Merge tag 'gpio-v3.13-3' of git://git.kernel.org/pub/scm/linux/kernel/git/linusw...
[linux-2.6.git] / include / net / sock.h
blobe3a18ff0c38b58aec20413489bf7237c54a14a77
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Definitions for the AF_INET socket handler.
8 * Version: @(#)sock.h 1.0.4 05/13/93
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche <flla@stud.uni-sb.de>
15 * Fixes:
16 * Alan Cox : Volatiles in skbuff pointers. See
17 * skbuff comments. May be overdone,
18 * better to prove they can be removed
19 * than the reverse.
20 * Alan Cox : Added a zapped field for tcp to note
21 * a socket is reset and must stay shut up
22 * Alan Cox : New fields for options
23 * Pauline Middelink : identd support
24 * Alan Cox : Eliminate low level recv/recvfrom
25 * David S. Miller : New socket lookup architecture.
26 * Steve Whitehouse: Default routines for sock_ops
27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
28 * protinfo be just a void pointer, as the
29 * protocol specific parts were moved to
30 * respective headers and ipv4/v6, etc now
31 * use private slabcaches for its socks
32 * Pedro Hortas : New flags field for socket options
35 * This program is free software; you can redistribute it and/or
36 * modify it under the terms of the GNU General Public License
37 * as published by the Free Software Foundation; either version
38 * 2 of the License, or (at your option) any later version.
40 #ifndef _SOCK_H
41 #define _SOCK_H
43 #include <linux/hardirq.h>
44 #include <linux/kernel.h>
45 #include <linux/list.h>
46 #include <linux/list_nulls.h>
47 #include <linux/timer.h>
48 #include <linux/cache.h>
49 #include <linux/bitops.h>
50 #include <linux/lockdep.h>
51 #include <linux/netdevice.h>
52 #include <linux/skbuff.h> /* struct sk_buff */
53 #include <linux/mm.h>
54 #include <linux/security.h>
55 #include <linux/slab.h>
56 #include <linux/uaccess.h>
57 #include <linux/memcontrol.h>
58 #include <linux/res_counter.h>
59 #include <linux/static_key.h>
60 #include <linux/aio.h>
61 #include <linux/sched.h>
63 #include <linux/filter.h>
64 #include <linux/rculist_nulls.h>
65 #include <linux/poll.h>
67 #include <linux/atomic.h>
68 #include <net/dst.h>
69 #include <net/checksum.h>
71 struct cgroup;
72 struct cgroup_subsys;
73 #ifdef CONFIG_NET
74 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss);
75 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg);
76 #else
77 static inline
78 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
80 return 0;
82 static inline
83 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
86 #endif
88 * This structure really needs to be cleaned up.
89 * Most of it is for TCP, and not used by any of
90 * the other protocols.
93 /* Define this to get the SOCK_DBG debugging facility. */
94 #define SOCK_DEBUGGING
95 #ifdef SOCK_DEBUGGING
96 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
97 printk(KERN_DEBUG msg); } while (0)
98 #else
99 /* Validate arguments and do nothing */
100 static inline __printf(2, 3)
101 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
104 #endif
106 /* This is the per-socket lock. The spinlock provides a synchronization
107 * between user contexts and software interrupt processing, whereas the
108 * mini-semaphore synchronizes multiple users amongst themselves.
110 typedef struct {
111 spinlock_t slock;
112 int owned;
113 wait_queue_head_t wq;
115 * We express the mutex-alike socket_lock semantics
116 * to the lock validator by explicitly managing
117 * the slock as a lock variant (in addition to
118 * the slock itself):
120 #ifdef CONFIG_DEBUG_LOCK_ALLOC
121 struct lockdep_map dep_map;
122 #endif
123 } socket_lock_t;
125 struct sock;
126 struct proto;
127 struct net;
129 typedef __u32 __bitwise __portpair;
130 typedef __u64 __bitwise __addrpair;
133 * struct sock_common - minimal network layer representation of sockets
134 * @skc_daddr: Foreign IPv4 addr
135 * @skc_rcv_saddr: Bound local IPv4 addr
136 * @skc_hash: hash value used with various protocol lookup tables
137 * @skc_u16hashes: two u16 hash values used by UDP lookup tables
138 * @skc_dport: placeholder for inet_dport/tw_dport
139 * @skc_num: placeholder for inet_num/tw_num
140 * @skc_family: network address family
141 * @skc_state: Connection state
142 * @skc_reuse: %SO_REUSEADDR setting
143 * @skc_reuseport: %SO_REUSEPORT setting
144 * @skc_bound_dev_if: bound device index if != 0
145 * @skc_bind_node: bind hash linkage for various protocol lookup tables
146 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
147 * @skc_prot: protocol handlers inside a network family
148 * @skc_net: reference to the network namespace of this socket
149 * @skc_node: main hash linkage for various protocol lookup tables
150 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
151 * @skc_tx_queue_mapping: tx queue number for this connection
152 * @skc_refcnt: reference count
154 * This is the minimal network layer representation of sockets, the header
155 * for struct sock and struct inet_timewait_sock.
157 struct sock_common {
158 /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
159 * address on 64bit arches : cf INET_MATCH()
161 union {
162 __addrpair skc_addrpair;
163 struct {
164 __be32 skc_daddr;
165 __be32 skc_rcv_saddr;
168 union {
169 unsigned int skc_hash;
170 __u16 skc_u16hashes[2];
172 /* skc_dport && skc_num must be grouped as well */
173 union {
174 __portpair skc_portpair;
175 struct {
176 __be16 skc_dport;
177 __u16 skc_num;
181 unsigned short skc_family;
182 volatile unsigned char skc_state;
183 unsigned char skc_reuse:4;
184 unsigned char skc_reuseport:4;
185 int skc_bound_dev_if;
186 union {
187 struct hlist_node skc_bind_node;
188 struct hlist_nulls_node skc_portaddr_node;
190 struct proto *skc_prot;
191 #ifdef CONFIG_NET_NS
192 struct net *skc_net;
193 #endif
195 #if IS_ENABLED(CONFIG_IPV6)
196 struct in6_addr skc_v6_daddr;
197 struct in6_addr skc_v6_rcv_saddr;
198 #endif
201 * fields between dontcopy_begin/dontcopy_end
202 * are not copied in sock_copy()
204 /* private: */
205 int skc_dontcopy_begin[0];
206 /* public: */
207 union {
208 struct hlist_node skc_node;
209 struct hlist_nulls_node skc_nulls_node;
211 int skc_tx_queue_mapping;
212 atomic_t skc_refcnt;
213 /* private: */
214 int skc_dontcopy_end[0];
215 /* public: */
218 struct cg_proto;
220 * struct sock - network layer representation of sockets
221 * @__sk_common: shared layout with inet_timewait_sock
222 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
223 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
224 * @sk_lock: synchronizer
225 * @sk_rcvbuf: size of receive buffer in bytes
226 * @sk_wq: sock wait queue and async head
227 * @sk_rx_dst: receive input route used by early demux
228 * @sk_dst_cache: destination cache
229 * @sk_dst_lock: destination cache lock
230 * @sk_policy: flow policy
231 * @sk_receive_queue: incoming packets
232 * @sk_wmem_alloc: transmit queue bytes committed
233 * @sk_write_queue: Packet sending queue
234 * @sk_async_wait_queue: DMA copied packets
235 * @sk_omem_alloc: "o" is "option" or "other"
236 * @sk_wmem_queued: persistent queue size
237 * @sk_forward_alloc: space allocated forward
238 * @sk_napi_id: id of the last napi context to receive data for sk
239 * @sk_ll_usec: usecs to busypoll when there is no data
240 * @sk_allocation: allocation mode
241 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
242 * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
243 * @sk_sndbuf: size of send buffer in bytes
244 * @sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
245 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
246 * @sk_no_check: %SO_NO_CHECK setting, whether or not checkup packets
247 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
248 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
249 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
250 * @sk_gso_max_size: Maximum GSO segment size to build
251 * @sk_gso_max_segs: Maximum number of GSO segments
252 * @sk_lingertime: %SO_LINGER l_linger setting
253 * @sk_backlog: always used with the per-socket spinlock held
254 * @sk_callback_lock: used with the callbacks in the end of this struct
255 * @sk_error_queue: rarely used
256 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
257 * IPV6_ADDRFORM for instance)
258 * @sk_err: last error
259 * @sk_err_soft: errors that don't cause failure but are the cause of a
260 * persistent failure not just 'timed out'
261 * @sk_drops: raw/udp drops counter
262 * @sk_ack_backlog: current listen backlog
263 * @sk_max_ack_backlog: listen backlog set in listen()
264 * @sk_priority: %SO_PRIORITY setting
265 * @sk_cgrp_prioidx: socket group's priority map index
266 * @sk_type: socket type (%SOCK_STREAM, etc)
267 * @sk_protocol: which protocol this socket belongs in this network family
268 * @sk_peer_pid: &struct pid for this socket's peer
269 * @sk_peer_cred: %SO_PEERCRED setting
270 * @sk_rcvlowat: %SO_RCVLOWAT setting
271 * @sk_rcvtimeo: %SO_RCVTIMEO setting
272 * @sk_sndtimeo: %SO_SNDTIMEO setting
273 * @sk_rxhash: flow hash received from netif layer
274 * @sk_filter: socket filtering instructions
275 * @sk_protinfo: private area, net family specific, when not using slab
276 * @sk_timer: sock cleanup timer
277 * @sk_stamp: time stamp of last packet received
278 * @sk_socket: Identd and reporting IO signals
279 * @sk_user_data: RPC layer private data
280 * @sk_frag: cached page frag
281 * @sk_peek_off: current peek_offset value
282 * @sk_send_head: front of stuff to transmit
283 * @sk_security: used by security modules
284 * @sk_mark: generic packet mark
285 * @sk_classid: this socket's cgroup classid
286 * @sk_cgrp: this socket's cgroup-specific proto data
287 * @sk_write_pending: a write to stream socket waits to start
288 * @sk_state_change: callback to indicate change in the state of the sock
289 * @sk_data_ready: callback to indicate there is data to be processed
290 * @sk_write_space: callback to indicate there is bf sending space available
291 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
292 * @sk_backlog_rcv: callback to process the backlog
293 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
295 struct sock {
297 * Now struct inet_timewait_sock also uses sock_common, so please just
298 * don't add nothing before this first member (__sk_common) --acme
300 struct sock_common __sk_common;
301 #define sk_node __sk_common.skc_node
302 #define sk_nulls_node __sk_common.skc_nulls_node
303 #define sk_refcnt __sk_common.skc_refcnt
304 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping
306 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin
307 #define sk_dontcopy_end __sk_common.skc_dontcopy_end
308 #define sk_hash __sk_common.skc_hash
309 #define sk_portpair __sk_common.skc_portpair
310 #define sk_num __sk_common.skc_num
311 #define sk_dport __sk_common.skc_dport
312 #define sk_addrpair __sk_common.skc_addrpair
313 #define sk_daddr __sk_common.skc_daddr
314 #define sk_rcv_saddr __sk_common.skc_rcv_saddr
315 #define sk_family __sk_common.skc_family
316 #define sk_state __sk_common.skc_state
317 #define sk_reuse __sk_common.skc_reuse
318 #define sk_reuseport __sk_common.skc_reuseport
319 #define sk_bound_dev_if __sk_common.skc_bound_dev_if
320 #define sk_bind_node __sk_common.skc_bind_node
321 #define sk_prot __sk_common.skc_prot
322 #define sk_net __sk_common.skc_net
323 #define sk_v6_daddr __sk_common.skc_v6_daddr
324 #define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr
326 socket_lock_t sk_lock;
327 struct sk_buff_head sk_receive_queue;
329 * The backlog queue is special, it is always used with
330 * the per-socket spinlock held and requires low latency
331 * access. Therefore we special case it's implementation.
332 * Note : rmem_alloc is in this structure to fill a hole
333 * on 64bit arches, not because its logically part of
334 * backlog.
336 struct {
337 atomic_t rmem_alloc;
338 int len;
339 struct sk_buff *head;
340 struct sk_buff *tail;
341 } sk_backlog;
342 #define sk_rmem_alloc sk_backlog.rmem_alloc
343 int sk_forward_alloc;
344 #ifdef CONFIG_RPS
345 __u32 sk_rxhash;
346 #endif
347 #ifdef CONFIG_NET_RX_BUSY_POLL
348 unsigned int sk_napi_id;
349 unsigned int sk_ll_usec;
350 #endif
351 atomic_t sk_drops;
352 int sk_rcvbuf;
354 struct sk_filter __rcu *sk_filter;
355 struct socket_wq __rcu *sk_wq;
357 #ifdef CONFIG_NET_DMA
358 struct sk_buff_head sk_async_wait_queue;
359 #endif
361 #ifdef CONFIG_XFRM
362 struct xfrm_policy *sk_policy[2];
363 #endif
364 unsigned long sk_flags;
365 struct dst_entry *sk_rx_dst;
366 struct dst_entry __rcu *sk_dst_cache;
367 spinlock_t sk_dst_lock;
368 atomic_t sk_wmem_alloc;
369 atomic_t sk_omem_alloc;
370 int sk_sndbuf;
371 struct sk_buff_head sk_write_queue;
372 kmemcheck_bitfield_begin(flags);
373 unsigned int sk_shutdown : 2,
374 sk_no_check : 2,
375 sk_userlocks : 4,
376 sk_protocol : 8,
377 sk_type : 16;
378 kmemcheck_bitfield_end(flags);
379 int sk_wmem_queued;
380 gfp_t sk_allocation;
381 u32 sk_pacing_rate; /* bytes per second */
382 u32 sk_max_pacing_rate;
383 netdev_features_t sk_route_caps;
384 netdev_features_t sk_route_nocaps;
385 int sk_gso_type;
386 unsigned int sk_gso_max_size;
387 u16 sk_gso_max_segs;
388 int sk_rcvlowat;
389 unsigned long sk_lingertime;
390 struct sk_buff_head sk_error_queue;
391 struct proto *sk_prot_creator;
392 rwlock_t sk_callback_lock;
393 int sk_err,
394 sk_err_soft;
395 unsigned short sk_ack_backlog;
396 unsigned short sk_max_ack_backlog;
397 __u32 sk_priority;
398 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
399 __u32 sk_cgrp_prioidx;
400 #endif
401 struct pid *sk_peer_pid;
402 const struct cred *sk_peer_cred;
403 long sk_rcvtimeo;
404 long sk_sndtimeo;
405 void *sk_protinfo;
406 struct timer_list sk_timer;
407 ktime_t sk_stamp;
408 struct socket *sk_socket;
409 void *sk_user_data;
410 struct page_frag sk_frag;
411 struct sk_buff *sk_send_head;
412 __s32 sk_peek_off;
413 int sk_write_pending;
414 #ifdef CONFIG_SECURITY
415 void *sk_security;
416 #endif
417 __u32 sk_mark;
418 u32 sk_classid;
419 struct cg_proto *sk_cgrp;
420 void (*sk_state_change)(struct sock *sk);
421 void (*sk_data_ready)(struct sock *sk, int bytes);
422 void (*sk_write_space)(struct sock *sk);
423 void (*sk_error_report)(struct sock *sk);
424 int (*sk_backlog_rcv)(struct sock *sk,
425 struct sk_buff *skb);
426 void (*sk_destruct)(struct sock *sk);
429 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
431 #define rcu_dereference_sk_user_data(sk) rcu_dereference(__sk_user_data((sk)))
432 #define rcu_assign_sk_user_data(sk, ptr) rcu_assign_pointer(__sk_user_data((sk)), ptr)
435 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
436 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
437 * on a socket means that the socket will reuse everybody else's port
438 * without looking at the other's sk_reuse value.
441 #define SK_NO_REUSE 0
442 #define SK_CAN_REUSE 1
443 #define SK_FORCE_REUSE 2
445 static inline int sk_peek_offset(struct sock *sk, int flags)
447 if ((flags & MSG_PEEK) && (sk->sk_peek_off >= 0))
448 return sk->sk_peek_off;
449 else
450 return 0;
453 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
455 if (sk->sk_peek_off >= 0) {
456 if (sk->sk_peek_off >= val)
457 sk->sk_peek_off -= val;
458 else
459 sk->sk_peek_off = 0;
463 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
465 if (sk->sk_peek_off >= 0)
466 sk->sk_peek_off += val;
470 * Hashed lists helper routines
472 static inline struct sock *sk_entry(const struct hlist_node *node)
474 return hlist_entry(node, struct sock, sk_node);
477 static inline struct sock *__sk_head(const struct hlist_head *head)
479 return hlist_entry(head->first, struct sock, sk_node);
482 static inline struct sock *sk_head(const struct hlist_head *head)
484 return hlist_empty(head) ? NULL : __sk_head(head);
487 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
489 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
492 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
494 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
497 static inline struct sock *sk_next(const struct sock *sk)
499 return sk->sk_node.next ?
500 hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
503 static inline struct sock *sk_nulls_next(const struct sock *sk)
505 return (!is_a_nulls(sk->sk_nulls_node.next)) ?
506 hlist_nulls_entry(sk->sk_nulls_node.next,
507 struct sock, sk_nulls_node) :
508 NULL;
511 static inline bool sk_unhashed(const struct sock *sk)
513 return hlist_unhashed(&sk->sk_node);
516 static inline bool sk_hashed(const struct sock *sk)
518 return !sk_unhashed(sk);
521 static inline void sk_node_init(struct hlist_node *node)
523 node->pprev = NULL;
526 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
528 node->pprev = NULL;
531 static inline void __sk_del_node(struct sock *sk)
533 __hlist_del(&sk->sk_node);
536 /* NB: equivalent to hlist_del_init_rcu */
537 static inline bool __sk_del_node_init(struct sock *sk)
539 if (sk_hashed(sk)) {
540 __sk_del_node(sk);
541 sk_node_init(&sk->sk_node);
542 return true;
544 return false;
547 /* Grab socket reference count. This operation is valid only
548 when sk is ALREADY grabbed f.e. it is found in hash table
549 or a list and the lookup is made under lock preventing hash table
550 modifications.
553 static inline void sock_hold(struct sock *sk)
555 atomic_inc(&sk->sk_refcnt);
558 /* Ungrab socket in the context, which assumes that socket refcnt
559 cannot hit zero, f.e. it is true in context of any socketcall.
561 static inline void __sock_put(struct sock *sk)
563 atomic_dec(&sk->sk_refcnt);
566 static inline bool sk_del_node_init(struct sock *sk)
568 bool rc = __sk_del_node_init(sk);
570 if (rc) {
571 /* paranoid for a while -acme */
572 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
573 __sock_put(sk);
575 return rc;
577 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk)
579 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
581 if (sk_hashed(sk)) {
582 hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
583 return true;
585 return false;
588 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
590 bool rc = __sk_nulls_del_node_init_rcu(sk);
592 if (rc) {
593 /* paranoid for a while -acme */
594 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
595 __sock_put(sk);
597 return rc;
600 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
602 hlist_add_head(&sk->sk_node, list);
605 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
607 sock_hold(sk);
608 __sk_add_node(sk, list);
611 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
613 sock_hold(sk);
614 hlist_add_head_rcu(&sk->sk_node, list);
617 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
619 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
622 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
624 sock_hold(sk);
625 __sk_nulls_add_node_rcu(sk, list);
628 static inline void __sk_del_bind_node(struct sock *sk)
630 __hlist_del(&sk->sk_bind_node);
633 static inline void sk_add_bind_node(struct sock *sk,
634 struct hlist_head *list)
636 hlist_add_head(&sk->sk_bind_node, list);
639 #define sk_for_each(__sk, list) \
640 hlist_for_each_entry(__sk, list, sk_node)
641 #define sk_for_each_rcu(__sk, list) \
642 hlist_for_each_entry_rcu(__sk, list, sk_node)
643 #define sk_nulls_for_each(__sk, node, list) \
644 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
645 #define sk_nulls_for_each_rcu(__sk, node, list) \
646 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
647 #define sk_for_each_from(__sk) \
648 hlist_for_each_entry_from(__sk, sk_node)
649 #define sk_nulls_for_each_from(__sk, node) \
650 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
651 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
652 #define sk_for_each_safe(__sk, tmp, list) \
653 hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
654 #define sk_for_each_bound(__sk, list) \
655 hlist_for_each_entry(__sk, list, sk_bind_node)
657 static inline struct user_namespace *sk_user_ns(struct sock *sk)
659 /* Careful only use this in a context where these parameters
660 * can not change and must all be valid, such as recvmsg from
661 * userspace.
663 return sk->sk_socket->file->f_cred->user_ns;
666 /* Sock flags */
667 enum sock_flags {
668 SOCK_DEAD,
669 SOCK_DONE,
670 SOCK_URGINLINE,
671 SOCK_KEEPOPEN,
672 SOCK_LINGER,
673 SOCK_DESTROY,
674 SOCK_BROADCAST,
675 SOCK_TIMESTAMP,
676 SOCK_ZAPPED,
677 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
678 SOCK_DBG, /* %SO_DEBUG setting */
679 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
680 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
681 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
682 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
683 SOCK_MEMALLOC, /* VM depends on this socket for swapping */
684 SOCK_TIMESTAMPING_TX_HARDWARE, /* %SOF_TIMESTAMPING_TX_HARDWARE */
685 SOCK_TIMESTAMPING_TX_SOFTWARE, /* %SOF_TIMESTAMPING_TX_SOFTWARE */
686 SOCK_TIMESTAMPING_RX_HARDWARE, /* %SOF_TIMESTAMPING_RX_HARDWARE */
687 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */
688 SOCK_TIMESTAMPING_SOFTWARE, /* %SOF_TIMESTAMPING_SOFTWARE */
689 SOCK_TIMESTAMPING_RAW_HARDWARE, /* %SOF_TIMESTAMPING_RAW_HARDWARE */
690 SOCK_TIMESTAMPING_SYS_HARDWARE, /* %SOF_TIMESTAMPING_SYS_HARDWARE */
691 SOCK_FASYNC, /* fasync() active */
692 SOCK_RXQ_OVFL,
693 SOCK_ZEROCOPY, /* buffers from userspace */
694 SOCK_WIFI_STATUS, /* push wifi status to userspace */
695 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
696 * Will use last 4 bytes of packet sent from
697 * user-space instead.
699 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
700 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
703 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
705 nsk->sk_flags = osk->sk_flags;
708 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
710 __set_bit(flag, &sk->sk_flags);
713 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
715 __clear_bit(flag, &sk->sk_flags);
718 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
720 return test_bit(flag, &sk->sk_flags);
723 #ifdef CONFIG_NET
724 extern struct static_key memalloc_socks;
725 static inline int sk_memalloc_socks(void)
727 return static_key_false(&memalloc_socks);
729 #else
731 static inline int sk_memalloc_socks(void)
733 return 0;
736 #endif
738 static inline gfp_t sk_gfp_atomic(struct sock *sk, gfp_t gfp_mask)
740 return GFP_ATOMIC | (sk->sk_allocation & __GFP_MEMALLOC);
743 static inline void sk_acceptq_removed(struct sock *sk)
745 sk->sk_ack_backlog--;
748 static inline void sk_acceptq_added(struct sock *sk)
750 sk->sk_ack_backlog++;
753 static inline bool sk_acceptq_is_full(const struct sock *sk)
755 return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
759 * Compute minimal free write space needed to queue new packets.
761 static inline int sk_stream_min_wspace(const struct sock *sk)
763 return sk->sk_wmem_queued >> 1;
766 static inline int sk_stream_wspace(const struct sock *sk)
768 return sk->sk_sndbuf - sk->sk_wmem_queued;
771 void sk_stream_write_space(struct sock *sk);
773 /* OOB backlog add */
774 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
776 /* dont let skb dst not refcounted, we are going to leave rcu lock */
777 skb_dst_force(skb);
779 if (!sk->sk_backlog.tail)
780 sk->sk_backlog.head = skb;
781 else
782 sk->sk_backlog.tail->next = skb;
784 sk->sk_backlog.tail = skb;
785 skb->next = NULL;
789 * Take into account size of receive queue and backlog queue
790 * Do not take into account this skb truesize,
791 * to allow even a single big packet to come.
793 static inline bool sk_rcvqueues_full(const struct sock *sk, const struct sk_buff *skb,
794 unsigned int limit)
796 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
798 return qsize > limit;
801 /* The per-socket spinlock must be held here. */
802 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
803 unsigned int limit)
805 if (sk_rcvqueues_full(sk, skb, limit))
806 return -ENOBUFS;
808 __sk_add_backlog(sk, skb);
809 sk->sk_backlog.len += skb->truesize;
810 return 0;
813 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
815 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
817 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
818 return __sk_backlog_rcv(sk, skb);
820 return sk->sk_backlog_rcv(sk, skb);
823 static inline void sock_rps_record_flow(const struct sock *sk)
825 #ifdef CONFIG_RPS
826 struct rps_sock_flow_table *sock_flow_table;
828 rcu_read_lock();
829 sock_flow_table = rcu_dereference(rps_sock_flow_table);
830 rps_record_sock_flow(sock_flow_table, sk->sk_rxhash);
831 rcu_read_unlock();
832 #endif
835 static inline void sock_rps_reset_flow(const struct sock *sk)
837 #ifdef CONFIG_RPS
838 struct rps_sock_flow_table *sock_flow_table;
840 rcu_read_lock();
841 sock_flow_table = rcu_dereference(rps_sock_flow_table);
842 rps_reset_sock_flow(sock_flow_table, sk->sk_rxhash);
843 rcu_read_unlock();
844 #endif
847 static inline void sock_rps_save_rxhash(struct sock *sk,
848 const struct sk_buff *skb)
850 #ifdef CONFIG_RPS
851 if (unlikely(sk->sk_rxhash != skb->rxhash)) {
852 sock_rps_reset_flow(sk);
853 sk->sk_rxhash = skb->rxhash;
855 #endif
858 static inline void sock_rps_reset_rxhash(struct sock *sk)
860 #ifdef CONFIG_RPS
861 sock_rps_reset_flow(sk);
862 sk->sk_rxhash = 0;
863 #endif
866 #define sk_wait_event(__sk, __timeo, __condition) \
867 ({ int __rc; \
868 release_sock(__sk); \
869 __rc = __condition; \
870 if (!__rc) { \
871 *(__timeo) = schedule_timeout(*(__timeo)); \
873 lock_sock(__sk); \
874 __rc = __condition; \
875 __rc; \
878 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
879 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
880 void sk_stream_wait_close(struct sock *sk, long timeo_p);
881 int sk_stream_error(struct sock *sk, int flags, int err);
882 void sk_stream_kill_queues(struct sock *sk);
883 void sk_set_memalloc(struct sock *sk);
884 void sk_clear_memalloc(struct sock *sk);
886 int sk_wait_data(struct sock *sk, long *timeo);
888 struct request_sock_ops;
889 struct timewait_sock_ops;
890 struct inet_hashinfo;
891 struct raw_hashinfo;
892 struct module;
895 * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
896 * un-modified. Special care is taken when initializing object to zero.
898 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
900 if (offsetof(struct sock, sk_node.next) != 0)
901 memset(sk, 0, offsetof(struct sock, sk_node.next));
902 memset(&sk->sk_node.pprev, 0,
903 size - offsetof(struct sock, sk_node.pprev));
906 /* Networking protocol blocks we attach to sockets.
907 * socket layer -> transport layer interface
908 * transport -> network interface is defined by struct inet_proto
910 struct proto {
911 void (*close)(struct sock *sk,
912 long timeout);
913 int (*connect)(struct sock *sk,
914 struct sockaddr *uaddr,
915 int addr_len);
916 int (*disconnect)(struct sock *sk, int flags);
918 struct sock * (*accept)(struct sock *sk, int flags, int *err);
920 int (*ioctl)(struct sock *sk, int cmd,
921 unsigned long arg);
922 int (*init)(struct sock *sk);
923 void (*destroy)(struct sock *sk);
924 void (*shutdown)(struct sock *sk, int how);
925 int (*setsockopt)(struct sock *sk, int level,
926 int optname, char __user *optval,
927 unsigned int optlen);
928 int (*getsockopt)(struct sock *sk, int level,
929 int optname, char __user *optval,
930 int __user *option);
931 #ifdef CONFIG_COMPAT
932 int (*compat_setsockopt)(struct sock *sk,
933 int level,
934 int optname, char __user *optval,
935 unsigned int optlen);
936 int (*compat_getsockopt)(struct sock *sk,
937 int level,
938 int optname, char __user *optval,
939 int __user *option);
940 int (*compat_ioctl)(struct sock *sk,
941 unsigned int cmd, unsigned long arg);
942 #endif
943 int (*sendmsg)(struct kiocb *iocb, struct sock *sk,
944 struct msghdr *msg, size_t len);
945 int (*recvmsg)(struct kiocb *iocb, struct sock *sk,
946 struct msghdr *msg,
947 size_t len, int noblock, int flags,
948 int *addr_len);
949 int (*sendpage)(struct sock *sk, struct page *page,
950 int offset, size_t size, int flags);
951 int (*bind)(struct sock *sk,
952 struct sockaddr *uaddr, int addr_len);
954 int (*backlog_rcv) (struct sock *sk,
955 struct sk_buff *skb);
957 void (*release_cb)(struct sock *sk);
958 void (*mtu_reduced)(struct sock *sk);
960 /* Keeping track of sk's, looking them up, and port selection methods. */
961 void (*hash)(struct sock *sk);
962 void (*unhash)(struct sock *sk);
963 void (*rehash)(struct sock *sk);
964 int (*get_port)(struct sock *sk, unsigned short snum);
965 void (*clear_sk)(struct sock *sk, int size);
967 /* Keeping track of sockets in use */
968 #ifdef CONFIG_PROC_FS
969 unsigned int inuse_idx;
970 #endif
972 bool (*stream_memory_free)(const struct sock *sk);
973 /* Memory pressure */
974 void (*enter_memory_pressure)(struct sock *sk);
975 atomic_long_t *memory_allocated; /* Current allocated memory. */
976 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
978 * Pressure flag: try to collapse.
979 * Technical note: it is used by multiple contexts non atomically.
980 * All the __sk_mem_schedule() is of this nature: accounting
981 * is strict, actions are advisory and have some latency.
983 int *memory_pressure;
984 long *sysctl_mem;
985 int *sysctl_wmem;
986 int *sysctl_rmem;
987 int max_header;
988 bool no_autobind;
990 struct kmem_cache *slab;
991 unsigned int obj_size;
992 int slab_flags;
994 struct percpu_counter *orphan_count;
996 struct request_sock_ops *rsk_prot;
997 struct timewait_sock_ops *twsk_prot;
999 union {
1000 struct inet_hashinfo *hashinfo;
1001 struct udp_table *udp_table;
1002 struct raw_hashinfo *raw_hash;
1003 } h;
1005 struct module *owner;
1007 char name[32];
1009 struct list_head node;
1010 #ifdef SOCK_REFCNT_DEBUG
1011 atomic_t socks;
1012 #endif
1013 #ifdef CONFIG_MEMCG_KMEM
1015 * cgroup specific init/deinit functions. Called once for all
1016 * protocols that implement it, from cgroups populate function.
1017 * This function has to setup any files the protocol want to
1018 * appear in the kmem cgroup filesystem.
1020 int (*init_cgroup)(struct mem_cgroup *memcg,
1021 struct cgroup_subsys *ss);
1022 void (*destroy_cgroup)(struct mem_cgroup *memcg);
1023 struct cg_proto *(*proto_cgroup)(struct mem_cgroup *memcg);
1024 #endif
1028 * Bits in struct cg_proto.flags
1030 enum cg_proto_flags {
1031 /* Currently active and new sockets should be assigned to cgroups */
1032 MEMCG_SOCK_ACTIVE,
1033 /* It was ever activated; we must disarm static keys on destruction */
1034 MEMCG_SOCK_ACTIVATED,
1037 struct cg_proto {
1038 void (*enter_memory_pressure)(struct sock *sk);
1039 struct res_counter memory_allocated; /* Current allocated memory. */
1040 struct percpu_counter sockets_allocated; /* Current number of sockets. */
1041 int memory_pressure;
1042 long sysctl_mem[3];
1043 unsigned long flags;
1045 * memcg field is used to find which memcg we belong directly
1046 * Each memcg struct can hold more than one cg_proto, so container_of
1047 * won't really cut.
1049 * The elegant solution would be having an inverse function to
1050 * proto_cgroup in struct proto, but that means polluting the structure
1051 * for everybody, instead of just for memcg users.
1053 struct mem_cgroup *memcg;
1056 int proto_register(struct proto *prot, int alloc_slab);
1057 void proto_unregister(struct proto *prot);
1059 static inline bool memcg_proto_active(struct cg_proto *cg_proto)
1061 return test_bit(MEMCG_SOCK_ACTIVE, &cg_proto->flags);
1064 static inline bool memcg_proto_activated(struct cg_proto *cg_proto)
1066 return test_bit(MEMCG_SOCK_ACTIVATED, &cg_proto->flags);
1069 #ifdef SOCK_REFCNT_DEBUG
1070 static inline void sk_refcnt_debug_inc(struct sock *sk)
1072 atomic_inc(&sk->sk_prot->socks);
1075 static inline void sk_refcnt_debug_dec(struct sock *sk)
1077 atomic_dec(&sk->sk_prot->socks);
1078 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1079 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1082 static inline void sk_refcnt_debug_release(const struct sock *sk)
1084 if (atomic_read(&sk->sk_refcnt) != 1)
1085 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1086 sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
1088 #else /* SOCK_REFCNT_DEBUG */
1089 #define sk_refcnt_debug_inc(sk) do { } while (0)
1090 #define sk_refcnt_debug_dec(sk) do { } while (0)
1091 #define sk_refcnt_debug_release(sk) do { } while (0)
1092 #endif /* SOCK_REFCNT_DEBUG */
1094 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_NET)
1095 extern struct static_key memcg_socket_limit_enabled;
1096 static inline struct cg_proto *parent_cg_proto(struct proto *proto,
1097 struct cg_proto *cg_proto)
1099 return proto->proto_cgroup(parent_mem_cgroup(cg_proto->memcg));
1101 #define mem_cgroup_sockets_enabled static_key_false(&memcg_socket_limit_enabled)
1102 #else
1103 #define mem_cgroup_sockets_enabled 0
1104 static inline struct cg_proto *parent_cg_proto(struct proto *proto,
1105 struct cg_proto *cg_proto)
1107 return NULL;
1109 #endif
1111 static inline bool sk_stream_memory_free(const struct sock *sk)
1113 if (sk->sk_wmem_queued >= sk->sk_sndbuf)
1114 return false;
1116 return sk->sk_prot->stream_memory_free ?
1117 sk->sk_prot->stream_memory_free(sk) : true;
1120 static inline bool sk_stream_is_writeable(const struct sock *sk)
1122 return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1123 sk_stream_memory_free(sk);
1127 static inline bool sk_has_memory_pressure(const struct sock *sk)
1129 return sk->sk_prot->memory_pressure != NULL;
1132 static inline bool sk_under_memory_pressure(const struct sock *sk)
1134 if (!sk->sk_prot->memory_pressure)
1135 return false;
1137 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1138 return !!sk->sk_cgrp->memory_pressure;
1140 return !!*sk->sk_prot->memory_pressure;
1143 static inline void sk_leave_memory_pressure(struct sock *sk)
1145 int *memory_pressure = sk->sk_prot->memory_pressure;
1147 if (!memory_pressure)
1148 return;
1150 if (*memory_pressure)
1151 *memory_pressure = 0;
1153 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1154 struct cg_proto *cg_proto = sk->sk_cgrp;
1155 struct proto *prot = sk->sk_prot;
1157 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1158 if (cg_proto->memory_pressure)
1159 cg_proto->memory_pressure = 0;
1164 static inline void sk_enter_memory_pressure(struct sock *sk)
1166 if (!sk->sk_prot->enter_memory_pressure)
1167 return;
1169 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1170 struct cg_proto *cg_proto = sk->sk_cgrp;
1171 struct proto *prot = sk->sk_prot;
1173 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1174 cg_proto->enter_memory_pressure(sk);
1177 sk->sk_prot->enter_memory_pressure(sk);
1180 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1182 long *prot = sk->sk_prot->sysctl_mem;
1183 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1184 prot = sk->sk_cgrp->sysctl_mem;
1185 return prot[index];
1188 static inline void memcg_memory_allocated_add(struct cg_proto *prot,
1189 unsigned long amt,
1190 int *parent_status)
1192 struct res_counter *fail;
1193 int ret;
1195 ret = res_counter_charge_nofail(&prot->memory_allocated,
1196 amt << PAGE_SHIFT, &fail);
1197 if (ret < 0)
1198 *parent_status = OVER_LIMIT;
1201 static inline void memcg_memory_allocated_sub(struct cg_proto *prot,
1202 unsigned long amt)
1204 res_counter_uncharge(&prot->memory_allocated, amt << PAGE_SHIFT);
1207 static inline u64 memcg_memory_allocated_read(struct cg_proto *prot)
1209 u64 ret;
1210 ret = res_counter_read_u64(&prot->memory_allocated, RES_USAGE);
1211 return ret >> PAGE_SHIFT;
1214 static inline long
1215 sk_memory_allocated(const struct sock *sk)
1217 struct proto *prot = sk->sk_prot;
1218 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1219 return memcg_memory_allocated_read(sk->sk_cgrp);
1221 return atomic_long_read(prot->memory_allocated);
1224 static inline long
1225 sk_memory_allocated_add(struct sock *sk, int amt, int *parent_status)
1227 struct proto *prot = sk->sk_prot;
1229 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1230 memcg_memory_allocated_add(sk->sk_cgrp, amt, parent_status);
1231 /* update the root cgroup regardless */
1232 atomic_long_add_return(amt, prot->memory_allocated);
1233 return memcg_memory_allocated_read(sk->sk_cgrp);
1236 return atomic_long_add_return(amt, prot->memory_allocated);
1239 static inline void
1240 sk_memory_allocated_sub(struct sock *sk, int amt)
1242 struct proto *prot = sk->sk_prot;
1244 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1245 memcg_memory_allocated_sub(sk->sk_cgrp, amt);
1247 atomic_long_sub(amt, prot->memory_allocated);
1250 static inline void sk_sockets_allocated_dec(struct sock *sk)
1252 struct proto *prot = sk->sk_prot;
1254 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1255 struct cg_proto *cg_proto = sk->sk_cgrp;
1257 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1258 percpu_counter_dec(&cg_proto->sockets_allocated);
1261 percpu_counter_dec(prot->sockets_allocated);
1264 static inline void sk_sockets_allocated_inc(struct sock *sk)
1266 struct proto *prot = sk->sk_prot;
1268 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1269 struct cg_proto *cg_proto = sk->sk_cgrp;
1271 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1272 percpu_counter_inc(&cg_proto->sockets_allocated);
1275 percpu_counter_inc(prot->sockets_allocated);
1278 static inline int
1279 sk_sockets_allocated_read_positive(struct sock *sk)
1281 struct proto *prot = sk->sk_prot;
1283 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1284 return percpu_counter_read_positive(&sk->sk_cgrp->sockets_allocated);
1286 return percpu_counter_read_positive(prot->sockets_allocated);
1289 static inline int
1290 proto_sockets_allocated_sum_positive(struct proto *prot)
1292 return percpu_counter_sum_positive(prot->sockets_allocated);
1295 static inline long
1296 proto_memory_allocated(struct proto *prot)
1298 return atomic_long_read(prot->memory_allocated);
1301 static inline bool
1302 proto_memory_pressure(struct proto *prot)
1304 if (!prot->memory_pressure)
1305 return false;
1306 return !!*prot->memory_pressure;
1310 #ifdef CONFIG_PROC_FS
1311 /* Called with local bh disabled */
1312 void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1313 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1314 #else
1315 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1316 int inc)
1319 #endif
1322 /* With per-bucket locks this operation is not-atomic, so that
1323 * this version is not worse.
1325 static inline void __sk_prot_rehash(struct sock *sk)
1327 sk->sk_prot->unhash(sk);
1328 sk->sk_prot->hash(sk);
1331 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size);
1333 /* About 10 seconds */
1334 #define SOCK_DESTROY_TIME (10*HZ)
1336 /* Sockets 0-1023 can't be bound to unless you are superuser */
1337 #define PROT_SOCK 1024
1339 #define SHUTDOWN_MASK 3
1340 #define RCV_SHUTDOWN 1
1341 #define SEND_SHUTDOWN 2
1343 #define SOCK_SNDBUF_LOCK 1
1344 #define SOCK_RCVBUF_LOCK 2
1345 #define SOCK_BINDADDR_LOCK 4
1346 #define SOCK_BINDPORT_LOCK 8
1348 /* sock_iocb: used to kick off async processing of socket ios */
1349 struct sock_iocb {
1350 struct list_head list;
1352 int flags;
1353 int size;
1354 struct socket *sock;
1355 struct sock *sk;
1356 struct scm_cookie *scm;
1357 struct msghdr *msg, async_msg;
1358 struct kiocb *kiocb;
1361 static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb)
1363 return (struct sock_iocb *)iocb->private;
1366 static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si)
1368 return si->kiocb;
1371 struct socket_alloc {
1372 struct socket socket;
1373 struct inode vfs_inode;
1376 static inline struct socket *SOCKET_I(struct inode *inode)
1378 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1381 static inline struct inode *SOCK_INODE(struct socket *socket)
1383 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1387 * Functions for memory accounting
1389 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1390 void __sk_mem_reclaim(struct sock *sk);
1392 #define SK_MEM_QUANTUM ((int)PAGE_SIZE)
1393 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1394 #define SK_MEM_SEND 0
1395 #define SK_MEM_RECV 1
1397 static inline int sk_mem_pages(int amt)
1399 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1402 static inline bool sk_has_account(struct sock *sk)
1404 /* return true if protocol supports memory accounting */
1405 return !!sk->sk_prot->memory_allocated;
1408 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1410 if (!sk_has_account(sk))
1411 return true;
1412 return size <= sk->sk_forward_alloc ||
1413 __sk_mem_schedule(sk, size, SK_MEM_SEND);
1416 static inline bool
1417 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1419 if (!sk_has_account(sk))
1420 return true;
1421 return size<= sk->sk_forward_alloc ||
1422 __sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1423 skb_pfmemalloc(skb);
1426 static inline void sk_mem_reclaim(struct sock *sk)
1428 if (!sk_has_account(sk))
1429 return;
1430 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1431 __sk_mem_reclaim(sk);
1434 static inline void sk_mem_reclaim_partial(struct sock *sk)
1436 if (!sk_has_account(sk))
1437 return;
1438 if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1439 __sk_mem_reclaim(sk);
1442 static inline void sk_mem_charge(struct sock *sk, int size)
1444 if (!sk_has_account(sk))
1445 return;
1446 sk->sk_forward_alloc -= size;
1449 static inline void sk_mem_uncharge(struct sock *sk, int size)
1451 if (!sk_has_account(sk))
1452 return;
1453 sk->sk_forward_alloc += size;
1456 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1458 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1459 sk->sk_wmem_queued -= skb->truesize;
1460 sk_mem_uncharge(sk, skb->truesize);
1461 __kfree_skb(skb);
1464 /* Used by processes to "lock" a socket state, so that
1465 * interrupts and bottom half handlers won't change it
1466 * from under us. It essentially blocks any incoming
1467 * packets, so that we won't get any new data or any
1468 * packets that change the state of the socket.
1470 * While locked, BH processing will add new packets to
1471 * the backlog queue. This queue is processed by the
1472 * owner of the socket lock right before it is released.
1474 * Since ~2.3.5 it is also exclusive sleep lock serializing
1475 * accesses from user process context.
1477 #define sock_owned_by_user(sk) ((sk)->sk_lock.owned)
1480 * Macro so as to not evaluate some arguments when
1481 * lockdep is not enabled.
1483 * Mark both the sk_lock and the sk_lock.slock as a
1484 * per-address-family lock class.
1486 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \
1487 do { \
1488 sk->sk_lock.owned = 0; \
1489 init_waitqueue_head(&sk->sk_lock.wq); \
1490 spin_lock_init(&(sk)->sk_lock.slock); \
1491 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \
1492 sizeof((sk)->sk_lock)); \
1493 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \
1494 (skey), (sname)); \
1495 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
1496 } while (0)
1498 void lock_sock_nested(struct sock *sk, int subclass);
1500 static inline void lock_sock(struct sock *sk)
1502 lock_sock_nested(sk, 0);
1505 void release_sock(struct sock *sk);
1507 /* BH context may only use the following locking interface. */
1508 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
1509 #define bh_lock_sock_nested(__sk) \
1510 spin_lock_nested(&((__sk)->sk_lock.slock), \
1511 SINGLE_DEPTH_NESTING)
1512 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
1514 bool lock_sock_fast(struct sock *sk);
1516 * unlock_sock_fast - complement of lock_sock_fast
1517 * @sk: socket
1518 * @slow: slow mode
1520 * fast unlock socket for user context.
1521 * If slow mode is on, we call regular release_sock()
1523 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1525 if (slow)
1526 release_sock(sk);
1527 else
1528 spin_unlock_bh(&sk->sk_lock.slock);
1532 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1533 struct proto *prot);
1534 void sk_free(struct sock *sk);
1535 void sk_release_kernel(struct sock *sk);
1536 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1538 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1539 gfp_t priority);
1540 struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1541 gfp_t priority);
1542 void sock_wfree(struct sk_buff *skb);
1543 void skb_orphan_partial(struct sk_buff *skb);
1544 void sock_rfree(struct sk_buff *skb);
1545 void sock_edemux(struct sk_buff *skb);
1547 int sock_setsockopt(struct socket *sock, int level, int op,
1548 char __user *optval, unsigned int optlen);
1550 int sock_getsockopt(struct socket *sock, int level, int op,
1551 char __user *optval, int __user *optlen);
1552 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1553 int noblock, int *errcode);
1554 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1555 unsigned long data_len, int noblock,
1556 int *errcode, int max_page_order);
1557 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1558 void sock_kfree_s(struct sock *sk, void *mem, int size);
1559 void sk_send_sigurg(struct sock *sk);
1562 * Functions to fill in entries in struct proto_ops when a protocol
1563 * does not implement a particular function.
1565 int sock_no_bind(struct socket *, struct sockaddr *, int);
1566 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1567 int sock_no_socketpair(struct socket *, struct socket *);
1568 int sock_no_accept(struct socket *, struct socket *, int);
1569 int sock_no_getname(struct socket *, struct sockaddr *, int *, int);
1570 unsigned int sock_no_poll(struct file *, struct socket *,
1571 struct poll_table_struct *);
1572 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1573 int sock_no_listen(struct socket *, int);
1574 int sock_no_shutdown(struct socket *, int);
1575 int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *);
1576 int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int);
1577 int sock_no_sendmsg(struct kiocb *, struct socket *, struct msghdr *, size_t);
1578 int sock_no_recvmsg(struct kiocb *, struct socket *, struct msghdr *, size_t,
1579 int);
1580 int sock_no_mmap(struct file *file, struct socket *sock,
1581 struct vm_area_struct *vma);
1582 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1583 size_t size, int flags);
1586 * Functions to fill in entries in struct proto_ops when a protocol
1587 * uses the inet style.
1589 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1590 char __user *optval, int __user *optlen);
1591 int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1592 struct msghdr *msg, size_t size, int flags);
1593 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1594 char __user *optval, unsigned int optlen);
1595 int compat_sock_common_getsockopt(struct socket *sock, int level,
1596 int optname, char __user *optval, int __user *optlen);
1597 int compat_sock_common_setsockopt(struct socket *sock, int level,
1598 int optname, char __user *optval, unsigned int optlen);
1600 void sk_common_release(struct sock *sk);
1603 * Default socket callbacks and setup code
1606 /* Initialise core socket variables */
1607 void sock_init_data(struct socket *sock, struct sock *sk);
1609 void sk_filter_release_rcu(struct rcu_head *rcu);
1612 * sk_filter_release - release a socket filter
1613 * @fp: filter to remove
1615 * Remove a filter from a socket and release its resources.
1618 static inline void sk_filter_release(struct sk_filter *fp)
1620 if (atomic_dec_and_test(&fp->refcnt))
1621 call_rcu(&fp->rcu, sk_filter_release_rcu);
1624 static inline void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1626 atomic_sub(sk_filter_size(fp->len), &sk->sk_omem_alloc);
1627 sk_filter_release(fp);
1630 static inline void sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1632 atomic_inc(&fp->refcnt);
1633 atomic_add(sk_filter_size(fp->len), &sk->sk_omem_alloc);
1637 * Socket reference counting postulates.
1639 * * Each user of socket SHOULD hold a reference count.
1640 * * Each access point to socket (an hash table bucket, reference from a list,
1641 * running timer, skb in flight MUST hold a reference count.
1642 * * When reference count hits 0, it means it will never increase back.
1643 * * When reference count hits 0, it means that no references from
1644 * outside exist to this socket and current process on current CPU
1645 * is last user and may/should destroy this socket.
1646 * * sk_free is called from any context: process, BH, IRQ. When
1647 * it is called, socket has no references from outside -> sk_free
1648 * may release descendant resources allocated by the socket, but
1649 * to the time when it is called, socket is NOT referenced by any
1650 * hash tables, lists etc.
1651 * * Packets, delivered from outside (from network or from another process)
1652 * and enqueued on receive/error queues SHOULD NOT grab reference count,
1653 * when they sit in queue. Otherwise, packets will leak to hole, when
1654 * socket is looked up by one cpu and unhasing is made by another CPU.
1655 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
1656 * (leak to backlog). Packet socket does all the processing inside
1657 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1658 * use separate SMP lock, so that they are prone too.
1661 /* Ungrab socket and destroy it, if it was the last reference. */
1662 static inline void sock_put(struct sock *sk)
1664 if (atomic_dec_and_test(&sk->sk_refcnt))
1665 sk_free(sk);
1667 /* Generic version of sock_put(), dealing with all sockets
1668 * (TCP_TIMEWAIT, ESTABLISHED...)
1670 void sock_gen_put(struct sock *sk);
1672 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested);
1674 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1676 sk->sk_tx_queue_mapping = tx_queue;
1679 static inline void sk_tx_queue_clear(struct sock *sk)
1681 sk->sk_tx_queue_mapping = -1;
1684 static inline int sk_tx_queue_get(const struct sock *sk)
1686 return sk ? sk->sk_tx_queue_mapping : -1;
1689 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1691 sk_tx_queue_clear(sk);
1692 sk->sk_socket = sock;
1695 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1697 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1698 return &rcu_dereference_raw(sk->sk_wq)->wait;
1700 /* Detach socket from process context.
1701 * Announce socket dead, detach it from wait queue and inode.
1702 * Note that parent inode held reference count on this struct sock,
1703 * we do not release it in this function, because protocol
1704 * probably wants some additional cleanups or even continuing
1705 * to work with this socket (TCP).
1707 static inline void sock_orphan(struct sock *sk)
1709 write_lock_bh(&sk->sk_callback_lock);
1710 sock_set_flag(sk, SOCK_DEAD);
1711 sk_set_socket(sk, NULL);
1712 sk->sk_wq = NULL;
1713 write_unlock_bh(&sk->sk_callback_lock);
1716 static inline void sock_graft(struct sock *sk, struct socket *parent)
1718 write_lock_bh(&sk->sk_callback_lock);
1719 sk->sk_wq = parent->wq;
1720 parent->sk = sk;
1721 sk_set_socket(sk, parent);
1722 security_sock_graft(sk, parent);
1723 write_unlock_bh(&sk->sk_callback_lock);
1726 kuid_t sock_i_uid(struct sock *sk);
1727 unsigned long sock_i_ino(struct sock *sk);
1729 static inline struct dst_entry *
1730 __sk_dst_get(struct sock *sk)
1732 return rcu_dereference_check(sk->sk_dst_cache, sock_owned_by_user(sk) ||
1733 lockdep_is_held(&sk->sk_lock.slock));
1736 static inline struct dst_entry *
1737 sk_dst_get(struct sock *sk)
1739 struct dst_entry *dst;
1741 rcu_read_lock();
1742 dst = rcu_dereference(sk->sk_dst_cache);
1743 if (dst)
1744 dst_hold(dst);
1745 rcu_read_unlock();
1746 return dst;
1749 static inline void dst_negative_advice(struct sock *sk)
1751 struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1753 if (dst && dst->ops->negative_advice) {
1754 ndst = dst->ops->negative_advice(dst);
1756 if (ndst != dst) {
1757 rcu_assign_pointer(sk->sk_dst_cache, ndst);
1758 sk_tx_queue_clear(sk);
1763 static inline void
1764 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1766 struct dst_entry *old_dst;
1768 sk_tx_queue_clear(sk);
1770 * This can be called while sk is owned by the caller only,
1771 * with no state that can be checked in a rcu_dereference_check() cond
1773 old_dst = rcu_dereference_raw(sk->sk_dst_cache);
1774 rcu_assign_pointer(sk->sk_dst_cache, dst);
1775 dst_release(old_dst);
1778 static inline void
1779 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1781 spin_lock(&sk->sk_dst_lock);
1782 __sk_dst_set(sk, dst);
1783 spin_unlock(&sk->sk_dst_lock);
1786 static inline void
1787 __sk_dst_reset(struct sock *sk)
1789 __sk_dst_set(sk, NULL);
1792 static inline void
1793 sk_dst_reset(struct sock *sk)
1795 spin_lock(&sk->sk_dst_lock);
1796 __sk_dst_reset(sk);
1797 spin_unlock(&sk->sk_dst_lock);
1800 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1802 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1804 static inline bool sk_can_gso(const struct sock *sk)
1806 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1809 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1811 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1813 sk->sk_route_nocaps |= flags;
1814 sk->sk_route_caps &= ~flags;
1817 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1818 char __user *from, char *to,
1819 int copy, int offset)
1821 if (skb->ip_summed == CHECKSUM_NONE) {
1822 int err = 0;
1823 __wsum csum = csum_and_copy_from_user(from, to, copy, 0, &err);
1824 if (err)
1825 return err;
1826 skb->csum = csum_block_add(skb->csum, csum, offset);
1827 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1828 if (!access_ok(VERIFY_READ, from, copy) ||
1829 __copy_from_user_nocache(to, from, copy))
1830 return -EFAULT;
1831 } else if (copy_from_user(to, from, copy))
1832 return -EFAULT;
1834 return 0;
1837 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1838 char __user *from, int copy)
1840 int err, offset = skb->len;
1842 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1843 copy, offset);
1844 if (err)
1845 __skb_trim(skb, offset);
1847 return err;
1850 static inline int skb_copy_to_page_nocache(struct sock *sk, char __user *from,
1851 struct sk_buff *skb,
1852 struct page *page,
1853 int off, int copy)
1855 int err;
1857 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1858 copy, skb->len);
1859 if (err)
1860 return err;
1862 skb->len += copy;
1863 skb->data_len += copy;
1864 skb->truesize += copy;
1865 sk->sk_wmem_queued += copy;
1866 sk_mem_charge(sk, copy);
1867 return 0;
1870 static inline int skb_copy_to_page(struct sock *sk, char __user *from,
1871 struct sk_buff *skb, struct page *page,
1872 int off, int copy)
1874 if (skb->ip_summed == CHECKSUM_NONE) {
1875 int err = 0;
1876 __wsum csum = csum_and_copy_from_user(from,
1877 page_address(page) + off,
1878 copy, 0, &err);
1879 if (err)
1880 return err;
1881 skb->csum = csum_block_add(skb->csum, csum, skb->len);
1882 } else if (copy_from_user(page_address(page) + off, from, copy))
1883 return -EFAULT;
1885 skb->len += copy;
1886 skb->data_len += copy;
1887 skb->truesize += copy;
1888 sk->sk_wmem_queued += copy;
1889 sk_mem_charge(sk, copy);
1890 return 0;
1894 * sk_wmem_alloc_get - returns write allocations
1895 * @sk: socket
1897 * Returns sk_wmem_alloc minus initial offset of one
1899 static inline int sk_wmem_alloc_get(const struct sock *sk)
1901 return atomic_read(&sk->sk_wmem_alloc) - 1;
1905 * sk_rmem_alloc_get - returns read allocations
1906 * @sk: socket
1908 * Returns sk_rmem_alloc
1910 static inline int sk_rmem_alloc_get(const struct sock *sk)
1912 return atomic_read(&sk->sk_rmem_alloc);
1916 * sk_has_allocations - check if allocations are outstanding
1917 * @sk: socket
1919 * Returns true if socket has write or read allocations
1921 static inline bool sk_has_allocations(const struct sock *sk)
1923 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1927 * wq_has_sleeper - check if there are any waiting processes
1928 * @wq: struct socket_wq
1930 * Returns true if socket_wq has waiting processes
1932 * The purpose of the wq_has_sleeper and sock_poll_wait is to wrap the memory
1933 * barrier call. They were added due to the race found within the tcp code.
1935 * Consider following tcp code paths:
1937 * CPU1 CPU2
1939 * sys_select receive packet
1940 * ... ...
1941 * __add_wait_queue update tp->rcv_nxt
1942 * ... ...
1943 * tp->rcv_nxt check sock_def_readable
1944 * ... {
1945 * schedule rcu_read_lock();
1946 * wq = rcu_dereference(sk->sk_wq);
1947 * if (wq && waitqueue_active(&wq->wait))
1948 * wake_up_interruptible(&wq->wait)
1949 * ...
1952 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1953 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1
1954 * could then endup calling schedule and sleep forever if there are no more
1955 * data on the socket.
1958 static inline bool wq_has_sleeper(struct socket_wq *wq)
1960 /* We need to be sure we are in sync with the
1961 * add_wait_queue modifications to the wait queue.
1963 * This memory barrier is paired in the sock_poll_wait.
1965 smp_mb();
1966 return wq && waitqueue_active(&wq->wait);
1970 * sock_poll_wait - place memory barrier behind the poll_wait call.
1971 * @filp: file
1972 * @wait_address: socket wait queue
1973 * @p: poll_table
1975 * See the comments in the wq_has_sleeper function.
1977 static inline void sock_poll_wait(struct file *filp,
1978 wait_queue_head_t *wait_address, poll_table *p)
1980 if (!poll_does_not_wait(p) && wait_address) {
1981 poll_wait(filp, wait_address, p);
1982 /* We need to be sure we are in sync with the
1983 * socket flags modification.
1985 * This memory barrier is paired in the wq_has_sleeper.
1987 smp_mb();
1992 * Queue a received datagram if it will fit. Stream and sequenced
1993 * protocols can't normally use this as they need to fit buffers in
1994 * and play with them.
1996 * Inlined as it's very short and called for pretty much every
1997 * packet ever received.
2000 static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
2002 skb_orphan(skb);
2003 skb->sk = sk;
2004 skb->destructor = sock_wfree;
2006 * We used to take a refcount on sk, but following operation
2007 * is enough to guarantee sk_free() wont free this sock until
2008 * all in-flight packets are completed
2010 atomic_add(skb->truesize, &sk->sk_wmem_alloc);
2013 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2015 skb_orphan(skb);
2016 skb->sk = sk;
2017 skb->destructor = sock_rfree;
2018 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2019 sk_mem_charge(sk, skb->truesize);
2022 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2023 unsigned long expires);
2025 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2027 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2029 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2032 * Recover an error report and clear atomically
2035 static inline int sock_error(struct sock *sk)
2037 int err;
2038 if (likely(!sk->sk_err))
2039 return 0;
2040 err = xchg(&sk->sk_err, 0);
2041 return -err;
2044 static inline unsigned long sock_wspace(struct sock *sk)
2046 int amt = 0;
2048 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2049 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
2050 if (amt < 0)
2051 amt = 0;
2053 return amt;
2056 static inline void sk_wake_async(struct sock *sk, int how, int band)
2058 if (sock_flag(sk, SOCK_FASYNC))
2059 sock_wake_async(sk->sk_socket, how, band);
2062 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2063 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2064 * Note: for send buffers, TCP works better if we can build two skbs at
2065 * minimum.
2067 #define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2069 #define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2)
2070 #define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE
2072 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2074 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
2075 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2076 sk->sk_sndbuf = max_t(u32, sk->sk_sndbuf, SOCK_MIN_SNDBUF);
2080 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp);
2083 * sk_page_frag - return an appropriate page_frag
2084 * @sk: socket
2086 * If socket allocation mode allows current thread to sleep, it means its
2087 * safe to use the per task page_frag instead of the per socket one.
2089 static inline struct page_frag *sk_page_frag(struct sock *sk)
2091 if (sk->sk_allocation & __GFP_WAIT)
2092 return &current->task_frag;
2094 return &sk->sk_frag;
2097 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2100 * Default write policy as shown to user space via poll/select/SIGIO
2102 static inline bool sock_writeable(const struct sock *sk)
2104 return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
2107 static inline gfp_t gfp_any(void)
2109 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2112 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2114 return noblock ? 0 : sk->sk_rcvtimeo;
2117 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2119 return noblock ? 0 : sk->sk_sndtimeo;
2122 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2124 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
2127 /* Alas, with timeout socket operations are not restartable.
2128 * Compare this to poll().
2130 static inline int sock_intr_errno(long timeo)
2132 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2135 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2136 struct sk_buff *skb);
2137 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2138 struct sk_buff *skb);
2140 static inline void
2141 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2143 ktime_t kt = skb->tstamp;
2144 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2147 * generate control messages if
2148 * - receive time stamping in software requested (SOCK_RCVTSTAMP
2149 * or SOCK_TIMESTAMPING_RX_SOFTWARE)
2150 * - software time stamp available and wanted
2151 * (SOCK_TIMESTAMPING_SOFTWARE)
2152 * - hardware time stamps available and wanted
2153 * (SOCK_TIMESTAMPING_SYS_HARDWARE or
2154 * SOCK_TIMESTAMPING_RAW_HARDWARE)
2156 if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2157 sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE) ||
2158 (kt.tv64 && sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) ||
2159 (hwtstamps->hwtstamp.tv64 &&
2160 sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE)) ||
2161 (hwtstamps->syststamp.tv64 &&
2162 sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE)))
2163 __sock_recv_timestamp(msg, sk, skb);
2164 else
2165 sk->sk_stamp = kt;
2167 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2168 __sock_recv_wifi_status(msg, sk, skb);
2171 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2172 struct sk_buff *skb);
2174 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2175 struct sk_buff *skb)
2177 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \
2178 (1UL << SOCK_RCVTSTAMP) | \
2179 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE) | \
2180 (1UL << SOCK_TIMESTAMPING_SOFTWARE) | \
2181 (1UL << SOCK_TIMESTAMPING_RAW_HARDWARE) | \
2182 (1UL << SOCK_TIMESTAMPING_SYS_HARDWARE))
2184 if (sk->sk_flags & FLAGS_TS_OR_DROPS)
2185 __sock_recv_ts_and_drops(msg, sk, skb);
2186 else
2187 sk->sk_stamp = skb->tstamp;
2191 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2192 * @sk: socket sending this packet
2193 * @tx_flags: filled with instructions for time stamping
2195 * Currently only depends on SOCK_TIMESTAMPING* flags.
2197 void sock_tx_timestamp(struct sock *sk, __u8 *tx_flags);
2200 * sk_eat_skb - Release a skb if it is no longer needed
2201 * @sk: socket to eat this skb from
2202 * @skb: socket buffer to eat
2203 * @copied_early: flag indicating whether DMA operations copied this data early
2205 * This routine must be called with interrupts disabled or with the socket
2206 * locked so that the sk_buff queue operation is ok.
2208 #ifdef CONFIG_NET_DMA
2209 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, bool copied_early)
2211 __skb_unlink(skb, &sk->sk_receive_queue);
2212 if (!copied_early)
2213 __kfree_skb(skb);
2214 else
2215 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
2217 #else
2218 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, bool copied_early)
2220 __skb_unlink(skb, &sk->sk_receive_queue);
2221 __kfree_skb(skb);
2223 #endif
2225 static inline
2226 struct net *sock_net(const struct sock *sk)
2228 return read_pnet(&sk->sk_net);
2231 static inline
2232 void sock_net_set(struct sock *sk, struct net *net)
2234 write_pnet(&sk->sk_net, net);
2238 * Kernel sockets, f.e. rtnl or icmp_socket, are a part of a namespace.
2239 * They should not hold a reference to a namespace in order to allow
2240 * to stop it.
2241 * Sockets after sk_change_net should be released using sk_release_kernel
2243 static inline void sk_change_net(struct sock *sk, struct net *net)
2245 put_net(sock_net(sk));
2246 sock_net_set(sk, hold_net(net));
2249 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
2251 if (skb->sk) {
2252 struct sock *sk = skb->sk;
2254 skb->destructor = NULL;
2255 skb->sk = NULL;
2256 return sk;
2258 return NULL;
2261 void sock_enable_timestamp(struct sock *sk, int flag);
2262 int sock_get_timestamp(struct sock *, struct timeval __user *);
2263 int sock_get_timestampns(struct sock *, struct timespec __user *);
2264 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2265 int type);
2268 * Enable debug/info messages
2270 extern int net_msg_warn;
2271 #define NETDEBUG(fmt, args...) \
2272 do { if (net_msg_warn) printk(fmt,##args); } while (0)
2274 #define LIMIT_NETDEBUG(fmt, args...) \
2275 do { if (net_msg_warn && net_ratelimit()) printk(fmt,##args); } while(0)
2277 extern __u32 sysctl_wmem_max;
2278 extern __u32 sysctl_rmem_max;
2280 extern int sysctl_optmem_max;
2282 extern __u32 sysctl_wmem_default;
2283 extern __u32 sysctl_rmem_default;
2285 #endif /* _SOCK_H */