kbuild: document KBUILD_LDS, KBUILD_VMLINUX_{INIT,MAIN} and LDFLAGS_vmlinux
[linux-2.6.git] / include / net / sock.h
bloba6ba1f8871fda3077183717a1e099cd5161b555c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Definitions for the AF_INET socket handler.
8 * Version: @(#)sock.h 1.0.4 05/13/93
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche <flla@stud.uni-sb.de>
15 * Fixes:
16 * Alan Cox : Volatiles in skbuff pointers. See
17 * skbuff comments. May be overdone,
18 * better to prove they can be removed
19 * than the reverse.
20 * Alan Cox : Added a zapped field for tcp to note
21 * a socket is reset and must stay shut up
22 * Alan Cox : New fields for options
23 * Pauline Middelink : identd support
24 * Alan Cox : Eliminate low level recv/recvfrom
25 * David S. Miller : New socket lookup architecture.
26 * Steve Whitehouse: Default routines for sock_ops
27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
28 * protinfo be just a void pointer, as the
29 * protocol specific parts were moved to
30 * respective headers and ipv4/v6, etc now
31 * use private slabcaches for its socks
32 * Pedro Hortas : New flags field for socket options
35 * This program is free software; you can redistribute it and/or
36 * modify it under the terms of the GNU General Public License
37 * as published by the Free Software Foundation; either version
38 * 2 of the License, or (at your option) any later version.
40 #ifndef _SOCK_H
41 #define _SOCK_H
43 #include <linux/hardirq.h>
44 #include <linux/kernel.h>
45 #include <linux/list.h>
46 #include <linux/list_nulls.h>
47 #include <linux/timer.h>
48 #include <linux/cache.h>
49 #include <linux/lockdep.h>
50 #include <linux/netdevice.h>
51 #include <linux/skbuff.h> /* struct sk_buff */
52 #include <linux/mm.h>
53 #include <linux/security.h>
54 #include <linux/slab.h>
55 #include <linux/uaccess.h>
56 #include <linux/memcontrol.h>
57 #include <linux/res_counter.h>
58 #include <linux/static_key.h>
59 #include <linux/aio.h>
60 #include <linux/sched.h>
62 #include <linux/filter.h>
63 #include <linux/rculist_nulls.h>
64 #include <linux/poll.h>
66 #include <linux/atomic.h>
67 #include <net/dst.h>
68 #include <net/checksum.h>
70 struct cgroup;
71 struct cgroup_subsys;
72 #ifdef CONFIG_NET
73 int mem_cgroup_sockets_init(struct cgroup *cgrp, struct cgroup_subsys *ss);
74 void mem_cgroup_sockets_destroy(struct cgroup *cgrp);
75 #else
76 static inline
77 int mem_cgroup_sockets_init(struct cgroup *cgrp, struct cgroup_subsys *ss)
79 return 0;
81 static inline
82 void mem_cgroup_sockets_destroy(struct cgroup *cgrp)
85 #endif
87 * This structure really needs to be cleaned up.
88 * Most of it is for TCP, and not used by any of
89 * the other protocols.
92 /* Define this to get the SOCK_DBG debugging facility. */
93 #define SOCK_DEBUGGING
94 #ifdef SOCK_DEBUGGING
95 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
96 printk(KERN_DEBUG msg); } while (0)
97 #else
98 /* Validate arguments and do nothing */
99 static inline __printf(2, 3)
100 void SOCK_DEBUG(struct sock *sk, const char *msg, ...)
103 #endif
105 /* This is the per-socket lock. The spinlock provides a synchronization
106 * between user contexts and software interrupt processing, whereas the
107 * mini-semaphore synchronizes multiple users amongst themselves.
109 typedef struct {
110 spinlock_t slock;
111 int owned;
112 wait_queue_head_t wq;
114 * We express the mutex-alike socket_lock semantics
115 * to the lock validator by explicitly managing
116 * the slock as a lock variant (in addition to
117 * the slock itself):
119 #ifdef CONFIG_DEBUG_LOCK_ALLOC
120 struct lockdep_map dep_map;
121 #endif
122 } socket_lock_t;
124 struct sock;
125 struct proto;
126 struct net;
129 * struct sock_common - minimal network layer representation of sockets
130 * @skc_daddr: Foreign IPv4 addr
131 * @skc_rcv_saddr: Bound local IPv4 addr
132 * @skc_hash: hash value used with various protocol lookup tables
133 * @skc_u16hashes: two u16 hash values used by UDP lookup tables
134 * @skc_family: network address family
135 * @skc_state: Connection state
136 * @skc_reuse: %SO_REUSEADDR setting
137 * @skc_bound_dev_if: bound device index if != 0
138 * @skc_bind_node: bind hash linkage for various protocol lookup tables
139 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
140 * @skc_prot: protocol handlers inside a network family
141 * @skc_net: reference to the network namespace of this socket
142 * @skc_node: main hash linkage for various protocol lookup tables
143 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
144 * @skc_tx_queue_mapping: tx queue number for this connection
145 * @skc_refcnt: reference count
147 * This is the minimal network layer representation of sockets, the header
148 * for struct sock and struct inet_timewait_sock.
150 struct sock_common {
151 /* skc_daddr and skc_rcv_saddr must be grouped :
152 * cf INET_MATCH() and INET_TW_MATCH()
154 __be32 skc_daddr;
155 __be32 skc_rcv_saddr;
157 union {
158 unsigned int skc_hash;
159 __u16 skc_u16hashes[2];
161 unsigned short skc_family;
162 volatile unsigned char skc_state;
163 unsigned char skc_reuse;
164 int skc_bound_dev_if;
165 union {
166 struct hlist_node skc_bind_node;
167 struct hlist_nulls_node skc_portaddr_node;
169 struct proto *skc_prot;
170 #ifdef CONFIG_NET_NS
171 struct net *skc_net;
172 #endif
174 * fields between dontcopy_begin/dontcopy_end
175 * are not copied in sock_copy()
177 /* private: */
178 int skc_dontcopy_begin[0];
179 /* public: */
180 union {
181 struct hlist_node skc_node;
182 struct hlist_nulls_node skc_nulls_node;
184 int skc_tx_queue_mapping;
185 atomic_t skc_refcnt;
186 /* private: */
187 int skc_dontcopy_end[0];
188 /* public: */
191 struct cg_proto;
193 * struct sock - network layer representation of sockets
194 * @__sk_common: shared layout with inet_timewait_sock
195 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
196 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
197 * @sk_lock: synchronizer
198 * @sk_rcvbuf: size of receive buffer in bytes
199 * @sk_wq: sock wait queue and async head
200 * @sk_dst_cache: destination cache
201 * @sk_dst_lock: destination cache lock
202 * @sk_policy: flow policy
203 * @sk_receive_queue: incoming packets
204 * @sk_wmem_alloc: transmit queue bytes committed
205 * @sk_write_queue: Packet sending queue
206 * @sk_async_wait_queue: DMA copied packets
207 * @sk_omem_alloc: "o" is "option" or "other"
208 * @sk_wmem_queued: persistent queue size
209 * @sk_forward_alloc: space allocated forward
210 * @sk_allocation: allocation mode
211 * @sk_sndbuf: size of send buffer in bytes
212 * @sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
213 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
214 * @sk_no_check: %SO_NO_CHECK setting, wether or not checkup packets
215 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
216 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
217 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
218 * @sk_gso_max_size: Maximum GSO segment size to build
219 * @sk_lingertime: %SO_LINGER l_linger setting
220 * @sk_backlog: always used with the per-socket spinlock held
221 * @sk_callback_lock: used with the callbacks in the end of this struct
222 * @sk_error_queue: rarely used
223 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
224 * IPV6_ADDRFORM for instance)
225 * @sk_err: last error
226 * @sk_err_soft: errors that don't cause failure but are the cause of a
227 * persistent failure not just 'timed out'
228 * @sk_drops: raw/udp drops counter
229 * @sk_ack_backlog: current listen backlog
230 * @sk_max_ack_backlog: listen backlog set in listen()
231 * @sk_priority: %SO_PRIORITY setting
232 * @sk_cgrp_prioidx: socket group's priority map index
233 * @sk_type: socket type (%SOCK_STREAM, etc)
234 * @sk_protocol: which protocol this socket belongs in this network family
235 * @sk_peer_pid: &struct pid for this socket's peer
236 * @sk_peer_cred: %SO_PEERCRED setting
237 * @sk_rcvlowat: %SO_RCVLOWAT setting
238 * @sk_rcvtimeo: %SO_RCVTIMEO setting
239 * @sk_sndtimeo: %SO_SNDTIMEO setting
240 * @sk_rxhash: flow hash received from netif layer
241 * @sk_filter: socket filtering instructions
242 * @sk_protinfo: private area, net family specific, when not using slab
243 * @sk_timer: sock cleanup timer
244 * @sk_stamp: time stamp of last packet received
245 * @sk_socket: Identd and reporting IO signals
246 * @sk_user_data: RPC layer private data
247 * @sk_sndmsg_page: cached page for sendmsg
248 * @sk_sndmsg_off: cached offset for sendmsg
249 * @sk_send_head: front of stuff to transmit
250 * @sk_security: used by security modules
251 * @sk_mark: generic packet mark
252 * @sk_classid: this socket's cgroup classid
253 * @sk_cgrp: this socket's cgroup-specific proto data
254 * @sk_write_pending: a write to stream socket waits to start
255 * @sk_state_change: callback to indicate change in the state of the sock
256 * @sk_data_ready: callback to indicate there is data to be processed
257 * @sk_write_space: callback to indicate there is bf sending space available
258 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
259 * @sk_backlog_rcv: callback to process the backlog
260 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
262 struct sock {
264 * Now struct inet_timewait_sock also uses sock_common, so please just
265 * don't add nothing before this first member (__sk_common) --acme
267 struct sock_common __sk_common;
268 #define sk_node __sk_common.skc_node
269 #define sk_nulls_node __sk_common.skc_nulls_node
270 #define sk_refcnt __sk_common.skc_refcnt
271 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping
273 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin
274 #define sk_dontcopy_end __sk_common.skc_dontcopy_end
275 #define sk_hash __sk_common.skc_hash
276 #define sk_family __sk_common.skc_family
277 #define sk_state __sk_common.skc_state
278 #define sk_reuse __sk_common.skc_reuse
279 #define sk_bound_dev_if __sk_common.skc_bound_dev_if
280 #define sk_bind_node __sk_common.skc_bind_node
281 #define sk_prot __sk_common.skc_prot
282 #define sk_net __sk_common.skc_net
283 socket_lock_t sk_lock;
284 struct sk_buff_head sk_receive_queue;
286 * The backlog queue is special, it is always used with
287 * the per-socket spinlock held and requires low latency
288 * access. Therefore we special case it's implementation.
289 * Note : rmem_alloc is in this structure to fill a hole
290 * on 64bit arches, not because its logically part of
291 * backlog.
293 struct {
294 atomic_t rmem_alloc;
295 int len;
296 struct sk_buff *head;
297 struct sk_buff *tail;
298 } sk_backlog;
299 #define sk_rmem_alloc sk_backlog.rmem_alloc
300 int sk_forward_alloc;
301 #ifdef CONFIG_RPS
302 __u32 sk_rxhash;
303 #endif
304 atomic_t sk_drops;
305 int sk_rcvbuf;
307 struct sk_filter __rcu *sk_filter;
308 struct socket_wq __rcu *sk_wq;
310 #ifdef CONFIG_NET_DMA
311 struct sk_buff_head sk_async_wait_queue;
312 #endif
314 #ifdef CONFIG_XFRM
315 struct xfrm_policy *sk_policy[2];
316 #endif
317 unsigned long sk_flags;
318 struct dst_entry *sk_dst_cache;
319 spinlock_t sk_dst_lock;
320 atomic_t sk_wmem_alloc;
321 atomic_t sk_omem_alloc;
322 int sk_sndbuf;
323 struct sk_buff_head sk_write_queue;
324 kmemcheck_bitfield_begin(flags);
325 unsigned int sk_shutdown : 2,
326 sk_no_check : 2,
327 sk_userlocks : 4,
328 sk_protocol : 8,
329 sk_type : 16;
330 kmemcheck_bitfield_end(flags);
331 int sk_wmem_queued;
332 gfp_t sk_allocation;
333 netdev_features_t sk_route_caps;
334 netdev_features_t sk_route_nocaps;
335 int sk_gso_type;
336 unsigned int sk_gso_max_size;
337 int sk_rcvlowat;
338 unsigned long sk_lingertime;
339 struct sk_buff_head sk_error_queue;
340 struct proto *sk_prot_creator;
341 rwlock_t sk_callback_lock;
342 int sk_err,
343 sk_err_soft;
344 unsigned short sk_ack_backlog;
345 unsigned short sk_max_ack_backlog;
346 __u32 sk_priority;
347 #ifdef CONFIG_CGROUPS
348 __u32 sk_cgrp_prioidx;
349 #endif
350 struct pid *sk_peer_pid;
351 const struct cred *sk_peer_cred;
352 long sk_rcvtimeo;
353 long sk_sndtimeo;
354 void *sk_protinfo;
355 struct timer_list sk_timer;
356 ktime_t sk_stamp;
357 struct socket *sk_socket;
358 void *sk_user_data;
359 struct page *sk_sndmsg_page;
360 struct sk_buff *sk_send_head;
361 __u32 sk_sndmsg_off;
362 __s32 sk_peek_off;
363 int sk_write_pending;
364 #ifdef CONFIG_SECURITY
365 void *sk_security;
366 #endif
367 __u32 sk_mark;
368 u32 sk_classid;
369 struct cg_proto *sk_cgrp;
370 void (*sk_state_change)(struct sock *sk);
371 void (*sk_data_ready)(struct sock *sk, int bytes);
372 void (*sk_write_space)(struct sock *sk);
373 void (*sk_error_report)(struct sock *sk);
374 int (*sk_backlog_rcv)(struct sock *sk,
375 struct sk_buff *skb);
376 void (*sk_destruct)(struct sock *sk);
379 static inline int sk_peek_offset(struct sock *sk, int flags)
381 if ((flags & MSG_PEEK) && (sk->sk_peek_off >= 0))
382 return sk->sk_peek_off;
383 else
384 return 0;
387 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
389 if (sk->sk_peek_off >= 0) {
390 if (sk->sk_peek_off >= val)
391 sk->sk_peek_off -= val;
392 else
393 sk->sk_peek_off = 0;
397 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
399 if (sk->sk_peek_off >= 0)
400 sk->sk_peek_off += val;
404 * Hashed lists helper routines
406 static inline struct sock *sk_entry(const struct hlist_node *node)
408 return hlist_entry(node, struct sock, sk_node);
411 static inline struct sock *__sk_head(const struct hlist_head *head)
413 return hlist_entry(head->first, struct sock, sk_node);
416 static inline struct sock *sk_head(const struct hlist_head *head)
418 return hlist_empty(head) ? NULL : __sk_head(head);
421 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
423 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
426 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
428 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
431 static inline struct sock *sk_next(const struct sock *sk)
433 return sk->sk_node.next ?
434 hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
437 static inline struct sock *sk_nulls_next(const struct sock *sk)
439 return (!is_a_nulls(sk->sk_nulls_node.next)) ?
440 hlist_nulls_entry(sk->sk_nulls_node.next,
441 struct sock, sk_nulls_node) :
442 NULL;
445 static inline int sk_unhashed(const struct sock *sk)
447 return hlist_unhashed(&sk->sk_node);
450 static inline int sk_hashed(const struct sock *sk)
452 return !sk_unhashed(sk);
455 static __inline__ void sk_node_init(struct hlist_node *node)
457 node->pprev = NULL;
460 static __inline__ void sk_nulls_node_init(struct hlist_nulls_node *node)
462 node->pprev = NULL;
465 static __inline__ void __sk_del_node(struct sock *sk)
467 __hlist_del(&sk->sk_node);
470 /* NB: equivalent to hlist_del_init_rcu */
471 static __inline__ int __sk_del_node_init(struct sock *sk)
473 if (sk_hashed(sk)) {
474 __sk_del_node(sk);
475 sk_node_init(&sk->sk_node);
476 return 1;
478 return 0;
481 /* Grab socket reference count. This operation is valid only
482 when sk is ALREADY grabbed f.e. it is found in hash table
483 or a list and the lookup is made under lock preventing hash table
484 modifications.
487 static inline void sock_hold(struct sock *sk)
489 atomic_inc(&sk->sk_refcnt);
492 /* Ungrab socket in the context, which assumes that socket refcnt
493 cannot hit zero, f.e. it is true in context of any socketcall.
495 static inline void __sock_put(struct sock *sk)
497 atomic_dec(&sk->sk_refcnt);
500 static __inline__ int sk_del_node_init(struct sock *sk)
502 int rc = __sk_del_node_init(sk);
504 if (rc) {
505 /* paranoid for a while -acme */
506 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
507 __sock_put(sk);
509 return rc;
511 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk)
513 static __inline__ int __sk_nulls_del_node_init_rcu(struct sock *sk)
515 if (sk_hashed(sk)) {
516 hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
517 return 1;
519 return 0;
522 static __inline__ int sk_nulls_del_node_init_rcu(struct sock *sk)
524 int rc = __sk_nulls_del_node_init_rcu(sk);
526 if (rc) {
527 /* paranoid for a while -acme */
528 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
529 __sock_put(sk);
531 return rc;
534 static __inline__ void __sk_add_node(struct sock *sk, struct hlist_head *list)
536 hlist_add_head(&sk->sk_node, list);
539 static __inline__ void sk_add_node(struct sock *sk, struct hlist_head *list)
541 sock_hold(sk);
542 __sk_add_node(sk, list);
545 static __inline__ void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
547 sock_hold(sk);
548 hlist_add_head_rcu(&sk->sk_node, list);
551 static __inline__ void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
553 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
556 static __inline__ void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
558 sock_hold(sk);
559 __sk_nulls_add_node_rcu(sk, list);
562 static __inline__ void __sk_del_bind_node(struct sock *sk)
564 __hlist_del(&sk->sk_bind_node);
567 static __inline__ void sk_add_bind_node(struct sock *sk,
568 struct hlist_head *list)
570 hlist_add_head(&sk->sk_bind_node, list);
573 #define sk_for_each(__sk, node, list) \
574 hlist_for_each_entry(__sk, node, list, sk_node)
575 #define sk_for_each_rcu(__sk, node, list) \
576 hlist_for_each_entry_rcu(__sk, node, list, sk_node)
577 #define sk_nulls_for_each(__sk, node, list) \
578 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
579 #define sk_nulls_for_each_rcu(__sk, node, list) \
580 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
581 #define sk_for_each_from(__sk, node) \
582 if (__sk && ({ node = &(__sk)->sk_node; 1; })) \
583 hlist_for_each_entry_from(__sk, node, sk_node)
584 #define sk_nulls_for_each_from(__sk, node) \
585 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
586 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
587 #define sk_for_each_safe(__sk, node, tmp, list) \
588 hlist_for_each_entry_safe(__sk, node, tmp, list, sk_node)
589 #define sk_for_each_bound(__sk, node, list) \
590 hlist_for_each_entry(__sk, node, list, sk_bind_node)
592 /* Sock flags */
593 enum sock_flags {
594 SOCK_DEAD,
595 SOCK_DONE,
596 SOCK_URGINLINE,
597 SOCK_KEEPOPEN,
598 SOCK_LINGER,
599 SOCK_DESTROY,
600 SOCK_BROADCAST,
601 SOCK_TIMESTAMP,
602 SOCK_ZAPPED,
603 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
604 SOCK_DBG, /* %SO_DEBUG setting */
605 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
606 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
607 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
608 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
609 SOCK_TIMESTAMPING_TX_HARDWARE, /* %SOF_TIMESTAMPING_TX_HARDWARE */
610 SOCK_TIMESTAMPING_TX_SOFTWARE, /* %SOF_TIMESTAMPING_TX_SOFTWARE */
611 SOCK_TIMESTAMPING_RX_HARDWARE, /* %SOF_TIMESTAMPING_RX_HARDWARE */
612 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */
613 SOCK_TIMESTAMPING_SOFTWARE, /* %SOF_TIMESTAMPING_SOFTWARE */
614 SOCK_TIMESTAMPING_RAW_HARDWARE, /* %SOF_TIMESTAMPING_RAW_HARDWARE */
615 SOCK_TIMESTAMPING_SYS_HARDWARE, /* %SOF_TIMESTAMPING_SYS_HARDWARE */
616 SOCK_FASYNC, /* fasync() active */
617 SOCK_RXQ_OVFL,
618 SOCK_ZEROCOPY, /* buffers from userspace */
619 SOCK_WIFI_STATUS, /* push wifi status to userspace */
620 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
621 * Will use last 4 bytes of packet sent from
622 * user-space instead.
626 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
628 nsk->sk_flags = osk->sk_flags;
631 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
633 __set_bit(flag, &sk->sk_flags);
636 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
638 __clear_bit(flag, &sk->sk_flags);
641 static inline int sock_flag(struct sock *sk, enum sock_flags flag)
643 return test_bit(flag, &sk->sk_flags);
646 static inline void sk_acceptq_removed(struct sock *sk)
648 sk->sk_ack_backlog--;
651 static inline void sk_acceptq_added(struct sock *sk)
653 sk->sk_ack_backlog++;
656 static inline int sk_acceptq_is_full(struct sock *sk)
658 return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
662 * Compute minimal free write space needed to queue new packets.
664 static inline int sk_stream_min_wspace(struct sock *sk)
666 return sk->sk_wmem_queued >> 1;
669 static inline int sk_stream_wspace(struct sock *sk)
671 return sk->sk_sndbuf - sk->sk_wmem_queued;
674 extern void sk_stream_write_space(struct sock *sk);
676 static inline int sk_stream_memory_free(struct sock *sk)
678 return sk->sk_wmem_queued < sk->sk_sndbuf;
681 /* OOB backlog add */
682 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
684 /* dont let skb dst not refcounted, we are going to leave rcu lock */
685 skb_dst_force(skb);
687 if (!sk->sk_backlog.tail)
688 sk->sk_backlog.head = skb;
689 else
690 sk->sk_backlog.tail->next = skb;
692 sk->sk_backlog.tail = skb;
693 skb->next = NULL;
697 * Take into account size of receive queue and backlog queue
698 * Do not take into account this skb truesize,
699 * to allow even a single big packet to come.
701 static inline bool sk_rcvqueues_full(const struct sock *sk, const struct sk_buff *skb)
703 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
705 return qsize > sk->sk_rcvbuf;
708 /* The per-socket spinlock must be held here. */
709 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb)
711 if (sk_rcvqueues_full(sk, skb))
712 return -ENOBUFS;
714 __sk_add_backlog(sk, skb);
715 sk->sk_backlog.len += skb->truesize;
716 return 0;
719 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
721 return sk->sk_backlog_rcv(sk, skb);
724 static inline void sock_rps_record_flow(const struct sock *sk)
726 #ifdef CONFIG_RPS
727 struct rps_sock_flow_table *sock_flow_table;
729 rcu_read_lock();
730 sock_flow_table = rcu_dereference(rps_sock_flow_table);
731 rps_record_sock_flow(sock_flow_table, sk->sk_rxhash);
732 rcu_read_unlock();
733 #endif
736 static inline void sock_rps_reset_flow(const struct sock *sk)
738 #ifdef CONFIG_RPS
739 struct rps_sock_flow_table *sock_flow_table;
741 rcu_read_lock();
742 sock_flow_table = rcu_dereference(rps_sock_flow_table);
743 rps_reset_sock_flow(sock_flow_table, sk->sk_rxhash);
744 rcu_read_unlock();
745 #endif
748 static inline void sock_rps_save_rxhash(struct sock *sk,
749 const struct sk_buff *skb)
751 #ifdef CONFIG_RPS
752 if (unlikely(sk->sk_rxhash != skb->rxhash)) {
753 sock_rps_reset_flow(sk);
754 sk->sk_rxhash = skb->rxhash;
756 #endif
759 static inline void sock_rps_reset_rxhash(struct sock *sk)
761 #ifdef CONFIG_RPS
762 sock_rps_reset_flow(sk);
763 sk->sk_rxhash = 0;
764 #endif
767 #define sk_wait_event(__sk, __timeo, __condition) \
768 ({ int __rc; \
769 release_sock(__sk); \
770 __rc = __condition; \
771 if (!__rc) { \
772 *(__timeo) = schedule_timeout(*(__timeo)); \
774 lock_sock(__sk); \
775 __rc = __condition; \
776 __rc; \
779 extern int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
780 extern int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
781 extern void sk_stream_wait_close(struct sock *sk, long timeo_p);
782 extern int sk_stream_error(struct sock *sk, int flags, int err);
783 extern void sk_stream_kill_queues(struct sock *sk);
785 extern int sk_wait_data(struct sock *sk, long *timeo);
787 struct request_sock_ops;
788 struct timewait_sock_ops;
789 struct inet_hashinfo;
790 struct raw_hashinfo;
791 struct module;
793 /* Networking protocol blocks we attach to sockets.
794 * socket layer -> transport layer interface
795 * transport -> network interface is defined by struct inet_proto
797 struct proto {
798 void (*close)(struct sock *sk,
799 long timeout);
800 int (*connect)(struct sock *sk,
801 struct sockaddr *uaddr,
802 int addr_len);
803 int (*disconnect)(struct sock *sk, int flags);
805 struct sock * (*accept) (struct sock *sk, int flags, int *err);
807 int (*ioctl)(struct sock *sk, int cmd,
808 unsigned long arg);
809 int (*init)(struct sock *sk);
810 void (*destroy)(struct sock *sk);
811 void (*shutdown)(struct sock *sk, int how);
812 int (*setsockopt)(struct sock *sk, int level,
813 int optname, char __user *optval,
814 unsigned int optlen);
815 int (*getsockopt)(struct sock *sk, int level,
816 int optname, char __user *optval,
817 int __user *option);
818 #ifdef CONFIG_COMPAT
819 int (*compat_setsockopt)(struct sock *sk,
820 int level,
821 int optname, char __user *optval,
822 unsigned int optlen);
823 int (*compat_getsockopt)(struct sock *sk,
824 int level,
825 int optname, char __user *optval,
826 int __user *option);
827 int (*compat_ioctl)(struct sock *sk,
828 unsigned int cmd, unsigned long arg);
829 #endif
830 int (*sendmsg)(struct kiocb *iocb, struct sock *sk,
831 struct msghdr *msg, size_t len);
832 int (*recvmsg)(struct kiocb *iocb, struct sock *sk,
833 struct msghdr *msg,
834 size_t len, int noblock, int flags,
835 int *addr_len);
836 int (*sendpage)(struct sock *sk, struct page *page,
837 int offset, size_t size, int flags);
838 int (*bind)(struct sock *sk,
839 struct sockaddr *uaddr, int addr_len);
841 int (*backlog_rcv) (struct sock *sk,
842 struct sk_buff *skb);
844 /* Keeping track of sk's, looking them up, and port selection methods. */
845 void (*hash)(struct sock *sk);
846 void (*unhash)(struct sock *sk);
847 void (*rehash)(struct sock *sk);
848 int (*get_port)(struct sock *sk, unsigned short snum);
849 void (*clear_sk)(struct sock *sk, int size);
851 /* Keeping track of sockets in use */
852 #ifdef CONFIG_PROC_FS
853 unsigned int inuse_idx;
854 #endif
856 /* Memory pressure */
857 void (*enter_memory_pressure)(struct sock *sk);
858 atomic_long_t *memory_allocated; /* Current allocated memory. */
859 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
861 * Pressure flag: try to collapse.
862 * Technical note: it is used by multiple contexts non atomically.
863 * All the __sk_mem_schedule() is of this nature: accounting
864 * is strict, actions are advisory and have some latency.
866 int *memory_pressure;
867 long *sysctl_mem;
868 int *sysctl_wmem;
869 int *sysctl_rmem;
870 int max_header;
871 bool no_autobind;
873 struct kmem_cache *slab;
874 unsigned int obj_size;
875 int slab_flags;
877 struct percpu_counter *orphan_count;
879 struct request_sock_ops *rsk_prot;
880 struct timewait_sock_ops *twsk_prot;
882 union {
883 struct inet_hashinfo *hashinfo;
884 struct udp_table *udp_table;
885 struct raw_hashinfo *raw_hash;
886 } h;
888 struct module *owner;
890 char name[32];
892 struct list_head node;
893 #ifdef SOCK_REFCNT_DEBUG
894 atomic_t socks;
895 #endif
896 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
898 * cgroup specific init/deinit functions. Called once for all
899 * protocols that implement it, from cgroups populate function.
900 * This function has to setup any files the protocol want to
901 * appear in the kmem cgroup filesystem.
903 int (*init_cgroup)(struct cgroup *cgrp,
904 struct cgroup_subsys *ss);
905 void (*destroy_cgroup)(struct cgroup *cgrp);
906 struct cg_proto *(*proto_cgroup)(struct mem_cgroup *memcg);
907 #endif
910 struct cg_proto {
911 void (*enter_memory_pressure)(struct sock *sk);
912 struct res_counter *memory_allocated; /* Current allocated memory. */
913 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
914 int *memory_pressure;
915 long *sysctl_mem;
917 * memcg field is used to find which memcg we belong directly
918 * Each memcg struct can hold more than one cg_proto, so container_of
919 * won't really cut.
921 * The elegant solution would be having an inverse function to
922 * proto_cgroup in struct proto, but that means polluting the structure
923 * for everybody, instead of just for memcg users.
925 struct mem_cgroup *memcg;
928 extern int proto_register(struct proto *prot, int alloc_slab);
929 extern void proto_unregister(struct proto *prot);
931 #ifdef SOCK_REFCNT_DEBUG
932 static inline void sk_refcnt_debug_inc(struct sock *sk)
934 atomic_inc(&sk->sk_prot->socks);
937 static inline void sk_refcnt_debug_dec(struct sock *sk)
939 atomic_dec(&sk->sk_prot->socks);
940 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
941 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
944 inline void sk_refcnt_debug_release(const struct sock *sk)
946 if (atomic_read(&sk->sk_refcnt) != 1)
947 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
948 sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
950 #else /* SOCK_REFCNT_DEBUG */
951 #define sk_refcnt_debug_inc(sk) do { } while (0)
952 #define sk_refcnt_debug_dec(sk) do { } while (0)
953 #define sk_refcnt_debug_release(sk) do { } while (0)
954 #endif /* SOCK_REFCNT_DEBUG */
956 #if defined(CONFIG_CGROUP_MEM_RES_CTLR_KMEM) && defined(CONFIG_NET)
957 extern struct static_key memcg_socket_limit_enabled;
958 static inline struct cg_proto *parent_cg_proto(struct proto *proto,
959 struct cg_proto *cg_proto)
961 return proto->proto_cgroup(parent_mem_cgroup(cg_proto->memcg));
963 #define mem_cgroup_sockets_enabled static_key_false(&memcg_socket_limit_enabled)
964 #else
965 #define mem_cgroup_sockets_enabled 0
966 static inline struct cg_proto *parent_cg_proto(struct proto *proto,
967 struct cg_proto *cg_proto)
969 return NULL;
971 #endif
974 static inline bool sk_has_memory_pressure(const struct sock *sk)
976 return sk->sk_prot->memory_pressure != NULL;
979 static inline bool sk_under_memory_pressure(const struct sock *sk)
981 if (!sk->sk_prot->memory_pressure)
982 return false;
984 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
985 return !!*sk->sk_cgrp->memory_pressure;
987 return !!*sk->sk_prot->memory_pressure;
990 static inline void sk_leave_memory_pressure(struct sock *sk)
992 int *memory_pressure = sk->sk_prot->memory_pressure;
994 if (!memory_pressure)
995 return;
997 if (*memory_pressure)
998 *memory_pressure = 0;
1000 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1001 struct cg_proto *cg_proto = sk->sk_cgrp;
1002 struct proto *prot = sk->sk_prot;
1004 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1005 if (*cg_proto->memory_pressure)
1006 *cg_proto->memory_pressure = 0;
1011 static inline void sk_enter_memory_pressure(struct sock *sk)
1013 if (!sk->sk_prot->enter_memory_pressure)
1014 return;
1016 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1017 struct cg_proto *cg_proto = sk->sk_cgrp;
1018 struct proto *prot = sk->sk_prot;
1020 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1021 cg_proto->enter_memory_pressure(sk);
1024 sk->sk_prot->enter_memory_pressure(sk);
1027 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1029 long *prot = sk->sk_prot->sysctl_mem;
1030 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1031 prot = sk->sk_cgrp->sysctl_mem;
1032 return prot[index];
1035 static inline void memcg_memory_allocated_add(struct cg_proto *prot,
1036 unsigned long amt,
1037 int *parent_status)
1039 struct res_counter *fail;
1040 int ret;
1042 ret = res_counter_charge_nofail(prot->memory_allocated,
1043 amt << PAGE_SHIFT, &fail);
1044 if (ret < 0)
1045 *parent_status = OVER_LIMIT;
1048 static inline void memcg_memory_allocated_sub(struct cg_proto *prot,
1049 unsigned long amt)
1051 res_counter_uncharge(prot->memory_allocated, amt << PAGE_SHIFT);
1054 static inline u64 memcg_memory_allocated_read(struct cg_proto *prot)
1056 u64 ret;
1057 ret = res_counter_read_u64(prot->memory_allocated, RES_USAGE);
1058 return ret >> PAGE_SHIFT;
1061 static inline long
1062 sk_memory_allocated(const struct sock *sk)
1064 struct proto *prot = sk->sk_prot;
1065 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1066 return memcg_memory_allocated_read(sk->sk_cgrp);
1068 return atomic_long_read(prot->memory_allocated);
1071 static inline long
1072 sk_memory_allocated_add(struct sock *sk, int amt, int *parent_status)
1074 struct proto *prot = sk->sk_prot;
1076 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1077 memcg_memory_allocated_add(sk->sk_cgrp, amt, parent_status);
1078 /* update the root cgroup regardless */
1079 atomic_long_add_return(amt, prot->memory_allocated);
1080 return memcg_memory_allocated_read(sk->sk_cgrp);
1083 return atomic_long_add_return(amt, prot->memory_allocated);
1086 static inline void
1087 sk_memory_allocated_sub(struct sock *sk, int amt)
1089 struct proto *prot = sk->sk_prot;
1091 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1092 memcg_memory_allocated_sub(sk->sk_cgrp, amt);
1094 atomic_long_sub(amt, prot->memory_allocated);
1097 static inline void sk_sockets_allocated_dec(struct sock *sk)
1099 struct proto *prot = sk->sk_prot;
1101 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1102 struct cg_proto *cg_proto = sk->sk_cgrp;
1104 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1105 percpu_counter_dec(cg_proto->sockets_allocated);
1108 percpu_counter_dec(prot->sockets_allocated);
1111 static inline void sk_sockets_allocated_inc(struct sock *sk)
1113 struct proto *prot = sk->sk_prot;
1115 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1116 struct cg_proto *cg_proto = sk->sk_cgrp;
1118 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1119 percpu_counter_inc(cg_proto->sockets_allocated);
1122 percpu_counter_inc(prot->sockets_allocated);
1125 static inline int
1126 sk_sockets_allocated_read_positive(struct sock *sk)
1128 struct proto *prot = sk->sk_prot;
1130 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1131 return percpu_counter_sum_positive(sk->sk_cgrp->sockets_allocated);
1133 return percpu_counter_sum_positive(prot->sockets_allocated);
1136 static inline int
1137 proto_sockets_allocated_sum_positive(struct proto *prot)
1139 return percpu_counter_sum_positive(prot->sockets_allocated);
1142 static inline long
1143 proto_memory_allocated(struct proto *prot)
1145 return atomic_long_read(prot->memory_allocated);
1148 static inline bool
1149 proto_memory_pressure(struct proto *prot)
1151 if (!prot->memory_pressure)
1152 return false;
1153 return !!*prot->memory_pressure;
1157 #ifdef CONFIG_PROC_FS
1158 /* Called with local bh disabled */
1159 extern void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1160 extern int sock_prot_inuse_get(struct net *net, struct proto *proto);
1161 #else
1162 static void inline sock_prot_inuse_add(struct net *net, struct proto *prot,
1163 int inc)
1166 #endif
1169 /* With per-bucket locks this operation is not-atomic, so that
1170 * this version is not worse.
1172 static inline void __sk_prot_rehash(struct sock *sk)
1174 sk->sk_prot->unhash(sk);
1175 sk->sk_prot->hash(sk);
1178 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size);
1180 /* About 10 seconds */
1181 #define SOCK_DESTROY_TIME (10*HZ)
1183 /* Sockets 0-1023 can't be bound to unless you are superuser */
1184 #define PROT_SOCK 1024
1186 #define SHUTDOWN_MASK 3
1187 #define RCV_SHUTDOWN 1
1188 #define SEND_SHUTDOWN 2
1190 #define SOCK_SNDBUF_LOCK 1
1191 #define SOCK_RCVBUF_LOCK 2
1192 #define SOCK_BINDADDR_LOCK 4
1193 #define SOCK_BINDPORT_LOCK 8
1195 /* sock_iocb: used to kick off async processing of socket ios */
1196 struct sock_iocb {
1197 struct list_head list;
1199 int flags;
1200 int size;
1201 struct socket *sock;
1202 struct sock *sk;
1203 struct scm_cookie *scm;
1204 struct msghdr *msg, async_msg;
1205 struct kiocb *kiocb;
1208 static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb)
1210 return (struct sock_iocb *)iocb->private;
1213 static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si)
1215 return si->kiocb;
1218 struct socket_alloc {
1219 struct socket socket;
1220 struct inode vfs_inode;
1223 static inline struct socket *SOCKET_I(struct inode *inode)
1225 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1228 static inline struct inode *SOCK_INODE(struct socket *socket)
1230 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1234 * Functions for memory accounting
1236 extern int __sk_mem_schedule(struct sock *sk, int size, int kind);
1237 extern void __sk_mem_reclaim(struct sock *sk);
1239 #define SK_MEM_QUANTUM ((int)PAGE_SIZE)
1240 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1241 #define SK_MEM_SEND 0
1242 #define SK_MEM_RECV 1
1244 static inline int sk_mem_pages(int amt)
1246 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1249 static inline int sk_has_account(struct sock *sk)
1251 /* return true if protocol supports memory accounting */
1252 return !!sk->sk_prot->memory_allocated;
1255 static inline int sk_wmem_schedule(struct sock *sk, int size)
1257 if (!sk_has_account(sk))
1258 return 1;
1259 return size <= sk->sk_forward_alloc ||
1260 __sk_mem_schedule(sk, size, SK_MEM_SEND);
1263 static inline int sk_rmem_schedule(struct sock *sk, int size)
1265 if (!sk_has_account(sk))
1266 return 1;
1267 return size <= sk->sk_forward_alloc ||
1268 __sk_mem_schedule(sk, size, SK_MEM_RECV);
1271 static inline void sk_mem_reclaim(struct sock *sk)
1273 if (!sk_has_account(sk))
1274 return;
1275 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1276 __sk_mem_reclaim(sk);
1279 static inline void sk_mem_reclaim_partial(struct sock *sk)
1281 if (!sk_has_account(sk))
1282 return;
1283 if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1284 __sk_mem_reclaim(sk);
1287 static inline void sk_mem_charge(struct sock *sk, int size)
1289 if (!sk_has_account(sk))
1290 return;
1291 sk->sk_forward_alloc -= size;
1294 static inline void sk_mem_uncharge(struct sock *sk, int size)
1296 if (!sk_has_account(sk))
1297 return;
1298 sk->sk_forward_alloc += size;
1301 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1303 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1304 sk->sk_wmem_queued -= skb->truesize;
1305 sk_mem_uncharge(sk, skb->truesize);
1306 __kfree_skb(skb);
1309 /* Used by processes to "lock" a socket state, so that
1310 * interrupts and bottom half handlers won't change it
1311 * from under us. It essentially blocks any incoming
1312 * packets, so that we won't get any new data or any
1313 * packets that change the state of the socket.
1315 * While locked, BH processing will add new packets to
1316 * the backlog queue. This queue is processed by the
1317 * owner of the socket lock right before it is released.
1319 * Since ~2.3.5 it is also exclusive sleep lock serializing
1320 * accesses from user process context.
1322 #define sock_owned_by_user(sk) ((sk)->sk_lock.owned)
1325 * Macro so as to not evaluate some arguments when
1326 * lockdep is not enabled.
1328 * Mark both the sk_lock and the sk_lock.slock as a
1329 * per-address-family lock class.
1331 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \
1332 do { \
1333 sk->sk_lock.owned = 0; \
1334 init_waitqueue_head(&sk->sk_lock.wq); \
1335 spin_lock_init(&(sk)->sk_lock.slock); \
1336 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \
1337 sizeof((sk)->sk_lock)); \
1338 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \
1339 (skey), (sname)); \
1340 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
1341 } while (0)
1343 extern void lock_sock_nested(struct sock *sk, int subclass);
1345 static inline void lock_sock(struct sock *sk)
1347 lock_sock_nested(sk, 0);
1350 extern void release_sock(struct sock *sk);
1352 /* BH context may only use the following locking interface. */
1353 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
1354 #define bh_lock_sock_nested(__sk) \
1355 spin_lock_nested(&((__sk)->sk_lock.slock), \
1356 SINGLE_DEPTH_NESTING)
1357 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
1359 extern bool lock_sock_fast(struct sock *sk);
1361 * unlock_sock_fast - complement of lock_sock_fast
1362 * @sk: socket
1363 * @slow: slow mode
1365 * fast unlock socket for user context.
1366 * If slow mode is on, we call regular release_sock()
1368 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1370 if (slow)
1371 release_sock(sk);
1372 else
1373 spin_unlock_bh(&sk->sk_lock.slock);
1377 extern struct sock *sk_alloc(struct net *net, int family,
1378 gfp_t priority,
1379 struct proto *prot);
1380 extern void sk_free(struct sock *sk);
1381 extern void sk_release_kernel(struct sock *sk);
1382 extern struct sock *sk_clone_lock(const struct sock *sk,
1383 const gfp_t priority);
1385 extern struct sk_buff *sock_wmalloc(struct sock *sk,
1386 unsigned long size, int force,
1387 gfp_t priority);
1388 extern struct sk_buff *sock_rmalloc(struct sock *sk,
1389 unsigned long size, int force,
1390 gfp_t priority);
1391 extern void sock_wfree(struct sk_buff *skb);
1392 extern void sock_rfree(struct sk_buff *skb);
1394 extern int sock_setsockopt(struct socket *sock, int level,
1395 int op, char __user *optval,
1396 unsigned int optlen);
1398 extern int sock_getsockopt(struct socket *sock, int level,
1399 int op, char __user *optval,
1400 int __user *optlen);
1401 extern struct sk_buff *sock_alloc_send_skb(struct sock *sk,
1402 unsigned long size,
1403 int noblock,
1404 int *errcode);
1405 extern struct sk_buff *sock_alloc_send_pskb(struct sock *sk,
1406 unsigned long header_len,
1407 unsigned long data_len,
1408 int noblock,
1409 int *errcode);
1410 extern void *sock_kmalloc(struct sock *sk, int size,
1411 gfp_t priority);
1412 extern void sock_kfree_s(struct sock *sk, void *mem, int size);
1413 extern void sk_send_sigurg(struct sock *sk);
1415 #ifdef CONFIG_CGROUPS
1416 extern void sock_update_classid(struct sock *sk);
1417 #else
1418 static inline void sock_update_classid(struct sock *sk)
1421 #endif
1424 * Functions to fill in entries in struct proto_ops when a protocol
1425 * does not implement a particular function.
1427 extern int sock_no_bind(struct socket *,
1428 struct sockaddr *, int);
1429 extern int sock_no_connect(struct socket *,
1430 struct sockaddr *, int, int);
1431 extern int sock_no_socketpair(struct socket *,
1432 struct socket *);
1433 extern int sock_no_accept(struct socket *,
1434 struct socket *, int);
1435 extern int sock_no_getname(struct socket *,
1436 struct sockaddr *, int *, int);
1437 extern unsigned int sock_no_poll(struct file *, struct socket *,
1438 struct poll_table_struct *);
1439 extern int sock_no_ioctl(struct socket *, unsigned int,
1440 unsigned long);
1441 extern int sock_no_listen(struct socket *, int);
1442 extern int sock_no_shutdown(struct socket *, int);
1443 extern int sock_no_getsockopt(struct socket *, int , int,
1444 char __user *, int __user *);
1445 extern int sock_no_setsockopt(struct socket *, int, int,
1446 char __user *, unsigned int);
1447 extern int sock_no_sendmsg(struct kiocb *, struct socket *,
1448 struct msghdr *, size_t);
1449 extern int sock_no_recvmsg(struct kiocb *, struct socket *,
1450 struct msghdr *, size_t, int);
1451 extern int sock_no_mmap(struct file *file,
1452 struct socket *sock,
1453 struct vm_area_struct *vma);
1454 extern ssize_t sock_no_sendpage(struct socket *sock,
1455 struct page *page,
1456 int offset, size_t size,
1457 int flags);
1460 * Functions to fill in entries in struct proto_ops when a protocol
1461 * uses the inet style.
1463 extern int sock_common_getsockopt(struct socket *sock, int level, int optname,
1464 char __user *optval, int __user *optlen);
1465 extern int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1466 struct msghdr *msg, size_t size, int flags);
1467 extern int sock_common_setsockopt(struct socket *sock, int level, int optname,
1468 char __user *optval, unsigned int optlen);
1469 extern int compat_sock_common_getsockopt(struct socket *sock, int level,
1470 int optname, char __user *optval, int __user *optlen);
1471 extern int compat_sock_common_setsockopt(struct socket *sock, int level,
1472 int optname, char __user *optval, unsigned int optlen);
1474 extern void sk_common_release(struct sock *sk);
1477 * Default socket callbacks and setup code
1480 /* Initialise core socket variables */
1481 extern void sock_init_data(struct socket *sock, struct sock *sk);
1483 extern void sk_filter_release_rcu(struct rcu_head *rcu);
1486 * sk_filter_release - release a socket filter
1487 * @fp: filter to remove
1489 * Remove a filter from a socket and release its resources.
1492 static inline void sk_filter_release(struct sk_filter *fp)
1494 if (atomic_dec_and_test(&fp->refcnt))
1495 call_rcu(&fp->rcu, sk_filter_release_rcu);
1498 static inline void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1500 unsigned int size = sk_filter_len(fp);
1502 atomic_sub(size, &sk->sk_omem_alloc);
1503 sk_filter_release(fp);
1506 static inline void sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1508 atomic_inc(&fp->refcnt);
1509 atomic_add(sk_filter_len(fp), &sk->sk_omem_alloc);
1513 * Socket reference counting postulates.
1515 * * Each user of socket SHOULD hold a reference count.
1516 * * Each access point to socket (an hash table bucket, reference from a list,
1517 * running timer, skb in flight MUST hold a reference count.
1518 * * When reference count hits 0, it means it will never increase back.
1519 * * When reference count hits 0, it means that no references from
1520 * outside exist to this socket and current process on current CPU
1521 * is last user and may/should destroy this socket.
1522 * * sk_free is called from any context: process, BH, IRQ. When
1523 * it is called, socket has no references from outside -> sk_free
1524 * may release descendant resources allocated by the socket, but
1525 * to the time when it is called, socket is NOT referenced by any
1526 * hash tables, lists etc.
1527 * * Packets, delivered from outside (from network or from another process)
1528 * and enqueued on receive/error queues SHOULD NOT grab reference count,
1529 * when they sit in queue. Otherwise, packets will leak to hole, when
1530 * socket is looked up by one cpu and unhasing is made by another CPU.
1531 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
1532 * (leak to backlog). Packet socket does all the processing inside
1533 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1534 * use separate SMP lock, so that they are prone too.
1537 /* Ungrab socket and destroy it, if it was the last reference. */
1538 static inline void sock_put(struct sock *sk)
1540 if (atomic_dec_and_test(&sk->sk_refcnt))
1541 sk_free(sk);
1544 extern int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1545 const int nested);
1547 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1549 sk->sk_tx_queue_mapping = tx_queue;
1552 static inline void sk_tx_queue_clear(struct sock *sk)
1554 sk->sk_tx_queue_mapping = -1;
1557 static inline int sk_tx_queue_get(const struct sock *sk)
1559 return sk ? sk->sk_tx_queue_mapping : -1;
1562 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1564 sk_tx_queue_clear(sk);
1565 sk->sk_socket = sock;
1568 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1570 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1571 return &rcu_dereference_raw(sk->sk_wq)->wait;
1573 /* Detach socket from process context.
1574 * Announce socket dead, detach it from wait queue and inode.
1575 * Note that parent inode held reference count on this struct sock,
1576 * we do not release it in this function, because protocol
1577 * probably wants some additional cleanups or even continuing
1578 * to work with this socket (TCP).
1580 static inline void sock_orphan(struct sock *sk)
1582 write_lock_bh(&sk->sk_callback_lock);
1583 sock_set_flag(sk, SOCK_DEAD);
1584 sk_set_socket(sk, NULL);
1585 sk->sk_wq = NULL;
1586 write_unlock_bh(&sk->sk_callback_lock);
1589 static inline void sock_graft(struct sock *sk, struct socket *parent)
1591 write_lock_bh(&sk->sk_callback_lock);
1592 sk->sk_wq = parent->wq;
1593 parent->sk = sk;
1594 sk_set_socket(sk, parent);
1595 security_sock_graft(sk, parent);
1596 write_unlock_bh(&sk->sk_callback_lock);
1599 extern int sock_i_uid(struct sock *sk);
1600 extern unsigned long sock_i_ino(struct sock *sk);
1602 static inline struct dst_entry *
1603 __sk_dst_get(struct sock *sk)
1605 return rcu_dereference_check(sk->sk_dst_cache, sock_owned_by_user(sk) ||
1606 lockdep_is_held(&sk->sk_lock.slock));
1609 static inline struct dst_entry *
1610 sk_dst_get(struct sock *sk)
1612 struct dst_entry *dst;
1614 rcu_read_lock();
1615 dst = rcu_dereference(sk->sk_dst_cache);
1616 if (dst)
1617 dst_hold(dst);
1618 rcu_read_unlock();
1619 return dst;
1622 extern void sk_reset_txq(struct sock *sk);
1624 static inline void dst_negative_advice(struct sock *sk)
1626 struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1628 if (dst && dst->ops->negative_advice) {
1629 ndst = dst->ops->negative_advice(dst);
1631 if (ndst != dst) {
1632 rcu_assign_pointer(sk->sk_dst_cache, ndst);
1633 sk_reset_txq(sk);
1638 static inline void
1639 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1641 struct dst_entry *old_dst;
1643 sk_tx_queue_clear(sk);
1645 * This can be called while sk is owned by the caller only,
1646 * with no state that can be checked in a rcu_dereference_check() cond
1648 old_dst = rcu_dereference_raw(sk->sk_dst_cache);
1649 rcu_assign_pointer(sk->sk_dst_cache, dst);
1650 dst_release(old_dst);
1653 static inline void
1654 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1656 spin_lock(&sk->sk_dst_lock);
1657 __sk_dst_set(sk, dst);
1658 spin_unlock(&sk->sk_dst_lock);
1661 static inline void
1662 __sk_dst_reset(struct sock *sk)
1664 __sk_dst_set(sk, NULL);
1667 static inline void
1668 sk_dst_reset(struct sock *sk)
1670 spin_lock(&sk->sk_dst_lock);
1671 __sk_dst_reset(sk);
1672 spin_unlock(&sk->sk_dst_lock);
1675 extern struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1677 extern struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1679 static inline int sk_can_gso(const struct sock *sk)
1681 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1684 extern void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1686 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1688 sk->sk_route_nocaps |= flags;
1689 sk->sk_route_caps &= ~flags;
1692 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1693 char __user *from, char *to,
1694 int copy, int offset)
1696 if (skb->ip_summed == CHECKSUM_NONE) {
1697 int err = 0;
1698 __wsum csum = csum_and_copy_from_user(from, to, copy, 0, &err);
1699 if (err)
1700 return err;
1701 skb->csum = csum_block_add(skb->csum, csum, offset);
1702 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1703 if (!access_ok(VERIFY_READ, from, copy) ||
1704 __copy_from_user_nocache(to, from, copy))
1705 return -EFAULT;
1706 } else if (copy_from_user(to, from, copy))
1707 return -EFAULT;
1709 return 0;
1712 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1713 char __user *from, int copy)
1715 int err, offset = skb->len;
1717 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1718 copy, offset);
1719 if (err)
1720 __skb_trim(skb, offset);
1722 return err;
1725 static inline int skb_copy_to_page_nocache(struct sock *sk, char __user *from,
1726 struct sk_buff *skb,
1727 struct page *page,
1728 int off, int copy)
1730 int err;
1732 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1733 copy, skb->len);
1734 if (err)
1735 return err;
1737 skb->len += copy;
1738 skb->data_len += copy;
1739 skb->truesize += copy;
1740 sk->sk_wmem_queued += copy;
1741 sk_mem_charge(sk, copy);
1742 return 0;
1745 static inline int skb_copy_to_page(struct sock *sk, char __user *from,
1746 struct sk_buff *skb, struct page *page,
1747 int off, int copy)
1749 if (skb->ip_summed == CHECKSUM_NONE) {
1750 int err = 0;
1751 __wsum csum = csum_and_copy_from_user(from,
1752 page_address(page) + off,
1753 copy, 0, &err);
1754 if (err)
1755 return err;
1756 skb->csum = csum_block_add(skb->csum, csum, skb->len);
1757 } else if (copy_from_user(page_address(page) + off, from, copy))
1758 return -EFAULT;
1760 skb->len += copy;
1761 skb->data_len += copy;
1762 skb->truesize += copy;
1763 sk->sk_wmem_queued += copy;
1764 sk_mem_charge(sk, copy);
1765 return 0;
1769 * sk_wmem_alloc_get - returns write allocations
1770 * @sk: socket
1772 * Returns sk_wmem_alloc minus initial offset of one
1774 static inline int sk_wmem_alloc_get(const struct sock *sk)
1776 return atomic_read(&sk->sk_wmem_alloc) - 1;
1780 * sk_rmem_alloc_get - returns read allocations
1781 * @sk: socket
1783 * Returns sk_rmem_alloc
1785 static inline int sk_rmem_alloc_get(const struct sock *sk)
1787 return atomic_read(&sk->sk_rmem_alloc);
1791 * sk_has_allocations - check if allocations are outstanding
1792 * @sk: socket
1794 * Returns true if socket has write or read allocations
1796 static inline int sk_has_allocations(const struct sock *sk)
1798 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1802 * wq_has_sleeper - check if there are any waiting processes
1803 * @wq: struct socket_wq
1805 * Returns true if socket_wq has waiting processes
1807 * The purpose of the wq_has_sleeper and sock_poll_wait is to wrap the memory
1808 * barrier call. They were added due to the race found within the tcp code.
1810 * Consider following tcp code paths:
1812 * CPU1 CPU2
1814 * sys_select receive packet
1815 * ... ...
1816 * __add_wait_queue update tp->rcv_nxt
1817 * ... ...
1818 * tp->rcv_nxt check sock_def_readable
1819 * ... {
1820 * schedule rcu_read_lock();
1821 * wq = rcu_dereference(sk->sk_wq);
1822 * if (wq && waitqueue_active(&wq->wait))
1823 * wake_up_interruptible(&wq->wait)
1824 * ...
1827 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1828 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1
1829 * could then endup calling schedule and sleep forever if there are no more
1830 * data on the socket.
1833 static inline bool wq_has_sleeper(struct socket_wq *wq)
1837 * We need to be sure we are in sync with the
1838 * add_wait_queue modifications to the wait queue.
1840 * This memory barrier is paired in the sock_poll_wait.
1842 smp_mb();
1843 return wq && waitqueue_active(&wq->wait);
1847 * sock_poll_wait - place memory barrier behind the poll_wait call.
1848 * @filp: file
1849 * @wait_address: socket wait queue
1850 * @p: poll_table
1852 * See the comments in the wq_has_sleeper function.
1854 static inline void sock_poll_wait(struct file *filp,
1855 wait_queue_head_t *wait_address, poll_table *p)
1857 if (!poll_does_not_wait(p) && wait_address) {
1858 poll_wait(filp, wait_address, p);
1860 * We need to be sure we are in sync with the
1861 * socket flags modification.
1863 * This memory barrier is paired in the wq_has_sleeper.
1865 smp_mb();
1870 * Queue a received datagram if it will fit. Stream and sequenced
1871 * protocols can't normally use this as they need to fit buffers in
1872 * and play with them.
1874 * Inlined as it's very short and called for pretty much every
1875 * packet ever received.
1878 static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1880 skb_orphan(skb);
1881 skb->sk = sk;
1882 skb->destructor = sock_wfree;
1884 * We used to take a refcount on sk, but following operation
1885 * is enough to guarantee sk_free() wont free this sock until
1886 * all in-flight packets are completed
1888 atomic_add(skb->truesize, &sk->sk_wmem_alloc);
1891 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
1893 skb_orphan(skb);
1894 skb->sk = sk;
1895 skb->destructor = sock_rfree;
1896 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
1897 sk_mem_charge(sk, skb->truesize);
1900 extern void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1901 unsigned long expires);
1903 extern void sk_stop_timer(struct sock *sk, struct timer_list* timer);
1905 extern int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
1907 extern int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
1910 * Recover an error report and clear atomically
1913 static inline int sock_error(struct sock *sk)
1915 int err;
1916 if (likely(!sk->sk_err))
1917 return 0;
1918 err = xchg(&sk->sk_err, 0);
1919 return -err;
1922 static inline unsigned long sock_wspace(struct sock *sk)
1924 int amt = 0;
1926 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1927 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
1928 if (amt < 0)
1929 amt = 0;
1931 return amt;
1934 static inline void sk_wake_async(struct sock *sk, int how, int band)
1936 if (sock_flag(sk, SOCK_FASYNC))
1937 sock_wake_async(sk->sk_socket, how, band);
1940 #define SOCK_MIN_SNDBUF 2048
1942 * Since sk_rmem_alloc sums skb->truesize, even a small frame might need
1943 * sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak
1945 #define SOCK_MIN_RCVBUF (2048 + sizeof(struct sk_buff))
1947 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
1949 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
1950 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
1951 sk->sk_sndbuf = max(sk->sk_sndbuf, SOCK_MIN_SNDBUF);
1955 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp);
1957 static inline struct page *sk_stream_alloc_page(struct sock *sk)
1959 struct page *page = NULL;
1961 page = alloc_pages(sk->sk_allocation, 0);
1962 if (!page) {
1963 sk_enter_memory_pressure(sk);
1964 sk_stream_moderate_sndbuf(sk);
1966 return page;
1970 * Default write policy as shown to user space via poll/select/SIGIO
1972 static inline int sock_writeable(const struct sock *sk)
1974 return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
1977 static inline gfp_t gfp_any(void)
1979 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
1982 static inline long sock_rcvtimeo(const struct sock *sk, int noblock)
1984 return noblock ? 0 : sk->sk_rcvtimeo;
1987 static inline long sock_sndtimeo(const struct sock *sk, int noblock)
1989 return noblock ? 0 : sk->sk_sndtimeo;
1992 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
1994 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
1997 /* Alas, with timeout socket operations are not restartable.
1998 * Compare this to poll().
2000 static inline int sock_intr_errno(long timeo)
2002 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2005 extern void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2006 struct sk_buff *skb);
2007 extern void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2008 struct sk_buff *skb);
2010 static __inline__ void
2011 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2013 ktime_t kt = skb->tstamp;
2014 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2017 * generate control messages if
2018 * - receive time stamping in software requested (SOCK_RCVTSTAMP
2019 * or SOCK_TIMESTAMPING_RX_SOFTWARE)
2020 * - software time stamp available and wanted
2021 * (SOCK_TIMESTAMPING_SOFTWARE)
2022 * - hardware time stamps available and wanted
2023 * (SOCK_TIMESTAMPING_SYS_HARDWARE or
2024 * SOCK_TIMESTAMPING_RAW_HARDWARE)
2026 if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2027 sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE) ||
2028 (kt.tv64 && sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) ||
2029 (hwtstamps->hwtstamp.tv64 &&
2030 sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE)) ||
2031 (hwtstamps->syststamp.tv64 &&
2032 sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE)))
2033 __sock_recv_timestamp(msg, sk, skb);
2034 else
2035 sk->sk_stamp = kt;
2037 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2038 __sock_recv_wifi_status(msg, sk, skb);
2041 extern void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2042 struct sk_buff *skb);
2044 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2045 struct sk_buff *skb)
2047 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \
2048 (1UL << SOCK_RCVTSTAMP) | \
2049 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE) | \
2050 (1UL << SOCK_TIMESTAMPING_SOFTWARE) | \
2051 (1UL << SOCK_TIMESTAMPING_RAW_HARDWARE) | \
2052 (1UL << SOCK_TIMESTAMPING_SYS_HARDWARE))
2054 if (sk->sk_flags & FLAGS_TS_OR_DROPS)
2055 __sock_recv_ts_and_drops(msg, sk, skb);
2056 else
2057 sk->sk_stamp = skb->tstamp;
2061 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2062 * @sk: socket sending this packet
2063 * @tx_flags: filled with instructions for time stamping
2065 * Currently only depends on SOCK_TIMESTAMPING* flags. Returns error code if
2066 * parameters are invalid.
2068 extern int sock_tx_timestamp(struct sock *sk, __u8 *tx_flags);
2071 * sk_eat_skb - Release a skb if it is no longer needed
2072 * @sk: socket to eat this skb from
2073 * @skb: socket buffer to eat
2074 * @copied_early: flag indicating whether DMA operations copied this data early
2076 * This routine must be called with interrupts disabled or with the socket
2077 * locked so that the sk_buff queue operation is ok.
2079 #ifdef CONFIG_NET_DMA
2080 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early)
2082 __skb_unlink(skb, &sk->sk_receive_queue);
2083 if (!copied_early)
2084 __kfree_skb(skb);
2085 else
2086 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
2088 #else
2089 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early)
2091 __skb_unlink(skb, &sk->sk_receive_queue);
2092 __kfree_skb(skb);
2094 #endif
2096 static inline
2097 struct net *sock_net(const struct sock *sk)
2099 return read_pnet(&sk->sk_net);
2102 static inline
2103 void sock_net_set(struct sock *sk, struct net *net)
2105 write_pnet(&sk->sk_net, net);
2109 * Kernel sockets, f.e. rtnl or icmp_socket, are a part of a namespace.
2110 * They should not hold a reference to a namespace in order to allow
2111 * to stop it.
2112 * Sockets after sk_change_net should be released using sk_release_kernel
2114 static inline void sk_change_net(struct sock *sk, struct net *net)
2116 put_net(sock_net(sk));
2117 sock_net_set(sk, hold_net(net));
2120 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
2122 if (unlikely(skb->sk)) {
2123 struct sock *sk = skb->sk;
2125 skb->destructor = NULL;
2126 skb->sk = NULL;
2127 return sk;
2129 return NULL;
2132 extern void sock_enable_timestamp(struct sock *sk, int flag);
2133 extern int sock_get_timestamp(struct sock *, struct timeval __user *);
2134 extern int sock_get_timestampns(struct sock *, struct timespec __user *);
2137 * Enable debug/info messages
2139 extern int net_msg_warn;
2140 #define NETDEBUG(fmt, args...) \
2141 do { if (net_msg_warn) printk(fmt,##args); } while (0)
2143 #define LIMIT_NETDEBUG(fmt, args...) \
2144 do { if (net_msg_warn && net_ratelimit()) printk(fmt,##args); } while(0)
2146 extern __u32 sysctl_wmem_max;
2147 extern __u32 sysctl_rmem_max;
2149 extern void sk_init(void);
2151 extern int sysctl_optmem_max;
2153 extern __u32 sysctl_wmem_default;
2154 extern __u32 sysctl_rmem_default;
2156 #endif /* _SOCK_H */