arm: at91: dt: sam9m10g45ek: use rts/cts pinctrl group for uart1
[linux-2.6.git] / include / net / sock.h
blobc945fba4f54351475ff2efb989f77b23237f60d4
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Definitions for the AF_INET socket handler.
8 * Version: @(#)sock.h 1.0.4 05/13/93
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche <flla@stud.uni-sb.de>
15 * Fixes:
16 * Alan Cox : Volatiles in skbuff pointers. See
17 * skbuff comments. May be overdone,
18 * better to prove they can be removed
19 * than the reverse.
20 * Alan Cox : Added a zapped field for tcp to note
21 * a socket is reset and must stay shut up
22 * Alan Cox : New fields for options
23 * Pauline Middelink : identd support
24 * Alan Cox : Eliminate low level recv/recvfrom
25 * David S. Miller : New socket lookup architecture.
26 * Steve Whitehouse: Default routines for sock_ops
27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
28 * protinfo be just a void pointer, as the
29 * protocol specific parts were moved to
30 * respective headers and ipv4/v6, etc now
31 * use private slabcaches for its socks
32 * Pedro Hortas : New flags field for socket options
35 * This program is free software; you can redistribute it and/or
36 * modify it under the terms of the GNU General Public License
37 * as published by the Free Software Foundation; either version
38 * 2 of the License, or (at your option) any later version.
40 #ifndef _SOCK_H
41 #define _SOCK_H
43 #include <linux/hardirq.h>
44 #include <linux/kernel.h>
45 #include <linux/list.h>
46 #include <linux/list_nulls.h>
47 #include <linux/timer.h>
48 #include <linux/cache.h>
49 #include <linux/bitops.h>
50 #include <linux/lockdep.h>
51 #include <linux/netdevice.h>
52 #include <linux/skbuff.h> /* struct sk_buff */
53 #include <linux/mm.h>
54 #include <linux/security.h>
55 #include <linux/slab.h>
56 #include <linux/uaccess.h>
57 #include <linux/memcontrol.h>
58 #include <linux/res_counter.h>
59 #include <linux/static_key.h>
60 #include <linux/aio.h>
61 #include <linux/sched.h>
63 #include <linux/filter.h>
64 #include <linux/rculist_nulls.h>
65 #include <linux/poll.h>
67 #include <linux/atomic.h>
68 #include <net/dst.h>
69 #include <net/checksum.h>
71 struct cgroup;
72 struct cgroup_subsys;
73 #ifdef CONFIG_NET
74 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss);
75 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg);
76 #else
77 static inline
78 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
80 return 0;
82 static inline
83 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
86 #endif
88 * This structure really needs to be cleaned up.
89 * Most of it is for TCP, and not used by any of
90 * the other protocols.
93 /* Define this to get the SOCK_DBG debugging facility. */
94 #define SOCK_DEBUGGING
95 #ifdef SOCK_DEBUGGING
96 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
97 printk(KERN_DEBUG msg); } while (0)
98 #else
99 /* Validate arguments and do nothing */
100 static inline __printf(2, 3)
101 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
104 #endif
106 /* This is the per-socket lock. The spinlock provides a synchronization
107 * between user contexts and software interrupt processing, whereas the
108 * mini-semaphore synchronizes multiple users amongst themselves.
110 typedef struct {
111 spinlock_t slock;
112 int owned;
113 wait_queue_head_t wq;
115 * We express the mutex-alike socket_lock semantics
116 * to the lock validator by explicitly managing
117 * the slock as a lock variant (in addition to
118 * the slock itself):
120 #ifdef CONFIG_DEBUG_LOCK_ALLOC
121 struct lockdep_map dep_map;
122 #endif
123 } socket_lock_t;
125 struct sock;
126 struct proto;
127 struct net;
130 * struct sock_common - minimal network layer representation of sockets
131 * @skc_daddr: Foreign IPv4 addr
132 * @skc_rcv_saddr: Bound local IPv4 addr
133 * @skc_hash: hash value used with various protocol lookup tables
134 * @skc_u16hashes: two u16 hash values used by UDP lookup tables
135 * @skc_family: network address family
136 * @skc_state: Connection state
137 * @skc_reuse: %SO_REUSEADDR setting
138 * @skc_bound_dev_if: bound device index if != 0
139 * @skc_bind_node: bind hash linkage for various protocol lookup tables
140 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
141 * @skc_prot: protocol handlers inside a network family
142 * @skc_net: reference to the network namespace of this socket
143 * @skc_node: main hash linkage for various protocol lookup tables
144 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
145 * @skc_tx_queue_mapping: tx queue number for this connection
146 * @skc_refcnt: reference count
148 * This is the minimal network layer representation of sockets, the header
149 * for struct sock and struct inet_timewait_sock.
151 struct sock_common {
152 /* skc_daddr and skc_rcv_saddr must be grouped :
153 * cf INET_MATCH() and INET_TW_MATCH()
155 __be32 skc_daddr;
156 __be32 skc_rcv_saddr;
158 union {
159 unsigned int skc_hash;
160 __u16 skc_u16hashes[2];
162 unsigned short skc_family;
163 volatile unsigned char skc_state;
164 unsigned char skc_reuse;
165 int skc_bound_dev_if;
166 union {
167 struct hlist_node skc_bind_node;
168 struct hlist_nulls_node skc_portaddr_node;
170 struct proto *skc_prot;
171 #ifdef CONFIG_NET_NS
172 struct net *skc_net;
173 #endif
175 * fields between dontcopy_begin/dontcopy_end
176 * are not copied in sock_copy()
178 /* private: */
179 int skc_dontcopy_begin[0];
180 /* public: */
181 union {
182 struct hlist_node skc_node;
183 struct hlist_nulls_node skc_nulls_node;
185 int skc_tx_queue_mapping;
186 atomic_t skc_refcnt;
187 /* private: */
188 int skc_dontcopy_end[0];
189 /* public: */
192 struct cg_proto;
194 * struct sock - network layer representation of sockets
195 * @__sk_common: shared layout with inet_timewait_sock
196 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
197 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
198 * @sk_lock: synchronizer
199 * @sk_rcvbuf: size of receive buffer in bytes
200 * @sk_wq: sock wait queue and async head
201 * @sk_rx_dst: receive input route used by early tcp demux
202 * @sk_dst_cache: destination cache
203 * @sk_dst_lock: destination cache lock
204 * @sk_policy: flow policy
205 * @sk_receive_queue: incoming packets
206 * @sk_wmem_alloc: transmit queue bytes committed
207 * @sk_write_queue: Packet sending queue
208 * @sk_async_wait_queue: DMA copied packets
209 * @sk_omem_alloc: "o" is "option" or "other"
210 * @sk_wmem_queued: persistent queue size
211 * @sk_forward_alloc: space allocated forward
212 * @sk_allocation: allocation mode
213 * @sk_sndbuf: size of send buffer in bytes
214 * @sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
215 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
216 * @sk_no_check: %SO_NO_CHECK setting, wether or not checkup packets
217 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
218 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
219 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
220 * @sk_gso_max_size: Maximum GSO segment size to build
221 * @sk_gso_max_segs: Maximum number of GSO segments
222 * @sk_lingertime: %SO_LINGER l_linger setting
223 * @sk_backlog: always used with the per-socket spinlock held
224 * @sk_callback_lock: used with the callbacks in the end of this struct
225 * @sk_error_queue: rarely used
226 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
227 * IPV6_ADDRFORM for instance)
228 * @sk_err: last error
229 * @sk_err_soft: errors that don't cause failure but are the cause of a
230 * persistent failure not just 'timed out'
231 * @sk_drops: raw/udp drops counter
232 * @sk_ack_backlog: current listen backlog
233 * @sk_max_ack_backlog: listen backlog set in listen()
234 * @sk_priority: %SO_PRIORITY setting
235 * @sk_cgrp_prioidx: socket group's priority map index
236 * @sk_type: socket type (%SOCK_STREAM, etc)
237 * @sk_protocol: which protocol this socket belongs in this network family
238 * @sk_peer_pid: &struct pid for this socket's peer
239 * @sk_peer_cred: %SO_PEERCRED setting
240 * @sk_rcvlowat: %SO_RCVLOWAT setting
241 * @sk_rcvtimeo: %SO_RCVTIMEO setting
242 * @sk_sndtimeo: %SO_SNDTIMEO setting
243 * @sk_rxhash: flow hash received from netif layer
244 * @sk_filter: socket filtering instructions
245 * @sk_protinfo: private area, net family specific, when not using slab
246 * @sk_timer: sock cleanup timer
247 * @sk_stamp: time stamp of last packet received
248 * @sk_socket: Identd and reporting IO signals
249 * @sk_user_data: RPC layer private data
250 * @sk_frag: cached page frag
251 * @sk_peek_off: current peek_offset value
252 * @sk_send_head: front of stuff to transmit
253 * @sk_security: used by security modules
254 * @sk_mark: generic packet mark
255 * @sk_classid: this socket's cgroup classid
256 * @sk_cgrp: this socket's cgroup-specific proto data
257 * @sk_write_pending: a write to stream socket waits to start
258 * @sk_state_change: callback to indicate change in the state of the sock
259 * @sk_data_ready: callback to indicate there is data to be processed
260 * @sk_write_space: callback to indicate there is bf sending space available
261 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
262 * @sk_backlog_rcv: callback to process the backlog
263 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
265 struct sock {
267 * Now struct inet_timewait_sock also uses sock_common, so please just
268 * don't add nothing before this first member (__sk_common) --acme
270 struct sock_common __sk_common;
271 #define sk_node __sk_common.skc_node
272 #define sk_nulls_node __sk_common.skc_nulls_node
273 #define sk_refcnt __sk_common.skc_refcnt
274 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping
276 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin
277 #define sk_dontcopy_end __sk_common.skc_dontcopy_end
278 #define sk_hash __sk_common.skc_hash
279 #define sk_family __sk_common.skc_family
280 #define sk_state __sk_common.skc_state
281 #define sk_reuse __sk_common.skc_reuse
282 #define sk_bound_dev_if __sk_common.skc_bound_dev_if
283 #define sk_bind_node __sk_common.skc_bind_node
284 #define sk_prot __sk_common.skc_prot
285 #define sk_net __sk_common.skc_net
286 socket_lock_t sk_lock;
287 struct sk_buff_head sk_receive_queue;
289 * The backlog queue is special, it is always used with
290 * the per-socket spinlock held and requires low latency
291 * access. Therefore we special case it's implementation.
292 * Note : rmem_alloc is in this structure to fill a hole
293 * on 64bit arches, not because its logically part of
294 * backlog.
296 struct {
297 atomic_t rmem_alloc;
298 int len;
299 struct sk_buff *head;
300 struct sk_buff *tail;
301 } sk_backlog;
302 #define sk_rmem_alloc sk_backlog.rmem_alloc
303 int sk_forward_alloc;
304 #ifdef CONFIG_RPS
305 __u32 sk_rxhash;
306 #endif
307 atomic_t sk_drops;
308 int sk_rcvbuf;
310 struct sk_filter __rcu *sk_filter;
311 struct socket_wq __rcu *sk_wq;
313 #ifdef CONFIG_NET_DMA
314 struct sk_buff_head sk_async_wait_queue;
315 #endif
317 #ifdef CONFIG_XFRM
318 struct xfrm_policy *sk_policy[2];
319 #endif
320 unsigned long sk_flags;
321 struct dst_entry *sk_rx_dst;
322 struct dst_entry *sk_dst_cache;
323 spinlock_t sk_dst_lock;
324 atomic_t sk_wmem_alloc;
325 atomic_t sk_omem_alloc;
326 int sk_sndbuf;
327 struct sk_buff_head sk_write_queue;
328 kmemcheck_bitfield_begin(flags);
329 unsigned int sk_shutdown : 2,
330 sk_no_check : 2,
331 sk_userlocks : 4,
332 sk_protocol : 8,
333 sk_type : 16;
334 kmemcheck_bitfield_end(flags);
335 int sk_wmem_queued;
336 gfp_t sk_allocation;
337 netdev_features_t sk_route_caps;
338 netdev_features_t sk_route_nocaps;
339 int sk_gso_type;
340 unsigned int sk_gso_max_size;
341 u16 sk_gso_max_segs;
342 int sk_rcvlowat;
343 unsigned long sk_lingertime;
344 struct sk_buff_head sk_error_queue;
345 struct proto *sk_prot_creator;
346 rwlock_t sk_callback_lock;
347 int sk_err,
348 sk_err_soft;
349 unsigned short sk_ack_backlog;
350 unsigned short sk_max_ack_backlog;
351 __u32 sk_priority;
352 #ifdef CONFIG_CGROUPS
353 __u32 sk_cgrp_prioidx;
354 #endif
355 struct pid *sk_peer_pid;
356 const struct cred *sk_peer_cred;
357 long sk_rcvtimeo;
358 long sk_sndtimeo;
359 void *sk_protinfo;
360 struct timer_list sk_timer;
361 ktime_t sk_stamp;
362 struct socket *sk_socket;
363 void *sk_user_data;
364 struct page_frag sk_frag;
365 struct sk_buff *sk_send_head;
366 __s32 sk_peek_off;
367 int sk_write_pending;
368 #ifdef CONFIG_SECURITY
369 void *sk_security;
370 #endif
371 __u32 sk_mark;
372 u32 sk_classid;
373 struct cg_proto *sk_cgrp;
374 void (*sk_state_change)(struct sock *sk);
375 void (*sk_data_ready)(struct sock *sk, int bytes);
376 void (*sk_write_space)(struct sock *sk);
377 void (*sk_error_report)(struct sock *sk);
378 int (*sk_backlog_rcv)(struct sock *sk,
379 struct sk_buff *skb);
380 void (*sk_destruct)(struct sock *sk);
384 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
385 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
386 * on a socket means that the socket will reuse everybody else's port
387 * without looking at the other's sk_reuse value.
390 #define SK_NO_REUSE 0
391 #define SK_CAN_REUSE 1
392 #define SK_FORCE_REUSE 2
394 static inline int sk_peek_offset(struct sock *sk, int flags)
396 if ((flags & MSG_PEEK) && (sk->sk_peek_off >= 0))
397 return sk->sk_peek_off;
398 else
399 return 0;
402 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
404 if (sk->sk_peek_off >= 0) {
405 if (sk->sk_peek_off >= val)
406 sk->sk_peek_off -= val;
407 else
408 sk->sk_peek_off = 0;
412 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
414 if (sk->sk_peek_off >= 0)
415 sk->sk_peek_off += val;
419 * Hashed lists helper routines
421 static inline struct sock *sk_entry(const struct hlist_node *node)
423 return hlist_entry(node, struct sock, sk_node);
426 static inline struct sock *__sk_head(const struct hlist_head *head)
428 return hlist_entry(head->first, struct sock, sk_node);
431 static inline struct sock *sk_head(const struct hlist_head *head)
433 return hlist_empty(head) ? NULL : __sk_head(head);
436 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
438 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
441 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
443 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
446 static inline struct sock *sk_next(const struct sock *sk)
448 return sk->sk_node.next ?
449 hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
452 static inline struct sock *sk_nulls_next(const struct sock *sk)
454 return (!is_a_nulls(sk->sk_nulls_node.next)) ?
455 hlist_nulls_entry(sk->sk_nulls_node.next,
456 struct sock, sk_nulls_node) :
457 NULL;
460 static inline bool sk_unhashed(const struct sock *sk)
462 return hlist_unhashed(&sk->sk_node);
465 static inline bool sk_hashed(const struct sock *sk)
467 return !sk_unhashed(sk);
470 static inline void sk_node_init(struct hlist_node *node)
472 node->pprev = NULL;
475 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
477 node->pprev = NULL;
480 static inline void __sk_del_node(struct sock *sk)
482 __hlist_del(&sk->sk_node);
485 /* NB: equivalent to hlist_del_init_rcu */
486 static inline bool __sk_del_node_init(struct sock *sk)
488 if (sk_hashed(sk)) {
489 __sk_del_node(sk);
490 sk_node_init(&sk->sk_node);
491 return true;
493 return false;
496 /* Grab socket reference count. This operation is valid only
497 when sk is ALREADY grabbed f.e. it is found in hash table
498 or a list and the lookup is made under lock preventing hash table
499 modifications.
502 static inline void sock_hold(struct sock *sk)
504 atomic_inc(&sk->sk_refcnt);
507 /* Ungrab socket in the context, which assumes that socket refcnt
508 cannot hit zero, f.e. it is true in context of any socketcall.
510 static inline void __sock_put(struct sock *sk)
512 atomic_dec(&sk->sk_refcnt);
515 static inline bool sk_del_node_init(struct sock *sk)
517 bool rc = __sk_del_node_init(sk);
519 if (rc) {
520 /* paranoid for a while -acme */
521 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
522 __sock_put(sk);
524 return rc;
526 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk)
528 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
530 if (sk_hashed(sk)) {
531 hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
532 return true;
534 return false;
537 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
539 bool rc = __sk_nulls_del_node_init_rcu(sk);
541 if (rc) {
542 /* paranoid for a while -acme */
543 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
544 __sock_put(sk);
546 return rc;
549 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
551 hlist_add_head(&sk->sk_node, list);
554 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
556 sock_hold(sk);
557 __sk_add_node(sk, list);
560 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
562 sock_hold(sk);
563 hlist_add_head_rcu(&sk->sk_node, list);
566 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
568 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
571 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
573 sock_hold(sk);
574 __sk_nulls_add_node_rcu(sk, list);
577 static inline void __sk_del_bind_node(struct sock *sk)
579 __hlist_del(&sk->sk_bind_node);
582 static inline void sk_add_bind_node(struct sock *sk,
583 struct hlist_head *list)
585 hlist_add_head(&sk->sk_bind_node, list);
588 #define sk_for_each(__sk, node, list) \
589 hlist_for_each_entry(__sk, node, list, sk_node)
590 #define sk_for_each_rcu(__sk, node, list) \
591 hlist_for_each_entry_rcu(__sk, node, list, sk_node)
592 #define sk_nulls_for_each(__sk, node, list) \
593 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
594 #define sk_nulls_for_each_rcu(__sk, node, list) \
595 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
596 #define sk_for_each_from(__sk, node) \
597 if (__sk && ({ node = &(__sk)->sk_node; 1; })) \
598 hlist_for_each_entry_from(__sk, node, sk_node)
599 #define sk_nulls_for_each_from(__sk, node) \
600 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
601 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
602 #define sk_for_each_safe(__sk, node, tmp, list) \
603 hlist_for_each_entry_safe(__sk, node, tmp, list, sk_node)
604 #define sk_for_each_bound(__sk, node, list) \
605 hlist_for_each_entry(__sk, node, list, sk_bind_node)
607 static inline struct user_namespace *sk_user_ns(struct sock *sk)
609 /* Careful only use this in a context where these parameters
610 * can not change and must all be valid, such as recvmsg from
611 * userspace.
613 return sk->sk_socket->file->f_cred->user_ns;
616 /* Sock flags */
617 enum sock_flags {
618 SOCK_DEAD,
619 SOCK_DONE,
620 SOCK_URGINLINE,
621 SOCK_KEEPOPEN,
622 SOCK_LINGER,
623 SOCK_DESTROY,
624 SOCK_BROADCAST,
625 SOCK_TIMESTAMP,
626 SOCK_ZAPPED,
627 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
628 SOCK_DBG, /* %SO_DEBUG setting */
629 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
630 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
631 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
632 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
633 SOCK_MEMALLOC, /* VM depends on this socket for swapping */
634 SOCK_TIMESTAMPING_TX_HARDWARE, /* %SOF_TIMESTAMPING_TX_HARDWARE */
635 SOCK_TIMESTAMPING_TX_SOFTWARE, /* %SOF_TIMESTAMPING_TX_SOFTWARE */
636 SOCK_TIMESTAMPING_RX_HARDWARE, /* %SOF_TIMESTAMPING_RX_HARDWARE */
637 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */
638 SOCK_TIMESTAMPING_SOFTWARE, /* %SOF_TIMESTAMPING_SOFTWARE */
639 SOCK_TIMESTAMPING_RAW_HARDWARE, /* %SOF_TIMESTAMPING_RAW_HARDWARE */
640 SOCK_TIMESTAMPING_SYS_HARDWARE, /* %SOF_TIMESTAMPING_SYS_HARDWARE */
641 SOCK_FASYNC, /* fasync() active */
642 SOCK_RXQ_OVFL,
643 SOCK_ZEROCOPY, /* buffers from userspace */
644 SOCK_WIFI_STATUS, /* push wifi status to userspace */
645 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
646 * Will use last 4 bytes of packet sent from
647 * user-space instead.
651 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
653 nsk->sk_flags = osk->sk_flags;
656 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
658 __set_bit(flag, &sk->sk_flags);
661 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
663 __clear_bit(flag, &sk->sk_flags);
666 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
668 return test_bit(flag, &sk->sk_flags);
671 #ifdef CONFIG_NET
672 extern struct static_key memalloc_socks;
673 static inline int sk_memalloc_socks(void)
675 return static_key_false(&memalloc_socks);
677 #else
679 static inline int sk_memalloc_socks(void)
681 return 0;
684 #endif
686 static inline gfp_t sk_gfp_atomic(struct sock *sk, gfp_t gfp_mask)
688 return GFP_ATOMIC | (sk->sk_allocation & __GFP_MEMALLOC);
691 static inline void sk_acceptq_removed(struct sock *sk)
693 sk->sk_ack_backlog--;
696 static inline void sk_acceptq_added(struct sock *sk)
698 sk->sk_ack_backlog++;
701 static inline bool sk_acceptq_is_full(const struct sock *sk)
703 return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
707 * Compute minimal free write space needed to queue new packets.
709 static inline int sk_stream_min_wspace(const struct sock *sk)
711 return sk->sk_wmem_queued >> 1;
714 static inline int sk_stream_wspace(const struct sock *sk)
716 return sk->sk_sndbuf - sk->sk_wmem_queued;
719 extern void sk_stream_write_space(struct sock *sk);
721 static inline bool sk_stream_memory_free(const struct sock *sk)
723 return sk->sk_wmem_queued < sk->sk_sndbuf;
726 /* OOB backlog add */
727 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
729 /* dont let skb dst not refcounted, we are going to leave rcu lock */
730 skb_dst_force(skb);
732 if (!sk->sk_backlog.tail)
733 sk->sk_backlog.head = skb;
734 else
735 sk->sk_backlog.tail->next = skb;
737 sk->sk_backlog.tail = skb;
738 skb->next = NULL;
742 * Take into account size of receive queue and backlog queue
743 * Do not take into account this skb truesize,
744 * to allow even a single big packet to come.
746 static inline bool sk_rcvqueues_full(const struct sock *sk, const struct sk_buff *skb,
747 unsigned int limit)
749 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
751 return qsize > limit;
754 /* The per-socket spinlock must be held here. */
755 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
756 unsigned int limit)
758 if (sk_rcvqueues_full(sk, skb, limit))
759 return -ENOBUFS;
761 __sk_add_backlog(sk, skb);
762 sk->sk_backlog.len += skb->truesize;
763 return 0;
766 extern int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
768 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
770 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
771 return __sk_backlog_rcv(sk, skb);
773 return sk->sk_backlog_rcv(sk, skb);
776 static inline void sock_rps_record_flow(const struct sock *sk)
778 #ifdef CONFIG_RPS
779 struct rps_sock_flow_table *sock_flow_table;
781 rcu_read_lock();
782 sock_flow_table = rcu_dereference(rps_sock_flow_table);
783 rps_record_sock_flow(sock_flow_table, sk->sk_rxhash);
784 rcu_read_unlock();
785 #endif
788 static inline void sock_rps_reset_flow(const struct sock *sk)
790 #ifdef CONFIG_RPS
791 struct rps_sock_flow_table *sock_flow_table;
793 rcu_read_lock();
794 sock_flow_table = rcu_dereference(rps_sock_flow_table);
795 rps_reset_sock_flow(sock_flow_table, sk->sk_rxhash);
796 rcu_read_unlock();
797 #endif
800 static inline void sock_rps_save_rxhash(struct sock *sk,
801 const struct sk_buff *skb)
803 #ifdef CONFIG_RPS
804 if (unlikely(sk->sk_rxhash != skb->rxhash)) {
805 sock_rps_reset_flow(sk);
806 sk->sk_rxhash = skb->rxhash;
808 #endif
811 static inline void sock_rps_reset_rxhash(struct sock *sk)
813 #ifdef CONFIG_RPS
814 sock_rps_reset_flow(sk);
815 sk->sk_rxhash = 0;
816 #endif
819 #define sk_wait_event(__sk, __timeo, __condition) \
820 ({ int __rc; \
821 release_sock(__sk); \
822 __rc = __condition; \
823 if (!__rc) { \
824 *(__timeo) = schedule_timeout(*(__timeo)); \
826 lock_sock(__sk); \
827 __rc = __condition; \
828 __rc; \
831 extern int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
832 extern int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
833 extern void sk_stream_wait_close(struct sock *sk, long timeo_p);
834 extern int sk_stream_error(struct sock *sk, int flags, int err);
835 extern void sk_stream_kill_queues(struct sock *sk);
836 extern void sk_set_memalloc(struct sock *sk);
837 extern void sk_clear_memalloc(struct sock *sk);
839 extern int sk_wait_data(struct sock *sk, long *timeo);
841 struct request_sock_ops;
842 struct timewait_sock_ops;
843 struct inet_hashinfo;
844 struct raw_hashinfo;
845 struct module;
847 /* Networking protocol blocks we attach to sockets.
848 * socket layer -> transport layer interface
849 * transport -> network interface is defined by struct inet_proto
851 struct proto {
852 void (*close)(struct sock *sk,
853 long timeout);
854 int (*connect)(struct sock *sk,
855 struct sockaddr *uaddr,
856 int addr_len);
857 int (*disconnect)(struct sock *sk, int flags);
859 struct sock * (*accept)(struct sock *sk, int flags, int *err);
861 int (*ioctl)(struct sock *sk, int cmd,
862 unsigned long arg);
863 int (*init)(struct sock *sk);
864 void (*destroy)(struct sock *sk);
865 void (*shutdown)(struct sock *sk, int how);
866 int (*setsockopt)(struct sock *sk, int level,
867 int optname, char __user *optval,
868 unsigned int optlen);
869 int (*getsockopt)(struct sock *sk, int level,
870 int optname, char __user *optval,
871 int __user *option);
872 #ifdef CONFIG_COMPAT
873 int (*compat_setsockopt)(struct sock *sk,
874 int level,
875 int optname, char __user *optval,
876 unsigned int optlen);
877 int (*compat_getsockopt)(struct sock *sk,
878 int level,
879 int optname, char __user *optval,
880 int __user *option);
881 int (*compat_ioctl)(struct sock *sk,
882 unsigned int cmd, unsigned long arg);
883 #endif
884 int (*sendmsg)(struct kiocb *iocb, struct sock *sk,
885 struct msghdr *msg, size_t len);
886 int (*recvmsg)(struct kiocb *iocb, struct sock *sk,
887 struct msghdr *msg,
888 size_t len, int noblock, int flags,
889 int *addr_len);
890 int (*sendpage)(struct sock *sk, struct page *page,
891 int offset, size_t size, int flags);
892 int (*bind)(struct sock *sk,
893 struct sockaddr *uaddr, int addr_len);
895 int (*backlog_rcv) (struct sock *sk,
896 struct sk_buff *skb);
898 void (*release_cb)(struct sock *sk);
899 void (*mtu_reduced)(struct sock *sk);
901 /* Keeping track of sk's, looking them up, and port selection methods. */
902 void (*hash)(struct sock *sk);
903 void (*unhash)(struct sock *sk);
904 void (*rehash)(struct sock *sk);
905 int (*get_port)(struct sock *sk, unsigned short snum);
906 void (*clear_sk)(struct sock *sk, int size);
908 /* Keeping track of sockets in use */
909 #ifdef CONFIG_PROC_FS
910 unsigned int inuse_idx;
911 #endif
913 /* Memory pressure */
914 void (*enter_memory_pressure)(struct sock *sk);
915 atomic_long_t *memory_allocated; /* Current allocated memory. */
916 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
918 * Pressure flag: try to collapse.
919 * Technical note: it is used by multiple contexts non atomically.
920 * All the __sk_mem_schedule() is of this nature: accounting
921 * is strict, actions are advisory and have some latency.
923 int *memory_pressure;
924 long *sysctl_mem;
925 int *sysctl_wmem;
926 int *sysctl_rmem;
927 int max_header;
928 bool no_autobind;
930 struct kmem_cache *slab;
931 unsigned int obj_size;
932 int slab_flags;
934 struct percpu_counter *orphan_count;
936 struct request_sock_ops *rsk_prot;
937 struct timewait_sock_ops *twsk_prot;
939 union {
940 struct inet_hashinfo *hashinfo;
941 struct udp_table *udp_table;
942 struct raw_hashinfo *raw_hash;
943 } h;
945 struct module *owner;
947 char name[32];
949 struct list_head node;
950 #ifdef SOCK_REFCNT_DEBUG
951 atomic_t socks;
952 #endif
953 #ifdef CONFIG_MEMCG_KMEM
955 * cgroup specific init/deinit functions. Called once for all
956 * protocols that implement it, from cgroups populate function.
957 * This function has to setup any files the protocol want to
958 * appear in the kmem cgroup filesystem.
960 int (*init_cgroup)(struct mem_cgroup *memcg,
961 struct cgroup_subsys *ss);
962 void (*destroy_cgroup)(struct mem_cgroup *memcg);
963 struct cg_proto *(*proto_cgroup)(struct mem_cgroup *memcg);
964 #endif
968 * Bits in struct cg_proto.flags
970 enum cg_proto_flags {
971 /* Currently active and new sockets should be assigned to cgroups */
972 MEMCG_SOCK_ACTIVE,
973 /* It was ever activated; we must disarm static keys on destruction */
974 MEMCG_SOCK_ACTIVATED,
977 struct cg_proto {
978 void (*enter_memory_pressure)(struct sock *sk);
979 struct res_counter *memory_allocated; /* Current allocated memory. */
980 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
981 int *memory_pressure;
982 long *sysctl_mem;
983 unsigned long flags;
985 * memcg field is used to find which memcg we belong directly
986 * Each memcg struct can hold more than one cg_proto, so container_of
987 * won't really cut.
989 * The elegant solution would be having an inverse function to
990 * proto_cgroup in struct proto, but that means polluting the structure
991 * for everybody, instead of just for memcg users.
993 struct mem_cgroup *memcg;
996 extern int proto_register(struct proto *prot, int alloc_slab);
997 extern void proto_unregister(struct proto *prot);
999 static inline bool memcg_proto_active(struct cg_proto *cg_proto)
1001 return test_bit(MEMCG_SOCK_ACTIVE, &cg_proto->flags);
1004 static inline bool memcg_proto_activated(struct cg_proto *cg_proto)
1006 return test_bit(MEMCG_SOCK_ACTIVATED, &cg_proto->flags);
1009 #ifdef SOCK_REFCNT_DEBUG
1010 static inline void sk_refcnt_debug_inc(struct sock *sk)
1012 atomic_inc(&sk->sk_prot->socks);
1015 static inline void sk_refcnt_debug_dec(struct sock *sk)
1017 atomic_dec(&sk->sk_prot->socks);
1018 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1019 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1022 inline void sk_refcnt_debug_release(const struct sock *sk)
1024 if (atomic_read(&sk->sk_refcnt) != 1)
1025 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1026 sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
1028 #else /* SOCK_REFCNT_DEBUG */
1029 #define sk_refcnt_debug_inc(sk) do { } while (0)
1030 #define sk_refcnt_debug_dec(sk) do { } while (0)
1031 #define sk_refcnt_debug_release(sk) do { } while (0)
1032 #endif /* SOCK_REFCNT_DEBUG */
1034 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_NET)
1035 extern struct static_key memcg_socket_limit_enabled;
1036 static inline struct cg_proto *parent_cg_proto(struct proto *proto,
1037 struct cg_proto *cg_proto)
1039 return proto->proto_cgroup(parent_mem_cgroup(cg_proto->memcg));
1041 #define mem_cgroup_sockets_enabled static_key_false(&memcg_socket_limit_enabled)
1042 #else
1043 #define mem_cgroup_sockets_enabled 0
1044 static inline struct cg_proto *parent_cg_proto(struct proto *proto,
1045 struct cg_proto *cg_proto)
1047 return NULL;
1049 #endif
1052 static inline bool sk_has_memory_pressure(const struct sock *sk)
1054 return sk->sk_prot->memory_pressure != NULL;
1057 static inline bool sk_under_memory_pressure(const struct sock *sk)
1059 if (!sk->sk_prot->memory_pressure)
1060 return false;
1062 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1063 return !!*sk->sk_cgrp->memory_pressure;
1065 return !!*sk->sk_prot->memory_pressure;
1068 static inline void sk_leave_memory_pressure(struct sock *sk)
1070 int *memory_pressure = sk->sk_prot->memory_pressure;
1072 if (!memory_pressure)
1073 return;
1075 if (*memory_pressure)
1076 *memory_pressure = 0;
1078 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1079 struct cg_proto *cg_proto = sk->sk_cgrp;
1080 struct proto *prot = sk->sk_prot;
1082 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1083 if (*cg_proto->memory_pressure)
1084 *cg_proto->memory_pressure = 0;
1089 static inline void sk_enter_memory_pressure(struct sock *sk)
1091 if (!sk->sk_prot->enter_memory_pressure)
1092 return;
1094 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1095 struct cg_proto *cg_proto = sk->sk_cgrp;
1096 struct proto *prot = sk->sk_prot;
1098 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1099 cg_proto->enter_memory_pressure(sk);
1102 sk->sk_prot->enter_memory_pressure(sk);
1105 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1107 long *prot = sk->sk_prot->sysctl_mem;
1108 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1109 prot = sk->sk_cgrp->sysctl_mem;
1110 return prot[index];
1113 static inline void memcg_memory_allocated_add(struct cg_proto *prot,
1114 unsigned long amt,
1115 int *parent_status)
1117 struct res_counter *fail;
1118 int ret;
1120 ret = res_counter_charge_nofail(prot->memory_allocated,
1121 amt << PAGE_SHIFT, &fail);
1122 if (ret < 0)
1123 *parent_status = OVER_LIMIT;
1126 static inline void memcg_memory_allocated_sub(struct cg_proto *prot,
1127 unsigned long amt)
1129 res_counter_uncharge(prot->memory_allocated, amt << PAGE_SHIFT);
1132 static inline u64 memcg_memory_allocated_read(struct cg_proto *prot)
1134 u64 ret;
1135 ret = res_counter_read_u64(prot->memory_allocated, RES_USAGE);
1136 return ret >> PAGE_SHIFT;
1139 static inline long
1140 sk_memory_allocated(const struct sock *sk)
1142 struct proto *prot = sk->sk_prot;
1143 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1144 return memcg_memory_allocated_read(sk->sk_cgrp);
1146 return atomic_long_read(prot->memory_allocated);
1149 static inline long
1150 sk_memory_allocated_add(struct sock *sk, int amt, int *parent_status)
1152 struct proto *prot = sk->sk_prot;
1154 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1155 memcg_memory_allocated_add(sk->sk_cgrp, amt, parent_status);
1156 /* update the root cgroup regardless */
1157 atomic_long_add_return(amt, prot->memory_allocated);
1158 return memcg_memory_allocated_read(sk->sk_cgrp);
1161 return atomic_long_add_return(amt, prot->memory_allocated);
1164 static inline void
1165 sk_memory_allocated_sub(struct sock *sk, int amt)
1167 struct proto *prot = sk->sk_prot;
1169 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1170 memcg_memory_allocated_sub(sk->sk_cgrp, amt);
1172 atomic_long_sub(amt, prot->memory_allocated);
1175 static inline void sk_sockets_allocated_dec(struct sock *sk)
1177 struct proto *prot = sk->sk_prot;
1179 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1180 struct cg_proto *cg_proto = sk->sk_cgrp;
1182 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1183 percpu_counter_dec(cg_proto->sockets_allocated);
1186 percpu_counter_dec(prot->sockets_allocated);
1189 static inline void sk_sockets_allocated_inc(struct sock *sk)
1191 struct proto *prot = sk->sk_prot;
1193 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1194 struct cg_proto *cg_proto = sk->sk_cgrp;
1196 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1197 percpu_counter_inc(cg_proto->sockets_allocated);
1200 percpu_counter_inc(prot->sockets_allocated);
1203 static inline int
1204 sk_sockets_allocated_read_positive(struct sock *sk)
1206 struct proto *prot = sk->sk_prot;
1208 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1209 return percpu_counter_read_positive(sk->sk_cgrp->sockets_allocated);
1211 return percpu_counter_read_positive(prot->sockets_allocated);
1214 static inline int
1215 proto_sockets_allocated_sum_positive(struct proto *prot)
1217 return percpu_counter_sum_positive(prot->sockets_allocated);
1220 static inline long
1221 proto_memory_allocated(struct proto *prot)
1223 return atomic_long_read(prot->memory_allocated);
1226 static inline bool
1227 proto_memory_pressure(struct proto *prot)
1229 if (!prot->memory_pressure)
1230 return false;
1231 return !!*prot->memory_pressure;
1235 #ifdef CONFIG_PROC_FS
1236 /* Called with local bh disabled */
1237 extern void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1238 extern int sock_prot_inuse_get(struct net *net, struct proto *proto);
1239 #else
1240 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1241 int inc)
1244 #endif
1247 /* With per-bucket locks this operation is not-atomic, so that
1248 * this version is not worse.
1250 static inline void __sk_prot_rehash(struct sock *sk)
1252 sk->sk_prot->unhash(sk);
1253 sk->sk_prot->hash(sk);
1256 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size);
1258 /* About 10 seconds */
1259 #define SOCK_DESTROY_TIME (10*HZ)
1261 /* Sockets 0-1023 can't be bound to unless you are superuser */
1262 #define PROT_SOCK 1024
1264 #define SHUTDOWN_MASK 3
1265 #define RCV_SHUTDOWN 1
1266 #define SEND_SHUTDOWN 2
1268 #define SOCK_SNDBUF_LOCK 1
1269 #define SOCK_RCVBUF_LOCK 2
1270 #define SOCK_BINDADDR_LOCK 4
1271 #define SOCK_BINDPORT_LOCK 8
1273 /* sock_iocb: used to kick off async processing of socket ios */
1274 struct sock_iocb {
1275 struct list_head list;
1277 int flags;
1278 int size;
1279 struct socket *sock;
1280 struct sock *sk;
1281 struct scm_cookie *scm;
1282 struct msghdr *msg, async_msg;
1283 struct kiocb *kiocb;
1286 static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb)
1288 return (struct sock_iocb *)iocb->private;
1291 static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si)
1293 return si->kiocb;
1296 struct socket_alloc {
1297 struct socket socket;
1298 struct inode vfs_inode;
1301 static inline struct socket *SOCKET_I(struct inode *inode)
1303 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1306 static inline struct inode *SOCK_INODE(struct socket *socket)
1308 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1312 * Functions for memory accounting
1314 extern int __sk_mem_schedule(struct sock *sk, int size, int kind);
1315 extern void __sk_mem_reclaim(struct sock *sk);
1317 #define SK_MEM_QUANTUM ((int)PAGE_SIZE)
1318 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1319 #define SK_MEM_SEND 0
1320 #define SK_MEM_RECV 1
1322 static inline int sk_mem_pages(int amt)
1324 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1327 static inline bool sk_has_account(struct sock *sk)
1329 /* return true if protocol supports memory accounting */
1330 return !!sk->sk_prot->memory_allocated;
1333 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1335 if (!sk_has_account(sk))
1336 return true;
1337 return size <= sk->sk_forward_alloc ||
1338 __sk_mem_schedule(sk, size, SK_MEM_SEND);
1341 static inline bool
1342 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1344 if (!sk_has_account(sk))
1345 return true;
1346 return size<= sk->sk_forward_alloc ||
1347 __sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1348 skb_pfmemalloc(skb);
1351 static inline void sk_mem_reclaim(struct sock *sk)
1353 if (!sk_has_account(sk))
1354 return;
1355 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1356 __sk_mem_reclaim(sk);
1359 static inline void sk_mem_reclaim_partial(struct sock *sk)
1361 if (!sk_has_account(sk))
1362 return;
1363 if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1364 __sk_mem_reclaim(sk);
1367 static inline void sk_mem_charge(struct sock *sk, int size)
1369 if (!sk_has_account(sk))
1370 return;
1371 sk->sk_forward_alloc -= size;
1374 static inline void sk_mem_uncharge(struct sock *sk, int size)
1376 if (!sk_has_account(sk))
1377 return;
1378 sk->sk_forward_alloc += size;
1381 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1383 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1384 sk->sk_wmem_queued -= skb->truesize;
1385 sk_mem_uncharge(sk, skb->truesize);
1386 __kfree_skb(skb);
1389 /* Used by processes to "lock" a socket state, so that
1390 * interrupts and bottom half handlers won't change it
1391 * from under us. It essentially blocks any incoming
1392 * packets, so that we won't get any new data or any
1393 * packets that change the state of the socket.
1395 * While locked, BH processing will add new packets to
1396 * the backlog queue. This queue is processed by the
1397 * owner of the socket lock right before it is released.
1399 * Since ~2.3.5 it is also exclusive sleep lock serializing
1400 * accesses from user process context.
1402 #define sock_owned_by_user(sk) ((sk)->sk_lock.owned)
1405 * Macro so as to not evaluate some arguments when
1406 * lockdep is not enabled.
1408 * Mark both the sk_lock and the sk_lock.slock as a
1409 * per-address-family lock class.
1411 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \
1412 do { \
1413 sk->sk_lock.owned = 0; \
1414 init_waitqueue_head(&sk->sk_lock.wq); \
1415 spin_lock_init(&(sk)->sk_lock.slock); \
1416 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \
1417 sizeof((sk)->sk_lock)); \
1418 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \
1419 (skey), (sname)); \
1420 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
1421 } while (0)
1423 extern void lock_sock_nested(struct sock *sk, int subclass);
1425 static inline void lock_sock(struct sock *sk)
1427 lock_sock_nested(sk, 0);
1430 extern void release_sock(struct sock *sk);
1432 /* BH context may only use the following locking interface. */
1433 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
1434 #define bh_lock_sock_nested(__sk) \
1435 spin_lock_nested(&((__sk)->sk_lock.slock), \
1436 SINGLE_DEPTH_NESTING)
1437 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
1439 extern bool lock_sock_fast(struct sock *sk);
1441 * unlock_sock_fast - complement of lock_sock_fast
1442 * @sk: socket
1443 * @slow: slow mode
1445 * fast unlock socket for user context.
1446 * If slow mode is on, we call regular release_sock()
1448 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1450 if (slow)
1451 release_sock(sk);
1452 else
1453 spin_unlock_bh(&sk->sk_lock.slock);
1457 extern struct sock *sk_alloc(struct net *net, int family,
1458 gfp_t priority,
1459 struct proto *prot);
1460 extern void sk_free(struct sock *sk);
1461 extern void sk_release_kernel(struct sock *sk);
1462 extern struct sock *sk_clone_lock(const struct sock *sk,
1463 const gfp_t priority);
1465 extern struct sk_buff *sock_wmalloc(struct sock *sk,
1466 unsigned long size, int force,
1467 gfp_t priority);
1468 extern struct sk_buff *sock_rmalloc(struct sock *sk,
1469 unsigned long size, int force,
1470 gfp_t priority);
1471 extern void sock_wfree(struct sk_buff *skb);
1472 extern void sock_rfree(struct sk_buff *skb);
1473 extern void sock_edemux(struct sk_buff *skb);
1475 extern int sock_setsockopt(struct socket *sock, int level,
1476 int op, char __user *optval,
1477 unsigned int optlen);
1479 extern int sock_getsockopt(struct socket *sock, int level,
1480 int op, char __user *optval,
1481 int __user *optlen);
1482 extern struct sk_buff *sock_alloc_send_skb(struct sock *sk,
1483 unsigned long size,
1484 int noblock,
1485 int *errcode);
1486 extern struct sk_buff *sock_alloc_send_pskb(struct sock *sk,
1487 unsigned long header_len,
1488 unsigned long data_len,
1489 int noblock,
1490 int *errcode);
1491 extern void *sock_kmalloc(struct sock *sk, int size,
1492 gfp_t priority);
1493 extern void sock_kfree_s(struct sock *sk, void *mem, int size);
1494 extern void sk_send_sigurg(struct sock *sk);
1497 * Functions to fill in entries in struct proto_ops when a protocol
1498 * does not implement a particular function.
1500 extern int sock_no_bind(struct socket *,
1501 struct sockaddr *, int);
1502 extern int sock_no_connect(struct socket *,
1503 struct sockaddr *, int, int);
1504 extern int sock_no_socketpair(struct socket *,
1505 struct socket *);
1506 extern int sock_no_accept(struct socket *,
1507 struct socket *, int);
1508 extern int sock_no_getname(struct socket *,
1509 struct sockaddr *, int *, int);
1510 extern unsigned int sock_no_poll(struct file *, struct socket *,
1511 struct poll_table_struct *);
1512 extern int sock_no_ioctl(struct socket *, unsigned int,
1513 unsigned long);
1514 extern int sock_no_listen(struct socket *, int);
1515 extern int sock_no_shutdown(struct socket *, int);
1516 extern int sock_no_getsockopt(struct socket *, int , int,
1517 char __user *, int __user *);
1518 extern int sock_no_setsockopt(struct socket *, int, int,
1519 char __user *, unsigned int);
1520 extern int sock_no_sendmsg(struct kiocb *, struct socket *,
1521 struct msghdr *, size_t);
1522 extern int sock_no_recvmsg(struct kiocb *, struct socket *,
1523 struct msghdr *, size_t, int);
1524 extern int sock_no_mmap(struct file *file,
1525 struct socket *sock,
1526 struct vm_area_struct *vma);
1527 extern ssize_t sock_no_sendpage(struct socket *sock,
1528 struct page *page,
1529 int offset, size_t size,
1530 int flags);
1533 * Functions to fill in entries in struct proto_ops when a protocol
1534 * uses the inet style.
1536 extern int sock_common_getsockopt(struct socket *sock, int level, int optname,
1537 char __user *optval, int __user *optlen);
1538 extern int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1539 struct msghdr *msg, size_t size, int flags);
1540 extern int sock_common_setsockopt(struct socket *sock, int level, int optname,
1541 char __user *optval, unsigned int optlen);
1542 extern int compat_sock_common_getsockopt(struct socket *sock, int level,
1543 int optname, char __user *optval, int __user *optlen);
1544 extern int compat_sock_common_setsockopt(struct socket *sock, int level,
1545 int optname, char __user *optval, unsigned int optlen);
1547 extern void sk_common_release(struct sock *sk);
1550 * Default socket callbacks and setup code
1553 /* Initialise core socket variables */
1554 extern void sock_init_data(struct socket *sock, struct sock *sk);
1556 extern void sk_filter_release_rcu(struct rcu_head *rcu);
1559 * sk_filter_release - release a socket filter
1560 * @fp: filter to remove
1562 * Remove a filter from a socket and release its resources.
1565 static inline void sk_filter_release(struct sk_filter *fp)
1567 if (atomic_dec_and_test(&fp->refcnt))
1568 call_rcu(&fp->rcu, sk_filter_release_rcu);
1571 static inline void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1573 unsigned int size = sk_filter_len(fp);
1575 atomic_sub(size, &sk->sk_omem_alloc);
1576 sk_filter_release(fp);
1579 static inline void sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1581 atomic_inc(&fp->refcnt);
1582 atomic_add(sk_filter_len(fp), &sk->sk_omem_alloc);
1586 * Socket reference counting postulates.
1588 * * Each user of socket SHOULD hold a reference count.
1589 * * Each access point to socket (an hash table bucket, reference from a list,
1590 * running timer, skb in flight MUST hold a reference count.
1591 * * When reference count hits 0, it means it will never increase back.
1592 * * When reference count hits 0, it means that no references from
1593 * outside exist to this socket and current process on current CPU
1594 * is last user and may/should destroy this socket.
1595 * * sk_free is called from any context: process, BH, IRQ. When
1596 * it is called, socket has no references from outside -> sk_free
1597 * may release descendant resources allocated by the socket, but
1598 * to the time when it is called, socket is NOT referenced by any
1599 * hash tables, lists etc.
1600 * * Packets, delivered from outside (from network or from another process)
1601 * and enqueued on receive/error queues SHOULD NOT grab reference count,
1602 * when they sit in queue. Otherwise, packets will leak to hole, when
1603 * socket is looked up by one cpu and unhasing is made by another CPU.
1604 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
1605 * (leak to backlog). Packet socket does all the processing inside
1606 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1607 * use separate SMP lock, so that they are prone too.
1610 /* Ungrab socket and destroy it, if it was the last reference. */
1611 static inline void sock_put(struct sock *sk)
1613 if (atomic_dec_and_test(&sk->sk_refcnt))
1614 sk_free(sk);
1617 extern int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1618 const int nested);
1620 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1622 sk->sk_tx_queue_mapping = tx_queue;
1625 static inline void sk_tx_queue_clear(struct sock *sk)
1627 sk->sk_tx_queue_mapping = -1;
1630 static inline int sk_tx_queue_get(const struct sock *sk)
1632 return sk ? sk->sk_tx_queue_mapping : -1;
1635 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1637 sk_tx_queue_clear(sk);
1638 sk->sk_socket = sock;
1641 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1643 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1644 return &rcu_dereference_raw(sk->sk_wq)->wait;
1646 /* Detach socket from process context.
1647 * Announce socket dead, detach it from wait queue and inode.
1648 * Note that parent inode held reference count on this struct sock,
1649 * we do not release it in this function, because protocol
1650 * probably wants some additional cleanups or even continuing
1651 * to work with this socket (TCP).
1653 static inline void sock_orphan(struct sock *sk)
1655 write_lock_bh(&sk->sk_callback_lock);
1656 sock_set_flag(sk, SOCK_DEAD);
1657 sk_set_socket(sk, NULL);
1658 sk->sk_wq = NULL;
1659 write_unlock_bh(&sk->sk_callback_lock);
1662 static inline void sock_graft(struct sock *sk, struct socket *parent)
1664 write_lock_bh(&sk->sk_callback_lock);
1665 sk->sk_wq = parent->wq;
1666 parent->sk = sk;
1667 sk_set_socket(sk, parent);
1668 security_sock_graft(sk, parent);
1669 write_unlock_bh(&sk->sk_callback_lock);
1672 extern kuid_t sock_i_uid(struct sock *sk);
1673 extern unsigned long sock_i_ino(struct sock *sk);
1675 static inline struct dst_entry *
1676 __sk_dst_get(struct sock *sk)
1678 return rcu_dereference_check(sk->sk_dst_cache, sock_owned_by_user(sk) ||
1679 lockdep_is_held(&sk->sk_lock.slock));
1682 static inline struct dst_entry *
1683 sk_dst_get(struct sock *sk)
1685 struct dst_entry *dst;
1687 rcu_read_lock();
1688 dst = rcu_dereference(sk->sk_dst_cache);
1689 if (dst)
1690 dst_hold(dst);
1691 rcu_read_unlock();
1692 return dst;
1695 extern void sk_reset_txq(struct sock *sk);
1697 static inline void dst_negative_advice(struct sock *sk)
1699 struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1701 if (dst && dst->ops->negative_advice) {
1702 ndst = dst->ops->negative_advice(dst);
1704 if (ndst != dst) {
1705 rcu_assign_pointer(sk->sk_dst_cache, ndst);
1706 sk_reset_txq(sk);
1711 static inline void
1712 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1714 struct dst_entry *old_dst;
1716 sk_tx_queue_clear(sk);
1718 * This can be called while sk is owned by the caller only,
1719 * with no state that can be checked in a rcu_dereference_check() cond
1721 old_dst = rcu_dereference_raw(sk->sk_dst_cache);
1722 rcu_assign_pointer(sk->sk_dst_cache, dst);
1723 dst_release(old_dst);
1726 static inline void
1727 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1729 spin_lock(&sk->sk_dst_lock);
1730 __sk_dst_set(sk, dst);
1731 spin_unlock(&sk->sk_dst_lock);
1734 static inline void
1735 __sk_dst_reset(struct sock *sk)
1737 __sk_dst_set(sk, NULL);
1740 static inline void
1741 sk_dst_reset(struct sock *sk)
1743 spin_lock(&sk->sk_dst_lock);
1744 __sk_dst_reset(sk);
1745 spin_unlock(&sk->sk_dst_lock);
1748 extern struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1750 extern struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1752 static inline bool sk_can_gso(const struct sock *sk)
1754 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1757 extern void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1759 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1761 sk->sk_route_nocaps |= flags;
1762 sk->sk_route_caps &= ~flags;
1765 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1766 char __user *from, char *to,
1767 int copy, int offset)
1769 if (skb->ip_summed == CHECKSUM_NONE) {
1770 int err = 0;
1771 __wsum csum = csum_and_copy_from_user(from, to, copy, 0, &err);
1772 if (err)
1773 return err;
1774 skb->csum = csum_block_add(skb->csum, csum, offset);
1775 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1776 if (!access_ok(VERIFY_READ, from, copy) ||
1777 __copy_from_user_nocache(to, from, copy))
1778 return -EFAULT;
1779 } else if (copy_from_user(to, from, copy))
1780 return -EFAULT;
1782 return 0;
1785 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1786 char __user *from, int copy)
1788 int err, offset = skb->len;
1790 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1791 copy, offset);
1792 if (err)
1793 __skb_trim(skb, offset);
1795 return err;
1798 static inline int skb_copy_to_page_nocache(struct sock *sk, char __user *from,
1799 struct sk_buff *skb,
1800 struct page *page,
1801 int off, int copy)
1803 int err;
1805 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1806 copy, skb->len);
1807 if (err)
1808 return err;
1810 skb->len += copy;
1811 skb->data_len += copy;
1812 skb->truesize += copy;
1813 sk->sk_wmem_queued += copy;
1814 sk_mem_charge(sk, copy);
1815 return 0;
1818 static inline int skb_copy_to_page(struct sock *sk, char __user *from,
1819 struct sk_buff *skb, struct page *page,
1820 int off, int copy)
1822 if (skb->ip_summed == CHECKSUM_NONE) {
1823 int err = 0;
1824 __wsum csum = csum_and_copy_from_user(from,
1825 page_address(page) + off,
1826 copy, 0, &err);
1827 if (err)
1828 return err;
1829 skb->csum = csum_block_add(skb->csum, csum, skb->len);
1830 } else if (copy_from_user(page_address(page) + off, from, copy))
1831 return -EFAULT;
1833 skb->len += copy;
1834 skb->data_len += copy;
1835 skb->truesize += copy;
1836 sk->sk_wmem_queued += copy;
1837 sk_mem_charge(sk, copy);
1838 return 0;
1842 * sk_wmem_alloc_get - returns write allocations
1843 * @sk: socket
1845 * Returns sk_wmem_alloc minus initial offset of one
1847 static inline int sk_wmem_alloc_get(const struct sock *sk)
1849 return atomic_read(&sk->sk_wmem_alloc) - 1;
1853 * sk_rmem_alloc_get - returns read allocations
1854 * @sk: socket
1856 * Returns sk_rmem_alloc
1858 static inline int sk_rmem_alloc_get(const struct sock *sk)
1860 return atomic_read(&sk->sk_rmem_alloc);
1864 * sk_has_allocations - check if allocations are outstanding
1865 * @sk: socket
1867 * Returns true if socket has write or read allocations
1869 static inline bool sk_has_allocations(const struct sock *sk)
1871 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1875 * wq_has_sleeper - check if there are any waiting processes
1876 * @wq: struct socket_wq
1878 * Returns true if socket_wq has waiting processes
1880 * The purpose of the wq_has_sleeper and sock_poll_wait is to wrap the memory
1881 * barrier call. They were added due to the race found within the tcp code.
1883 * Consider following tcp code paths:
1885 * CPU1 CPU2
1887 * sys_select receive packet
1888 * ... ...
1889 * __add_wait_queue update tp->rcv_nxt
1890 * ... ...
1891 * tp->rcv_nxt check sock_def_readable
1892 * ... {
1893 * schedule rcu_read_lock();
1894 * wq = rcu_dereference(sk->sk_wq);
1895 * if (wq && waitqueue_active(&wq->wait))
1896 * wake_up_interruptible(&wq->wait)
1897 * ...
1900 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1901 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1
1902 * could then endup calling schedule and sleep forever if there are no more
1903 * data on the socket.
1906 static inline bool wq_has_sleeper(struct socket_wq *wq)
1908 /* We need to be sure we are in sync with the
1909 * add_wait_queue modifications to the wait queue.
1911 * This memory barrier is paired in the sock_poll_wait.
1913 smp_mb();
1914 return wq && waitqueue_active(&wq->wait);
1918 * sock_poll_wait - place memory barrier behind the poll_wait call.
1919 * @filp: file
1920 * @wait_address: socket wait queue
1921 * @p: poll_table
1923 * See the comments in the wq_has_sleeper function.
1925 static inline void sock_poll_wait(struct file *filp,
1926 wait_queue_head_t *wait_address, poll_table *p)
1928 if (!poll_does_not_wait(p) && wait_address) {
1929 poll_wait(filp, wait_address, p);
1930 /* We need to be sure we are in sync with the
1931 * socket flags modification.
1933 * This memory barrier is paired in the wq_has_sleeper.
1935 smp_mb();
1940 * Queue a received datagram if it will fit. Stream and sequenced
1941 * protocols can't normally use this as they need to fit buffers in
1942 * and play with them.
1944 * Inlined as it's very short and called for pretty much every
1945 * packet ever received.
1948 static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1950 skb_orphan(skb);
1951 skb->sk = sk;
1952 skb->destructor = sock_wfree;
1954 * We used to take a refcount on sk, but following operation
1955 * is enough to guarantee sk_free() wont free this sock until
1956 * all in-flight packets are completed
1958 atomic_add(skb->truesize, &sk->sk_wmem_alloc);
1961 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
1963 skb_orphan(skb);
1964 skb->sk = sk;
1965 skb->destructor = sock_rfree;
1966 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
1967 sk_mem_charge(sk, skb->truesize);
1970 extern void sk_reset_timer(struct sock *sk, struct timer_list *timer,
1971 unsigned long expires);
1973 extern void sk_stop_timer(struct sock *sk, struct timer_list *timer);
1975 extern int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
1977 extern int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
1980 * Recover an error report and clear atomically
1983 static inline int sock_error(struct sock *sk)
1985 int err;
1986 if (likely(!sk->sk_err))
1987 return 0;
1988 err = xchg(&sk->sk_err, 0);
1989 return -err;
1992 static inline unsigned long sock_wspace(struct sock *sk)
1994 int amt = 0;
1996 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1997 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
1998 if (amt < 0)
1999 amt = 0;
2001 return amt;
2004 static inline void sk_wake_async(struct sock *sk, int how, int band)
2006 if (sock_flag(sk, SOCK_FASYNC))
2007 sock_wake_async(sk->sk_socket, how, band);
2010 #define SOCK_MIN_SNDBUF 2048
2012 * Since sk_rmem_alloc sums skb->truesize, even a small frame might need
2013 * sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak
2015 #define SOCK_MIN_RCVBUF (2048 + sizeof(struct sk_buff))
2017 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2019 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
2020 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2021 sk->sk_sndbuf = max(sk->sk_sndbuf, SOCK_MIN_SNDBUF);
2025 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp);
2028 * sk_page_frag - return an appropriate page_frag
2029 * @sk: socket
2031 * If socket allocation mode allows current thread to sleep, it means its
2032 * safe to use the per task page_frag instead of the per socket one.
2034 static inline struct page_frag *sk_page_frag(struct sock *sk)
2036 if (sk->sk_allocation & __GFP_WAIT)
2037 return &current->task_frag;
2039 return &sk->sk_frag;
2042 extern bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2045 * Default write policy as shown to user space via poll/select/SIGIO
2047 static inline bool sock_writeable(const struct sock *sk)
2049 return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
2052 static inline gfp_t gfp_any(void)
2054 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2057 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2059 return noblock ? 0 : sk->sk_rcvtimeo;
2062 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2064 return noblock ? 0 : sk->sk_sndtimeo;
2067 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2069 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
2072 /* Alas, with timeout socket operations are not restartable.
2073 * Compare this to poll().
2075 static inline int sock_intr_errno(long timeo)
2077 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2080 extern void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2081 struct sk_buff *skb);
2082 extern void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2083 struct sk_buff *skb);
2085 static inline void
2086 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2088 ktime_t kt = skb->tstamp;
2089 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2092 * generate control messages if
2093 * - receive time stamping in software requested (SOCK_RCVTSTAMP
2094 * or SOCK_TIMESTAMPING_RX_SOFTWARE)
2095 * - software time stamp available and wanted
2096 * (SOCK_TIMESTAMPING_SOFTWARE)
2097 * - hardware time stamps available and wanted
2098 * (SOCK_TIMESTAMPING_SYS_HARDWARE or
2099 * SOCK_TIMESTAMPING_RAW_HARDWARE)
2101 if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2102 sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE) ||
2103 (kt.tv64 && sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) ||
2104 (hwtstamps->hwtstamp.tv64 &&
2105 sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE)) ||
2106 (hwtstamps->syststamp.tv64 &&
2107 sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE)))
2108 __sock_recv_timestamp(msg, sk, skb);
2109 else
2110 sk->sk_stamp = kt;
2112 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2113 __sock_recv_wifi_status(msg, sk, skb);
2116 extern void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2117 struct sk_buff *skb);
2119 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2120 struct sk_buff *skb)
2122 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \
2123 (1UL << SOCK_RCVTSTAMP) | \
2124 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE) | \
2125 (1UL << SOCK_TIMESTAMPING_SOFTWARE) | \
2126 (1UL << SOCK_TIMESTAMPING_RAW_HARDWARE) | \
2127 (1UL << SOCK_TIMESTAMPING_SYS_HARDWARE))
2129 if (sk->sk_flags & FLAGS_TS_OR_DROPS)
2130 __sock_recv_ts_and_drops(msg, sk, skb);
2131 else
2132 sk->sk_stamp = skb->tstamp;
2136 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2137 * @sk: socket sending this packet
2138 * @tx_flags: filled with instructions for time stamping
2140 * Currently only depends on SOCK_TIMESTAMPING* flags. Returns error code if
2141 * parameters are invalid.
2143 extern int sock_tx_timestamp(struct sock *sk, __u8 *tx_flags);
2146 * sk_eat_skb - Release a skb if it is no longer needed
2147 * @sk: socket to eat this skb from
2148 * @skb: socket buffer to eat
2149 * @copied_early: flag indicating whether DMA operations copied this data early
2151 * This routine must be called with interrupts disabled or with the socket
2152 * locked so that the sk_buff queue operation is ok.
2154 #ifdef CONFIG_NET_DMA
2155 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, bool copied_early)
2157 __skb_unlink(skb, &sk->sk_receive_queue);
2158 if (!copied_early)
2159 __kfree_skb(skb);
2160 else
2161 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
2163 #else
2164 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, bool copied_early)
2166 __skb_unlink(skb, &sk->sk_receive_queue);
2167 __kfree_skb(skb);
2169 #endif
2171 static inline
2172 struct net *sock_net(const struct sock *sk)
2174 return read_pnet(&sk->sk_net);
2177 static inline
2178 void sock_net_set(struct sock *sk, struct net *net)
2180 write_pnet(&sk->sk_net, net);
2184 * Kernel sockets, f.e. rtnl or icmp_socket, are a part of a namespace.
2185 * They should not hold a reference to a namespace in order to allow
2186 * to stop it.
2187 * Sockets after sk_change_net should be released using sk_release_kernel
2189 static inline void sk_change_net(struct sock *sk, struct net *net)
2191 put_net(sock_net(sk));
2192 sock_net_set(sk, hold_net(net));
2195 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
2197 if (skb->sk) {
2198 struct sock *sk = skb->sk;
2200 skb->destructor = NULL;
2201 skb->sk = NULL;
2202 return sk;
2204 return NULL;
2207 extern void sock_enable_timestamp(struct sock *sk, int flag);
2208 extern int sock_get_timestamp(struct sock *, struct timeval __user *);
2209 extern int sock_get_timestampns(struct sock *, struct timespec __user *);
2212 * Enable debug/info messages
2214 extern int net_msg_warn;
2215 #define NETDEBUG(fmt, args...) \
2216 do { if (net_msg_warn) printk(fmt,##args); } while (0)
2218 #define LIMIT_NETDEBUG(fmt, args...) \
2219 do { if (net_msg_warn && net_ratelimit()) printk(fmt,##args); } while(0)
2221 extern __u32 sysctl_wmem_max;
2222 extern __u32 sysctl_rmem_max;
2224 extern int sysctl_optmem_max;
2226 extern __u32 sysctl_wmem_default;
2227 extern __u32 sysctl_rmem_default;
2229 #endif /* _SOCK_H */