Merge tag 'gpio-v3.13-3' of git://git.kernel.org/pub/scm/linux/kernel/git/linusw...
[linux-2.6.git] / mm / memcontrol.c
blobf1a0ae6e11b86b3020c90d7241ba12d47d2bbaa8
1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
28 #include <linux/res_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/mm.h>
32 #include <linux/hugetlb.h>
33 #include <linux/pagemap.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/sort.h>
49 #include <linux/fs.h>
50 #include <linux/seq_file.h>
51 #include <linux/vmalloc.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/page_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include <linux/lockdep.h>
58 #include "internal.h"
59 #include <net/sock.h>
60 #include <net/ip.h>
61 #include <net/tcp_memcontrol.h>
62 #include "slab.h"
64 #include <asm/uaccess.h>
66 #include <trace/events/vmscan.h>
68 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
69 EXPORT_SYMBOL(mem_cgroup_subsys);
71 #define MEM_CGROUP_RECLAIM_RETRIES 5
72 static struct mem_cgroup *root_mem_cgroup __read_mostly;
74 #ifdef CONFIG_MEMCG_SWAP
75 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
76 int do_swap_account __read_mostly;
78 /* for remember boot option*/
79 #ifdef CONFIG_MEMCG_SWAP_ENABLED
80 static int really_do_swap_account __initdata = 1;
81 #else
82 static int really_do_swap_account __initdata = 0;
83 #endif
85 #else
86 #define do_swap_account 0
87 #endif
90 static const char * const mem_cgroup_stat_names[] = {
91 "cache",
92 "rss",
93 "rss_huge",
94 "mapped_file",
95 "writeback",
96 "swap",
99 enum mem_cgroup_events_index {
100 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
101 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
102 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
103 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
104 MEM_CGROUP_EVENTS_NSTATS,
107 static const char * const mem_cgroup_events_names[] = {
108 "pgpgin",
109 "pgpgout",
110 "pgfault",
111 "pgmajfault",
114 static const char * const mem_cgroup_lru_names[] = {
115 "inactive_anon",
116 "active_anon",
117 "inactive_file",
118 "active_file",
119 "unevictable",
123 * Per memcg event counter is incremented at every pagein/pageout. With THP,
124 * it will be incremated by the number of pages. This counter is used for
125 * for trigger some periodic events. This is straightforward and better
126 * than using jiffies etc. to handle periodic memcg event.
128 enum mem_cgroup_events_target {
129 MEM_CGROUP_TARGET_THRESH,
130 MEM_CGROUP_TARGET_SOFTLIMIT,
131 MEM_CGROUP_TARGET_NUMAINFO,
132 MEM_CGROUP_NTARGETS,
134 #define THRESHOLDS_EVENTS_TARGET 128
135 #define SOFTLIMIT_EVENTS_TARGET 1024
136 #define NUMAINFO_EVENTS_TARGET 1024
138 struct mem_cgroup_stat_cpu {
139 long count[MEM_CGROUP_STAT_NSTATS];
140 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
141 unsigned long nr_page_events;
142 unsigned long targets[MEM_CGROUP_NTARGETS];
145 struct mem_cgroup_reclaim_iter {
147 * last scanned hierarchy member. Valid only if last_dead_count
148 * matches memcg->dead_count of the hierarchy root group.
150 struct mem_cgroup *last_visited;
151 unsigned long last_dead_count;
153 /* scan generation, increased every round-trip */
154 unsigned int generation;
158 * per-zone information in memory controller.
160 struct mem_cgroup_per_zone {
161 struct lruvec lruvec;
162 unsigned long lru_size[NR_LRU_LISTS];
164 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
166 struct rb_node tree_node; /* RB tree node */
167 unsigned long long usage_in_excess;/* Set to the value by which */
168 /* the soft limit is exceeded*/
169 bool on_tree;
170 struct mem_cgroup *memcg; /* Back pointer, we cannot */
171 /* use container_of */
174 struct mem_cgroup_per_node {
175 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
179 * Cgroups above their limits are maintained in a RB-Tree, independent of
180 * their hierarchy representation
183 struct mem_cgroup_tree_per_zone {
184 struct rb_root rb_root;
185 spinlock_t lock;
188 struct mem_cgroup_tree_per_node {
189 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
192 struct mem_cgroup_tree {
193 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
196 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
198 struct mem_cgroup_threshold {
199 struct eventfd_ctx *eventfd;
200 u64 threshold;
203 /* For threshold */
204 struct mem_cgroup_threshold_ary {
205 /* An array index points to threshold just below or equal to usage. */
206 int current_threshold;
207 /* Size of entries[] */
208 unsigned int size;
209 /* Array of thresholds */
210 struct mem_cgroup_threshold entries[0];
213 struct mem_cgroup_thresholds {
214 /* Primary thresholds array */
215 struct mem_cgroup_threshold_ary *primary;
217 * Spare threshold array.
218 * This is needed to make mem_cgroup_unregister_event() "never fail".
219 * It must be able to store at least primary->size - 1 entries.
221 struct mem_cgroup_threshold_ary *spare;
224 /* for OOM */
225 struct mem_cgroup_eventfd_list {
226 struct list_head list;
227 struct eventfd_ctx *eventfd;
230 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
231 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
234 * The memory controller data structure. The memory controller controls both
235 * page cache and RSS per cgroup. We would eventually like to provide
236 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
237 * to help the administrator determine what knobs to tune.
239 * TODO: Add a water mark for the memory controller. Reclaim will begin when
240 * we hit the water mark. May be even add a low water mark, such that
241 * no reclaim occurs from a cgroup at it's low water mark, this is
242 * a feature that will be implemented much later in the future.
244 struct mem_cgroup {
245 struct cgroup_subsys_state css;
247 * the counter to account for memory usage
249 struct res_counter res;
251 /* vmpressure notifications */
252 struct vmpressure vmpressure;
255 * the counter to account for mem+swap usage.
257 struct res_counter memsw;
260 * the counter to account for kernel memory usage.
262 struct res_counter kmem;
264 * Should the accounting and control be hierarchical, per subtree?
266 bool use_hierarchy;
267 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
269 bool oom_lock;
270 atomic_t under_oom;
271 atomic_t oom_wakeups;
273 int swappiness;
274 /* OOM-Killer disable */
275 int oom_kill_disable;
277 /* set when res.limit == memsw.limit */
278 bool memsw_is_minimum;
280 /* protect arrays of thresholds */
281 struct mutex thresholds_lock;
283 /* thresholds for memory usage. RCU-protected */
284 struct mem_cgroup_thresholds thresholds;
286 /* thresholds for mem+swap usage. RCU-protected */
287 struct mem_cgroup_thresholds memsw_thresholds;
289 /* For oom notifier event fd */
290 struct list_head oom_notify;
293 * Should we move charges of a task when a task is moved into this
294 * mem_cgroup ? And what type of charges should we move ?
296 unsigned long move_charge_at_immigrate;
298 * set > 0 if pages under this cgroup are moving to other cgroup.
300 atomic_t moving_account;
301 /* taken only while moving_account > 0 */
302 spinlock_t move_lock;
304 * percpu counter.
306 struct mem_cgroup_stat_cpu __percpu *stat;
308 * used when a cpu is offlined or other synchronizations
309 * See mem_cgroup_read_stat().
311 struct mem_cgroup_stat_cpu nocpu_base;
312 spinlock_t pcp_counter_lock;
314 atomic_t dead_count;
315 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
316 struct cg_proto tcp_mem;
317 #endif
318 #if defined(CONFIG_MEMCG_KMEM)
319 /* analogous to slab_common's slab_caches list. per-memcg */
320 struct list_head memcg_slab_caches;
321 /* Not a spinlock, we can take a lot of time walking the list */
322 struct mutex slab_caches_mutex;
323 /* Index in the kmem_cache->memcg_params->memcg_caches array */
324 int kmemcg_id;
325 #endif
327 int last_scanned_node;
328 #if MAX_NUMNODES > 1
329 nodemask_t scan_nodes;
330 atomic_t numainfo_events;
331 atomic_t numainfo_updating;
332 #endif
334 struct mem_cgroup_per_node *nodeinfo[0];
335 /* WARNING: nodeinfo must be the last member here */
338 static size_t memcg_size(void)
340 return sizeof(struct mem_cgroup) +
341 nr_node_ids * sizeof(struct mem_cgroup_per_node);
344 /* internal only representation about the status of kmem accounting. */
345 enum {
346 KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
347 KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
348 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
351 /* We account when limit is on, but only after call sites are patched */
352 #define KMEM_ACCOUNTED_MASK \
353 ((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
355 #ifdef CONFIG_MEMCG_KMEM
356 static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
358 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
361 static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
363 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
366 static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
368 set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
371 static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
373 clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
376 static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
379 * Our caller must use css_get() first, because memcg_uncharge_kmem()
380 * will call css_put() if it sees the memcg is dead.
382 smp_wmb();
383 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
384 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
387 static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
389 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
390 &memcg->kmem_account_flags);
392 #endif
394 /* Stuffs for move charges at task migration. */
396 * Types of charges to be moved. "move_charge_at_immitgrate" and
397 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
399 enum move_type {
400 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
401 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
402 NR_MOVE_TYPE,
405 /* "mc" and its members are protected by cgroup_mutex */
406 static struct move_charge_struct {
407 spinlock_t lock; /* for from, to */
408 struct mem_cgroup *from;
409 struct mem_cgroup *to;
410 unsigned long immigrate_flags;
411 unsigned long precharge;
412 unsigned long moved_charge;
413 unsigned long moved_swap;
414 struct task_struct *moving_task; /* a task moving charges */
415 wait_queue_head_t waitq; /* a waitq for other context */
416 } mc = {
417 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
418 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
421 static bool move_anon(void)
423 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
426 static bool move_file(void)
428 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
432 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
433 * limit reclaim to prevent infinite loops, if they ever occur.
435 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
436 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
438 enum charge_type {
439 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
440 MEM_CGROUP_CHARGE_TYPE_ANON,
441 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
442 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
443 NR_CHARGE_TYPE,
446 /* for encoding cft->private value on file */
447 enum res_type {
448 _MEM,
449 _MEMSWAP,
450 _OOM_TYPE,
451 _KMEM,
454 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
455 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
456 #define MEMFILE_ATTR(val) ((val) & 0xffff)
457 /* Used for OOM nofiier */
458 #define OOM_CONTROL (0)
461 * Reclaim flags for mem_cgroup_hierarchical_reclaim
463 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
464 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
465 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
466 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
469 * The memcg_create_mutex will be held whenever a new cgroup is created.
470 * As a consequence, any change that needs to protect against new child cgroups
471 * appearing has to hold it as well.
473 static DEFINE_MUTEX(memcg_create_mutex);
475 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
477 return s ? container_of(s, struct mem_cgroup, css) : NULL;
480 /* Some nice accessors for the vmpressure. */
481 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
483 if (!memcg)
484 memcg = root_mem_cgroup;
485 return &memcg->vmpressure;
488 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
490 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
493 struct vmpressure *css_to_vmpressure(struct cgroup_subsys_state *css)
495 return &mem_cgroup_from_css(css)->vmpressure;
498 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
500 return (memcg == root_mem_cgroup);
504 * We restrict the id in the range of [1, 65535], so it can fit into
505 * an unsigned short.
507 #define MEM_CGROUP_ID_MAX USHRT_MAX
509 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
512 * The ID of the root cgroup is 0, but memcg treat 0 as an
513 * invalid ID, so we return (cgroup_id + 1).
515 return memcg->css.cgroup->id + 1;
518 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
520 struct cgroup_subsys_state *css;
522 css = css_from_id(id - 1, &mem_cgroup_subsys);
523 return mem_cgroup_from_css(css);
526 /* Writing them here to avoid exposing memcg's inner layout */
527 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
529 void sock_update_memcg(struct sock *sk)
531 if (mem_cgroup_sockets_enabled) {
532 struct mem_cgroup *memcg;
533 struct cg_proto *cg_proto;
535 BUG_ON(!sk->sk_prot->proto_cgroup);
537 /* Socket cloning can throw us here with sk_cgrp already
538 * filled. It won't however, necessarily happen from
539 * process context. So the test for root memcg given
540 * the current task's memcg won't help us in this case.
542 * Respecting the original socket's memcg is a better
543 * decision in this case.
545 if (sk->sk_cgrp) {
546 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
547 css_get(&sk->sk_cgrp->memcg->css);
548 return;
551 rcu_read_lock();
552 memcg = mem_cgroup_from_task(current);
553 cg_proto = sk->sk_prot->proto_cgroup(memcg);
554 if (!mem_cgroup_is_root(memcg) &&
555 memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) {
556 sk->sk_cgrp = cg_proto;
558 rcu_read_unlock();
561 EXPORT_SYMBOL(sock_update_memcg);
563 void sock_release_memcg(struct sock *sk)
565 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
566 struct mem_cgroup *memcg;
567 WARN_ON(!sk->sk_cgrp->memcg);
568 memcg = sk->sk_cgrp->memcg;
569 css_put(&sk->sk_cgrp->memcg->css);
573 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
575 if (!memcg || mem_cgroup_is_root(memcg))
576 return NULL;
578 return &memcg->tcp_mem;
580 EXPORT_SYMBOL(tcp_proto_cgroup);
582 static void disarm_sock_keys(struct mem_cgroup *memcg)
584 if (!memcg_proto_activated(&memcg->tcp_mem))
585 return;
586 static_key_slow_dec(&memcg_socket_limit_enabled);
588 #else
589 static void disarm_sock_keys(struct mem_cgroup *memcg)
592 #endif
594 #ifdef CONFIG_MEMCG_KMEM
596 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
597 * The main reason for not using cgroup id for this:
598 * this works better in sparse environments, where we have a lot of memcgs,
599 * but only a few kmem-limited. Or also, if we have, for instance, 200
600 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
601 * 200 entry array for that.
603 * The current size of the caches array is stored in
604 * memcg_limited_groups_array_size. It will double each time we have to
605 * increase it.
607 static DEFINE_IDA(kmem_limited_groups);
608 int memcg_limited_groups_array_size;
611 * MIN_SIZE is different than 1, because we would like to avoid going through
612 * the alloc/free process all the time. In a small machine, 4 kmem-limited
613 * cgroups is a reasonable guess. In the future, it could be a parameter or
614 * tunable, but that is strictly not necessary.
616 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
617 * this constant directly from cgroup, but it is understandable that this is
618 * better kept as an internal representation in cgroup.c. In any case, the
619 * cgrp_id space is not getting any smaller, and we don't have to necessarily
620 * increase ours as well if it increases.
622 #define MEMCG_CACHES_MIN_SIZE 4
623 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
626 * A lot of the calls to the cache allocation functions are expected to be
627 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
628 * conditional to this static branch, we'll have to allow modules that does
629 * kmem_cache_alloc and the such to see this symbol as well
631 struct static_key memcg_kmem_enabled_key;
632 EXPORT_SYMBOL(memcg_kmem_enabled_key);
634 static void disarm_kmem_keys(struct mem_cgroup *memcg)
636 if (memcg_kmem_is_active(memcg)) {
637 static_key_slow_dec(&memcg_kmem_enabled_key);
638 ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
641 * This check can't live in kmem destruction function,
642 * since the charges will outlive the cgroup
644 WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
646 #else
647 static void disarm_kmem_keys(struct mem_cgroup *memcg)
650 #endif /* CONFIG_MEMCG_KMEM */
652 static void disarm_static_keys(struct mem_cgroup *memcg)
654 disarm_sock_keys(memcg);
655 disarm_kmem_keys(memcg);
658 static void drain_all_stock_async(struct mem_cgroup *memcg);
660 static struct mem_cgroup_per_zone *
661 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
663 VM_BUG_ON((unsigned)nid >= nr_node_ids);
664 return &memcg->nodeinfo[nid]->zoneinfo[zid];
667 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
669 return &memcg->css;
672 static struct mem_cgroup_per_zone *
673 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
675 int nid = page_to_nid(page);
676 int zid = page_zonenum(page);
678 return mem_cgroup_zoneinfo(memcg, nid, zid);
681 static struct mem_cgroup_tree_per_zone *
682 soft_limit_tree_node_zone(int nid, int zid)
684 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
687 static struct mem_cgroup_tree_per_zone *
688 soft_limit_tree_from_page(struct page *page)
690 int nid = page_to_nid(page);
691 int zid = page_zonenum(page);
693 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
696 static void
697 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
698 struct mem_cgroup_per_zone *mz,
699 struct mem_cgroup_tree_per_zone *mctz,
700 unsigned long long new_usage_in_excess)
702 struct rb_node **p = &mctz->rb_root.rb_node;
703 struct rb_node *parent = NULL;
704 struct mem_cgroup_per_zone *mz_node;
706 if (mz->on_tree)
707 return;
709 mz->usage_in_excess = new_usage_in_excess;
710 if (!mz->usage_in_excess)
711 return;
712 while (*p) {
713 parent = *p;
714 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
715 tree_node);
716 if (mz->usage_in_excess < mz_node->usage_in_excess)
717 p = &(*p)->rb_left;
719 * We can't avoid mem cgroups that are over their soft
720 * limit by the same amount
722 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
723 p = &(*p)->rb_right;
725 rb_link_node(&mz->tree_node, parent, p);
726 rb_insert_color(&mz->tree_node, &mctz->rb_root);
727 mz->on_tree = true;
730 static void
731 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
732 struct mem_cgroup_per_zone *mz,
733 struct mem_cgroup_tree_per_zone *mctz)
735 if (!mz->on_tree)
736 return;
737 rb_erase(&mz->tree_node, &mctz->rb_root);
738 mz->on_tree = false;
741 static void
742 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
743 struct mem_cgroup_per_zone *mz,
744 struct mem_cgroup_tree_per_zone *mctz)
746 spin_lock(&mctz->lock);
747 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
748 spin_unlock(&mctz->lock);
752 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
754 unsigned long long excess;
755 struct mem_cgroup_per_zone *mz;
756 struct mem_cgroup_tree_per_zone *mctz;
757 int nid = page_to_nid(page);
758 int zid = page_zonenum(page);
759 mctz = soft_limit_tree_from_page(page);
762 * Necessary to update all ancestors when hierarchy is used.
763 * because their event counter is not touched.
765 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
766 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
767 excess = res_counter_soft_limit_excess(&memcg->res);
769 * We have to update the tree if mz is on RB-tree or
770 * mem is over its softlimit.
772 if (excess || mz->on_tree) {
773 spin_lock(&mctz->lock);
774 /* if on-tree, remove it */
775 if (mz->on_tree)
776 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
778 * Insert again. mz->usage_in_excess will be updated.
779 * If excess is 0, no tree ops.
781 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
782 spin_unlock(&mctz->lock);
787 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
789 int node, zone;
790 struct mem_cgroup_per_zone *mz;
791 struct mem_cgroup_tree_per_zone *mctz;
793 for_each_node(node) {
794 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
795 mz = mem_cgroup_zoneinfo(memcg, node, zone);
796 mctz = soft_limit_tree_node_zone(node, zone);
797 mem_cgroup_remove_exceeded(memcg, mz, mctz);
802 static struct mem_cgroup_per_zone *
803 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
805 struct rb_node *rightmost = NULL;
806 struct mem_cgroup_per_zone *mz;
808 retry:
809 mz = NULL;
810 rightmost = rb_last(&mctz->rb_root);
811 if (!rightmost)
812 goto done; /* Nothing to reclaim from */
814 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
816 * Remove the node now but someone else can add it back,
817 * we will to add it back at the end of reclaim to its correct
818 * position in the tree.
820 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
821 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
822 !css_tryget(&mz->memcg->css))
823 goto retry;
824 done:
825 return mz;
828 static struct mem_cgroup_per_zone *
829 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
831 struct mem_cgroup_per_zone *mz;
833 spin_lock(&mctz->lock);
834 mz = __mem_cgroup_largest_soft_limit_node(mctz);
835 spin_unlock(&mctz->lock);
836 return mz;
840 * Implementation Note: reading percpu statistics for memcg.
842 * Both of vmstat[] and percpu_counter has threshold and do periodic
843 * synchronization to implement "quick" read. There are trade-off between
844 * reading cost and precision of value. Then, we may have a chance to implement
845 * a periodic synchronizion of counter in memcg's counter.
847 * But this _read() function is used for user interface now. The user accounts
848 * memory usage by memory cgroup and he _always_ requires exact value because
849 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
850 * have to visit all online cpus and make sum. So, for now, unnecessary
851 * synchronization is not implemented. (just implemented for cpu hotplug)
853 * If there are kernel internal actions which can make use of some not-exact
854 * value, and reading all cpu value can be performance bottleneck in some
855 * common workload, threashold and synchonization as vmstat[] should be
856 * implemented.
858 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
859 enum mem_cgroup_stat_index idx)
861 long val = 0;
862 int cpu;
864 get_online_cpus();
865 for_each_online_cpu(cpu)
866 val += per_cpu(memcg->stat->count[idx], cpu);
867 #ifdef CONFIG_HOTPLUG_CPU
868 spin_lock(&memcg->pcp_counter_lock);
869 val += memcg->nocpu_base.count[idx];
870 spin_unlock(&memcg->pcp_counter_lock);
871 #endif
872 put_online_cpus();
873 return val;
876 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
877 bool charge)
879 int val = (charge) ? 1 : -1;
880 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
883 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
884 enum mem_cgroup_events_index idx)
886 unsigned long val = 0;
887 int cpu;
889 get_online_cpus();
890 for_each_online_cpu(cpu)
891 val += per_cpu(memcg->stat->events[idx], cpu);
892 #ifdef CONFIG_HOTPLUG_CPU
893 spin_lock(&memcg->pcp_counter_lock);
894 val += memcg->nocpu_base.events[idx];
895 spin_unlock(&memcg->pcp_counter_lock);
896 #endif
897 put_online_cpus();
898 return val;
901 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
902 struct page *page,
903 bool anon, int nr_pages)
905 preempt_disable();
908 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
909 * counted as CACHE even if it's on ANON LRU.
911 if (anon)
912 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
913 nr_pages);
914 else
915 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
916 nr_pages);
918 if (PageTransHuge(page))
919 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
920 nr_pages);
922 /* pagein of a big page is an event. So, ignore page size */
923 if (nr_pages > 0)
924 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
925 else {
926 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
927 nr_pages = -nr_pages; /* for event */
930 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
932 preempt_enable();
935 unsigned long
936 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
938 struct mem_cgroup_per_zone *mz;
940 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
941 return mz->lru_size[lru];
944 static unsigned long
945 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
946 unsigned int lru_mask)
948 struct mem_cgroup_per_zone *mz;
949 enum lru_list lru;
950 unsigned long ret = 0;
952 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
954 for_each_lru(lru) {
955 if (BIT(lru) & lru_mask)
956 ret += mz->lru_size[lru];
958 return ret;
961 static unsigned long
962 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
963 int nid, unsigned int lru_mask)
965 u64 total = 0;
966 int zid;
968 for (zid = 0; zid < MAX_NR_ZONES; zid++)
969 total += mem_cgroup_zone_nr_lru_pages(memcg,
970 nid, zid, lru_mask);
972 return total;
975 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
976 unsigned int lru_mask)
978 int nid;
979 u64 total = 0;
981 for_each_node_state(nid, N_MEMORY)
982 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
983 return total;
986 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
987 enum mem_cgroup_events_target target)
989 unsigned long val, next;
991 val = __this_cpu_read(memcg->stat->nr_page_events);
992 next = __this_cpu_read(memcg->stat->targets[target]);
993 /* from time_after() in jiffies.h */
994 if ((long)next - (long)val < 0) {
995 switch (target) {
996 case MEM_CGROUP_TARGET_THRESH:
997 next = val + THRESHOLDS_EVENTS_TARGET;
998 break;
999 case MEM_CGROUP_TARGET_SOFTLIMIT:
1000 next = val + SOFTLIMIT_EVENTS_TARGET;
1001 break;
1002 case MEM_CGROUP_TARGET_NUMAINFO:
1003 next = val + NUMAINFO_EVENTS_TARGET;
1004 break;
1005 default:
1006 break;
1008 __this_cpu_write(memcg->stat->targets[target], next);
1009 return true;
1011 return false;
1015 * Check events in order.
1018 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
1020 preempt_disable();
1021 /* threshold event is triggered in finer grain than soft limit */
1022 if (unlikely(mem_cgroup_event_ratelimit(memcg,
1023 MEM_CGROUP_TARGET_THRESH))) {
1024 bool do_softlimit;
1025 bool do_numainfo __maybe_unused;
1027 do_softlimit = mem_cgroup_event_ratelimit(memcg,
1028 MEM_CGROUP_TARGET_SOFTLIMIT);
1029 #if MAX_NUMNODES > 1
1030 do_numainfo = mem_cgroup_event_ratelimit(memcg,
1031 MEM_CGROUP_TARGET_NUMAINFO);
1032 #endif
1033 preempt_enable();
1035 mem_cgroup_threshold(memcg);
1036 if (unlikely(do_softlimit))
1037 mem_cgroup_update_tree(memcg, page);
1038 #if MAX_NUMNODES > 1
1039 if (unlikely(do_numainfo))
1040 atomic_inc(&memcg->numainfo_events);
1041 #endif
1042 } else
1043 preempt_enable();
1046 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1049 * mm_update_next_owner() may clear mm->owner to NULL
1050 * if it races with swapoff, page migration, etc.
1051 * So this can be called with p == NULL.
1053 if (unlikely(!p))
1054 return NULL;
1056 return mem_cgroup_from_css(task_css(p, mem_cgroup_subsys_id));
1059 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
1061 struct mem_cgroup *memcg = NULL;
1063 if (!mm)
1064 return NULL;
1066 * Because we have no locks, mm->owner's may be being moved to other
1067 * cgroup. We use css_tryget() here even if this looks
1068 * pessimistic (rather than adding locks here).
1070 rcu_read_lock();
1071 do {
1072 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1073 if (unlikely(!memcg))
1074 break;
1075 } while (!css_tryget(&memcg->css));
1076 rcu_read_unlock();
1077 return memcg;
1081 * Returns a next (in a pre-order walk) alive memcg (with elevated css
1082 * ref. count) or NULL if the whole root's subtree has been visited.
1084 * helper function to be used by mem_cgroup_iter
1086 static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
1087 struct mem_cgroup *last_visited)
1089 struct cgroup_subsys_state *prev_css, *next_css;
1091 prev_css = last_visited ? &last_visited->css : NULL;
1092 skip_node:
1093 next_css = css_next_descendant_pre(prev_css, &root->css);
1096 * Even if we found a group we have to make sure it is
1097 * alive. css && !memcg means that the groups should be
1098 * skipped and we should continue the tree walk.
1099 * last_visited css is safe to use because it is
1100 * protected by css_get and the tree walk is rcu safe.
1102 if (next_css) {
1103 struct mem_cgroup *mem = mem_cgroup_from_css(next_css);
1105 if (css_tryget(&mem->css))
1106 return mem;
1107 else {
1108 prev_css = next_css;
1109 goto skip_node;
1113 return NULL;
1116 static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
1119 * When a group in the hierarchy below root is destroyed, the
1120 * hierarchy iterator can no longer be trusted since it might
1121 * have pointed to the destroyed group. Invalidate it.
1123 atomic_inc(&root->dead_count);
1126 static struct mem_cgroup *
1127 mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
1128 struct mem_cgroup *root,
1129 int *sequence)
1131 struct mem_cgroup *position = NULL;
1133 * A cgroup destruction happens in two stages: offlining and
1134 * release. They are separated by a RCU grace period.
1136 * If the iterator is valid, we may still race with an
1137 * offlining. The RCU lock ensures the object won't be
1138 * released, tryget will fail if we lost the race.
1140 *sequence = atomic_read(&root->dead_count);
1141 if (iter->last_dead_count == *sequence) {
1142 smp_rmb();
1143 position = iter->last_visited;
1144 if (position && !css_tryget(&position->css))
1145 position = NULL;
1147 return position;
1150 static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
1151 struct mem_cgroup *last_visited,
1152 struct mem_cgroup *new_position,
1153 int sequence)
1155 if (last_visited)
1156 css_put(&last_visited->css);
1158 * We store the sequence count from the time @last_visited was
1159 * loaded successfully instead of rereading it here so that we
1160 * don't lose destruction events in between. We could have
1161 * raced with the destruction of @new_position after all.
1163 iter->last_visited = new_position;
1164 smp_wmb();
1165 iter->last_dead_count = sequence;
1169 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1170 * @root: hierarchy root
1171 * @prev: previously returned memcg, NULL on first invocation
1172 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1174 * Returns references to children of the hierarchy below @root, or
1175 * @root itself, or %NULL after a full round-trip.
1177 * Caller must pass the return value in @prev on subsequent
1178 * invocations for reference counting, or use mem_cgroup_iter_break()
1179 * to cancel a hierarchy walk before the round-trip is complete.
1181 * Reclaimers can specify a zone and a priority level in @reclaim to
1182 * divide up the memcgs in the hierarchy among all concurrent
1183 * reclaimers operating on the same zone and priority.
1185 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1186 struct mem_cgroup *prev,
1187 struct mem_cgroup_reclaim_cookie *reclaim)
1189 struct mem_cgroup *memcg = NULL;
1190 struct mem_cgroup *last_visited = NULL;
1192 if (mem_cgroup_disabled())
1193 return NULL;
1195 if (!root)
1196 root = root_mem_cgroup;
1198 if (prev && !reclaim)
1199 last_visited = prev;
1201 if (!root->use_hierarchy && root != root_mem_cgroup) {
1202 if (prev)
1203 goto out_css_put;
1204 return root;
1207 rcu_read_lock();
1208 while (!memcg) {
1209 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1210 int uninitialized_var(seq);
1212 if (reclaim) {
1213 int nid = zone_to_nid(reclaim->zone);
1214 int zid = zone_idx(reclaim->zone);
1215 struct mem_cgroup_per_zone *mz;
1217 mz = mem_cgroup_zoneinfo(root, nid, zid);
1218 iter = &mz->reclaim_iter[reclaim->priority];
1219 if (prev && reclaim->generation != iter->generation) {
1220 iter->last_visited = NULL;
1221 goto out_unlock;
1224 last_visited = mem_cgroup_iter_load(iter, root, &seq);
1227 memcg = __mem_cgroup_iter_next(root, last_visited);
1229 if (reclaim) {
1230 mem_cgroup_iter_update(iter, last_visited, memcg, seq);
1232 if (!memcg)
1233 iter->generation++;
1234 else if (!prev && memcg)
1235 reclaim->generation = iter->generation;
1238 if (prev && !memcg)
1239 goto out_unlock;
1241 out_unlock:
1242 rcu_read_unlock();
1243 out_css_put:
1244 if (prev && prev != root)
1245 css_put(&prev->css);
1247 return memcg;
1251 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1252 * @root: hierarchy root
1253 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1255 void mem_cgroup_iter_break(struct mem_cgroup *root,
1256 struct mem_cgroup *prev)
1258 if (!root)
1259 root = root_mem_cgroup;
1260 if (prev && prev != root)
1261 css_put(&prev->css);
1265 * Iteration constructs for visiting all cgroups (under a tree). If
1266 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1267 * be used for reference counting.
1269 #define for_each_mem_cgroup_tree(iter, root) \
1270 for (iter = mem_cgroup_iter(root, NULL, NULL); \
1271 iter != NULL; \
1272 iter = mem_cgroup_iter(root, iter, NULL))
1274 #define for_each_mem_cgroup(iter) \
1275 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1276 iter != NULL; \
1277 iter = mem_cgroup_iter(NULL, iter, NULL))
1279 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1281 struct mem_cgroup *memcg;
1283 rcu_read_lock();
1284 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1285 if (unlikely(!memcg))
1286 goto out;
1288 switch (idx) {
1289 case PGFAULT:
1290 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1291 break;
1292 case PGMAJFAULT:
1293 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1294 break;
1295 default:
1296 BUG();
1298 out:
1299 rcu_read_unlock();
1301 EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1304 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1305 * @zone: zone of the wanted lruvec
1306 * @memcg: memcg of the wanted lruvec
1308 * Returns the lru list vector holding pages for the given @zone and
1309 * @mem. This can be the global zone lruvec, if the memory controller
1310 * is disabled.
1312 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1313 struct mem_cgroup *memcg)
1315 struct mem_cgroup_per_zone *mz;
1316 struct lruvec *lruvec;
1318 if (mem_cgroup_disabled()) {
1319 lruvec = &zone->lruvec;
1320 goto out;
1323 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1324 lruvec = &mz->lruvec;
1325 out:
1327 * Since a node can be onlined after the mem_cgroup was created,
1328 * we have to be prepared to initialize lruvec->zone here;
1329 * and if offlined then reonlined, we need to reinitialize it.
1331 if (unlikely(lruvec->zone != zone))
1332 lruvec->zone = zone;
1333 return lruvec;
1337 * Following LRU functions are allowed to be used without PCG_LOCK.
1338 * Operations are called by routine of global LRU independently from memcg.
1339 * What we have to take care of here is validness of pc->mem_cgroup.
1341 * Changes to pc->mem_cgroup happens when
1342 * 1. charge
1343 * 2. moving account
1344 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1345 * It is added to LRU before charge.
1346 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1347 * When moving account, the page is not on LRU. It's isolated.
1351 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1352 * @page: the page
1353 * @zone: zone of the page
1355 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1357 struct mem_cgroup_per_zone *mz;
1358 struct mem_cgroup *memcg;
1359 struct page_cgroup *pc;
1360 struct lruvec *lruvec;
1362 if (mem_cgroup_disabled()) {
1363 lruvec = &zone->lruvec;
1364 goto out;
1367 pc = lookup_page_cgroup(page);
1368 memcg = pc->mem_cgroup;
1371 * Surreptitiously switch any uncharged offlist page to root:
1372 * an uncharged page off lru does nothing to secure
1373 * its former mem_cgroup from sudden removal.
1375 * Our caller holds lru_lock, and PageCgroupUsed is updated
1376 * under page_cgroup lock: between them, they make all uses
1377 * of pc->mem_cgroup safe.
1379 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1380 pc->mem_cgroup = memcg = root_mem_cgroup;
1382 mz = page_cgroup_zoneinfo(memcg, page);
1383 lruvec = &mz->lruvec;
1384 out:
1386 * Since a node can be onlined after the mem_cgroup was created,
1387 * we have to be prepared to initialize lruvec->zone here;
1388 * and if offlined then reonlined, we need to reinitialize it.
1390 if (unlikely(lruvec->zone != zone))
1391 lruvec->zone = zone;
1392 return lruvec;
1396 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1397 * @lruvec: mem_cgroup per zone lru vector
1398 * @lru: index of lru list the page is sitting on
1399 * @nr_pages: positive when adding or negative when removing
1401 * This function must be called when a page is added to or removed from an
1402 * lru list.
1404 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1405 int nr_pages)
1407 struct mem_cgroup_per_zone *mz;
1408 unsigned long *lru_size;
1410 if (mem_cgroup_disabled())
1411 return;
1413 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1414 lru_size = mz->lru_size + lru;
1415 *lru_size += nr_pages;
1416 VM_BUG_ON((long)(*lru_size) < 0);
1420 * Checks whether given mem is same or in the root_mem_cgroup's
1421 * hierarchy subtree
1423 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1424 struct mem_cgroup *memcg)
1426 if (root_memcg == memcg)
1427 return true;
1428 if (!root_memcg->use_hierarchy || !memcg)
1429 return false;
1430 return cgroup_is_descendant(memcg->css.cgroup, root_memcg->css.cgroup);
1433 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1434 struct mem_cgroup *memcg)
1436 bool ret;
1438 rcu_read_lock();
1439 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1440 rcu_read_unlock();
1441 return ret;
1444 bool task_in_mem_cgroup(struct task_struct *task,
1445 const struct mem_cgroup *memcg)
1447 struct mem_cgroup *curr = NULL;
1448 struct task_struct *p;
1449 bool ret;
1451 p = find_lock_task_mm(task);
1452 if (p) {
1453 curr = try_get_mem_cgroup_from_mm(p->mm);
1454 task_unlock(p);
1455 } else {
1457 * All threads may have already detached their mm's, but the oom
1458 * killer still needs to detect if they have already been oom
1459 * killed to prevent needlessly killing additional tasks.
1461 rcu_read_lock();
1462 curr = mem_cgroup_from_task(task);
1463 if (curr)
1464 css_get(&curr->css);
1465 rcu_read_unlock();
1467 if (!curr)
1468 return false;
1470 * We should check use_hierarchy of "memcg" not "curr". Because checking
1471 * use_hierarchy of "curr" here make this function true if hierarchy is
1472 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1473 * hierarchy(even if use_hierarchy is disabled in "memcg").
1475 ret = mem_cgroup_same_or_subtree(memcg, curr);
1476 css_put(&curr->css);
1477 return ret;
1480 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1482 unsigned long inactive_ratio;
1483 unsigned long inactive;
1484 unsigned long active;
1485 unsigned long gb;
1487 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1488 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1490 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1491 if (gb)
1492 inactive_ratio = int_sqrt(10 * gb);
1493 else
1494 inactive_ratio = 1;
1496 return inactive * inactive_ratio < active;
1499 #define mem_cgroup_from_res_counter(counter, member) \
1500 container_of(counter, struct mem_cgroup, member)
1503 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1504 * @memcg: the memory cgroup
1506 * Returns the maximum amount of memory @mem can be charged with, in
1507 * pages.
1509 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1511 unsigned long long margin;
1513 margin = res_counter_margin(&memcg->res);
1514 if (do_swap_account)
1515 margin = min(margin, res_counter_margin(&memcg->memsw));
1516 return margin >> PAGE_SHIFT;
1519 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1521 /* root ? */
1522 if (!css_parent(&memcg->css))
1523 return vm_swappiness;
1525 return memcg->swappiness;
1529 * memcg->moving_account is used for checking possibility that some thread is
1530 * calling move_account(). When a thread on CPU-A starts moving pages under
1531 * a memcg, other threads should check memcg->moving_account under
1532 * rcu_read_lock(), like this:
1534 * CPU-A CPU-B
1535 * rcu_read_lock()
1536 * memcg->moving_account+1 if (memcg->mocing_account)
1537 * take heavy locks.
1538 * synchronize_rcu() update something.
1539 * rcu_read_unlock()
1540 * start move here.
1543 /* for quick checking without looking up memcg */
1544 atomic_t memcg_moving __read_mostly;
1546 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1548 atomic_inc(&memcg_moving);
1549 atomic_inc(&memcg->moving_account);
1550 synchronize_rcu();
1553 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1556 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1557 * We check NULL in callee rather than caller.
1559 if (memcg) {
1560 atomic_dec(&memcg_moving);
1561 atomic_dec(&memcg->moving_account);
1566 * 2 routines for checking "mem" is under move_account() or not.
1568 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1569 * is used for avoiding races in accounting. If true,
1570 * pc->mem_cgroup may be overwritten.
1572 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1573 * under hierarchy of moving cgroups. This is for
1574 * waiting at hith-memory prressure caused by "move".
1577 static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1579 VM_BUG_ON(!rcu_read_lock_held());
1580 return atomic_read(&memcg->moving_account) > 0;
1583 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1585 struct mem_cgroup *from;
1586 struct mem_cgroup *to;
1587 bool ret = false;
1589 * Unlike task_move routines, we access mc.to, mc.from not under
1590 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1592 spin_lock(&mc.lock);
1593 from = mc.from;
1594 to = mc.to;
1595 if (!from)
1596 goto unlock;
1598 ret = mem_cgroup_same_or_subtree(memcg, from)
1599 || mem_cgroup_same_or_subtree(memcg, to);
1600 unlock:
1601 spin_unlock(&mc.lock);
1602 return ret;
1605 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1607 if (mc.moving_task && current != mc.moving_task) {
1608 if (mem_cgroup_under_move(memcg)) {
1609 DEFINE_WAIT(wait);
1610 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1611 /* moving charge context might have finished. */
1612 if (mc.moving_task)
1613 schedule();
1614 finish_wait(&mc.waitq, &wait);
1615 return true;
1618 return false;
1622 * Take this lock when
1623 * - a code tries to modify page's memcg while it's USED.
1624 * - a code tries to modify page state accounting in a memcg.
1625 * see mem_cgroup_stolen(), too.
1627 static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1628 unsigned long *flags)
1630 spin_lock_irqsave(&memcg->move_lock, *flags);
1633 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1634 unsigned long *flags)
1636 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1639 #define K(x) ((x) << (PAGE_SHIFT-10))
1641 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1642 * @memcg: The memory cgroup that went over limit
1643 * @p: Task that is going to be killed
1645 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1646 * enabled
1648 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1650 struct cgroup *task_cgrp;
1651 struct cgroup *mem_cgrp;
1653 * Need a buffer in BSS, can't rely on allocations. The code relies
1654 * on the assumption that OOM is serialized for memory controller.
1655 * If this assumption is broken, revisit this code.
1657 static char memcg_name[PATH_MAX];
1658 int ret;
1659 struct mem_cgroup *iter;
1660 unsigned int i;
1662 if (!p)
1663 return;
1665 rcu_read_lock();
1667 mem_cgrp = memcg->css.cgroup;
1668 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1670 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1671 if (ret < 0) {
1673 * Unfortunately, we are unable to convert to a useful name
1674 * But we'll still print out the usage information
1676 rcu_read_unlock();
1677 goto done;
1679 rcu_read_unlock();
1681 pr_info("Task in %s killed", memcg_name);
1683 rcu_read_lock();
1684 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1685 if (ret < 0) {
1686 rcu_read_unlock();
1687 goto done;
1689 rcu_read_unlock();
1692 * Continues from above, so we don't need an KERN_ level
1694 pr_cont(" as a result of limit of %s\n", memcg_name);
1695 done:
1697 pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1698 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1699 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1700 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1701 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1702 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1703 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1704 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1705 pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1706 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1707 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1708 res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1710 for_each_mem_cgroup_tree(iter, memcg) {
1711 pr_info("Memory cgroup stats");
1713 rcu_read_lock();
1714 ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
1715 if (!ret)
1716 pr_cont(" for %s", memcg_name);
1717 rcu_read_unlock();
1718 pr_cont(":");
1720 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1721 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1722 continue;
1723 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1724 K(mem_cgroup_read_stat(iter, i)));
1727 for (i = 0; i < NR_LRU_LISTS; i++)
1728 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1729 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1731 pr_cont("\n");
1736 * This function returns the number of memcg under hierarchy tree. Returns
1737 * 1(self count) if no children.
1739 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1741 int num = 0;
1742 struct mem_cgroup *iter;
1744 for_each_mem_cgroup_tree(iter, memcg)
1745 num++;
1746 return num;
1750 * Return the memory (and swap, if configured) limit for a memcg.
1752 static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1754 u64 limit;
1756 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1759 * Do not consider swap space if we cannot swap due to swappiness
1761 if (mem_cgroup_swappiness(memcg)) {
1762 u64 memsw;
1764 limit += total_swap_pages << PAGE_SHIFT;
1765 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1768 * If memsw is finite and limits the amount of swap space
1769 * available to this memcg, return that limit.
1771 limit = min(limit, memsw);
1774 return limit;
1777 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1778 int order)
1780 struct mem_cgroup *iter;
1781 unsigned long chosen_points = 0;
1782 unsigned long totalpages;
1783 unsigned int points = 0;
1784 struct task_struct *chosen = NULL;
1787 * If current has a pending SIGKILL or is exiting, then automatically
1788 * select it. The goal is to allow it to allocate so that it may
1789 * quickly exit and free its memory.
1791 if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1792 set_thread_flag(TIF_MEMDIE);
1793 return;
1796 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1797 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1798 for_each_mem_cgroup_tree(iter, memcg) {
1799 struct css_task_iter it;
1800 struct task_struct *task;
1802 css_task_iter_start(&iter->css, &it);
1803 while ((task = css_task_iter_next(&it))) {
1804 switch (oom_scan_process_thread(task, totalpages, NULL,
1805 false)) {
1806 case OOM_SCAN_SELECT:
1807 if (chosen)
1808 put_task_struct(chosen);
1809 chosen = task;
1810 chosen_points = ULONG_MAX;
1811 get_task_struct(chosen);
1812 /* fall through */
1813 case OOM_SCAN_CONTINUE:
1814 continue;
1815 case OOM_SCAN_ABORT:
1816 css_task_iter_end(&it);
1817 mem_cgroup_iter_break(memcg, iter);
1818 if (chosen)
1819 put_task_struct(chosen);
1820 return;
1821 case OOM_SCAN_OK:
1822 break;
1824 points = oom_badness(task, memcg, NULL, totalpages);
1825 if (points > chosen_points) {
1826 if (chosen)
1827 put_task_struct(chosen);
1828 chosen = task;
1829 chosen_points = points;
1830 get_task_struct(chosen);
1833 css_task_iter_end(&it);
1836 if (!chosen)
1837 return;
1838 points = chosen_points * 1000 / totalpages;
1839 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1840 NULL, "Memory cgroup out of memory");
1843 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1844 gfp_t gfp_mask,
1845 unsigned long flags)
1847 unsigned long total = 0;
1848 bool noswap = false;
1849 int loop;
1851 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1852 noswap = true;
1853 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1854 noswap = true;
1856 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1857 if (loop)
1858 drain_all_stock_async(memcg);
1859 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1861 * Allow limit shrinkers, which are triggered directly
1862 * by userspace, to catch signals and stop reclaim
1863 * after minimal progress, regardless of the margin.
1865 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1866 break;
1867 if (mem_cgroup_margin(memcg))
1868 break;
1870 * If nothing was reclaimed after two attempts, there
1871 * may be no reclaimable pages in this hierarchy.
1873 if (loop && !total)
1874 break;
1876 return total;
1880 * test_mem_cgroup_node_reclaimable
1881 * @memcg: the target memcg
1882 * @nid: the node ID to be checked.
1883 * @noswap : specify true here if the user wants flle only information.
1885 * This function returns whether the specified memcg contains any
1886 * reclaimable pages on a node. Returns true if there are any reclaimable
1887 * pages in the node.
1889 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1890 int nid, bool noswap)
1892 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1893 return true;
1894 if (noswap || !total_swap_pages)
1895 return false;
1896 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1897 return true;
1898 return false;
1901 #if MAX_NUMNODES > 1
1904 * Always updating the nodemask is not very good - even if we have an empty
1905 * list or the wrong list here, we can start from some node and traverse all
1906 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1909 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1911 int nid;
1913 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1914 * pagein/pageout changes since the last update.
1916 if (!atomic_read(&memcg->numainfo_events))
1917 return;
1918 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1919 return;
1921 /* make a nodemask where this memcg uses memory from */
1922 memcg->scan_nodes = node_states[N_MEMORY];
1924 for_each_node_mask(nid, node_states[N_MEMORY]) {
1926 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1927 node_clear(nid, memcg->scan_nodes);
1930 atomic_set(&memcg->numainfo_events, 0);
1931 atomic_set(&memcg->numainfo_updating, 0);
1935 * Selecting a node where we start reclaim from. Because what we need is just
1936 * reducing usage counter, start from anywhere is O,K. Considering
1937 * memory reclaim from current node, there are pros. and cons.
1939 * Freeing memory from current node means freeing memory from a node which
1940 * we'll use or we've used. So, it may make LRU bad. And if several threads
1941 * hit limits, it will see a contention on a node. But freeing from remote
1942 * node means more costs for memory reclaim because of memory latency.
1944 * Now, we use round-robin. Better algorithm is welcomed.
1946 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1948 int node;
1950 mem_cgroup_may_update_nodemask(memcg);
1951 node = memcg->last_scanned_node;
1953 node = next_node(node, memcg->scan_nodes);
1954 if (node == MAX_NUMNODES)
1955 node = first_node(memcg->scan_nodes);
1957 * We call this when we hit limit, not when pages are added to LRU.
1958 * No LRU may hold pages because all pages are UNEVICTABLE or
1959 * memcg is too small and all pages are not on LRU. In that case,
1960 * we use curret node.
1962 if (unlikely(node == MAX_NUMNODES))
1963 node = numa_node_id();
1965 memcg->last_scanned_node = node;
1966 return node;
1970 * Check all nodes whether it contains reclaimable pages or not.
1971 * For quick scan, we make use of scan_nodes. This will allow us to skip
1972 * unused nodes. But scan_nodes is lazily updated and may not cotain
1973 * enough new information. We need to do double check.
1975 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1977 int nid;
1980 * quick check...making use of scan_node.
1981 * We can skip unused nodes.
1983 if (!nodes_empty(memcg->scan_nodes)) {
1984 for (nid = first_node(memcg->scan_nodes);
1985 nid < MAX_NUMNODES;
1986 nid = next_node(nid, memcg->scan_nodes)) {
1988 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1989 return true;
1993 * Check rest of nodes.
1995 for_each_node_state(nid, N_MEMORY) {
1996 if (node_isset(nid, memcg->scan_nodes))
1997 continue;
1998 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1999 return true;
2001 return false;
2004 #else
2005 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
2007 return 0;
2010 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
2012 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
2014 #endif
2016 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
2017 struct zone *zone,
2018 gfp_t gfp_mask,
2019 unsigned long *total_scanned)
2021 struct mem_cgroup *victim = NULL;
2022 int total = 0;
2023 int loop = 0;
2024 unsigned long excess;
2025 unsigned long nr_scanned;
2026 struct mem_cgroup_reclaim_cookie reclaim = {
2027 .zone = zone,
2028 .priority = 0,
2031 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
2033 while (1) {
2034 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
2035 if (!victim) {
2036 loop++;
2037 if (loop >= 2) {
2039 * If we have not been able to reclaim
2040 * anything, it might because there are
2041 * no reclaimable pages under this hierarchy
2043 if (!total)
2044 break;
2046 * We want to do more targeted reclaim.
2047 * excess >> 2 is not to excessive so as to
2048 * reclaim too much, nor too less that we keep
2049 * coming back to reclaim from this cgroup
2051 if (total >= (excess >> 2) ||
2052 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
2053 break;
2055 continue;
2057 if (!mem_cgroup_reclaimable(victim, false))
2058 continue;
2059 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
2060 zone, &nr_scanned);
2061 *total_scanned += nr_scanned;
2062 if (!res_counter_soft_limit_excess(&root_memcg->res))
2063 break;
2065 mem_cgroup_iter_break(root_memcg, victim);
2066 return total;
2069 #ifdef CONFIG_LOCKDEP
2070 static struct lockdep_map memcg_oom_lock_dep_map = {
2071 .name = "memcg_oom_lock",
2073 #endif
2075 static DEFINE_SPINLOCK(memcg_oom_lock);
2078 * Check OOM-Killer is already running under our hierarchy.
2079 * If someone is running, return false.
2081 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
2083 struct mem_cgroup *iter, *failed = NULL;
2085 spin_lock(&memcg_oom_lock);
2087 for_each_mem_cgroup_tree(iter, memcg) {
2088 if (iter->oom_lock) {
2090 * this subtree of our hierarchy is already locked
2091 * so we cannot give a lock.
2093 failed = iter;
2094 mem_cgroup_iter_break(memcg, iter);
2095 break;
2096 } else
2097 iter->oom_lock = true;
2100 if (failed) {
2102 * OK, we failed to lock the whole subtree so we have
2103 * to clean up what we set up to the failing subtree
2105 for_each_mem_cgroup_tree(iter, memcg) {
2106 if (iter == failed) {
2107 mem_cgroup_iter_break(memcg, iter);
2108 break;
2110 iter->oom_lock = false;
2112 } else
2113 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
2115 spin_unlock(&memcg_oom_lock);
2117 return !failed;
2120 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2122 struct mem_cgroup *iter;
2124 spin_lock(&memcg_oom_lock);
2125 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
2126 for_each_mem_cgroup_tree(iter, memcg)
2127 iter->oom_lock = false;
2128 spin_unlock(&memcg_oom_lock);
2131 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2133 struct mem_cgroup *iter;
2135 for_each_mem_cgroup_tree(iter, memcg)
2136 atomic_inc(&iter->under_oom);
2139 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2141 struct mem_cgroup *iter;
2144 * When a new child is created while the hierarchy is under oom,
2145 * mem_cgroup_oom_lock() may not be called. We have to use
2146 * atomic_add_unless() here.
2148 for_each_mem_cgroup_tree(iter, memcg)
2149 atomic_add_unless(&iter->under_oom, -1, 0);
2152 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2154 struct oom_wait_info {
2155 struct mem_cgroup *memcg;
2156 wait_queue_t wait;
2159 static int memcg_oom_wake_function(wait_queue_t *wait,
2160 unsigned mode, int sync, void *arg)
2162 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2163 struct mem_cgroup *oom_wait_memcg;
2164 struct oom_wait_info *oom_wait_info;
2166 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2167 oom_wait_memcg = oom_wait_info->memcg;
2170 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
2171 * Then we can use css_is_ancestor without taking care of RCU.
2173 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2174 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
2175 return 0;
2176 return autoremove_wake_function(wait, mode, sync, arg);
2179 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
2181 atomic_inc(&memcg->oom_wakeups);
2182 /* for filtering, pass "memcg" as argument. */
2183 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
2186 static void memcg_oom_recover(struct mem_cgroup *memcg)
2188 if (memcg && atomic_read(&memcg->under_oom))
2189 memcg_wakeup_oom(memcg);
2192 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
2194 if (!current->memcg_oom.may_oom)
2195 return;
2197 * We are in the middle of the charge context here, so we
2198 * don't want to block when potentially sitting on a callstack
2199 * that holds all kinds of filesystem and mm locks.
2201 * Also, the caller may handle a failed allocation gracefully
2202 * (like optional page cache readahead) and so an OOM killer
2203 * invocation might not even be necessary.
2205 * That's why we don't do anything here except remember the
2206 * OOM context and then deal with it at the end of the page
2207 * fault when the stack is unwound, the locks are released,
2208 * and when we know whether the fault was overall successful.
2210 css_get(&memcg->css);
2211 current->memcg_oom.memcg = memcg;
2212 current->memcg_oom.gfp_mask = mask;
2213 current->memcg_oom.order = order;
2217 * mem_cgroup_oom_synchronize - complete memcg OOM handling
2218 * @handle: actually kill/wait or just clean up the OOM state
2220 * This has to be called at the end of a page fault if the memcg OOM
2221 * handler was enabled.
2223 * Memcg supports userspace OOM handling where failed allocations must
2224 * sleep on a waitqueue until the userspace task resolves the
2225 * situation. Sleeping directly in the charge context with all kinds
2226 * of locks held is not a good idea, instead we remember an OOM state
2227 * in the task and mem_cgroup_oom_synchronize() has to be called at
2228 * the end of the page fault to complete the OOM handling.
2230 * Returns %true if an ongoing memcg OOM situation was detected and
2231 * completed, %false otherwise.
2233 bool mem_cgroup_oom_synchronize(bool handle)
2235 struct mem_cgroup *memcg = current->memcg_oom.memcg;
2236 struct oom_wait_info owait;
2237 bool locked;
2239 /* OOM is global, do not handle */
2240 if (!memcg)
2241 return false;
2243 if (!handle)
2244 goto cleanup;
2246 owait.memcg = memcg;
2247 owait.wait.flags = 0;
2248 owait.wait.func = memcg_oom_wake_function;
2249 owait.wait.private = current;
2250 INIT_LIST_HEAD(&owait.wait.task_list);
2252 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2253 mem_cgroup_mark_under_oom(memcg);
2255 locked = mem_cgroup_oom_trylock(memcg);
2257 if (locked)
2258 mem_cgroup_oom_notify(memcg);
2260 if (locked && !memcg->oom_kill_disable) {
2261 mem_cgroup_unmark_under_oom(memcg);
2262 finish_wait(&memcg_oom_waitq, &owait.wait);
2263 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
2264 current->memcg_oom.order);
2265 } else {
2266 schedule();
2267 mem_cgroup_unmark_under_oom(memcg);
2268 finish_wait(&memcg_oom_waitq, &owait.wait);
2271 if (locked) {
2272 mem_cgroup_oom_unlock(memcg);
2274 * There is no guarantee that an OOM-lock contender
2275 * sees the wakeups triggered by the OOM kill
2276 * uncharges. Wake any sleepers explicitely.
2278 memcg_oom_recover(memcg);
2280 cleanup:
2281 current->memcg_oom.memcg = NULL;
2282 css_put(&memcg->css);
2283 return true;
2287 * Currently used to update mapped file statistics, but the routine can be
2288 * generalized to update other statistics as well.
2290 * Notes: Race condition
2292 * We usually use page_cgroup_lock() for accessing page_cgroup member but
2293 * it tends to be costly. But considering some conditions, we doesn't need
2294 * to do so _always_.
2296 * Considering "charge", lock_page_cgroup() is not required because all
2297 * file-stat operations happen after a page is attached to radix-tree. There
2298 * are no race with "charge".
2300 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2301 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2302 * if there are race with "uncharge". Statistics itself is properly handled
2303 * by flags.
2305 * Considering "move", this is an only case we see a race. To make the race
2306 * small, we check mm->moving_account and detect there are possibility of race
2307 * If there is, we take a lock.
2310 void __mem_cgroup_begin_update_page_stat(struct page *page,
2311 bool *locked, unsigned long *flags)
2313 struct mem_cgroup *memcg;
2314 struct page_cgroup *pc;
2316 pc = lookup_page_cgroup(page);
2317 again:
2318 memcg = pc->mem_cgroup;
2319 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2320 return;
2322 * If this memory cgroup is not under account moving, we don't
2323 * need to take move_lock_mem_cgroup(). Because we already hold
2324 * rcu_read_lock(), any calls to move_account will be delayed until
2325 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2327 if (!mem_cgroup_stolen(memcg))
2328 return;
2330 move_lock_mem_cgroup(memcg, flags);
2331 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2332 move_unlock_mem_cgroup(memcg, flags);
2333 goto again;
2335 *locked = true;
2338 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2340 struct page_cgroup *pc = lookup_page_cgroup(page);
2343 * It's guaranteed that pc->mem_cgroup never changes while
2344 * lock is held because a routine modifies pc->mem_cgroup
2345 * should take move_lock_mem_cgroup().
2347 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2350 void mem_cgroup_update_page_stat(struct page *page,
2351 enum mem_cgroup_stat_index idx, int val)
2353 struct mem_cgroup *memcg;
2354 struct page_cgroup *pc = lookup_page_cgroup(page);
2355 unsigned long uninitialized_var(flags);
2357 if (mem_cgroup_disabled())
2358 return;
2360 VM_BUG_ON(!rcu_read_lock_held());
2361 memcg = pc->mem_cgroup;
2362 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2363 return;
2365 this_cpu_add(memcg->stat->count[idx], val);
2369 * size of first charge trial. "32" comes from vmscan.c's magic value.
2370 * TODO: maybe necessary to use big numbers in big irons.
2372 #define CHARGE_BATCH 32U
2373 struct memcg_stock_pcp {
2374 struct mem_cgroup *cached; /* this never be root cgroup */
2375 unsigned int nr_pages;
2376 struct work_struct work;
2377 unsigned long flags;
2378 #define FLUSHING_CACHED_CHARGE 0
2380 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2381 static DEFINE_MUTEX(percpu_charge_mutex);
2384 * consume_stock: Try to consume stocked charge on this cpu.
2385 * @memcg: memcg to consume from.
2386 * @nr_pages: how many pages to charge.
2388 * The charges will only happen if @memcg matches the current cpu's memcg
2389 * stock, and at least @nr_pages are available in that stock. Failure to
2390 * service an allocation will refill the stock.
2392 * returns true if successful, false otherwise.
2394 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2396 struct memcg_stock_pcp *stock;
2397 bool ret = true;
2399 if (nr_pages > CHARGE_BATCH)
2400 return false;
2402 stock = &get_cpu_var(memcg_stock);
2403 if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2404 stock->nr_pages -= nr_pages;
2405 else /* need to call res_counter_charge */
2406 ret = false;
2407 put_cpu_var(memcg_stock);
2408 return ret;
2412 * Returns stocks cached in percpu to res_counter and reset cached information.
2414 static void drain_stock(struct memcg_stock_pcp *stock)
2416 struct mem_cgroup *old = stock->cached;
2418 if (stock->nr_pages) {
2419 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2421 res_counter_uncharge(&old->res, bytes);
2422 if (do_swap_account)
2423 res_counter_uncharge(&old->memsw, bytes);
2424 stock->nr_pages = 0;
2426 stock->cached = NULL;
2430 * This must be called under preempt disabled or must be called by
2431 * a thread which is pinned to local cpu.
2433 static void drain_local_stock(struct work_struct *dummy)
2435 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2436 drain_stock(stock);
2437 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2440 static void __init memcg_stock_init(void)
2442 int cpu;
2444 for_each_possible_cpu(cpu) {
2445 struct memcg_stock_pcp *stock =
2446 &per_cpu(memcg_stock, cpu);
2447 INIT_WORK(&stock->work, drain_local_stock);
2452 * Cache charges(val) which is from res_counter, to local per_cpu area.
2453 * This will be consumed by consume_stock() function, later.
2455 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2457 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2459 if (stock->cached != memcg) { /* reset if necessary */
2460 drain_stock(stock);
2461 stock->cached = memcg;
2463 stock->nr_pages += nr_pages;
2464 put_cpu_var(memcg_stock);
2468 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2469 * of the hierarchy under it. sync flag says whether we should block
2470 * until the work is done.
2472 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2474 int cpu, curcpu;
2476 /* Notify other cpus that system-wide "drain" is running */
2477 get_online_cpus();
2478 curcpu = get_cpu();
2479 for_each_online_cpu(cpu) {
2480 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2481 struct mem_cgroup *memcg;
2483 memcg = stock->cached;
2484 if (!memcg || !stock->nr_pages)
2485 continue;
2486 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2487 continue;
2488 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2489 if (cpu == curcpu)
2490 drain_local_stock(&stock->work);
2491 else
2492 schedule_work_on(cpu, &stock->work);
2495 put_cpu();
2497 if (!sync)
2498 goto out;
2500 for_each_online_cpu(cpu) {
2501 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2502 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2503 flush_work(&stock->work);
2505 out:
2506 put_online_cpus();
2510 * Tries to drain stocked charges in other cpus. This function is asynchronous
2511 * and just put a work per cpu for draining localy on each cpu. Caller can
2512 * expects some charges will be back to res_counter later but cannot wait for
2513 * it.
2515 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2518 * If someone calls draining, avoid adding more kworker runs.
2520 if (!mutex_trylock(&percpu_charge_mutex))
2521 return;
2522 drain_all_stock(root_memcg, false);
2523 mutex_unlock(&percpu_charge_mutex);
2526 /* This is a synchronous drain interface. */
2527 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2529 /* called when force_empty is called */
2530 mutex_lock(&percpu_charge_mutex);
2531 drain_all_stock(root_memcg, true);
2532 mutex_unlock(&percpu_charge_mutex);
2536 * This function drains percpu counter value from DEAD cpu and
2537 * move it to local cpu. Note that this function can be preempted.
2539 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2541 int i;
2543 spin_lock(&memcg->pcp_counter_lock);
2544 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2545 long x = per_cpu(memcg->stat->count[i], cpu);
2547 per_cpu(memcg->stat->count[i], cpu) = 0;
2548 memcg->nocpu_base.count[i] += x;
2550 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2551 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2553 per_cpu(memcg->stat->events[i], cpu) = 0;
2554 memcg->nocpu_base.events[i] += x;
2556 spin_unlock(&memcg->pcp_counter_lock);
2559 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2560 unsigned long action,
2561 void *hcpu)
2563 int cpu = (unsigned long)hcpu;
2564 struct memcg_stock_pcp *stock;
2565 struct mem_cgroup *iter;
2567 if (action == CPU_ONLINE)
2568 return NOTIFY_OK;
2570 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2571 return NOTIFY_OK;
2573 for_each_mem_cgroup(iter)
2574 mem_cgroup_drain_pcp_counter(iter, cpu);
2576 stock = &per_cpu(memcg_stock, cpu);
2577 drain_stock(stock);
2578 return NOTIFY_OK;
2582 /* See __mem_cgroup_try_charge() for details */
2583 enum {
2584 CHARGE_OK, /* success */
2585 CHARGE_RETRY, /* need to retry but retry is not bad */
2586 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2587 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2590 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2591 unsigned int nr_pages, unsigned int min_pages,
2592 bool invoke_oom)
2594 unsigned long csize = nr_pages * PAGE_SIZE;
2595 struct mem_cgroup *mem_over_limit;
2596 struct res_counter *fail_res;
2597 unsigned long flags = 0;
2598 int ret;
2600 ret = res_counter_charge(&memcg->res, csize, &fail_res);
2602 if (likely(!ret)) {
2603 if (!do_swap_account)
2604 return CHARGE_OK;
2605 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2606 if (likely(!ret))
2607 return CHARGE_OK;
2609 res_counter_uncharge(&memcg->res, csize);
2610 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2611 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2612 } else
2613 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2615 * Never reclaim on behalf of optional batching, retry with a
2616 * single page instead.
2618 if (nr_pages > min_pages)
2619 return CHARGE_RETRY;
2621 if (!(gfp_mask & __GFP_WAIT))
2622 return CHARGE_WOULDBLOCK;
2624 if (gfp_mask & __GFP_NORETRY)
2625 return CHARGE_NOMEM;
2627 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2628 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2629 return CHARGE_RETRY;
2631 * Even though the limit is exceeded at this point, reclaim
2632 * may have been able to free some pages. Retry the charge
2633 * before killing the task.
2635 * Only for regular pages, though: huge pages are rather
2636 * unlikely to succeed so close to the limit, and we fall back
2637 * to regular pages anyway in case of failure.
2639 if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2640 return CHARGE_RETRY;
2643 * At task move, charge accounts can be doubly counted. So, it's
2644 * better to wait until the end of task_move if something is going on.
2646 if (mem_cgroup_wait_acct_move(mem_over_limit))
2647 return CHARGE_RETRY;
2649 if (invoke_oom)
2650 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(csize));
2652 return CHARGE_NOMEM;
2656 * __mem_cgroup_try_charge() does
2657 * 1. detect memcg to be charged against from passed *mm and *ptr,
2658 * 2. update res_counter
2659 * 3. call memory reclaim if necessary.
2661 * In some special case, if the task is fatal, fatal_signal_pending() or
2662 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2663 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2664 * as possible without any hazards. 2: all pages should have a valid
2665 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2666 * pointer, that is treated as a charge to root_mem_cgroup.
2668 * So __mem_cgroup_try_charge() will return
2669 * 0 ... on success, filling *ptr with a valid memcg pointer.
2670 * -ENOMEM ... charge failure because of resource limits.
2671 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2673 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2674 * the oom-killer can be invoked.
2676 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2677 gfp_t gfp_mask,
2678 unsigned int nr_pages,
2679 struct mem_cgroup **ptr,
2680 bool oom)
2682 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2683 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2684 struct mem_cgroup *memcg = NULL;
2685 int ret;
2688 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2689 * in system level. So, allow to go ahead dying process in addition to
2690 * MEMDIE process.
2692 if (unlikely(test_thread_flag(TIF_MEMDIE)
2693 || fatal_signal_pending(current)))
2694 goto bypass;
2696 if (unlikely(task_in_memcg_oom(current)))
2697 goto bypass;
2700 * We always charge the cgroup the mm_struct belongs to.
2701 * The mm_struct's mem_cgroup changes on task migration if the
2702 * thread group leader migrates. It's possible that mm is not
2703 * set, if so charge the root memcg (happens for pagecache usage).
2705 if (!*ptr && !mm)
2706 *ptr = root_mem_cgroup;
2707 again:
2708 if (*ptr) { /* css should be a valid one */
2709 memcg = *ptr;
2710 if (mem_cgroup_is_root(memcg))
2711 goto done;
2712 if (consume_stock(memcg, nr_pages))
2713 goto done;
2714 css_get(&memcg->css);
2715 } else {
2716 struct task_struct *p;
2718 rcu_read_lock();
2719 p = rcu_dereference(mm->owner);
2721 * Because we don't have task_lock(), "p" can exit.
2722 * In that case, "memcg" can point to root or p can be NULL with
2723 * race with swapoff. Then, we have small risk of mis-accouning.
2724 * But such kind of mis-account by race always happens because
2725 * we don't have cgroup_mutex(). It's overkill and we allo that
2726 * small race, here.
2727 * (*) swapoff at el will charge against mm-struct not against
2728 * task-struct. So, mm->owner can be NULL.
2730 memcg = mem_cgroup_from_task(p);
2731 if (!memcg)
2732 memcg = root_mem_cgroup;
2733 if (mem_cgroup_is_root(memcg)) {
2734 rcu_read_unlock();
2735 goto done;
2737 if (consume_stock(memcg, nr_pages)) {
2739 * It seems dagerous to access memcg without css_get().
2740 * But considering how consume_stok works, it's not
2741 * necessary. If consume_stock success, some charges
2742 * from this memcg are cached on this cpu. So, we
2743 * don't need to call css_get()/css_tryget() before
2744 * calling consume_stock().
2746 rcu_read_unlock();
2747 goto done;
2749 /* after here, we may be blocked. we need to get refcnt */
2750 if (!css_tryget(&memcg->css)) {
2751 rcu_read_unlock();
2752 goto again;
2754 rcu_read_unlock();
2757 do {
2758 bool invoke_oom = oom && !nr_oom_retries;
2760 /* If killed, bypass charge */
2761 if (fatal_signal_pending(current)) {
2762 css_put(&memcg->css);
2763 goto bypass;
2766 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch,
2767 nr_pages, invoke_oom);
2768 switch (ret) {
2769 case CHARGE_OK:
2770 break;
2771 case CHARGE_RETRY: /* not in OOM situation but retry */
2772 batch = nr_pages;
2773 css_put(&memcg->css);
2774 memcg = NULL;
2775 goto again;
2776 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2777 css_put(&memcg->css);
2778 goto nomem;
2779 case CHARGE_NOMEM: /* OOM routine works */
2780 if (!oom || invoke_oom) {
2781 css_put(&memcg->css);
2782 goto nomem;
2784 nr_oom_retries--;
2785 break;
2787 } while (ret != CHARGE_OK);
2789 if (batch > nr_pages)
2790 refill_stock(memcg, batch - nr_pages);
2791 css_put(&memcg->css);
2792 done:
2793 *ptr = memcg;
2794 return 0;
2795 nomem:
2796 if (!(gfp_mask & __GFP_NOFAIL)) {
2797 *ptr = NULL;
2798 return -ENOMEM;
2800 bypass:
2801 *ptr = root_mem_cgroup;
2802 return -EINTR;
2806 * Somemtimes we have to undo a charge we got by try_charge().
2807 * This function is for that and do uncharge, put css's refcnt.
2808 * gotten by try_charge().
2810 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2811 unsigned int nr_pages)
2813 if (!mem_cgroup_is_root(memcg)) {
2814 unsigned long bytes = nr_pages * PAGE_SIZE;
2816 res_counter_uncharge(&memcg->res, bytes);
2817 if (do_swap_account)
2818 res_counter_uncharge(&memcg->memsw, bytes);
2823 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2824 * This is useful when moving usage to parent cgroup.
2826 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2827 unsigned int nr_pages)
2829 unsigned long bytes = nr_pages * PAGE_SIZE;
2831 if (mem_cgroup_is_root(memcg))
2832 return;
2834 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2835 if (do_swap_account)
2836 res_counter_uncharge_until(&memcg->memsw,
2837 memcg->memsw.parent, bytes);
2841 * A helper function to get mem_cgroup from ID. must be called under
2842 * rcu_read_lock(). The caller is responsible for calling css_tryget if
2843 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2844 * called against removed memcg.)
2846 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2848 /* ID 0 is unused ID */
2849 if (!id)
2850 return NULL;
2851 return mem_cgroup_from_id(id);
2854 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2856 struct mem_cgroup *memcg = NULL;
2857 struct page_cgroup *pc;
2858 unsigned short id;
2859 swp_entry_t ent;
2861 VM_BUG_ON(!PageLocked(page));
2863 pc = lookup_page_cgroup(page);
2864 lock_page_cgroup(pc);
2865 if (PageCgroupUsed(pc)) {
2866 memcg = pc->mem_cgroup;
2867 if (memcg && !css_tryget(&memcg->css))
2868 memcg = NULL;
2869 } else if (PageSwapCache(page)) {
2870 ent.val = page_private(page);
2871 id = lookup_swap_cgroup_id(ent);
2872 rcu_read_lock();
2873 memcg = mem_cgroup_lookup(id);
2874 if (memcg && !css_tryget(&memcg->css))
2875 memcg = NULL;
2876 rcu_read_unlock();
2878 unlock_page_cgroup(pc);
2879 return memcg;
2882 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2883 struct page *page,
2884 unsigned int nr_pages,
2885 enum charge_type ctype,
2886 bool lrucare)
2888 struct page_cgroup *pc = lookup_page_cgroup(page);
2889 struct zone *uninitialized_var(zone);
2890 struct lruvec *lruvec;
2891 bool was_on_lru = false;
2892 bool anon;
2894 lock_page_cgroup(pc);
2895 VM_BUG_ON(PageCgroupUsed(pc));
2897 * we don't need page_cgroup_lock about tail pages, becase they are not
2898 * accessed by any other context at this point.
2902 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2903 * may already be on some other mem_cgroup's LRU. Take care of it.
2905 if (lrucare) {
2906 zone = page_zone(page);
2907 spin_lock_irq(&zone->lru_lock);
2908 if (PageLRU(page)) {
2909 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2910 ClearPageLRU(page);
2911 del_page_from_lru_list(page, lruvec, page_lru(page));
2912 was_on_lru = true;
2916 pc->mem_cgroup = memcg;
2918 * We access a page_cgroup asynchronously without lock_page_cgroup().
2919 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2920 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2921 * before USED bit, we need memory barrier here.
2922 * See mem_cgroup_add_lru_list(), etc.
2924 smp_wmb();
2925 SetPageCgroupUsed(pc);
2927 if (lrucare) {
2928 if (was_on_lru) {
2929 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2930 VM_BUG_ON(PageLRU(page));
2931 SetPageLRU(page);
2932 add_page_to_lru_list(page, lruvec, page_lru(page));
2934 spin_unlock_irq(&zone->lru_lock);
2937 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2938 anon = true;
2939 else
2940 anon = false;
2942 mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
2943 unlock_page_cgroup(pc);
2946 * "charge_statistics" updated event counter. Then, check it.
2947 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2948 * if they exceeds softlimit.
2950 memcg_check_events(memcg, page);
2953 static DEFINE_MUTEX(set_limit_mutex);
2955 #ifdef CONFIG_MEMCG_KMEM
2956 static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
2958 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
2959 (memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
2963 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2964 * in the memcg_cache_params struct.
2966 static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2968 struct kmem_cache *cachep;
2970 VM_BUG_ON(p->is_root_cache);
2971 cachep = p->root_cache;
2972 return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg));
2975 #ifdef CONFIG_SLABINFO
2976 static int mem_cgroup_slabinfo_read(struct cgroup_subsys_state *css,
2977 struct cftype *cft, struct seq_file *m)
2979 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2980 struct memcg_cache_params *params;
2982 if (!memcg_can_account_kmem(memcg))
2983 return -EIO;
2985 print_slabinfo_header(m);
2987 mutex_lock(&memcg->slab_caches_mutex);
2988 list_for_each_entry(params, &memcg->memcg_slab_caches, list)
2989 cache_show(memcg_params_to_cache(params), m);
2990 mutex_unlock(&memcg->slab_caches_mutex);
2992 return 0;
2994 #endif
2996 static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
2998 struct res_counter *fail_res;
2999 struct mem_cgroup *_memcg;
3000 int ret = 0;
3002 ret = res_counter_charge(&memcg->kmem, size, &fail_res);
3003 if (ret)
3004 return ret;
3006 _memcg = memcg;
3007 ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
3008 &_memcg, oom_gfp_allowed(gfp));
3010 if (ret == -EINTR) {
3012 * __mem_cgroup_try_charge() chosed to bypass to root due to
3013 * OOM kill or fatal signal. Since our only options are to
3014 * either fail the allocation or charge it to this cgroup, do
3015 * it as a temporary condition. But we can't fail. From a
3016 * kmem/slab perspective, the cache has already been selected,
3017 * by mem_cgroup_kmem_get_cache(), so it is too late to change
3018 * our minds.
3020 * This condition will only trigger if the task entered
3021 * memcg_charge_kmem in a sane state, but was OOM-killed during
3022 * __mem_cgroup_try_charge() above. Tasks that were already
3023 * dying when the allocation triggers should have been already
3024 * directed to the root cgroup in memcontrol.h
3026 res_counter_charge_nofail(&memcg->res, size, &fail_res);
3027 if (do_swap_account)
3028 res_counter_charge_nofail(&memcg->memsw, size,
3029 &fail_res);
3030 ret = 0;
3031 } else if (ret)
3032 res_counter_uncharge(&memcg->kmem, size);
3034 return ret;
3037 static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
3039 res_counter_uncharge(&memcg->res, size);
3040 if (do_swap_account)
3041 res_counter_uncharge(&memcg->memsw, size);
3043 /* Not down to 0 */
3044 if (res_counter_uncharge(&memcg->kmem, size))
3045 return;
3048 * Releases a reference taken in kmem_cgroup_css_offline in case
3049 * this last uncharge is racing with the offlining code or it is
3050 * outliving the memcg existence.
3052 * The memory barrier imposed by test&clear is paired with the
3053 * explicit one in memcg_kmem_mark_dead().
3055 if (memcg_kmem_test_and_clear_dead(memcg))
3056 css_put(&memcg->css);
3059 void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
3061 if (!memcg)
3062 return;
3064 mutex_lock(&memcg->slab_caches_mutex);
3065 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
3066 mutex_unlock(&memcg->slab_caches_mutex);
3070 * helper for acessing a memcg's index. It will be used as an index in the
3071 * child cache array in kmem_cache, and also to derive its name. This function
3072 * will return -1 when this is not a kmem-limited memcg.
3074 int memcg_cache_id(struct mem_cgroup *memcg)
3076 return memcg ? memcg->kmemcg_id : -1;
3080 * This ends up being protected by the set_limit mutex, during normal
3081 * operation, because that is its main call site.
3083 * But when we create a new cache, we can call this as well if its parent
3084 * is kmem-limited. That will have to hold set_limit_mutex as well.
3086 int memcg_update_cache_sizes(struct mem_cgroup *memcg)
3088 int num, ret;
3090 num = ida_simple_get(&kmem_limited_groups,
3091 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
3092 if (num < 0)
3093 return num;
3095 * After this point, kmem_accounted (that we test atomically in
3096 * the beginning of this conditional), is no longer 0. This
3097 * guarantees only one process will set the following boolean
3098 * to true. We don't need test_and_set because we're protected
3099 * by the set_limit_mutex anyway.
3101 memcg_kmem_set_activated(memcg);
3103 ret = memcg_update_all_caches(num+1);
3104 if (ret) {
3105 ida_simple_remove(&kmem_limited_groups, num);
3106 memcg_kmem_clear_activated(memcg);
3107 return ret;
3110 memcg->kmemcg_id = num;
3111 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
3112 mutex_init(&memcg->slab_caches_mutex);
3113 return 0;
3116 static size_t memcg_caches_array_size(int num_groups)
3118 ssize_t size;
3119 if (num_groups <= 0)
3120 return 0;
3122 size = 2 * num_groups;
3123 if (size < MEMCG_CACHES_MIN_SIZE)
3124 size = MEMCG_CACHES_MIN_SIZE;
3125 else if (size > MEMCG_CACHES_MAX_SIZE)
3126 size = MEMCG_CACHES_MAX_SIZE;
3128 return size;
3132 * We should update the current array size iff all caches updates succeed. This
3133 * can only be done from the slab side. The slab mutex needs to be held when
3134 * calling this.
3136 void memcg_update_array_size(int num)
3138 if (num > memcg_limited_groups_array_size)
3139 memcg_limited_groups_array_size = memcg_caches_array_size(num);
3142 static void kmem_cache_destroy_work_func(struct work_struct *w);
3144 int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
3146 struct memcg_cache_params *cur_params = s->memcg_params;
3148 VM_BUG_ON(!is_root_cache(s));
3150 if (num_groups > memcg_limited_groups_array_size) {
3151 int i;
3152 ssize_t size = memcg_caches_array_size(num_groups);
3154 size *= sizeof(void *);
3155 size += offsetof(struct memcg_cache_params, memcg_caches);
3157 s->memcg_params = kzalloc(size, GFP_KERNEL);
3158 if (!s->memcg_params) {
3159 s->memcg_params = cur_params;
3160 return -ENOMEM;
3163 s->memcg_params->is_root_cache = true;
3166 * There is the chance it will be bigger than
3167 * memcg_limited_groups_array_size, if we failed an allocation
3168 * in a cache, in which case all caches updated before it, will
3169 * have a bigger array.
3171 * But if that is the case, the data after
3172 * memcg_limited_groups_array_size is certainly unused
3174 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3175 if (!cur_params->memcg_caches[i])
3176 continue;
3177 s->memcg_params->memcg_caches[i] =
3178 cur_params->memcg_caches[i];
3182 * Ideally, we would wait until all caches succeed, and only
3183 * then free the old one. But this is not worth the extra
3184 * pointer per-cache we'd have to have for this.
3186 * It is not a big deal if some caches are left with a size
3187 * bigger than the others. And all updates will reset this
3188 * anyway.
3190 kfree(cur_params);
3192 return 0;
3195 int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
3196 struct kmem_cache *root_cache)
3198 size_t size;
3200 if (!memcg_kmem_enabled())
3201 return 0;
3203 if (!memcg) {
3204 size = offsetof(struct memcg_cache_params, memcg_caches);
3205 size += memcg_limited_groups_array_size * sizeof(void *);
3206 } else
3207 size = sizeof(struct memcg_cache_params);
3209 s->memcg_params = kzalloc(size, GFP_KERNEL);
3210 if (!s->memcg_params)
3211 return -ENOMEM;
3213 if (memcg) {
3214 s->memcg_params->memcg = memcg;
3215 s->memcg_params->root_cache = root_cache;
3216 INIT_WORK(&s->memcg_params->destroy,
3217 kmem_cache_destroy_work_func);
3218 } else
3219 s->memcg_params->is_root_cache = true;
3221 return 0;
3224 void memcg_release_cache(struct kmem_cache *s)
3226 struct kmem_cache *root;
3227 struct mem_cgroup *memcg;
3228 int id;
3231 * This happens, for instance, when a root cache goes away before we
3232 * add any memcg.
3234 if (!s->memcg_params)
3235 return;
3237 if (s->memcg_params->is_root_cache)
3238 goto out;
3240 memcg = s->memcg_params->memcg;
3241 id = memcg_cache_id(memcg);
3243 root = s->memcg_params->root_cache;
3244 root->memcg_params->memcg_caches[id] = NULL;
3246 mutex_lock(&memcg->slab_caches_mutex);
3247 list_del(&s->memcg_params->list);
3248 mutex_unlock(&memcg->slab_caches_mutex);
3250 css_put(&memcg->css);
3251 out:
3252 kfree(s->memcg_params);
3256 * During the creation a new cache, we need to disable our accounting mechanism
3257 * altogether. This is true even if we are not creating, but rather just
3258 * enqueing new caches to be created.
3260 * This is because that process will trigger allocations; some visible, like
3261 * explicit kmallocs to auxiliary data structures, name strings and internal
3262 * cache structures; some well concealed, like INIT_WORK() that can allocate
3263 * objects during debug.
3265 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3266 * to it. This may not be a bounded recursion: since the first cache creation
3267 * failed to complete (waiting on the allocation), we'll just try to create the
3268 * cache again, failing at the same point.
3270 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3271 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3272 * inside the following two functions.
3274 static inline void memcg_stop_kmem_account(void)
3276 VM_BUG_ON(!current->mm);
3277 current->memcg_kmem_skip_account++;
3280 static inline void memcg_resume_kmem_account(void)
3282 VM_BUG_ON(!current->mm);
3283 current->memcg_kmem_skip_account--;
3286 static void kmem_cache_destroy_work_func(struct work_struct *w)
3288 struct kmem_cache *cachep;
3289 struct memcg_cache_params *p;
3291 p = container_of(w, struct memcg_cache_params, destroy);
3293 cachep = memcg_params_to_cache(p);
3296 * If we get down to 0 after shrink, we could delete right away.
3297 * However, memcg_release_pages() already puts us back in the workqueue
3298 * in that case. If we proceed deleting, we'll get a dangling
3299 * reference, and removing the object from the workqueue in that case
3300 * is unnecessary complication. We are not a fast path.
3302 * Note that this case is fundamentally different from racing with
3303 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
3304 * kmem_cache_shrink, not only we would be reinserting a dead cache
3305 * into the queue, but doing so from inside the worker racing to
3306 * destroy it.
3308 * So if we aren't down to zero, we'll just schedule a worker and try
3309 * again
3311 if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
3312 kmem_cache_shrink(cachep);
3313 if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
3314 return;
3315 } else
3316 kmem_cache_destroy(cachep);
3319 void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
3321 if (!cachep->memcg_params->dead)
3322 return;
3325 * There are many ways in which we can get here.
3327 * We can get to a memory-pressure situation while the delayed work is
3328 * still pending to run. The vmscan shrinkers can then release all
3329 * cache memory and get us to destruction. If this is the case, we'll
3330 * be executed twice, which is a bug (the second time will execute over
3331 * bogus data). In this case, cancelling the work should be fine.
3333 * But we can also get here from the worker itself, if
3334 * kmem_cache_shrink is enough to shake all the remaining objects and
3335 * get the page count to 0. In this case, we'll deadlock if we try to
3336 * cancel the work (the worker runs with an internal lock held, which
3337 * is the same lock we would hold for cancel_work_sync().)
3339 * Since we can't possibly know who got us here, just refrain from
3340 * running if there is already work pending
3342 if (work_pending(&cachep->memcg_params->destroy))
3343 return;
3345 * We have to defer the actual destroying to a workqueue, because
3346 * we might currently be in a context that cannot sleep.
3348 schedule_work(&cachep->memcg_params->destroy);
3352 * This lock protects updaters, not readers. We want readers to be as fast as
3353 * they can, and they will either see NULL or a valid cache value. Our model
3354 * allow them to see NULL, in which case the root memcg will be selected.
3356 * We need this lock because multiple allocations to the same cache from a non
3357 * will span more than one worker. Only one of them can create the cache.
3359 static DEFINE_MUTEX(memcg_cache_mutex);
3362 * Called with memcg_cache_mutex held
3364 static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
3365 struct kmem_cache *s)
3367 struct kmem_cache *new;
3368 static char *tmp_name = NULL;
3370 lockdep_assert_held(&memcg_cache_mutex);
3373 * kmem_cache_create_memcg duplicates the given name and
3374 * cgroup_name for this name requires RCU context.
3375 * This static temporary buffer is used to prevent from
3376 * pointless shortliving allocation.
3378 if (!tmp_name) {
3379 tmp_name = kmalloc(PATH_MAX, GFP_KERNEL);
3380 if (!tmp_name)
3381 return NULL;
3384 rcu_read_lock();
3385 snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name,
3386 memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup));
3387 rcu_read_unlock();
3389 new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align,
3390 (s->flags & ~SLAB_PANIC), s->ctor, s);
3392 if (new)
3393 new->allocflags |= __GFP_KMEMCG;
3395 return new;
3398 static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
3399 struct kmem_cache *cachep)
3401 struct kmem_cache *new_cachep;
3402 int idx;
3404 BUG_ON(!memcg_can_account_kmem(memcg));
3406 idx = memcg_cache_id(memcg);
3408 mutex_lock(&memcg_cache_mutex);
3409 new_cachep = cache_from_memcg_idx(cachep, idx);
3410 if (new_cachep) {
3411 css_put(&memcg->css);
3412 goto out;
3415 new_cachep = kmem_cache_dup(memcg, cachep);
3416 if (new_cachep == NULL) {
3417 new_cachep = cachep;
3418 css_put(&memcg->css);
3419 goto out;
3422 atomic_set(&new_cachep->memcg_params->nr_pages , 0);
3424 cachep->memcg_params->memcg_caches[idx] = new_cachep;
3426 * the readers won't lock, make sure everybody sees the updated value,
3427 * so they won't put stuff in the queue again for no reason
3429 wmb();
3430 out:
3431 mutex_unlock(&memcg_cache_mutex);
3432 return new_cachep;
3435 void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
3437 struct kmem_cache *c;
3438 int i;
3440 if (!s->memcg_params)
3441 return;
3442 if (!s->memcg_params->is_root_cache)
3443 return;
3446 * If the cache is being destroyed, we trust that there is no one else
3447 * requesting objects from it. Even if there are, the sanity checks in
3448 * kmem_cache_destroy should caught this ill-case.
3450 * Still, we don't want anyone else freeing memcg_caches under our
3451 * noses, which can happen if a new memcg comes to life. As usual,
3452 * we'll take the set_limit_mutex to protect ourselves against this.
3454 mutex_lock(&set_limit_mutex);
3455 for_each_memcg_cache_index(i) {
3456 c = cache_from_memcg_idx(s, i);
3457 if (!c)
3458 continue;
3461 * We will now manually delete the caches, so to avoid races
3462 * we need to cancel all pending destruction workers and
3463 * proceed with destruction ourselves.
3465 * kmem_cache_destroy() will call kmem_cache_shrink internally,
3466 * and that could spawn the workers again: it is likely that
3467 * the cache still have active pages until this very moment.
3468 * This would lead us back to mem_cgroup_destroy_cache.
3470 * But that will not execute at all if the "dead" flag is not
3471 * set, so flip it down to guarantee we are in control.
3473 c->memcg_params->dead = false;
3474 cancel_work_sync(&c->memcg_params->destroy);
3475 kmem_cache_destroy(c);
3477 mutex_unlock(&set_limit_mutex);
3480 struct create_work {
3481 struct mem_cgroup *memcg;
3482 struct kmem_cache *cachep;
3483 struct work_struct work;
3486 static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3488 struct kmem_cache *cachep;
3489 struct memcg_cache_params *params;
3491 if (!memcg_kmem_is_active(memcg))
3492 return;
3494 mutex_lock(&memcg->slab_caches_mutex);
3495 list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
3496 cachep = memcg_params_to_cache(params);
3497 cachep->memcg_params->dead = true;
3498 schedule_work(&cachep->memcg_params->destroy);
3500 mutex_unlock(&memcg->slab_caches_mutex);
3503 static void memcg_create_cache_work_func(struct work_struct *w)
3505 struct create_work *cw;
3507 cw = container_of(w, struct create_work, work);
3508 memcg_create_kmem_cache(cw->memcg, cw->cachep);
3509 kfree(cw);
3513 * Enqueue the creation of a per-memcg kmem_cache.
3515 static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3516 struct kmem_cache *cachep)
3518 struct create_work *cw;
3520 cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
3521 if (cw == NULL) {
3522 css_put(&memcg->css);
3523 return;
3526 cw->memcg = memcg;
3527 cw->cachep = cachep;
3529 INIT_WORK(&cw->work, memcg_create_cache_work_func);
3530 schedule_work(&cw->work);
3533 static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3534 struct kmem_cache *cachep)
3537 * We need to stop accounting when we kmalloc, because if the
3538 * corresponding kmalloc cache is not yet created, the first allocation
3539 * in __memcg_create_cache_enqueue will recurse.
3541 * However, it is better to enclose the whole function. Depending on
3542 * the debugging options enabled, INIT_WORK(), for instance, can
3543 * trigger an allocation. This too, will make us recurse. Because at
3544 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3545 * the safest choice is to do it like this, wrapping the whole function.
3547 memcg_stop_kmem_account();
3548 __memcg_create_cache_enqueue(memcg, cachep);
3549 memcg_resume_kmem_account();
3552 * Return the kmem_cache we're supposed to use for a slab allocation.
3553 * We try to use the current memcg's version of the cache.
3555 * If the cache does not exist yet, if we are the first user of it,
3556 * we either create it immediately, if possible, or create it asynchronously
3557 * in a workqueue.
3558 * In the latter case, we will let the current allocation go through with
3559 * the original cache.
3561 * Can't be called in interrupt context or from kernel threads.
3562 * This function needs to be called with rcu_read_lock() held.
3564 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3565 gfp_t gfp)
3567 struct mem_cgroup *memcg;
3568 int idx;
3570 VM_BUG_ON(!cachep->memcg_params);
3571 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3573 if (!current->mm || current->memcg_kmem_skip_account)
3574 return cachep;
3576 rcu_read_lock();
3577 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
3579 if (!memcg_can_account_kmem(memcg))
3580 goto out;
3582 idx = memcg_cache_id(memcg);
3585 * barrier to mare sure we're always seeing the up to date value. The
3586 * code updating memcg_caches will issue a write barrier to match this.
3588 read_barrier_depends();
3589 if (likely(cache_from_memcg_idx(cachep, idx))) {
3590 cachep = cache_from_memcg_idx(cachep, idx);
3591 goto out;
3594 /* The corresponding put will be done in the workqueue. */
3595 if (!css_tryget(&memcg->css))
3596 goto out;
3597 rcu_read_unlock();
3600 * If we are in a safe context (can wait, and not in interrupt
3601 * context), we could be be predictable and return right away.
3602 * This would guarantee that the allocation being performed
3603 * already belongs in the new cache.
3605 * However, there are some clashes that can arrive from locking.
3606 * For instance, because we acquire the slab_mutex while doing
3607 * kmem_cache_dup, this means no further allocation could happen
3608 * with the slab_mutex held.
3610 * Also, because cache creation issue get_online_cpus(), this
3611 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
3612 * that ends up reversed during cpu hotplug. (cpuset allocates
3613 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
3614 * better to defer everything.
3616 memcg_create_cache_enqueue(memcg, cachep);
3617 return cachep;
3618 out:
3619 rcu_read_unlock();
3620 return cachep;
3622 EXPORT_SYMBOL(__memcg_kmem_get_cache);
3625 * We need to verify if the allocation against current->mm->owner's memcg is
3626 * possible for the given order. But the page is not allocated yet, so we'll
3627 * need a further commit step to do the final arrangements.
3629 * It is possible for the task to switch cgroups in this mean time, so at
3630 * commit time, we can't rely on task conversion any longer. We'll then use
3631 * the handle argument to return to the caller which cgroup we should commit
3632 * against. We could also return the memcg directly and avoid the pointer
3633 * passing, but a boolean return value gives better semantics considering
3634 * the compiled-out case as well.
3636 * Returning true means the allocation is possible.
3638 bool
3639 __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3641 struct mem_cgroup *memcg;
3642 int ret;
3644 *_memcg = NULL;
3647 * Disabling accounting is only relevant for some specific memcg
3648 * internal allocations. Therefore we would initially not have such
3649 * check here, since direct calls to the page allocator that are marked
3650 * with GFP_KMEMCG only happen outside memcg core. We are mostly
3651 * concerned with cache allocations, and by having this test at
3652 * memcg_kmem_get_cache, we are already able to relay the allocation to
3653 * the root cache and bypass the memcg cache altogether.
3655 * There is one exception, though: the SLUB allocator does not create
3656 * large order caches, but rather service large kmallocs directly from
3657 * the page allocator. Therefore, the following sequence when backed by
3658 * the SLUB allocator:
3660 * memcg_stop_kmem_account();
3661 * kmalloc(<large_number>)
3662 * memcg_resume_kmem_account();
3664 * would effectively ignore the fact that we should skip accounting,
3665 * since it will drive us directly to this function without passing
3666 * through the cache selector memcg_kmem_get_cache. Such large
3667 * allocations are extremely rare but can happen, for instance, for the
3668 * cache arrays. We bring this test here.
3670 if (!current->mm || current->memcg_kmem_skip_account)
3671 return true;
3673 memcg = try_get_mem_cgroup_from_mm(current->mm);
3676 * very rare case described in mem_cgroup_from_task. Unfortunately there
3677 * isn't much we can do without complicating this too much, and it would
3678 * be gfp-dependent anyway. Just let it go
3680 if (unlikely(!memcg))
3681 return true;
3683 if (!memcg_can_account_kmem(memcg)) {
3684 css_put(&memcg->css);
3685 return true;
3688 ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3689 if (!ret)
3690 *_memcg = memcg;
3692 css_put(&memcg->css);
3693 return (ret == 0);
3696 void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3697 int order)
3699 struct page_cgroup *pc;
3701 VM_BUG_ON(mem_cgroup_is_root(memcg));
3703 /* The page allocation failed. Revert */
3704 if (!page) {
3705 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3706 return;
3709 pc = lookup_page_cgroup(page);
3710 lock_page_cgroup(pc);
3711 pc->mem_cgroup = memcg;
3712 SetPageCgroupUsed(pc);
3713 unlock_page_cgroup(pc);
3716 void __memcg_kmem_uncharge_pages(struct page *page, int order)
3718 struct mem_cgroup *memcg = NULL;
3719 struct page_cgroup *pc;
3722 pc = lookup_page_cgroup(page);
3724 * Fast unlocked return. Theoretically might have changed, have to
3725 * check again after locking.
3727 if (!PageCgroupUsed(pc))
3728 return;
3730 lock_page_cgroup(pc);
3731 if (PageCgroupUsed(pc)) {
3732 memcg = pc->mem_cgroup;
3733 ClearPageCgroupUsed(pc);
3735 unlock_page_cgroup(pc);
3738 * We trust that only if there is a memcg associated with the page, it
3739 * is a valid allocation
3741 if (!memcg)
3742 return;
3744 VM_BUG_ON(mem_cgroup_is_root(memcg));
3745 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3747 #else
3748 static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3751 #endif /* CONFIG_MEMCG_KMEM */
3753 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3755 #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3757 * Because tail pages are not marked as "used", set it. We're under
3758 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3759 * charge/uncharge will be never happen and move_account() is done under
3760 * compound_lock(), so we don't have to take care of races.
3762 void mem_cgroup_split_huge_fixup(struct page *head)
3764 struct page_cgroup *head_pc = lookup_page_cgroup(head);
3765 struct page_cgroup *pc;
3766 struct mem_cgroup *memcg;
3767 int i;
3769 if (mem_cgroup_disabled())
3770 return;
3772 memcg = head_pc->mem_cgroup;
3773 for (i = 1; i < HPAGE_PMD_NR; i++) {
3774 pc = head_pc + i;
3775 pc->mem_cgroup = memcg;
3776 smp_wmb();/* see __commit_charge() */
3777 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
3779 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3780 HPAGE_PMD_NR);
3782 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3784 static inline
3785 void mem_cgroup_move_account_page_stat(struct mem_cgroup *from,
3786 struct mem_cgroup *to,
3787 unsigned int nr_pages,
3788 enum mem_cgroup_stat_index idx)
3790 /* Update stat data for mem_cgroup */
3791 preempt_disable();
3792 __this_cpu_sub(from->stat->count[idx], nr_pages);
3793 __this_cpu_add(to->stat->count[idx], nr_pages);
3794 preempt_enable();
3798 * mem_cgroup_move_account - move account of the page
3799 * @page: the page
3800 * @nr_pages: number of regular pages (>1 for huge pages)
3801 * @pc: page_cgroup of the page.
3802 * @from: mem_cgroup which the page is moved from.
3803 * @to: mem_cgroup which the page is moved to. @from != @to.
3805 * The caller must confirm following.
3806 * - page is not on LRU (isolate_page() is useful.)
3807 * - compound_lock is held when nr_pages > 1
3809 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3810 * from old cgroup.
3812 static int mem_cgroup_move_account(struct page *page,
3813 unsigned int nr_pages,
3814 struct page_cgroup *pc,
3815 struct mem_cgroup *from,
3816 struct mem_cgroup *to)
3818 unsigned long flags;
3819 int ret;
3820 bool anon = PageAnon(page);
3822 VM_BUG_ON(from == to);
3823 VM_BUG_ON(PageLRU(page));
3825 * The page is isolated from LRU. So, collapse function
3826 * will not handle this page. But page splitting can happen.
3827 * Do this check under compound_page_lock(). The caller should
3828 * hold it.
3830 ret = -EBUSY;
3831 if (nr_pages > 1 && !PageTransHuge(page))
3832 goto out;
3834 lock_page_cgroup(pc);
3836 ret = -EINVAL;
3837 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3838 goto unlock;
3840 move_lock_mem_cgroup(from, &flags);
3842 if (!anon && page_mapped(page))
3843 mem_cgroup_move_account_page_stat(from, to, nr_pages,
3844 MEM_CGROUP_STAT_FILE_MAPPED);
3846 if (PageWriteback(page))
3847 mem_cgroup_move_account_page_stat(from, to, nr_pages,
3848 MEM_CGROUP_STAT_WRITEBACK);
3850 mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
3852 /* caller should have done css_get */
3853 pc->mem_cgroup = to;
3854 mem_cgroup_charge_statistics(to, page, anon, nr_pages);
3855 move_unlock_mem_cgroup(from, &flags);
3856 ret = 0;
3857 unlock:
3858 unlock_page_cgroup(pc);
3860 * check events
3862 memcg_check_events(to, page);
3863 memcg_check_events(from, page);
3864 out:
3865 return ret;
3869 * mem_cgroup_move_parent - moves page to the parent group
3870 * @page: the page to move
3871 * @pc: page_cgroup of the page
3872 * @child: page's cgroup
3874 * move charges to its parent or the root cgroup if the group has no
3875 * parent (aka use_hierarchy==0).
3876 * Although this might fail (get_page_unless_zero, isolate_lru_page or
3877 * mem_cgroup_move_account fails) the failure is always temporary and
3878 * it signals a race with a page removal/uncharge or migration. In the
3879 * first case the page is on the way out and it will vanish from the LRU
3880 * on the next attempt and the call should be retried later.
3881 * Isolation from the LRU fails only if page has been isolated from
3882 * the LRU since we looked at it and that usually means either global
3883 * reclaim or migration going on. The page will either get back to the
3884 * LRU or vanish.
3885 * Finaly mem_cgroup_move_account fails only if the page got uncharged
3886 * (!PageCgroupUsed) or moved to a different group. The page will
3887 * disappear in the next attempt.
3889 static int mem_cgroup_move_parent(struct page *page,
3890 struct page_cgroup *pc,
3891 struct mem_cgroup *child)
3893 struct mem_cgroup *parent;
3894 unsigned int nr_pages;
3895 unsigned long uninitialized_var(flags);
3896 int ret;
3898 VM_BUG_ON(mem_cgroup_is_root(child));
3900 ret = -EBUSY;
3901 if (!get_page_unless_zero(page))
3902 goto out;
3903 if (isolate_lru_page(page))
3904 goto put;
3906 nr_pages = hpage_nr_pages(page);
3908 parent = parent_mem_cgroup(child);
3910 * If no parent, move charges to root cgroup.
3912 if (!parent)
3913 parent = root_mem_cgroup;
3915 if (nr_pages > 1) {
3916 VM_BUG_ON(!PageTransHuge(page));
3917 flags = compound_lock_irqsave(page);
3920 ret = mem_cgroup_move_account(page, nr_pages,
3921 pc, child, parent);
3922 if (!ret)
3923 __mem_cgroup_cancel_local_charge(child, nr_pages);
3925 if (nr_pages > 1)
3926 compound_unlock_irqrestore(page, flags);
3927 putback_lru_page(page);
3928 put:
3929 put_page(page);
3930 out:
3931 return ret;
3935 * Charge the memory controller for page usage.
3936 * Return
3937 * 0 if the charge was successful
3938 * < 0 if the cgroup is over its limit
3940 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
3941 gfp_t gfp_mask, enum charge_type ctype)
3943 struct mem_cgroup *memcg = NULL;
3944 unsigned int nr_pages = 1;
3945 bool oom = true;
3946 int ret;
3948 if (PageTransHuge(page)) {
3949 nr_pages <<= compound_order(page);
3950 VM_BUG_ON(!PageTransHuge(page));
3952 * Never OOM-kill a process for a huge page. The
3953 * fault handler will fall back to regular pages.
3955 oom = false;
3958 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
3959 if (ret == -ENOMEM)
3960 return ret;
3961 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
3962 return 0;
3965 int mem_cgroup_newpage_charge(struct page *page,
3966 struct mm_struct *mm, gfp_t gfp_mask)
3968 if (mem_cgroup_disabled())
3969 return 0;
3970 VM_BUG_ON(page_mapped(page));
3971 VM_BUG_ON(page->mapping && !PageAnon(page));
3972 VM_BUG_ON(!mm);
3973 return mem_cgroup_charge_common(page, mm, gfp_mask,
3974 MEM_CGROUP_CHARGE_TYPE_ANON);
3978 * While swap-in, try_charge -> commit or cancel, the page is locked.
3979 * And when try_charge() successfully returns, one refcnt to memcg without
3980 * struct page_cgroup is acquired. This refcnt will be consumed by
3981 * "commit()" or removed by "cancel()"
3983 static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
3984 struct page *page,
3985 gfp_t mask,
3986 struct mem_cgroup **memcgp)
3988 struct mem_cgroup *memcg;
3989 struct page_cgroup *pc;
3990 int ret;
3992 pc = lookup_page_cgroup(page);
3994 * Every swap fault against a single page tries to charge the
3995 * page, bail as early as possible. shmem_unuse() encounters
3996 * already charged pages, too. The USED bit is protected by
3997 * the page lock, which serializes swap cache removal, which
3998 * in turn serializes uncharging.
4000 if (PageCgroupUsed(pc))
4001 return 0;
4002 if (!do_swap_account)
4003 goto charge_cur_mm;
4004 memcg = try_get_mem_cgroup_from_page(page);
4005 if (!memcg)
4006 goto charge_cur_mm;
4007 *memcgp = memcg;
4008 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
4009 css_put(&memcg->css);
4010 if (ret == -EINTR)
4011 ret = 0;
4012 return ret;
4013 charge_cur_mm:
4014 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
4015 if (ret == -EINTR)
4016 ret = 0;
4017 return ret;
4020 int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
4021 gfp_t gfp_mask, struct mem_cgroup **memcgp)
4023 *memcgp = NULL;
4024 if (mem_cgroup_disabled())
4025 return 0;
4027 * A racing thread's fault, or swapoff, may have already
4028 * updated the pte, and even removed page from swap cache: in
4029 * those cases unuse_pte()'s pte_same() test will fail; but
4030 * there's also a KSM case which does need to charge the page.
4032 if (!PageSwapCache(page)) {
4033 int ret;
4035 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
4036 if (ret == -EINTR)
4037 ret = 0;
4038 return ret;
4040 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
4043 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
4045 if (mem_cgroup_disabled())
4046 return;
4047 if (!memcg)
4048 return;
4049 __mem_cgroup_cancel_charge(memcg, 1);
4052 static void
4053 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
4054 enum charge_type ctype)
4056 if (mem_cgroup_disabled())
4057 return;
4058 if (!memcg)
4059 return;
4061 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
4063 * Now swap is on-memory. This means this page may be
4064 * counted both as mem and swap....double count.
4065 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
4066 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
4067 * may call delete_from_swap_cache() before reach here.
4069 if (do_swap_account && PageSwapCache(page)) {
4070 swp_entry_t ent = {.val = page_private(page)};
4071 mem_cgroup_uncharge_swap(ent);
4075 void mem_cgroup_commit_charge_swapin(struct page *page,
4076 struct mem_cgroup *memcg)
4078 __mem_cgroup_commit_charge_swapin(page, memcg,
4079 MEM_CGROUP_CHARGE_TYPE_ANON);
4082 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
4083 gfp_t gfp_mask)
4085 struct mem_cgroup *memcg = NULL;
4086 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4087 int ret;
4089 if (mem_cgroup_disabled())
4090 return 0;
4091 if (PageCompound(page))
4092 return 0;
4094 if (!PageSwapCache(page))
4095 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
4096 else { /* page is swapcache/shmem */
4097 ret = __mem_cgroup_try_charge_swapin(mm, page,
4098 gfp_mask, &memcg);
4099 if (!ret)
4100 __mem_cgroup_commit_charge_swapin(page, memcg, type);
4102 return ret;
4105 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
4106 unsigned int nr_pages,
4107 const enum charge_type ctype)
4109 struct memcg_batch_info *batch = NULL;
4110 bool uncharge_memsw = true;
4112 /* If swapout, usage of swap doesn't decrease */
4113 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
4114 uncharge_memsw = false;
4116 batch = &current->memcg_batch;
4118 * In usual, we do css_get() when we remember memcg pointer.
4119 * But in this case, we keep res->usage until end of a series of
4120 * uncharges. Then, it's ok to ignore memcg's refcnt.
4122 if (!batch->memcg)
4123 batch->memcg = memcg;
4125 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
4126 * In those cases, all pages freed continuously can be expected to be in
4127 * the same cgroup and we have chance to coalesce uncharges.
4128 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
4129 * because we want to do uncharge as soon as possible.
4132 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
4133 goto direct_uncharge;
4135 if (nr_pages > 1)
4136 goto direct_uncharge;
4139 * In typical case, batch->memcg == mem. This means we can
4140 * merge a series of uncharges to an uncharge of res_counter.
4141 * If not, we uncharge res_counter ony by one.
4143 if (batch->memcg != memcg)
4144 goto direct_uncharge;
4145 /* remember freed charge and uncharge it later */
4146 batch->nr_pages++;
4147 if (uncharge_memsw)
4148 batch->memsw_nr_pages++;
4149 return;
4150 direct_uncharge:
4151 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
4152 if (uncharge_memsw)
4153 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
4154 if (unlikely(batch->memcg != memcg))
4155 memcg_oom_recover(memcg);
4159 * uncharge if !page_mapped(page)
4161 static struct mem_cgroup *
4162 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
4163 bool end_migration)
4165 struct mem_cgroup *memcg = NULL;
4166 unsigned int nr_pages = 1;
4167 struct page_cgroup *pc;
4168 bool anon;
4170 if (mem_cgroup_disabled())
4171 return NULL;
4173 if (PageTransHuge(page)) {
4174 nr_pages <<= compound_order(page);
4175 VM_BUG_ON(!PageTransHuge(page));
4178 * Check if our page_cgroup is valid
4180 pc = lookup_page_cgroup(page);
4181 if (unlikely(!PageCgroupUsed(pc)))
4182 return NULL;
4184 lock_page_cgroup(pc);
4186 memcg = pc->mem_cgroup;
4188 if (!PageCgroupUsed(pc))
4189 goto unlock_out;
4191 anon = PageAnon(page);
4193 switch (ctype) {
4194 case MEM_CGROUP_CHARGE_TYPE_ANON:
4196 * Generally PageAnon tells if it's the anon statistics to be
4197 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
4198 * used before page reached the stage of being marked PageAnon.
4200 anon = true;
4201 /* fallthrough */
4202 case MEM_CGROUP_CHARGE_TYPE_DROP:
4203 /* See mem_cgroup_prepare_migration() */
4204 if (page_mapped(page))
4205 goto unlock_out;
4207 * Pages under migration may not be uncharged. But
4208 * end_migration() /must/ be the one uncharging the
4209 * unused post-migration page and so it has to call
4210 * here with the migration bit still set. See the
4211 * res_counter handling below.
4213 if (!end_migration && PageCgroupMigration(pc))
4214 goto unlock_out;
4215 break;
4216 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
4217 if (!PageAnon(page)) { /* Shared memory */
4218 if (page->mapping && !page_is_file_cache(page))
4219 goto unlock_out;
4220 } else if (page_mapped(page)) /* Anon */
4221 goto unlock_out;
4222 break;
4223 default:
4224 break;
4227 mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
4229 ClearPageCgroupUsed(pc);
4231 * pc->mem_cgroup is not cleared here. It will be accessed when it's
4232 * freed from LRU. This is safe because uncharged page is expected not
4233 * to be reused (freed soon). Exception is SwapCache, it's handled by
4234 * special functions.
4237 unlock_page_cgroup(pc);
4239 * even after unlock, we have memcg->res.usage here and this memcg
4240 * will never be freed, so it's safe to call css_get().
4242 memcg_check_events(memcg, page);
4243 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
4244 mem_cgroup_swap_statistics(memcg, true);
4245 css_get(&memcg->css);
4248 * Migration does not charge the res_counter for the
4249 * replacement page, so leave it alone when phasing out the
4250 * page that is unused after the migration.
4252 if (!end_migration && !mem_cgroup_is_root(memcg))
4253 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
4255 return memcg;
4257 unlock_out:
4258 unlock_page_cgroup(pc);
4259 return NULL;
4262 void mem_cgroup_uncharge_page(struct page *page)
4264 /* early check. */
4265 if (page_mapped(page))
4266 return;
4267 VM_BUG_ON(page->mapping && !PageAnon(page));
4269 * If the page is in swap cache, uncharge should be deferred
4270 * to the swap path, which also properly accounts swap usage
4271 * and handles memcg lifetime.
4273 * Note that this check is not stable and reclaim may add the
4274 * page to swap cache at any time after this. However, if the
4275 * page is not in swap cache by the time page->mapcount hits
4276 * 0, there won't be any page table references to the swap
4277 * slot, and reclaim will free it and not actually write the
4278 * page to disk.
4280 if (PageSwapCache(page))
4281 return;
4282 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4285 void mem_cgroup_uncharge_cache_page(struct page *page)
4287 VM_BUG_ON(page_mapped(page));
4288 VM_BUG_ON(page->mapping);
4289 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4293 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
4294 * In that cases, pages are freed continuously and we can expect pages
4295 * are in the same memcg. All these calls itself limits the number of
4296 * pages freed at once, then uncharge_start/end() is called properly.
4297 * This may be called prural(2) times in a context,
4300 void mem_cgroup_uncharge_start(void)
4302 current->memcg_batch.do_batch++;
4303 /* We can do nest. */
4304 if (current->memcg_batch.do_batch == 1) {
4305 current->memcg_batch.memcg = NULL;
4306 current->memcg_batch.nr_pages = 0;
4307 current->memcg_batch.memsw_nr_pages = 0;
4311 void mem_cgroup_uncharge_end(void)
4313 struct memcg_batch_info *batch = &current->memcg_batch;
4315 if (!batch->do_batch)
4316 return;
4318 batch->do_batch--;
4319 if (batch->do_batch) /* If stacked, do nothing. */
4320 return;
4322 if (!batch->memcg)
4323 return;
4325 * This "batch->memcg" is valid without any css_get/put etc...
4326 * bacause we hide charges behind us.
4328 if (batch->nr_pages)
4329 res_counter_uncharge(&batch->memcg->res,
4330 batch->nr_pages * PAGE_SIZE);
4331 if (batch->memsw_nr_pages)
4332 res_counter_uncharge(&batch->memcg->memsw,
4333 batch->memsw_nr_pages * PAGE_SIZE);
4334 memcg_oom_recover(batch->memcg);
4335 /* forget this pointer (for sanity check) */
4336 batch->memcg = NULL;
4339 #ifdef CONFIG_SWAP
4341 * called after __delete_from_swap_cache() and drop "page" account.
4342 * memcg information is recorded to swap_cgroup of "ent"
4344 void
4345 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4347 struct mem_cgroup *memcg;
4348 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
4350 if (!swapout) /* this was a swap cache but the swap is unused ! */
4351 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
4353 memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4356 * record memcg information, if swapout && memcg != NULL,
4357 * css_get() was called in uncharge().
4359 if (do_swap_account && swapout && memcg)
4360 swap_cgroup_record(ent, mem_cgroup_id(memcg));
4362 #endif
4364 #ifdef CONFIG_MEMCG_SWAP
4366 * called from swap_entry_free(). remove record in swap_cgroup and
4367 * uncharge "memsw" account.
4369 void mem_cgroup_uncharge_swap(swp_entry_t ent)
4371 struct mem_cgroup *memcg;
4372 unsigned short id;
4374 if (!do_swap_account)
4375 return;
4377 id = swap_cgroup_record(ent, 0);
4378 rcu_read_lock();
4379 memcg = mem_cgroup_lookup(id);
4380 if (memcg) {
4382 * We uncharge this because swap is freed.
4383 * This memcg can be obsolete one. We avoid calling css_tryget
4385 if (!mem_cgroup_is_root(memcg))
4386 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4387 mem_cgroup_swap_statistics(memcg, false);
4388 css_put(&memcg->css);
4390 rcu_read_unlock();
4394 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
4395 * @entry: swap entry to be moved
4396 * @from: mem_cgroup which the entry is moved from
4397 * @to: mem_cgroup which the entry is moved to
4399 * It succeeds only when the swap_cgroup's record for this entry is the same
4400 * as the mem_cgroup's id of @from.
4402 * Returns 0 on success, -EINVAL on failure.
4404 * The caller must have charged to @to, IOW, called res_counter_charge() about
4405 * both res and memsw, and called css_get().
4407 static int mem_cgroup_move_swap_account(swp_entry_t entry,
4408 struct mem_cgroup *from, struct mem_cgroup *to)
4410 unsigned short old_id, new_id;
4412 old_id = mem_cgroup_id(from);
4413 new_id = mem_cgroup_id(to);
4415 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
4416 mem_cgroup_swap_statistics(from, false);
4417 mem_cgroup_swap_statistics(to, true);
4419 * This function is only called from task migration context now.
4420 * It postpones res_counter and refcount handling till the end
4421 * of task migration(mem_cgroup_clear_mc()) for performance
4422 * improvement. But we cannot postpone css_get(to) because if
4423 * the process that has been moved to @to does swap-in, the
4424 * refcount of @to might be decreased to 0.
4426 * We are in attach() phase, so the cgroup is guaranteed to be
4427 * alive, so we can just call css_get().
4429 css_get(&to->css);
4430 return 0;
4432 return -EINVAL;
4434 #else
4435 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4436 struct mem_cgroup *from, struct mem_cgroup *to)
4438 return -EINVAL;
4440 #endif
4443 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
4444 * page belongs to.
4446 void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
4447 struct mem_cgroup **memcgp)
4449 struct mem_cgroup *memcg = NULL;
4450 unsigned int nr_pages = 1;
4451 struct page_cgroup *pc;
4452 enum charge_type ctype;
4454 *memcgp = NULL;
4456 if (mem_cgroup_disabled())
4457 return;
4459 if (PageTransHuge(page))
4460 nr_pages <<= compound_order(page);
4462 pc = lookup_page_cgroup(page);
4463 lock_page_cgroup(pc);
4464 if (PageCgroupUsed(pc)) {
4465 memcg = pc->mem_cgroup;
4466 css_get(&memcg->css);
4468 * At migrating an anonymous page, its mapcount goes down
4469 * to 0 and uncharge() will be called. But, even if it's fully
4470 * unmapped, migration may fail and this page has to be
4471 * charged again. We set MIGRATION flag here and delay uncharge
4472 * until end_migration() is called
4474 * Corner Case Thinking
4475 * A)
4476 * When the old page was mapped as Anon and it's unmap-and-freed
4477 * while migration was ongoing.
4478 * If unmap finds the old page, uncharge() of it will be delayed
4479 * until end_migration(). If unmap finds a new page, it's
4480 * uncharged when it make mapcount to be 1->0. If unmap code
4481 * finds swap_migration_entry, the new page will not be mapped
4482 * and end_migration() will find it(mapcount==0).
4484 * B)
4485 * When the old page was mapped but migraion fails, the kernel
4486 * remaps it. A charge for it is kept by MIGRATION flag even
4487 * if mapcount goes down to 0. We can do remap successfully
4488 * without charging it again.
4490 * C)
4491 * The "old" page is under lock_page() until the end of
4492 * migration, so, the old page itself will not be swapped-out.
4493 * If the new page is swapped out before end_migraton, our
4494 * hook to usual swap-out path will catch the event.
4496 if (PageAnon(page))
4497 SetPageCgroupMigration(pc);
4499 unlock_page_cgroup(pc);
4501 * If the page is not charged at this point,
4502 * we return here.
4504 if (!memcg)
4505 return;
4507 *memcgp = memcg;
4509 * We charge new page before it's used/mapped. So, even if unlock_page()
4510 * is called before end_migration, we can catch all events on this new
4511 * page. In the case new page is migrated but not remapped, new page's
4512 * mapcount will be finally 0 and we call uncharge in end_migration().
4514 if (PageAnon(page))
4515 ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4516 else
4517 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4519 * The page is committed to the memcg, but it's not actually
4520 * charged to the res_counter since we plan on replacing the
4521 * old one and only one page is going to be left afterwards.
4523 __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4526 /* remove redundant charge if migration failed*/
4527 void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4528 struct page *oldpage, struct page *newpage, bool migration_ok)
4530 struct page *used, *unused;
4531 struct page_cgroup *pc;
4532 bool anon;
4534 if (!memcg)
4535 return;
4537 if (!migration_ok) {
4538 used = oldpage;
4539 unused = newpage;
4540 } else {
4541 used = newpage;
4542 unused = oldpage;
4544 anon = PageAnon(used);
4545 __mem_cgroup_uncharge_common(unused,
4546 anon ? MEM_CGROUP_CHARGE_TYPE_ANON
4547 : MEM_CGROUP_CHARGE_TYPE_CACHE,
4548 true);
4549 css_put(&memcg->css);
4551 * We disallowed uncharge of pages under migration because mapcount
4552 * of the page goes down to zero, temporarly.
4553 * Clear the flag and check the page should be charged.
4555 pc = lookup_page_cgroup(oldpage);
4556 lock_page_cgroup(pc);
4557 ClearPageCgroupMigration(pc);
4558 unlock_page_cgroup(pc);
4561 * If a page is a file cache, radix-tree replacement is very atomic
4562 * and we can skip this check. When it was an Anon page, its mapcount
4563 * goes down to 0. But because we added MIGRATION flage, it's not
4564 * uncharged yet. There are several case but page->mapcount check
4565 * and USED bit check in mem_cgroup_uncharge_page() will do enough
4566 * check. (see prepare_charge() also)
4568 if (anon)
4569 mem_cgroup_uncharge_page(used);
4573 * At replace page cache, newpage is not under any memcg but it's on
4574 * LRU. So, this function doesn't touch res_counter but handles LRU
4575 * in correct way. Both pages are locked so we cannot race with uncharge.
4577 void mem_cgroup_replace_page_cache(struct page *oldpage,
4578 struct page *newpage)
4580 struct mem_cgroup *memcg = NULL;
4581 struct page_cgroup *pc;
4582 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4584 if (mem_cgroup_disabled())
4585 return;
4587 pc = lookup_page_cgroup(oldpage);
4588 /* fix accounting on old pages */
4589 lock_page_cgroup(pc);
4590 if (PageCgroupUsed(pc)) {
4591 memcg = pc->mem_cgroup;
4592 mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
4593 ClearPageCgroupUsed(pc);
4595 unlock_page_cgroup(pc);
4598 * When called from shmem_replace_page(), in some cases the
4599 * oldpage has already been charged, and in some cases not.
4601 if (!memcg)
4602 return;
4604 * Even if newpage->mapping was NULL before starting replacement,
4605 * the newpage may be on LRU(or pagevec for LRU) already. We lock
4606 * LRU while we overwrite pc->mem_cgroup.
4608 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4611 #ifdef CONFIG_DEBUG_VM
4612 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
4614 struct page_cgroup *pc;
4616 pc = lookup_page_cgroup(page);
4618 * Can be NULL while feeding pages into the page allocator for
4619 * the first time, i.e. during boot or memory hotplug;
4620 * or when mem_cgroup_disabled().
4622 if (likely(pc) && PageCgroupUsed(pc))
4623 return pc;
4624 return NULL;
4627 bool mem_cgroup_bad_page_check(struct page *page)
4629 if (mem_cgroup_disabled())
4630 return false;
4632 return lookup_page_cgroup_used(page) != NULL;
4635 void mem_cgroup_print_bad_page(struct page *page)
4637 struct page_cgroup *pc;
4639 pc = lookup_page_cgroup_used(page);
4640 if (pc) {
4641 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4642 pc, pc->flags, pc->mem_cgroup);
4645 #endif
4647 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4648 unsigned long long val)
4650 int retry_count;
4651 u64 memswlimit, memlimit;
4652 int ret = 0;
4653 int children = mem_cgroup_count_children(memcg);
4654 u64 curusage, oldusage;
4655 int enlarge;
4658 * For keeping hierarchical_reclaim simple, how long we should retry
4659 * is depends on callers. We set our retry-count to be function
4660 * of # of children which we should visit in this loop.
4662 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
4664 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4666 enlarge = 0;
4667 while (retry_count) {
4668 if (signal_pending(current)) {
4669 ret = -EINTR;
4670 break;
4673 * Rather than hide all in some function, I do this in
4674 * open coded manner. You see what this really does.
4675 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4677 mutex_lock(&set_limit_mutex);
4678 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4679 if (memswlimit < val) {
4680 ret = -EINVAL;
4681 mutex_unlock(&set_limit_mutex);
4682 break;
4685 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4686 if (memlimit < val)
4687 enlarge = 1;
4689 ret = res_counter_set_limit(&memcg->res, val);
4690 if (!ret) {
4691 if (memswlimit == val)
4692 memcg->memsw_is_minimum = true;
4693 else
4694 memcg->memsw_is_minimum = false;
4696 mutex_unlock(&set_limit_mutex);
4698 if (!ret)
4699 break;
4701 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4702 MEM_CGROUP_RECLAIM_SHRINK);
4703 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4704 /* Usage is reduced ? */
4705 if (curusage >= oldusage)
4706 retry_count--;
4707 else
4708 oldusage = curusage;
4710 if (!ret && enlarge)
4711 memcg_oom_recover(memcg);
4713 return ret;
4716 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
4717 unsigned long long val)
4719 int retry_count;
4720 u64 memlimit, memswlimit, oldusage, curusage;
4721 int children = mem_cgroup_count_children(memcg);
4722 int ret = -EBUSY;
4723 int enlarge = 0;
4725 /* see mem_cgroup_resize_res_limit */
4726 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
4727 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4728 while (retry_count) {
4729 if (signal_pending(current)) {
4730 ret = -EINTR;
4731 break;
4734 * Rather than hide all in some function, I do this in
4735 * open coded manner. You see what this really does.
4736 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4738 mutex_lock(&set_limit_mutex);
4739 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4740 if (memlimit > val) {
4741 ret = -EINVAL;
4742 mutex_unlock(&set_limit_mutex);
4743 break;
4745 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4746 if (memswlimit < val)
4747 enlarge = 1;
4748 ret = res_counter_set_limit(&memcg->memsw, val);
4749 if (!ret) {
4750 if (memlimit == val)
4751 memcg->memsw_is_minimum = true;
4752 else
4753 memcg->memsw_is_minimum = false;
4755 mutex_unlock(&set_limit_mutex);
4757 if (!ret)
4758 break;
4760 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4761 MEM_CGROUP_RECLAIM_NOSWAP |
4762 MEM_CGROUP_RECLAIM_SHRINK);
4763 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4764 /* Usage is reduced ? */
4765 if (curusage >= oldusage)
4766 retry_count--;
4767 else
4768 oldusage = curusage;
4770 if (!ret && enlarge)
4771 memcg_oom_recover(memcg);
4772 return ret;
4775 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
4776 gfp_t gfp_mask,
4777 unsigned long *total_scanned)
4779 unsigned long nr_reclaimed = 0;
4780 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
4781 unsigned long reclaimed;
4782 int loop = 0;
4783 struct mem_cgroup_tree_per_zone *mctz;
4784 unsigned long long excess;
4785 unsigned long nr_scanned;
4787 if (order > 0)
4788 return 0;
4790 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4792 * This loop can run a while, specially if mem_cgroup's continuously
4793 * keep exceeding their soft limit and putting the system under
4794 * pressure
4796 do {
4797 if (next_mz)
4798 mz = next_mz;
4799 else
4800 mz = mem_cgroup_largest_soft_limit_node(mctz);
4801 if (!mz)
4802 break;
4804 nr_scanned = 0;
4805 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
4806 gfp_mask, &nr_scanned);
4807 nr_reclaimed += reclaimed;
4808 *total_scanned += nr_scanned;
4809 spin_lock(&mctz->lock);
4812 * If we failed to reclaim anything from this memory cgroup
4813 * it is time to move on to the next cgroup
4815 next_mz = NULL;
4816 if (!reclaimed) {
4817 do {
4819 * Loop until we find yet another one.
4821 * By the time we get the soft_limit lock
4822 * again, someone might have aded the
4823 * group back on the RB tree. Iterate to
4824 * make sure we get a different mem.
4825 * mem_cgroup_largest_soft_limit_node returns
4826 * NULL if no other cgroup is present on
4827 * the tree
4829 next_mz =
4830 __mem_cgroup_largest_soft_limit_node(mctz);
4831 if (next_mz == mz)
4832 css_put(&next_mz->memcg->css);
4833 else /* next_mz == NULL or other memcg */
4834 break;
4835 } while (1);
4837 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
4838 excess = res_counter_soft_limit_excess(&mz->memcg->res);
4840 * One school of thought says that we should not add
4841 * back the node to the tree if reclaim returns 0.
4842 * But our reclaim could return 0, simply because due
4843 * to priority we are exposing a smaller subset of
4844 * memory to reclaim from. Consider this as a longer
4845 * term TODO.
4847 /* If excess == 0, no tree ops */
4848 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4849 spin_unlock(&mctz->lock);
4850 css_put(&mz->memcg->css);
4851 loop++;
4853 * Could not reclaim anything and there are no more
4854 * mem cgroups to try or we seem to be looping without
4855 * reclaiming anything.
4857 if (!nr_reclaimed &&
4858 (next_mz == NULL ||
4859 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
4860 break;
4861 } while (!nr_reclaimed);
4862 if (next_mz)
4863 css_put(&next_mz->memcg->css);
4864 return nr_reclaimed;
4868 * mem_cgroup_force_empty_list - clears LRU of a group
4869 * @memcg: group to clear
4870 * @node: NUMA node
4871 * @zid: zone id
4872 * @lru: lru to to clear
4874 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
4875 * reclaim the pages page themselves - pages are moved to the parent (or root)
4876 * group.
4878 static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
4879 int node, int zid, enum lru_list lru)
4881 struct lruvec *lruvec;
4882 unsigned long flags;
4883 struct list_head *list;
4884 struct page *busy;
4885 struct zone *zone;
4887 zone = &NODE_DATA(node)->node_zones[zid];
4888 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
4889 list = &lruvec->lists[lru];
4891 busy = NULL;
4892 do {
4893 struct page_cgroup *pc;
4894 struct page *page;
4896 spin_lock_irqsave(&zone->lru_lock, flags);
4897 if (list_empty(list)) {
4898 spin_unlock_irqrestore(&zone->lru_lock, flags);
4899 break;
4901 page = list_entry(list->prev, struct page, lru);
4902 if (busy == page) {
4903 list_move(&page->lru, list);
4904 busy = NULL;
4905 spin_unlock_irqrestore(&zone->lru_lock, flags);
4906 continue;
4908 spin_unlock_irqrestore(&zone->lru_lock, flags);
4910 pc = lookup_page_cgroup(page);
4912 if (mem_cgroup_move_parent(page, pc, memcg)) {
4913 /* found lock contention or "pc" is obsolete. */
4914 busy = page;
4915 cond_resched();
4916 } else
4917 busy = NULL;
4918 } while (!list_empty(list));
4922 * make mem_cgroup's charge to be 0 if there is no task by moving
4923 * all the charges and pages to the parent.
4924 * This enables deleting this mem_cgroup.
4926 * Caller is responsible for holding css reference on the memcg.
4928 static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4930 int node, zid;
4931 u64 usage;
4933 do {
4934 /* This is for making all *used* pages to be on LRU. */
4935 lru_add_drain_all();
4936 drain_all_stock_sync(memcg);
4937 mem_cgroup_start_move(memcg);
4938 for_each_node_state(node, N_MEMORY) {
4939 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4940 enum lru_list lru;
4941 for_each_lru(lru) {
4942 mem_cgroup_force_empty_list(memcg,
4943 node, zid, lru);
4947 mem_cgroup_end_move(memcg);
4948 memcg_oom_recover(memcg);
4949 cond_resched();
4952 * Kernel memory may not necessarily be trackable to a specific
4953 * process. So they are not migrated, and therefore we can't
4954 * expect their value to drop to 0 here.
4955 * Having res filled up with kmem only is enough.
4957 * This is a safety check because mem_cgroup_force_empty_list
4958 * could have raced with mem_cgroup_replace_page_cache callers
4959 * so the lru seemed empty but the page could have been added
4960 * right after the check. RES_USAGE should be safe as we always
4961 * charge before adding to the LRU.
4963 usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
4964 res_counter_read_u64(&memcg->kmem, RES_USAGE);
4965 } while (usage > 0);
4968 static inline bool memcg_has_children(struct mem_cgroup *memcg)
4970 lockdep_assert_held(&memcg_create_mutex);
4972 * The lock does not prevent addition or deletion to the list
4973 * of children, but it prevents a new child from being
4974 * initialized based on this parent in css_online(), so it's
4975 * enough to decide whether hierarchically inherited
4976 * attributes can still be changed or not.
4978 return memcg->use_hierarchy &&
4979 !list_empty(&memcg->css.cgroup->children);
4983 * Reclaims as many pages from the given memcg as possible and moves
4984 * the rest to the parent.
4986 * Caller is responsible for holding css reference for memcg.
4988 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
4990 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
4991 struct cgroup *cgrp = memcg->css.cgroup;
4993 /* returns EBUSY if there is a task or if we come here twice. */
4994 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
4995 return -EBUSY;
4997 /* we call try-to-free pages for make this cgroup empty */
4998 lru_add_drain_all();
4999 /* try to free all pages in this cgroup */
5000 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
5001 int progress;
5003 if (signal_pending(current))
5004 return -EINTR;
5006 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
5007 false);
5008 if (!progress) {
5009 nr_retries--;
5010 /* maybe some writeback is necessary */
5011 congestion_wait(BLK_RW_ASYNC, HZ/10);
5015 lru_add_drain();
5016 mem_cgroup_reparent_charges(memcg);
5018 return 0;
5021 static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css,
5022 unsigned int event)
5024 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5026 if (mem_cgroup_is_root(memcg))
5027 return -EINVAL;
5028 return mem_cgroup_force_empty(memcg);
5031 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
5032 struct cftype *cft)
5034 return mem_cgroup_from_css(css)->use_hierarchy;
5037 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
5038 struct cftype *cft, u64 val)
5040 int retval = 0;
5041 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5042 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5044 mutex_lock(&memcg_create_mutex);
5046 if (memcg->use_hierarchy == val)
5047 goto out;
5050 * If parent's use_hierarchy is set, we can't make any modifications
5051 * in the child subtrees. If it is unset, then the change can
5052 * occur, provided the current cgroup has no children.
5054 * For the root cgroup, parent_mem is NULL, we allow value to be
5055 * set if there are no children.
5057 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
5058 (val == 1 || val == 0)) {
5059 if (list_empty(&memcg->css.cgroup->children))
5060 memcg->use_hierarchy = val;
5061 else
5062 retval = -EBUSY;
5063 } else
5064 retval = -EINVAL;
5066 out:
5067 mutex_unlock(&memcg_create_mutex);
5069 return retval;
5073 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
5074 enum mem_cgroup_stat_index idx)
5076 struct mem_cgroup *iter;
5077 long val = 0;
5079 /* Per-cpu values can be negative, use a signed accumulator */
5080 for_each_mem_cgroup_tree(iter, memcg)
5081 val += mem_cgroup_read_stat(iter, idx);
5083 if (val < 0) /* race ? */
5084 val = 0;
5085 return val;
5088 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
5090 u64 val;
5092 if (!mem_cgroup_is_root(memcg)) {
5093 if (!swap)
5094 return res_counter_read_u64(&memcg->res, RES_USAGE);
5095 else
5096 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
5100 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
5101 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
5103 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
5104 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
5106 if (swap)
5107 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
5109 return val << PAGE_SHIFT;
5112 static ssize_t mem_cgroup_read(struct cgroup_subsys_state *css,
5113 struct cftype *cft, struct file *file,
5114 char __user *buf, size_t nbytes, loff_t *ppos)
5116 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5117 char str[64];
5118 u64 val;
5119 int name, len;
5120 enum res_type type;
5122 type = MEMFILE_TYPE(cft->private);
5123 name = MEMFILE_ATTR(cft->private);
5125 switch (type) {
5126 case _MEM:
5127 if (name == RES_USAGE)
5128 val = mem_cgroup_usage(memcg, false);
5129 else
5130 val = res_counter_read_u64(&memcg->res, name);
5131 break;
5132 case _MEMSWAP:
5133 if (name == RES_USAGE)
5134 val = mem_cgroup_usage(memcg, true);
5135 else
5136 val = res_counter_read_u64(&memcg->memsw, name);
5137 break;
5138 case _KMEM:
5139 val = res_counter_read_u64(&memcg->kmem, name);
5140 break;
5141 default:
5142 BUG();
5145 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
5146 return simple_read_from_buffer(buf, nbytes, ppos, str, len);
5149 static int memcg_update_kmem_limit(struct cgroup_subsys_state *css, u64 val)
5151 int ret = -EINVAL;
5152 #ifdef CONFIG_MEMCG_KMEM
5153 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5155 * For simplicity, we won't allow this to be disabled. It also can't
5156 * be changed if the cgroup has children already, or if tasks had
5157 * already joined.
5159 * If tasks join before we set the limit, a person looking at
5160 * kmem.usage_in_bytes will have no way to determine when it took
5161 * place, which makes the value quite meaningless.
5163 * After it first became limited, changes in the value of the limit are
5164 * of course permitted.
5166 mutex_lock(&memcg_create_mutex);
5167 mutex_lock(&set_limit_mutex);
5168 if (!memcg->kmem_account_flags && val != RES_COUNTER_MAX) {
5169 if (cgroup_task_count(css->cgroup) || memcg_has_children(memcg)) {
5170 ret = -EBUSY;
5171 goto out;
5173 ret = res_counter_set_limit(&memcg->kmem, val);
5174 VM_BUG_ON(ret);
5176 ret = memcg_update_cache_sizes(memcg);
5177 if (ret) {
5178 res_counter_set_limit(&memcg->kmem, RES_COUNTER_MAX);
5179 goto out;
5181 static_key_slow_inc(&memcg_kmem_enabled_key);
5183 * setting the active bit after the inc will guarantee no one
5184 * starts accounting before all call sites are patched
5186 memcg_kmem_set_active(memcg);
5187 } else
5188 ret = res_counter_set_limit(&memcg->kmem, val);
5189 out:
5190 mutex_unlock(&set_limit_mutex);
5191 mutex_unlock(&memcg_create_mutex);
5192 #endif
5193 return ret;
5196 #ifdef CONFIG_MEMCG_KMEM
5197 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
5199 int ret = 0;
5200 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5201 if (!parent)
5202 goto out;
5204 memcg->kmem_account_flags = parent->kmem_account_flags;
5206 * When that happen, we need to disable the static branch only on those
5207 * memcgs that enabled it. To achieve this, we would be forced to
5208 * complicate the code by keeping track of which memcgs were the ones
5209 * that actually enabled limits, and which ones got it from its
5210 * parents.
5212 * It is a lot simpler just to do static_key_slow_inc() on every child
5213 * that is accounted.
5215 if (!memcg_kmem_is_active(memcg))
5216 goto out;
5219 * __mem_cgroup_free() will issue static_key_slow_dec() because this
5220 * memcg is active already. If the later initialization fails then the
5221 * cgroup core triggers the cleanup so we do not have to do it here.
5223 static_key_slow_inc(&memcg_kmem_enabled_key);
5225 mutex_lock(&set_limit_mutex);
5226 memcg_stop_kmem_account();
5227 ret = memcg_update_cache_sizes(memcg);
5228 memcg_resume_kmem_account();
5229 mutex_unlock(&set_limit_mutex);
5230 out:
5231 return ret;
5233 #endif /* CONFIG_MEMCG_KMEM */
5236 * The user of this function is...
5237 * RES_LIMIT.
5239 static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft,
5240 const char *buffer)
5242 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5243 enum res_type type;
5244 int name;
5245 unsigned long long val;
5246 int ret;
5248 type = MEMFILE_TYPE(cft->private);
5249 name = MEMFILE_ATTR(cft->private);
5251 switch (name) {
5252 case RES_LIMIT:
5253 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
5254 ret = -EINVAL;
5255 break;
5257 /* This function does all necessary parse...reuse it */
5258 ret = res_counter_memparse_write_strategy(buffer, &val);
5259 if (ret)
5260 break;
5261 if (type == _MEM)
5262 ret = mem_cgroup_resize_limit(memcg, val);
5263 else if (type == _MEMSWAP)
5264 ret = mem_cgroup_resize_memsw_limit(memcg, val);
5265 else if (type == _KMEM)
5266 ret = memcg_update_kmem_limit(css, val);
5267 else
5268 return -EINVAL;
5269 break;
5270 case RES_SOFT_LIMIT:
5271 ret = res_counter_memparse_write_strategy(buffer, &val);
5272 if (ret)
5273 break;
5275 * For memsw, soft limits are hard to implement in terms
5276 * of semantics, for now, we support soft limits for
5277 * control without swap
5279 if (type == _MEM)
5280 ret = res_counter_set_soft_limit(&memcg->res, val);
5281 else
5282 ret = -EINVAL;
5283 break;
5284 default:
5285 ret = -EINVAL; /* should be BUG() ? */
5286 break;
5288 return ret;
5291 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
5292 unsigned long long *mem_limit, unsigned long long *memsw_limit)
5294 unsigned long long min_limit, min_memsw_limit, tmp;
5296 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
5297 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5298 if (!memcg->use_hierarchy)
5299 goto out;
5301 while (css_parent(&memcg->css)) {
5302 memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5303 if (!memcg->use_hierarchy)
5304 break;
5305 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
5306 min_limit = min(min_limit, tmp);
5307 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5308 min_memsw_limit = min(min_memsw_limit, tmp);
5310 out:
5311 *mem_limit = min_limit;
5312 *memsw_limit = min_memsw_limit;
5315 static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event)
5317 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5318 int name;
5319 enum res_type type;
5321 type = MEMFILE_TYPE(event);
5322 name = MEMFILE_ATTR(event);
5324 switch (name) {
5325 case RES_MAX_USAGE:
5326 if (type == _MEM)
5327 res_counter_reset_max(&memcg->res);
5328 else if (type == _MEMSWAP)
5329 res_counter_reset_max(&memcg->memsw);
5330 else if (type == _KMEM)
5331 res_counter_reset_max(&memcg->kmem);
5332 else
5333 return -EINVAL;
5334 break;
5335 case RES_FAILCNT:
5336 if (type == _MEM)
5337 res_counter_reset_failcnt(&memcg->res);
5338 else if (type == _MEMSWAP)
5339 res_counter_reset_failcnt(&memcg->memsw);
5340 else if (type == _KMEM)
5341 res_counter_reset_failcnt(&memcg->kmem);
5342 else
5343 return -EINVAL;
5344 break;
5347 return 0;
5350 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
5351 struct cftype *cft)
5353 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
5356 #ifdef CONFIG_MMU
5357 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5358 struct cftype *cft, u64 val)
5360 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5362 if (val >= (1 << NR_MOVE_TYPE))
5363 return -EINVAL;
5366 * No kind of locking is needed in here, because ->can_attach() will
5367 * check this value once in the beginning of the process, and then carry
5368 * on with stale data. This means that changes to this value will only
5369 * affect task migrations starting after the change.
5371 memcg->move_charge_at_immigrate = val;
5372 return 0;
5374 #else
5375 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5376 struct cftype *cft, u64 val)
5378 return -ENOSYS;
5380 #endif
5382 #ifdef CONFIG_NUMA
5383 static int memcg_numa_stat_show(struct cgroup_subsys_state *css,
5384 struct cftype *cft, struct seq_file *m)
5386 struct numa_stat {
5387 const char *name;
5388 unsigned int lru_mask;
5391 static const struct numa_stat stats[] = {
5392 { "total", LRU_ALL },
5393 { "file", LRU_ALL_FILE },
5394 { "anon", LRU_ALL_ANON },
5395 { "unevictable", BIT(LRU_UNEVICTABLE) },
5397 const struct numa_stat *stat;
5398 int nid;
5399 unsigned long nr;
5400 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5402 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
5403 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
5404 seq_printf(m, "%s=%lu", stat->name, nr);
5405 for_each_node_state(nid, N_MEMORY) {
5406 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5407 stat->lru_mask);
5408 seq_printf(m, " N%d=%lu", nid, nr);
5410 seq_putc(m, '\n');
5413 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
5414 struct mem_cgroup *iter;
5416 nr = 0;
5417 for_each_mem_cgroup_tree(iter, memcg)
5418 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
5419 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
5420 for_each_node_state(nid, N_MEMORY) {
5421 nr = 0;
5422 for_each_mem_cgroup_tree(iter, memcg)
5423 nr += mem_cgroup_node_nr_lru_pages(
5424 iter, nid, stat->lru_mask);
5425 seq_printf(m, " N%d=%lu", nid, nr);
5427 seq_putc(m, '\n');
5430 return 0;
5432 #endif /* CONFIG_NUMA */
5434 static inline void mem_cgroup_lru_names_not_uptodate(void)
5436 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
5439 static int memcg_stat_show(struct cgroup_subsys_state *css, struct cftype *cft,
5440 struct seq_file *m)
5442 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5443 struct mem_cgroup *mi;
5444 unsigned int i;
5446 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5447 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5448 continue;
5449 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
5450 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5453 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
5454 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
5455 mem_cgroup_read_events(memcg, i));
5457 for (i = 0; i < NR_LRU_LISTS; i++)
5458 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
5459 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
5461 /* Hierarchical information */
5463 unsigned long long limit, memsw_limit;
5464 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5465 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5466 if (do_swap_account)
5467 seq_printf(m, "hierarchical_memsw_limit %llu\n",
5468 memsw_limit);
5471 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5472 long long val = 0;
5474 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5475 continue;
5476 for_each_mem_cgroup_tree(mi, memcg)
5477 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
5478 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
5481 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
5482 unsigned long long val = 0;
5484 for_each_mem_cgroup_tree(mi, memcg)
5485 val += mem_cgroup_read_events(mi, i);
5486 seq_printf(m, "total_%s %llu\n",
5487 mem_cgroup_events_names[i], val);
5490 for (i = 0; i < NR_LRU_LISTS; i++) {
5491 unsigned long long val = 0;
5493 for_each_mem_cgroup_tree(mi, memcg)
5494 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
5495 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5498 #ifdef CONFIG_DEBUG_VM
5500 int nid, zid;
5501 struct mem_cgroup_per_zone *mz;
5502 struct zone_reclaim_stat *rstat;
5503 unsigned long recent_rotated[2] = {0, 0};
5504 unsigned long recent_scanned[2] = {0, 0};
5506 for_each_online_node(nid)
5507 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5508 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
5509 rstat = &mz->lruvec.reclaim_stat;
5511 recent_rotated[0] += rstat->recent_rotated[0];
5512 recent_rotated[1] += rstat->recent_rotated[1];
5513 recent_scanned[0] += rstat->recent_scanned[0];
5514 recent_scanned[1] += rstat->recent_scanned[1];
5516 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
5517 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
5518 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
5519 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
5521 #endif
5523 return 0;
5526 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
5527 struct cftype *cft)
5529 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5531 return mem_cgroup_swappiness(memcg);
5534 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
5535 struct cftype *cft, u64 val)
5537 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5538 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
5540 if (val > 100 || !parent)
5541 return -EINVAL;
5543 mutex_lock(&memcg_create_mutex);
5545 /* If under hierarchy, only empty-root can set this value */
5546 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5547 mutex_unlock(&memcg_create_mutex);
5548 return -EINVAL;
5551 memcg->swappiness = val;
5553 mutex_unlock(&memcg_create_mutex);
5555 return 0;
5558 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
5560 struct mem_cgroup_threshold_ary *t;
5561 u64 usage;
5562 int i;
5564 rcu_read_lock();
5565 if (!swap)
5566 t = rcu_dereference(memcg->thresholds.primary);
5567 else
5568 t = rcu_dereference(memcg->memsw_thresholds.primary);
5570 if (!t)
5571 goto unlock;
5573 usage = mem_cgroup_usage(memcg, swap);
5576 * current_threshold points to threshold just below or equal to usage.
5577 * If it's not true, a threshold was crossed after last
5578 * call of __mem_cgroup_threshold().
5580 i = t->current_threshold;
5583 * Iterate backward over array of thresholds starting from
5584 * current_threshold and check if a threshold is crossed.
5585 * If none of thresholds below usage is crossed, we read
5586 * only one element of the array here.
5588 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
5589 eventfd_signal(t->entries[i].eventfd, 1);
5591 /* i = current_threshold + 1 */
5592 i++;
5595 * Iterate forward over array of thresholds starting from
5596 * current_threshold+1 and check if a threshold is crossed.
5597 * If none of thresholds above usage is crossed, we read
5598 * only one element of the array here.
5600 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
5601 eventfd_signal(t->entries[i].eventfd, 1);
5603 /* Update current_threshold */
5604 t->current_threshold = i - 1;
5605 unlock:
5606 rcu_read_unlock();
5609 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
5611 while (memcg) {
5612 __mem_cgroup_threshold(memcg, false);
5613 if (do_swap_account)
5614 __mem_cgroup_threshold(memcg, true);
5616 memcg = parent_mem_cgroup(memcg);
5620 static int compare_thresholds(const void *a, const void *b)
5622 const struct mem_cgroup_threshold *_a = a;
5623 const struct mem_cgroup_threshold *_b = b;
5625 if (_a->threshold > _b->threshold)
5626 return 1;
5628 if (_a->threshold < _b->threshold)
5629 return -1;
5631 return 0;
5634 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
5636 struct mem_cgroup_eventfd_list *ev;
5638 list_for_each_entry(ev, &memcg->oom_notify, list)
5639 eventfd_signal(ev->eventfd, 1);
5640 return 0;
5643 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
5645 struct mem_cgroup *iter;
5647 for_each_mem_cgroup_tree(iter, memcg)
5648 mem_cgroup_oom_notify_cb(iter);
5651 static int mem_cgroup_usage_register_event(struct cgroup_subsys_state *css,
5652 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5654 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5655 struct mem_cgroup_thresholds *thresholds;
5656 struct mem_cgroup_threshold_ary *new;
5657 enum res_type type = MEMFILE_TYPE(cft->private);
5658 u64 threshold, usage;
5659 int i, size, ret;
5661 ret = res_counter_memparse_write_strategy(args, &threshold);
5662 if (ret)
5663 return ret;
5665 mutex_lock(&memcg->thresholds_lock);
5667 if (type == _MEM)
5668 thresholds = &memcg->thresholds;
5669 else if (type == _MEMSWAP)
5670 thresholds = &memcg->memsw_thresholds;
5671 else
5672 BUG();
5674 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5676 /* Check if a threshold crossed before adding a new one */
5677 if (thresholds->primary)
5678 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5680 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5682 /* Allocate memory for new array of thresholds */
5683 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5684 GFP_KERNEL);
5685 if (!new) {
5686 ret = -ENOMEM;
5687 goto unlock;
5689 new->size = size;
5691 /* Copy thresholds (if any) to new array */
5692 if (thresholds->primary) {
5693 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5694 sizeof(struct mem_cgroup_threshold));
5697 /* Add new threshold */
5698 new->entries[size - 1].eventfd = eventfd;
5699 new->entries[size - 1].threshold = threshold;
5701 /* Sort thresholds. Registering of new threshold isn't time-critical */
5702 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5703 compare_thresholds, NULL);
5705 /* Find current threshold */
5706 new->current_threshold = -1;
5707 for (i = 0; i < size; i++) {
5708 if (new->entries[i].threshold <= usage) {
5710 * new->current_threshold will not be used until
5711 * rcu_assign_pointer(), so it's safe to increment
5712 * it here.
5714 ++new->current_threshold;
5715 } else
5716 break;
5719 /* Free old spare buffer and save old primary buffer as spare */
5720 kfree(thresholds->spare);
5721 thresholds->spare = thresholds->primary;
5723 rcu_assign_pointer(thresholds->primary, new);
5725 /* To be sure that nobody uses thresholds */
5726 synchronize_rcu();
5728 unlock:
5729 mutex_unlock(&memcg->thresholds_lock);
5731 return ret;
5734 static void mem_cgroup_usage_unregister_event(struct cgroup_subsys_state *css,
5735 struct cftype *cft, struct eventfd_ctx *eventfd)
5737 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5738 struct mem_cgroup_thresholds *thresholds;
5739 struct mem_cgroup_threshold_ary *new;
5740 enum res_type type = MEMFILE_TYPE(cft->private);
5741 u64 usage;
5742 int i, j, size;
5744 mutex_lock(&memcg->thresholds_lock);
5745 if (type == _MEM)
5746 thresholds = &memcg->thresholds;
5747 else if (type == _MEMSWAP)
5748 thresholds = &memcg->memsw_thresholds;
5749 else
5750 BUG();
5752 if (!thresholds->primary)
5753 goto unlock;
5755 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5757 /* Check if a threshold crossed before removing */
5758 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5760 /* Calculate new number of threshold */
5761 size = 0;
5762 for (i = 0; i < thresholds->primary->size; i++) {
5763 if (thresholds->primary->entries[i].eventfd != eventfd)
5764 size++;
5767 new = thresholds->spare;
5769 /* Set thresholds array to NULL if we don't have thresholds */
5770 if (!size) {
5771 kfree(new);
5772 new = NULL;
5773 goto swap_buffers;
5776 new->size = size;
5778 /* Copy thresholds and find current threshold */
5779 new->current_threshold = -1;
5780 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
5781 if (thresholds->primary->entries[i].eventfd == eventfd)
5782 continue;
5784 new->entries[j] = thresholds->primary->entries[i];
5785 if (new->entries[j].threshold <= usage) {
5787 * new->current_threshold will not be used
5788 * until rcu_assign_pointer(), so it's safe to increment
5789 * it here.
5791 ++new->current_threshold;
5793 j++;
5796 swap_buffers:
5797 /* Swap primary and spare array */
5798 thresholds->spare = thresholds->primary;
5799 /* If all events are unregistered, free the spare array */
5800 if (!new) {
5801 kfree(thresholds->spare);
5802 thresholds->spare = NULL;
5805 rcu_assign_pointer(thresholds->primary, new);
5807 /* To be sure that nobody uses thresholds */
5808 synchronize_rcu();
5809 unlock:
5810 mutex_unlock(&memcg->thresholds_lock);
5813 static int mem_cgroup_oom_register_event(struct cgroup_subsys_state *css,
5814 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5816 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5817 struct mem_cgroup_eventfd_list *event;
5818 enum res_type type = MEMFILE_TYPE(cft->private);
5820 BUG_ON(type != _OOM_TYPE);
5821 event = kmalloc(sizeof(*event), GFP_KERNEL);
5822 if (!event)
5823 return -ENOMEM;
5825 spin_lock(&memcg_oom_lock);
5827 event->eventfd = eventfd;
5828 list_add(&event->list, &memcg->oom_notify);
5830 /* already in OOM ? */
5831 if (atomic_read(&memcg->under_oom))
5832 eventfd_signal(eventfd, 1);
5833 spin_unlock(&memcg_oom_lock);
5835 return 0;
5838 static void mem_cgroup_oom_unregister_event(struct cgroup_subsys_state *css,
5839 struct cftype *cft, struct eventfd_ctx *eventfd)
5841 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5842 struct mem_cgroup_eventfd_list *ev, *tmp;
5843 enum res_type type = MEMFILE_TYPE(cft->private);
5845 BUG_ON(type != _OOM_TYPE);
5847 spin_lock(&memcg_oom_lock);
5849 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
5850 if (ev->eventfd == eventfd) {
5851 list_del(&ev->list);
5852 kfree(ev);
5856 spin_unlock(&memcg_oom_lock);
5859 static int mem_cgroup_oom_control_read(struct cgroup_subsys_state *css,
5860 struct cftype *cft, struct cgroup_map_cb *cb)
5862 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5864 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
5866 if (atomic_read(&memcg->under_oom))
5867 cb->fill(cb, "under_oom", 1);
5868 else
5869 cb->fill(cb, "under_oom", 0);
5870 return 0;
5873 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
5874 struct cftype *cft, u64 val)
5876 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5877 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
5879 /* cannot set to root cgroup and only 0 and 1 are allowed */
5880 if (!parent || !((val == 0) || (val == 1)))
5881 return -EINVAL;
5883 mutex_lock(&memcg_create_mutex);
5884 /* oom-kill-disable is a flag for subhierarchy. */
5885 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5886 mutex_unlock(&memcg_create_mutex);
5887 return -EINVAL;
5889 memcg->oom_kill_disable = val;
5890 if (!val)
5891 memcg_oom_recover(memcg);
5892 mutex_unlock(&memcg_create_mutex);
5893 return 0;
5896 #ifdef CONFIG_MEMCG_KMEM
5897 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5899 int ret;
5901 memcg->kmemcg_id = -1;
5902 ret = memcg_propagate_kmem(memcg);
5903 if (ret)
5904 return ret;
5906 return mem_cgroup_sockets_init(memcg, ss);
5909 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5911 mem_cgroup_sockets_destroy(memcg);
5914 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5916 if (!memcg_kmem_is_active(memcg))
5917 return;
5920 * kmem charges can outlive the cgroup. In the case of slab
5921 * pages, for instance, a page contain objects from various
5922 * processes. As we prevent from taking a reference for every
5923 * such allocation we have to be careful when doing uncharge
5924 * (see memcg_uncharge_kmem) and here during offlining.
5926 * The idea is that that only the _last_ uncharge which sees
5927 * the dead memcg will drop the last reference. An additional
5928 * reference is taken here before the group is marked dead
5929 * which is then paired with css_put during uncharge resp. here.
5931 * Although this might sound strange as this path is called from
5932 * css_offline() when the referencemight have dropped down to 0
5933 * and shouldn't be incremented anymore (css_tryget would fail)
5934 * we do not have other options because of the kmem allocations
5935 * lifetime.
5937 css_get(&memcg->css);
5939 memcg_kmem_mark_dead(memcg);
5941 if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
5942 return;
5944 if (memcg_kmem_test_and_clear_dead(memcg))
5945 css_put(&memcg->css);
5947 #else
5948 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5950 return 0;
5953 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5957 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5960 #endif
5962 static struct cftype mem_cgroup_files[] = {
5964 .name = "usage_in_bytes",
5965 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5966 .read = mem_cgroup_read,
5967 .register_event = mem_cgroup_usage_register_event,
5968 .unregister_event = mem_cgroup_usage_unregister_event,
5971 .name = "max_usage_in_bytes",
5972 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5973 .trigger = mem_cgroup_reset,
5974 .read = mem_cgroup_read,
5977 .name = "limit_in_bytes",
5978 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5979 .write_string = mem_cgroup_write,
5980 .read = mem_cgroup_read,
5983 .name = "soft_limit_in_bytes",
5984 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5985 .write_string = mem_cgroup_write,
5986 .read = mem_cgroup_read,
5989 .name = "failcnt",
5990 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5991 .trigger = mem_cgroup_reset,
5992 .read = mem_cgroup_read,
5995 .name = "stat",
5996 .read_seq_string = memcg_stat_show,
5999 .name = "force_empty",
6000 .trigger = mem_cgroup_force_empty_write,
6003 .name = "use_hierarchy",
6004 .flags = CFTYPE_INSANE,
6005 .write_u64 = mem_cgroup_hierarchy_write,
6006 .read_u64 = mem_cgroup_hierarchy_read,
6009 .name = "swappiness",
6010 .read_u64 = mem_cgroup_swappiness_read,
6011 .write_u64 = mem_cgroup_swappiness_write,
6014 .name = "move_charge_at_immigrate",
6015 .read_u64 = mem_cgroup_move_charge_read,
6016 .write_u64 = mem_cgroup_move_charge_write,
6019 .name = "oom_control",
6020 .read_map = mem_cgroup_oom_control_read,
6021 .write_u64 = mem_cgroup_oom_control_write,
6022 .register_event = mem_cgroup_oom_register_event,
6023 .unregister_event = mem_cgroup_oom_unregister_event,
6024 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
6027 .name = "pressure_level",
6028 .register_event = vmpressure_register_event,
6029 .unregister_event = vmpressure_unregister_event,
6031 #ifdef CONFIG_NUMA
6033 .name = "numa_stat",
6034 .read_seq_string = memcg_numa_stat_show,
6036 #endif
6037 #ifdef CONFIG_MEMCG_KMEM
6039 .name = "kmem.limit_in_bytes",
6040 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
6041 .write_string = mem_cgroup_write,
6042 .read = mem_cgroup_read,
6045 .name = "kmem.usage_in_bytes",
6046 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
6047 .read = mem_cgroup_read,
6050 .name = "kmem.failcnt",
6051 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6052 .trigger = mem_cgroup_reset,
6053 .read = mem_cgroup_read,
6056 .name = "kmem.max_usage_in_bytes",
6057 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6058 .trigger = mem_cgroup_reset,
6059 .read = mem_cgroup_read,
6061 #ifdef CONFIG_SLABINFO
6063 .name = "kmem.slabinfo",
6064 .read_seq_string = mem_cgroup_slabinfo_read,
6066 #endif
6067 #endif
6068 { }, /* terminate */
6071 #ifdef CONFIG_MEMCG_SWAP
6072 static struct cftype memsw_cgroup_files[] = {
6074 .name = "memsw.usage_in_bytes",
6075 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6076 .read = mem_cgroup_read,
6077 .register_event = mem_cgroup_usage_register_event,
6078 .unregister_event = mem_cgroup_usage_unregister_event,
6081 .name = "memsw.max_usage_in_bytes",
6082 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6083 .trigger = mem_cgroup_reset,
6084 .read = mem_cgroup_read,
6087 .name = "memsw.limit_in_bytes",
6088 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6089 .write_string = mem_cgroup_write,
6090 .read = mem_cgroup_read,
6093 .name = "memsw.failcnt",
6094 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6095 .trigger = mem_cgroup_reset,
6096 .read = mem_cgroup_read,
6098 { }, /* terminate */
6100 #endif
6101 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6103 struct mem_cgroup_per_node *pn;
6104 struct mem_cgroup_per_zone *mz;
6105 int zone, tmp = node;
6107 * This routine is called against possible nodes.
6108 * But it's BUG to call kmalloc() against offline node.
6110 * TODO: this routine can waste much memory for nodes which will
6111 * never be onlined. It's better to use memory hotplug callback
6112 * function.
6114 if (!node_state(node, N_NORMAL_MEMORY))
6115 tmp = -1;
6116 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6117 if (!pn)
6118 return 1;
6120 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6121 mz = &pn->zoneinfo[zone];
6122 lruvec_init(&mz->lruvec);
6123 mz->usage_in_excess = 0;
6124 mz->on_tree = false;
6125 mz->memcg = memcg;
6127 memcg->nodeinfo[node] = pn;
6128 return 0;
6131 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6133 kfree(memcg->nodeinfo[node]);
6136 static struct mem_cgroup *mem_cgroup_alloc(void)
6138 struct mem_cgroup *memcg;
6139 size_t size = memcg_size();
6141 /* Can be very big if nr_node_ids is very big */
6142 if (size < PAGE_SIZE)
6143 memcg = kzalloc(size, GFP_KERNEL);
6144 else
6145 memcg = vzalloc(size);
6147 if (!memcg)
6148 return NULL;
6150 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
6151 if (!memcg->stat)
6152 goto out_free;
6153 spin_lock_init(&memcg->pcp_counter_lock);
6154 return memcg;
6156 out_free:
6157 if (size < PAGE_SIZE)
6158 kfree(memcg);
6159 else
6160 vfree(memcg);
6161 return NULL;
6165 * At destroying mem_cgroup, references from swap_cgroup can remain.
6166 * (scanning all at force_empty is too costly...)
6168 * Instead of clearing all references at force_empty, we remember
6169 * the number of reference from swap_cgroup and free mem_cgroup when
6170 * it goes down to 0.
6172 * Removal of cgroup itself succeeds regardless of refs from swap.
6175 static void __mem_cgroup_free(struct mem_cgroup *memcg)
6177 int node;
6178 size_t size = memcg_size();
6180 mem_cgroup_remove_from_trees(memcg);
6182 for_each_node(node)
6183 free_mem_cgroup_per_zone_info(memcg, node);
6185 free_percpu(memcg->stat);
6188 * We need to make sure that (at least for now), the jump label
6189 * destruction code runs outside of the cgroup lock. This is because
6190 * get_online_cpus(), which is called from the static_branch update,
6191 * can't be called inside the cgroup_lock. cpusets are the ones
6192 * enforcing this dependency, so if they ever change, we might as well.
6194 * schedule_work() will guarantee this happens. Be careful if you need
6195 * to move this code around, and make sure it is outside
6196 * the cgroup_lock.
6198 disarm_static_keys(memcg);
6199 if (size < PAGE_SIZE)
6200 kfree(memcg);
6201 else
6202 vfree(memcg);
6206 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
6208 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
6210 if (!memcg->res.parent)
6211 return NULL;
6212 return mem_cgroup_from_res_counter(memcg->res.parent, res);
6214 EXPORT_SYMBOL(parent_mem_cgroup);
6216 static void __init mem_cgroup_soft_limit_tree_init(void)
6218 struct mem_cgroup_tree_per_node *rtpn;
6219 struct mem_cgroup_tree_per_zone *rtpz;
6220 int tmp, node, zone;
6222 for_each_node(node) {
6223 tmp = node;
6224 if (!node_state(node, N_NORMAL_MEMORY))
6225 tmp = -1;
6226 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
6227 BUG_ON(!rtpn);
6229 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6231 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6232 rtpz = &rtpn->rb_tree_per_zone[zone];
6233 rtpz->rb_root = RB_ROOT;
6234 spin_lock_init(&rtpz->lock);
6239 static struct cgroup_subsys_state * __ref
6240 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
6242 struct mem_cgroup *memcg;
6243 long error = -ENOMEM;
6244 int node;
6246 memcg = mem_cgroup_alloc();
6247 if (!memcg)
6248 return ERR_PTR(error);
6250 for_each_node(node)
6251 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6252 goto free_out;
6254 /* root ? */
6255 if (parent_css == NULL) {
6256 root_mem_cgroup = memcg;
6257 res_counter_init(&memcg->res, NULL);
6258 res_counter_init(&memcg->memsw, NULL);
6259 res_counter_init(&memcg->kmem, NULL);
6262 memcg->last_scanned_node = MAX_NUMNODES;
6263 INIT_LIST_HEAD(&memcg->oom_notify);
6264 memcg->move_charge_at_immigrate = 0;
6265 mutex_init(&memcg->thresholds_lock);
6266 spin_lock_init(&memcg->move_lock);
6267 vmpressure_init(&memcg->vmpressure);
6269 return &memcg->css;
6271 free_out:
6272 __mem_cgroup_free(memcg);
6273 return ERR_PTR(error);
6276 static int
6277 mem_cgroup_css_online(struct cgroup_subsys_state *css)
6279 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6280 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css));
6281 int error = 0;
6283 if (css->cgroup->id > MEM_CGROUP_ID_MAX)
6284 return -ENOSPC;
6286 if (!parent)
6287 return 0;
6289 mutex_lock(&memcg_create_mutex);
6291 memcg->use_hierarchy = parent->use_hierarchy;
6292 memcg->oom_kill_disable = parent->oom_kill_disable;
6293 memcg->swappiness = mem_cgroup_swappiness(parent);
6295 if (parent->use_hierarchy) {
6296 res_counter_init(&memcg->res, &parent->res);
6297 res_counter_init(&memcg->memsw, &parent->memsw);
6298 res_counter_init(&memcg->kmem, &parent->kmem);
6301 * No need to take a reference to the parent because cgroup
6302 * core guarantees its existence.
6304 } else {
6305 res_counter_init(&memcg->res, NULL);
6306 res_counter_init(&memcg->memsw, NULL);
6307 res_counter_init(&memcg->kmem, NULL);
6309 * Deeper hierachy with use_hierarchy == false doesn't make
6310 * much sense so let cgroup subsystem know about this
6311 * unfortunate state in our controller.
6313 if (parent != root_mem_cgroup)
6314 mem_cgroup_subsys.broken_hierarchy = true;
6317 error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
6318 mutex_unlock(&memcg_create_mutex);
6319 return error;
6323 * Announce all parents that a group from their hierarchy is gone.
6325 static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
6327 struct mem_cgroup *parent = memcg;
6329 while ((parent = parent_mem_cgroup(parent)))
6330 mem_cgroup_iter_invalidate(parent);
6333 * if the root memcg is not hierarchical we have to check it
6334 * explicitely.
6336 if (!root_mem_cgroup->use_hierarchy)
6337 mem_cgroup_iter_invalidate(root_mem_cgroup);
6340 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
6342 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6344 kmem_cgroup_css_offline(memcg);
6346 mem_cgroup_invalidate_reclaim_iterators(memcg);
6347 mem_cgroup_reparent_charges(memcg);
6348 mem_cgroup_destroy_all_caches(memcg);
6349 vmpressure_cleanup(&memcg->vmpressure);
6352 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
6354 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6356 memcg_destroy_kmem(memcg);
6357 __mem_cgroup_free(memcg);
6360 #ifdef CONFIG_MMU
6361 /* Handlers for move charge at task migration. */
6362 #define PRECHARGE_COUNT_AT_ONCE 256
6363 static int mem_cgroup_do_precharge(unsigned long count)
6365 int ret = 0;
6366 int batch_count = PRECHARGE_COUNT_AT_ONCE;
6367 struct mem_cgroup *memcg = mc.to;
6369 if (mem_cgroup_is_root(memcg)) {
6370 mc.precharge += count;
6371 /* we don't need css_get for root */
6372 return ret;
6374 /* try to charge at once */
6375 if (count > 1) {
6376 struct res_counter *dummy;
6378 * "memcg" cannot be under rmdir() because we've already checked
6379 * by cgroup_lock_live_cgroup() that it is not removed and we
6380 * are still under the same cgroup_mutex. So we can postpone
6381 * css_get().
6383 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6384 goto one_by_one;
6385 if (do_swap_account && res_counter_charge(&memcg->memsw,
6386 PAGE_SIZE * count, &dummy)) {
6387 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6388 goto one_by_one;
6390 mc.precharge += count;
6391 return ret;
6393 one_by_one:
6394 /* fall back to one by one charge */
6395 while (count--) {
6396 if (signal_pending(current)) {
6397 ret = -EINTR;
6398 break;
6400 if (!batch_count--) {
6401 batch_count = PRECHARGE_COUNT_AT_ONCE;
6402 cond_resched();
6404 ret = __mem_cgroup_try_charge(NULL,
6405 GFP_KERNEL, 1, &memcg, false);
6406 if (ret)
6407 /* mem_cgroup_clear_mc() will do uncharge later */
6408 return ret;
6409 mc.precharge++;
6411 return ret;
6415 * get_mctgt_type - get target type of moving charge
6416 * @vma: the vma the pte to be checked belongs
6417 * @addr: the address corresponding to the pte to be checked
6418 * @ptent: the pte to be checked
6419 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6421 * Returns
6422 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
6423 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
6424 * move charge. if @target is not NULL, the page is stored in target->page
6425 * with extra refcnt got(Callers should handle it).
6426 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
6427 * target for charge migration. if @target is not NULL, the entry is stored
6428 * in target->ent.
6430 * Called with pte lock held.
6432 union mc_target {
6433 struct page *page;
6434 swp_entry_t ent;
6437 enum mc_target_type {
6438 MC_TARGET_NONE = 0,
6439 MC_TARGET_PAGE,
6440 MC_TARGET_SWAP,
6443 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
6444 unsigned long addr, pte_t ptent)
6446 struct page *page = vm_normal_page(vma, addr, ptent);
6448 if (!page || !page_mapped(page))
6449 return NULL;
6450 if (PageAnon(page)) {
6451 /* we don't move shared anon */
6452 if (!move_anon())
6453 return NULL;
6454 } else if (!move_file())
6455 /* we ignore mapcount for file pages */
6456 return NULL;
6457 if (!get_page_unless_zero(page))
6458 return NULL;
6460 return page;
6463 #ifdef CONFIG_SWAP
6464 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6465 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6467 struct page *page = NULL;
6468 swp_entry_t ent = pte_to_swp_entry(ptent);
6470 if (!move_anon() || non_swap_entry(ent))
6471 return NULL;
6473 * Because lookup_swap_cache() updates some statistics counter,
6474 * we call find_get_page() with swapper_space directly.
6476 page = find_get_page(swap_address_space(ent), ent.val);
6477 if (do_swap_account)
6478 entry->val = ent.val;
6480 return page;
6482 #else
6483 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6484 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6486 return NULL;
6488 #endif
6490 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
6491 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6493 struct page *page = NULL;
6494 struct address_space *mapping;
6495 pgoff_t pgoff;
6497 if (!vma->vm_file) /* anonymous vma */
6498 return NULL;
6499 if (!move_file())
6500 return NULL;
6502 mapping = vma->vm_file->f_mapping;
6503 if (pte_none(ptent))
6504 pgoff = linear_page_index(vma, addr);
6505 else /* pte_file(ptent) is true */
6506 pgoff = pte_to_pgoff(ptent);
6508 /* page is moved even if it's not RSS of this task(page-faulted). */
6509 page = find_get_page(mapping, pgoff);
6511 #ifdef CONFIG_SWAP
6512 /* shmem/tmpfs may report page out on swap: account for that too. */
6513 if (radix_tree_exceptional_entry(page)) {
6514 swp_entry_t swap = radix_to_swp_entry(page);
6515 if (do_swap_account)
6516 *entry = swap;
6517 page = find_get_page(swap_address_space(swap), swap.val);
6519 #endif
6520 return page;
6523 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
6524 unsigned long addr, pte_t ptent, union mc_target *target)
6526 struct page *page = NULL;
6527 struct page_cgroup *pc;
6528 enum mc_target_type ret = MC_TARGET_NONE;
6529 swp_entry_t ent = { .val = 0 };
6531 if (pte_present(ptent))
6532 page = mc_handle_present_pte(vma, addr, ptent);
6533 else if (is_swap_pte(ptent))
6534 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6535 else if (pte_none(ptent) || pte_file(ptent))
6536 page = mc_handle_file_pte(vma, addr, ptent, &ent);
6538 if (!page && !ent.val)
6539 return ret;
6540 if (page) {
6541 pc = lookup_page_cgroup(page);
6543 * Do only loose check w/o page_cgroup lock.
6544 * mem_cgroup_move_account() checks the pc is valid or not under
6545 * the lock.
6547 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6548 ret = MC_TARGET_PAGE;
6549 if (target)
6550 target->page = page;
6552 if (!ret || !target)
6553 put_page(page);
6555 /* There is a swap entry and a page doesn't exist or isn't charged */
6556 if (ent.val && !ret &&
6557 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
6558 ret = MC_TARGET_SWAP;
6559 if (target)
6560 target->ent = ent;
6562 return ret;
6565 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6567 * We don't consider swapping or file mapped pages because THP does not
6568 * support them for now.
6569 * Caller should make sure that pmd_trans_huge(pmd) is true.
6571 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6572 unsigned long addr, pmd_t pmd, union mc_target *target)
6574 struct page *page = NULL;
6575 struct page_cgroup *pc;
6576 enum mc_target_type ret = MC_TARGET_NONE;
6578 page = pmd_page(pmd);
6579 VM_BUG_ON(!page || !PageHead(page));
6580 if (!move_anon())
6581 return ret;
6582 pc = lookup_page_cgroup(page);
6583 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6584 ret = MC_TARGET_PAGE;
6585 if (target) {
6586 get_page(page);
6587 target->page = page;
6590 return ret;
6592 #else
6593 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6594 unsigned long addr, pmd_t pmd, union mc_target *target)
6596 return MC_TARGET_NONE;
6598 #endif
6600 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6601 unsigned long addr, unsigned long end,
6602 struct mm_walk *walk)
6604 struct vm_area_struct *vma = walk->private;
6605 pte_t *pte;
6606 spinlock_t *ptl;
6608 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
6609 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6610 mc.precharge += HPAGE_PMD_NR;
6611 spin_unlock(ptl);
6612 return 0;
6615 if (pmd_trans_unstable(pmd))
6616 return 0;
6617 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6618 for (; addr != end; pte++, addr += PAGE_SIZE)
6619 if (get_mctgt_type(vma, addr, *pte, NULL))
6620 mc.precharge++; /* increment precharge temporarily */
6621 pte_unmap_unlock(pte - 1, ptl);
6622 cond_resched();
6624 return 0;
6627 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6629 unsigned long precharge;
6630 struct vm_area_struct *vma;
6632 down_read(&mm->mmap_sem);
6633 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6634 struct mm_walk mem_cgroup_count_precharge_walk = {
6635 .pmd_entry = mem_cgroup_count_precharge_pte_range,
6636 .mm = mm,
6637 .private = vma,
6639 if (is_vm_hugetlb_page(vma))
6640 continue;
6641 walk_page_range(vma->vm_start, vma->vm_end,
6642 &mem_cgroup_count_precharge_walk);
6644 up_read(&mm->mmap_sem);
6646 precharge = mc.precharge;
6647 mc.precharge = 0;
6649 return precharge;
6652 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6654 unsigned long precharge = mem_cgroup_count_precharge(mm);
6656 VM_BUG_ON(mc.moving_task);
6657 mc.moving_task = current;
6658 return mem_cgroup_do_precharge(precharge);
6661 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6662 static void __mem_cgroup_clear_mc(void)
6664 struct mem_cgroup *from = mc.from;
6665 struct mem_cgroup *to = mc.to;
6666 int i;
6668 /* we must uncharge all the leftover precharges from mc.to */
6669 if (mc.precharge) {
6670 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
6671 mc.precharge = 0;
6674 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6675 * we must uncharge here.
6677 if (mc.moved_charge) {
6678 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6679 mc.moved_charge = 0;
6681 /* we must fixup refcnts and charges */
6682 if (mc.moved_swap) {
6683 /* uncharge swap account from the old cgroup */
6684 if (!mem_cgroup_is_root(mc.from))
6685 res_counter_uncharge(&mc.from->memsw,
6686 PAGE_SIZE * mc.moved_swap);
6688 for (i = 0; i < mc.moved_swap; i++)
6689 css_put(&mc.from->css);
6691 if (!mem_cgroup_is_root(mc.to)) {
6693 * we charged both to->res and to->memsw, so we should
6694 * uncharge to->res.
6696 res_counter_uncharge(&mc.to->res,
6697 PAGE_SIZE * mc.moved_swap);
6699 /* we've already done css_get(mc.to) */
6700 mc.moved_swap = 0;
6702 memcg_oom_recover(from);
6703 memcg_oom_recover(to);
6704 wake_up_all(&mc.waitq);
6707 static void mem_cgroup_clear_mc(void)
6709 struct mem_cgroup *from = mc.from;
6712 * we must clear moving_task before waking up waiters at the end of
6713 * task migration.
6715 mc.moving_task = NULL;
6716 __mem_cgroup_clear_mc();
6717 spin_lock(&mc.lock);
6718 mc.from = NULL;
6719 mc.to = NULL;
6720 spin_unlock(&mc.lock);
6721 mem_cgroup_end_move(from);
6724 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6725 struct cgroup_taskset *tset)
6727 struct task_struct *p = cgroup_taskset_first(tset);
6728 int ret = 0;
6729 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6730 unsigned long move_charge_at_immigrate;
6733 * We are now commited to this value whatever it is. Changes in this
6734 * tunable will only affect upcoming migrations, not the current one.
6735 * So we need to save it, and keep it going.
6737 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
6738 if (move_charge_at_immigrate) {
6739 struct mm_struct *mm;
6740 struct mem_cgroup *from = mem_cgroup_from_task(p);
6742 VM_BUG_ON(from == memcg);
6744 mm = get_task_mm(p);
6745 if (!mm)
6746 return 0;
6747 /* We move charges only when we move a owner of the mm */
6748 if (mm->owner == p) {
6749 VM_BUG_ON(mc.from);
6750 VM_BUG_ON(mc.to);
6751 VM_BUG_ON(mc.precharge);
6752 VM_BUG_ON(mc.moved_charge);
6753 VM_BUG_ON(mc.moved_swap);
6754 mem_cgroup_start_move(from);
6755 spin_lock(&mc.lock);
6756 mc.from = from;
6757 mc.to = memcg;
6758 mc.immigrate_flags = move_charge_at_immigrate;
6759 spin_unlock(&mc.lock);
6760 /* We set mc.moving_task later */
6762 ret = mem_cgroup_precharge_mc(mm);
6763 if (ret)
6764 mem_cgroup_clear_mc();
6766 mmput(mm);
6768 return ret;
6771 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6772 struct cgroup_taskset *tset)
6774 mem_cgroup_clear_mc();
6777 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6778 unsigned long addr, unsigned long end,
6779 struct mm_walk *walk)
6781 int ret = 0;
6782 struct vm_area_struct *vma = walk->private;
6783 pte_t *pte;
6784 spinlock_t *ptl;
6785 enum mc_target_type target_type;
6786 union mc_target target;
6787 struct page *page;
6788 struct page_cgroup *pc;
6791 * We don't take compound_lock() here but no race with splitting thp
6792 * happens because:
6793 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
6794 * under splitting, which means there's no concurrent thp split,
6795 * - if another thread runs into split_huge_page() just after we
6796 * entered this if-block, the thread must wait for page table lock
6797 * to be unlocked in __split_huge_page_splitting(), where the main
6798 * part of thp split is not executed yet.
6800 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
6801 if (mc.precharge < HPAGE_PMD_NR) {
6802 spin_unlock(ptl);
6803 return 0;
6805 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6806 if (target_type == MC_TARGET_PAGE) {
6807 page = target.page;
6808 if (!isolate_lru_page(page)) {
6809 pc = lookup_page_cgroup(page);
6810 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
6811 pc, mc.from, mc.to)) {
6812 mc.precharge -= HPAGE_PMD_NR;
6813 mc.moved_charge += HPAGE_PMD_NR;
6815 putback_lru_page(page);
6817 put_page(page);
6819 spin_unlock(ptl);
6820 return 0;
6823 if (pmd_trans_unstable(pmd))
6824 return 0;
6825 retry:
6826 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6827 for (; addr != end; addr += PAGE_SIZE) {
6828 pte_t ptent = *(pte++);
6829 swp_entry_t ent;
6831 if (!mc.precharge)
6832 break;
6834 switch (get_mctgt_type(vma, addr, ptent, &target)) {
6835 case MC_TARGET_PAGE:
6836 page = target.page;
6837 if (isolate_lru_page(page))
6838 goto put;
6839 pc = lookup_page_cgroup(page);
6840 if (!mem_cgroup_move_account(page, 1, pc,
6841 mc.from, mc.to)) {
6842 mc.precharge--;
6843 /* we uncharge from mc.from later. */
6844 mc.moved_charge++;
6846 putback_lru_page(page);
6847 put: /* get_mctgt_type() gets the page */
6848 put_page(page);
6849 break;
6850 case MC_TARGET_SWAP:
6851 ent = target.ent;
6852 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6853 mc.precharge--;
6854 /* we fixup refcnts and charges later. */
6855 mc.moved_swap++;
6857 break;
6858 default:
6859 break;
6862 pte_unmap_unlock(pte - 1, ptl);
6863 cond_resched();
6865 if (addr != end) {
6867 * We have consumed all precharges we got in can_attach().
6868 * We try charge one by one, but don't do any additional
6869 * charges to mc.to if we have failed in charge once in attach()
6870 * phase.
6872 ret = mem_cgroup_do_precharge(1);
6873 if (!ret)
6874 goto retry;
6877 return ret;
6880 static void mem_cgroup_move_charge(struct mm_struct *mm)
6882 struct vm_area_struct *vma;
6884 lru_add_drain_all();
6885 retry:
6886 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
6888 * Someone who are holding the mmap_sem might be waiting in
6889 * waitq. So we cancel all extra charges, wake up all waiters,
6890 * and retry. Because we cancel precharges, we might not be able
6891 * to move enough charges, but moving charge is a best-effort
6892 * feature anyway, so it wouldn't be a big problem.
6894 __mem_cgroup_clear_mc();
6895 cond_resched();
6896 goto retry;
6898 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6899 int ret;
6900 struct mm_walk mem_cgroup_move_charge_walk = {
6901 .pmd_entry = mem_cgroup_move_charge_pte_range,
6902 .mm = mm,
6903 .private = vma,
6905 if (is_vm_hugetlb_page(vma))
6906 continue;
6907 ret = walk_page_range(vma->vm_start, vma->vm_end,
6908 &mem_cgroup_move_charge_walk);
6909 if (ret)
6911 * means we have consumed all precharges and failed in
6912 * doing additional charge. Just abandon here.
6914 break;
6916 up_read(&mm->mmap_sem);
6919 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6920 struct cgroup_taskset *tset)
6922 struct task_struct *p = cgroup_taskset_first(tset);
6923 struct mm_struct *mm = get_task_mm(p);
6925 if (mm) {
6926 if (mc.to)
6927 mem_cgroup_move_charge(mm);
6928 mmput(mm);
6930 if (mc.to)
6931 mem_cgroup_clear_mc();
6933 #else /* !CONFIG_MMU */
6934 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6935 struct cgroup_taskset *tset)
6937 return 0;
6939 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6940 struct cgroup_taskset *tset)
6943 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6944 struct cgroup_taskset *tset)
6947 #endif
6950 * Cgroup retains root cgroups across [un]mount cycles making it necessary
6951 * to verify sane_behavior flag on each mount attempt.
6953 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
6956 * use_hierarchy is forced with sane_behavior. cgroup core
6957 * guarantees that @root doesn't have any children, so turning it
6958 * on for the root memcg is enough.
6960 if (cgroup_sane_behavior(root_css->cgroup))
6961 mem_cgroup_from_css(root_css)->use_hierarchy = true;
6964 struct cgroup_subsys mem_cgroup_subsys = {
6965 .name = "memory",
6966 .subsys_id = mem_cgroup_subsys_id,
6967 .css_alloc = mem_cgroup_css_alloc,
6968 .css_online = mem_cgroup_css_online,
6969 .css_offline = mem_cgroup_css_offline,
6970 .css_free = mem_cgroup_css_free,
6971 .can_attach = mem_cgroup_can_attach,
6972 .cancel_attach = mem_cgroup_cancel_attach,
6973 .attach = mem_cgroup_move_task,
6974 .bind = mem_cgroup_bind,
6975 .base_cftypes = mem_cgroup_files,
6976 .early_init = 0,
6979 #ifdef CONFIG_MEMCG_SWAP
6980 static int __init enable_swap_account(char *s)
6982 if (!strcmp(s, "1"))
6983 really_do_swap_account = 1;
6984 else if (!strcmp(s, "0"))
6985 really_do_swap_account = 0;
6986 return 1;
6988 __setup("swapaccount=", enable_swap_account);
6990 static void __init memsw_file_init(void)
6992 WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
6995 static void __init enable_swap_cgroup(void)
6997 if (!mem_cgroup_disabled() && really_do_swap_account) {
6998 do_swap_account = 1;
6999 memsw_file_init();
7003 #else
7004 static void __init enable_swap_cgroup(void)
7007 #endif
7010 * subsys_initcall() for memory controller.
7012 * Some parts like hotcpu_notifier() have to be initialized from this context
7013 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
7014 * everything that doesn't depend on a specific mem_cgroup structure should
7015 * be initialized from here.
7017 static int __init mem_cgroup_init(void)
7019 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
7020 enable_swap_cgroup();
7021 mem_cgroup_soft_limit_tree_init();
7022 memcg_stock_init();
7023 return 0;
7025 subsys_initcall(mem_cgroup_init);