mm: avoid calling pgdat_balanced() needlessly
[linux-2.6.git] / mm / memcontrol.c
blobc878b1c69510b1f71dc8fd94dab0f6b17efeead3
1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
28 #include <linux/res_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/mm.h>
32 #include <linux/hugetlb.h>
33 #include <linux/pagemap.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/sort.h>
49 #include <linux/fs.h>
50 #include <linux/seq_file.h>
51 #include <linux/vmalloc.h>
52 #include <linux/mm_inline.h>
53 #include <linux/page_cgroup.h>
54 #include <linux/cpu.h>
55 #include <linux/oom.h>
56 #include "internal.h"
57 #include <net/sock.h>
58 #include <net/ip.h>
59 #include <net/tcp_memcontrol.h>
61 #include <asm/uaccess.h>
63 #include <trace/events/vmscan.h>
65 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
66 EXPORT_SYMBOL(mem_cgroup_subsys);
68 #define MEM_CGROUP_RECLAIM_RETRIES 5
69 static struct mem_cgroup *root_mem_cgroup __read_mostly;
71 #ifdef CONFIG_MEMCG_SWAP
72 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
73 int do_swap_account __read_mostly;
75 /* for remember boot option*/
76 #ifdef CONFIG_MEMCG_SWAP_ENABLED
77 static int really_do_swap_account __initdata = 1;
78 #else
79 static int really_do_swap_account __initdata = 0;
80 #endif
82 #else
83 #define do_swap_account 0
84 #endif
88 * Statistics for memory cgroup.
90 enum mem_cgroup_stat_index {
92 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
94 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
95 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
96 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
97 MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
98 MEM_CGROUP_STAT_NSTATS,
101 static const char * const mem_cgroup_stat_names[] = {
102 "cache",
103 "rss",
104 "mapped_file",
105 "swap",
108 enum mem_cgroup_events_index {
109 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
110 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
111 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
112 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
113 MEM_CGROUP_EVENTS_NSTATS,
116 static const char * const mem_cgroup_events_names[] = {
117 "pgpgin",
118 "pgpgout",
119 "pgfault",
120 "pgmajfault",
123 static const char * const mem_cgroup_lru_names[] = {
124 "inactive_anon",
125 "active_anon",
126 "inactive_file",
127 "active_file",
128 "unevictable",
132 * Per memcg event counter is incremented at every pagein/pageout. With THP,
133 * it will be incremated by the number of pages. This counter is used for
134 * for trigger some periodic events. This is straightforward and better
135 * than using jiffies etc. to handle periodic memcg event.
137 enum mem_cgroup_events_target {
138 MEM_CGROUP_TARGET_THRESH,
139 MEM_CGROUP_TARGET_SOFTLIMIT,
140 MEM_CGROUP_TARGET_NUMAINFO,
141 MEM_CGROUP_NTARGETS,
143 #define THRESHOLDS_EVENTS_TARGET 128
144 #define SOFTLIMIT_EVENTS_TARGET 1024
145 #define NUMAINFO_EVENTS_TARGET 1024
147 struct mem_cgroup_stat_cpu {
148 long count[MEM_CGROUP_STAT_NSTATS];
149 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
150 unsigned long nr_page_events;
151 unsigned long targets[MEM_CGROUP_NTARGETS];
154 struct mem_cgroup_reclaim_iter {
155 /* css_id of the last scanned hierarchy member */
156 int position;
157 /* scan generation, increased every round-trip */
158 unsigned int generation;
162 * per-zone information in memory controller.
164 struct mem_cgroup_per_zone {
165 struct lruvec lruvec;
166 unsigned long lru_size[NR_LRU_LISTS];
168 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
170 struct rb_node tree_node; /* RB tree node */
171 unsigned long long usage_in_excess;/* Set to the value by which */
172 /* the soft limit is exceeded*/
173 bool on_tree;
174 struct mem_cgroup *memcg; /* Back pointer, we cannot */
175 /* use container_of */
178 struct mem_cgroup_per_node {
179 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
182 struct mem_cgroup_lru_info {
183 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
187 * Cgroups above their limits are maintained in a RB-Tree, independent of
188 * their hierarchy representation
191 struct mem_cgroup_tree_per_zone {
192 struct rb_root rb_root;
193 spinlock_t lock;
196 struct mem_cgroup_tree_per_node {
197 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
200 struct mem_cgroup_tree {
201 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
204 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
206 struct mem_cgroup_threshold {
207 struct eventfd_ctx *eventfd;
208 u64 threshold;
211 /* For threshold */
212 struct mem_cgroup_threshold_ary {
213 /* An array index points to threshold just below or equal to usage. */
214 int current_threshold;
215 /* Size of entries[] */
216 unsigned int size;
217 /* Array of thresholds */
218 struct mem_cgroup_threshold entries[0];
221 struct mem_cgroup_thresholds {
222 /* Primary thresholds array */
223 struct mem_cgroup_threshold_ary *primary;
225 * Spare threshold array.
226 * This is needed to make mem_cgroup_unregister_event() "never fail".
227 * It must be able to store at least primary->size - 1 entries.
229 struct mem_cgroup_threshold_ary *spare;
232 /* for OOM */
233 struct mem_cgroup_eventfd_list {
234 struct list_head list;
235 struct eventfd_ctx *eventfd;
238 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
239 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
242 * The memory controller data structure. The memory controller controls both
243 * page cache and RSS per cgroup. We would eventually like to provide
244 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
245 * to help the administrator determine what knobs to tune.
247 * TODO: Add a water mark for the memory controller. Reclaim will begin when
248 * we hit the water mark. May be even add a low water mark, such that
249 * no reclaim occurs from a cgroup at it's low water mark, this is
250 * a feature that will be implemented much later in the future.
252 struct mem_cgroup {
253 struct cgroup_subsys_state css;
255 * the counter to account for memory usage
257 struct res_counter res;
259 union {
261 * the counter to account for mem+swap usage.
263 struct res_counter memsw;
266 * rcu_freeing is used only when freeing struct mem_cgroup,
267 * so put it into a union to avoid wasting more memory.
268 * It must be disjoint from the css field. It could be
269 * in a union with the res field, but res plays a much
270 * larger part in mem_cgroup life than memsw, and might
271 * be of interest, even at time of free, when debugging.
272 * So share rcu_head with the less interesting memsw.
274 struct rcu_head rcu_freeing;
276 * We also need some space for a worker in deferred freeing.
277 * By the time we call it, rcu_freeing is no longer in use.
279 struct work_struct work_freeing;
283 * the counter to account for kernel memory usage.
285 struct res_counter kmem;
287 * Per cgroup active and inactive list, similar to the
288 * per zone LRU lists.
290 struct mem_cgroup_lru_info info;
291 int last_scanned_node;
292 #if MAX_NUMNODES > 1
293 nodemask_t scan_nodes;
294 atomic_t numainfo_events;
295 atomic_t numainfo_updating;
296 #endif
298 * Should the accounting and control be hierarchical, per subtree?
300 bool use_hierarchy;
301 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
303 bool oom_lock;
304 atomic_t under_oom;
306 atomic_t refcnt;
308 int swappiness;
309 /* OOM-Killer disable */
310 int oom_kill_disable;
312 /* set when res.limit == memsw.limit */
313 bool memsw_is_minimum;
315 /* protect arrays of thresholds */
316 struct mutex thresholds_lock;
318 /* thresholds for memory usage. RCU-protected */
319 struct mem_cgroup_thresholds thresholds;
321 /* thresholds for mem+swap usage. RCU-protected */
322 struct mem_cgroup_thresholds memsw_thresholds;
324 /* For oom notifier event fd */
325 struct list_head oom_notify;
328 * Should we move charges of a task when a task is moved into this
329 * mem_cgroup ? And what type of charges should we move ?
331 unsigned long move_charge_at_immigrate;
333 * set > 0 if pages under this cgroup are moving to other cgroup.
335 atomic_t moving_account;
336 /* taken only while moving_account > 0 */
337 spinlock_t move_lock;
339 * percpu counter.
341 struct mem_cgroup_stat_cpu __percpu *stat;
343 * used when a cpu is offlined or other synchronizations
344 * See mem_cgroup_read_stat().
346 struct mem_cgroup_stat_cpu nocpu_base;
347 spinlock_t pcp_counter_lock;
349 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
350 struct tcp_memcontrol tcp_mem;
351 #endif
352 #if defined(CONFIG_MEMCG_KMEM)
353 /* analogous to slab_common's slab_caches list. per-memcg */
354 struct list_head memcg_slab_caches;
355 /* Not a spinlock, we can take a lot of time walking the list */
356 struct mutex slab_caches_mutex;
357 /* Index in the kmem_cache->memcg_params->memcg_caches array */
358 int kmemcg_id;
359 #endif
362 /* internal only representation about the status of kmem accounting. */
363 enum {
364 KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
365 KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
366 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
369 /* We account when limit is on, but only after call sites are patched */
370 #define KMEM_ACCOUNTED_MASK \
371 ((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
373 #ifdef CONFIG_MEMCG_KMEM
374 static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
376 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
379 static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
381 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
384 static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
386 set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
389 static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
391 clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
394 static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
396 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
397 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
400 static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
402 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
403 &memcg->kmem_account_flags);
405 #endif
407 /* Stuffs for move charges at task migration. */
409 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
410 * left-shifted bitmap of these types.
412 enum move_type {
413 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
414 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
415 NR_MOVE_TYPE,
418 /* "mc" and its members are protected by cgroup_mutex */
419 static struct move_charge_struct {
420 spinlock_t lock; /* for from, to */
421 struct mem_cgroup *from;
422 struct mem_cgroup *to;
423 unsigned long precharge;
424 unsigned long moved_charge;
425 unsigned long moved_swap;
426 struct task_struct *moving_task; /* a task moving charges */
427 wait_queue_head_t waitq; /* a waitq for other context */
428 } mc = {
429 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
430 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
433 static bool move_anon(void)
435 return test_bit(MOVE_CHARGE_TYPE_ANON,
436 &mc.to->move_charge_at_immigrate);
439 static bool move_file(void)
441 return test_bit(MOVE_CHARGE_TYPE_FILE,
442 &mc.to->move_charge_at_immigrate);
446 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
447 * limit reclaim to prevent infinite loops, if they ever occur.
449 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
450 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
452 enum charge_type {
453 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
454 MEM_CGROUP_CHARGE_TYPE_ANON,
455 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
456 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
457 NR_CHARGE_TYPE,
460 /* for encoding cft->private value on file */
461 enum res_type {
462 _MEM,
463 _MEMSWAP,
464 _OOM_TYPE,
465 _KMEM,
468 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
469 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
470 #define MEMFILE_ATTR(val) ((val) & 0xffff)
471 /* Used for OOM nofiier */
472 #define OOM_CONTROL (0)
475 * Reclaim flags for mem_cgroup_hierarchical_reclaim
477 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
478 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
479 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
480 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
482 static void mem_cgroup_get(struct mem_cgroup *memcg);
483 static void mem_cgroup_put(struct mem_cgroup *memcg);
485 static inline
486 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
488 return container_of(s, struct mem_cgroup, css);
491 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
493 return (memcg == root_mem_cgroup);
496 /* Writing them here to avoid exposing memcg's inner layout */
497 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
499 void sock_update_memcg(struct sock *sk)
501 if (mem_cgroup_sockets_enabled) {
502 struct mem_cgroup *memcg;
503 struct cg_proto *cg_proto;
505 BUG_ON(!sk->sk_prot->proto_cgroup);
507 /* Socket cloning can throw us here with sk_cgrp already
508 * filled. It won't however, necessarily happen from
509 * process context. So the test for root memcg given
510 * the current task's memcg won't help us in this case.
512 * Respecting the original socket's memcg is a better
513 * decision in this case.
515 if (sk->sk_cgrp) {
516 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
517 mem_cgroup_get(sk->sk_cgrp->memcg);
518 return;
521 rcu_read_lock();
522 memcg = mem_cgroup_from_task(current);
523 cg_proto = sk->sk_prot->proto_cgroup(memcg);
524 if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) {
525 mem_cgroup_get(memcg);
526 sk->sk_cgrp = cg_proto;
528 rcu_read_unlock();
531 EXPORT_SYMBOL(sock_update_memcg);
533 void sock_release_memcg(struct sock *sk)
535 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
536 struct mem_cgroup *memcg;
537 WARN_ON(!sk->sk_cgrp->memcg);
538 memcg = sk->sk_cgrp->memcg;
539 mem_cgroup_put(memcg);
543 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
545 if (!memcg || mem_cgroup_is_root(memcg))
546 return NULL;
548 return &memcg->tcp_mem.cg_proto;
550 EXPORT_SYMBOL(tcp_proto_cgroup);
552 static void disarm_sock_keys(struct mem_cgroup *memcg)
554 if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
555 return;
556 static_key_slow_dec(&memcg_socket_limit_enabled);
558 #else
559 static void disarm_sock_keys(struct mem_cgroup *memcg)
562 #endif
564 #ifdef CONFIG_MEMCG_KMEM
566 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
567 * There are two main reasons for not using the css_id for this:
568 * 1) this works better in sparse environments, where we have a lot of memcgs,
569 * but only a few kmem-limited. Or also, if we have, for instance, 200
570 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
571 * 200 entry array for that.
573 * 2) In order not to violate the cgroup API, we would like to do all memory
574 * allocation in ->create(). At that point, we haven't yet allocated the
575 * css_id. Having a separate index prevents us from messing with the cgroup
576 * core for this
578 * The current size of the caches array is stored in
579 * memcg_limited_groups_array_size. It will double each time we have to
580 * increase it.
582 static DEFINE_IDA(kmem_limited_groups);
583 int memcg_limited_groups_array_size;
586 * MIN_SIZE is different than 1, because we would like to avoid going through
587 * the alloc/free process all the time. In a small machine, 4 kmem-limited
588 * cgroups is a reasonable guess. In the future, it could be a parameter or
589 * tunable, but that is strictly not necessary.
591 * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
592 * this constant directly from cgroup, but it is understandable that this is
593 * better kept as an internal representation in cgroup.c. In any case, the
594 * css_id space is not getting any smaller, and we don't have to necessarily
595 * increase ours as well if it increases.
597 #define MEMCG_CACHES_MIN_SIZE 4
598 #define MEMCG_CACHES_MAX_SIZE 65535
601 * A lot of the calls to the cache allocation functions are expected to be
602 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
603 * conditional to this static branch, we'll have to allow modules that does
604 * kmem_cache_alloc and the such to see this symbol as well
606 struct static_key memcg_kmem_enabled_key;
607 EXPORT_SYMBOL(memcg_kmem_enabled_key);
609 static void disarm_kmem_keys(struct mem_cgroup *memcg)
611 if (memcg_kmem_is_active(memcg)) {
612 static_key_slow_dec(&memcg_kmem_enabled_key);
613 ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
616 * This check can't live in kmem destruction function,
617 * since the charges will outlive the cgroup
619 WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
621 #else
622 static void disarm_kmem_keys(struct mem_cgroup *memcg)
625 #endif /* CONFIG_MEMCG_KMEM */
627 static void disarm_static_keys(struct mem_cgroup *memcg)
629 disarm_sock_keys(memcg);
630 disarm_kmem_keys(memcg);
633 static void drain_all_stock_async(struct mem_cgroup *memcg);
635 static struct mem_cgroup_per_zone *
636 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
638 return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
641 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
643 return &memcg->css;
646 static struct mem_cgroup_per_zone *
647 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
649 int nid = page_to_nid(page);
650 int zid = page_zonenum(page);
652 return mem_cgroup_zoneinfo(memcg, nid, zid);
655 static struct mem_cgroup_tree_per_zone *
656 soft_limit_tree_node_zone(int nid, int zid)
658 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
661 static struct mem_cgroup_tree_per_zone *
662 soft_limit_tree_from_page(struct page *page)
664 int nid = page_to_nid(page);
665 int zid = page_zonenum(page);
667 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
670 static void
671 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
672 struct mem_cgroup_per_zone *mz,
673 struct mem_cgroup_tree_per_zone *mctz,
674 unsigned long long new_usage_in_excess)
676 struct rb_node **p = &mctz->rb_root.rb_node;
677 struct rb_node *parent = NULL;
678 struct mem_cgroup_per_zone *mz_node;
680 if (mz->on_tree)
681 return;
683 mz->usage_in_excess = new_usage_in_excess;
684 if (!mz->usage_in_excess)
685 return;
686 while (*p) {
687 parent = *p;
688 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
689 tree_node);
690 if (mz->usage_in_excess < mz_node->usage_in_excess)
691 p = &(*p)->rb_left;
693 * We can't avoid mem cgroups that are over their soft
694 * limit by the same amount
696 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
697 p = &(*p)->rb_right;
699 rb_link_node(&mz->tree_node, parent, p);
700 rb_insert_color(&mz->tree_node, &mctz->rb_root);
701 mz->on_tree = true;
704 static void
705 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
706 struct mem_cgroup_per_zone *mz,
707 struct mem_cgroup_tree_per_zone *mctz)
709 if (!mz->on_tree)
710 return;
711 rb_erase(&mz->tree_node, &mctz->rb_root);
712 mz->on_tree = false;
715 static void
716 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
717 struct mem_cgroup_per_zone *mz,
718 struct mem_cgroup_tree_per_zone *mctz)
720 spin_lock(&mctz->lock);
721 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
722 spin_unlock(&mctz->lock);
726 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
728 unsigned long long excess;
729 struct mem_cgroup_per_zone *mz;
730 struct mem_cgroup_tree_per_zone *mctz;
731 int nid = page_to_nid(page);
732 int zid = page_zonenum(page);
733 mctz = soft_limit_tree_from_page(page);
736 * Necessary to update all ancestors when hierarchy is used.
737 * because their event counter is not touched.
739 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
740 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
741 excess = res_counter_soft_limit_excess(&memcg->res);
743 * We have to update the tree if mz is on RB-tree or
744 * mem is over its softlimit.
746 if (excess || mz->on_tree) {
747 spin_lock(&mctz->lock);
748 /* if on-tree, remove it */
749 if (mz->on_tree)
750 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
752 * Insert again. mz->usage_in_excess will be updated.
753 * If excess is 0, no tree ops.
755 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
756 spin_unlock(&mctz->lock);
761 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
763 int node, zone;
764 struct mem_cgroup_per_zone *mz;
765 struct mem_cgroup_tree_per_zone *mctz;
767 for_each_node(node) {
768 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
769 mz = mem_cgroup_zoneinfo(memcg, node, zone);
770 mctz = soft_limit_tree_node_zone(node, zone);
771 mem_cgroup_remove_exceeded(memcg, mz, mctz);
776 static struct mem_cgroup_per_zone *
777 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
779 struct rb_node *rightmost = NULL;
780 struct mem_cgroup_per_zone *mz;
782 retry:
783 mz = NULL;
784 rightmost = rb_last(&mctz->rb_root);
785 if (!rightmost)
786 goto done; /* Nothing to reclaim from */
788 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
790 * Remove the node now but someone else can add it back,
791 * we will to add it back at the end of reclaim to its correct
792 * position in the tree.
794 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
795 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
796 !css_tryget(&mz->memcg->css))
797 goto retry;
798 done:
799 return mz;
802 static struct mem_cgroup_per_zone *
803 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
805 struct mem_cgroup_per_zone *mz;
807 spin_lock(&mctz->lock);
808 mz = __mem_cgroup_largest_soft_limit_node(mctz);
809 spin_unlock(&mctz->lock);
810 return mz;
814 * Implementation Note: reading percpu statistics for memcg.
816 * Both of vmstat[] and percpu_counter has threshold and do periodic
817 * synchronization to implement "quick" read. There are trade-off between
818 * reading cost and precision of value. Then, we may have a chance to implement
819 * a periodic synchronizion of counter in memcg's counter.
821 * But this _read() function is used for user interface now. The user accounts
822 * memory usage by memory cgroup and he _always_ requires exact value because
823 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
824 * have to visit all online cpus and make sum. So, for now, unnecessary
825 * synchronization is not implemented. (just implemented for cpu hotplug)
827 * If there are kernel internal actions which can make use of some not-exact
828 * value, and reading all cpu value can be performance bottleneck in some
829 * common workload, threashold and synchonization as vmstat[] should be
830 * implemented.
832 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
833 enum mem_cgroup_stat_index idx)
835 long val = 0;
836 int cpu;
838 get_online_cpus();
839 for_each_online_cpu(cpu)
840 val += per_cpu(memcg->stat->count[idx], cpu);
841 #ifdef CONFIG_HOTPLUG_CPU
842 spin_lock(&memcg->pcp_counter_lock);
843 val += memcg->nocpu_base.count[idx];
844 spin_unlock(&memcg->pcp_counter_lock);
845 #endif
846 put_online_cpus();
847 return val;
850 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
851 bool charge)
853 int val = (charge) ? 1 : -1;
854 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
857 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
858 enum mem_cgroup_events_index idx)
860 unsigned long val = 0;
861 int cpu;
863 for_each_online_cpu(cpu)
864 val += per_cpu(memcg->stat->events[idx], cpu);
865 #ifdef CONFIG_HOTPLUG_CPU
866 spin_lock(&memcg->pcp_counter_lock);
867 val += memcg->nocpu_base.events[idx];
868 spin_unlock(&memcg->pcp_counter_lock);
869 #endif
870 return val;
873 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
874 bool anon, int nr_pages)
876 preempt_disable();
879 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
880 * counted as CACHE even if it's on ANON LRU.
882 if (anon)
883 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
884 nr_pages);
885 else
886 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
887 nr_pages);
889 /* pagein of a big page is an event. So, ignore page size */
890 if (nr_pages > 0)
891 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
892 else {
893 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
894 nr_pages = -nr_pages; /* for event */
897 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
899 preempt_enable();
902 unsigned long
903 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
905 struct mem_cgroup_per_zone *mz;
907 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
908 return mz->lru_size[lru];
911 static unsigned long
912 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
913 unsigned int lru_mask)
915 struct mem_cgroup_per_zone *mz;
916 enum lru_list lru;
917 unsigned long ret = 0;
919 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
921 for_each_lru(lru) {
922 if (BIT(lru) & lru_mask)
923 ret += mz->lru_size[lru];
925 return ret;
928 static unsigned long
929 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
930 int nid, unsigned int lru_mask)
932 u64 total = 0;
933 int zid;
935 for (zid = 0; zid < MAX_NR_ZONES; zid++)
936 total += mem_cgroup_zone_nr_lru_pages(memcg,
937 nid, zid, lru_mask);
939 return total;
942 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
943 unsigned int lru_mask)
945 int nid;
946 u64 total = 0;
948 for_each_node_state(nid, N_MEMORY)
949 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
950 return total;
953 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
954 enum mem_cgroup_events_target target)
956 unsigned long val, next;
958 val = __this_cpu_read(memcg->stat->nr_page_events);
959 next = __this_cpu_read(memcg->stat->targets[target]);
960 /* from time_after() in jiffies.h */
961 if ((long)next - (long)val < 0) {
962 switch (target) {
963 case MEM_CGROUP_TARGET_THRESH:
964 next = val + THRESHOLDS_EVENTS_TARGET;
965 break;
966 case MEM_CGROUP_TARGET_SOFTLIMIT:
967 next = val + SOFTLIMIT_EVENTS_TARGET;
968 break;
969 case MEM_CGROUP_TARGET_NUMAINFO:
970 next = val + NUMAINFO_EVENTS_TARGET;
971 break;
972 default:
973 break;
975 __this_cpu_write(memcg->stat->targets[target], next);
976 return true;
978 return false;
982 * Check events in order.
985 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
987 preempt_disable();
988 /* threshold event is triggered in finer grain than soft limit */
989 if (unlikely(mem_cgroup_event_ratelimit(memcg,
990 MEM_CGROUP_TARGET_THRESH))) {
991 bool do_softlimit;
992 bool do_numainfo __maybe_unused;
994 do_softlimit = mem_cgroup_event_ratelimit(memcg,
995 MEM_CGROUP_TARGET_SOFTLIMIT);
996 #if MAX_NUMNODES > 1
997 do_numainfo = mem_cgroup_event_ratelimit(memcg,
998 MEM_CGROUP_TARGET_NUMAINFO);
999 #endif
1000 preempt_enable();
1002 mem_cgroup_threshold(memcg);
1003 if (unlikely(do_softlimit))
1004 mem_cgroup_update_tree(memcg, page);
1005 #if MAX_NUMNODES > 1
1006 if (unlikely(do_numainfo))
1007 atomic_inc(&memcg->numainfo_events);
1008 #endif
1009 } else
1010 preempt_enable();
1013 struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
1015 return mem_cgroup_from_css(
1016 cgroup_subsys_state(cont, mem_cgroup_subsys_id));
1019 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1022 * mm_update_next_owner() may clear mm->owner to NULL
1023 * if it races with swapoff, page migration, etc.
1024 * So this can be called with p == NULL.
1026 if (unlikely(!p))
1027 return NULL;
1029 return mem_cgroup_from_css(task_subsys_state(p, mem_cgroup_subsys_id));
1032 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
1034 struct mem_cgroup *memcg = NULL;
1036 if (!mm)
1037 return NULL;
1039 * Because we have no locks, mm->owner's may be being moved to other
1040 * cgroup. We use css_tryget() here even if this looks
1041 * pessimistic (rather than adding locks here).
1043 rcu_read_lock();
1044 do {
1045 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1046 if (unlikely(!memcg))
1047 break;
1048 } while (!css_tryget(&memcg->css));
1049 rcu_read_unlock();
1050 return memcg;
1054 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1055 * @root: hierarchy root
1056 * @prev: previously returned memcg, NULL on first invocation
1057 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1059 * Returns references to children of the hierarchy below @root, or
1060 * @root itself, or %NULL after a full round-trip.
1062 * Caller must pass the return value in @prev on subsequent
1063 * invocations for reference counting, or use mem_cgroup_iter_break()
1064 * to cancel a hierarchy walk before the round-trip is complete.
1066 * Reclaimers can specify a zone and a priority level in @reclaim to
1067 * divide up the memcgs in the hierarchy among all concurrent
1068 * reclaimers operating on the same zone and priority.
1070 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1071 struct mem_cgroup *prev,
1072 struct mem_cgroup_reclaim_cookie *reclaim)
1074 struct mem_cgroup *memcg = NULL;
1075 int id = 0;
1077 if (mem_cgroup_disabled())
1078 return NULL;
1080 if (!root)
1081 root = root_mem_cgroup;
1083 if (prev && !reclaim)
1084 id = css_id(&prev->css);
1086 if (prev && prev != root)
1087 css_put(&prev->css);
1089 if (!root->use_hierarchy && root != root_mem_cgroup) {
1090 if (prev)
1091 return NULL;
1092 return root;
1095 while (!memcg) {
1096 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1097 struct cgroup_subsys_state *css;
1099 if (reclaim) {
1100 int nid = zone_to_nid(reclaim->zone);
1101 int zid = zone_idx(reclaim->zone);
1102 struct mem_cgroup_per_zone *mz;
1104 mz = mem_cgroup_zoneinfo(root, nid, zid);
1105 iter = &mz->reclaim_iter[reclaim->priority];
1106 if (prev && reclaim->generation != iter->generation)
1107 return NULL;
1108 id = iter->position;
1111 rcu_read_lock();
1112 css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
1113 if (css) {
1114 if (css == &root->css || css_tryget(css))
1115 memcg = mem_cgroup_from_css(css);
1116 } else
1117 id = 0;
1118 rcu_read_unlock();
1120 if (reclaim) {
1121 iter->position = id;
1122 if (!css)
1123 iter->generation++;
1124 else if (!prev && memcg)
1125 reclaim->generation = iter->generation;
1128 if (prev && !css)
1129 return NULL;
1131 return memcg;
1135 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1136 * @root: hierarchy root
1137 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1139 void mem_cgroup_iter_break(struct mem_cgroup *root,
1140 struct mem_cgroup *prev)
1142 if (!root)
1143 root = root_mem_cgroup;
1144 if (prev && prev != root)
1145 css_put(&prev->css);
1149 * Iteration constructs for visiting all cgroups (under a tree). If
1150 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1151 * be used for reference counting.
1153 #define for_each_mem_cgroup_tree(iter, root) \
1154 for (iter = mem_cgroup_iter(root, NULL, NULL); \
1155 iter != NULL; \
1156 iter = mem_cgroup_iter(root, iter, NULL))
1158 #define for_each_mem_cgroup(iter) \
1159 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1160 iter != NULL; \
1161 iter = mem_cgroup_iter(NULL, iter, NULL))
1163 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1165 struct mem_cgroup *memcg;
1167 rcu_read_lock();
1168 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1169 if (unlikely(!memcg))
1170 goto out;
1172 switch (idx) {
1173 case PGFAULT:
1174 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1175 break;
1176 case PGMAJFAULT:
1177 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1178 break;
1179 default:
1180 BUG();
1182 out:
1183 rcu_read_unlock();
1185 EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1188 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1189 * @zone: zone of the wanted lruvec
1190 * @memcg: memcg of the wanted lruvec
1192 * Returns the lru list vector holding pages for the given @zone and
1193 * @mem. This can be the global zone lruvec, if the memory controller
1194 * is disabled.
1196 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1197 struct mem_cgroup *memcg)
1199 struct mem_cgroup_per_zone *mz;
1200 struct lruvec *lruvec;
1202 if (mem_cgroup_disabled()) {
1203 lruvec = &zone->lruvec;
1204 goto out;
1207 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1208 lruvec = &mz->lruvec;
1209 out:
1211 * Since a node can be onlined after the mem_cgroup was created,
1212 * we have to be prepared to initialize lruvec->zone here;
1213 * and if offlined then reonlined, we need to reinitialize it.
1215 if (unlikely(lruvec->zone != zone))
1216 lruvec->zone = zone;
1217 return lruvec;
1221 * Following LRU functions are allowed to be used without PCG_LOCK.
1222 * Operations are called by routine of global LRU independently from memcg.
1223 * What we have to take care of here is validness of pc->mem_cgroup.
1225 * Changes to pc->mem_cgroup happens when
1226 * 1. charge
1227 * 2. moving account
1228 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1229 * It is added to LRU before charge.
1230 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1231 * When moving account, the page is not on LRU. It's isolated.
1235 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1236 * @page: the page
1237 * @zone: zone of the page
1239 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1241 struct mem_cgroup_per_zone *mz;
1242 struct mem_cgroup *memcg;
1243 struct page_cgroup *pc;
1244 struct lruvec *lruvec;
1246 if (mem_cgroup_disabled()) {
1247 lruvec = &zone->lruvec;
1248 goto out;
1251 pc = lookup_page_cgroup(page);
1252 memcg = pc->mem_cgroup;
1255 * Surreptitiously switch any uncharged offlist page to root:
1256 * an uncharged page off lru does nothing to secure
1257 * its former mem_cgroup from sudden removal.
1259 * Our caller holds lru_lock, and PageCgroupUsed is updated
1260 * under page_cgroup lock: between them, they make all uses
1261 * of pc->mem_cgroup safe.
1263 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1264 pc->mem_cgroup = memcg = root_mem_cgroup;
1266 mz = page_cgroup_zoneinfo(memcg, page);
1267 lruvec = &mz->lruvec;
1268 out:
1270 * Since a node can be onlined after the mem_cgroup was created,
1271 * we have to be prepared to initialize lruvec->zone here;
1272 * and if offlined then reonlined, we need to reinitialize it.
1274 if (unlikely(lruvec->zone != zone))
1275 lruvec->zone = zone;
1276 return lruvec;
1280 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1281 * @lruvec: mem_cgroup per zone lru vector
1282 * @lru: index of lru list the page is sitting on
1283 * @nr_pages: positive when adding or negative when removing
1285 * This function must be called when a page is added to or removed from an
1286 * lru list.
1288 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1289 int nr_pages)
1291 struct mem_cgroup_per_zone *mz;
1292 unsigned long *lru_size;
1294 if (mem_cgroup_disabled())
1295 return;
1297 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1298 lru_size = mz->lru_size + lru;
1299 *lru_size += nr_pages;
1300 VM_BUG_ON((long)(*lru_size) < 0);
1304 * Checks whether given mem is same or in the root_mem_cgroup's
1305 * hierarchy subtree
1307 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1308 struct mem_cgroup *memcg)
1310 if (root_memcg == memcg)
1311 return true;
1312 if (!root_memcg->use_hierarchy || !memcg)
1313 return false;
1314 return css_is_ancestor(&memcg->css, &root_memcg->css);
1317 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1318 struct mem_cgroup *memcg)
1320 bool ret;
1322 rcu_read_lock();
1323 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1324 rcu_read_unlock();
1325 return ret;
1328 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1330 int ret;
1331 struct mem_cgroup *curr = NULL;
1332 struct task_struct *p;
1334 p = find_lock_task_mm(task);
1335 if (p) {
1336 curr = try_get_mem_cgroup_from_mm(p->mm);
1337 task_unlock(p);
1338 } else {
1340 * All threads may have already detached their mm's, but the oom
1341 * killer still needs to detect if they have already been oom
1342 * killed to prevent needlessly killing additional tasks.
1344 task_lock(task);
1345 curr = mem_cgroup_from_task(task);
1346 if (curr)
1347 css_get(&curr->css);
1348 task_unlock(task);
1350 if (!curr)
1351 return 0;
1353 * We should check use_hierarchy of "memcg" not "curr". Because checking
1354 * use_hierarchy of "curr" here make this function true if hierarchy is
1355 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1356 * hierarchy(even if use_hierarchy is disabled in "memcg").
1358 ret = mem_cgroup_same_or_subtree(memcg, curr);
1359 css_put(&curr->css);
1360 return ret;
1363 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1365 unsigned long inactive_ratio;
1366 unsigned long inactive;
1367 unsigned long active;
1368 unsigned long gb;
1370 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1371 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1373 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1374 if (gb)
1375 inactive_ratio = int_sqrt(10 * gb);
1376 else
1377 inactive_ratio = 1;
1379 return inactive * inactive_ratio < active;
1382 int mem_cgroup_inactive_file_is_low(struct lruvec *lruvec)
1384 unsigned long active;
1385 unsigned long inactive;
1387 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_FILE);
1388 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_FILE);
1390 return (active > inactive);
1393 #define mem_cgroup_from_res_counter(counter, member) \
1394 container_of(counter, struct mem_cgroup, member)
1397 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1398 * @memcg: the memory cgroup
1400 * Returns the maximum amount of memory @mem can be charged with, in
1401 * pages.
1403 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1405 unsigned long long margin;
1407 margin = res_counter_margin(&memcg->res);
1408 if (do_swap_account)
1409 margin = min(margin, res_counter_margin(&memcg->memsw));
1410 return margin >> PAGE_SHIFT;
1413 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1415 struct cgroup *cgrp = memcg->css.cgroup;
1417 /* root ? */
1418 if (cgrp->parent == NULL)
1419 return vm_swappiness;
1421 return memcg->swappiness;
1425 * memcg->moving_account is used for checking possibility that some thread is
1426 * calling move_account(). When a thread on CPU-A starts moving pages under
1427 * a memcg, other threads should check memcg->moving_account under
1428 * rcu_read_lock(), like this:
1430 * CPU-A CPU-B
1431 * rcu_read_lock()
1432 * memcg->moving_account+1 if (memcg->mocing_account)
1433 * take heavy locks.
1434 * synchronize_rcu() update something.
1435 * rcu_read_unlock()
1436 * start move here.
1439 /* for quick checking without looking up memcg */
1440 atomic_t memcg_moving __read_mostly;
1442 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1444 atomic_inc(&memcg_moving);
1445 atomic_inc(&memcg->moving_account);
1446 synchronize_rcu();
1449 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1452 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1453 * We check NULL in callee rather than caller.
1455 if (memcg) {
1456 atomic_dec(&memcg_moving);
1457 atomic_dec(&memcg->moving_account);
1462 * 2 routines for checking "mem" is under move_account() or not.
1464 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1465 * is used for avoiding races in accounting. If true,
1466 * pc->mem_cgroup may be overwritten.
1468 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1469 * under hierarchy of moving cgroups. This is for
1470 * waiting at hith-memory prressure caused by "move".
1473 static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1475 VM_BUG_ON(!rcu_read_lock_held());
1476 return atomic_read(&memcg->moving_account) > 0;
1479 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1481 struct mem_cgroup *from;
1482 struct mem_cgroup *to;
1483 bool ret = false;
1485 * Unlike task_move routines, we access mc.to, mc.from not under
1486 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1488 spin_lock(&mc.lock);
1489 from = mc.from;
1490 to = mc.to;
1491 if (!from)
1492 goto unlock;
1494 ret = mem_cgroup_same_or_subtree(memcg, from)
1495 || mem_cgroup_same_or_subtree(memcg, to);
1496 unlock:
1497 spin_unlock(&mc.lock);
1498 return ret;
1501 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1503 if (mc.moving_task && current != mc.moving_task) {
1504 if (mem_cgroup_under_move(memcg)) {
1505 DEFINE_WAIT(wait);
1506 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1507 /* moving charge context might have finished. */
1508 if (mc.moving_task)
1509 schedule();
1510 finish_wait(&mc.waitq, &wait);
1511 return true;
1514 return false;
1518 * Take this lock when
1519 * - a code tries to modify page's memcg while it's USED.
1520 * - a code tries to modify page state accounting in a memcg.
1521 * see mem_cgroup_stolen(), too.
1523 static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1524 unsigned long *flags)
1526 spin_lock_irqsave(&memcg->move_lock, *flags);
1529 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1530 unsigned long *flags)
1532 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1535 #define K(x) ((x) << (PAGE_SHIFT-10))
1537 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1538 * @memcg: The memory cgroup that went over limit
1539 * @p: Task that is going to be killed
1541 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1542 * enabled
1544 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1546 struct cgroup *task_cgrp;
1547 struct cgroup *mem_cgrp;
1549 * Need a buffer in BSS, can't rely on allocations. The code relies
1550 * on the assumption that OOM is serialized for memory controller.
1551 * If this assumption is broken, revisit this code.
1553 static char memcg_name[PATH_MAX];
1554 int ret;
1555 struct mem_cgroup *iter;
1556 unsigned int i;
1558 if (!p)
1559 return;
1561 rcu_read_lock();
1563 mem_cgrp = memcg->css.cgroup;
1564 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1566 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1567 if (ret < 0) {
1569 * Unfortunately, we are unable to convert to a useful name
1570 * But we'll still print out the usage information
1572 rcu_read_unlock();
1573 goto done;
1575 rcu_read_unlock();
1577 pr_info("Task in %s killed", memcg_name);
1579 rcu_read_lock();
1580 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1581 if (ret < 0) {
1582 rcu_read_unlock();
1583 goto done;
1585 rcu_read_unlock();
1588 * Continues from above, so we don't need an KERN_ level
1590 pr_cont(" as a result of limit of %s\n", memcg_name);
1591 done:
1593 pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1594 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1595 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1596 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1597 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1598 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1599 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1600 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1601 pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1602 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1603 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1604 res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1606 for_each_mem_cgroup_tree(iter, memcg) {
1607 pr_info("Memory cgroup stats");
1609 rcu_read_lock();
1610 ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
1611 if (!ret)
1612 pr_cont(" for %s", memcg_name);
1613 rcu_read_unlock();
1614 pr_cont(":");
1616 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1617 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1618 continue;
1619 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1620 K(mem_cgroup_read_stat(iter, i)));
1623 for (i = 0; i < NR_LRU_LISTS; i++)
1624 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1625 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1627 pr_cont("\n");
1632 * This function returns the number of memcg under hierarchy tree. Returns
1633 * 1(self count) if no children.
1635 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1637 int num = 0;
1638 struct mem_cgroup *iter;
1640 for_each_mem_cgroup_tree(iter, memcg)
1641 num++;
1642 return num;
1646 * Return the memory (and swap, if configured) limit for a memcg.
1648 static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1650 u64 limit;
1652 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1655 * Do not consider swap space if we cannot swap due to swappiness
1657 if (mem_cgroup_swappiness(memcg)) {
1658 u64 memsw;
1660 limit += total_swap_pages << PAGE_SHIFT;
1661 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1664 * If memsw is finite and limits the amount of swap space
1665 * available to this memcg, return that limit.
1667 limit = min(limit, memsw);
1670 return limit;
1673 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1674 int order)
1676 struct mem_cgroup *iter;
1677 unsigned long chosen_points = 0;
1678 unsigned long totalpages;
1679 unsigned int points = 0;
1680 struct task_struct *chosen = NULL;
1683 * If current has a pending SIGKILL, then automatically select it. The
1684 * goal is to allow it to allocate so that it may quickly exit and free
1685 * its memory.
1687 if (fatal_signal_pending(current)) {
1688 set_thread_flag(TIF_MEMDIE);
1689 return;
1692 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1693 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1694 for_each_mem_cgroup_tree(iter, memcg) {
1695 struct cgroup *cgroup = iter->css.cgroup;
1696 struct cgroup_iter it;
1697 struct task_struct *task;
1699 cgroup_iter_start(cgroup, &it);
1700 while ((task = cgroup_iter_next(cgroup, &it))) {
1701 switch (oom_scan_process_thread(task, totalpages, NULL,
1702 false)) {
1703 case OOM_SCAN_SELECT:
1704 if (chosen)
1705 put_task_struct(chosen);
1706 chosen = task;
1707 chosen_points = ULONG_MAX;
1708 get_task_struct(chosen);
1709 /* fall through */
1710 case OOM_SCAN_CONTINUE:
1711 continue;
1712 case OOM_SCAN_ABORT:
1713 cgroup_iter_end(cgroup, &it);
1714 mem_cgroup_iter_break(memcg, iter);
1715 if (chosen)
1716 put_task_struct(chosen);
1717 return;
1718 case OOM_SCAN_OK:
1719 break;
1721 points = oom_badness(task, memcg, NULL, totalpages);
1722 if (points > chosen_points) {
1723 if (chosen)
1724 put_task_struct(chosen);
1725 chosen = task;
1726 chosen_points = points;
1727 get_task_struct(chosen);
1730 cgroup_iter_end(cgroup, &it);
1733 if (!chosen)
1734 return;
1735 points = chosen_points * 1000 / totalpages;
1736 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1737 NULL, "Memory cgroup out of memory");
1740 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1741 gfp_t gfp_mask,
1742 unsigned long flags)
1744 unsigned long total = 0;
1745 bool noswap = false;
1746 int loop;
1748 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1749 noswap = true;
1750 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1751 noswap = true;
1753 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1754 if (loop)
1755 drain_all_stock_async(memcg);
1756 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1758 * Allow limit shrinkers, which are triggered directly
1759 * by userspace, to catch signals and stop reclaim
1760 * after minimal progress, regardless of the margin.
1762 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1763 break;
1764 if (mem_cgroup_margin(memcg))
1765 break;
1767 * If nothing was reclaimed after two attempts, there
1768 * may be no reclaimable pages in this hierarchy.
1770 if (loop && !total)
1771 break;
1773 return total;
1777 * test_mem_cgroup_node_reclaimable
1778 * @memcg: the target memcg
1779 * @nid: the node ID to be checked.
1780 * @noswap : specify true here if the user wants flle only information.
1782 * This function returns whether the specified memcg contains any
1783 * reclaimable pages on a node. Returns true if there are any reclaimable
1784 * pages in the node.
1786 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1787 int nid, bool noswap)
1789 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1790 return true;
1791 if (noswap || !total_swap_pages)
1792 return false;
1793 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1794 return true;
1795 return false;
1798 #if MAX_NUMNODES > 1
1801 * Always updating the nodemask is not very good - even if we have an empty
1802 * list or the wrong list here, we can start from some node and traverse all
1803 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1806 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1808 int nid;
1810 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1811 * pagein/pageout changes since the last update.
1813 if (!atomic_read(&memcg->numainfo_events))
1814 return;
1815 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1816 return;
1818 /* make a nodemask where this memcg uses memory from */
1819 memcg->scan_nodes = node_states[N_MEMORY];
1821 for_each_node_mask(nid, node_states[N_MEMORY]) {
1823 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1824 node_clear(nid, memcg->scan_nodes);
1827 atomic_set(&memcg->numainfo_events, 0);
1828 atomic_set(&memcg->numainfo_updating, 0);
1832 * Selecting a node where we start reclaim from. Because what we need is just
1833 * reducing usage counter, start from anywhere is O,K. Considering
1834 * memory reclaim from current node, there are pros. and cons.
1836 * Freeing memory from current node means freeing memory from a node which
1837 * we'll use or we've used. So, it may make LRU bad. And if several threads
1838 * hit limits, it will see a contention on a node. But freeing from remote
1839 * node means more costs for memory reclaim because of memory latency.
1841 * Now, we use round-robin. Better algorithm is welcomed.
1843 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1845 int node;
1847 mem_cgroup_may_update_nodemask(memcg);
1848 node = memcg->last_scanned_node;
1850 node = next_node(node, memcg->scan_nodes);
1851 if (node == MAX_NUMNODES)
1852 node = first_node(memcg->scan_nodes);
1854 * We call this when we hit limit, not when pages are added to LRU.
1855 * No LRU may hold pages because all pages are UNEVICTABLE or
1856 * memcg is too small and all pages are not on LRU. In that case,
1857 * we use curret node.
1859 if (unlikely(node == MAX_NUMNODES))
1860 node = numa_node_id();
1862 memcg->last_scanned_node = node;
1863 return node;
1867 * Check all nodes whether it contains reclaimable pages or not.
1868 * For quick scan, we make use of scan_nodes. This will allow us to skip
1869 * unused nodes. But scan_nodes is lazily updated and may not cotain
1870 * enough new information. We need to do double check.
1872 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1874 int nid;
1877 * quick check...making use of scan_node.
1878 * We can skip unused nodes.
1880 if (!nodes_empty(memcg->scan_nodes)) {
1881 for (nid = first_node(memcg->scan_nodes);
1882 nid < MAX_NUMNODES;
1883 nid = next_node(nid, memcg->scan_nodes)) {
1885 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1886 return true;
1890 * Check rest of nodes.
1892 for_each_node_state(nid, N_MEMORY) {
1893 if (node_isset(nid, memcg->scan_nodes))
1894 continue;
1895 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1896 return true;
1898 return false;
1901 #else
1902 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1904 return 0;
1907 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1909 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1911 #endif
1913 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1914 struct zone *zone,
1915 gfp_t gfp_mask,
1916 unsigned long *total_scanned)
1918 struct mem_cgroup *victim = NULL;
1919 int total = 0;
1920 int loop = 0;
1921 unsigned long excess;
1922 unsigned long nr_scanned;
1923 struct mem_cgroup_reclaim_cookie reclaim = {
1924 .zone = zone,
1925 .priority = 0,
1928 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
1930 while (1) {
1931 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1932 if (!victim) {
1933 loop++;
1934 if (loop >= 2) {
1936 * If we have not been able to reclaim
1937 * anything, it might because there are
1938 * no reclaimable pages under this hierarchy
1940 if (!total)
1941 break;
1943 * We want to do more targeted reclaim.
1944 * excess >> 2 is not to excessive so as to
1945 * reclaim too much, nor too less that we keep
1946 * coming back to reclaim from this cgroup
1948 if (total >= (excess >> 2) ||
1949 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1950 break;
1952 continue;
1954 if (!mem_cgroup_reclaimable(victim, false))
1955 continue;
1956 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1957 zone, &nr_scanned);
1958 *total_scanned += nr_scanned;
1959 if (!res_counter_soft_limit_excess(&root_memcg->res))
1960 break;
1962 mem_cgroup_iter_break(root_memcg, victim);
1963 return total;
1967 * Check OOM-Killer is already running under our hierarchy.
1968 * If someone is running, return false.
1969 * Has to be called with memcg_oom_lock
1971 static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
1973 struct mem_cgroup *iter, *failed = NULL;
1975 for_each_mem_cgroup_tree(iter, memcg) {
1976 if (iter->oom_lock) {
1978 * this subtree of our hierarchy is already locked
1979 * so we cannot give a lock.
1981 failed = iter;
1982 mem_cgroup_iter_break(memcg, iter);
1983 break;
1984 } else
1985 iter->oom_lock = true;
1988 if (!failed)
1989 return true;
1992 * OK, we failed to lock the whole subtree so we have to clean up
1993 * what we set up to the failing subtree
1995 for_each_mem_cgroup_tree(iter, memcg) {
1996 if (iter == failed) {
1997 mem_cgroup_iter_break(memcg, iter);
1998 break;
2000 iter->oom_lock = false;
2002 return false;
2006 * Has to be called with memcg_oom_lock
2008 static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2010 struct mem_cgroup *iter;
2012 for_each_mem_cgroup_tree(iter, memcg)
2013 iter->oom_lock = false;
2014 return 0;
2017 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2019 struct mem_cgroup *iter;
2021 for_each_mem_cgroup_tree(iter, memcg)
2022 atomic_inc(&iter->under_oom);
2025 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2027 struct mem_cgroup *iter;
2030 * When a new child is created while the hierarchy is under oom,
2031 * mem_cgroup_oom_lock() may not be called. We have to use
2032 * atomic_add_unless() here.
2034 for_each_mem_cgroup_tree(iter, memcg)
2035 atomic_add_unless(&iter->under_oom, -1, 0);
2038 static DEFINE_SPINLOCK(memcg_oom_lock);
2039 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2041 struct oom_wait_info {
2042 struct mem_cgroup *memcg;
2043 wait_queue_t wait;
2046 static int memcg_oom_wake_function(wait_queue_t *wait,
2047 unsigned mode, int sync, void *arg)
2049 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2050 struct mem_cgroup *oom_wait_memcg;
2051 struct oom_wait_info *oom_wait_info;
2053 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2054 oom_wait_memcg = oom_wait_info->memcg;
2057 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
2058 * Then we can use css_is_ancestor without taking care of RCU.
2060 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2061 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
2062 return 0;
2063 return autoremove_wake_function(wait, mode, sync, arg);
2066 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
2068 /* for filtering, pass "memcg" as argument. */
2069 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
2072 static void memcg_oom_recover(struct mem_cgroup *memcg)
2074 if (memcg && atomic_read(&memcg->under_oom))
2075 memcg_wakeup_oom(memcg);
2079 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
2081 static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
2082 int order)
2084 struct oom_wait_info owait;
2085 bool locked, need_to_kill;
2087 owait.memcg = memcg;
2088 owait.wait.flags = 0;
2089 owait.wait.func = memcg_oom_wake_function;
2090 owait.wait.private = current;
2091 INIT_LIST_HEAD(&owait.wait.task_list);
2092 need_to_kill = true;
2093 mem_cgroup_mark_under_oom(memcg);
2095 /* At first, try to OOM lock hierarchy under memcg.*/
2096 spin_lock(&memcg_oom_lock);
2097 locked = mem_cgroup_oom_lock(memcg);
2099 * Even if signal_pending(), we can't quit charge() loop without
2100 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
2101 * under OOM is always welcomed, use TASK_KILLABLE here.
2103 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2104 if (!locked || memcg->oom_kill_disable)
2105 need_to_kill = false;
2106 if (locked)
2107 mem_cgroup_oom_notify(memcg);
2108 spin_unlock(&memcg_oom_lock);
2110 if (need_to_kill) {
2111 finish_wait(&memcg_oom_waitq, &owait.wait);
2112 mem_cgroup_out_of_memory(memcg, mask, order);
2113 } else {
2114 schedule();
2115 finish_wait(&memcg_oom_waitq, &owait.wait);
2117 spin_lock(&memcg_oom_lock);
2118 if (locked)
2119 mem_cgroup_oom_unlock(memcg);
2120 memcg_wakeup_oom(memcg);
2121 spin_unlock(&memcg_oom_lock);
2123 mem_cgroup_unmark_under_oom(memcg);
2125 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
2126 return false;
2127 /* Give chance to dying process */
2128 schedule_timeout_uninterruptible(1);
2129 return true;
2133 * Currently used to update mapped file statistics, but the routine can be
2134 * generalized to update other statistics as well.
2136 * Notes: Race condition
2138 * We usually use page_cgroup_lock() for accessing page_cgroup member but
2139 * it tends to be costly. But considering some conditions, we doesn't need
2140 * to do so _always_.
2142 * Considering "charge", lock_page_cgroup() is not required because all
2143 * file-stat operations happen after a page is attached to radix-tree. There
2144 * are no race with "charge".
2146 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2147 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2148 * if there are race with "uncharge". Statistics itself is properly handled
2149 * by flags.
2151 * Considering "move", this is an only case we see a race. To make the race
2152 * small, we check mm->moving_account and detect there are possibility of race
2153 * If there is, we take a lock.
2156 void __mem_cgroup_begin_update_page_stat(struct page *page,
2157 bool *locked, unsigned long *flags)
2159 struct mem_cgroup *memcg;
2160 struct page_cgroup *pc;
2162 pc = lookup_page_cgroup(page);
2163 again:
2164 memcg = pc->mem_cgroup;
2165 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2166 return;
2168 * If this memory cgroup is not under account moving, we don't
2169 * need to take move_lock_mem_cgroup(). Because we already hold
2170 * rcu_read_lock(), any calls to move_account will be delayed until
2171 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2173 if (!mem_cgroup_stolen(memcg))
2174 return;
2176 move_lock_mem_cgroup(memcg, flags);
2177 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2178 move_unlock_mem_cgroup(memcg, flags);
2179 goto again;
2181 *locked = true;
2184 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2186 struct page_cgroup *pc = lookup_page_cgroup(page);
2189 * It's guaranteed that pc->mem_cgroup never changes while
2190 * lock is held because a routine modifies pc->mem_cgroup
2191 * should take move_lock_mem_cgroup().
2193 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2196 void mem_cgroup_update_page_stat(struct page *page,
2197 enum mem_cgroup_page_stat_item idx, int val)
2199 struct mem_cgroup *memcg;
2200 struct page_cgroup *pc = lookup_page_cgroup(page);
2201 unsigned long uninitialized_var(flags);
2203 if (mem_cgroup_disabled())
2204 return;
2206 memcg = pc->mem_cgroup;
2207 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2208 return;
2210 switch (idx) {
2211 case MEMCG_NR_FILE_MAPPED:
2212 idx = MEM_CGROUP_STAT_FILE_MAPPED;
2213 break;
2214 default:
2215 BUG();
2218 this_cpu_add(memcg->stat->count[idx], val);
2222 * size of first charge trial. "32" comes from vmscan.c's magic value.
2223 * TODO: maybe necessary to use big numbers in big irons.
2225 #define CHARGE_BATCH 32U
2226 struct memcg_stock_pcp {
2227 struct mem_cgroup *cached; /* this never be root cgroup */
2228 unsigned int nr_pages;
2229 struct work_struct work;
2230 unsigned long flags;
2231 #define FLUSHING_CACHED_CHARGE 0
2233 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2234 static DEFINE_MUTEX(percpu_charge_mutex);
2237 * consume_stock: Try to consume stocked charge on this cpu.
2238 * @memcg: memcg to consume from.
2239 * @nr_pages: how many pages to charge.
2241 * The charges will only happen if @memcg matches the current cpu's memcg
2242 * stock, and at least @nr_pages are available in that stock. Failure to
2243 * service an allocation will refill the stock.
2245 * returns true if successful, false otherwise.
2247 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2249 struct memcg_stock_pcp *stock;
2250 bool ret = true;
2252 if (nr_pages > CHARGE_BATCH)
2253 return false;
2255 stock = &get_cpu_var(memcg_stock);
2256 if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2257 stock->nr_pages -= nr_pages;
2258 else /* need to call res_counter_charge */
2259 ret = false;
2260 put_cpu_var(memcg_stock);
2261 return ret;
2265 * Returns stocks cached in percpu to res_counter and reset cached information.
2267 static void drain_stock(struct memcg_stock_pcp *stock)
2269 struct mem_cgroup *old = stock->cached;
2271 if (stock->nr_pages) {
2272 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2274 res_counter_uncharge(&old->res, bytes);
2275 if (do_swap_account)
2276 res_counter_uncharge(&old->memsw, bytes);
2277 stock->nr_pages = 0;
2279 stock->cached = NULL;
2283 * This must be called under preempt disabled or must be called by
2284 * a thread which is pinned to local cpu.
2286 static void drain_local_stock(struct work_struct *dummy)
2288 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2289 drain_stock(stock);
2290 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2294 * Cache charges(val) which is from res_counter, to local per_cpu area.
2295 * This will be consumed by consume_stock() function, later.
2297 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2299 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2301 if (stock->cached != memcg) { /* reset if necessary */
2302 drain_stock(stock);
2303 stock->cached = memcg;
2305 stock->nr_pages += nr_pages;
2306 put_cpu_var(memcg_stock);
2310 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2311 * of the hierarchy under it. sync flag says whether we should block
2312 * until the work is done.
2314 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2316 int cpu, curcpu;
2318 /* Notify other cpus that system-wide "drain" is running */
2319 get_online_cpus();
2320 curcpu = get_cpu();
2321 for_each_online_cpu(cpu) {
2322 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2323 struct mem_cgroup *memcg;
2325 memcg = stock->cached;
2326 if (!memcg || !stock->nr_pages)
2327 continue;
2328 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2329 continue;
2330 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2331 if (cpu == curcpu)
2332 drain_local_stock(&stock->work);
2333 else
2334 schedule_work_on(cpu, &stock->work);
2337 put_cpu();
2339 if (!sync)
2340 goto out;
2342 for_each_online_cpu(cpu) {
2343 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2344 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2345 flush_work(&stock->work);
2347 out:
2348 put_online_cpus();
2352 * Tries to drain stocked charges in other cpus. This function is asynchronous
2353 * and just put a work per cpu for draining localy on each cpu. Caller can
2354 * expects some charges will be back to res_counter later but cannot wait for
2355 * it.
2357 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2360 * If someone calls draining, avoid adding more kworker runs.
2362 if (!mutex_trylock(&percpu_charge_mutex))
2363 return;
2364 drain_all_stock(root_memcg, false);
2365 mutex_unlock(&percpu_charge_mutex);
2368 /* This is a synchronous drain interface. */
2369 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2371 /* called when force_empty is called */
2372 mutex_lock(&percpu_charge_mutex);
2373 drain_all_stock(root_memcg, true);
2374 mutex_unlock(&percpu_charge_mutex);
2378 * This function drains percpu counter value from DEAD cpu and
2379 * move it to local cpu. Note that this function can be preempted.
2381 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2383 int i;
2385 spin_lock(&memcg->pcp_counter_lock);
2386 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2387 long x = per_cpu(memcg->stat->count[i], cpu);
2389 per_cpu(memcg->stat->count[i], cpu) = 0;
2390 memcg->nocpu_base.count[i] += x;
2392 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2393 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2395 per_cpu(memcg->stat->events[i], cpu) = 0;
2396 memcg->nocpu_base.events[i] += x;
2398 spin_unlock(&memcg->pcp_counter_lock);
2401 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2402 unsigned long action,
2403 void *hcpu)
2405 int cpu = (unsigned long)hcpu;
2406 struct memcg_stock_pcp *stock;
2407 struct mem_cgroup *iter;
2409 if (action == CPU_ONLINE)
2410 return NOTIFY_OK;
2412 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2413 return NOTIFY_OK;
2415 for_each_mem_cgroup(iter)
2416 mem_cgroup_drain_pcp_counter(iter, cpu);
2418 stock = &per_cpu(memcg_stock, cpu);
2419 drain_stock(stock);
2420 return NOTIFY_OK;
2424 /* See __mem_cgroup_try_charge() for details */
2425 enum {
2426 CHARGE_OK, /* success */
2427 CHARGE_RETRY, /* need to retry but retry is not bad */
2428 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2429 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2430 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2433 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2434 unsigned int nr_pages, unsigned int min_pages,
2435 bool oom_check)
2437 unsigned long csize = nr_pages * PAGE_SIZE;
2438 struct mem_cgroup *mem_over_limit;
2439 struct res_counter *fail_res;
2440 unsigned long flags = 0;
2441 int ret;
2443 ret = res_counter_charge(&memcg->res, csize, &fail_res);
2445 if (likely(!ret)) {
2446 if (!do_swap_account)
2447 return CHARGE_OK;
2448 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2449 if (likely(!ret))
2450 return CHARGE_OK;
2452 res_counter_uncharge(&memcg->res, csize);
2453 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2454 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2455 } else
2456 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2458 * Never reclaim on behalf of optional batching, retry with a
2459 * single page instead.
2461 if (nr_pages > min_pages)
2462 return CHARGE_RETRY;
2464 if (!(gfp_mask & __GFP_WAIT))
2465 return CHARGE_WOULDBLOCK;
2467 if (gfp_mask & __GFP_NORETRY)
2468 return CHARGE_NOMEM;
2470 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2471 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2472 return CHARGE_RETRY;
2474 * Even though the limit is exceeded at this point, reclaim
2475 * may have been able to free some pages. Retry the charge
2476 * before killing the task.
2478 * Only for regular pages, though: huge pages are rather
2479 * unlikely to succeed so close to the limit, and we fall back
2480 * to regular pages anyway in case of failure.
2482 if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2483 return CHARGE_RETRY;
2486 * At task move, charge accounts can be doubly counted. So, it's
2487 * better to wait until the end of task_move if something is going on.
2489 if (mem_cgroup_wait_acct_move(mem_over_limit))
2490 return CHARGE_RETRY;
2492 /* If we don't need to call oom-killer at el, return immediately */
2493 if (!oom_check)
2494 return CHARGE_NOMEM;
2495 /* check OOM */
2496 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2497 return CHARGE_OOM_DIE;
2499 return CHARGE_RETRY;
2503 * __mem_cgroup_try_charge() does
2504 * 1. detect memcg to be charged against from passed *mm and *ptr,
2505 * 2. update res_counter
2506 * 3. call memory reclaim if necessary.
2508 * In some special case, if the task is fatal, fatal_signal_pending() or
2509 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2510 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2511 * as possible without any hazards. 2: all pages should have a valid
2512 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2513 * pointer, that is treated as a charge to root_mem_cgroup.
2515 * So __mem_cgroup_try_charge() will return
2516 * 0 ... on success, filling *ptr with a valid memcg pointer.
2517 * -ENOMEM ... charge failure because of resource limits.
2518 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2520 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2521 * the oom-killer can be invoked.
2523 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2524 gfp_t gfp_mask,
2525 unsigned int nr_pages,
2526 struct mem_cgroup **ptr,
2527 bool oom)
2529 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2530 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2531 struct mem_cgroup *memcg = NULL;
2532 int ret;
2535 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2536 * in system level. So, allow to go ahead dying process in addition to
2537 * MEMDIE process.
2539 if (unlikely(test_thread_flag(TIF_MEMDIE)
2540 || fatal_signal_pending(current)))
2541 goto bypass;
2544 * We always charge the cgroup the mm_struct belongs to.
2545 * The mm_struct's mem_cgroup changes on task migration if the
2546 * thread group leader migrates. It's possible that mm is not
2547 * set, if so charge the root memcg (happens for pagecache usage).
2549 if (!*ptr && !mm)
2550 *ptr = root_mem_cgroup;
2551 again:
2552 if (*ptr) { /* css should be a valid one */
2553 memcg = *ptr;
2554 if (mem_cgroup_is_root(memcg))
2555 goto done;
2556 if (consume_stock(memcg, nr_pages))
2557 goto done;
2558 css_get(&memcg->css);
2559 } else {
2560 struct task_struct *p;
2562 rcu_read_lock();
2563 p = rcu_dereference(mm->owner);
2565 * Because we don't have task_lock(), "p" can exit.
2566 * In that case, "memcg" can point to root or p can be NULL with
2567 * race with swapoff. Then, we have small risk of mis-accouning.
2568 * But such kind of mis-account by race always happens because
2569 * we don't have cgroup_mutex(). It's overkill and we allo that
2570 * small race, here.
2571 * (*) swapoff at el will charge against mm-struct not against
2572 * task-struct. So, mm->owner can be NULL.
2574 memcg = mem_cgroup_from_task(p);
2575 if (!memcg)
2576 memcg = root_mem_cgroup;
2577 if (mem_cgroup_is_root(memcg)) {
2578 rcu_read_unlock();
2579 goto done;
2581 if (consume_stock(memcg, nr_pages)) {
2583 * It seems dagerous to access memcg without css_get().
2584 * But considering how consume_stok works, it's not
2585 * necessary. If consume_stock success, some charges
2586 * from this memcg are cached on this cpu. So, we
2587 * don't need to call css_get()/css_tryget() before
2588 * calling consume_stock().
2590 rcu_read_unlock();
2591 goto done;
2593 /* after here, we may be blocked. we need to get refcnt */
2594 if (!css_tryget(&memcg->css)) {
2595 rcu_read_unlock();
2596 goto again;
2598 rcu_read_unlock();
2601 do {
2602 bool oom_check;
2604 /* If killed, bypass charge */
2605 if (fatal_signal_pending(current)) {
2606 css_put(&memcg->css);
2607 goto bypass;
2610 oom_check = false;
2611 if (oom && !nr_oom_retries) {
2612 oom_check = true;
2613 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2616 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, nr_pages,
2617 oom_check);
2618 switch (ret) {
2619 case CHARGE_OK:
2620 break;
2621 case CHARGE_RETRY: /* not in OOM situation but retry */
2622 batch = nr_pages;
2623 css_put(&memcg->css);
2624 memcg = NULL;
2625 goto again;
2626 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2627 css_put(&memcg->css);
2628 goto nomem;
2629 case CHARGE_NOMEM: /* OOM routine works */
2630 if (!oom) {
2631 css_put(&memcg->css);
2632 goto nomem;
2634 /* If oom, we never return -ENOMEM */
2635 nr_oom_retries--;
2636 break;
2637 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2638 css_put(&memcg->css);
2639 goto bypass;
2641 } while (ret != CHARGE_OK);
2643 if (batch > nr_pages)
2644 refill_stock(memcg, batch - nr_pages);
2645 css_put(&memcg->css);
2646 done:
2647 *ptr = memcg;
2648 return 0;
2649 nomem:
2650 *ptr = NULL;
2651 return -ENOMEM;
2652 bypass:
2653 *ptr = root_mem_cgroup;
2654 return -EINTR;
2658 * Somemtimes we have to undo a charge we got by try_charge().
2659 * This function is for that and do uncharge, put css's refcnt.
2660 * gotten by try_charge().
2662 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2663 unsigned int nr_pages)
2665 if (!mem_cgroup_is_root(memcg)) {
2666 unsigned long bytes = nr_pages * PAGE_SIZE;
2668 res_counter_uncharge(&memcg->res, bytes);
2669 if (do_swap_account)
2670 res_counter_uncharge(&memcg->memsw, bytes);
2675 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2676 * This is useful when moving usage to parent cgroup.
2678 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2679 unsigned int nr_pages)
2681 unsigned long bytes = nr_pages * PAGE_SIZE;
2683 if (mem_cgroup_is_root(memcg))
2684 return;
2686 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2687 if (do_swap_account)
2688 res_counter_uncharge_until(&memcg->memsw,
2689 memcg->memsw.parent, bytes);
2693 * A helper function to get mem_cgroup from ID. must be called under
2694 * rcu_read_lock(). The caller is responsible for calling css_tryget if
2695 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2696 * called against removed memcg.)
2698 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2700 struct cgroup_subsys_state *css;
2702 /* ID 0 is unused ID */
2703 if (!id)
2704 return NULL;
2705 css = css_lookup(&mem_cgroup_subsys, id);
2706 if (!css)
2707 return NULL;
2708 return mem_cgroup_from_css(css);
2711 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2713 struct mem_cgroup *memcg = NULL;
2714 struct page_cgroup *pc;
2715 unsigned short id;
2716 swp_entry_t ent;
2718 VM_BUG_ON(!PageLocked(page));
2720 pc = lookup_page_cgroup(page);
2721 lock_page_cgroup(pc);
2722 if (PageCgroupUsed(pc)) {
2723 memcg = pc->mem_cgroup;
2724 if (memcg && !css_tryget(&memcg->css))
2725 memcg = NULL;
2726 } else if (PageSwapCache(page)) {
2727 ent.val = page_private(page);
2728 id = lookup_swap_cgroup_id(ent);
2729 rcu_read_lock();
2730 memcg = mem_cgroup_lookup(id);
2731 if (memcg && !css_tryget(&memcg->css))
2732 memcg = NULL;
2733 rcu_read_unlock();
2735 unlock_page_cgroup(pc);
2736 return memcg;
2739 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2740 struct page *page,
2741 unsigned int nr_pages,
2742 enum charge_type ctype,
2743 bool lrucare)
2745 struct page_cgroup *pc = lookup_page_cgroup(page);
2746 struct zone *uninitialized_var(zone);
2747 struct lruvec *lruvec;
2748 bool was_on_lru = false;
2749 bool anon;
2751 lock_page_cgroup(pc);
2752 VM_BUG_ON(PageCgroupUsed(pc));
2754 * we don't need page_cgroup_lock about tail pages, becase they are not
2755 * accessed by any other context at this point.
2759 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2760 * may already be on some other mem_cgroup's LRU. Take care of it.
2762 if (lrucare) {
2763 zone = page_zone(page);
2764 spin_lock_irq(&zone->lru_lock);
2765 if (PageLRU(page)) {
2766 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2767 ClearPageLRU(page);
2768 del_page_from_lru_list(page, lruvec, page_lru(page));
2769 was_on_lru = true;
2773 pc->mem_cgroup = memcg;
2775 * We access a page_cgroup asynchronously without lock_page_cgroup().
2776 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2777 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2778 * before USED bit, we need memory barrier here.
2779 * See mem_cgroup_add_lru_list(), etc.
2781 smp_wmb();
2782 SetPageCgroupUsed(pc);
2784 if (lrucare) {
2785 if (was_on_lru) {
2786 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2787 VM_BUG_ON(PageLRU(page));
2788 SetPageLRU(page);
2789 add_page_to_lru_list(page, lruvec, page_lru(page));
2791 spin_unlock_irq(&zone->lru_lock);
2794 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2795 anon = true;
2796 else
2797 anon = false;
2799 mem_cgroup_charge_statistics(memcg, anon, nr_pages);
2800 unlock_page_cgroup(pc);
2803 * "charge_statistics" updated event counter. Then, check it.
2804 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2805 * if they exceeds softlimit.
2807 memcg_check_events(memcg, page);
2810 static DEFINE_MUTEX(set_limit_mutex);
2812 #ifdef CONFIG_MEMCG_KMEM
2813 static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
2815 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
2816 (memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
2820 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2821 * in the memcg_cache_params struct.
2823 static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2825 struct kmem_cache *cachep;
2827 VM_BUG_ON(p->is_root_cache);
2828 cachep = p->root_cache;
2829 return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)];
2832 #ifdef CONFIG_SLABINFO
2833 static int mem_cgroup_slabinfo_read(struct cgroup *cont, struct cftype *cft,
2834 struct seq_file *m)
2836 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
2837 struct memcg_cache_params *params;
2839 if (!memcg_can_account_kmem(memcg))
2840 return -EIO;
2842 print_slabinfo_header(m);
2844 mutex_lock(&memcg->slab_caches_mutex);
2845 list_for_each_entry(params, &memcg->memcg_slab_caches, list)
2846 cache_show(memcg_params_to_cache(params), m);
2847 mutex_unlock(&memcg->slab_caches_mutex);
2849 return 0;
2851 #endif
2853 static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
2855 struct res_counter *fail_res;
2856 struct mem_cgroup *_memcg;
2857 int ret = 0;
2858 bool may_oom;
2860 ret = res_counter_charge(&memcg->kmem, size, &fail_res);
2861 if (ret)
2862 return ret;
2865 * Conditions under which we can wait for the oom_killer. Those are
2866 * the same conditions tested by the core page allocator
2868 may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);
2870 _memcg = memcg;
2871 ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
2872 &_memcg, may_oom);
2874 if (ret == -EINTR) {
2876 * __mem_cgroup_try_charge() chosed to bypass to root due to
2877 * OOM kill or fatal signal. Since our only options are to
2878 * either fail the allocation or charge it to this cgroup, do
2879 * it as a temporary condition. But we can't fail. From a
2880 * kmem/slab perspective, the cache has already been selected,
2881 * by mem_cgroup_kmem_get_cache(), so it is too late to change
2882 * our minds.
2884 * This condition will only trigger if the task entered
2885 * memcg_charge_kmem in a sane state, but was OOM-killed during
2886 * __mem_cgroup_try_charge() above. Tasks that were already
2887 * dying when the allocation triggers should have been already
2888 * directed to the root cgroup in memcontrol.h
2890 res_counter_charge_nofail(&memcg->res, size, &fail_res);
2891 if (do_swap_account)
2892 res_counter_charge_nofail(&memcg->memsw, size,
2893 &fail_res);
2894 ret = 0;
2895 } else if (ret)
2896 res_counter_uncharge(&memcg->kmem, size);
2898 return ret;
2901 static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
2903 res_counter_uncharge(&memcg->res, size);
2904 if (do_swap_account)
2905 res_counter_uncharge(&memcg->memsw, size);
2907 /* Not down to 0 */
2908 if (res_counter_uncharge(&memcg->kmem, size))
2909 return;
2911 if (memcg_kmem_test_and_clear_dead(memcg))
2912 mem_cgroup_put(memcg);
2915 void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
2917 if (!memcg)
2918 return;
2920 mutex_lock(&memcg->slab_caches_mutex);
2921 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
2922 mutex_unlock(&memcg->slab_caches_mutex);
2926 * helper for acessing a memcg's index. It will be used as an index in the
2927 * child cache array in kmem_cache, and also to derive its name. This function
2928 * will return -1 when this is not a kmem-limited memcg.
2930 int memcg_cache_id(struct mem_cgroup *memcg)
2932 return memcg ? memcg->kmemcg_id : -1;
2936 * This ends up being protected by the set_limit mutex, during normal
2937 * operation, because that is its main call site.
2939 * But when we create a new cache, we can call this as well if its parent
2940 * is kmem-limited. That will have to hold set_limit_mutex as well.
2942 int memcg_update_cache_sizes(struct mem_cgroup *memcg)
2944 int num, ret;
2946 num = ida_simple_get(&kmem_limited_groups,
2947 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2948 if (num < 0)
2949 return num;
2951 * After this point, kmem_accounted (that we test atomically in
2952 * the beginning of this conditional), is no longer 0. This
2953 * guarantees only one process will set the following boolean
2954 * to true. We don't need test_and_set because we're protected
2955 * by the set_limit_mutex anyway.
2957 memcg_kmem_set_activated(memcg);
2959 ret = memcg_update_all_caches(num+1);
2960 if (ret) {
2961 ida_simple_remove(&kmem_limited_groups, num);
2962 memcg_kmem_clear_activated(memcg);
2963 return ret;
2966 memcg->kmemcg_id = num;
2967 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
2968 mutex_init(&memcg->slab_caches_mutex);
2969 return 0;
2972 static size_t memcg_caches_array_size(int num_groups)
2974 ssize_t size;
2975 if (num_groups <= 0)
2976 return 0;
2978 size = 2 * num_groups;
2979 if (size < MEMCG_CACHES_MIN_SIZE)
2980 size = MEMCG_CACHES_MIN_SIZE;
2981 else if (size > MEMCG_CACHES_MAX_SIZE)
2982 size = MEMCG_CACHES_MAX_SIZE;
2984 return size;
2988 * We should update the current array size iff all caches updates succeed. This
2989 * can only be done from the slab side. The slab mutex needs to be held when
2990 * calling this.
2992 void memcg_update_array_size(int num)
2994 if (num > memcg_limited_groups_array_size)
2995 memcg_limited_groups_array_size = memcg_caches_array_size(num);
2998 int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
3000 struct memcg_cache_params *cur_params = s->memcg_params;
3002 VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache);
3004 if (num_groups > memcg_limited_groups_array_size) {
3005 int i;
3006 ssize_t size = memcg_caches_array_size(num_groups);
3008 size *= sizeof(void *);
3009 size += sizeof(struct memcg_cache_params);
3011 s->memcg_params = kzalloc(size, GFP_KERNEL);
3012 if (!s->memcg_params) {
3013 s->memcg_params = cur_params;
3014 return -ENOMEM;
3017 s->memcg_params->is_root_cache = true;
3020 * There is the chance it will be bigger than
3021 * memcg_limited_groups_array_size, if we failed an allocation
3022 * in a cache, in which case all caches updated before it, will
3023 * have a bigger array.
3025 * But if that is the case, the data after
3026 * memcg_limited_groups_array_size is certainly unused
3028 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3029 if (!cur_params->memcg_caches[i])
3030 continue;
3031 s->memcg_params->memcg_caches[i] =
3032 cur_params->memcg_caches[i];
3036 * Ideally, we would wait until all caches succeed, and only
3037 * then free the old one. But this is not worth the extra
3038 * pointer per-cache we'd have to have for this.
3040 * It is not a big deal if some caches are left with a size
3041 * bigger than the others. And all updates will reset this
3042 * anyway.
3044 kfree(cur_params);
3046 return 0;
3049 int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
3050 struct kmem_cache *root_cache)
3052 size_t size = sizeof(struct memcg_cache_params);
3054 if (!memcg_kmem_enabled())
3055 return 0;
3057 if (!memcg)
3058 size += memcg_limited_groups_array_size * sizeof(void *);
3060 s->memcg_params = kzalloc(size, GFP_KERNEL);
3061 if (!s->memcg_params)
3062 return -ENOMEM;
3064 if (memcg) {
3065 s->memcg_params->memcg = memcg;
3066 s->memcg_params->root_cache = root_cache;
3067 } else
3068 s->memcg_params->is_root_cache = true;
3070 return 0;
3073 void memcg_release_cache(struct kmem_cache *s)
3075 struct kmem_cache *root;
3076 struct mem_cgroup *memcg;
3077 int id;
3080 * This happens, for instance, when a root cache goes away before we
3081 * add any memcg.
3083 if (!s->memcg_params)
3084 return;
3086 if (s->memcg_params->is_root_cache)
3087 goto out;
3089 memcg = s->memcg_params->memcg;
3090 id = memcg_cache_id(memcg);
3092 root = s->memcg_params->root_cache;
3093 root->memcg_params->memcg_caches[id] = NULL;
3094 mem_cgroup_put(memcg);
3096 mutex_lock(&memcg->slab_caches_mutex);
3097 list_del(&s->memcg_params->list);
3098 mutex_unlock(&memcg->slab_caches_mutex);
3100 out:
3101 kfree(s->memcg_params);
3105 * During the creation a new cache, we need to disable our accounting mechanism
3106 * altogether. This is true even if we are not creating, but rather just
3107 * enqueing new caches to be created.
3109 * This is because that process will trigger allocations; some visible, like
3110 * explicit kmallocs to auxiliary data structures, name strings and internal
3111 * cache structures; some well concealed, like INIT_WORK() that can allocate
3112 * objects during debug.
3114 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3115 * to it. This may not be a bounded recursion: since the first cache creation
3116 * failed to complete (waiting on the allocation), we'll just try to create the
3117 * cache again, failing at the same point.
3119 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3120 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3121 * inside the following two functions.
3123 static inline void memcg_stop_kmem_account(void)
3125 VM_BUG_ON(!current->mm);
3126 current->memcg_kmem_skip_account++;
3129 static inline void memcg_resume_kmem_account(void)
3131 VM_BUG_ON(!current->mm);
3132 current->memcg_kmem_skip_account--;
3135 static void kmem_cache_destroy_work_func(struct work_struct *w)
3137 struct kmem_cache *cachep;
3138 struct memcg_cache_params *p;
3140 p = container_of(w, struct memcg_cache_params, destroy);
3142 cachep = memcg_params_to_cache(p);
3145 * If we get down to 0 after shrink, we could delete right away.
3146 * However, memcg_release_pages() already puts us back in the workqueue
3147 * in that case. If we proceed deleting, we'll get a dangling
3148 * reference, and removing the object from the workqueue in that case
3149 * is unnecessary complication. We are not a fast path.
3151 * Note that this case is fundamentally different from racing with
3152 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
3153 * kmem_cache_shrink, not only we would be reinserting a dead cache
3154 * into the queue, but doing so from inside the worker racing to
3155 * destroy it.
3157 * So if we aren't down to zero, we'll just schedule a worker and try
3158 * again
3160 if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
3161 kmem_cache_shrink(cachep);
3162 if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
3163 return;
3164 } else
3165 kmem_cache_destroy(cachep);
3168 void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
3170 if (!cachep->memcg_params->dead)
3171 return;
3174 * There are many ways in which we can get here.
3176 * We can get to a memory-pressure situation while the delayed work is
3177 * still pending to run. The vmscan shrinkers can then release all
3178 * cache memory and get us to destruction. If this is the case, we'll
3179 * be executed twice, which is a bug (the second time will execute over
3180 * bogus data). In this case, cancelling the work should be fine.
3182 * But we can also get here from the worker itself, if
3183 * kmem_cache_shrink is enough to shake all the remaining objects and
3184 * get the page count to 0. In this case, we'll deadlock if we try to
3185 * cancel the work (the worker runs with an internal lock held, which
3186 * is the same lock we would hold for cancel_work_sync().)
3188 * Since we can't possibly know who got us here, just refrain from
3189 * running if there is already work pending
3191 if (work_pending(&cachep->memcg_params->destroy))
3192 return;
3194 * We have to defer the actual destroying to a workqueue, because
3195 * we might currently be in a context that cannot sleep.
3197 schedule_work(&cachep->memcg_params->destroy);
3200 static char *memcg_cache_name(struct mem_cgroup *memcg, struct kmem_cache *s)
3202 char *name;
3203 struct dentry *dentry;
3205 rcu_read_lock();
3206 dentry = rcu_dereference(memcg->css.cgroup->dentry);
3207 rcu_read_unlock();
3209 BUG_ON(dentry == NULL);
3211 name = kasprintf(GFP_KERNEL, "%s(%d:%s)", s->name,
3212 memcg_cache_id(memcg), dentry->d_name.name);
3214 return name;
3217 static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
3218 struct kmem_cache *s)
3220 char *name;
3221 struct kmem_cache *new;
3223 name = memcg_cache_name(memcg, s);
3224 if (!name)
3225 return NULL;
3227 new = kmem_cache_create_memcg(memcg, name, s->object_size, s->align,
3228 (s->flags & ~SLAB_PANIC), s->ctor, s);
3230 if (new)
3231 new->allocflags |= __GFP_KMEMCG;
3233 kfree(name);
3234 return new;
3238 * This lock protects updaters, not readers. We want readers to be as fast as
3239 * they can, and they will either see NULL or a valid cache value. Our model
3240 * allow them to see NULL, in which case the root memcg will be selected.
3242 * We need this lock because multiple allocations to the same cache from a non
3243 * will span more than one worker. Only one of them can create the cache.
3245 static DEFINE_MUTEX(memcg_cache_mutex);
3246 static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
3247 struct kmem_cache *cachep)
3249 struct kmem_cache *new_cachep;
3250 int idx;
3252 BUG_ON(!memcg_can_account_kmem(memcg));
3254 idx = memcg_cache_id(memcg);
3256 mutex_lock(&memcg_cache_mutex);
3257 new_cachep = cachep->memcg_params->memcg_caches[idx];
3258 if (new_cachep)
3259 goto out;
3261 new_cachep = kmem_cache_dup(memcg, cachep);
3262 if (new_cachep == NULL) {
3263 new_cachep = cachep;
3264 goto out;
3267 mem_cgroup_get(memcg);
3268 atomic_set(&new_cachep->memcg_params->nr_pages , 0);
3270 cachep->memcg_params->memcg_caches[idx] = new_cachep;
3272 * the readers won't lock, make sure everybody sees the updated value,
3273 * so they won't put stuff in the queue again for no reason
3275 wmb();
3276 out:
3277 mutex_unlock(&memcg_cache_mutex);
3278 return new_cachep;
3281 void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
3283 struct kmem_cache *c;
3284 int i;
3286 if (!s->memcg_params)
3287 return;
3288 if (!s->memcg_params->is_root_cache)
3289 return;
3292 * If the cache is being destroyed, we trust that there is no one else
3293 * requesting objects from it. Even if there are, the sanity checks in
3294 * kmem_cache_destroy should caught this ill-case.
3296 * Still, we don't want anyone else freeing memcg_caches under our
3297 * noses, which can happen if a new memcg comes to life. As usual,
3298 * we'll take the set_limit_mutex to protect ourselves against this.
3300 mutex_lock(&set_limit_mutex);
3301 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3302 c = s->memcg_params->memcg_caches[i];
3303 if (!c)
3304 continue;
3307 * We will now manually delete the caches, so to avoid races
3308 * we need to cancel all pending destruction workers and
3309 * proceed with destruction ourselves.
3311 * kmem_cache_destroy() will call kmem_cache_shrink internally,
3312 * and that could spawn the workers again: it is likely that
3313 * the cache still have active pages until this very moment.
3314 * This would lead us back to mem_cgroup_destroy_cache.
3316 * But that will not execute at all if the "dead" flag is not
3317 * set, so flip it down to guarantee we are in control.
3319 c->memcg_params->dead = false;
3320 cancel_work_sync(&c->memcg_params->destroy);
3321 kmem_cache_destroy(c);
3323 mutex_unlock(&set_limit_mutex);
3326 struct create_work {
3327 struct mem_cgroup *memcg;
3328 struct kmem_cache *cachep;
3329 struct work_struct work;
3332 static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3334 struct kmem_cache *cachep;
3335 struct memcg_cache_params *params;
3337 if (!memcg_kmem_is_active(memcg))
3338 return;
3340 mutex_lock(&memcg->slab_caches_mutex);
3341 list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
3342 cachep = memcg_params_to_cache(params);
3343 cachep->memcg_params->dead = true;
3344 INIT_WORK(&cachep->memcg_params->destroy,
3345 kmem_cache_destroy_work_func);
3346 schedule_work(&cachep->memcg_params->destroy);
3348 mutex_unlock(&memcg->slab_caches_mutex);
3351 static void memcg_create_cache_work_func(struct work_struct *w)
3353 struct create_work *cw;
3355 cw = container_of(w, struct create_work, work);
3356 memcg_create_kmem_cache(cw->memcg, cw->cachep);
3357 /* Drop the reference gotten when we enqueued. */
3358 css_put(&cw->memcg->css);
3359 kfree(cw);
3363 * Enqueue the creation of a per-memcg kmem_cache.
3364 * Called with rcu_read_lock.
3366 static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3367 struct kmem_cache *cachep)
3369 struct create_work *cw;
3371 cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
3372 if (cw == NULL)
3373 return;
3375 /* The corresponding put will be done in the workqueue. */
3376 if (!css_tryget(&memcg->css)) {
3377 kfree(cw);
3378 return;
3381 cw->memcg = memcg;
3382 cw->cachep = cachep;
3384 INIT_WORK(&cw->work, memcg_create_cache_work_func);
3385 schedule_work(&cw->work);
3388 static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3389 struct kmem_cache *cachep)
3392 * We need to stop accounting when we kmalloc, because if the
3393 * corresponding kmalloc cache is not yet created, the first allocation
3394 * in __memcg_create_cache_enqueue will recurse.
3396 * However, it is better to enclose the whole function. Depending on
3397 * the debugging options enabled, INIT_WORK(), for instance, can
3398 * trigger an allocation. This too, will make us recurse. Because at
3399 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3400 * the safest choice is to do it like this, wrapping the whole function.
3402 memcg_stop_kmem_account();
3403 __memcg_create_cache_enqueue(memcg, cachep);
3404 memcg_resume_kmem_account();
3407 * Return the kmem_cache we're supposed to use for a slab allocation.
3408 * We try to use the current memcg's version of the cache.
3410 * If the cache does not exist yet, if we are the first user of it,
3411 * we either create it immediately, if possible, or create it asynchronously
3412 * in a workqueue.
3413 * In the latter case, we will let the current allocation go through with
3414 * the original cache.
3416 * Can't be called in interrupt context or from kernel threads.
3417 * This function needs to be called with rcu_read_lock() held.
3419 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3420 gfp_t gfp)
3422 struct mem_cgroup *memcg;
3423 int idx;
3425 VM_BUG_ON(!cachep->memcg_params);
3426 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3428 if (!current->mm || current->memcg_kmem_skip_account)
3429 return cachep;
3431 rcu_read_lock();
3432 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
3433 rcu_read_unlock();
3435 if (!memcg_can_account_kmem(memcg))
3436 return cachep;
3438 idx = memcg_cache_id(memcg);
3441 * barrier to mare sure we're always seeing the up to date value. The
3442 * code updating memcg_caches will issue a write barrier to match this.
3444 read_barrier_depends();
3445 if (unlikely(cachep->memcg_params->memcg_caches[idx] == NULL)) {
3447 * If we are in a safe context (can wait, and not in interrupt
3448 * context), we could be be predictable and return right away.
3449 * This would guarantee that the allocation being performed
3450 * already belongs in the new cache.
3452 * However, there are some clashes that can arrive from locking.
3453 * For instance, because we acquire the slab_mutex while doing
3454 * kmem_cache_dup, this means no further allocation could happen
3455 * with the slab_mutex held.
3457 * Also, because cache creation issue get_online_cpus(), this
3458 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
3459 * that ends up reversed during cpu hotplug. (cpuset allocates
3460 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
3461 * better to defer everything.
3463 memcg_create_cache_enqueue(memcg, cachep);
3464 return cachep;
3467 return cachep->memcg_params->memcg_caches[idx];
3469 EXPORT_SYMBOL(__memcg_kmem_get_cache);
3472 * We need to verify if the allocation against current->mm->owner's memcg is
3473 * possible for the given order. But the page is not allocated yet, so we'll
3474 * need a further commit step to do the final arrangements.
3476 * It is possible for the task to switch cgroups in this mean time, so at
3477 * commit time, we can't rely on task conversion any longer. We'll then use
3478 * the handle argument to return to the caller which cgroup we should commit
3479 * against. We could also return the memcg directly and avoid the pointer
3480 * passing, but a boolean return value gives better semantics considering
3481 * the compiled-out case as well.
3483 * Returning true means the allocation is possible.
3485 bool
3486 __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3488 struct mem_cgroup *memcg;
3489 int ret;
3491 *_memcg = NULL;
3492 memcg = try_get_mem_cgroup_from_mm(current->mm);
3495 * very rare case described in mem_cgroup_from_task. Unfortunately there
3496 * isn't much we can do without complicating this too much, and it would
3497 * be gfp-dependent anyway. Just let it go
3499 if (unlikely(!memcg))
3500 return true;
3502 if (!memcg_can_account_kmem(memcg)) {
3503 css_put(&memcg->css);
3504 return true;
3507 ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3508 if (!ret)
3509 *_memcg = memcg;
3511 css_put(&memcg->css);
3512 return (ret == 0);
3515 void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3516 int order)
3518 struct page_cgroup *pc;
3520 VM_BUG_ON(mem_cgroup_is_root(memcg));
3522 /* The page allocation failed. Revert */
3523 if (!page) {
3524 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3525 return;
3528 pc = lookup_page_cgroup(page);
3529 lock_page_cgroup(pc);
3530 pc->mem_cgroup = memcg;
3531 SetPageCgroupUsed(pc);
3532 unlock_page_cgroup(pc);
3535 void __memcg_kmem_uncharge_pages(struct page *page, int order)
3537 struct mem_cgroup *memcg = NULL;
3538 struct page_cgroup *pc;
3541 pc = lookup_page_cgroup(page);
3543 * Fast unlocked return. Theoretically might have changed, have to
3544 * check again after locking.
3546 if (!PageCgroupUsed(pc))
3547 return;
3549 lock_page_cgroup(pc);
3550 if (PageCgroupUsed(pc)) {
3551 memcg = pc->mem_cgroup;
3552 ClearPageCgroupUsed(pc);
3554 unlock_page_cgroup(pc);
3557 * We trust that only if there is a memcg associated with the page, it
3558 * is a valid allocation
3560 if (!memcg)
3561 return;
3563 VM_BUG_ON(mem_cgroup_is_root(memcg));
3564 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3566 #else
3567 static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3570 #endif /* CONFIG_MEMCG_KMEM */
3572 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3574 #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3576 * Because tail pages are not marked as "used", set it. We're under
3577 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3578 * charge/uncharge will be never happen and move_account() is done under
3579 * compound_lock(), so we don't have to take care of races.
3581 void mem_cgroup_split_huge_fixup(struct page *head)
3583 struct page_cgroup *head_pc = lookup_page_cgroup(head);
3584 struct page_cgroup *pc;
3585 int i;
3587 if (mem_cgroup_disabled())
3588 return;
3589 for (i = 1; i < HPAGE_PMD_NR; i++) {
3590 pc = head_pc + i;
3591 pc->mem_cgroup = head_pc->mem_cgroup;
3592 smp_wmb();/* see __commit_charge() */
3593 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
3596 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3599 * mem_cgroup_move_account - move account of the page
3600 * @page: the page
3601 * @nr_pages: number of regular pages (>1 for huge pages)
3602 * @pc: page_cgroup of the page.
3603 * @from: mem_cgroup which the page is moved from.
3604 * @to: mem_cgroup which the page is moved to. @from != @to.
3606 * The caller must confirm following.
3607 * - page is not on LRU (isolate_page() is useful.)
3608 * - compound_lock is held when nr_pages > 1
3610 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3611 * from old cgroup.
3613 static int mem_cgroup_move_account(struct page *page,
3614 unsigned int nr_pages,
3615 struct page_cgroup *pc,
3616 struct mem_cgroup *from,
3617 struct mem_cgroup *to)
3619 unsigned long flags;
3620 int ret;
3621 bool anon = PageAnon(page);
3623 VM_BUG_ON(from == to);
3624 VM_BUG_ON(PageLRU(page));
3626 * The page is isolated from LRU. So, collapse function
3627 * will not handle this page. But page splitting can happen.
3628 * Do this check under compound_page_lock(). The caller should
3629 * hold it.
3631 ret = -EBUSY;
3632 if (nr_pages > 1 && !PageTransHuge(page))
3633 goto out;
3635 lock_page_cgroup(pc);
3637 ret = -EINVAL;
3638 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3639 goto unlock;
3641 move_lock_mem_cgroup(from, &flags);
3643 if (!anon && page_mapped(page)) {
3644 /* Update mapped_file data for mem_cgroup */
3645 preempt_disable();
3646 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
3647 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
3648 preempt_enable();
3650 mem_cgroup_charge_statistics(from, anon, -nr_pages);
3652 /* caller should have done css_get */
3653 pc->mem_cgroup = to;
3654 mem_cgroup_charge_statistics(to, anon, nr_pages);
3655 move_unlock_mem_cgroup(from, &flags);
3656 ret = 0;
3657 unlock:
3658 unlock_page_cgroup(pc);
3660 * check events
3662 memcg_check_events(to, page);
3663 memcg_check_events(from, page);
3664 out:
3665 return ret;
3669 * mem_cgroup_move_parent - moves page to the parent group
3670 * @page: the page to move
3671 * @pc: page_cgroup of the page
3672 * @child: page's cgroup
3674 * move charges to its parent or the root cgroup if the group has no
3675 * parent (aka use_hierarchy==0).
3676 * Although this might fail (get_page_unless_zero, isolate_lru_page or
3677 * mem_cgroup_move_account fails) the failure is always temporary and
3678 * it signals a race with a page removal/uncharge or migration. In the
3679 * first case the page is on the way out and it will vanish from the LRU
3680 * on the next attempt and the call should be retried later.
3681 * Isolation from the LRU fails only if page has been isolated from
3682 * the LRU since we looked at it and that usually means either global
3683 * reclaim or migration going on. The page will either get back to the
3684 * LRU or vanish.
3685 * Finaly mem_cgroup_move_account fails only if the page got uncharged
3686 * (!PageCgroupUsed) or moved to a different group. The page will
3687 * disappear in the next attempt.
3689 static int mem_cgroup_move_parent(struct page *page,
3690 struct page_cgroup *pc,
3691 struct mem_cgroup *child)
3693 struct mem_cgroup *parent;
3694 unsigned int nr_pages;
3695 unsigned long uninitialized_var(flags);
3696 int ret;
3698 VM_BUG_ON(mem_cgroup_is_root(child));
3700 ret = -EBUSY;
3701 if (!get_page_unless_zero(page))
3702 goto out;
3703 if (isolate_lru_page(page))
3704 goto put;
3706 nr_pages = hpage_nr_pages(page);
3708 parent = parent_mem_cgroup(child);
3710 * If no parent, move charges to root cgroup.
3712 if (!parent)
3713 parent = root_mem_cgroup;
3715 if (nr_pages > 1) {
3716 VM_BUG_ON(!PageTransHuge(page));
3717 flags = compound_lock_irqsave(page);
3720 ret = mem_cgroup_move_account(page, nr_pages,
3721 pc, child, parent);
3722 if (!ret)
3723 __mem_cgroup_cancel_local_charge(child, nr_pages);
3725 if (nr_pages > 1)
3726 compound_unlock_irqrestore(page, flags);
3727 putback_lru_page(page);
3728 put:
3729 put_page(page);
3730 out:
3731 return ret;
3735 * Charge the memory controller for page usage.
3736 * Return
3737 * 0 if the charge was successful
3738 * < 0 if the cgroup is over its limit
3740 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
3741 gfp_t gfp_mask, enum charge_type ctype)
3743 struct mem_cgroup *memcg = NULL;
3744 unsigned int nr_pages = 1;
3745 bool oom = true;
3746 int ret;
3748 if (PageTransHuge(page)) {
3749 nr_pages <<= compound_order(page);
3750 VM_BUG_ON(!PageTransHuge(page));
3752 * Never OOM-kill a process for a huge page. The
3753 * fault handler will fall back to regular pages.
3755 oom = false;
3758 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
3759 if (ret == -ENOMEM)
3760 return ret;
3761 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
3762 return 0;
3765 int mem_cgroup_newpage_charge(struct page *page,
3766 struct mm_struct *mm, gfp_t gfp_mask)
3768 if (mem_cgroup_disabled())
3769 return 0;
3770 VM_BUG_ON(page_mapped(page));
3771 VM_BUG_ON(page->mapping && !PageAnon(page));
3772 VM_BUG_ON(!mm);
3773 return mem_cgroup_charge_common(page, mm, gfp_mask,
3774 MEM_CGROUP_CHARGE_TYPE_ANON);
3778 * While swap-in, try_charge -> commit or cancel, the page is locked.
3779 * And when try_charge() successfully returns, one refcnt to memcg without
3780 * struct page_cgroup is acquired. This refcnt will be consumed by
3781 * "commit()" or removed by "cancel()"
3783 static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
3784 struct page *page,
3785 gfp_t mask,
3786 struct mem_cgroup **memcgp)
3788 struct mem_cgroup *memcg;
3789 struct page_cgroup *pc;
3790 int ret;
3792 pc = lookup_page_cgroup(page);
3794 * Every swap fault against a single page tries to charge the
3795 * page, bail as early as possible. shmem_unuse() encounters
3796 * already charged pages, too. The USED bit is protected by
3797 * the page lock, which serializes swap cache removal, which
3798 * in turn serializes uncharging.
3800 if (PageCgroupUsed(pc))
3801 return 0;
3802 if (!do_swap_account)
3803 goto charge_cur_mm;
3804 memcg = try_get_mem_cgroup_from_page(page);
3805 if (!memcg)
3806 goto charge_cur_mm;
3807 *memcgp = memcg;
3808 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
3809 css_put(&memcg->css);
3810 if (ret == -EINTR)
3811 ret = 0;
3812 return ret;
3813 charge_cur_mm:
3814 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
3815 if (ret == -EINTR)
3816 ret = 0;
3817 return ret;
3820 int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
3821 gfp_t gfp_mask, struct mem_cgroup **memcgp)
3823 *memcgp = NULL;
3824 if (mem_cgroup_disabled())
3825 return 0;
3827 * A racing thread's fault, or swapoff, may have already
3828 * updated the pte, and even removed page from swap cache: in
3829 * those cases unuse_pte()'s pte_same() test will fail; but
3830 * there's also a KSM case which does need to charge the page.
3832 if (!PageSwapCache(page)) {
3833 int ret;
3835 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
3836 if (ret == -EINTR)
3837 ret = 0;
3838 return ret;
3840 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
3843 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
3845 if (mem_cgroup_disabled())
3846 return;
3847 if (!memcg)
3848 return;
3849 __mem_cgroup_cancel_charge(memcg, 1);
3852 static void
3853 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
3854 enum charge_type ctype)
3856 if (mem_cgroup_disabled())
3857 return;
3858 if (!memcg)
3859 return;
3861 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
3863 * Now swap is on-memory. This means this page may be
3864 * counted both as mem and swap....double count.
3865 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
3866 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
3867 * may call delete_from_swap_cache() before reach here.
3869 if (do_swap_account && PageSwapCache(page)) {
3870 swp_entry_t ent = {.val = page_private(page)};
3871 mem_cgroup_uncharge_swap(ent);
3875 void mem_cgroup_commit_charge_swapin(struct page *page,
3876 struct mem_cgroup *memcg)
3878 __mem_cgroup_commit_charge_swapin(page, memcg,
3879 MEM_CGROUP_CHARGE_TYPE_ANON);
3882 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
3883 gfp_t gfp_mask)
3885 struct mem_cgroup *memcg = NULL;
3886 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
3887 int ret;
3889 if (mem_cgroup_disabled())
3890 return 0;
3891 if (PageCompound(page))
3892 return 0;
3894 if (!PageSwapCache(page))
3895 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
3896 else { /* page is swapcache/shmem */
3897 ret = __mem_cgroup_try_charge_swapin(mm, page,
3898 gfp_mask, &memcg);
3899 if (!ret)
3900 __mem_cgroup_commit_charge_swapin(page, memcg, type);
3902 return ret;
3905 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
3906 unsigned int nr_pages,
3907 const enum charge_type ctype)
3909 struct memcg_batch_info *batch = NULL;
3910 bool uncharge_memsw = true;
3912 /* If swapout, usage of swap doesn't decrease */
3913 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
3914 uncharge_memsw = false;
3916 batch = &current->memcg_batch;
3918 * In usual, we do css_get() when we remember memcg pointer.
3919 * But in this case, we keep res->usage until end of a series of
3920 * uncharges. Then, it's ok to ignore memcg's refcnt.
3922 if (!batch->memcg)
3923 batch->memcg = memcg;
3925 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
3926 * In those cases, all pages freed continuously can be expected to be in
3927 * the same cgroup and we have chance to coalesce uncharges.
3928 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
3929 * because we want to do uncharge as soon as possible.
3932 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
3933 goto direct_uncharge;
3935 if (nr_pages > 1)
3936 goto direct_uncharge;
3939 * In typical case, batch->memcg == mem. This means we can
3940 * merge a series of uncharges to an uncharge of res_counter.
3941 * If not, we uncharge res_counter ony by one.
3943 if (batch->memcg != memcg)
3944 goto direct_uncharge;
3945 /* remember freed charge and uncharge it later */
3946 batch->nr_pages++;
3947 if (uncharge_memsw)
3948 batch->memsw_nr_pages++;
3949 return;
3950 direct_uncharge:
3951 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
3952 if (uncharge_memsw)
3953 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
3954 if (unlikely(batch->memcg != memcg))
3955 memcg_oom_recover(memcg);
3959 * uncharge if !page_mapped(page)
3961 static struct mem_cgroup *
3962 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
3963 bool end_migration)
3965 struct mem_cgroup *memcg = NULL;
3966 unsigned int nr_pages = 1;
3967 struct page_cgroup *pc;
3968 bool anon;
3970 if (mem_cgroup_disabled())
3971 return NULL;
3973 VM_BUG_ON(PageSwapCache(page));
3975 if (PageTransHuge(page)) {
3976 nr_pages <<= compound_order(page);
3977 VM_BUG_ON(!PageTransHuge(page));
3980 * Check if our page_cgroup is valid
3982 pc = lookup_page_cgroup(page);
3983 if (unlikely(!PageCgroupUsed(pc)))
3984 return NULL;
3986 lock_page_cgroup(pc);
3988 memcg = pc->mem_cgroup;
3990 if (!PageCgroupUsed(pc))
3991 goto unlock_out;
3993 anon = PageAnon(page);
3995 switch (ctype) {
3996 case MEM_CGROUP_CHARGE_TYPE_ANON:
3998 * Generally PageAnon tells if it's the anon statistics to be
3999 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
4000 * used before page reached the stage of being marked PageAnon.
4002 anon = true;
4003 /* fallthrough */
4004 case MEM_CGROUP_CHARGE_TYPE_DROP:
4005 /* See mem_cgroup_prepare_migration() */
4006 if (page_mapped(page))
4007 goto unlock_out;
4009 * Pages under migration may not be uncharged. But
4010 * end_migration() /must/ be the one uncharging the
4011 * unused post-migration page and so it has to call
4012 * here with the migration bit still set. See the
4013 * res_counter handling below.
4015 if (!end_migration && PageCgroupMigration(pc))
4016 goto unlock_out;
4017 break;
4018 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
4019 if (!PageAnon(page)) { /* Shared memory */
4020 if (page->mapping && !page_is_file_cache(page))
4021 goto unlock_out;
4022 } else if (page_mapped(page)) /* Anon */
4023 goto unlock_out;
4024 break;
4025 default:
4026 break;
4029 mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
4031 ClearPageCgroupUsed(pc);
4033 * pc->mem_cgroup is not cleared here. It will be accessed when it's
4034 * freed from LRU. This is safe because uncharged page is expected not
4035 * to be reused (freed soon). Exception is SwapCache, it's handled by
4036 * special functions.
4039 unlock_page_cgroup(pc);
4041 * even after unlock, we have memcg->res.usage here and this memcg
4042 * will never be freed.
4044 memcg_check_events(memcg, page);
4045 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
4046 mem_cgroup_swap_statistics(memcg, true);
4047 mem_cgroup_get(memcg);
4050 * Migration does not charge the res_counter for the
4051 * replacement page, so leave it alone when phasing out the
4052 * page that is unused after the migration.
4054 if (!end_migration && !mem_cgroup_is_root(memcg))
4055 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
4057 return memcg;
4059 unlock_out:
4060 unlock_page_cgroup(pc);
4061 return NULL;
4064 void mem_cgroup_uncharge_page(struct page *page)
4066 /* early check. */
4067 if (page_mapped(page))
4068 return;
4069 VM_BUG_ON(page->mapping && !PageAnon(page));
4070 if (PageSwapCache(page))
4071 return;
4072 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4075 void mem_cgroup_uncharge_cache_page(struct page *page)
4077 VM_BUG_ON(page_mapped(page));
4078 VM_BUG_ON(page->mapping);
4079 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4083 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
4084 * In that cases, pages are freed continuously and we can expect pages
4085 * are in the same memcg. All these calls itself limits the number of
4086 * pages freed at once, then uncharge_start/end() is called properly.
4087 * This may be called prural(2) times in a context,
4090 void mem_cgroup_uncharge_start(void)
4092 current->memcg_batch.do_batch++;
4093 /* We can do nest. */
4094 if (current->memcg_batch.do_batch == 1) {
4095 current->memcg_batch.memcg = NULL;
4096 current->memcg_batch.nr_pages = 0;
4097 current->memcg_batch.memsw_nr_pages = 0;
4101 void mem_cgroup_uncharge_end(void)
4103 struct memcg_batch_info *batch = &current->memcg_batch;
4105 if (!batch->do_batch)
4106 return;
4108 batch->do_batch--;
4109 if (batch->do_batch) /* If stacked, do nothing. */
4110 return;
4112 if (!batch->memcg)
4113 return;
4115 * This "batch->memcg" is valid without any css_get/put etc...
4116 * bacause we hide charges behind us.
4118 if (batch->nr_pages)
4119 res_counter_uncharge(&batch->memcg->res,
4120 batch->nr_pages * PAGE_SIZE);
4121 if (batch->memsw_nr_pages)
4122 res_counter_uncharge(&batch->memcg->memsw,
4123 batch->memsw_nr_pages * PAGE_SIZE);
4124 memcg_oom_recover(batch->memcg);
4125 /* forget this pointer (for sanity check) */
4126 batch->memcg = NULL;
4129 #ifdef CONFIG_SWAP
4131 * called after __delete_from_swap_cache() and drop "page" account.
4132 * memcg information is recorded to swap_cgroup of "ent"
4134 void
4135 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4137 struct mem_cgroup *memcg;
4138 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
4140 if (!swapout) /* this was a swap cache but the swap is unused ! */
4141 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
4143 memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4146 * record memcg information, if swapout && memcg != NULL,
4147 * mem_cgroup_get() was called in uncharge().
4149 if (do_swap_account && swapout && memcg)
4150 swap_cgroup_record(ent, css_id(&memcg->css));
4152 #endif
4154 #ifdef CONFIG_MEMCG_SWAP
4156 * called from swap_entry_free(). remove record in swap_cgroup and
4157 * uncharge "memsw" account.
4159 void mem_cgroup_uncharge_swap(swp_entry_t ent)
4161 struct mem_cgroup *memcg;
4162 unsigned short id;
4164 if (!do_swap_account)
4165 return;
4167 id = swap_cgroup_record(ent, 0);
4168 rcu_read_lock();
4169 memcg = mem_cgroup_lookup(id);
4170 if (memcg) {
4172 * We uncharge this because swap is freed.
4173 * This memcg can be obsolete one. We avoid calling css_tryget
4175 if (!mem_cgroup_is_root(memcg))
4176 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4177 mem_cgroup_swap_statistics(memcg, false);
4178 mem_cgroup_put(memcg);
4180 rcu_read_unlock();
4184 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
4185 * @entry: swap entry to be moved
4186 * @from: mem_cgroup which the entry is moved from
4187 * @to: mem_cgroup which the entry is moved to
4189 * It succeeds only when the swap_cgroup's record for this entry is the same
4190 * as the mem_cgroup's id of @from.
4192 * Returns 0 on success, -EINVAL on failure.
4194 * The caller must have charged to @to, IOW, called res_counter_charge() about
4195 * both res and memsw, and called css_get().
4197 static int mem_cgroup_move_swap_account(swp_entry_t entry,
4198 struct mem_cgroup *from, struct mem_cgroup *to)
4200 unsigned short old_id, new_id;
4202 old_id = css_id(&from->css);
4203 new_id = css_id(&to->css);
4205 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
4206 mem_cgroup_swap_statistics(from, false);
4207 mem_cgroup_swap_statistics(to, true);
4209 * This function is only called from task migration context now.
4210 * It postpones res_counter and refcount handling till the end
4211 * of task migration(mem_cgroup_clear_mc()) for performance
4212 * improvement. But we cannot postpone mem_cgroup_get(to)
4213 * because if the process that has been moved to @to does
4214 * swap-in, the refcount of @to might be decreased to 0.
4216 mem_cgroup_get(to);
4217 return 0;
4219 return -EINVAL;
4221 #else
4222 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4223 struct mem_cgroup *from, struct mem_cgroup *to)
4225 return -EINVAL;
4227 #endif
4230 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
4231 * page belongs to.
4233 void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
4234 struct mem_cgroup **memcgp)
4236 struct mem_cgroup *memcg = NULL;
4237 unsigned int nr_pages = 1;
4238 struct page_cgroup *pc;
4239 enum charge_type ctype;
4241 *memcgp = NULL;
4243 if (mem_cgroup_disabled())
4244 return;
4246 if (PageTransHuge(page))
4247 nr_pages <<= compound_order(page);
4249 pc = lookup_page_cgroup(page);
4250 lock_page_cgroup(pc);
4251 if (PageCgroupUsed(pc)) {
4252 memcg = pc->mem_cgroup;
4253 css_get(&memcg->css);
4255 * At migrating an anonymous page, its mapcount goes down
4256 * to 0 and uncharge() will be called. But, even if it's fully
4257 * unmapped, migration may fail and this page has to be
4258 * charged again. We set MIGRATION flag here and delay uncharge
4259 * until end_migration() is called
4261 * Corner Case Thinking
4262 * A)
4263 * When the old page was mapped as Anon and it's unmap-and-freed
4264 * while migration was ongoing.
4265 * If unmap finds the old page, uncharge() of it will be delayed
4266 * until end_migration(). If unmap finds a new page, it's
4267 * uncharged when it make mapcount to be 1->0. If unmap code
4268 * finds swap_migration_entry, the new page will not be mapped
4269 * and end_migration() will find it(mapcount==0).
4271 * B)
4272 * When the old page was mapped but migraion fails, the kernel
4273 * remaps it. A charge for it is kept by MIGRATION flag even
4274 * if mapcount goes down to 0. We can do remap successfully
4275 * without charging it again.
4277 * C)
4278 * The "old" page is under lock_page() until the end of
4279 * migration, so, the old page itself will not be swapped-out.
4280 * If the new page is swapped out before end_migraton, our
4281 * hook to usual swap-out path will catch the event.
4283 if (PageAnon(page))
4284 SetPageCgroupMigration(pc);
4286 unlock_page_cgroup(pc);
4288 * If the page is not charged at this point,
4289 * we return here.
4291 if (!memcg)
4292 return;
4294 *memcgp = memcg;
4296 * We charge new page before it's used/mapped. So, even if unlock_page()
4297 * is called before end_migration, we can catch all events on this new
4298 * page. In the case new page is migrated but not remapped, new page's
4299 * mapcount will be finally 0 and we call uncharge in end_migration().
4301 if (PageAnon(page))
4302 ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4303 else
4304 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4306 * The page is committed to the memcg, but it's not actually
4307 * charged to the res_counter since we plan on replacing the
4308 * old one and only one page is going to be left afterwards.
4310 __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4313 /* remove redundant charge if migration failed*/
4314 void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4315 struct page *oldpage, struct page *newpage, bool migration_ok)
4317 struct page *used, *unused;
4318 struct page_cgroup *pc;
4319 bool anon;
4321 if (!memcg)
4322 return;
4324 if (!migration_ok) {
4325 used = oldpage;
4326 unused = newpage;
4327 } else {
4328 used = newpage;
4329 unused = oldpage;
4331 anon = PageAnon(used);
4332 __mem_cgroup_uncharge_common(unused,
4333 anon ? MEM_CGROUP_CHARGE_TYPE_ANON
4334 : MEM_CGROUP_CHARGE_TYPE_CACHE,
4335 true);
4336 css_put(&memcg->css);
4338 * We disallowed uncharge of pages under migration because mapcount
4339 * of the page goes down to zero, temporarly.
4340 * Clear the flag and check the page should be charged.
4342 pc = lookup_page_cgroup(oldpage);
4343 lock_page_cgroup(pc);
4344 ClearPageCgroupMigration(pc);
4345 unlock_page_cgroup(pc);
4348 * If a page is a file cache, radix-tree replacement is very atomic
4349 * and we can skip this check. When it was an Anon page, its mapcount
4350 * goes down to 0. But because we added MIGRATION flage, it's not
4351 * uncharged yet. There are several case but page->mapcount check
4352 * and USED bit check in mem_cgroup_uncharge_page() will do enough
4353 * check. (see prepare_charge() also)
4355 if (anon)
4356 mem_cgroup_uncharge_page(used);
4360 * At replace page cache, newpage is not under any memcg but it's on
4361 * LRU. So, this function doesn't touch res_counter but handles LRU
4362 * in correct way. Both pages are locked so we cannot race with uncharge.
4364 void mem_cgroup_replace_page_cache(struct page *oldpage,
4365 struct page *newpage)
4367 struct mem_cgroup *memcg = NULL;
4368 struct page_cgroup *pc;
4369 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4371 if (mem_cgroup_disabled())
4372 return;
4374 pc = lookup_page_cgroup(oldpage);
4375 /* fix accounting on old pages */
4376 lock_page_cgroup(pc);
4377 if (PageCgroupUsed(pc)) {
4378 memcg = pc->mem_cgroup;
4379 mem_cgroup_charge_statistics(memcg, false, -1);
4380 ClearPageCgroupUsed(pc);
4382 unlock_page_cgroup(pc);
4385 * When called from shmem_replace_page(), in some cases the
4386 * oldpage has already been charged, and in some cases not.
4388 if (!memcg)
4389 return;
4391 * Even if newpage->mapping was NULL before starting replacement,
4392 * the newpage may be on LRU(or pagevec for LRU) already. We lock
4393 * LRU while we overwrite pc->mem_cgroup.
4395 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4398 #ifdef CONFIG_DEBUG_VM
4399 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
4401 struct page_cgroup *pc;
4403 pc = lookup_page_cgroup(page);
4405 * Can be NULL while feeding pages into the page allocator for
4406 * the first time, i.e. during boot or memory hotplug;
4407 * or when mem_cgroup_disabled().
4409 if (likely(pc) && PageCgroupUsed(pc))
4410 return pc;
4411 return NULL;
4414 bool mem_cgroup_bad_page_check(struct page *page)
4416 if (mem_cgroup_disabled())
4417 return false;
4419 return lookup_page_cgroup_used(page) != NULL;
4422 void mem_cgroup_print_bad_page(struct page *page)
4424 struct page_cgroup *pc;
4426 pc = lookup_page_cgroup_used(page);
4427 if (pc) {
4428 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4429 pc, pc->flags, pc->mem_cgroup);
4432 #endif
4434 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4435 unsigned long long val)
4437 int retry_count;
4438 u64 memswlimit, memlimit;
4439 int ret = 0;
4440 int children = mem_cgroup_count_children(memcg);
4441 u64 curusage, oldusage;
4442 int enlarge;
4445 * For keeping hierarchical_reclaim simple, how long we should retry
4446 * is depends on callers. We set our retry-count to be function
4447 * of # of children which we should visit in this loop.
4449 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
4451 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4453 enlarge = 0;
4454 while (retry_count) {
4455 if (signal_pending(current)) {
4456 ret = -EINTR;
4457 break;
4460 * Rather than hide all in some function, I do this in
4461 * open coded manner. You see what this really does.
4462 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4464 mutex_lock(&set_limit_mutex);
4465 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4466 if (memswlimit < val) {
4467 ret = -EINVAL;
4468 mutex_unlock(&set_limit_mutex);
4469 break;
4472 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4473 if (memlimit < val)
4474 enlarge = 1;
4476 ret = res_counter_set_limit(&memcg->res, val);
4477 if (!ret) {
4478 if (memswlimit == val)
4479 memcg->memsw_is_minimum = true;
4480 else
4481 memcg->memsw_is_minimum = false;
4483 mutex_unlock(&set_limit_mutex);
4485 if (!ret)
4486 break;
4488 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4489 MEM_CGROUP_RECLAIM_SHRINK);
4490 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4491 /* Usage is reduced ? */
4492 if (curusage >= oldusage)
4493 retry_count--;
4494 else
4495 oldusage = curusage;
4497 if (!ret && enlarge)
4498 memcg_oom_recover(memcg);
4500 return ret;
4503 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
4504 unsigned long long val)
4506 int retry_count;
4507 u64 memlimit, memswlimit, oldusage, curusage;
4508 int children = mem_cgroup_count_children(memcg);
4509 int ret = -EBUSY;
4510 int enlarge = 0;
4512 /* see mem_cgroup_resize_res_limit */
4513 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
4514 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4515 while (retry_count) {
4516 if (signal_pending(current)) {
4517 ret = -EINTR;
4518 break;
4521 * Rather than hide all in some function, I do this in
4522 * open coded manner. You see what this really does.
4523 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4525 mutex_lock(&set_limit_mutex);
4526 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4527 if (memlimit > val) {
4528 ret = -EINVAL;
4529 mutex_unlock(&set_limit_mutex);
4530 break;
4532 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4533 if (memswlimit < val)
4534 enlarge = 1;
4535 ret = res_counter_set_limit(&memcg->memsw, val);
4536 if (!ret) {
4537 if (memlimit == val)
4538 memcg->memsw_is_minimum = true;
4539 else
4540 memcg->memsw_is_minimum = false;
4542 mutex_unlock(&set_limit_mutex);
4544 if (!ret)
4545 break;
4547 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4548 MEM_CGROUP_RECLAIM_NOSWAP |
4549 MEM_CGROUP_RECLAIM_SHRINK);
4550 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4551 /* Usage is reduced ? */
4552 if (curusage >= oldusage)
4553 retry_count--;
4554 else
4555 oldusage = curusage;
4557 if (!ret && enlarge)
4558 memcg_oom_recover(memcg);
4559 return ret;
4562 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
4563 gfp_t gfp_mask,
4564 unsigned long *total_scanned)
4566 unsigned long nr_reclaimed = 0;
4567 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
4568 unsigned long reclaimed;
4569 int loop = 0;
4570 struct mem_cgroup_tree_per_zone *mctz;
4571 unsigned long long excess;
4572 unsigned long nr_scanned;
4574 if (order > 0)
4575 return 0;
4577 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4579 * This loop can run a while, specially if mem_cgroup's continuously
4580 * keep exceeding their soft limit and putting the system under
4581 * pressure
4583 do {
4584 if (next_mz)
4585 mz = next_mz;
4586 else
4587 mz = mem_cgroup_largest_soft_limit_node(mctz);
4588 if (!mz)
4589 break;
4591 nr_scanned = 0;
4592 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
4593 gfp_mask, &nr_scanned);
4594 nr_reclaimed += reclaimed;
4595 *total_scanned += nr_scanned;
4596 spin_lock(&mctz->lock);
4599 * If we failed to reclaim anything from this memory cgroup
4600 * it is time to move on to the next cgroup
4602 next_mz = NULL;
4603 if (!reclaimed) {
4604 do {
4606 * Loop until we find yet another one.
4608 * By the time we get the soft_limit lock
4609 * again, someone might have aded the
4610 * group back on the RB tree. Iterate to
4611 * make sure we get a different mem.
4612 * mem_cgroup_largest_soft_limit_node returns
4613 * NULL if no other cgroup is present on
4614 * the tree
4616 next_mz =
4617 __mem_cgroup_largest_soft_limit_node(mctz);
4618 if (next_mz == mz)
4619 css_put(&next_mz->memcg->css);
4620 else /* next_mz == NULL or other memcg */
4621 break;
4622 } while (1);
4624 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
4625 excess = res_counter_soft_limit_excess(&mz->memcg->res);
4627 * One school of thought says that we should not add
4628 * back the node to the tree if reclaim returns 0.
4629 * But our reclaim could return 0, simply because due
4630 * to priority we are exposing a smaller subset of
4631 * memory to reclaim from. Consider this as a longer
4632 * term TODO.
4634 /* If excess == 0, no tree ops */
4635 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4636 spin_unlock(&mctz->lock);
4637 css_put(&mz->memcg->css);
4638 loop++;
4640 * Could not reclaim anything and there are no more
4641 * mem cgroups to try or we seem to be looping without
4642 * reclaiming anything.
4644 if (!nr_reclaimed &&
4645 (next_mz == NULL ||
4646 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
4647 break;
4648 } while (!nr_reclaimed);
4649 if (next_mz)
4650 css_put(&next_mz->memcg->css);
4651 return nr_reclaimed;
4655 * mem_cgroup_force_empty_list - clears LRU of a group
4656 * @memcg: group to clear
4657 * @node: NUMA node
4658 * @zid: zone id
4659 * @lru: lru to to clear
4661 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
4662 * reclaim the pages page themselves - pages are moved to the parent (or root)
4663 * group.
4665 static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
4666 int node, int zid, enum lru_list lru)
4668 struct lruvec *lruvec;
4669 unsigned long flags;
4670 struct list_head *list;
4671 struct page *busy;
4672 struct zone *zone;
4674 zone = &NODE_DATA(node)->node_zones[zid];
4675 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
4676 list = &lruvec->lists[lru];
4678 busy = NULL;
4679 do {
4680 struct page_cgroup *pc;
4681 struct page *page;
4683 spin_lock_irqsave(&zone->lru_lock, flags);
4684 if (list_empty(list)) {
4685 spin_unlock_irqrestore(&zone->lru_lock, flags);
4686 break;
4688 page = list_entry(list->prev, struct page, lru);
4689 if (busy == page) {
4690 list_move(&page->lru, list);
4691 busy = NULL;
4692 spin_unlock_irqrestore(&zone->lru_lock, flags);
4693 continue;
4695 spin_unlock_irqrestore(&zone->lru_lock, flags);
4697 pc = lookup_page_cgroup(page);
4699 if (mem_cgroup_move_parent(page, pc, memcg)) {
4700 /* found lock contention or "pc" is obsolete. */
4701 busy = page;
4702 cond_resched();
4703 } else
4704 busy = NULL;
4705 } while (!list_empty(list));
4709 * make mem_cgroup's charge to be 0 if there is no task by moving
4710 * all the charges and pages to the parent.
4711 * This enables deleting this mem_cgroup.
4713 * Caller is responsible for holding css reference on the memcg.
4715 static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4717 int node, zid;
4718 u64 usage;
4720 do {
4721 /* This is for making all *used* pages to be on LRU. */
4722 lru_add_drain_all();
4723 drain_all_stock_sync(memcg);
4724 mem_cgroup_start_move(memcg);
4725 for_each_node_state(node, N_MEMORY) {
4726 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4727 enum lru_list lru;
4728 for_each_lru(lru) {
4729 mem_cgroup_force_empty_list(memcg,
4730 node, zid, lru);
4734 mem_cgroup_end_move(memcg);
4735 memcg_oom_recover(memcg);
4736 cond_resched();
4739 * Kernel memory may not necessarily be trackable to a specific
4740 * process. So they are not migrated, and therefore we can't
4741 * expect their value to drop to 0 here.
4742 * Having res filled up with kmem only is enough.
4744 * This is a safety check because mem_cgroup_force_empty_list
4745 * could have raced with mem_cgroup_replace_page_cache callers
4746 * so the lru seemed empty but the page could have been added
4747 * right after the check. RES_USAGE should be safe as we always
4748 * charge before adding to the LRU.
4750 usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
4751 res_counter_read_u64(&memcg->kmem, RES_USAGE);
4752 } while (usage > 0);
4756 * Reclaims as many pages from the given memcg as possible and moves
4757 * the rest to the parent.
4759 * Caller is responsible for holding css reference for memcg.
4761 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
4763 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
4764 struct cgroup *cgrp = memcg->css.cgroup;
4766 /* returns EBUSY if there is a task or if we come here twice. */
4767 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
4768 return -EBUSY;
4770 /* we call try-to-free pages for make this cgroup empty */
4771 lru_add_drain_all();
4772 /* try to free all pages in this cgroup */
4773 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
4774 int progress;
4776 if (signal_pending(current))
4777 return -EINTR;
4779 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
4780 false);
4781 if (!progress) {
4782 nr_retries--;
4783 /* maybe some writeback is necessary */
4784 congestion_wait(BLK_RW_ASYNC, HZ/10);
4788 lru_add_drain();
4789 mem_cgroup_reparent_charges(memcg);
4791 return 0;
4794 static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
4796 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4797 int ret;
4799 if (mem_cgroup_is_root(memcg))
4800 return -EINVAL;
4801 css_get(&memcg->css);
4802 ret = mem_cgroup_force_empty(memcg);
4803 css_put(&memcg->css);
4805 return ret;
4809 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
4811 return mem_cgroup_from_cont(cont)->use_hierarchy;
4814 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
4815 u64 val)
4817 int retval = 0;
4818 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4819 struct cgroup *parent = cont->parent;
4820 struct mem_cgroup *parent_memcg = NULL;
4822 if (parent)
4823 parent_memcg = mem_cgroup_from_cont(parent);
4825 cgroup_lock();
4827 if (memcg->use_hierarchy == val)
4828 goto out;
4831 * If parent's use_hierarchy is set, we can't make any modifications
4832 * in the child subtrees. If it is unset, then the change can
4833 * occur, provided the current cgroup has no children.
4835 * For the root cgroup, parent_mem is NULL, we allow value to be
4836 * set if there are no children.
4838 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
4839 (val == 1 || val == 0)) {
4840 if (list_empty(&cont->children))
4841 memcg->use_hierarchy = val;
4842 else
4843 retval = -EBUSY;
4844 } else
4845 retval = -EINVAL;
4847 out:
4848 cgroup_unlock();
4850 return retval;
4854 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
4855 enum mem_cgroup_stat_index idx)
4857 struct mem_cgroup *iter;
4858 long val = 0;
4860 /* Per-cpu values can be negative, use a signed accumulator */
4861 for_each_mem_cgroup_tree(iter, memcg)
4862 val += mem_cgroup_read_stat(iter, idx);
4864 if (val < 0) /* race ? */
4865 val = 0;
4866 return val;
4869 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
4871 u64 val;
4873 if (!mem_cgroup_is_root(memcg)) {
4874 if (!swap)
4875 return res_counter_read_u64(&memcg->res, RES_USAGE);
4876 else
4877 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
4880 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
4881 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
4883 if (swap)
4884 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
4886 return val << PAGE_SHIFT;
4889 static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
4890 struct file *file, char __user *buf,
4891 size_t nbytes, loff_t *ppos)
4893 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4894 char str[64];
4895 u64 val;
4896 int name, len;
4897 enum res_type type;
4899 type = MEMFILE_TYPE(cft->private);
4900 name = MEMFILE_ATTR(cft->private);
4902 if (!do_swap_account && type == _MEMSWAP)
4903 return -EOPNOTSUPP;
4905 switch (type) {
4906 case _MEM:
4907 if (name == RES_USAGE)
4908 val = mem_cgroup_usage(memcg, false);
4909 else
4910 val = res_counter_read_u64(&memcg->res, name);
4911 break;
4912 case _MEMSWAP:
4913 if (name == RES_USAGE)
4914 val = mem_cgroup_usage(memcg, true);
4915 else
4916 val = res_counter_read_u64(&memcg->memsw, name);
4917 break;
4918 case _KMEM:
4919 val = res_counter_read_u64(&memcg->kmem, name);
4920 break;
4921 default:
4922 BUG();
4925 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
4926 return simple_read_from_buffer(buf, nbytes, ppos, str, len);
4929 static int memcg_update_kmem_limit(struct cgroup *cont, u64 val)
4931 int ret = -EINVAL;
4932 #ifdef CONFIG_MEMCG_KMEM
4933 bool must_inc_static_branch = false;
4935 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4937 * For simplicity, we won't allow this to be disabled. It also can't
4938 * be changed if the cgroup has children already, or if tasks had
4939 * already joined.
4941 * If tasks join before we set the limit, a person looking at
4942 * kmem.usage_in_bytes will have no way to determine when it took
4943 * place, which makes the value quite meaningless.
4945 * After it first became limited, changes in the value of the limit are
4946 * of course permitted.
4948 * Taking the cgroup_lock is really offensive, but it is so far the only
4949 * way to guarantee that no children will appear. There are plenty of
4950 * other offenders, and they should all go away. Fine grained locking
4951 * is probably the way to go here. When we are fully hierarchical, we
4952 * can also get rid of the use_hierarchy check.
4954 cgroup_lock();
4955 mutex_lock(&set_limit_mutex);
4956 if (!memcg->kmem_account_flags && val != RESOURCE_MAX) {
4957 if (cgroup_task_count(cont) || (memcg->use_hierarchy &&
4958 !list_empty(&cont->children))) {
4959 ret = -EBUSY;
4960 goto out;
4962 ret = res_counter_set_limit(&memcg->kmem, val);
4963 VM_BUG_ON(ret);
4965 ret = memcg_update_cache_sizes(memcg);
4966 if (ret) {
4967 res_counter_set_limit(&memcg->kmem, RESOURCE_MAX);
4968 goto out;
4970 must_inc_static_branch = true;
4972 * kmem charges can outlive the cgroup. In the case of slab
4973 * pages, for instance, a page contain objects from various
4974 * processes, so it is unfeasible to migrate them away. We
4975 * need to reference count the memcg because of that.
4977 mem_cgroup_get(memcg);
4978 } else
4979 ret = res_counter_set_limit(&memcg->kmem, val);
4980 out:
4981 mutex_unlock(&set_limit_mutex);
4982 cgroup_unlock();
4985 * We are by now familiar with the fact that we can't inc the static
4986 * branch inside cgroup_lock. See disarm functions for details. A
4987 * worker here is overkill, but also wrong: After the limit is set, we
4988 * must start accounting right away. Since this operation can't fail,
4989 * we can safely defer it to here - no rollback will be needed.
4991 * The boolean used to control this is also safe, because
4992 * KMEM_ACCOUNTED_ACTIVATED guarantees that only one process will be
4993 * able to set it to true;
4995 if (must_inc_static_branch) {
4996 static_key_slow_inc(&memcg_kmem_enabled_key);
4998 * setting the active bit after the inc will guarantee no one
4999 * starts accounting before all call sites are patched
5001 memcg_kmem_set_active(memcg);
5004 #endif
5005 return ret;
5008 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
5010 int ret = 0;
5011 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5012 if (!parent)
5013 goto out;
5015 memcg->kmem_account_flags = parent->kmem_account_flags;
5016 #ifdef CONFIG_MEMCG_KMEM
5018 * When that happen, we need to disable the static branch only on those
5019 * memcgs that enabled it. To achieve this, we would be forced to
5020 * complicate the code by keeping track of which memcgs were the ones
5021 * that actually enabled limits, and which ones got it from its
5022 * parents.
5024 * It is a lot simpler just to do static_key_slow_inc() on every child
5025 * that is accounted.
5027 if (!memcg_kmem_is_active(memcg))
5028 goto out;
5031 * destroy(), called if we fail, will issue static_key_slow_inc() and
5032 * mem_cgroup_put() if kmem is enabled. We have to either call them
5033 * unconditionally, or clear the KMEM_ACTIVE flag. I personally find
5034 * this more consistent, since it always leads to the same destroy path
5036 mem_cgroup_get(memcg);
5037 static_key_slow_inc(&memcg_kmem_enabled_key);
5039 mutex_lock(&set_limit_mutex);
5040 ret = memcg_update_cache_sizes(memcg);
5041 mutex_unlock(&set_limit_mutex);
5042 #endif
5043 out:
5044 return ret;
5048 * The user of this function is...
5049 * RES_LIMIT.
5051 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
5052 const char *buffer)
5054 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5055 enum res_type type;
5056 int name;
5057 unsigned long long val;
5058 int ret;
5060 type = MEMFILE_TYPE(cft->private);
5061 name = MEMFILE_ATTR(cft->private);
5063 if (!do_swap_account && type == _MEMSWAP)
5064 return -EOPNOTSUPP;
5066 switch (name) {
5067 case RES_LIMIT:
5068 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
5069 ret = -EINVAL;
5070 break;
5072 /* This function does all necessary parse...reuse it */
5073 ret = res_counter_memparse_write_strategy(buffer, &val);
5074 if (ret)
5075 break;
5076 if (type == _MEM)
5077 ret = mem_cgroup_resize_limit(memcg, val);
5078 else if (type == _MEMSWAP)
5079 ret = mem_cgroup_resize_memsw_limit(memcg, val);
5080 else if (type == _KMEM)
5081 ret = memcg_update_kmem_limit(cont, val);
5082 else
5083 return -EINVAL;
5084 break;
5085 case RES_SOFT_LIMIT:
5086 ret = res_counter_memparse_write_strategy(buffer, &val);
5087 if (ret)
5088 break;
5090 * For memsw, soft limits are hard to implement in terms
5091 * of semantics, for now, we support soft limits for
5092 * control without swap
5094 if (type == _MEM)
5095 ret = res_counter_set_soft_limit(&memcg->res, val);
5096 else
5097 ret = -EINVAL;
5098 break;
5099 default:
5100 ret = -EINVAL; /* should be BUG() ? */
5101 break;
5103 return ret;
5106 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
5107 unsigned long long *mem_limit, unsigned long long *memsw_limit)
5109 struct cgroup *cgroup;
5110 unsigned long long min_limit, min_memsw_limit, tmp;
5112 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
5113 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5114 cgroup = memcg->css.cgroup;
5115 if (!memcg->use_hierarchy)
5116 goto out;
5118 while (cgroup->parent) {
5119 cgroup = cgroup->parent;
5120 memcg = mem_cgroup_from_cont(cgroup);
5121 if (!memcg->use_hierarchy)
5122 break;
5123 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
5124 min_limit = min(min_limit, tmp);
5125 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5126 min_memsw_limit = min(min_memsw_limit, tmp);
5128 out:
5129 *mem_limit = min_limit;
5130 *memsw_limit = min_memsw_limit;
5133 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
5135 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5136 int name;
5137 enum res_type type;
5139 type = MEMFILE_TYPE(event);
5140 name = MEMFILE_ATTR(event);
5142 if (!do_swap_account && type == _MEMSWAP)
5143 return -EOPNOTSUPP;
5145 switch (name) {
5146 case RES_MAX_USAGE:
5147 if (type == _MEM)
5148 res_counter_reset_max(&memcg->res);
5149 else if (type == _MEMSWAP)
5150 res_counter_reset_max(&memcg->memsw);
5151 else if (type == _KMEM)
5152 res_counter_reset_max(&memcg->kmem);
5153 else
5154 return -EINVAL;
5155 break;
5156 case RES_FAILCNT:
5157 if (type == _MEM)
5158 res_counter_reset_failcnt(&memcg->res);
5159 else if (type == _MEMSWAP)
5160 res_counter_reset_failcnt(&memcg->memsw);
5161 else if (type == _KMEM)
5162 res_counter_reset_failcnt(&memcg->kmem);
5163 else
5164 return -EINVAL;
5165 break;
5168 return 0;
5171 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
5172 struct cftype *cft)
5174 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
5177 #ifdef CONFIG_MMU
5178 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
5179 struct cftype *cft, u64 val)
5181 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5183 if (val >= (1 << NR_MOVE_TYPE))
5184 return -EINVAL;
5186 * We check this value several times in both in can_attach() and
5187 * attach(), so we need cgroup lock to prevent this value from being
5188 * inconsistent.
5190 cgroup_lock();
5191 memcg->move_charge_at_immigrate = val;
5192 cgroup_unlock();
5194 return 0;
5196 #else
5197 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
5198 struct cftype *cft, u64 val)
5200 return -ENOSYS;
5202 #endif
5204 #ifdef CONFIG_NUMA
5205 static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft,
5206 struct seq_file *m)
5208 int nid;
5209 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
5210 unsigned long node_nr;
5211 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5213 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
5214 seq_printf(m, "total=%lu", total_nr);
5215 for_each_node_state(nid, N_MEMORY) {
5216 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
5217 seq_printf(m, " N%d=%lu", nid, node_nr);
5219 seq_putc(m, '\n');
5221 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
5222 seq_printf(m, "file=%lu", file_nr);
5223 for_each_node_state(nid, N_MEMORY) {
5224 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5225 LRU_ALL_FILE);
5226 seq_printf(m, " N%d=%lu", nid, node_nr);
5228 seq_putc(m, '\n');
5230 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
5231 seq_printf(m, "anon=%lu", anon_nr);
5232 for_each_node_state(nid, N_MEMORY) {
5233 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5234 LRU_ALL_ANON);
5235 seq_printf(m, " N%d=%lu", nid, node_nr);
5237 seq_putc(m, '\n');
5239 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
5240 seq_printf(m, "unevictable=%lu", unevictable_nr);
5241 for_each_node_state(nid, N_MEMORY) {
5242 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5243 BIT(LRU_UNEVICTABLE));
5244 seq_printf(m, " N%d=%lu", nid, node_nr);
5246 seq_putc(m, '\n');
5247 return 0;
5249 #endif /* CONFIG_NUMA */
5251 static inline void mem_cgroup_lru_names_not_uptodate(void)
5253 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
5256 static int memcg_stat_show(struct cgroup *cont, struct cftype *cft,
5257 struct seq_file *m)
5259 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5260 struct mem_cgroup *mi;
5261 unsigned int i;
5263 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5264 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5265 continue;
5266 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
5267 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5270 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
5271 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
5272 mem_cgroup_read_events(memcg, i));
5274 for (i = 0; i < NR_LRU_LISTS; i++)
5275 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
5276 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
5278 /* Hierarchical information */
5280 unsigned long long limit, memsw_limit;
5281 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5282 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5283 if (do_swap_account)
5284 seq_printf(m, "hierarchical_memsw_limit %llu\n",
5285 memsw_limit);
5288 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5289 long long val = 0;
5291 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5292 continue;
5293 for_each_mem_cgroup_tree(mi, memcg)
5294 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
5295 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
5298 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
5299 unsigned long long val = 0;
5301 for_each_mem_cgroup_tree(mi, memcg)
5302 val += mem_cgroup_read_events(mi, i);
5303 seq_printf(m, "total_%s %llu\n",
5304 mem_cgroup_events_names[i], val);
5307 for (i = 0; i < NR_LRU_LISTS; i++) {
5308 unsigned long long val = 0;
5310 for_each_mem_cgroup_tree(mi, memcg)
5311 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
5312 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5315 #ifdef CONFIG_DEBUG_VM
5317 int nid, zid;
5318 struct mem_cgroup_per_zone *mz;
5319 struct zone_reclaim_stat *rstat;
5320 unsigned long recent_rotated[2] = {0, 0};
5321 unsigned long recent_scanned[2] = {0, 0};
5323 for_each_online_node(nid)
5324 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5325 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
5326 rstat = &mz->lruvec.reclaim_stat;
5328 recent_rotated[0] += rstat->recent_rotated[0];
5329 recent_rotated[1] += rstat->recent_rotated[1];
5330 recent_scanned[0] += rstat->recent_scanned[0];
5331 recent_scanned[1] += rstat->recent_scanned[1];
5333 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
5334 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
5335 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
5336 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
5338 #endif
5340 return 0;
5343 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
5345 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5347 return mem_cgroup_swappiness(memcg);
5350 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
5351 u64 val)
5353 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5354 struct mem_cgroup *parent;
5356 if (val > 100)
5357 return -EINVAL;
5359 if (cgrp->parent == NULL)
5360 return -EINVAL;
5362 parent = mem_cgroup_from_cont(cgrp->parent);
5364 cgroup_lock();
5366 /* If under hierarchy, only empty-root can set this value */
5367 if ((parent->use_hierarchy) ||
5368 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
5369 cgroup_unlock();
5370 return -EINVAL;
5373 memcg->swappiness = val;
5375 cgroup_unlock();
5377 return 0;
5380 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
5382 struct mem_cgroup_threshold_ary *t;
5383 u64 usage;
5384 int i;
5386 rcu_read_lock();
5387 if (!swap)
5388 t = rcu_dereference(memcg->thresholds.primary);
5389 else
5390 t = rcu_dereference(memcg->memsw_thresholds.primary);
5392 if (!t)
5393 goto unlock;
5395 usage = mem_cgroup_usage(memcg, swap);
5398 * current_threshold points to threshold just below or equal to usage.
5399 * If it's not true, a threshold was crossed after last
5400 * call of __mem_cgroup_threshold().
5402 i = t->current_threshold;
5405 * Iterate backward over array of thresholds starting from
5406 * current_threshold and check if a threshold is crossed.
5407 * If none of thresholds below usage is crossed, we read
5408 * only one element of the array here.
5410 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
5411 eventfd_signal(t->entries[i].eventfd, 1);
5413 /* i = current_threshold + 1 */
5414 i++;
5417 * Iterate forward over array of thresholds starting from
5418 * current_threshold+1 and check if a threshold is crossed.
5419 * If none of thresholds above usage is crossed, we read
5420 * only one element of the array here.
5422 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
5423 eventfd_signal(t->entries[i].eventfd, 1);
5425 /* Update current_threshold */
5426 t->current_threshold = i - 1;
5427 unlock:
5428 rcu_read_unlock();
5431 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
5433 while (memcg) {
5434 __mem_cgroup_threshold(memcg, false);
5435 if (do_swap_account)
5436 __mem_cgroup_threshold(memcg, true);
5438 memcg = parent_mem_cgroup(memcg);
5442 static int compare_thresholds(const void *a, const void *b)
5444 const struct mem_cgroup_threshold *_a = a;
5445 const struct mem_cgroup_threshold *_b = b;
5447 return _a->threshold - _b->threshold;
5450 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
5452 struct mem_cgroup_eventfd_list *ev;
5454 list_for_each_entry(ev, &memcg->oom_notify, list)
5455 eventfd_signal(ev->eventfd, 1);
5456 return 0;
5459 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
5461 struct mem_cgroup *iter;
5463 for_each_mem_cgroup_tree(iter, memcg)
5464 mem_cgroup_oom_notify_cb(iter);
5467 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
5468 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5470 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5471 struct mem_cgroup_thresholds *thresholds;
5472 struct mem_cgroup_threshold_ary *new;
5473 enum res_type type = MEMFILE_TYPE(cft->private);
5474 u64 threshold, usage;
5475 int i, size, ret;
5477 ret = res_counter_memparse_write_strategy(args, &threshold);
5478 if (ret)
5479 return ret;
5481 mutex_lock(&memcg->thresholds_lock);
5483 if (type == _MEM)
5484 thresholds = &memcg->thresholds;
5485 else if (type == _MEMSWAP)
5486 thresholds = &memcg->memsw_thresholds;
5487 else
5488 BUG();
5490 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5492 /* Check if a threshold crossed before adding a new one */
5493 if (thresholds->primary)
5494 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5496 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5498 /* Allocate memory for new array of thresholds */
5499 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5500 GFP_KERNEL);
5501 if (!new) {
5502 ret = -ENOMEM;
5503 goto unlock;
5505 new->size = size;
5507 /* Copy thresholds (if any) to new array */
5508 if (thresholds->primary) {
5509 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5510 sizeof(struct mem_cgroup_threshold));
5513 /* Add new threshold */
5514 new->entries[size - 1].eventfd = eventfd;
5515 new->entries[size - 1].threshold = threshold;
5517 /* Sort thresholds. Registering of new threshold isn't time-critical */
5518 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5519 compare_thresholds, NULL);
5521 /* Find current threshold */
5522 new->current_threshold = -1;
5523 for (i = 0; i < size; i++) {
5524 if (new->entries[i].threshold <= usage) {
5526 * new->current_threshold will not be used until
5527 * rcu_assign_pointer(), so it's safe to increment
5528 * it here.
5530 ++new->current_threshold;
5531 } else
5532 break;
5535 /* Free old spare buffer and save old primary buffer as spare */
5536 kfree(thresholds->spare);
5537 thresholds->spare = thresholds->primary;
5539 rcu_assign_pointer(thresholds->primary, new);
5541 /* To be sure that nobody uses thresholds */
5542 synchronize_rcu();
5544 unlock:
5545 mutex_unlock(&memcg->thresholds_lock);
5547 return ret;
5550 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
5551 struct cftype *cft, struct eventfd_ctx *eventfd)
5553 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5554 struct mem_cgroup_thresholds *thresholds;
5555 struct mem_cgroup_threshold_ary *new;
5556 enum res_type type = MEMFILE_TYPE(cft->private);
5557 u64 usage;
5558 int i, j, size;
5560 mutex_lock(&memcg->thresholds_lock);
5561 if (type == _MEM)
5562 thresholds = &memcg->thresholds;
5563 else if (type == _MEMSWAP)
5564 thresholds = &memcg->memsw_thresholds;
5565 else
5566 BUG();
5568 if (!thresholds->primary)
5569 goto unlock;
5571 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5573 /* Check if a threshold crossed before removing */
5574 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5576 /* Calculate new number of threshold */
5577 size = 0;
5578 for (i = 0; i < thresholds->primary->size; i++) {
5579 if (thresholds->primary->entries[i].eventfd != eventfd)
5580 size++;
5583 new = thresholds->spare;
5585 /* Set thresholds array to NULL if we don't have thresholds */
5586 if (!size) {
5587 kfree(new);
5588 new = NULL;
5589 goto swap_buffers;
5592 new->size = size;
5594 /* Copy thresholds and find current threshold */
5595 new->current_threshold = -1;
5596 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
5597 if (thresholds->primary->entries[i].eventfd == eventfd)
5598 continue;
5600 new->entries[j] = thresholds->primary->entries[i];
5601 if (new->entries[j].threshold <= usage) {
5603 * new->current_threshold will not be used
5604 * until rcu_assign_pointer(), so it's safe to increment
5605 * it here.
5607 ++new->current_threshold;
5609 j++;
5612 swap_buffers:
5613 /* Swap primary and spare array */
5614 thresholds->spare = thresholds->primary;
5615 /* If all events are unregistered, free the spare array */
5616 if (!new) {
5617 kfree(thresholds->spare);
5618 thresholds->spare = NULL;
5621 rcu_assign_pointer(thresholds->primary, new);
5623 /* To be sure that nobody uses thresholds */
5624 synchronize_rcu();
5625 unlock:
5626 mutex_unlock(&memcg->thresholds_lock);
5629 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
5630 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5632 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5633 struct mem_cgroup_eventfd_list *event;
5634 enum res_type type = MEMFILE_TYPE(cft->private);
5636 BUG_ON(type != _OOM_TYPE);
5637 event = kmalloc(sizeof(*event), GFP_KERNEL);
5638 if (!event)
5639 return -ENOMEM;
5641 spin_lock(&memcg_oom_lock);
5643 event->eventfd = eventfd;
5644 list_add(&event->list, &memcg->oom_notify);
5646 /* already in OOM ? */
5647 if (atomic_read(&memcg->under_oom))
5648 eventfd_signal(eventfd, 1);
5649 spin_unlock(&memcg_oom_lock);
5651 return 0;
5654 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
5655 struct cftype *cft, struct eventfd_ctx *eventfd)
5657 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5658 struct mem_cgroup_eventfd_list *ev, *tmp;
5659 enum res_type type = MEMFILE_TYPE(cft->private);
5661 BUG_ON(type != _OOM_TYPE);
5663 spin_lock(&memcg_oom_lock);
5665 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
5666 if (ev->eventfd == eventfd) {
5667 list_del(&ev->list);
5668 kfree(ev);
5672 spin_unlock(&memcg_oom_lock);
5675 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
5676 struct cftype *cft, struct cgroup_map_cb *cb)
5678 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5680 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
5682 if (atomic_read(&memcg->under_oom))
5683 cb->fill(cb, "under_oom", 1);
5684 else
5685 cb->fill(cb, "under_oom", 0);
5686 return 0;
5689 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
5690 struct cftype *cft, u64 val)
5692 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5693 struct mem_cgroup *parent;
5695 /* cannot set to root cgroup and only 0 and 1 are allowed */
5696 if (!cgrp->parent || !((val == 0) || (val == 1)))
5697 return -EINVAL;
5699 parent = mem_cgroup_from_cont(cgrp->parent);
5701 cgroup_lock();
5702 /* oom-kill-disable is a flag for subhierarchy. */
5703 if ((parent->use_hierarchy) ||
5704 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
5705 cgroup_unlock();
5706 return -EINVAL;
5708 memcg->oom_kill_disable = val;
5709 if (!val)
5710 memcg_oom_recover(memcg);
5711 cgroup_unlock();
5712 return 0;
5715 #ifdef CONFIG_MEMCG_KMEM
5716 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5718 int ret;
5720 memcg->kmemcg_id = -1;
5721 ret = memcg_propagate_kmem(memcg);
5722 if (ret)
5723 return ret;
5725 return mem_cgroup_sockets_init(memcg, ss);
5728 static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
5730 mem_cgroup_sockets_destroy(memcg);
5732 memcg_kmem_mark_dead(memcg);
5734 if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
5735 return;
5738 * Charges already down to 0, undo mem_cgroup_get() done in the charge
5739 * path here, being careful not to race with memcg_uncharge_kmem: it is
5740 * possible that the charges went down to 0 between mark_dead and the
5741 * res_counter read, so in that case, we don't need the put
5743 if (memcg_kmem_test_and_clear_dead(memcg))
5744 mem_cgroup_put(memcg);
5746 #else
5747 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5749 return 0;
5752 static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
5755 #endif
5757 static struct cftype mem_cgroup_files[] = {
5759 .name = "usage_in_bytes",
5760 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5761 .read = mem_cgroup_read,
5762 .register_event = mem_cgroup_usage_register_event,
5763 .unregister_event = mem_cgroup_usage_unregister_event,
5766 .name = "max_usage_in_bytes",
5767 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5768 .trigger = mem_cgroup_reset,
5769 .read = mem_cgroup_read,
5772 .name = "limit_in_bytes",
5773 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5774 .write_string = mem_cgroup_write,
5775 .read = mem_cgroup_read,
5778 .name = "soft_limit_in_bytes",
5779 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5780 .write_string = mem_cgroup_write,
5781 .read = mem_cgroup_read,
5784 .name = "failcnt",
5785 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5786 .trigger = mem_cgroup_reset,
5787 .read = mem_cgroup_read,
5790 .name = "stat",
5791 .read_seq_string = memcg_stat_show,
5794 .name = "force_empty",
5795 .trigger = mem_cgroup_force_empty_write,
5798 .name = "use_hierarchy",
5799 .write_u64 = mem_cgroup_hierarchy_write,
5800 .read_u64 = mem_cgroup_hierarchy_read,
5803 .name = "swappiness",
5804 .read_u64 = mem_cgroup_swappiness_read,
5805 .write_u64 = mem_cgroup_swappiness_write,
5808 .name = "move_charge_at_immigrate",
5809 .read_u64 = mem_cgroup_move_charge_read,
5810 .write_u64 = mem_cgroup_move_charge_write,
5813 .name = "oom_control",
5814 .read_map = mem_cgroup_oom_control_read,
5815 .write_u64 = mem_cgroup_oom_control_write,
5816 .register_event = mem_cgroup_oom_register_event,
5817 .unregister_event = mem_cgroup_oom_unregister_event,
5818 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
5820 #ifdef CONFIG_NUMA
5822 .name = "numa_stat",
5823 .read_seq_string = memcg_numa_stat_show,
5825 #endif
5826 #ifdef CONFIG_MEMCG_SWAP
5828 .name = "memsw.usage_in_bytes",
5829 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5830 .read = mem_cgroup_read,
5831 .register_event = mem_cgroup_usage_register_event,
5832 .unregister_event = mem_cgroup_usage_unregister_event,
5835 .name = "memsw.max_usage_in_bytes",
5836 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5837 .trigger = mem_cgroup_reset,
5838 .read = mem_cgroup_read,
5841 .name = "memsw.limit_in_bytes",
5842 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5843 .write_string = mem_cgroup_write,
5844 .read = mem_cgroup_read,
5847 .name = "memsw.failcnt",
5848 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5849 .trigger = mem_cgroup_reset,
5850 .read = mem_cgroup_read,
5852 #endif
5853 #ifdef CONFIG_MEMCG_KMEM
5855 .name = "kmem.limit_in_bytes",
5856 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5857 .write_string = mem_cgroup_write,
5858 .read = mem_cgroup_read,
5861 .name = "kmem.usage_in_bytes",
5862 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5863 .read = mem_cgroup_read,
5866 .name = "kmem.failcnt",
5867 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5868 .trigger = mem_cgroup_reset,
5869 .read = mem_cgroup_read,
5872 .name = "kmem.max_usage_in_bytes",
5873 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5874 .trigger = mem_cgroup_reset,
5875 .read = mem_cgroup_read,
5877 #ifdef CONFIG_SLABINFO
5879 .name = "kmem.slabinfo",
5880 .read_seq_string = mem_cgroup_slabinfo_read,
5882 #endif
5883 #endif
5884 { }, /* terminate */
5887 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
5889 struct mem_cgroup_per_node *pn;
5890 struct mem_cgroup_per_zone *mz;
5891 int zone, tmp = node;
5893 * This routine is called against possible nodes.
5894 * But it's BUG to call kmalloc() against offline node.
5896 * TODO: this routine can waste much memory for nodes which will
5897 * never be onlined. It's better to use memory hotplug callback
5898 * function.
5900 if (!node_state(node, N_NORMAL_MEMORY))
5901 tmp = -1;
5902 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5903 if (!pn)
5904 return 1;
5906 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5907 mz = &pn->zoneinfo[zone];
5908 lruvec_init(&mz->lruvec);
5909 mz->usage_in_excess = 0;
5910 mz->on_tree = false;
5911 mz->memcg = memcg;
5913 memcg->info.nodeinfo[node] = pn;
5914 return 0;
5917 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
5919 kfree(memcg->info.nodeinfo[node]);
5922 static struct mem_cgroup *mem_cgroup_alloc(void)
5924 struct mem_cgroup *memcg;
5925 int size = sizeof(struct mem_cgroup);
5927 /* Can be very big if MAX_NUMNODES is very big */
5928 if (size < PAGE_SIZE)
5929 memcg = kzalloc(size, GFP_KERNEL);
5930 else
5931 memcg = vzalloc(size);
5933 if (!memcg)
5934 return NULL;
5936 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
5937 if (!memcg->stat)
5938 goto out_free;
5939 spin_lock_init(&memcg->pcp_counter_lock);
5940 return memcg;
5942 out_free:
5943 if (size < PAGE_SIZE)
5944 kfree(memcg);
5945 else
5946 vfree(memcg);
5947 return NULL;
5951 * At destroying mem_cgroup, references from swap_cgroup can remain.
5952 * (scanning all at force_empty is too costly...)
5954 * Instead of clearing all references at force_empty, we remember
5955 * the number of reference from swap_cgroup and free mem_cgroup when
5956 * it goes down to 0.
5958 * Removal of cgroup itself succeeds regardless of refs from swap.
5961 static void __mem_cgroup_free(struct mem_cgroup *memcg)
5963 int node;
5964 int size = sizeof(struct mem_cgroup);
5966 mem_cgroup_remove_from_trees(memcg);
5967 free_css_id(&mem_cgroup_subsys, &memcg->css);
5969 for_each_node(node)
5970 free_mem_cgroup_per_zone_info(memcg, node);
5972 free_percpu(memcg->stat);
5975 * We need to make sure that (at least for now), the jump label
5976 * destruction code runs outside of the cgroup lock. This is because
5977 * get_online_cpus(), which is called from the static_branch update,
5978 * can't be called inside the cgroup_lock. cpusets are the ones
5979 * enforcing this dependency, so if they ever change, we might as well.
5981 * schedule_work() will guarantee this happens. Be careful if you need
5982 * to move this code around, and make sure it is outside
5983 * the cgroup_lock.
5985 disarm_static_keys(memcg);
5986 if (size < PAGE_SIZE)
5987 kfree(memcg);
5988 else
5989 vfree(memcg);
5994 * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU,
5995 * but in process context. The work_freeing structure is overlaid
5996 * on the rcu_freeing structure, which itself is overlaid on memsw.
5998 static void free_work(struct work_struct *work)
6000 struct mem_cgroup *memcg;
6002 memcg = container_of(work, struct mem_cgroup, work_freeing);
6003 __mem_cgroup_free(memcg);
6006 static void free_rcu(struct rcu_head *rcu_head)
6008 struct mem_cgroup *memcg;
6010 memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
6011 INIT_WORK(&memcg->work_freeing, free_work);
6012 schedule_work(&memcg->work_freeing);
6015 static void mem_cgroup_get(struct mem_cgroup *memcg)
6017 atomic_inc(&memcg->refcnt);
6020 static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
6022 if (atomic_sub_and_test(count, &memcg->refcnt)) {
6023 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
6024 call_rcu(&memcg->rcu_freeing, free_rcu);
6025 if (parent)
6026 mem_cgroup_put(parent);
6030 static void mem_cgroup_put(struct mem_cgroup *memcg)
6032 __mem_cgroup_put(memcg, 1);
6036 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
6038 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
6040 if (!memcg->res.parent)
6041 return NULL;
6042 return mem_cgroup_from_res_counter(memcg->res.parent, res);
6044 EXPORT_SYMBOL(parent_mem_cgroup);
6046 #ifdef CONFIG_MEMCG_SWAP
6047 static void __init enable_swap_cgroup(void)
6049 if (!mem_cgroup_disabled() && really_do_swap_account)
6050 do_swap_account = 1;
6052 #else
6053 static void __init enable_swap_cgroup(void)
6056 #endif
6058 static int mem_cgroup_soft_limit_tree_init(void)
6060 struct mem_cgroup_tree_per_node *rtpn;
6061 struct mem_cgroup_tree_per_zone *rtpz;
6062 int tmp, node, zone;
6064 for_each_node(node) {
6065 tmp = node;
6066 if (!node_state(node, N_NORMAL_MEMORY))
6067 tmp = -1;
6068 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
6069 if (!rtpn)
6070 goto err_cleanup;
6072 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6074 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6075 rtpz = &rtpn->rb_tree_per_zone[zone];
6076 rtpz->rb_root = RB_ROOT;
6077 spin_lock_init(&rtpz->lock);
6080 return 0;
6082 err_cleanup:
6083 for_each_node(node) {
6084 if (!soft_limit_tree.rb_tree_per_node[node])
6085 break;
6086 kfree(soft_limit_tree.rb_tree_per_node[node]);
6087 soft_limit_tree.rb_tree_per_node[node] = NULL;
6089 return 1;
6093 static struct cgroup_subsys_state * __ref
6094 mem_cgroup_css_alloc(struct cgroup *cont)
6096 struct mem_cgroup *memcg, *parent;
6097 long error = -ENOMEM;
6098 int node;
6100 memcg = mem_cgroup_alloc();
6101 if (!memcg)
6102 return ERR_PTR(error);
6104 for_each_node(node)
6105 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6106 goto free_out;
6108 /* root ? */
6109 if (cont->parent == NULL) {
6110 int cpu;
6111 enable_swap_cgroup();
6112 parent = NULL;
6113 if (mem_cgroup_soft_limit_tree_init())
6114 goto free_out;
6115 root_mem_cgroup = memcg;
6116 for_each_possible_cpu(cpu) {
6117 struct memcg_stock_pcp *stock =
6118 &per_cpu(memcg_stock, cpu);
6119 INIT_WORK(&stock->work, drain_local_stock);
6121 } else {
6122 parent = mem_cgroup_from_cont(cont->parent);
6123 memcg->use_hierarchy = parent->use_hierarchy;
6124 memcg->oom_kill_disable = parent->oom_kill_disable;
6127 if (parent && parent->use_hierarchy) {
6128 res_counter_init(&memcg->res, &parent->res);
6129 res_counter_init(&memcg->memsw, &parent->memsw);
6130 res_counter_init(&memcg->kmem, &parent->kmem);
6133 * We increment refcnt of the parent to ensure that we can
6134 * safely access it on res_counter_charge/uncharge.
6135 * This refcnt will be decremented when freeing this
6136 * mem_cgroup(see mem_cgroup_put).
6138 mem_cgroup_get(parent);
6139 } else {
6140 res_counter_init(&memcg->res, NULL);
6141 res_counter_init(&memcg->memsw, NULL);
6142 res_counter_init(&memcg->kmem, NULL);
6144 * Deeper hierachy with use_hierarchy == false doesn't make
6145 * much sense so let cgroup subsystem know about this
6146 * unfortunate state in our controller.
6148 if (parent && parent != root_mem_cgroup)
6149 mem_cgroup_subsys.broken_hierarchy = true;
6151 memcg->last_scanned_node = MAX_NUMNODES;
6152 INIT_LIST_HEAD(&memcg->oom_notify);
6154 if (parent)
6155 memcg->swappiness = mem_cgroup_swappiness(parent);
6156 atomic_set(&memcg->refcnt, 1);
6157 memcg->move_charge_at_immigrate = 0;
6158 mutex_init(&memcg->thresholds_lock);
6159 spin_lock_init(&memcg->move_lock);
6161 error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
6162 if (error) {
6164 * We call put now because our (and parent's) refcnts
6165 * are already in place. mem_cgroup_put() will internally
6166 * call __mem_cgroup_free, so return directly
6168 mem_cgroup_put(memcg);
6169 return ERR_PTR(error);
6171 return &memcg->css;
6172 free_out:
6173 __mem_cgroup_free(memcg);
6174 return ERR_PTR(error);
6177 static void mem_cgroup_css_offline(struct cgroup *cont)
6179 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
6181 mem_cgroup_reparent_charges(memcg);
6182 mem_cgroup_destroy_all_caches(memcg);
6185 static void mem_cgroup_css_free(struct cgroup *cont)
6187 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
6189 kmem_cgroup_destroy(memcg);
6191 mem_cgroup_put(memcg);
6194 #ifdef CONFIG_MMU
6195 /* Handlers for move charge at task migration. */
6196 #define PRECHARGE_COUNT_AT_ONCE 256
6197 static int mem_cgroup_do_precharge(unsigned long count)
6199 int ret = 0;
6200 int batch_count = PRECHARGE_COUNT_AT_ONCE;
6201 struct mem_cgroup *memcg = mc.to;
6203 if (mem_cgroup_is_root(memcg)) {
6204 mc.precharge += count;
6205 /* we don't need css_get for root */
6206 return ret;
6208 /* try to charge at once */
6209 if (count > 1) {
6210 struct res_counter *dummy;
6212 * "memcg" cannot be under rmdir() because we've already checked
6213 * by cgroup_lock_live_cgroup() that it is not removed and we
6214 * are still under the same cgroup_mutex. So we can postpone
6215 * css_get().
6217 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6218 goto one_by_one;
6219 if (do_swap_account && res_counter_charge(&memcg->memsw,
6220 PAGE_SIZE * count, &dummy)) {
6221 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6222 goto one_by_one;
6224 mc.precharge += count;
6225 return ret;
6227 one_by_one:
6228 /* fall back to one by one charge */
6229 while (count--) {
6230 if (signal_pending(current)) {
6231 ret = -EINTR;
6232 break;
6234 if (!batch_count--) {
6235 batch_count = PRECHARGE_COUNT_AT_ONCE;
6236 cond_resched();
6238 ret = __mem_cgroup_try_charge(NULL,
6239 GFP_KERNEL, 1, &memcg, false);
6240 if (ret)
6241 /* mem_cgroup_clear_mc() will do uncharge later */
6242 return ret;
6243 mc.precharge++;
6245 return ret;
6249 * get_mctgt_type - get target type of moving charge
6250 * @vma: the vma the pte to be checked belongs
6251 * @addr: the address corresponding to the pte to be checked
6252 * @ptent: the pte to be checked
6253 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6255 * Returns
6256 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
6257 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
6258 * move charge. if @target is not NULL, the page is stored in target->page
6259 * with extra refcnt got(Callers should handle it).
6260 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
6261 * target for charge migration. if @target is not NULL, the entry is stored
6262 * in target->ent.
6264 * Called with pte lock held.
6266 union mc_target {
6267 struct page *page;
6268 swp_entry_t ent;
6271 enum mc_target_type {
6272 MC_TARGET_NONE = 0,
6273 MC_TARGET_PAGE,
6274 MC_TARGET_SWAP,
6277 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
6278 unsigned long addr, pte_t ptent)
6280 struct page *page = vm_normal_page(vma, addr, ptent);
6282 if (!page || !page_mapped(page))
6283 return NULL;
6284 if (PageAnon(page)) {
6285 /* we don't move shared anon */
6286 if (!move_anon())
6287 return NULL;
6288 } else if (!move_file())
6289 /* we ignore mapcount for file pages */
6290 return NULL;
6291 if (!get_page_unless_zero(page))
6292 return NULL;
6294 return page;
6297 #ifdef CONFIG_SWAP
6298 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6299 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6301 struct page *page = NULL;
6302 swp_entry_t ent = pte_to_swp_entry(ptent);
6304 if (!move_anon() || non_swap_entry(ent))
6305 return NULL;
6307 * Because lookup_swap_cache() updates some statistics counter,
6308 * we call find_get_page() with swapper_space directly.
6310 page = find_get_page(&swapper_space, ent.val);
6311 if (do_swap_account)
6312 entry->val = ent.val;
6314 return page;
6316 #else
6317 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6318 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6320 return NULL;
6322 #endif
6324 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
6325 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6327 struct page *page = NULL;
6328 struct address_space *mapping;
6329 pgoff_t pgoff;
6331 if (!vma->vm_file) /* anonymous vma */
6332 return NULL;
6333 if (!move_file())
6334 return NULL;
6336 mapping = vma->vm_file->f_mapping;
6337 if (pte_none(ptent))
6338 pgoff = linear_page_index(vma, addr);
6339 else /* pte_file(ptent) is true */
6340 pgoff = pte_to_pgoff(ptent);
6342 /* page is moved even if it's not RSS of this task(page-faulted). */
6343 page = find_get_page(mapping, pgoff);
6345 #ifdef CONFIG_SWAP
6346 /* shmem/tmpfs may report page out on swap: account for that too. */
6347 if (radix_tree_exceptional_entry(page)) {
6348 swp_entry_t swap = radix_to_swp_entry(page);
6349 if (do_swap_account)
6350 *entry = swap;
6351 page = find_get_page(&swapper_space, swap.val);
6353 #endif
6354 return page;
6357 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
6358 unsigned long addr, pte_t ptent, union mc_target *target)
6360 struct page *page = NULL;
6361 struct page_cgroup *pc;
6362 enum mc_target_type ret = MC_TARGET_NONE;
6363 swp_entry_t ent = { .val = 0 };
6365 if (pte_present(ptent))
6366 page = mc_handle_present_pte(vma, addr, ptent);
6367 else if (is_swap_pte(ptent))
6368 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6369 else if (pte_none(ptent) || pte_file(ptent))
6370 page = mc_handle_file_pte(vma, addr, ptent, &ent);
6372 if (!page && !ent.val)
6373 return ret;
6374 if (page) {
6375 pc = lookup_page_cgroup(page);
6377 * Do only loose check w/o page_cgroup lock.
6378 * mem_cgroup_move_account() checks the pc is valid or not under
6379 * the lock.
6381 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6382 ret = MC_TARGET_PAGE;
6383 if (target)
6384 target->page = page;
6386 if (!ret || !target)
6387 put_page(page);
6389 /* There is a swap entry and a page doesn't exist or isn't charged */
6390 if (ent.val && !ret &&
6391 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
6392 ret = MC_TARGET_SWAP;
6393 if (target)
6394 target->ent = ent;
6396 return ret;
6399 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6401 * We don't consider swapping or file mapped pages because THP does not
6402 * support them for now.
6403 * Caller should make sure that pmd_trans_huge(pmd) is true.
6405 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6406 unsigned long addr, pmd_t pmd, union mc_target *target)
6408 struct page *page = NULL;
6409 struct page_cgroup *pc;
6410 enum mc_target_type ret = MC_TARGET_NONE;
6412 page = pmd_page(pmd);
6413 VM_BUG_ON(!page || !PageHead(page));
6414 if (!move_anon())
6415 return ret;
6416 pc = lookup_page_cgroup(page);
6417 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6418 ret = MC_TARGET_PAGE;
6419 if (target) {
6420 get_page(page);
6421 target->page = page;
6424 return ret;
6426 #else
6427 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6428 unsigned long addr, pmd_t pmd, union mc_target *target)
6430 return MC_TARGET_NONE;
6432 #endif
6434 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6435 unsigned long addr, unsigned long end,
6436 struct mm_walk *walk)
6438 struct vm_area_struct *vma = walk->private;
6439 pte_t *pte;
6440 spinlock_t *ptl;
6442 if (pmd_trans_huge_lock(pmd, vma) == 1) {
6443 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6444 mc.precharge += HPAGE_PMD_NR;
6445 spin_unlock(&vma->vm_mm->page_table_lock);
6446 return 0;
6449 if (pmd_trans_unstable(pmd))
6450 return 0;
6451 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6452 for (; addr != end; pte++, addr += PAGE_SIZE)
6453 if (get_mctgt_type(vma, addr, *pte, NULL))
6454 mc.precharge++; /* increment precharge temporarily */
6455 pte_unmap_unlock(pte - 1, ptl);
6456 cond_resched();
6458 return 0;
6461 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6463 unsigned long precharge;
6464 struct vm_area_struct *vma;
6466 down_read(&mm->mmap_sem);
6467 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6468 struct mm_walk mem_cgroup_count_precharge_walk = {
6469 .pmd_entry = mem_cgroup_count_precharge_pte_range,
6470 .mm = mm,
6471 .private = vma,
6473 if (is_vm_hugetlb_page(vma))
6474 continue;
6475 walk_page_range(vma->vm_start, vma->vm_end,
6476 &mem_cgroup_count_precharge_walk);
6478 up_read(&mm->mmap_sem);
6480 precharge = mc.precharge;
6481 mc.precharge = 0;
6483 return precharge;
6486 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6488 unsigned long precharge = mem_cgroup_count_precharge(mm);
6490 VM_BUG_ON(mc.moving_task);
6491 mc.moving_task = current;
6492 return mem_cgroup_do_precharge(precharge);
6495 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6496 static void __mem_cgroup_clear_mc(void)
6498 struct mem_cgroup *from = mc.from;
6499 struct mem_cgroup *to = mc.to;
6501 /* we must uncharge all the leftover precharges from mc.to */
6502 if (mc.precharge) {
6503 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
6504 mc.precharge = 0;
6507 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6508 * we must uncharge here.
6510 if (mc.moved_charge) {
6511 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6512 mc.moved_charge = 0;
6514 /* we must fixup refcnts and charges */
6515 if (mc.moved_swap) {
6516 /* uncharge swap account from the old cgroup */
6517 if (!mem_cgroup_is_root(mc.from))
6518 res_counter_uncharge(&mc.from->memsw,
6519 PAGE_SIZE * mc.moved_swap);
6520 __mem_cgroup_put(mc.from, mc.moved_swap);
6522 if (!mem_cgroup_is_root(mc.to)) {
6524 * we charged both to->res and to->memsw, so we should
6525 * uncharge to->res.
6527 res_counter_uncharge(&mc.to->res,
6528 PAGE_SIZE * mc.moved_swap);
6530 /* we've already done mem_cgroup_get(mc.to) */
6531 mc.moved_swap = 0;
6533 memcg_oom_recover(from);
6534 memcg_oom_recover(to);
6535 wake_up_all(&mc.waitq);
6538 static void mem_cgroup_clear_mc(void)
6540 struct mem_cgroup *from = mc.from;
6543 * we must clear moving_task before waking up waiters at the end of
6544 * task migration.
6546 mc.moving_task = NULL;
6547 __mem_cgroup_clear_mc();
6548 spin_lock(&mc.lock);
6549 mc.from = NULL;
6550 mc.to = NULL;
6551 spin_unlock(&mc.lock);
6552 mem_cgroup_end_move(from);
6555 static int mem_cgroup_can_attach(struct cgroup *cgroup,
6556 struct cgroup_taskset *tset)
6558 struct task_struct *p = cgroup_taskset_first(tset);
6559 int ret = 0;
6560 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
6562 if (memcg->move_charge_at_immigrate) {
6563 struct mm_struct *mm;
6564 struct mem_cgroup *from = mem_cgroup_from_task(p);
6566 VM_BUG_ON(from == memcg);
6568 mm = get_task_mm(p);
6569 if (!mm)
6570 return 0;
6571 /* We move charges only when we move a owner of the mm */
6572 if (mm->owner == p) {
6573 VM_BUG_ON(mc.from);
6574 VM_BUG_ON(mc.to);
6575 VM_BUG_ON(mc.precharge);
6576 VM_BUG_ON(mc.moved_charge);
6577 VM_BUG_ON(mc.moved_swap);
6578 mem_cgroup_start_move(from);
6579 spin_lock(&mc.lock);
6580 mc.from = from;
6581 mc.to = memcg;
6582 spin_unlock(&mc.lock);
6583 /* We set mc.moving_task later */
6585 ret = mem_cgroup_precharge_mc(mm);
6586 if (ret)
6587 mem_cgroup_clear_mc();
6589 mmput(mm);
6591 return ret;
6594 static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
6595 struct cgroup_taskset *tset)
6597 mem_cgroup_clear_mc();
6600 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6601 unsigned long addr, unsigned long end,
6602 struct mm_walk *walk)
6604 int ret = 0;
6605 struct vm_area_struct *vma = walk->private;
6606 pte_t *pte;
6607 spinlock_t *ptl;
6608 enum mc_target_type target_type;
6609 union mc_target target;
6610 struct page *page;
6611 struct page_cgroup *pc;
6614 * We don't take compound_lock() here but no race with splitting thp
6615 * happens because:
6616 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
6617 * under splitting, which means there's no concurrent thp split,
6618 * - if another thread runs into split_huge_page() just after we
6619 * entered this if-block, the thread must wait for page table lock
6620 * to be unlocked in __split_huge_page_splitting(), where the main
6621 * part of thp split is not executed yet.
6623 if (pmd_trans_huge_lock(pmd, vma) == 1) {
6624 if (mc.precharge < HPAGE_PMD_NR) {
6625 spin_unlock(&vma->vm_mm->page_table_lock);
6626 return 0;
6628 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6629 if (target_type == MC_TARGET_PAGE) {
6630 page = target.page;
6631 if (!isolate_lru_page(page)) {
6632 pc = lookup_page_cgroup(page);
6633 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
6634 pc, mc.from, mc.to)) {
6635 mc.precharge -= HPAGE_PMD_NR;
6636 mc.moved_charge += HPAGE_PMD_NR;
6638 putback_lru_page(page);
6640 put_page(page);
6642 spin_unlock(&vma->vm_mm->page_table_lock);
6643 return 0;
6646 if (pmd_trans_unstable(pmd))
6647 return 0;
6648 retry:
6649 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6650 for (; addr != end; addr += PAGE_SIZE) {
6651 pte_t ptent = *(pte++);
6652 swp_entry_t ent;
6654 if (!mc.precharge)
6655 break;
6657 switch (get_mctgt_type(vma, addr, ptent, &target)) {
6658 case MC_TARGET_PAGE:
6659 page = target.page;
6660 if (isolate_lru_page(page))
6661 goto put;
6662 pc = lookup_page_cgroup(page);
6663 if (!mem_cgroup_move_account(page, 1, pc,
6664 mc.from, mc.to)) {
6665 mc.precharge--;
6666 /* we uncharge from mc.from later. */
6667 mc.moved_charge++;
6669 putback_lru_page(page);
6670 put: /* get_mctgt_type() gets the page */
6671 put_page(page);
6672 break;
6673 case MC_TARGET_SWAP:
6674 ent = target.ent;
6675 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6676 mc.precharge--;
6677 /* we fixup refcnts and charges later. */
6678 mc.moved_swap++;
6680 break;
6681 default:
6682 break;
6685 pte_unmap_unlock(pte - 1, ptl);
6686 cond_resched();
6688 if (addr != end) {
6690 * We have consumed all precharges we got in can_attach().
6691 * We try charge one by one, but don't do any additional
6692 * charges to mc.to if we have failed in charge once in attach()
6693 * phase.
6695 ret = mem_cgroup_do_precharge(1);
6696 if (!ret)
6697 goto retry;
6700 return ret;
6703 static void mem_cgroup_move_charge(struct mm_struct *mm)
6705 struct vm_area_struct *vma;
6707 lru_add_drain_all();
6708 retry:
6709 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
6711 * Someone who are holding the mmap_sem might be waiting in
6712 * waitq. So we cancel all extra charges, wake up all waiters,
6713 * and retry. Because we cancel precharges, we might not be able
6714 * to move enough charges, but moving charge is a best-effort
6715 * feature anyway, so it wouldn't be a big problem.
6717 __mem_cgroup_clear_mc();
6718 cond_resched();
6719 goto retry;
6721 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6722 int ret;
6723 struct mm_walk mem_cgroup_move_charge_walk = {
6724 .pmd_entry = mem_cgroup_move_charge_pte_range,
6725 .mm = mm,
6726 .private = vma,
6728 if (is_vm_hugetlb_page(vma))
6729 continue;
6730 ret = walk_page_range(vma->vm_start, vma->vm_end,
6731 &mem_cgroup_move_charge_walk);
6732 if (ret)
6734 * means we have consumed all precharges and failed in
6735 * doing additional charge. Just abandon here.
6737 break;
6739 up_read(&mm->mmap_sem);
6742 static void mem_cgroup_move_task(struct cgroup *cont,
6743 struct cgroup_taskset *tset)
6745 struct task_struct *p = cgroup_taskset_first(tset);
6746 struct mm_struct *mm = get_task_mm(p);
6748 if (mm) {
6749 if (mc.to)
6750 mem_cgroup_move_charge(mm);
6751 mmput(mm);
6753 if (mc.to)
6754 mem_cgroup_clear_mc();
6756 #else /* !CONFIG_MMU */
6757 static int mem_cgroup_can_attach(struct cgroup *cgroup,
6758 struct cgroup_taskset *tset)
6760 return 0;
6762 static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
6763 struct cgroup_taskset *tset)
6766 static void mem_cgroup_move_task(struct cgroup *cont,
6767 struct cgroup_taskset *tset)
6770 #endif
6772 struct cgroup_subsys mem_cgroup_subsys = {
6773 .name = "memory",
6774 .subsys_id = mem_cgroup_subsys_id,
6775 .css_alloc = mem_cgroup_css_alloc,
6776 .css_offline = mem_cgroup_css_offline,
6777 .css_free = mem_cgroup_css_free,
6778 .can_attach = mem_cgroup_can_attach,
6779 .cancel_attach = mem_cgroup_cancel_attach,
6780 .attach = mem_cgroup_move_task,
6781 .base_cftypes = mem_cgroup_files,
6782 .early_init = 0,
6783 .use_id = 1,
6787 * The rest of init is performed during ->css_alloc() for root css which
6788 * happens before initcalls. hotcpu_notifier() can't be done together as
6789 * it would introduce circular locking by adding cgroup_lock -> cpu hotplug
6790 * dependency. Do it from a subsys_initcall().
6792 static int __init mem_cgroup_init(void)
6794 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6795 return 0;
6797 subsys_initcall(mem_cgroup_init);
6799 #ifdef CONFIG_MEMCG_SWAP
6800 static int __init enable_swap_account(char *s)
6802 /* consider enabled if no parameter or 1 is given */
6803 if (!strcmp(s, "1"))
6804 really_do_swap_account = 1;
6805 else if (!strcmp(s, "0"))
6806 really_do_swap_account = 0;
6807 return 1;
6809 __setup("swapaccount=", enable_swap_account);
6811 #endif