, convert the filled extent to written */
3883 if ((flags & EXT4_GET_BLOCKS_CONVERT)) {
3884 ret = ext4_convert_unwritten_extents_endio(handle, inode, map,
3885 path);
3886 if (ret >= 0) {
3887 ext4_update_inode_fsync_trans(handle, inode, 1);
3888 err = check_eofblocks_fl(handle, inode, map->m_lblk,
3889 path, map->m_len);
3890 } else
3891 err = ret;
3892 map->m_flags |= EXT4_MAP_MAPPED;
3893 if (allocated > map->m_len)
3894 allocated = map->m_len;
3895 map->m_len = allocated;
3896 goto out2;
3898 /* buffered IO case */
3900 * repeat fallocate creation request
3901 * we already have an unwritten extent
3903 if (flags & EXT4_GET_BLOCKS_UNINIT_EXT) {
3904 map->m_flags |= EXT4_MAP_UNWRITTEN;
3905 goto map_out;
3908 /* buffered READ or buffered write_begin() lookup */
3909 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3911 * We have blocks reserved already. We
3912 * return allocated blocks so that delalloc
3913 * won't do block reservation for us. But
3914 * the buffer head will be unmapped so that
3915 * a read from the block returns 0s.
3917 map->m_flags |= EXT4_MAP_UNWRITTEN;
3918 goto out1;
3921 /* buffered write, writepage time, convert*/
3922 ret = ext4_ext_convert_to_initialized(handle, inode, map, path, flags);
3923 if (ret >= 0)
3924 ext4_update_inode_fsync_trans(handle, inode, 1);
3925 out:
3926 if (ret <= 0) {
3927 err = ret;
3928 goto out2;
3929 } else
3930 allocated = ret;
3931 map->m_flags |= EXT4_MAP_NEW;
3933 * if we allocated more blocks than requested
3934 * we need to make sure we unmap the extra block
3935 * allocated. The actual needed block will get
3936 * unmapped later when we find the buffer_head marked
3937 * new.
3939 if (allocated > map->m_len) {
3940 unmap_underlying_metadata_blocks(inode->i_sb->s_bdev,
3941 newblock + map->m_len,
3942 allocated - map->m_len);
3943 allocated = map->m_len;
3945 map->m_len = allocated;
3948 * If we have done fallocate with the offset that is already
3949 * delayed allocated, we would have block reservation
3950 * and quota reservation done in the delayed write path.
3951 * But fallocate would have already updated quota and block
3952 * count for this offset. So cancel these reservation
3954 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
3955 unsigned int reserved_clusters;
3956 reserved_clusters = get_reserved_cluster_alloc(inode,
3957 map->m_lblk, map->m_len);
3958 if (reserved_clusters)
3959 ext4_da_update_reserve_space(inode,
3960 reserved_clusters,
3964 map_out:
3965 map->m_flags |= EXT4_MAP_MAPPED;
3966 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) {
3967 err = check_eofblocks_fl(handle, inode, map->m_lblk, path,
3968 map->m_len);
3969 if (err < 0)
3970 goto out2;
3972 out1:
3973 if (allocated > map->m_len)
3974 allocated = map->m_len;
3975 ext4_ext_show_leaf(inode, path);
3976 map->m_pblk = newblock;
3977 map->m_len = allocated;
3978 out2:
3979 if (path) {
3980 ext4_ext_drop_refs(path);
3981 kfree(path);
3983 return err ? err : allocated;
3987 * get_implied_cluster_alloc - check to see if the requested
3988 * allocation (in the map structure) overlaps with a cluster already
3989 * allocated in an extent.
3990 * @sb The filesystem superblock structure
3991 * @map The requested lblk->pblk mapping
3992 * @ex The extent structure which might contain an implied
3993 * cluster allocation
3995 * This function is called by ext4_ext_map_blocks() after we failed to
3996 * find blocks that were already in the inode's extent tree. Hence,
3997 * we know that the beginning of the requested region cannot overlap
3998 * the extent from the inode's extent tree. There are three cases we
3999 * want to catch. The first is this case:
4001 * |--- cluster # N--|
4002 * |--- extent ---| |---- requested region ---|
4003 * |==========|
4005 * The second case that we need to test for is this one:
4007 * |--------- cluster # N ----------------|
4008 * |--- requested region --| |------- extent ----|
4009 * |=======================|
4011 * The third case is when the requested region lies between two extents
4012 * within the same cluster:
4013 * |------------- cluster # N-------------|
4014 * |----- ex -----| |---- ex_right ----|
4015 * |------ requested region ------|
4016 * |================|
4018 * In each of the above cases, we need to set the map->m_pblk and
4019 * map->m_len so it corresponds to the return the extent labelled as
4020 * "|====|" from cluster #N, since it is already in use for data in
4021 * cluster EXT4_B2C(sbi, map->m_lblk). We will then return 1 to
4022 * signal to ext4_ext_map_blocks() that map->m_pblk should be treated
4023 * as a new "allocated" block region. Otherwise, we will return 0 and
4024 * ext4_ext_map_blocks() will then allocate one or more new clusters
4025 * by calling ext4_mb_new_blocks().
4027 static int get_implied_cluster_alloc(struct super_block *sb,
4028 struct ext4_map_blocks *map,
4029 struct ext4_extent *ex,
4030 struct ext4_ext_path *path)
4032 struct ext4_sb_info *sbi = EXT4_SB(sb);
4033 ext4_lblk_t c_offset = map->m_lblk & (sbi->s_cluster_ratio-1);
4034 ext4_lblk_t ex_cluster_start, ex_cluster_end;
4035 ext4_lblk_t rr_cluster_start;
4036 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
4037 ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
4038 unsigned short ee_len = ext4_ext_get_actual_len(ex);
4040 /* The extent passed in that we are trying to match */
4041 ex_cluster_start = EXT4_B2C(sbi, ee_block);
4042 ex_cluster_end = EXT4_B2C(sbi, ee_block + ee_len - 1);
4044 /* The requested region passed into ext4_map_blocks() */
4045 rr_cluster_start = EXT4_B2C(sbi, map->m_lblk);
4047 if ((rr_cluster_start == ex_cluster_end) ||
4048 (rr_cluster_start == ex_cluster_start)) {
4049 if (rr_cluster_start == ex_cluster_end)
4050 ee_start += ee_len - 1;
4051 map->m_pblk = (ee_start & ~(sbi->s_cluster_ratio - 1)) +
4052 c_offset;
4053 map->m_len = min(map->m_len,
4054 (unsigned) sbi->s_cluster_ratio - c_offset);
4056 * Check for and handle this case:
4058 * |--------- cluster # N-------------|
4059 * |------- extent ----|
4060 * |--- requested region ---|
4061 * |===========|
4064 if (map->m_lblk < ee_block)
4065 map->m_len = min(map->m_len, ee_block - map->m_lblk);
4068 * Check for the case where there is already another allocated
4069 * block to the right of 'ex' but before the end of the cluster.
4071 * |------------- cluster # N-------------|
4072 * |----- ex -----| |---- ex_right ----|
4073 * |------ requested region ------|
4074 * |================|
4076 if (map->m_lblk > ee_block) {
4077 ext4_lblk_t next = ext4_ext_next_allocated_block(path);
4078 map->m_len = min(map->m_len, next - map->m_lblk);
4081 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 1);
4082 return 1;
4085 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 0);
4086 return 0;
4091 * Block allocation/map/preallocation routine for extents based files
4094 * Need to be called with
4095 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
4096 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
4098 * return > 0, number of of blocks already mapped/allocated
4099 * if create == 0 and these are pre-allocated blocks
4100 * buffer head is unmapped
4101 * otherwise blocks are mapped
4103 * return = 0, if plain look up failed (blocks have not been allocated)
4104 * buffer head is unmapped
4106 * return < 0, error case.
4108 int ext4_ext_map_blocks(handle_t *handle, struct inode *inode,
4109 struct ext4_map_blocks *map, int flags)
4111 struct ext4_ext_path *path = NULL;
4112 struct ext4_extent newex, *ex, *ex2;
4113 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4114 ext4_fsblk_t newblock = 0;
4115 int free_on_err = 0, err = 0, depth;
4116 unsigned int allocated = 0, offset = 0;
4117 unsigned int allocated_clusters = 0;
4118 struct ext4_allocation_request ar;
4119 ext4_io_end_t *io = ext4_inode_aio(inode);
4120 ext4_lblk_t cluster_offset;
4121 int set_unwritten = 0;
4123 ext_debug("blocks %u/%u requested for inode %lu\n",
4124 map->m_lblk, map->m_len, inode->i_ino);
4125 trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
4127 /* find extent for this block */
4128 path = ext4_ext_find_extent(inode, map->m_lblk, NULL, 0);
4129 if (IS_ERR(path)) {
4130 err = PTR_ERR(path);
4131 path = NULL;
4132 goto out2;
4135 depth = ext_depth(inode);
4138 * consistent leaf must not be empty;
4139 * this situation is possible, though, _during_ tree modification;
4140 * this is why assert can't be put in ext4_ext_find_extent()
4142 if (unlikely(path[depth].p_ext == NULL && depth != 0)) {
4143 EXT4_ERROR_INODE(inode, "bad extent address "
4144 "lblock: %lu, depth: %d pblock %lld",
4145 (unsigned long) map->m_lblk, depth,
4146 path[depth].p_block);
4147 err = -EIO;
4148 goto out2;
4151 ex = path[depth].p_ext;
4152 if (ex) {
4153 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
4154 ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
4155 unsigned short ee_len;
4158 * Uninitialized extents are treated as holes, except that
4159 * we split out initialized portions during a write.
4161 ee_len = ext4_ext_get_actual_len(ex);
4163 trace_ext4_ext_show_extent(inode, ee_block, ee_start, ee_len);
4165 /* if found extent covers block, simply return it */
4166 if (in_range(map->m_lblk, ee_block, ee_len)) {
4167 newblock = map->m_lblk - ee_block + ee_start;
4168 /* number of remaining blocks in the extent */
4169 allocated = ee_len - (map->m_lblk - ee_block);
4170 ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk,
4171 ee_block, ee_len, newblock);
4173 if (!ext4_ext_is_uninitialized(ex))
4174 goto out;
4176 allocated = ext4_ext_handle_uninitialized_extents(
4177 handle, inode, map, path, flags,
4178 allocated, newblock);
4179 goto out3;
4183 if ((sbi->s_cluster_ratio > 1) &&
4184 ext4_find_delalloc_cluster(inode, map->m_lblk))
4185 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4188 * requested block isn't allocated yet;
4189 * we couldn't try to create block if create flag is zero
4191 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
4193 * put just found gap into cache to speed up
4194 * subsequent requests
4196 if ((flags & EXT4_GET_BLOCKS_NO_PUT_HOLE) == 0)
4197 ext4_ext_put_gap_in_cache(inode, path, map->m_lblk);
4198 goto out2;
4202 * Okay, we need to do block allocation.
4204 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
4205 newex.ee_block = cpu_to_le32(map->m_lblk);
4206 cluster_offset = map->m_lblk & (sbi->s_cluster_ratio-1);
4209 * If we are doing bigalloc, check to see if the extent returned
4210 * by ext4_ext_find_extent() implies a cluster we can use.
4212 if (cluster_offset && ex &&
4213 get_implied_cluster_alloc(inode->i_sb, map, ex, path)) {
4214 ar.len = allocated = map->m_len;
4215 newblock = map->m_pblk;
4216 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4217 goto got_allocated_blocks;
4220 /* find neighbour allocated blocks */
4221 ar.lleft = map->m_lblk;
4222 err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft);
4223 if (err)
4224 goto out2;
4225 ar.lright = map->m_lblk;
4226 ex2 = NULL;
4227 err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright, &ex2);
4228 if (err)
4229 goto out2;
4231 /* Check if the extent after searching to the right implies a
4232 * cluster we can use. */
4233 if ((sbi->s_cluster_ratio > 1) && ex2 &&
4234 get_implied_cluster_alloc(inode->i_sb, map, ex2, path)) {
4235 ar.len = allocated = map->m_len;
4236 newblock = map->m_pblk;
4237 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4238 goto got_allocated_blocks;
4242 * See if request is beyond maximum number of blocks we can have in
4243 * a single extent. For an initialized extent this limit is
4244 * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is
4245 * EXT_UNINIT_MAX_LEN.
4247 if (map->m_len > EXT_INIT_MAX_LEN &&
4248 !(flags & EXT4_GET_BLOCKS_UNINIT_EXT))
4249 map->m_len = EXT_INIT_MAX_LEN;
4250 else if (map->m_len > EXT_UNINIT_MAX_LEN &&
4251 (flags & EXT4_GET_BLOCKS_UNINIT_EXT))
4252 map->m_len = EXT_UNINIT_MAX_LEN;
4254 /* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */
4255 newex.ee_len = cpu_to_le16(map->m_len);
4256 err = ext4_ext_check_overlap(sbi, inode, &newex, path);
4257 if (err)
4258 allocated = ext4_ext_get_actual_len(&newex);
4259 else
4260 allocated = map->m_len;
4262 /* allocate new block */
4263 ar.inode = inode;
4264 ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk);
4265 ar.logical = map->m_lblk;
4267 * We calculate the offset from the beginning of the cluster
4268 * for the logical block number, since when we allocate a
4269 * physical cluster, the physical block should start at the
4270 * same offset from the beginning of the cluster. This is
4271 * needed so that future calls to get_implied_cluster_alloc()
4272 * work correctly.
4274 offset = map->m_lblk & (sbi->s_cluster_ratio - 1);
4275 ar.len = EXT4_NUM_B2C(sbi, offset+allocated);
4276 ar.goal -= offset;
4277 ar.logical -= offset;
4278 if (S_ISREG(inode->i_mode))
4279 ar.flags = EXT4_MB_HINT_DATA;
4280 else
4281 /* disable in-core preallocation for non-regular files */
4282 ar.flags = 0;
4283 if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE)
4284 ar.flags |= EXT4_MB_HINT_NOPREALLOC;
4285 newblock = ext4_mb_new_blocks(handle, &ar, &err);
4286 if (!newblock)
4287 goto out2;
4288 ext_debug("allocate new block: goal %llu, found %llu/%u\n",
4289 ar.goal, newblock, allocated);
4290 free_on_err = 1;
4291 allocated_clusters = ar.len;
4292 ar.len = EXT4_C2B(sbi, ar.len) - offset;
4293 if (ar.len > allocated)
4294 ar.len = allocated;
4296 got_allocated_blocks:
4297 /* try to insert new extent into found leaf and return */
4298 ext4_ext_store_pblock(&newex, newblock + offset);
4299 newex.ee_len = cpu_to_le16(ar.len);
4300 /* Mark uninitialized */
4301 if (flags & EXT4_GET_BLOCKS_UNINIT_EXT){
4302 ext4_ext_mark_uninitialized(&newex);
4303 map->m_flags |= EXT4_MAP_UNWRITTEN;
4305 * io_end structure was created for every IO write to an
4306 * uninitialized extent. To avoid unnecessary conversion,
4307 * here we flag the IO that really needs the conversion.
4308 * For non asycn direct IO case, flag the inode state
4309 * that we need to perform conversion when IO is done.
4311 if ((flags & EXT4_GET_BLOCKS_PRE_IO))
4312 set_unwritten = 1;
4313 if (ext4_should_dioread_nolock(inode))
4314 map->m_flags |= EXT4_MAP_UNINIT;
4317 err = 0;
4318 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0)
4319 err = check_eofblocks_fl(handle, inode, map->m_lblk,
4320 path, ar.len);
4321 if (!err)
4322 err = ext4_ext_insert_extent(handle, inode, path,
4323 &newex, flags);
4325 if (!err && set_unwritten) {
4326 if (io)
4327 ext4_set_io_unwritten_flag(inode, io);
4328 else
4329 ext4_set_inode_state(inode,
4330 EXT4_STATE_DIO_UNWRITTEN);
4333 if (err && free_on_err) {
4334 int fb_flags = flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE ?
4335 EXT4_FREE_BLOCKS_NO_QUOT_UPDATE : 0;
4336 /* free data blocks we just allocated */
4337 /* not a good idea to call discard here directly,
4338 * but otherwise we'd need to call it every free() */
4339 ext4_discard_preallocations(inode);
4340 ext4_free_blocks(handle, inode, NULL, newblock,
4341 EXT4_C2B(sbi, allocated_clusters), fb_flags);
4342 goto out2;
4345 /* previous routine could use block we allocated */
4346 newblock = ext4_ext_pblock(&newex);
4347 allocated = ext4_ext_get_actual_len(&newex);
4348 if (allocated > map->m_len)
4349 allocated = map->m_len;
4350 map->m_flags |= EXT4_MAP_NEW;
4353 * Update reserved blocks/metadata blocks after successful
4354 * block allocation which had been deferred till now.
4356 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
4357 unsigned int reserved_clusters;
4359 * Check how many clusters we had reserved this allocated range
4361 reserved_clusters = get_reserved_cluster_alloc(inode,
4362 map->m_lblk, allocated);
4363 if (map->m_flags & EXT4_MAP_FROM_CLUSTER) {
4364 if (reserved_clusters) {
4366 * We have clusters reserved for this range.
4367 * But since we are not doing actual allocation
4368 * and are simply using blocks from previously
4369 * allocated cluster, we should release the
4370 * reservation and not claim quota.
4372 ext4_da_update_reserve_space(inode,
4373 reserved_clusters, 0);
4375 } else {
4376 BUG_ON(allocated_clusters < reserved_clusters);
4377 if (reserved_clusters < allocated_clusters) {
4378 struct ext4_inode_info *ei = EXT4_I(inode);
4379 int reservation = allocated_clusters -
4380 reserved_clusters;
4382 * It seems we claimed few clusters outside of
4383 * the range of this allocation. We should give
4384 * it back to the reservation pool. This can
4385 * happen in the following case:
4387 * * Suppose s_cluster_ratio is 4 (i.e., each
4388 * cluster has 4 blocks. Thus, the clusters
4389 * are [0-3],[4-7],[8-11]...
4390 * * First comes delayed allocation write for
4391 * logical blocks 10 & 11. Since there were no
4392 * previous delayed allocated blocks in the
4393 * range [8-11], we would reserve 1 cluster
4394 * for this write.
4395 * * Next comes write for logical blocks 3 to 8.
4396 * In this case, we will reserve 2 clusters
4397 * (for [0-3] and [4-7]; and not for [8-11] as
4398 * that range has a delayed allocated blocks.
4399 * Thus total reserved clusters now becomes 3.
4400 * * Now, during the delayed allocation writeout
4401 * time, we will first write blocks [3-8] and
4402 * allocate 3 clusters for writing these
4403 * blocks. Also, we would claim all these
4404 * three clusters above.
4405 * * Now when we come here to writeout the
4406 * blocks [10-11], we would expect to claim
4407 * the reservation of 1 cluster we had made
4408 * (and we would claim it since there are no
4409 * more delayed allocated blocks in the range
4410 * [8-11]. But our reserved cluster count had
4411 * already gone to 0.
4413 * Thus, at the step 4 above when we determine
4414 * that there are still some unwritten delayed
4415 * allocated blocks outside of our current
4416 * block range, we should increment the
4417 * reserved clusters count so that when the
4418 * remaining blocks finally gets written, we
4419 * could claim them.
4421 dquot_reserve_block(inode,
4422 EXT4_C2B(sbi, reservation));
4423 spin_lock(&ei->i_block_reservation_lock);
4424 ei->i_reserved_data_blocks += reservation;
4425 spin_unlock(&ei->i_block_reservation_lock);
4428 * We will claim quota for all newly allocated blocks.
4429 * We're updating the reserved space *after* the
4430 * correction above so we do not accidentally free
4431 * all the metadata reservation because we might
4432 * actually need it later on.
4434 ext4_da_update_reserve_space(inode, allocated_clusters,
4440 * Cache the extent and update transaction to commit on fdatasync only
4441 * when it is _not_ an uninitialized extent.
4443 if ((flags & EXT4_GET_BLOCKS_UNINIT_EXT) == 0)
4444 ext4_update_inode_fsync_trans(handle, inode, 1);
4445 else
4446 ext4_update_inode_fsync_trans(handle, inode, 0);
4447 out:
4448 if (allocated > map->m_len)
4449 allocated = map->m_len;
4450 ext4_ext_show_leaf(inode, path);
4451 map->m_flags |= EXT4_MAP_MAPPED;
4452 map->m_pblk = newblock;
4453 map->m_len = allocated;
4454 out2:
4455 if (path) {
4456 ext4_ext_drop_refs(path);
4457 kfree(path);
4460 out3:
4461 trace_ext4_ext_map_blocks_exit(inode, flags, map,
4462 err ? err : allocated);
4463 ext4_es_lru_add(inode);
4464 return err ? err : allocated;
4467 void ext4_ext_truncate(handle_t *handle, struct inode *inode)
4469 struct super_block *sb = inode->i_sb;
4470 ext4_lblk_t last_block;
4471 int err = 0;
4474 * TODO: optimization is possible here.
4475 * Probably we need not scan at all,
4476 * because page truncation is enough.
4479 /* we have to know where to truncate from in crash case */
4480 EXT4_I(inode)->i_disksize = inode->i_size;
4481 ext4_mark_inode_dirty(handle, inode);
4483 last_block = (inode->i_size + sb->s_blocksize - 1)
4484 >> EXT4_BLOCK_SIZE_BITS(sb);
4485 retry:
4486 err = ext4_es_remove_extent(inode, last_block,
4487 EXT_MAX_BLOCKS - last_block);
4488 if (err == -ENOMEM) {
4489 cond_resched();
4490 congestion_wait(BLK_RW_ASYNC, HZ/50);
4491 goto retry;
4493 if (err) {
4494 ext4_std_error(inode->i_sb, err);
4495 return;
4497 err = ext4_ext_remove_space(inode, last_block, EXT_MAX_BLOCKS - 1);
4498 ext4_std_error(inode->i_sb, err);
4501 static void ext4_falloc_update_inode(struct inode *inode,
4502 int mode, loff_t new_size, int update_ctime)
4504 struct timespec now;
4506 if (update_ctime) {
4507 now = current_fs_time(inode->i_sb);
4508 if (!timespec_equal(&inode->i_ctime, &now))
4509 inode->i_ctime = now;
4512 * Update only when preallocation was requested beyond
4513 * the file size.
4515 if (!(mode & FALLOC_FL_KEEP_SIZE)) {
4516 if (new_size > i_size_read(inode))
4517 i_size_write(inode, new_size);
4518 if (new_size > EXT4_I(inode)->i_disksize)
4519 ext4_update_i_disksize(inode, new_size);
4520 } else {
4522 * Mark that we allocate beyond EOF so the subsequent truncate
4523 * can proceed even if the new size is the same as i_size.
4525 if (new_size > i_size_read(inode))
4526 ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4532 * preallocate space for a file. This implements ext4's fallocate file
4533 * operation, which gets called from sys_fallocate system call.
4534 * For block-mapped files, posix_fallocate should fall back to the method
4535 * of writing zeroes to the required new blocks (the same behavior which is
4536 * expected for file systems which do not support fallocate() system call).
4538 long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
4540 struct inode *inode = file_inode(file);
4541 handle_t *handle;
4542 loff_t new_size;
4543 unsigned int max_blocks;
4544 int ret = 0;
4545 int ret2 = 0;
4546 int retries = 0;
4547 int flags;
4548 struct ext4_map_blocks map;
4549 unsigned int credits, blkbits = inode->i_blkbits;
4551 /* Return error if mode is not supported */
4552 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
4553 return -EOPNOTSUPP;
4555 if (mode & FALLOC_FL_PUNCH_HOLE)
4556 return ext4_punch_hole(inode, offset, len);
4558 ret = ext4_convert_inline_data(inode);
4559 if (ret)
4560 return ret;
4563 * currently supporting (pre)allocate mode for extent-based
4564 * files _only_
4566 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4567 return -EOPNOTSUPP;
4569 trace_ext4_fallocate_enter(inode, offset, len, mode);
4570 map.m_lblk = offset >> blkbits;
4572 * We can't just convert len to max_blocks because
4573 * If blocksize = 4096 offset = 3072 and len = 2048
4575 max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits)
4576 - map.m_lblk;
4578 * credits to insert 1 extent into extent tree
4580 credits = ext4_chunk_trans_blocks(inode, max_blocks);
4581 mutex_lock(&inode->i_mutex);
4582 ret = inode_newsize_ok(inode, (len + offset));
4583 if (ret) {
4584 mutex_unlock(&inode->i_mutex);
4585 trace_ext4_fallocate_exit(inode, offset, max_blocks, ret);
4586 return ret;
4588 flags = EXT4_GET_BLOCKS_CREATE_UNINIT_EXT;
4589 if (mode & FALLOC_FL_KEEP_SIZE)
4590 flags |= EXT4_GET_BLOCKS_KEEP_SIZE;
4592 * Don't normalize the request if it can fit in one extent so
4593 * that it doesn't get unnecessarily split into multiple
4594 * extents.
4596 if (len <= EXT_UNINIT_MAX_LEN << blkbits)
4597 flags |= EXT4_GET_BLOCKS_NO_NORMALIZE;
4599 retry:
4600 while (ret >= 0 && ret < max_blocks) {
4601 map.m_lblk = map.m_lblk + ret;
4602 map.m_len = max_blocks = max_blocks - ret;
4603 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
4604 credits);
4605 if (IS_ERR(handle)) {
4606 ret = PTR_ERR(handle);
4607 break;
4609 ret = ext4_map_blocks(handle, inode, &map, flags);
4610 if (ret <= 0) {
4611 #ifdef EXT4FS_DEBUG
4612 ext4_warning(inode->i_sb,
4613 "inode #%lu: block %u: len %u: "
4614 "ext4_ext_map_blocks returned %d",
4615 inode->i_ino, map.m_lblk,
4616 map.m_len, ret);
4617 #endif
4618 ext4_mark_inode_dirty(handle, inode);
4619 ret2 = ext4_journal_stop(handle);
4620 break;
4622 if ((map.m_lblk + ret) >= (EXT4_BLOCK_ALIGN(offset + len,
4623 blkbits) >> blkbits))
4624 new_size = offset + len;
4625 else
4626 new_size = ((loff_t) map.m_lblk + ret) << blkbits;
4628 ext4_falloc_update_inode(inode, mode, new_size,
4629 (map.m_flags & EXT4_MAP_NEW));
4630 ext4_mark_inode_dirty(handle, inode);
4631 if ((file->f_flags & O_SYNC) && ret >= max_blocks)
4632 ext4_handle_sync(handle);
4633 ret2 = ext4_journal_stop(handle);
4634 if (ret2)
4635 break;
4637 if (ret == -ENOSPC &&
4638 ext4_should_retry_alloc(inode->i_sb, &retries)) {
4639 ret = 0;
4640 goto retry;
4642 mutex_unlock(&inode->i_mutex);
4643 trace_ext4_fallocate_exit(inode, offset, max_blocks,
4644 ret > 0 ? ret2 : ret);
4645 return ret > 0 ? ret2 : ret;
4649 * This function convert a range of blocks to written extents
4650 * The caller of this function will pass the start offset and the size.
4651 * all unwritten extents within this range will be converted to
4652 * written extents.
4654 * This function is called from the direct IO end io call back
4655 * function, to convert the fallocated extents after IO is completed.
4656 * Returns 0 on success.
4658 int ext4_convert_unwritten_extents(handle_t *handle, struct inode *inode,
4659 loff_t offset, ssize_t len)
4661 unsigned int max_blocks;
4662 int ret = 0;
4663 int ret2 = 0;
4664 struct ext4_map_blocks map;
4665 unsigned int credits, blkbits = inode->i_blkbits;
4667 map.m_lblk = offset >> blkbits;
4669 * We can't just convert len to max_blocks because
4670 * If blocksize = 4096 offset = 3072 and len = 2048
4672 max_blocks = ((EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) -
4673 map.m_lblk);
4675 * This is somewhat ugly but the idea is clear: When transaction is
4676 * reserved, everything goes into it. Otherwise we rather start several
4677 * smaller transactions for conversion of each extent separately.
4679 if (handle) {
4680 handle = ext4_journal_start_reserved(handle,
4681 EXT4_HT_EXT_CONVERT);
4682 if (IS_ERR(handle))
4683 return PTR_ERR(handle);
4684 credits = 0;
4685 } else {
4687 * credits to insert 1 extent into extent tree
4689 credits = ext4_chunk_trans_blocks(inode, max_blocks);
4691 while (ret >= 0 && ret < max_blocks) {
4692 map.m_lblk += ret;
4693 map.m_len = (max_blocks -= ret);
4694 if (credits) {
4695 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
4696 credits);
4697 if (IS_ERR(handle)) {
4698 ret = PTR_ERR(handle);
4699 break;
4702 ret = ext4_map_blocks(handle, inode, &map,
4703 EXT4_GET_BLOCKS_IO_CONVERT_EXT);
4704 if (ret <= 0)
4705 ext4_warning(inode->i_sb,
4706 "inode #%lu: block %u: len %u: "
4707 "ext4_ext_map_blocks returned %d",
4708 inode->i_ino, map.m_lblk,
4709 map.m_len, ret);
4710 ext4_mark_inode_dirty(handle, inode);
4711 if (credits)
4712 ret2 = ext4_journal_stop(handle);
4713 if (ret <= 0 || ret2)
4714 break;
4716 if (!credits)
4717 ret2 = ext4_journal_stop(handle);
4718 return ret > 0 ? ret2 : ret;
4722 * If newes is not existing extent (newes->ec_pblk equals zero) find
4723 * delayed extent at start of newes and update newes accordingly and
4724 * return start of the next delayed extent.
4726 * If newes is existing extent (newes->ec_pblk is not equal zero)
4727 * return start of next delayed extent or EXT_MAX_BLOCKS if no delayed
4728 * extent found. Leave newes unmodified.
4730 static int ext4_find_delayed_extent(struct inode *inode,
4731 struct extent_status *newes)
4733 struct extent_status es;
4734 ext4_lblk_t block, next_del;
4736 if (newes->es_pblk == 0) {
4737 ext4_es_find_delayed_extent_range(inode, newes->es_lblk,
4738 newes->es_lblk + newes->es_len - 1, &es);
4741 * No extent in extent-tree contains block @newes->es_pblk,
4742 * then the block may stay in 1)a hole or 2)delayed-extent.
4744 if (es.es_len == 0)
4745 /* A hole found. */
4746 return 0;
4748 if (es.es_lblk > newes->es_lblk) {
4749 /* A hole found. */
4750 newes->es_len = min(es.es_lblk - newes->es_lblk,
4751 newes->es_len);
4752 return 0;
4755 newes->es_len = es.es_lblk + es.es_len - newes->es_lblk;
4758 block = newes->es_lblk + newes->es_len;
4759 ext4_es_find_delayed_extent_range(inode, block, EXT_MAX_BLOCKS, &es);
4760 if (es.es_len == 0)
4761 next_del = EXT_MAX_BLOCKS;
4762 else
4763 next_del = es.es_lblk;
4765 return next_del;
4767 /* fiemap flags we can handle specified here */
4768 #define EXT4_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
4770 static int ext4_xattr_fiemap(struct inode *inode,
4771 struct fiemap_extent_info *fieinfo)
4773 __u64 physical = 0;
4774 __u64 length;
4775 __u32 flags = FIEMAP_EXTENT_LAST;
4776 int blockbits = inode->i_sb->s_blocksize_bits;
4777 int error = 0;
4779 /* in-inode? */
4780 if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4781 struct ext4_iloc iloc;
4782 int offset; /* offset of xattr in inode */
4784 error = ext4_get_inode_loc(inode, &iloc);
4785 if (error)
4786 return error;
4787 physical = (__u64)iloc.bh->b_blocknr << blockbits;
4788 offset = EXT4_GOOD_OLD_INODE_SIZE +
4789 EXT4_I(inode)->i_extra_isize;
4790 physical += offset;
4791 length = EXT4_SB(inode->i_sb)->s_inode_size - offset;
4792 flags |= FIEMAP_EXTENT_DATA_INLINE;
4793 brelse(iloc.bh);
4794 } else { /* external block */
4795 physical = (__u64)EXT4_I(inode)->i_file_acl << blockbits;
4796 length = inode->i_sb->s_blocksize;
4799 if (physical)
4800 error = fiemap_fill_next_extent(fieinfo, 0, physical,
4801 length, flags);
4802 return (error < 0 ? error : 0);
4805 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4806 __u64 start, __u64 len)
4808 ext4_lblk_t start_blk;
4809 int error = 0;
4811 if (ext4_has_inline_data(inode)) {
4812 int has_inline = 1;
4814 error = ext4_inline_data_fiemap(inode, fieinfo, &has_inline);
4816 if (has_inline)
4817 return error;
4820 if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
4821 error = ext4_ext_precache(inode);
4822 if (error)
4823 return error;
4826 /* fallback to generic here if not in extents fmt */
4827 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4828 return generic_block_fiemap(inode, fieinfo, start, len,
4829 ext4_get_block);
4831 if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS))
4832 return -EBADR;
4834 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
4835 error = ext4_xattr_fiemap(inode, fieinfo);
4836 } else {
4837 ext4_lblk_t len_blks;
4838 __u64 last_blk;
4840 start_blk = start >> inode->i_sb->s_blocksize_bits;
4841 last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits;
4842 if (last_blk >= EXT_MAX_BLOCKS)
4843 last_blk = EXT_MAX_BLOCKS-1;
4844 len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1;
4847 * Walk the extent tree gathering extent information
4848 * and pushing extents back to the user.
4850 error = ext4_fill_fiemap_extents(inode, start_blk,
4851 len_blks, fieinfo);
4853 ext4_es_lru_add(inode);
4854 return error;