1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
28 #include <linux/res_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
32 #include <linux/hugetlb.h>
33 #include <linux/pagemap.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/sort.h>
50 #include <linux/seq_file.h>
51 #include <linux/vmalloc.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/page_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
60 #include <net/tcp_memcontrol.h>
62 #include <asm/uaccess.h>
64 #include <trace/events/vmscan.h>
66 struct cgroup_subsys mem_cgroup_subsys __read_mostly
;
67 EXPORT_SYMBOL(mem_cgroup_subsys
);
69 #define MEM_CGROUP_RECLAIM_RETRIES 5
70 static struct mem_cgroup
*root_mem_cgroup __read_mostly
;
72 #ifdef CONFIG_MEMCG_SWAP
73 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
74 int do_swap_account __read_mostly
;
76 /* for remember boot option*/
77 #ifdef CONFIG_MEMCG_SWAP_ENABLED
78 static int really_do_swap_account __initdata
= 1;
80 static int really_do_swap_account __initdata
= 0;
84 #define do_swap_account 0
88 static const char * const mem_cgroup_stat_names
[] = {
97 enum mem_cgroup_events_index
{
98 MEM_CGROUP_EVENTS_PGPGIN
, /* # of pages paged in */
99 MEM_CGROUP_EVENTS_PGPGOUT
, /* # of pages paged out */
100 MEM_CGROUP_EVENTS_PGFAULT
, /* # of page-faults */
101 MEM_CGROUP_EVENTS_PGMAJFAULT
, /* # of major page-faults */
102 MEM_CGROUP_EVENTS_NSTATS
,
105 static const char * const mem_cgroup_events_names
[] = {
112 static const char * const mem_cgroup_lru_names
[] = {
121 * Per memcg event counter is incremented at every pagein/pageout. With THP,
122 * it will be incremated by the number of pages. This counter is used for
123 * for trigger some periodic events. This is straightforward and better
124 * than using jiffies etc. to handle periodic memcg event.
126 enum mem_cgroup_events_target
{
127 MEM_CGROUP_TARGET_THRESH
,
128 MEM_CGROUP_TARGET_SOFTLIMIT
,
129 MEM_CGROUP_TARGET_NUMAINFO
,
132 #define THRESHOLDS_EVENTS_TARGET 128
133 #define SOFTLIMIT_EVENTS_TARGET 1024
134 #define NUMAINFO_EVENTS_TARGET 1024
136 struct mem_cgroup_stat_cpu
{
137 long count
[MEM_CGROUP_STAT_NSTATS
];
138 unsigned long events
[MEM_CGROUP_EVENTS_NSTATS
];
139 unsigned long nr_page_events
;
140 unsigned long targets
[MEM_CGROUP_NTARGETS
];
143 struct mem_cgroup_reclaim_iter
{
145 * last scanned hierarchy member. Valid only if last_dead_count
146 * matches memcg->dead_count of the hierarchy root group.
148 struct mem_cgroup
*last_visited
;
149 unsigned long last_dead_count
;
151 /* scan generation, increased every round-trip */
152 unsigned int generation
;
156 * per-zone information in memory controller.
158 struct mem_cgroup_per_zone
{
159 struct lruvec lruvec
;
160 unsigned long lru_size
[NR_LRU_LISTS
];
162 struct mem_cgroup_reclaim_iter reclaim_iter
[DEF_PRIORITY
+ 1];
164 struct rb_node tree_node
; /* RB tree node */
165 unsigned long long usage_in_excess
;/* Set to the value by which */
166 /* the soft limit is exceeded*/
168 struct mem_cgroup
*memcg
; /* Back pointer, we cannot */
169 /* use container_of */
172 struct mem_cgroup_per_node
{
173 struct mem_cgroup_per_zone zoneinfo
[MAX_NR_ZONES
];
177 * Cgroups above their limits are maintained in a RB-Tree, independent of
178 * their hierarchy representation
181 struct mem_cgroup_tree_per_zone
{
182 struct rb_root rb_root
;
186 struct mem_cgroup_tree_per_node
{
187 struct mem_cgroup_tree_per_zone rb_tree_per_zone
[MAX_NR_ZONES
];
190 struct mem_cgroup_tree
{
191 struct mem_cgroup_tree_per_node
*rb_tree_per_node
[MAX_NUMNODES
];
194 static struct mem_cgroup_tree soft_limit_tree __read_mostly
;
196 struct mem_cgroup_threshold
{
197 struct eventfd_ctx
*eventfd
;
202 struct mem_cgroup_threshold_ary
{
203 /* An array index points to threshold just below or equal to usage. */
204 int current_threshold
;
205 /* Size of entries[] */
207 /* Array of thresholds */
208 struct mem_cgroup_threshold entries
[0];
211 struct mem_cgroup_thresholds
{
212 /* Primary thresholds array */
213 struct mem_cgroup_threshold_ary
*primary
;
215 * Spare threshold array.
216 * This is needed to make mem_cgroup_unregister_event() "never fail".
217 * It must be able to store at least primary->size - 1 entries.
219 struct mem_cgroup_threshold_ary
*spare
;
223 struct mem_cgroup_eventfd_list
{
224 struct list_head list
;
225 struct eventfd_ctx
*eventfd
;
228 static void mem_cgroup_threshold(struct mem_cgroup
*memcg
);
229 static void mem_cgroup_oom_notify(struct mem_cgroup
*memcg
);
232 * The memory controller data structure. The memory controller controls both
233 * page cache and RSS per cgroup. We would eventually like to provide
234 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
235 * to help the administrator determine what knobs to tune.
237 * TODO: Add a water mark for the memory controller. Reclaim will begin when
238 * we hit the water mark. May be even add a low water mark, such that
239 * no reclaim occurs from a cgroup at it's low water mark, this is
240 * a feature that will be implemented much later in the future.
243 struct cgroup_subsys_state css
;
245 * the counter to account for memory usage
247 struct res_counter res
;
249 /* vmpressure notifications */
250 struct vmpressure vmpressure
;
253 * the counter to account for mem+swap usage.
255 struct res_counter memsw
;
258 * the counter to account for kernel memory usage.
260 struct res_counter kmem
;
262 * Should the accounting and control be hierarchical, per subtree?
265 unsigned long kmem_account_flags
; /* See KMEM_ACCOUNTED_*, below */
269 atomic_t oom_wakeups
;
272 /* OOM-Killer disable */
273 int oom_kill_disable
;
275 /* set when res.limit == memsw.limit */
276 bool memsw_is_minimum
;
278 /* protect arrays of thresholds */
279 struct mutex thresholds_lock
;
281 /* thresholds for memory usage. RCU-protected */
282 struct mem_cgroup_thresholds thresholds
;
284 /* thresholds for mem+swap usage. RCU-protected */
285 struct mem_cgroup_thresholds memsw_thresholds
;
287 /* For oom notifier event fd */
288 struct list_head oom_notify
;
291 * Should we move charges of a task when a task is moved into this
292 * mem_cgroup ? And what type of charges should we move ?
294 unsigned long move_charge_at_immigrate
;
296 * set > 0 if pages under this cgroup are moving to other cgroup.
298 atomic_t moving_account
;
299 /* taken only while moving_account > 0 */
300 spinlock_t move_lock
;
304 struct mem_cgroup_stat_cpu __percpu
*stat
;
306 * used when a cpu is offlined or other synchronizations
307 * See mem_cgroup_read_stat().
309 struct mem_cgroup_stat_cpu nocpu_base
;
310 spinlock_t pcp_counter_lock
;
313 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
314 struct tcp_memcontrol tcp_mem
;
316 #if defined(CONFIG_MEMCG_KMEM)
317 /* analogous to slab_common's slab_caches list. per-memcg */
318 struct list_head memcg_slab_caches
;
319 /* Not a spinlock, we can take a lot of time walking the list */
320 struct mutex slab_caches_mutex
;
321 /* Index in the kmem_cache->memcg_params->memcg_caches array */
325 int last_scanned_node
;
327 nodemask_t scan_nodes
;
328 atomic_t numainfo_events
;
329 atomic_t numainfo_updating
;
332 struct mem_cgroup_per_node
*nodeinfo
[0];
333 /* WARNING: nodeinfo must be the last member here */
336 static size_t memcg_size(void)
338 return sizeof(struct mem_cgroup
) +
339 nr_node_ids
* sizeof(struct mem_cgroup_per_node
);
342 /* internal only representation about the status of kmem accounting. */
344 KMEM_ACCOUNTED_ACTIVE
= 0, /* accounted by this cgroup itself */
345 KMEM_ACCOUNTED_ACTIVATED
, /* static key enabled. */
346 KMEM_ACCOUNTED_DEAD
, /* dead memcg with pending kmem charges */
349 /* We account when limit is on, but only after call sites are patched */
350 #define KMEM_ACCOUNTED_MASK \
351 ((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
353 #ifdef CONFIG_MEMCG_KMEM
354 static inline void memcg_kmem_set_active(struct mem_cgroup
*memcg
)
356 set_bit(KMEM_ACCOUNTED_ACTIVE
, &memcg
->kmem_account_flags
);
359 static bool memcg_kmem_is_active(struct mem_cgroup
*memcg
)
361 return test_bit(KMEM_ACCOUNTED_ACTIVE
, &memcg
->kmem_account_flags
);
364 static void memcg_kmem_set_activated(struct mem_cgroup
*memcg
)
366 set_bit(KMEM_ACCOUNTED_ACTIVATED
, &memcg
->kmem_account_flags
);
369 static void memcg_kmem_clear_activated(struct mem_cgroup
*memcg
)
371 clear_bit(KMEM_ACCOUNTED_ACTIVATED
, &memcg
->kmem_account_flags
);
374 static void memcg_kmem_mark_dead(struct mem_cgroup
*memcg
)
377 * Our caller must use css_get() first, because memcg_uncharge_kmem()
378 * will call css_put() if it sees the memcg is dead.
381 if (test_bit(KMEM_ACCOUNTED_ACTIVE
, &memcg
->kmem_account_flags
))
382 set_bit(KMEM_ACCOUNTED_DEAD
, &memcg
->kmem_account_flags
);
385 static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup
*memcg
)
387 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD
,
388 &memcg
->kmem_account_flags
);
392 /* Stuffs for move charges at task migration. */
394 * Types of charges to be moved. "move_charge_at_immitgrate" and
395 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
398 MOVE_CHARGE_TYPE_ANON
, /* private anonymous page and swap of it */
399 MOVE_CHARGE_TYPE_FILE
, /* file page(including tmpfs) and swap of it */
403 /* "mc" and its members are protected by cgroup_mutex */
404 static struct move_charge_struct
{
405 spinlock_t lock
; /* for from, to */
406 struct mem_cgroup
*from
;
407 struct mem_cgroup
*to
;
408 unsigned long immigrate_flags
;
409 unsigned long precharge
;
410 unsigned long moved_charge
;
411 unsigned long moved_swap
;
412 struct task_struct
*moving_task
; /* a task moving charges */
413 wait_queue_head_t waitq
; /* a waitq for other context */
415 .lock
= __SPIN_LOCK_UNLOCKED(mc
.lock
),
416 .waitq
= __WAIT_QUEUE_HEAD_INITIALIZER(mc
.waitq
),
419 static bool move_anon(void)
421 return test_bit(MOVE_CHARGE_TYPE_ANON
, &mc
.immigrate_flags
);
424 static bool move_file(void)
426 return test_bit(MOVE_CHARGE_TYPE_FILE
, &mc
.immigrate_flags
);
430 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
431 * limit reclaim to prevent infinite loops, if they ever occur.
433 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
434 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
437 MEM_CGROUP_CHARGE_TYPE_CACHE
= 0,
438 MEM_CGROUP_CHARGE_TYPE_ANON
,
439 MEM_CGROUP_CHARGE_TYPE_SWAPOUT
, /* for accounting swapcache */
440 MEM_CGROUP_CHARGE_TYPE_DROP
, /* a page was unused swap cache */
444 /* for encoding cft->private value on file */
452 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
453 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
454 #define MEMFILE_ATTR(val) ((val) & 0xffff)
455 /* Used for OOM nofiier */
456 #define OOM_CONTROL (0)
459 * Reclaim flags for mem_cgroup_hierarchical_reclaim
461 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
462 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
463 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
464 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
467 * The memcg_create_mutex will be held whenever a new cgroup is created.
468 * As a consequence, any change that needs to protect against new child cgroups
469 * appearing has to hold it as well.
471 static DEFINE_MUTEX(memcg_create_mutex
);
473 struct mem_cgroup
*mem_cgroup_from_css(struct cgroup_subsys_state
*s
)
475 return s
? container_of(s
, struct mem_cgroup
, css
) : NULL
;
478 /* Some nice accessors for the vmpressure. */
479 struct vmpressure
*memcg_to_vmpressure(struct mem_cgroup
*memcg
)
482 memcg
= root_mem_cgroup
;
483 return &memcg
->vmpressure
;
486 struct cgroup_subsys_state
*vmpressure_to_css(struct vmpressure
*vmpr
)
488 return &container_of(vmpr
, struct mem_cgroup
, vmpressure
)->css
;
491 struct vmpressure
*css_to_vmpressure(struct cgroup_subsys_state
*css
)
493 return &mem_cgroup_from_css(css
)->vmpressure
;
496 static inline bool mem_cgroup_is_root(struct mem_cgroup
*memcg
)
498 return (memcg
== root_mem_cgroup
);
501 /* Writing them here to avoid exposing memcg's inner layout */
502 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
504 void sock_update_memcg(struct sock
*sk
)
506 if (mem_cgroup_sockets_enabled
) {
507 struct mem_cgroup
*memcg
;
508 struct cg_proto
*cg_proto
;
510 BUG_ON(!sk
->sk_prot
->proto_cgroup
);
512 /* Socket cloning can throw us here with sk_cgrp already
513 * filled. It won't however, necessarily happen from
514 * process context. So the test for root memcg given
515 * the current task's memcg won't help us in this case.
517 * Respecting the original socket's memcg is a better
518 * decision in this case.
521 BUG_ON(mem_cgroup_is_root(sk
->sk_cgrp
->memcg
));
522 css_get(&sk
->sk_cgrp
->memcg
->css
);
527 memcg
= mem_cgroup_from_task(current
);
528 cg_proto
= sk
->sk_prot
->proto_cgroup(memcg
);
529 if (!mem_cgroup_is_root(memcg
) &&
530 memcg_proto_active(cg_proto
) && css_tryget(&memcg
->css
)) {
531 sk
->sk_cgrp
= cg_proto
;
536 EXPORT_SYMBOL(sock_update_memcg
);
538 void sock_release_memcg(struct sock
*sk
)
540 if (mem_cgroup_sockets_enabled
&& sk
->sk_cgrp
) {
541 struct mem_cgroup
*memcg
;
542 WARN_ON(!sk
->sk_cgrp
->memcg
);
543 memcg
= sk
->sk_cgrp
->memcg
;
544 css_put(&sk
->sk_cgrp
->memcg
->css
);
548 struct cg_proto
*tcp_proto_cgroup(struct mem_cgroup
*memcg
)
550 if (!memcg
|| mem_cgroup_is_root(memcg
))
553 return &memcg
->tcp_mem
.cg_proto
;
555 EXPORT_SYMBOL(tcp_proto_cgroup
);
557 static void disarm_sock_keys(struct mem_cgroup
*memcg
)
559 if (!memcg_proto_activated(&memcg
->tcp_mem
.cg_proto
))
561 static_key_slow_dec(&memcg_socket_limit_enabled
);
564 static void disarm_sock_keys(struct mem_cgroup
*memcg
)
569 #ifdef CONFIG_MEMCG_KMEM
571 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
572 * There are two main reasons for not using the css_id for this:
573 * 1) this works better in sparse environments, where we have a lot of memcgs,
574 * but only a few kmem-limited. Or also, if we have, for instance, 200
575 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
576 * 200 entry array for that.
578 * 2) In order not to violate the cgroup API, we would like to do all memory
579 * allocation in ->create(). At that point, we haven't yet allocated the
580 * css_id. Having a separate index prevents us from messing with the cgroup
583 * The current size of the caches array is stored in
584 * memcg_limited_groups_array_size. It will double each time we have to
587 static DEFINE_IDA(kmem_limited_groups
);
588 int memcg_limited_groups_array_size
;
591 * MIN_SIZE is different than 1, because we would like to avoid going through
592 * the alloc/free process all the time. In a small machine, 4 kmem-limited
593 * cgroups is a reasonable guess. In the future, it could be a parameter or
594 * tunable, but that is strictly not necessary.
596 * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
597 * this constant directly from cgroup, but it is understandable that this is
598 * better kept as an internal representation in cgroup.c. In any case, the
599 * css_id space is not getting any smaller, and we don't have to necessarily
600 * increase ours as well if it increases.
602 #define MEMCG_CACHES_MIN_SIZE 4
603 #define MEMCG_CACHES_MAX_SIZE 65535
606 * A lot of the calls to the cache allocation functions are expected to be
607 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
608 * conditional to this static branch, we'll have to allow modules that does
609 * kmem_cache_alloc and the such to see this symbol as well
611 struct static_key memcg_kmem_enabled_key
;
612 EXPORT_SYMBOL(memcg_kmem_enabled_key
);
614 static void disarm_kmem_keys(struct mem_cgroup
*memcg
)
616 if (memcg_kmem_is_active(memcg
)) {
617 static_key_slow_dec(&memcg_kmem_enabled_key
);
618 ida_simple_remove(&kmem_limited_groups
, memcg
->kmemcg_id
);
621 * This check can't live in kmem destruction function,
622 * since the charges will outlive the cgroup
624 WARN_ON(res_counter_read_u64(&memcg
->kmem
, RES_USAGE
) != 0);
627 static void disarm_kmem_keys(struct mem_cgroup
*memcg
)
630 #endif /* CONFIG_MEMCG_KMEM */
632 static void disarm_static_keys(struct mem_cgroup
*memcg
)
634 disarm_sock_keys(memcg
);
635 disarm_kmem_keys(memcg
);
638 static void drain_all_stock_async(struct mem_cgroup
*memcg
);
640 static struct mem_cgroup_per_zone
*
641 mem_cgroup_zoneinfo(struct mem_cgroup
*memcg
, int nid
, int zid
)
643 VM_BUG_ON((unsigned)nid
>= nr_node_ids
);
644 return &memcg
->nodeinfo
[nid
]->zoneinfo
[zid
];
647 struct cgroup_subsys_state
*mem_cgroup_css(struct mem_cgroup
*memcg
)
652 static struct mem_cgroup_per_zone
*
653 page_cgroup_zoneinfo(struct mem_cgroup
*memcg
, struct page
*page
)
655 int nid
= page_to_nid(page
);
656 int zid
= page_zonenum(page
);
658 return mem_cgroup_zoneinfo(memcg
, nid
, zid
);
661 static struct mem_cgroup_tree_per_zone
*
662 soft_limit_tree_node_zone(int nid
, int zid
)
664 return &soft_limit_tree
.rb_tree_per_node
[nid
]->rb_tree_per_zone
[zid
];
667 static struct mem_cgroup_tree_per_zone
*
668 soft_limit_tree_from_page(struct page
*page
)
670 int nid
= page_to_nid(page
);
671 int zid
= page_zonenum(page
);
673 return &soft_limit_tree
.rb_tree_per_node
[nid
]->rb_tree_per_zone
[zid
];
677 __mem_cgroup_insert_exceeded(struct mem_cgroup
*memcg
,
678 struct mem_cgroup_per_zone
*mz
,
679 struct mem_cgroup_tree_per_zone
*mctz
,
680 unsigned long long new_usage_in_excess
)
682 struct rb_node
**p
= &mctz
->rb_root
.rb_node
;
683 struct rb_node
*parent
= NULL
;
684 struct mem_cgroup_per_zone
*mz_node
;
689 mz
->usage_in_excess
= new_usage_in_excess
;
690 if (!mz
->usage_in_excess
)
694 mz_node
= rb_entry(parent
, struct mem_cgroup_per_zone
,
696 if (mz
->usage_in_excess
< mz_node
->usage_in_excess
)
699 * We can't avoid mem cgroups that are over their soft
700 * limit by the same amount
702 else if (mz
->usage_in_excess
>= mz_node
->usage_in_excess
)
705 rb_link_node(&mz
->tree_node
, parent
, p
);
706 rb_insert_color(&mz
->tree_node
, &mctz
->rb_root
);
711 __mem_cgroup_remove_exceeded(struct mem_cgroup
*memcg
,
712 struct mem_cgroup_per_zone
*mz
,
713 struct mem_cgroup_tree_per_zone
*mctz
)
717 rb_erase(&mz
->tree_node
, &mctz
->rb_root
);
722 mem_cgroup_remove_exceeded(struct mem_cgroup
*memcg
,
723 struct mem_cgroup_per_zone
*mz
,
724 struct mem_cgroup_tree_per_zone
*mctz
)
726 spin_lock(&mctz
->lock
);
727 __mem_cgroup_remove_exceeded(memcg
, mz
, mctz
);
728 spin_unlock(&mctz
->lock
);
732 static void mem_cgroup_update_tree(struct mem_cgroup
*memcg
, struct page
*page
)
734 unsigned long long excess
;
735 struct mem_cgroup_per_zone
*mz
;
736 struct mem_cgroup_tree_per_zone
*mctz
;
737 int nid
= page_to_nid(page
);
738 int zid
= page_zonenum(page
);
739 mctz
= soft_limit_tree_from_page(page
);
742 * Necessary to update all ancestors when hierarchy is used.
743 * because their event counter is not touched.
745 for (; memcg
; memcg
= parent_mem_cgroup(memcg
)) {
746 mz
= mem_cgroup_zoneinfo(memcg
, nid
, zid
);
747 excess
= res_counter_soft_limit_excess(&memcg
->res
);
749 * We have to update the tree if mz is on RB-tree or
750 * mem is over its softlimit.
752 if (excess
|| mz
->on_tree
) {
753 spin_lock(&mctz
->lock
);
754 /* if on-tree, remove it */
756 __mem_cgroup_remove_exceeded(memcg
, mz
, mctz
);
758 * Insert again. mz->usage_in_excess will be updated.
759 * If excess is 0, no tree ops.
761 __mem_cgroup_insert_exceeded(memcg
, mz
, mctz
, excess
);
762 spin_unlock(&mctz
->lock
);
767 static void mem_cgroup_remove_from_trees(struct mem_cgroup
*memcg
)
770 struct mem_cgroup_per_zone
*mz
;
771 struct mem_cgroup_tree_per_zone
*mctz
;
773 for_each_node(node
) {
774 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
775 mz
= mem_cgroup_zoneinfo(memcg
, node
, zone
);
776 mctz
= soft_limit_tree_node_zone(node
, zone
);
777 mem_cgroup_remove_exceeded(memcg
, mz
, mctz
);
782 static struct mem_cgroup_per_zone
*
783 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone
*mctz
)
785 struct rb_node
*rightmost
= NULL
;
786 struct mem_cgroup_per_zone
*mz
;
790 rightmost
= rb_last(&mctz
->rb_root
);
792 goto done
; /* Nothing to reclaim from */
794 mz
= rb_entry(rightmost
, struct mem_cgroup_per_zone
, tree_node
);
796 * Remove the node now but someone else can add it back,
797 * we will to add it back at the end of reclaim to its correct
798 * position in the tree.
800 __mem_cgroup_remove_exceeded(mz
->memcg
, mz
, mctz
);
801 if (!res_counter_soft_limit_excess(&mz
->memcg
->res
) ||
802 !css_tryget(&mz
->memcg
->css
))
808 static struct mem_cgroup_per_zone
*
809 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone
*mctz
)
811 struct mem_cgroup_per_zone
*mz
;
813 spin_lock(&mctz
->lock
);
814 mz
= __mem_cgroup_largest_soft_limit_node(mctz
);
815 spin_unlock(&mctz
->lock
);
820 * Implementation Note: reading percpu statistics for memcg.
822 * Both of vmstat[] and percpu_counter has threshold and do periodic
823 * synchronization to implement "quick" read. There are trade-off between
824 * reading cost and precision of value. Then, we may have a chance to implement
825 * a periodic synchronizion of counter in memcg's counter.
827 * But this _read() function is used for user interface now. The user accounts
828 * memory usage by memory cgroup and he _always_ requires exact value because
829 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
830 * have to visit all online cpus and make sum. So, for now, unnecessary
831 * synchronization is not implemented. (just implemented for cpu hotplug)
833 * If there are kernel internal actions which can make use of some not-exact
834 * value, and reading all cpu value can be performance bottleneck in some
835 * common workload, threashold and synchonization as vmstat[] should be
838 static long mem_cgroup_read_stat(struct mem_cgroup
*memcg
,
839 enum mem_cgroup_stat_index idx
)
845 for_each_online_cpu(cpu
)
846 val
+= per_cpu(memcg
->stat
->count
[idx
], cpu
);
847 #ifdef CONFIG_HOTPLUG_CPU
848 spin_lock(&memcg
->pcp_counter_lock
);
849 val
+= memcg
->nocpu_base
.count
[idx
];
850 spin_unlock(&memcg
->pcp_counter_lock
);
856 static void mem_cgroup_swap_statistics(struct mem_cgroup
*memcg
,
859 int val
= (charge
) ? 1 : -1;
860 this_cpu_add(memcg
->stat
->count
[MEM_CGROUP_STAT_SWAP
], val
);
863 static unsigned long mem_cgroup_read_events(struct mem_cgroup
*memcg
,
864 enum mem_cgroup_events_index idx
)
866 unsigned long val
= 0;
869 for_each_online_cpu(cpu
)
870 val
+= per_cpu(memcg
->stat
->events
[idx
], cpu
);
871 #ifdef CONFIG_HOTPLUG_CPU
872 spin_lock(&memcg
->pcp_counter_lock
);
873 val
+= memcg
->nocpu_base
.events
[idx
];
874 spin_unlock(&memcg
->pcp_counter_lock
);
879 static void mem_cgroup_charge_statistics(struct mem_cgroup
*memcg
,
881 bool anon
, int nr_pages
)
886 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
887 * counted as CACHE even if it's on ANON LRU.
890 __this_cpu_add(memcg
->stat
->count
[MEM_CGROUP_STAT_RSS
],
893 __this_cpu_add(memcg
->stat
->count
[MEM_CGROUP_STAT_CACHE
],
896 if (PageTransHuge(page
))
897 __this_cpu_add(memcg
->stat
->count
[MEM_CGROUP_STAT_RSS_HUGE
],
900 /* pagein of a big page is an event. So, ignore page size */
902 __this_cpu_inc(memcg
->stat
->events
[MEM_CGROUP_EVENTS_PGPGIN
]);
904 __this_cpu_inc(memcg
->stat
->events
[MEM_CGROUP_EVENTS_PGPGOUT
]);
905 nr_pages
= -nr_pages
; /* for event */
908 __this_cpu_add(memcg
->stat
->nr_page_events
, nr_pages
);
914 mem_cgroup_get_lru_size(struct lruvec
*lruvec
, enum lru_list lru
)
916 struct mem_cgroup_per_zone
*mz
;
918 mz
= container_of(lruvec
, struct mem_cgroup_per_zone
, lruvec
);
919 return mz
->lru_size
[lru
];
923 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup
*memcg
, int nid
, int zid
,
924 unsigned int lru_mask
)
926 struct mem_cgroup_per_zone
*mz
;
928 unsigned long ret
= 0;
930 mz
= mem_cgroup_zoneinfo(memcg
, nid
, zid
);
933 if (BIT(lru
) & lru_mask
)
934 ret
+= mz
->lru_size
[lru
];
940 mem_cgroup_node_nr_lru_pages(struct mem_cgroup
*memcg
,
941 int nid
, unsigned int lru_mask
)
946 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++)
947 total
+= mem_cgroup_zone_nr_lru_pages(memcg
,
953 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup
*memcg
,
954 unsigned int lru_mask
)
959 for_each_node_state(nid
, N_MEMORY
)
960 total
+= mem_cgroup_node_nr_lru_pages(memcg
, nid
, lru_mask
);
964 static bool mem_cgroup_event_ratelimit(struct mem_cgroup
*memcg
,
965 enum mem_cgroup_events_target target
)
967 unsigned long val
, next
;
969 val
= __this_cpu_read(memcg
->stat
->nr_page_events
);
970 next
= __this_cpu_read(memcg
->stat
->targets
[target
]);
971 /* from time_after() in jiffies.h */
972 if ((long)next
- (long)val
< 0) {
974 case MEM_CGROUP_TARGET_THRESH
:
975 next
= val
+ THRESHOLDS_EVENTS_TARGET
;
977 case MEM_CGROUP_TARGET_SOFTLIMIT
:
978 next
= val
+ SOFTLIMIT_EVENTS_TARGET
;
980 case MEM_CGROUP_TARGET_NUMAINFO
:
981 next
= val
+ NUMAINFO_EVENTS_TARGET
;
986 __this_cpu_write(memcg
->stat
->targets
[target
], next
);
993 * Check events in order.
996 static void memcg_check_events(struct mem_cgroup
*memcg
, struct page
*page
)
999 /* threshold event is triggered in finer grain than soft limit */
1000 if (unlikely(mem_cgroup_event_ratelimit(memcg
,
1001 MEM_CGROUP_TARGET_THRESH
))) {
1003 bool do_numainfo __maybe_unused
;
1005 do_softlimit
= mem_cgroup_event_ratelimit(memcg
,
1006 MEM_CGROUP_TARGET_SOFTLIMIT
);
1007 #if MAX_NUMNODES > 1
1008 do_numainfo
= mem_cgroup_event_ratelimit(memcg
,
1009 MEM_CGROUP_TARGET_NUMAINFO
);
1013 mem_cgroup_threshold(memcg
);
1014 if (unlikely(do_softlimit
))
1015 mem_cgroup_update_tree(memcg
, page
);
1016 #if MAX_NUMNODES > 1
1017 if (unlikely(do_numainfo
))
1018 atomic_inc(&memcg
->numainfo_events
);
1024 struct mem_cgroup
*mem_cgroup_from_task(struct task_struct
*p
)
1027 * mm_update_next_owner() may clear mm->owner to NULL
1028 * if it races with swapoff, page migration, etc.
1029 * So this can be called with p == NULL.
1034 return mem_cgroup_from_css(task_css(p
, mem_cgroup_subsys_id
));
1037 struct mem_cgroup
*try_get_mem_cgroup_from_mm(struct mm_struct
*mm
)
1039 struct mem_cgroup
*memcg
= NULL
;
1044 * Because we have no locks, mm->owner's may be being moved to other
1045 * cgroup. We use css_tryget() here even if this looks
1046 * pessimistic (rather than adding locks here).
1050 memcg
= mem_cgroup_from_task(rcu_dereference(mm
->owner
));
1051 if (unlikely(!memcg
))
1053 } while (!css_tryget(&memcg
->css
));
1059 * Returns a next (in a pre-order walk) alive memcg (with elevated css
1060 * ref. count) or NULL if the whole root's subtree has been visited.
1062 * helper function to be used by mem_cgroup_iter
1064 static struct mem_cgroup
*__mem_cgroup_iter_next(struct mem_cgroup
*root
,
1065 struct mem_cgroup
*last_visited
)
1067 struct cgroup_subsys_state
*prev_css
, *next_css
;
1069 prev_css
= last_visited
? &last_visited
->css
: NULL
;
1071 next_css
= css_next_descendant_pre(prev_css
, &root
->css
);
1074 * Even if we found a group we have to make sure it is
1075 * alive. css && !memcg means that the groups should be
1076 * skipped and we should continue the tree walk.
1077 * last_visited css is safe to use because it is
1078 * protected by css_get and the tree walk is rcu safe.
1081 struct mem_cgroup
*mem
= mem_cgroup_from_css(next_css
);
1083 if (css_tryget(&mem
->css
))
1086 prev_css
= next_css
;
1094 static void mem_cgroup_iter_invalidate(struct mem_cgroup
*root
)
1097 * When a group in the hierarchy below root is destroyed, the
1098 * hierarchy iterator can no longer be trusted since it might
1099 * have pointed to the destroyed group. Invalidate it.
1101 atomic_inc(&root
->dead_count
);
1104 static struct mem_cgroup
*
1105 mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter
*iter
,
1106 struct mem_cgroup
*root
,
1109 struct mem_cgroup
*position
= NULL
;
1111 * A cgroup destruction happens in two stages: offlining and
1112 * release. They are separated by a RCU grace period.
1114 * If the iterator is valid, we may still race with an
1115 * offlining. The RCU lock ensures the object won't be
1116 * released, tryget will fail if we lost the race.
1118 *sequence
= atomic_read(&root
->dead_count
);
1119 if (iter
->last_dead_count
== *sequence
) {
1121 position
= iter
->last_visited
;
1122 if (position
&& !css_tryget(&position
->css
))
1128 static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter
*iter
,
1129 struct mem_cgroup
*last_visited
,
1130 struct mem_cgroup
*new_position
,
1134 css_put(&last_visited
->css
);
1136 * We store the sequence count from the time @last_visited was
1137 * loaded successfully instead of rereading it here so that we
1138 * don't lose destruction events in between. We could have
1139 * raced with the destruction of @new_position after all.
1141 iter
->last_visited
= new_position
;
1143 iter
->last_dead_count
= sequence
;
1147 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1148 * @root: hierarchy root
1149 * @prev: previously returned memcg, NULL on first invocation
1150 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1152 * Returns references to children of the hierarchy below @root, or
1153 * @root itself, or %NULL after a full round-trip.
1155 * Caller must pass the return value in @prev on subsequent
1156 * invocations for reference counting, or use mem_cgroup_iter_break()
1157 * to cancel a hierarchy walk before the round-trip is complete.
1159 * Reclaimers can specify a zone and a priority level in @reclaim to
1160 * divide up the memcgs in the hierarchy among all concurrent
1161 * reclaimers operating on the same zone and priority.
1163 struct mem_cgroup
*mem_cgroup_iter(struct mem_cgroup
*root
,
1164 struct mem_cgroup
*prev
,
1165 struct mem_cgroup_reclaim_cookie
*reclaim
)
1167 struct mem_cgroup
*memcg
= NULL
;
1168 struct mem_cgroup
*last_visited
= NULL
;
1170 if (mem_cgroup_disabled())
1174 root
= root_mem_cgroup
;
1176 if (prev
&& !reclaim
)
1177 last_visited
= prev
;
1179 if (!root
->use_hierarchy
&& root
!= root_mem_cgroup
) {
1187 struct mem_cgroup_reclaim_iter
*uninitialized_var(iter
);
1188 int uninitialized_var(seq
);
1191 int nid
= zone_to_nid(reclaim
->zone
);
1192 int zid
= zone_idx(reclaim
->zone
);
1193 struct mem_cgroup_per_zone
*mz
;
1195 mz
= mem_cgroup_zoneinfo(root
, nid
, zid
);
1196 iter
= &mz
->reclaim_iter
[reclaim
->priority
];
1197 if (prev
&& reclaim
->generation
!= iter
->generation
) {
1198 iter
->last_visited
= NULL
;
1202 last_visited
= mem_cgroup_iter_load(iter
, root
, &seq
);
1205 memcg
= __mem_cgroup_iter_next(root
, last_visited
);
1208 mem_cgroup_iter_update(iter
, last_visited
, memcg
, seq
);
1212 else if (!prev
&& memcg
)
1213 reclaim
->generation
= iter
->generation
;
1222 if (prev
&& prev
!= root
)
1223 css_put(&prev
->css
);
1229 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1230 * @root: hierarchy root
1231 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1233 void mem_cgroup_iter_break(struct mem_cgroup
*root
,
1234 struct mem_cgroup
*prev
)
1237 root
= root_mem_cgroup
;
1238 if (prev
&& prev
!= root
)
1239 css_put(&prev
->css
);
1243 * Iteration constructs for visiting all cgroups (under a tree). If
1244 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1245 * be used for reference counting.
1247 #define for_each_mem_cgroup_tree(iter, root) \
1248 for (iter = mem_cgroup_iter(root, NULL, NULL); \
1250 iter = mem_cgroup_iter(root, iter, NULL))
1252 #define for_each_mem_cgroup(iter) \
1253 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1255 iter = mem_cgroup_iter(NULL, iter, NULL))
1257 void __mem_cgroup_count_vm_event(struct mm_struct
*mm
, enum vm_event_item idx
)
1259 struct mem_cgroup
*memcg
;
1262 memcg
= mem_cgroup_from_task(rcu_dereference(mm
->owner
));
1263 if (unlikely(!memcg
))
1268 this_cpu_inc(memcg
->stat
->events
[MEM_CGROUP_EVENTS_PGFAULT
]);
1271 this_cpu_inc(memcg
->stat
->events
[MEM_CGROUP_EVENTS_PGMAJFAULT
]);
1279 EXPORT_SYMBOL(__mem_cgroup_count_vm_event
);
1282 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1283 * @zone: zone of the wanted lruvec
1284 * @memcg: memcg of the wanted lruvec
1286 * Returns the lru list vector holding pages for the given @zone and
1287 * @mem. This can be the global zone lruvec, if the memory controller
1290 struct lruvec
*mem_cgroup_zone_lruvec(struct zone
*zone
,
1291 struct mem_cgroup
*memcg
)
1293 struct mem_cgroup_per_zone
*mz
;
1294 struct lruvec
*lruvec
;
1296 if (mem_cgroup_disabled()) {
1297 lruvec
= &zone
->lruvec
;
1301 mz
= mem_cgroup_zoneinfo(memcg
, zone_to_nid(zone
), zone_idx(zone
));
1302 lruvec
= &mz
->lruvec
;
1305 * Since a node can be onlined after the mem_cgroup was created,
1306 * we have to be prepared to initialize lruvec->zone here;
1307 * and if offlined then reonlined, we need to reinitialize it.
1309 if (unlikely(lruvec
->zone
!= zone
))
1310 lruvec
->zone
= zone
;
1315 * Following LRU functions are allowed to be used without PCG_LOCK.
1316 * Operations are called by routine of global LRU independently from memcg.
1317 * What we have to take care of here is validness of pc->mem_cgroup.
1319 * Changes to pc->mem_cgroup happens when
1322 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1323 * It is added to LRU before charge.
1324 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1325 * When moving account, the page is not on LRU. It's isolated.
1329 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1331 * @zone: zone of the page
1333 struct lruvec
*mem_cgroup_page_lruvec(struct page
*page
, struct zone
*zone
)
1335 struct mem_cgroup_per_zone
*mz
;
1336 struct mem_cgroup
*memcg
;
1337 struct page_cgroup
*pc
;
1338 struct lruvec
*lruvec
;
1340 if (mem_cgroup_disabled()) {
1341 lruvec
= &zone
->lruvec
;
1345 pc
= lookup_page_cgroup(page
);
1346 memcg
= pc
->mem_cgroup
;
1349 * Surreptitiously switch any uncharged offlist page to root:
1350 * an uncharged page off lru does nothing to secure
1351 * its former mem_cgroup from sudden removal.
1353 * Our caller holds lru_lock, and PageCgroupUsed is updated
1354 * under page_cgroup lock: between them, they make all uses
1355 * of pc->mem_cgroup safe.
1357 if (!PageLRU(page
) && !PageCgroupUsed(pc
) && memcg
!= root_mem_cgroup
)
1358 pc
->mem_cgroup
= memcg
= root_mem_cgroup
;
1360 mz
= page_cgroup_zoneinfo(memcg
, page
);
1361 lruvec
= &mz
->lruvec
;
1364 * Since a node can be onlined after the mem_cgroup was created,
1365 * we have to be prepared to initialize lruvec->zone here;
1366 * and if offlined then reonlined, we need to reinitialize it.
1368 if (unlikely(lruvec
->zone
!= zone
))
1369 lruvec
->zone
= zone
;
1374 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1375 * @lruvec: mem_cgroup per zone lru vector
1376 * @lru: index of lru list the page is sitting on
1377 * @nr_pages: positive when adding or negative when removing
1379 * This function must be called when a page is added to or removed from an
1382 void mem_cgroup_update_lru_size(struct lruvec
*lruvec
, enum lru_list lru
,
1385 struct mem_cgroup_per_zone
*mz
;
1386 unsigned long *lru_size
;
1388 if (mem_cgroup_disabled())
1391 mz
= container_of(lruvec
, struct mem_cgroup_per_zone
, lruvec
);
1392 lru_size
= mz
->lru_size
+ lru
;
1393 *lru_size
+= nr_pages
;
1394 VM_BUG_ON((long)(*lru_size
) < 0);
1398 * Checks whether given mem is same or in the root_mem_cgroup's
1401 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup
*root_memcg
,
1402 struct mem_cgroup
*memcg
)
1404 if (root_memcg
== memcg
)
1406 if (!root_memcg
->use_hierarchy
|| !memcg
)
1408 return css_is_ancestor(&memcg
->css
, &root_memcg
->css
);
1411 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup
*root_memcg
,
1412 struct mem_cgroup
*memcg
)
1417 ret
= __mem_cgroup_same_or_subtree(root_memcg
, memcg
);
1422 bool task_in_mem_cgroup(struct task_struct
*task
,
1423 const struct mem_cgroup
*memcg
)
1425 struct mem_cgroup
*curr
= NULL
;
1426 struct task_struct
*p
;
1429 p
= find_lock_task_mm(task
);
1431 curr
= try_get_mem_cgroup_from_mm(p
->mm
);
1435 * All threads may have already detached their mm's, but the oom
1436 * killer still needs to detect if they have already been oom
1437 * killed to prevent needlessly killing additional tasks.
1440 curr
= mem_cgroup_from_task(task
);
1442 css_get(&curr
->css
);
1448 * We should check use_hierarchy of "memcg" not "curr". Because checking
1449 * use_hierarchy of "curr" here make this function true if hierarchy is
1450 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1451 * hierarchy(even if use_hierarchy is disabled in "memcg").
1453 ret
= mem_cgroup_same_or_subtree(memcg
, curr
);
1454 css_put(&curr
->css
);
1458 int mem_cgroup_inactive_anon_is_low(struct lruvec
*lruvec
)
1460 unsigned long inactive_ratio
;
1461 unsigned long inactive
;
1462 unsigned long active
;
1465 inactive
= mem_cgroup_get_lru_size(lruvec
, LRU_INACTIVE_ANON
);
1466 active
= mem_cgroup_get_lru_size(lruvec
, LRU_ACTIVE_ANON
);
1468 gb
= (inactive
+ active
) >> (30 - PAGE_SHIFT
);
1470 inactive_ratio
= int_sqrt(10 * gb
);
1474 return inactive
* inactive_ratio
< active
;
1477 #define mem_cgroup_from_res_counter(counter, member) \
1478 container_of(counter, struct mem_cgroup, member)
1481 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1482 * @memcg: the memory cgroup
1484 * Returns the maximum amount of memory @mem can be charged with, in
1487 static unsigned long mem_cgroup_margin(struct mem_cgroup
*memcg
)
1489 unsigned long long margin
;
1491 margin
= res_counter_margin(&memcg
->res
);
1492 if (do_swap_account
)
1493 margin
= min(margin
, res_counter_margin(&memcg
->memsw
));
1494 return margin
>> PAGE_SHIFT
;
1497 int mem_cgroup_swappiness(struct mem_cgroup
*memcg
)
1500 if (!css_parent(&memcg
->css
))
1501 return vm_swappiness
;
1503 return memcg
->swappiness
;
1507 * memcg->moving_account is used for checking possibility that some thread is
1508 * calling move_account(). When a thread on CPU-A starts moving pages under
1509 * a memcg, other threads should check memcg->moving_account under
1510 * rcu_read_lock(), like this:
1514 * memcg->moving_account+1 if (memcg->mocing_account)
1516 * synchronize_rcu() update something.
1521 /* for quick checking without looking up memcg */
1522 atomic_t memcg_moving __read_mostly
;
1524 static void mem_cgroup_start_move(struct mem_cgroup
*memcg
)
1526 atomic_inc(&memcg_moving
);
1527 atomic_inc(&memcg
->moving_account
);
1531 static void mem_cgroup_end_move(struct mem_cgroup
*memcg
)
1534 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1535 * We check NULL in callee rather than caller.
1538 atomic_dec(&memcg_moving
);
1539 atomic_dec(&memcg
->moving_account
);
1544 * 2 routines for checking "mem" is under move_account() or not.
1546 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1547 * is used for avoiding races in accounting. If true,
1548 * pc->mem_cgroup may be overwritten.
1550 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1551 * under hierarchy of moving cgroups. This is for
1552 * waiting at hith-memory prressure caused by "move".
1555 static bool mem_cgroup_stolen(struct mem_cgroup
*memcg
)
1557 VM_BUG_ON(!rcu_read_lock_held());
1558 return atomic_read(&memcg
->moving_account
) > 0;
1561 static bool mem_cgroup_under_move(struct mem_cgroup
*memcg
)
1563 struct mem_cgroup
*from
;
1564 struct mem_cgroup
*to
;
1567 * Unlike task_move routines, we access mc.to, mc.from not under
1568 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1570 spin_lock(&mc
.lock
);
1576 ret
= mem_cgroup_same_or_subtree(memcg
, from
)
1577 || mem_cgroup_same_or_subtree(memcg
, to
);
1579 spin_unlock(&mc
.lock
);
1583 static bool mem_cgroup_wait_acct_move(struct mem_cgroup
*memcg
)
1585 if (mc
.moving_task
&& current
!= mc
.moving_task
) {
1586 if (mem_cgroup_under_move(memcg
)) {
1588 prepare_to_wait(&mc
.waitq
, &wait
, TASK_INTERRUPTIBLE
);
1589 /* moving charge context might have finished. */
1592 finish_wait(&mc
.waitq
, &wait
);
1600 * Take this lock when
1601 * - a code tries to modify page's memcg while it's USED.
1602 * - a code tries to modify page state accounting in a memcg.
1603 * see mem_cgroup_stolen(), too.
1605 static void move_lock_mem_cgroup(struct mem_cgroup
*memcg
,
1606 unsigned long *flags
)
1608 spin_lock_irqsave(&memcg
->move_lock
, *flags
);
1611 static void move_unlock_mem_cgroup(struct mem_cgroup
*memcg
,
1612 unsigned long *flags
)
1614 spin_unlock_irqrestore(&memcg
->move_lock
, *flags
);
1617 #define K(x) ((x) << (PAGE_SHIFT-10))
1619 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1620 * @memcg: The memory cgroup that went over limit
1621 * @p: Task that is going to be killed
1623 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1626 void mem_cgroup_print_oom_info(struct mem_cgroup
*memcg
, struct task_struct
*p
)
1628 struct cgroup
*task_cgrp
;
1629 struct cgroup
*mem_cgrp
;
1631 * Need a buffer in BSS, can't rely on allocations. The code relies
1632 * on the assumption that OOM is serialized for memory controller.
1633 * If this assumption is broken, revisit this code.
1635 static char memcg_name
[PATH_MAX
];
1637 struct mem_cgroup
*iter
;
1645 mem_cgrp
= memcg
->css
.cgroup
;
1646 task_cgrp
= task_cgroup(p
, mem_cgroup_subsys_id
);
1648 ret
= cgroup_path(task_cgrp
, memcg_name
, PATH_MAX
);
1651 * Unfortunately, we are unable to convert to a useful name
1652 * But we'll still print out the usage information
1659 pr_info("Task in %s killed", memcg_name
);
1662 ret
= cgroup_path(mem_cgrp
, memcg_name
, PATH_MAX
);
1670 * Continues from above, so we don't need an KERN_ level
1672 pr_cont(" as a result of limit of %s\n", memcg_name
);
1675 pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1676 res_counter_read_u64(&memcg
->res
, RES_USAGE
) >> 10,
1677 res_counter_read_u64(&memcg
->res
, RES_LIMIT
) >> 10,
1678 res_counter_read_u64(&memcg
->res
, RES_FAILCNT
));
1679 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1680 res_counter_read_u64(&memcg
->memsw
, RES_USAGE
) >> 10,
1681 res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
) >> 10,
1682 res_counter_read_u64(&memcg
->memsw
, RES_FAILCNT
));
1683 pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1684 res_counter_read_u64(&memcg
->kmem
, RES_USAGE
) >> 10,
1685 res_counter_read_u64(&memcg
->kmem
, RES_LIMIT
) >> 10,
1686 res_counter_read_u64(&memcg
->kmem
, RES_FAILCNT
));
1688 for_each_mem_cgroup_tree(iter
, memcg
) {
1689 pr_info("Memory cgroup stats");
1692 ret
= cgroup_path(iter
->css
.cgroup
, memcg_name
, PATH_MAX
);
1694 pr_cont(" for %s", memcg_name
);
1698 for (i
= 0; i
< MEM_CGROUP_STAT_NSTATS
; i
++) {
1699 if (i
== MEM_CGROUP_STAT_SWAP
&& !do_swap_account
)
1701 pr_cont(" %s:%ldKB", mem_cgroup_stat_names
[i
],
1702 K(mem_cgroup_read_stat(iter
, i
)));
1705 for (i
= 0; i
< NR_LRU_LISTS
; i
++)
1706 pr_cont(" %s:%luKB", mem_cgroup_lru_names
[i
],
1707 K(mem_cgroup_nr_lru_pages(iter
, BIT(i
))));
1714 * This function returns the number of memcg under hierarchy tree. Returns
1715 * 1(self count) if no children.
1717 static int mem_cgroup_count_children(struct mem_cgroup
*memcg
)
1720 struct mem_cgroup
*iter
;
1722 for_each_mem_cgroup_tree(iter
, memcg
)
1728 * Return the memory (and swap, if configured) limit for a memcg.
1730 static u64
mem_cgroup_get_limit(struct mem_cgroup
*memcg
)
1734 limit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
1737 * Do not consider swap space if we cannot swap due to swappiness
1739 if (mem_cgroup_swappiness(memcg
)) {
1742 limit
+= total_swap_pages
<< PAGE_SHIFT
;
1743 memsw
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
1746 * If memsw is finite and limits the amount of swap space
1747 * available to this memcg, return that limit.
1749 limit
= min(limit
, memsw
);
1755 static void mem_cgroup_out_of_memory(struct mem_cgroup
*memcg
, gfp_t gfp_mask
,
1758 struct mem_cgroup
*iter
;
1759 unsigned long chosen_points
= 0;
1760 unsigned long totalpages
;
1761 unsigned int points
= 0;
1762 struct task_struct
*chosen
= NULL
;
1765 * If current has a pending SIGKILL or is exiting, then automatically
1766 * select it. The goal is to allow it to allocate so that it may
1767 * quickly exit and free its memory.
1769 if (fatal_signal_pending(current
) || current
->flags
& PF_EXITING
) {
1770 set_thread_flag(TIF_MEMDIE
);
1774 check_panic_on_oom(CONSTRAINT_MEMCG
, gfp_mask
, order
, NULL
);
1775 totalpages
= mem_cgroup_get_limit(memcg
) >> PAGE_SHIFT
? : 1;
1776 for_each_mem_cgroup_tree(iter
, memcg
) {
1777 struct css_task_iter it
;
1778 struct task_struct
*task
;
1780 css_task_iter_start(&iter
->css
, &it
);
1781 while ((task
= css_task_iter_next(&it
))) {
1782 switch (oom_scan_process_thread(task
, totalpages
, NULL
,
1784 case OOM_SCAN_SELECT
:
1786 put_task_struct(chosen
);
1788 chosen_points
= ULONG_MAX
;
1789 get_task_struct(chosen
);
1791 case OOM_SCAN_CONTINUE
:
1793 case OOM_SCAN_ABORT
:
1794 css_task_iter_end(&it
);
1795 mem_cgroup_iter_break(memcg
, iter
);
1797 put_task_struct(chosen
);
1802 points
= oom_badness(task
, memcg
, NULL
, totalpages
);
1803 if (points
> chosen_points
) {
1805 put_task_struct(chosen
);
1807 chosen_points
= points
;
1808 get_task_struct(chosen
);
1811 css_task_iter_end(&it
);
1816 points
= chosen_points
* 1000 / totalpages
;
1817 oom_kill_process(chosen
, gfp_mask
, order
, points
, totalpages
, memcg
,
1818 NULL
, "Memory cgroup out of memory");
1821 static unsigned long mem_cgroup_reclaim(struct mem_cgroup
*memcg
,
1823 unsigned long flags
)
1825 unsigned long total
= 0;
1826 bool noswap
= false;
1829 if (flags
& MEM_CGROUP_RECLAIM_NOSWAP
)
1831 if (!(flags
& MEM_CGROUP_RECLAIM_SHRINK
) && memcg
->memsw_is_minimum
)
1834 for (loop
= 0; loop
< MEM_CGROUP_MAX_RECLAIM_LOOPS
; loop
++) {
1836 drain_all_stock_async(memcg
);
1837 total
+= try_to_free_mem_cgroup_pages(memcg
, gfp_mask
, noswap
);
1839 * Allow limit shrinkers, which are triggered directly
1840 * by userspace, to catch signals and stop reclaim
1841 * after minimal progress, regardless of the margin.
1843 if (total
&& (flags
& MEM_CGROUP_RECLAIM_SHRINK
))
1845 if (mem_cgroup_margin(memcg
))
1848 * If nothing was reclaimed after two attempts, there
1849 * may be no reclaimable pages in this hierarchy.
1858 * test_mem_cgroup_node_reclaimable
1859 * @memcg: the target memcg
1860 * @nid: the node ID to be checked.
1861 * @noswap : specify true here if the user wants flle only information.
1863 * This function returns whether the specified memcg contains any
1864 * reclaimable pages on a node. Returns true if there are any reclaimable
1865 * pages in the node.
1867 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup
*memcg
,
1868 int nid
, bool noswap
)
1870 if (mem_cgroup_node_nr_lru_pages(memcg
, nid
, LRU_ALL_FILE
))
1872 if (noswap
|| !total_swap_pages
)
1874 if (mem_cgroup_node_nr_lru_pages(memcg
, nid
, LRU_ALL_ANON
))
1879 #if MAX_NUMNODES > 1
1882 * Always updating the nodemask is not very good - even if we have an empty
1883 * list or the wrong list here, we can start from some node and traverse all
1884 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1887 static void mem_cgroup_may_update_nodemask(struct mem_cgroup
*memcg
)
1891 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1892 * pagein/pageout changes since the last update.
1894 if (!atomic_read(&memcg
->numainfo_events
))
1896 if (atomic_inc_return(&memcg
->numainfo_updating
) > 1)
1899 /* make a nodemask where this memcg uses memory from */
1900 memcg
->scan_nodes
= node_states
[N_MEMORY
];
1902 for_each_node_mask(nid
, node_states
[N_MEMORY
]) {
1904 if (!test_mem_cgroup_node_reclaimable(memcg
, nid
, false))
1905 node_clear(nid
, memcg
->scan_nodes
);
1908 atomic_set(&memcg
->numainfo_events
, 0);
1909 atomic_set(&memcg
->numainfo_updating
, 0);
1913 * Selecting a node where we start reclaim from. Because what we need is just
1914 * reducing usage counter, start from anywhere is O,K. Considering
1915 * memory reclaim from current node, there are pros. and cons.
1917 * Freeing memory from current node means freeing memory from a node which
1918 * we'll use or we've used. So, it may make LRU bad. And if several threads
1919 * hit limits, it will see a contention on a node. But freeing from remote
1920 * node means more costs for memory reclaim because of memory latency.
1922 * Now, we use round-robin. Better algorithm is welcomed.
1924 int mem_cgroup_select_victim_node(struct mem_cgroup
*memcg
)
1928 mem_cgroup_may_update_nodemask(memcg
);
1929 node
= memcg
->last_scanned_node
;
1931 node
= next_node(node
, memcg
->scan_nodes
);
1932 if (node
== MAX_NUMNODES
)
1933 node
= first_node(memcg
->scan_nodes
);
1935 * We call this when we hit limit, not when pages are added to LRU.
1936 * No LRU may hold pages because all pages are UNEVICTABLE or
1937 * memcg is too small and all pages are not on LRU. In that case,
1938 * we use curret node.
1940 if (unlikely(node
== MAX_NUMNODES
))
1941 node
= numa_node_id();
1943 memcg
->last_scanned_node
= node
;
1948 * Check all nodes whether it contains reclaimable pages or not.
1949 * For quick scan, we make use of scan_nodes. This will allow us to skip
1950 * unused nodes. But scan_nodes is lazily updated and may not cotain
1951 * enough new information. We need to do double check.
1953 static bool mem_cgroup_reclaimable(struct mem_cgroup
*memcg
, bool noswap
)
1958 * quick check...making use of scan_node.
1959 * We can skip unused nodes.
1961 if (!nodes_empty(memcg
->scan_nodes
)) {
1962 for (nid
= first_node(memcg
->scan_nodes
);
1964 nid
= next_node(nid
, memcg
->scan_nodes
)) {
1966 if (test_mem_cgroup_node_reclaimable(memcg
, nid
, noswap
))
1971 * Check rest of nodes.
1973 for_each_node_state(nid
, N_MEMORY
) {
1974 if (node_isset(nid
, memcg
->scan_nodes
))
1976 if (test_mem_cgroup_node_reclaimable(memcg
, nid
, noswap
))
1983 int mem_cgroup_select_victim_node(struct mem_cgroup
*memcg
)
1988 static bool mem_cgroup_reclaimable(struct mem_cgroup
*memcg
, bool noswap
)
1990 return test_mem_cgroup_node_reclaimable(memcg
, 0, noswap
);
1994 static int mem_cgroup_soft_reclaim(struct mem_cgroup
*root_memcg
,
1997 unsigned long *total_scanned
)
1999 struct mem_cgroup
*victim
= NULL
;
2002 unsigned long excess
;
2003 unsigned long nr_scanned
;
2004 struct mem_cgroup_reclaim_cookie reclaim
= {
2009 excess
= res_counter_soft_limit_excess(&root_memcg
->res
) >> PAGE_SHIFT
;
2012 victim
= mem_cgroup_iter(root_memcg
, victim
, &reclaim
);
2017 * If we have not been able to reclaim
2018 * anything, it might because there are
2019 * no reclaimable pages under this hierarchy
2024 * We want to do more targeted reclaim.
2025 * excess >> 2 is not to excessive so as to
2026 * reclaim too much, nor too less that we keep
2027 * coming back to reclaim from this cgroup
2029 if (total
>= (excess
>> 2) ||
2030 (loop
> MEM_CGROUP_MAX_RECLAIM_LOOPS
))
2035 if (!mem_cgroup_reclaimable(victim
, false))
2037 total
+= mem_cgroup_shrink_node_zone(victim
, gfp_mask
, false,
2039 *total_scanned
+= nr_scanned
;
2040 if (!res_counter_soft_limit_excess(&root_memcg
->res
))
2043 mem_cgroup_iter_break(root_memcg
, victim
);
2047 static DEFINE_SPINLOCK(memcg_oom_lock
);
2050 * Check OOM-Killer is already running under our hierarchy.
2051 * If someone is running, return false.
2053 static bool mem_cgroup_oom_trylock(struct mem_cgroup
*memcg
)
2055 struct mem_cgroup
*iter
, *failed
= NULL
;
2057 spin_lock(&memcg_oom_lock
);
2059 for_each_mem_cgroup_tree(iter
, memcg
) {
2060 if (iter
->oom_lock
) {
2062 * this subtree of our hierarchy is already locked
2063 * so we cannot give a lock.
2066 mem_cgroup_iter_break(memcg
, iter
);
2069 iter
->oom_lock
= true;
2074 * OK, we failed to lock the whole subtree so we have
2075 * to clean up what we set up to the failing subtree
2077 for_each_mem_cgroup_tree(iter
, memcg
) {
2078 if (iter
== failed
) {
2079 mem_cgroup_iter_break(memcg
, iter
);
2082 iter
->oom_lock
= false;
2086 spin_unlock(&memcg_oom_lock
);
2091 static void mem_cgroup_oom_unlock(struct mem_cgroup
*memcg
)
2093 struct mem_cgroup
*iter
;
2095 spin_lock(&memcg_oom_lock
);
2096 for_each_mem_cgroup_tree(iter
, memcg
)
2097 iter
->oom_lock
= false;
2098 spin_unlock(&memcg_oom_lock
);
2101 static void mem_cgroup_mark_under_oom(struct mem_cgroup
*memcg
)
2103 struct mem_cgroup
*iter
;
2105 for_each_mem_cgroup_tree(iter
, memcg
)
2106 atomic_inc(&iter
->under_oom
);
2109 static void mem_cgroup_unmark_under_oom(struct mem_cgroup
*memcg
)
2111 struct mem_cgroup
*iter
;
2114 * When a new child is created while the hierarchy is under oom,
2115 * mem_cgroup_oom_lock() may not be called. We have to use
2116 * atomic_add_unless() here.
2118 for_each_mem_cgroup_tree(iter
, memcg
)
2119 atomic_add_unless(&iter
->under_oom
, -1, 0);
2122 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq
);
2124 struct oom_wait_info
{
2125 struct mem_cgroup
*memcg
;
2129 static int memcg_oom_wake_function(wait_queue_t
*wait
,
2130 unsigned mode
, int sync
, void *arg
)
2132 struct mem_cgroup
*wake_memcg
= (struct mem_cgroup
*)arg
;
2133 struct mem_cgroup
*oom_wait_memcg
;
2134 struct oom_wait_info
*oom_wait_info
;
2136 oom_wait_info
= container_of(wait
, struct oom_wait_info
, wait
);
2137 oom_wait_memcg
= oom_wait_info
->memcg
;
2140 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
2141 * Then we can use css_is_ancestor without taking care of RCU.
2143 if (!mem_cgroup_same_or_subtree(oom_wait_memcg
, wake_memcg
)
2144 && !mem_cgroup_same_or_subtree(wake_memcg
, oom_wait_memcg
))
2146 return autoremove_wake_function(wait
, mode
, sync
, arg
);
2149 static void memcg_wakeup_oom(struct mem_cgroup
*memcg
)
2151 atomic_inc(&memcg
->oom_wakeups
);
2152 /* for filtering, pass "memcg" as argument. */
2153 __wake_up(&memcg_oom_waitq
, TASK_NORMAL
, 0, memcg
);
2156 static void memcg_oom_recover(struct mem_cgroup
*memcg
)
2158 if (memcg
&& atomic_read(&memcg
->under_oom
))
2159 memcg_wakeup_oom(memcg
);
2163 * try to call OOM killer
2165 static void mem_cgroup_oom(struct mem_cgroup
*memcg
, gfp_t mask
, int order
)
2170 if (!current
->memcg_oom
.may_oom
)
2173 current
->memcg_oom
.in_memcg_oom
= 1;
2176 * As with any blocking lock, a contender needs to start
2177 * listening for wakeups before attempting the trylock,
2178 * otherwise it can miss the wakeup from the unlock and sleep
2179 * indefinitely. This is just open-coded because our locking
2180 * is so particular to memcg hierarchies.
2182 wakeups
= atomic_read(&memcg
->oom_wakeups
);
2183 mem_cgroup_mark_under_oom(memcg
);
2185 locked
= mem_cgroup_oom_trylock(memcg
);
2188 mem_cgroup_oom_notify(memcg
);
2190 if (locked
&& !memcg
->oom_kill_disable
) {
2191 mem_cgroup_unmark_under_oom(memcg
);
2192 mem_cgroup_out_of_memory(memcg
, mask
, order
);
2193 mem_cgroup_oom_unlock(memcg
);
2195 * There is no guarantee that an OOM-lock contender
2196 * sees the wakeups triggered by the OOM kill
2197 * uncharges. Wake any sleepers explicitely.
2199 memcg_oom_recover(memcg
);
2202 * A system call can just return -ENOMEM, but if this
2203 * is a page fault and somebody else is handling the
2204 * OOM already, we need to sleep on the OOM waitqueue
2205 * for this memcg until the situation is resolved.
2206 * Which can take some time because it might be
2207 * handled by a userspace task.
2209 * However, this is the charge context, which means
2210 * that we may sit on a large call stack and hold
2211 * various filesystem locks, the mmap_sem etc. and we
2212 * don't want the OOM handler to deadlock on them
2213 * while we sit here and wait. Store the current OOM
2214 * context in the task_struct, then return -ENOMEM.
2215 * At the end of the page fault handler, with the
2216 * stack unwound, pagefault_out_of_memory() will check
2217 * back with us by calling
2218 * mem_cgroup_oom_synchronize(), possibly putting the
2221 current
->memcg_oom
.oom_locked
= locked
;
2222 current
->memcg_oom
.wakeups
= wakeups
;
2223 css_get(&memcg
->css
);
2224 current
->memcg_oom
.wait_on_memcg
= memcg
;
2229 * mem_cgroup_oom_synchronize - complete memcg OOM handling
2231 * This has to be called at the end of a page fault if the the memcg
2232 * OOM handler was enabled and the fault is returning %VM_FAULT_OOM.
2234 * Memcg supports userspace OOM handling, so failed allocations must
2235 * sleep on a waitqueue until the userspace task resolves the
2236 * situation. Sleeping directly in the charge context with all kinds
2237 * of locks held is not a good idea, instead we remember an OOM state
2238 * in the task and mem_cgroup_oom_synchronize() has to be called at
2239 * the end of the page fault to put the task to sleep and clean up the
2242 * Returns %true if an ongoing memcg OOM situation was detected and
2243 * finalized, %false otherwise.
2245 bool mem_cgroup_oom_synchronize(void)
2247 struct oom_wait_info owait
;
2248 struct mem_cgroup
*memcg
;
2250 /* OOM is global, do not handle */
2251 if (!current
->memcg_oom
.in_memcg_oom
)
2255 * We invoked the OOM killer but there is a chance that a kill
2256 * did not free up any charges. Everybody else might already
2257 * be sleeping, so restart the fault and keep the rampage
2258 * going until some charges are released.
2260 memcg
= current
->memcg_oom
.wait_on_memcg
;
2264 if (test_thread_flag(TIF_MEMDIE
) || fatal_signal_pending(current
))
2267 owait
.memcg
= memcg
;
2268 owait
.wait
.flags
= 0;
2269 owait
.wait
.func
= memcg_oom_wake_function
;
2270 owait
.wait
.private = current
;
2271 INIT_LIST_HEAD(&owait
.wait
.task_list
);
2273 prepare_to_wait(&memcg_oom_waitq
, &owait
.wait
, TASK_KILLABLE
);
2274 /* Only sleep if we didn't miss any wakeups since OOM */
2275 if (atomic_read(&memcg
->oom_wakeups
) == current
->memcg_oom
.wakeups
)
2277 finish_wait(&memcg_oom_waitq
, &owait
.wait
);
2279 mem_cgroup_unmark_under_oom(memcg
);
2280 if (current
->memcg_oom
.oom_locked
) {
2281 mem_cgroup_oom_unlock(memcg
);
2283 * There is no guarantee that an OOM-lock contender
2284 * sees the wakeups triggered by the OOM kill
2285 * uncharges. Wake any sleepers explicitely.
2287 memcg_oom_recover(memcg
);
2289 css_put(&memcg
->css
);
2290 current
->memcg_oom
.wait_on_memcg
= NULL
;
2292 current
->memcg_oom
.in_memcg_oom
= 0;
2297 * Currently used to update mapped file statistics, but the routine can be
2298 * generalized to update other statistics as well.
2300 * Notes: Race condition
2302 * We usually use page_cgroup_lock() for accessing page_cgroup member but
2303 * it tends to be costly. But considering some conditions, we doesn't need
2304 * to do so _always_.
2306 * Considering "charge", lock_page_cgroup() is not required because all
2307 * file-stat operations happen after a page is attached to radix-tree. There
2308 * are no race with "charge".
2310 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2311 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2312 * if there are race with "uncharge". Statistics itself is properly handled
2315 * Considering "move", this is an only case we see a race. To make the race
2316 * small, we check mm->moving_account and detect there are possibility of race
2317 * If there is, we take a lock.
2320 void __mem_cgroup_begin_update_page_stat(struct page
*page
,
2321 bool *locked
, unsigned long *flags
)
2323 struct mem_cgroup
*memcg
;
2324 struct page_cgroup
*pc
;
2326 pc
= lookup_page_cgroup(page
);
2328 memcg
= pc
->mem_cgroup
;
2329 if (unlikely(!memcg
|| !PageCgroupUsed(pc
)))
2332 * If this memory cgroup is not under account moving, we don't
2333 * need to take move_lock_mem_cgroup(). Because we already hold
2334 * rcu_read_lock(), any calls to move_account will be delayed until
2335 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2337 if (!mem_cgroup_stolen(memcg
))
2340 move_lock_mem_cgroup(memcg
, flags
);
2341 if (memcg
!= pc
->mem_cgroup
|| !PageCgroupUsed(pc
)) {
2342 move_unlock_mem_cgroup(memcg
, flags
);
2348 void __mem_cgroup_end_update_page_stat(struct page
*page
, unsigned long *flags
)
2350 struct page_cgroup
*pc
= lookup_page_cgroup(page
);
2353 * It's guaranteed that pc->mem_cgroup never changes while
2354 * lock is held because a routine modifies pc->mem_cgroup
2355 * should take move_lock_mem_cgroup().
2357 move_unlock_mem_cgroup(pc
->mem_cgroup
, flags
);
2360 void mem_cgroup_update_page_stat(struct page
*page
,
2361 enum mem_cgroup_stat_index idx
, int val
)
2363 struct mem_cgroup
*memcg
;
2364 struct page_cgroup
*pc
= lookup_page_cgroup(page
);
2365 unsigned long uninitialized_var(flags
);
2367 if (mem_cgroup_disabled())
2370 VM_BUG_ON(!rcu_read_lock_held());
2371 memcg
= pc
->mem_cgroup
;
2372 if (unlikely(!memcg
|| !PageCgroupUsed(pc
)))
2375 this_cpu_add(memcg
->stat
->count
[idx
], val
);
2379 * size of first charge trial. "32" comes from vmscan.c's magic value.
2380 * TODO: maybe necessary to use big numbers in big irons.
2382 #define CHARGE_BATCH 32U
2383 struct memcg_stock_pcp
{
2384 struct mem_cgroup
*cached
; /* this never be root cgroup */
2385 unsigned int nr_pages
;
2386 struct work_struct work
;
2387 unsigned long flags
;
2388 #define FLUSHING_CACHED_CHARGE 0
2390 static DEFINE_PER_CPU(struct memcg_stock_pcp
, memcg_stock
);
2391 static DEFINE_MUTEX(percpu_charge_mutex
);
2394 * consume_stock: Try to consume stocked charge on this cpu.
2395 * @memcg: memcg to consume from.
2396 * @nr_pages: how many pages to charge.
2398 * The charges will only happen if @memcg matches the current cpu's memcg
2399 * stock, and at least @nr_pages are available in that stock. Failure to
2400 * service an allocation will refill the stock.
2402 * returns true if successful, false otherwise.
2404 static bool consume_stock(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
2406 struct memcg_stock_pcp
*stock
;
2409 if (nr_pages
> CHARGE_BATCH
)
2412 stock
= &get_cpu_var(memcg_stock
);
2413 if (memcg
== stock
->cached
&& stock
->nr_pages
>= nr_pages
)
2414 stock
->nr_pages
-= nr_pages
;
2415 else /* need to call res_counter_charge */
2417 put_cpu_var(memcg_stock
);
2422 * Returns stocks cached in percpu to res_counter and reset cached information.
2424 static void drain_stock(struct memcg_stock_pcp
*stock
)
2426 struct mem_cgroup
*old
= stock
->cached
;
2428 if (stock
->nr_pages
) {
2429 unsigned long bytes
= stock
->nr_pages
* PAGE_SIZE
;
2431 res_counter_uncharge(&old
->res
, bytes
);
2432 if (do_swap_account
)
2433 res_counter_uncharge(&old
->memsw
, bytes
);
2434 stock
->nr_pages
= 0;
2436 stock
->cached
= NULL
;
2440 * This must be called under preempt disabled or must be called by
2441 * a thread which is pinned to local cpu.
2443 static void drain_local_stock(struct work_struct
*dummy
)
2445 struct memcg_stock_pcp
*stock
= &__get_cpu_var(memcg_stock
);
2447 clear_bit(FLUSHING_CACHED_CHARGE
, &stock
->flags
);
2450 static void __init
memcg_stock_init(void)
2454 for_each_possible_cpu(cpu
) {
2455 struct memcg_stock_pcp
*stock
=
2456 &per_cpu(memcg_stock
, cpu
);
2457 INIT_WORK(&stock
->work
, drain_local_stock
);
2462 * Cache charges(val) which is from res_counter, to local per_cpu area.
2463 * This will be consumed by consume_stock() function, later.
2465 static void refill_stock(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
2467 struct memcg_stock_pcp
*stock
= &get_cpu_var(memcg_stock
);
2469 if (stock
->cached
!= memcg
) { /* reset if necessary */
2471 stock
->cached
= memcg
;
2473 stock
->nr_pages
+= nr_pages
;
2474 put_cpu_var(memcg_stock
);
2478 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2479 * of the hierarchy under it. sync flag says whether we should block
2480 * until the work is done.
2482 static void drain_all_stock(struct mem_cgroup
*root_memcg
, bool sync
)
2486 /* Notify other cpus that system-wide "drain" is running */
2489 for_each_online_cpu(cpu
) {
2490 struct memcg_stock_pcp
*stock
= &per_cpu(memcg_stock
, cpu
);
2491 struct mem_cgroup
*memcg
;
2493 memcg
= stock
->cached
;
2494 if (!memcg
|| !stock
->nr_pages
)
2496 if (!mem_cgroup_same_or_subtree(root_memcg
, memcg
))
2498 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE
, &stock
->flags
)) {
2500 drain_local_stock(&stock
->work
);
2502 schedule_work_on(cpu
, &stock
->work
);
2510 for_each_online_cpu(cpu
) {
2511 struct memcg_stock_pcp
*stock
= &per_cpu(memcg_stock
, cpu
);
2512 if (test_bit(FLUSHING_CACHED_CHARGE
, &stock
->flags
))
2513 flush_work(&stock
->work
);
2520 * Tries to drain stocked charges in other cpus. This function is asynchronous
2521 * and just put a work per cpu for draining localy on each cpu. Caller can
2522 * expects some charges will be back to res_counter later but cannot wait for
2525 static void drain_all_stock_async(struct mem_cgroup
*root_memcg
)
2528 * If someone calls draining, avoid adding more kworker runs.
2530 if (!mutex_trylock(&percpu_charge_mutex
))
2532 drain_all_stock(root_memcg
, false);
2533 mutex_unlock(&percpu_charge_mutex
);
2536 /* This is a synchronous drain interface. */
2537 static void drain_all_stock_sync(struct mem_cgroup
*root_memcg
)
2539 /* called when force_empty is called */
2540 mutex_lock(&percpu_charge_mutex
);
2541 drain_all_stock(root_memcg
, true);
2542 mutex_unlock(&percpu_charge_mutex
);
2546 * This function drains percpu counter value from DEAD cpu and
2547 * move it to local cpu. Note that this function can be preempted.
2549 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup
*memcg
, int cpu
)
2553 spin_lock(&memcg
->pcp_counter_lock
);
2554 for (i
= 0; i
< MEM_CGROUP_STAT_NSTATS
; i
++) {
2555 long x
= per_cpu(memcg
->stat
->count
[i
], cpu
);
2557 per_cpu(memcg
->stat
->count
[i
], cpu
) = 0;
2558 memcg
->nocpu_base
.count
[i
] += x
;
2560 for (i
= 0; i
< MEM_CGROUP_EVENTS_NSTATS
; i
++) {
2561 unsigned long x
= per_cpu(memcg
->stat
->events
[i
], cpu
);
2563 per_cpu(memcg
->stat
->events
[i
], cpu
) = 0;
2564 memcg
->nocpu_base
.events
[i
] += x
;
2566 spin_unlock(&memcg
->pcp_counter_lock
);
2569 static int memcg_cpu_hotplug_callback(struct notifier_block
*nb
,
2570 unsigned long action
,
2573 int cpu
= (unsigned long)hcpu
;
2574 struct memcg_stock_pcp
*stock
;
2575 struct mem_cgroup
*iter
;
2577 if (action
== CPU_ONLINE
)
2580 if (action
!= CPU_DEAD
&& action
!= CPU_DEAD_FROZEN
)
2583 for_each_mem_cgroup(iter
)
2584 mem_cgroup_drain_pcp_counter(iter
, cpu
);
2586 stock
= &per_cpu(memcg_stock
, cpu
);
2592 /* See __mem_cgroup_try_charge() for details */
2594 CHARGE_OK
, /* success */
2595 CHARGE_RETRY
, /* need to retry but retry is not bad */
2596 CHARGE_NOMEM
, /* we can't do more. return -ENOMEM */
2597 CHARGE_WOULDBLOCK
, /* GFP_WAIT wasn't set and no enough res. */
2600 static int mem_cgroup_do_charge(struct mem_cgroup
*memcg
, gfp_t gfp_mask
,
2601 unsigned int nr_pages
, unsigned int min_pages
,
2604 unsigned long csize
= nr_pages
* PAGE_SIZE
;
2605 struct mem_cgroup
*mem_over_limit
;
2606 struct res_counter
*fail_res
;
2607 unsigned long flags
= 0;
2610 ret
= res_counter_charge(&memcg
->res
, csize
, &fail_res
);
2613 if (!do_swap_account
)
2615 ret
= res_counter_charge(&memcg
->memsw
, csize
, &fail_res
);
2619 res_counter_uncharge(&memcg
->res
, csize
);
2620 mem_over_limit
= mem_cgroup_from_res_counter(fail_res
, memsw
);
2621 flags
|= MEM_CGROUP_RECLAIM_NOSWAP
;
2623 mem_over_limit
= mem_cgroup_from_res_counter(fail_res
, res
);
2625 * Never reclaim on behalf of optional batching, retry with a
2626 * single page instead.
2628 if (nr_pages
> min_pages
)
2629 return CHARGE_RETRY
;
2631 if (!(gfp_mask
& __GFP_WAIT
))
2632 return CHARGE_WOULDBLOCK
;
2634 if (gfp_mask
& __GFP_NORETRY
)
2635 return CHARGE_NOMEM
;
2637 ret
= mem_cgroup_reclaim(mem_over_limit
, gfp_mask
, flags
);
2638 if (mem_cgroup_margin(mem_over_limit
) >= nr_pages
)
2639 return CHARGE_RETRY
;
2641 * Even though the limit is exceeded at this point, reclaim
2642 * may have been able to free some pages. Retry the charge
2643 * before killing the task.
2645 * Only for regular pages, though: huge pages are rather
2646 * unlikely to succeed so close to the limit, and we fall back
2647 * to regular pages anyway in case of failure.
2649 if (nr_pages
<= (1 << PAGE_ALLOC_COSTLY_ORDER
) && ret
)
2650 return CHARGE_RETRY
;
2653 * At task move, charge accounts can be doubly counted. So, it's
2654 * better to wait until the end of task_move if something is going on.
2656 if (mem_cgroup_wait_acct_move(mem_over_limit
))
2657 return CHARGE_RETRY
;
2660 mem_cgroup_oom(mem_over_limit
, gfp_mask
, get_order(csize
));
2662 return CHARGE_NOMEM
;
2666 * __mem_cgroup_try_charge() does
2667 * 1. detect memcg to be charged against from passed *mm and *ptr,
2668 * 2. update res_counter
2669 * 3. call memory reclaim if necessary.
2671 * In some special case, if the task is fatal, fatal_signal_pending() or
2672 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2673 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2674 * as possible without any hazards. 2: all pages should have a valid
2675 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2676 * pointer, that is treated as a charge to root_mem_cgroup.
2678 * So __mem_cgroup_try_charge() will return
2679 * 0 ... on success, filling *ptr with a valid memcg pointer.
2680 * -ENOMEM ... charge failure because of resource limits.
2681 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2683 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2684 * the oom-killer can be invoked.
2686 static int __mem_cgroup_try_charge(struct mm_struct
*mm
,
2688 unsigned int nr_pages
,
2689 struct mem_cgroup
**ptr
,
2692 unsigned int batch
= max(CHARGE_BATCH
, nr_pages
);
2693 int nr_oom_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
2694 struct mem_cgroup
*memcg
= NULL
;
2698 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2699 * in system level. So, allow to go ahead dying process in addition to
2702 if (unlikely(test_thread_flag(TIF_MEMDIE
)
2703 || fatal_signal_pending(current
)))
2707 * We always charge the cgroup the mm_struct belongs to.
2708 * The mm_struct's mem_cgroup changes on task migration if the
2709 * thread group leader migrates. It's possible that mm is not
2710 * set, if so charge the root memcg (happens for pagecache usage).
2713 *ptr
= root_mem_cgroup
;
2715 if (*ptr
) { /* css should be a valid one */
2717 if (mem_cgroup_is_root(memcg
))
2719 if (consume_stock(memcg
, nr_pages
))
2721 css_get(&memcg
->css
);
2723 struct task_struct
*p
;
2726 p
= rcu_dereference(mm
->owner
);
2728 * Because we don't have task_lock(), "p" can exit.
2729 * In that case, "memcg" can point to root or p can be NULL with
2730 * race with swapoff. Then, we have small risk of mis-accouning.
2731 * But such kind of mis-account by race always happens because
2732 * we don't have cgroup_mutex(). It's overkill and we allo that
2734 * (*) swapoff at el will charge against mm-struct not against
2735 * task-struct. So, mm->owner can be NULL.
2737 memcg
= mem_cgroup_from_task(p
);
2739 memcg
= root_mem_cgroup
;
2740 if (mem_cgroup_is_root(memcg
)) {
2744 if (consume_stock(memcg
, nr_pages
)) {
2746 * It seems dagerous to access memcg without css_get().
2747 * But considering how consume_stok works, it's not
2748 * necessary. If consume_stock success, some charges
2749 * from this memcg are cached on this cpu. So, we
2750 * don't need to call css_get()/css_tryget() before
2751 * calling consume_stock().
2756 /* after here, we may be blocked. we need to get refcnt */
2757 if (!css_tryget(&memcg
->css
)) {
2765 bool invoke_oom
= oom
&& !nr_oom_retries
;
2767 /* If killed, bypass charge */
2768 if (fatal_signal_pending(current
)) {
2769 css_put(&memcg
->css
);
2773 ret
= mem_cgroup_do_charge(memcg
, gfp_mask
, batch
,
2774 nr_pages
, invoke_oom
);
2778 case CHARGE_RETRY
: /* not in OOM situation but retry */
2780 css_put(&memcg
->css
);
2783 case CHARGE_WOULDBLOCK
: /* !__GFP_WAIT */
2784 css_put(&memcg
->css
);
2786 case CHARGE_NOMEM
: /* OOM routine works */
2787 if (!oom
|| invoke_oom
) {
2788 css_put(&memcg
->css
);
2794 } while (ret
!= CHARGE_OK
);
2796 if (batch
> nr_pages
)
2797 refill_stock(memcg
, batch
- nr_pages
);
2798 css_put(&memcg
->css
);
2806 *ptr
= root_mem_cgroup
;
2811 * Somemtimes we have to undo a charge we got by try_charge().
2812 * This function is for that and do uncharge, put css's refcnt.
2813 * gotten by try_charge().
2815 static void __mem_cgroup_cancel_charge(struct mem_cgroup
*memcg
,
2816 unsigned int nr_pages
)
2818 if (!mem_cgroup_is_root(memcg
)) {
2819 unsigned long bytes
= nr_pages
* PAGE_SIZE
;
2821 res_counter_uncharge(&memcg
->res
, bytes
);
2822 if (do_swap_account
)
2823 res_counter_uncharge(&memcg
->memsw
, bytes
);
2828 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2829 * This is useful when moving usage to parent cgroup.
2831 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup
*memcg
,
2832 unsigned int nr_pages
)
2834 unsigned long bytes
= nr_pages
* PAGE_SIZE
;
2836 if (mem_cgroup_is_root(memcg
))
2839 res_counter_uncharge_until(&memcg
->res
, memcg
->res
.parent
, bytes
);
2840 if (do_swap_account
)
2841 res_counter_uncharge_until(&memcg
->memsw
,
2842 memcg
->memsw
.parent
, bytes
);
2846 * A helper function to get mem_cgroup from ID. must be called under
2847 * rcu_read_lock(). The caller is responsible for calling css_tryget if
2848 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2849 * called against removed memcg.)
2851 static struct mem_cgroup
*mem_cgroup_lookup(unsigned short id
)
2853 struct cgroup_subsys_state
*css
;
2855 /* ID 0 is unused ID */
2858 css
= css_lookup(&mem_cgroup_subsys
, id
);
2861 return mem_cgroup_from_css(css
);
2864 struct mem_cgroup
*try_get_mem_cgroup_from_page(struct page
*page
)
2866 struct mem_cgroup
*memcg
= NULL
;
2867 struct page_cgroup
*pc
;
2871 VM_BUG_ON(!PageLocked(page
));
2873 pc
= lookup_page_cgroup(page
);
2874 lock_page_cgroup(pc
);
2875 if (PageCgroupUsed(pc
)) {
2876 memcg
= pc
->mem_cgroup
;
2877 if (memcg
&& !css_tryget(&memcg
->css
))
2879 } else if (PageSwapCache(page
)) {
2880 ent
.val
= page_private(page
);
2881 id
= lookup_swap_cgroup_id(ent
);
2883 memcg
= mem_cgroup_lookup(id
);
2884 if (memcg
&& !css_tryget(&memcg
->css
))
2888 unlock_page_cgroup(pc
);
2892 static void __mem_cgroup_commit_charge(struct mem_cgroup
*memcg
,
2894 unsigned int nr_pages
,
2895 enum charge_type ctype
,
2898 struct page_cgroup
*pc
= lookup_page_cgroup(page
);
2899 struct zone
*uninitialized_var(zone
);
2900 struct lruvec
*lruvec
;
2901 bool was_on_lru
= false;
2904 lock_page_cgroup(pc
);
2905 VM_BUG_ON(PageCgroupUsed(pc
));
2907 * we don't need page_cgroup_lock about tail pages, becase they are not
2908 * accessed by any other context at this point.
2912 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2913 * may already be on some other mem_cgroup's LRU. Take care of it.
2916 zone
= page_zone(page
);
2917 spin_lock_irq(&zone
->lru_lock
);
2918 if (PageLRU(page
)) {
2919 lruvec
= mem_cgroup_zone_lruvec(zone
, pc
->mem_cgroup
);
2921 del_page_from_lru_list(page
, lruvec
, page_lru(page
));
2926 pc
->mem_cgroup
= memcg
;
2928 * We access a page_cgroup asynchronously without lock_page_cgroup().
2929 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2930 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2931 * before USED bit, we need memory barrier here.
2932 * See mem_cgroup_add_lru_list(), etc.
2935 SetPageCgroupUsed(pc
);
2939 lruvec
= mem_cgroup_zone_lruvec(zone
, pc
->mem_cgroup
);
2940 VM_BUG_ON(PageLRU(page
));
2942 add_page_to_lru_list(page
, lruvec
, page_lru(page
));
2944 spin_unlock_irq(&zone
->lru_lock
);
2947 if (ctype
== MEM_CGROUP_CHARGE_TYPE_ANON
)
2952 mem_cgroup_charge_statistics(memcg
, page
, anon
, nr_pages
);
2953 unlock_page_cgroup(pc
);
2956 * "charge_statistics" updated event counter. Then, check it.
2957 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2958 * if they exceeds softlimit.
2960 memcg_check_events(memcg
, page
);
2963 static DEFINE_MUTEX(set_limit_mutex
);
2965 #ifdef CONFIG_MEMCG_KMEM
2966 static inline bool memcg_can_account_kmem(struct mem_cgroup
*memcg
)
2968 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg
) &&
2969 (memcg
->kmem_account_flags
& KMEM_ACCOUNTED_MASK
);
2973 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2974 * in the memcg_cache_params struct.
2976 static struct kmem_cache
*memcg_params_to_cache(struct memcg_cache_params
*p
)
2978 struct kmem_cache
*cachep
;
2980 VM_BUG_ON(p
->is_root_cache
);
2981 cachep
= p
->root_cache
;
2982 return cachep
->memcg_params
->memcg_caches
[memcg_cache_id(p
->memcg
)];
2985 #ifdef CONFIG_SLABINFO
2986 static int mem_cgroup_slabinfo_read(struct cgroup_subsys_state
*css
,
2987 struct cftype
*cft
, struct seq_file
*m
)
2989 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
2990 struct memcg_cache_params
*params
;
2992 if (!memcg_can_account_kmem(memcg
))
2995 print_slabinfo_header(m
);
2997 mutex_lock(&memcg
->slab_caches_mutex
);
2998 list_for_each_entry(params
, &memcg
->memcg_slab_caches
, list
)
2999 cache_show(memcg_params_to_cache(params
), m
);
3000 mutex_unlock(&memcg
->slab_caches_mutex
);
3006 static int memcg_charge_kmem(struct mem_cgroup
*memcg
, gfp_t gfp
, u64 size
)
3008 struct res_counter
*fail_res
;
3009 struct mem_cgroup
*_memcg
;
3013 ret
= res_counter_charge(&memcg
->kmem
, size
, &fail_res
);
3018 * Conditions under which we can wait for the oom_killer. Those are
3019 * the same conditions tested by the core page allocator
3021 may_oom
= (gfp
& __GFP_FS
) && !(gfp
& __GFP_NORETRY
);
3024 ret
= __mem_cgroup_try_charge(NULL
, gfp
, size
>> PAGE_SHIFT
,
3027 if (ret
== -EINTR
) {
3029 * __mem_cgroup_try_charge() chosed to bypass to root due to
3030 * OOM kill or fatal signal. Since our only options are to
3031 * either fail the allocation or charge it to this cgroup, do
3032 * it as a temporary condition. But we can't fail. From a
3033 * kmem/slab perspective, the cache has already been selected,
3034 * by mem_cgroup_kmem_get_cache(), so it is too late to change
3037 * This condition will only trigger if the task entered
3038 * memcg_charge_kmem in a sane state, but was OOM-killed during
3039 * __mem_cgroup_try_charge() above. Tasks that were already
3040 * dying when the allocation triggers should have been already
3041 * directed to the root cgroup in memcontrol.h
3043 res_counter_charge_nofail(&memcg
->res
, size
, &fail_res
);
3044 if (do_swap_account
)
3045 res_counter_charge_nofail(&memcg
->memsw
, size
,
3049 res_counter_uncharge(&memcg
->kmem
, size
);
3054 static void memcg_uncharge_kmem(struct mem_cgroup
*memcg
, u64 size
)
3056 res_counter_uncharge(&memcg
->res
, size
);
3057 if (do_swap_account
)
3058 res_counter_uncharge(&memcg
->memsw
, size
);
3061 if (res_counter_uncharge(&memcg
->kmem
, size
))
3065 * Releases a reference taken in kmem_cgroup_css_offline in case
3066 * this last uncharge is racing with the offlining code or it is
3067 * outliving the memcg existence.
3069 * The memory barrier imposed by test&clear is paired with the
3070 * explicit one in memcg_kmem_mark_dead().
3072 if (memcg_kmem_test_and_clear_dead(memcg
))
3073 css_put(&memcg
->css
);
3076 void memcg_cache_list_add(struct mem_cgroup
*memcg
, struct kmem_cache
*cachep
)
3081 mutex_lock(&memcg
->slab_caches_mutex
);
3082 list_add(&cachep
->memcg_params
->list
, &memcg
->memcg_slab_caches
);
3083 mutex_unlock(&memcg
->slab_caches_mutex
);
3087 * helper for acessing a memcg's index. It will be used as an index in the
3088 * child cache array in kmem_cache, and also to derive its name. This function
3089 * will return -1 when this is not a kmem-limited memcg.
3091 int memcg_cache_id(struct mem_cgroup
*memcg
)
3093 return memcg
? memcg
->kmemcg_id
: -1;
3097 * This ends up being protected by the set_limit mutex, during normal
3098 * operation, because that is its main call site.
3100 * But when we create a new cache, we can call this as well if its parent
3101 * is kmem-limited. That will have to hold set_limit_mutex as well.
3103 int memcg_update_cache_sizes(struct mem_cgroup
*memcg
)
3107 num
= ida_simple_get(&kmem_limited_groups
,
3108 0, MEMCG_CACHES_MAX_SIZE
, GFP_KERNEL
);
3112 * After this point, kmem_accounted (that we test atomically in
3113 * the beginning of this conditional), is no longer 0. This
3114 * guarantees only one process will set the following boolean
3115 * to true. We don't need test_and_set because we're protected
3116 * by the set_limit_mutex anyway.
3118 memcg_kmem_set_activated(memcg
);
3120 ret
= memcg_update_all_caches(num
+1);
3122 ida_simple_remove(&kmem_limited_groups
, num
);
3123 memcg_kmem_clear_activated(memcg
);
3127 memcg
->kmemcg_id
= num
;
3128 INIT_LIST_HEAD(&memcg
->memcg_slab_caches
);
3129 mutex_init(&memcg
->slab_caches_mutex
);
3133 static size_t memcg_caches_array_size(int num_groups
)
3136 if (num_groups
<= 0)
3139 size
= 2 * num_groups
;
3140 if (size
< MEMCG_CACHES_MIN_SIZE
)
3141 size
= MEMCG_CACHES_MIN_SIZE
;
3142 else if (size
> MEMCG_CACHES_MAX_SIZE
)
3143 size
= MEMCG_CACHES_MAX_SIZE
;
3149 * We should update the current array size iff all caches updates succeed. This
3150 * can only be done from the slab side. The slab mutex needs to be held when
3153 void memcg_update_array_size(int num
)
3155 if (num
> memcg_limited_groups_array_size
)
3156 memcg_limited_groups_array_size
= memcg_caches_array_size(num
);
3159 static void kmem_cache_destroy_work_func(struct work_struct
*w
);
3161 int memcg_update_cache_size(struct kmem_cache
*s
, int num_groups
)
3163 struct memcg_cache_params
*cur_params
= s
->memcg_params
;
3165 VM_BUG_ON(s
->memcg_params
&& !s
->memcg_params
->is_root_cache
);
3167 if (num_groups
> memcg_limited_groups_array_size
) {
3169 ssize_t size
= memcg_caches_array_size(num_groups
);
3171 size
*= sizeof(void *);
3172 size
+= offsetof(struct memcg_cache_params
, memcg_caches
);
3174 s
->memcg_params
= kzalloc(size
, GFP_KERNEL
);
3175 if (!s
->memcg_params
) {
3176 s
->memcg_params
= cur_params
;
3180 s
->memcg_params
->is_root_cache
= true;
3183 * There is the chance it will be bigger than
3184 * memcg_limited_groups_array_size, if we failed an allocation
3185 * in a cache, in which case all caches updated before it, will
3186 * have a bigger array.
3188 * But if that is the case, the data after
3189 * memcg_limited_groups_array_size is certainly unused
3191 for (i
= 0; i
< memcg_limited_groups_array_size
; i
++) {
3192 if (!cur_params
->memcg_caches
[i
])
3194 s
->memcg_params
->memcg_caches
[i
] =
3195 cur_params
->memcg_caches
[i
];
3199 * Ideally, we would wait until all caches succeed, and only
3200 * then free the old one. But this is not worth the extra
3201 * pointer per-cache we'd have to have for this.
3203 * It is not a big deal if some caches are left with a size
3204 * bigger than the others. And all updates will reset this
3212 int memcg_register_cache(struct mem_cgroup
*memcg
, struct kmem_cache
*s
,
3213 struct kmem_cache
*root_cache
)
3217 if (!memcg_kmem_enabled())
3221 size
= offsetof(struct memcg_cache_params
, memcg_caches
);
3222 size
+= memcg_limited_groups_array_size
* sizeof(void *);
3224 size
= sizeof(struct memcg_cache_params
);
3226 s
->memcg_params
= kzalloc(size
, GFP_KERNEL
);
3227 if (!s
->memcg_params
)
3231 s
->memcg_params
->memcg
= memcg
;
3232 s
->memcg_params
->root_cache
= root_cache
;
3233 INIT_WORK(&s
->memcg_params
->destroy
,
3234 kmem_cache_destroy_work_func
);
3236 s
->memcg_params
->is_root_cache
= true;
3241 void memcg_release_cache(struct kmem_cache
*s
)
3243 struct kmem_cache
*root
;
3244 struct mem_cgroup
*memcg
;
3248 * This happens, for instance, when a root cache goes away before we
3251 if (!s
->memcg_params
)
3254 if (s
->memcg_params
->is_root_cache
)
3257 memcg
= s
->memcg_params
->memcg
;
3258 id
= memcg_cache_id(memcg
);
3260 root
= s
->memcg_params
->root_cache
;
3261 root
->memcg_params
->memcg_caches
[id
] = NULL
;
3263 mutex_lock(&memcg
->slab_caches_mutex
);
3264 list_del(&s
->memcg_params
->list
);
3265 mutex_unlock(&memcg
->slab_caches_mutex
);
3267 css_put(&memcg
->css
);
3269 kfree(s
->memcg_params
);
3273 * During the creation a new cache, we need to disable our accounting mechanism
3274 * altogether. This is true even if we are not creating, but rather just
3275 * enqueing new caches to be created.
3277 * This is because that process will trigger allocations; some visible, like
3278 * explicit kmallocs to auxiliary data structures, name strings and internal
3279 * cache structures; some well concealed, like INIT_WORK() that can allocate
3280 * objects during debug.
3282 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3283 * to it. This may not be a bounded recursion: since the first cache creation
3284 * failed to complete (waiting on the allocation), we'll just try to create the
3285 * cache again, failing at the same point.
3287 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3288 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3289 * inside the following two functions.
3291 static inline void memcg_stop_kmem_account(void)
3293 VM_BUG_ON(!current
->mm
);
3294 current
->memcg_kmem_skip_account
++;
3297 static inline void memcg_resume_kmem_account(void)
3299 VM_BUG_ON(!current
->mm
);
3300 current
->memcg_kmem_skip_account
--;
3303 static void kmem_cache_destroy_work_func(struct work_struct
*w
)
3305 struct kmem_cache
*cachep
;
3306 struct memcg_cache_params
*p
;
3308 p
= container_of(w
, struct memcg_cache_params
, destroy
);
3310 cachep
= memcg_params_to_cache(p
);
3313 * If we get down to 0 after shrink, we could delete right away.
3314 * However, memcg_release_pages() already puts us back in the workqueue
3315 * in that case. If we proceed deleting, we'll get a dangling
3316 * reference, and removing the object from the workqueue in that case
3317 * is unnecessary complication. We are not a fast path.
3319 * Note that this case is fundamentally different from racing with
3320 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
3321 * kmem_cache_shrink, not only we would be reinserting a dead cache
3322 * into the queue, but doing so from inside the worker racing to
3325 * So if we aren't down to zero, we'll just schedule a worker and try
3328 if (atomic_read(&cachep
->memcg_params
->nr_pages
) != 0) {
3329 kmem_cache_shrink(cachep
);
3330 if (atomic_read(&cachep
->memcg_params
->nr_pages
) == 0)
3333 kmem_cache_destroy(cachep
);
3336 void mem_cgroup_destroy_cache(struct kmem_cache
*cachep
)
3338 if (!cachep
->memcg_params
->dead
)
3342 * There are many ways in which we can get here.
3344 * We can get to a memory-pressure situation while the delayed work is
3345 * still pending to run. The vmscan shrinkers can then release all
3346 * cache memory and get us to destruction. If this is the case, we'll
3347 * be executed twice, which is a bug (the second time will execute over
3348 * bogus data). In this case, cancelling the work should be fine.
3350 * But we can also get here from the worker itself, if
3351 * kmem_cache_shrink is enough to shake all the remaining objects and
3352 * get the page count to 0. In this case, we'll deadlock if we try to
3353 * cancel the work (the worker runs with an internal lock held, which
3354 * is the same lock we would hold for cancel_work_sync().)
3356 * Since we can't possibly know who got us here, just refrain from
3357 * running if there is already work pending
3359 if (work_pending(&cachep
->memcg_params
->destroy
))
3362 * We have to defer the actual destroying to a workqueue, because
3363 * we might currently be in a context that cannot sleep.
3365 schedule_work(&cachep
->memcg_params
->destroy
);
3369 * This lock protects updaters, not readers. We want readers to be as fast as
3370 * they can, and they will either see NULL or a valid cache value. Our model
3371 * allow them to see NULL, in which case the root memcg will be selected.
3373 * We need this lock because multiple allocations to the same cache from a non
3374 * will span more than one worker. Only one of them can create the cache.
3376 static DEFINE_MUTEX(memcg_cache_mutex
);
3379 * Called with memcg_cache_mutex held
3381 static struct kmem_cache
*kmem_cache_dup(struct mem_cgroup
*memcg
,
3382 struct kmem_cache
*s
)
3384 struct kmem_cache
*new;
3385 static char *tmp_name
= NULL
;
3387 lockdep_assert_held(&memcg_cache_mutex
);
3390 * kmem_cache_create_memcg duplicates the given name and
3391 * cgroup_name for this name requires RCU context.
3392 * This static temporary buffer is used to prevent from
3393 * pointless shortliving allocation.
3396 tmp_name
= kmalloc(PATH_MAX
, GFP_KERNEL
);
3402 snprintf(tmp_name
, PATH_MAX
, "%s(%d:%s)", s
->name
,
3403 memcg_cache_id(memcg
), cgroup_name(memcg
->css
.cgroup
));
3406 new = kmem_cache_create_memcg(memcg
, tmp_name
, s
->object_size
, s
->align
,
3407 (s
->flags
& ~SLAB_PANIC
), s
->ctor
, s
);
3410 new->allocflags
|= __GFP_KMEMCG
;
3415 static struct kmem_cache
*memcg_create_kmem_cache(struct mem_cgroup
*memcg
,
3416 struct kmem_cache
*cachep
)
3418 struct kmem_cache
*new_cachep
;
3421 BUG_ON(!memcg_can_account_kmem(memcg
));
3423 idx
= memcg_cache_id(memcg
);
3425 mutex_lock(&memcg_cache_mutex
);
3426 new_cachep
= cachep
->memcg_params
->memcg_caches
[idx
];
3428 css_put(&memcg
->css
);
3432 new_cachep
= kmem_cache_dup(memcg
, cachep
);
3433 if (new_cachep
== NULL
) {
3434 new_cachep
= cachep
;
3435 css_put(&memcg
->css
);
3439 atomic_set(&new_cachep
->memcg_params
->nr_pages
, 0);
3441 cachep
->memcg_params
->memcg_caches
[idx
] = new_cachep
;
3443 * the readers won't lock, make sure everybody sees the updated value,
3444 * so they won't put stuff in the queue again for no reason
3448 mutex_unlock(&memcg_cache_mutex
);
3452 void kmem_cache_destroy_memcg_children(struct kmem_cache
*s
)
3454 struct kmem_cache
*c
;
3457 if (!s
->memcg_params
)
3459 if (!s
->memcg_params
->is_root_cache
)
3463 * If the cache is being destroyed, we trust that there is no one else
3464 * requesting objects from it. Even if there are, the sanity checks in
3465 * kmem_cache_destroy should caught this ill-case.
3467 * Still, we don't want anyone else freeing memcg_caches under our
3468 * noses, which can happen if a new memcg comes to life. As usual,
3469 * we'll take the set_limit_mutex to protect ourselves against this.
3471 mutex_lock(&set_limit_mutex
);
3472 for (i
= 0; i
< memcg_limited_groups_array_size
; i
++) {
3473 c
= s
->memcg_params
->memcg_caches
[i
];
3478 * We will now manually delete the caches, so to avoid races
3479 * we need to cancel all pending destruction workers and
3480 * proceed with destruction ourselves.
3482 * kmem_cache_destroy() will call kmem_cache_shrink internally,
3483 * and that could spawn the workers again: it is likely that
3484 * the cache still have active pages until this very moment.
3485 * This would lead us back to mem_cgroup_destroy_cache.
3487 * But that will not execute at all if the "dead" flag is not
3488 * set, so flip it down to guarantee we are in control.
3490 c
->memcg_params
->dead
= false;
3491 cancel_work_sync(&c
->memcg_params
->destroy
);
3492 kmem_cache_destroy(c
);
3494 mutex_unlock(&set_limit_mutex
);
3497 struct create_work
{
3498 struct mem_cgroup
*memcg
;
3499 struct kmem_cache
*cachep
;
3500 struct work_struct work
;
3503 static void mem_cgroup_destroy_all_caches(struct mem_cgroup
*memcg
)
3505 struct kmem_cache
*cachep
;
3506 struct memcg_cache_params
*params
;
3508 if (!memcg_kmem_is_active(memcg
))
3511 mutex_lock(&memcg
->slab_caches_mutex
);
3512 list_for_each_entry(params
, &memcg
->memcg_slab_caches
, list
) {
3513 cachep
= memcg_params_to_cache(params
);
3514 cachep
->memcg_params
->dead
= true;
3515 schedule_work(&cachep
->memcg_params
->destroy
);
3517 mutex_unlock(&memcg
->slab_caches_mutex
);
3520 static void memcg_create_cache_work_func(struct work_struct
*w
)
3522 struct create_work
*cw
;
3524 cw
= container_of(w
, struct create_work
, work
);
3525 memcg_create_kmem_cache(cw
->memcg
, cw
->cachep
);
3530 * Enqueue the creation of a per-memcg kmem_cache.
3532 static void __memcg_create_cache_enqueue(struct mem_cgroup
*memcg
,
3533 struct kmem_cache
*cachep
)
3535 struct create_work
*cw
;
3537 cw
= kmalloc(sizeof(struct create_work
), GFP_NOWAIT
);
3539 css_put(&memcg
->css
);
3544 cw
->cachep
= cachep
;
3546 INIT_WORK(&cw
->work
, memcg_create_cache_work_func
);
3547 schedule_work(&cw
->work
);
3550 static void memcg_create_cache_enqueue(struct mem_cgroup
*memcg
,
3551 struct kmem_cache
*cachep
)
3554 * We need to stop accounting when we kmalloc, because if the
3555 * corresponding kmalloc cache is not yet created, the first allocation
3556 * in __memcg_create_cache_enqueue will recurse.
3558 * However, it is better to enclose the whole function. Depending on
3559 * the debugging options enabled, INIT_WORK(), for instance, can
3560 * trigger an allocation. This too, will make us recurse. Because at
3561 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3562 * the safest choice is to do it like this, wrapping the whole function.
3564 memcg_stop_kmem_account();
3565 __memcg_create_cache_enqueue(memcg
, cachep
);
3566 memcg_resume_kmem_account();
3569 * Return the kmem_cache we're supposed to use for a slab allocation.
3570 * We try to use the current memcg's version of the cache.
3572 * If the cache does not exist yet, if we are the first user of it,
3573 * we either create it immediately, if possible, or create it asynchronously
3575 * In the latter case, we will let the current allocation go through with
3576 * the original cache.
3578 * Can't be called in interrupt context or from kernel threads.
3579 * This function needs to be called with rcu_read_lock() held.
3581 struct kmem_cache
*__memcg_kmem_get_cache(struct kmem_cache
*cachep
,
3584 struct mem_cgroup
*memcg
;
3587 VM_BUG_ON(!cachep
->memcg_params
);
3588 VM_BUG_ON(!cachep
->memcg_params
->is_root_cache
);
3590 if (!current
->mm
|| current
->memcg_kmem_skip_account
)
3594 memcg
= mem_cgroup_from_task(rcu_dereference(current
->mm
->owner
));
3596 if (!memcg_can_account_kmem(memcg
))
3599 idx
= memcg_cache_id(memcg
);
3602 * barrier to mare sure we're always seeing the up to date value. The
3603 * code updating memcg_caches will issue a write barrier to match this.
3605 read_barrier_depends();
3606 if (likely(cachep
->memcg_params
->memcg_caches
[idx
])) {
3607 cachep
= cachep
->memcg_params
->memcg_caches
[idx
];
3611 /* The corresponding put will be done in the workqueue. */
3612 if (!css_tryget(&memcg
->css
))
3617 * If we are in a safe context (can wait, and not in interrupt
3618 * context), we could be be predictable and return right away.
3619 * This would guarantee that the allocation being performed
3620 * already belongs in the new cache.
3622 * However, there are some clashes that can arrive from locking.
3623 * For instance, because we acquire the slab_mutex while doing
3624 * kmem_cache_dup, this means no further allocation could happen
3625 * with the slab_mutex held.
3627 * Also, because cache creation issue get_online_cpus(), this
3628 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
3629 * that ends up reversed during cpu hotplug. (cpuset allocates
3630 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
3631 * better to defer everything.
3633 memcg_create_cache_enqueue(memcg
, cachep
);
3639 EXPORT_SYMBOL(__memcg_kmem_get_cache
);
3642 * We need to verify if the allocation against current->mm->owner's memcg is
3643 * possible for the given order. But the page is not allocated yet, so we'll
3644 * need a further commit step to do the final arrangements.
3646 * It is possible for the task to switch cgroups in this mean time, so at
3647 * commit time, we can't rely on task conversion any longer. We'll then use
3648 * the handle argument to return to the caller which cgroup we should commit
3649 * against. We could also return the memcg directly and avoid the pointer
3650 * passing, but a boolean return value gives better semantics considering
3651 * the compiled-out case as well.
3653 * Returning true means the allocation is possible.
3656 __memcg_kmem_newpage_charge(gfp_t gfp
, struct mem_cgroup
**_memcg
, int order
)
3658 struct mem_cgroup
*memcg
;
3664 * Disabling accounting is only relevant for some specific memcg
3665 * internal allocations. Therefore we would initially not have such
3666 * check here, since direct calls to the page allocator that are marked
3667 * with GFP_KMEMCG only happen outside memcg core. We are mostly
3668 * concerned with cache allocations, and by having this test at
3669 * memcg_kmem_get_cache, we are already able to relay the allocation to
3670 * the root cache and bypass the memcg cache altogether.
3672 * There is one exception, though: the SLUB allocator does not create
3673 * large order caches, but rather service large kmallocs directly from
3674 * the page allocator. Therefore, the following sequence when backed by
3675 * the SLUB allocator:
3677 * memcg_stop_kmem_account();
3678 * kmalloc(<large_number>)
3679 * memcg_resume_kmem_account();
3681 * would effectively ignore the fact that we should skip accounting,
3682 * since it will drive us directly to this function without passing
3683 * through the cache selector memcg_kmem_get_cache. Such large
3684 * allocations are extremely rare but can happen, for instance, for the
3685 * cache arrays. We bring this test here.
3687 if (!current
->mm
|| current
->memcg_kmem_skip_account
)
3690 memcg
= try_get_mem_cgroup_from_mm(current
->mm
);
3693 * very rare case described in mem_cgroup_from_task. Unfortunately there
3694 * isn't much we can do without complicating this too much, and it would
3695 * be gfp-dependent anyway. Just let it go
3697 if (unlikely(!memcg
))
3700 if (!memcg_can_account_kmem(memcg
)) {
3701 css_put(&memcg
->css
);
3705 ret
= memcg_charge_kmem(memcg
, gfp
, PAGE_SIZE
<< order
);
3709 css_put(&memcg
->css
);
3713 void __memcg_kmem_commit_charge(struct page
*page
, struct mem_cgroup
*memcg
,
3716 struct page_cgroup
*pc
;
3718 VM_BUG_ON(mem_cgroup_is_root(memcg
));
3720 /* The page allocation failed. Revert */
3722 memcg_uncharge_kmem(memcg
, PAGE_SIZE
<< order
);
3726 pc
= lookup_page_cgroup(page
);
3727 lock_page_cgroup(pc
);
3728 pc
->mem_cgroup
= memcg
;
3729 SetPageCgroupUsed(pc
);
3730 unlock_page_cgroup(pc
);
3733 void __memcg_kmem_uncharge_pages(struct page
*page
, int order
)
3735 struct mem_cgroup
*memcg
= NULL
;
3736 struct page_cgroup
*pc
;
3739 pc
= lookup_page_cgroup(page
);
3741 * Fast unlocked return. Theoretically might have changed, have to
3742 * check again after locking.
3744 if (!PageCgroupUsed(pc
))
3747 lock_page_cgroup(pc
);
3748 if (PageCgroupUsed(pc
)) {
3749 memcg
= pc
->mem_cgroup
;
3750 ClearPageCgroupUsed(pc
);
3752 unlock_page_cgroup(pc
);
3755 * We trust that only if there is a memcg associated with the page, it
3756 * is a valid allocation
3761 VM_BUG_ON(mem_cgroup_is_root(memcg
));
3762 memcg_uncharge_kmem(memcg
, PAGE_SIZE
<< order
);
3765 static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup
*memcg
)
3768 #endif /* CONFIG_MEMCG_KMEM */
3770 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3772 #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3774 * Because tail pages are not marked as "used", set it. We're under
3775 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3776 * charge/uncharge will be never happen and move_account() is done under
3777 * compound_lock(), so we don't have to take care of races.
3779 void mem_cgroup_split_huge_fixup(struct page
*head
)
3781 struct page_cgroup
*head_pc
= lookup_page_cgroup(head
);
3782 struct page_cgroup
*pc
;
3783 struct mem_cgroup
*memcg
;
3786 if (mem_cgroup_disabled())
3789 memcg
= head_pc
->mem_cgroup
;
3790 for (i
= 1; i
< HPAGE_PMD_NR
; i
++) {
3792 pc
->mem_cgroup
= memcg
;
3793 smp_wmb();/* see __commit_charge() */
3794 pc
->flags
= head_pc
->flags
& ~PCGF_NOCOPY_AT_SPLIT
;
3796 __this_cpu_sub(memcg
->stat
->count
[MEM_CGROUP_STAT_RSS_HUGE
],
3799 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3802 void mem_cgroup_move_account_page_stat(struct mem_cgroup
*from
,
3803 struct mem_cgroup
*to
,
3804 unsigned int nr_pages
,
3805 enum mem_cgroup_stat_index idx
)
3807 /* Update stat data for mem_cgroup */
3809 WARN_ON_ONCE(from
->stat
->count
[idx
] < nr_pages
);
3810 __this_cpu_add(from
->stat
->count
[idx
], -nr_pages
);
3811 __this_cpu_add(to
->stat
->count
[idx
], nr_pages
);
3816 * mem_cgroup_move_account - move account of the page
3818 * @nr_pages: number of regular pages (>1 for huge pages)
3819 * @pc: page_cgroup of the page.
3820 * @from: mem_cgroup which the page is moved from.
3821 * @to: mem_cgroup which the page is moved to. @from != @to.
3823 * The caller must confirm following.
3824 * - page is not on LRU (isolate_page() is useful.)
3825 * - compound_lock is held when nr_pages > 1
3827 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3830 static int mem_cgroup_move_account(struct page
*page
,
3831 unsigned int nr_pages
,
3832 struct page_cgroup
*pc
,
3833 struct mem_cgroup
*from
,
3834 struct mem_cgroup
*to
)
3836 unsigned long flags
;
3838 bool anon
= PageAnon(page
);
3840 VM_BUG_ON(from
== to
);
3841 VM_BUG_ON(PageLRU(page
));
3843 * The page is isolated from LRU. So, collapse function
3844 * will not handle this page. But page splitting can happen.
3845 * Do this check under compound_page_lock(). The caller should
3849 if (nr_pages
> 1 && !PageTransHuge(page
))
3852 lock_page_cgroup(pc
);
3855 if (!PageCgroupUsed(pc
) || pc
->mem_cgroup
!= from
)
3858 move_lock_mem_cgroup(from
, &flags
);
3860 if (!anon
&& page_mapped(page
))
3861 mem_cgroup_move_account_page_stat(from
, to
, nr_pages
,
3862 MEM_CGROUP_STAT_FILE_MAPPED
);
3864 if (PageWriteback(page
))
3865 mem_cgroup_move_account_page_stat(from
, to
, nr_pages
,
3866 MEM_CGROUP_STAT_WRITEBACK
);
3868 mem_cgroup_charge_statistics(from
, page
, anon
, -nr_pages
);
3870 /* caller should have done css_get */
3871 pc
->mem_cgroup
= to
;
3872 mem_cgroup_charge_statistics(to
, page
, anon
, nr_pages
);
3873 move_unlock_mem_cgroup(from
, &flags
);
3876 unlock_page_cgroup(pc
);
3880 memcg_check_events(to
, page
);
3881 memcg_check_events(from
, page
);
3887 * mem_cgroup_move_parent - moves page to the parent group
3888 * @page: the page to move
3889 * @pc: page_cgroup of the page
3890 * @child: page's cgroup
3892 * move charges to its parent or the root cgroup if the group has no
3893 * parent (aka use_hierarchy==0).
3894 * Although this might fail (get_page_unless_zero, isolate_lru_page or
3895 * mem_cgroup_move_account fails) the failure is always temporary and
3896 * it signals a race with a page removal/uncharge or migration. In the
3897 * first case the page is on the way out and it will vanish from the LRU
3898 * on the next attempt and the call should be retried later.
3899 * Isolation from the LRU fails only if page has been isolated from
3900 * the LRU since we looked at it and that usually means either global
3901 * reclaim or migration going on. The page will either get back to the
3903 * Finaly mem_cgroup_move_account fails only if the page got uncharged
3904 * (!PageCgroupUsed) or moved to a different group. The page will
3905 * disappear in the next attempt.
3907 static int mem_cgroup_move_parent(struct page
*page
,
3908 struct page_cgroup
*pc
,
3909 struct mem_cgroup
*child
)
3911 struct mem_cgroup
*parent
;
3912 unsigned int nr_pages
;
3913 unsigned long uninitialized_var(flags
);
3916 VM_BUG_ON(mem_cgroup_is_root(child
));
3919 if (!get_page_unless_zero(page
))
3921 if (isolate_lru_page(page
))
3924 nr_pages
= hpage_nr_pages(page
);
3926 parent
= parent_mem_cgroup(child
);
3928 * If no parent, move charges to root cgroup.
3931 parent
= root_mem_cgroup
;
3934 VM_BUG_ON(!PageTransHuge(page
));
3935 flags
= compound_lock_irqsave(page
);
3938 ret
= mem_cgroup_move_account(page
, nr_pages
,
3941 __mem_cgroup_cancel_local_charge(child
, nr_pages
);
3944 compound_unlock_irqrestore(page
, flags
);
3945 putback_lru_page(page
);
3953 * Charge the memory controller for page usage.
3955 * 0 if the charge was successful
3956 * < 0 if the cgroup is over its limit
3958 static int mem_cgroup_charge_common(struct page
*page
, struct mm_struct
*mm
,
3959 gfp_t gfp_mask
, enum charge_type ctype
)
3961 struct mem_cgroup
*memcg
= NULL
;
3962 unsigned int nr_pages
= 1;
3966 if (PageTransHuge(page
)) {
3967 nr_pages
<<= compound_order(page
);
3968 VM_BUG_ON(!PageTransHuge(page
));
3970 * Never OOM-kill a process for a huge page. The
3971 * fault handler will fall back to regular pages.
3976 ret
= __mem_cgroup_try_charge(mm
, gfp_mask
, nr_pages
, &memcg
, oom
);
3979 __mem_cgroup_commit_charge(memcg
, page
, nr_pages
, ctype
, false);
3983 int mem_cgroup_newpage_charge(struct page
*page
,
3984 struct mm_struct
*mm
, gfp_t gfp_mask
)
3986 if (mem_cgroup_disabled())
3988 VM_BUG_ON(page_mapped(page
));
3989 VM_BUG_ON(page
->mapping
&& !PageAnon(page
));
3991 return mem_cgroup_charge_common(page
, mm
, gfp_mask
,
3992 MEM_CGROUP_CHARGE_TYPE_ANON
);
3996 * While swap-in, try_charge -> commit or cancel, the page is locked.
3997 * And when try_charge() successfully returns, one refcnt to memcg without
3998 * struct page_cgroup is acquired. This refcnt will be consumed by
3999 * "commit()" or removed by "cancel()"
4001 static int __mem_cgroup_try_charge_swapin(struct mm_struct
*mm
,
4004 struct mem_cgroup
**memcgp
)
4006 struct mem_cgroup
*memcg
;
4007 struct page_cgroup
*pc
;
4010 pc
= lookup_page_cgroup(page
);
4012 * Every swap fault against a single page tries to charge the
4013 * page, bail as early as possible. shmem_unuse() encounters
4014 * already charged pages, too. The USED bit is protected by
4015 * the page lock, which serializes swap cache removal, which
4016 * in turn serializes uncharging.
4018 if (PageCgroupUsed(pc
))
4020 if (!do_swap_account
)
4022 memcg
= try_get_mem_cgroup_from_page(page
);
4026 ret
= __mem_cgroup_try_charge(NULL
, mask
, 1, memcgp
, true);
4027 css_put(&memcg
->css
);
4032 ret
= __mem_cgroup_try_charge(mm
, mask
, 1, memcgp
, true);
4038 int mem_cgroup_try_charge_swapin(struct mm_struct
*mm
, struct page
*page
,
4039 gfp_t gfp_mask
, struct mem_cgroup
**memcgp
)
4042 if (mem_cgroup_disabled())
4045 * A racing thread's fault, or swapoff, may have already
4046 * updated the pte, and even removed page from swap cache: in
4047 * those cases unuse_pte()'s pte_same() test will fail; but
4048 * there's also a KSM case which does need to charge the page.
4050 if (!PageSwapCache(page
)) {
4053 ret
= __mem_cgroup_try_charge(mm
, gfp_mask
, 1, memcgp
, true);
4058 return __mem_cgroup_try_charge_swapin(mm
, page
, gfp_mask
, memcgp
);
4061 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup
*memcg
)
4063 if (mem_cgroup_disabled())
4067 __mem_cgroup_cancel_charge(memcg
, 1);
4071 __mem_cgroup_commit_charge_swapin(struct page
*page
, struct mem_cgroup
*memcg
,
4072 enum charge_type ctype
)
4074 if (mem_cgroup_disabled())
4079 __mem_cgroup_commit_charge(memcg
, page
, 1, ctype
, true);
4081 * Now swap is on-memory. This means this page may be
4082 * counted both as mem and swap....double count.
4083 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
4084 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
4085 * may call delete_from_swap_cache() before reach here.
4087 if (do_swap_account
&& PageSwapCache(page
)) {
4088 swp_entry_t ent
= {.val
= page_private(page
)};
4089 mem_cgroup_uncharge_swap(ent
);
4093 void mem_cgroup_commit_charge_swapin(struct page
*page
,
4094 struct mem_cgroup
*memcg
)
4096 __mem_cgroup_commit_charge_swapin(page
, memcg
,
4097 MEM_CGROUP_CHARGE_TYPE_ANON
);
4100 int mem_cgroup_cache_charge(struct page
*page
, struct mm_struct
*mm
,
4103 struct mem_cgroup
*memcg
= NULL
;
4104 enum charge_type type
= MEM_CGROUP_CHARGE_TYPE_CACHE
;
4107 if (mem_cgroup_disabled())
4109 if (PageCompound(page
))
4112 if (!PageSwapCache(page
))
4113 ret
= mem_cgroup_charge_common(page
, mm
, gfp_mask
, type
);
4114 else { /* page is swapcache/shmem */
4115 ret
= __mem_cgroup_try_charge_swapin(mm
, page
,
4118 __mem_cgroup_commit_charge_swapin(page
, memcg
, type
);
4123 static void mem_cgroup_do_uncharge(struct mem_cgroup
*memcg
,
4124 unsigned int nr_pages
,
4125 const enum charge_type ctype
)
4127 struct memcg_batch_info
*batch
= NULL
;
4128 bool uncharge_memsw
= true;
4130 /* If swapout, usage of swap doesn't decrease */
4131 if (!do_swap_account
|| ctype
== MEM_CGROUP_CHARGE_TYPE_SWAPOUT
)
4132 uncharge_memsw
= false;
4134 batch
= ¤t
->memcg_batch
;
4136 * In usual, we do css_get() when we remember memcg pointer.
4137 * But in this case, we keep res->usage until end of a series of
4138 * uncharges. Then, it's ok to ignore memcg's refcnt.
4141 batch
->memcg
= memcg
;
4143 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
4144 * In those cases, all pages freed continuously can be expected to be in
4145 * the same cgroup and we have chance to coalesce uncharges.
4146 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
4147 * because we want to do uncharge as soon as possible.
4150 if (!batch
->do_batch
|| test_thread_flag(TIF_MEMDIE
))
4151 goto direct_uncharge
;
4154 goto direct_uncharge
;
4157 * In typical case, batch->memcg == mem. This means we can
4158 * merge a series of uncharges to an uncharge of res_counter.
4159 * If not, we uncharge res_counter ony by one.
4161 if (batch
->memcg
!= memcg
)
4162 goto direct_uncharge
;
4163 /* remember freed charge and uncharge it later */
4166 batch
->memsw_nr_pages
++;
4169 res_counter_uncharge(&memcg
->res
, nr_pages
* PAGE_SIZE
);
4171 res_counter_uncharge(&memcg
->memsw
, nr_pages
* PAGE_SIZE
);
4172 if (unlikely(batch
->memcg
!= memcg
))
4173 memcg_oom_recover(memcg
);
4177 * uncharge if !page_mapped(page)
4179 static struct mem_cgroup
*
4180 __mem_cgroup_uncharge_common(struct page
*page
, enum charge_type ctype
,
4183 struct mem_cgroup
*memcg
= NULL
;
4184 unsigned int nr_pages
= 1;
4185 struct page_cgroup
*pc
;
4188 if (mem_cgroup_disabled())
4191 if (PageTransHuge(page
)) {
4192 nr_pages
<<= compound_order(page
);
4193 VM_BUG_ON(!PageTransHuge(page
));
4196 * Check if our page_cgroup is valid
4198 pc
= lookup_page_cgroup(page
);
4199 if (unlikely(!PageCgroupUsed(pc
)))
4202 lock_page_cgroup(pc
);
4204 memcg
= pc
->mem_cgroup
;
4206 if (!PageCgroupUsed(pc
))
4209 anon
= PageAnon(page
);
4212 case MEM_CGROUP_CHARGE_TYPE_ANON
:
4214 * Generally PageAnon tells if it's the anon statistics to be
4215 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
4216 * used before page reached the stage of being marked PageAnon.
4220 case MEM_CGROUP_CHARGE_TYPE_DROP
:
4221 /* See mem_cgroup_prepare_migration() */
4222 if (page_mapped(page
))
4225 * Pages under migration may not be uncharged. But
4226 * end_migration() /must/ be the one uncharging the
4227 * unused post-migration page and so it has to call
4228 * here with the migration bit still set. See the
4229 * res_counter handling below.
4231 if (!end_migration
&& PageCgroupMigration(pc
))
4234 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT
:
4235 if (!PageAnon(page
)) { /* Shared memory */
4236 if (page
->mapping
&& !page_is_file_cache(page
))
4238 } else if (page_mapped(page
)) /* Anon */
4245 mem_cgroup_charge_statistics(memcg
, page
, anon
, -nr_pages
);
4247 ClearPageCgroupUsed(pc
);
4249 * pc->mem_cgroup is not cleared here. It will be accessed when it's
4250 * freed from LRU. This is safe because uncharged page is expected not
4251 * to be reused (freed soon). Exception is SwapCache, it's handled by
4252 * special functions.
4255 unlock_page_cgroup(pc
);
4257 * even after unlock, we have memcg->res.usage here and this memcg
4258 * will never be freed, so it's safe to call css_get().
4260 memcg_check_events(memcg
, page
);
4261 if (do_swap_account
&& ctype
== MEM_CGROUP_CHARGE_TYPE_SWAPOUT
) {
4262 mem_cgroup_swap_statistics(memcg
, true);
4263 css_get(&memcg
->css
);
4266 * Migration does not charge the res_counter for the
4267 * replacement page, so leave it alone when phasing out the
4268 * page that is unused after the migration.
4270 if (!end_migration
&& !mem_cgroup_is_root(memcg
))
4271 mem_cgroup_do_uncharge(memcg
, nr_pages
, ctype
);
4276 unlock_page_cgroup(pc
);
4280 void mem_cgroup_uncharge_page(struct page
*page
)
4283 if (page_mapped(page
))
4285 VM_BUG_ON(page
->mapping
&& !PageAnon(page
));
4287 * If the page is in swap cache, uncharge should be deferred
4288 * to the swap path, which also properly accounts swap usage
4289 * and handles memcg lifetime.
4291 * Note that this check is not stable and reclaim may add the
4292 * page to swap cache at any time after this. However, if the
4293 * page is not in swap cache by the time page->mapcount hits
4294 * 0, there won't be any page table references to the swap
4295 * slot, and reclaim will free it and not actually write the
4298 if (PageSwapCache(page
))
4300 __mem_cgroup_uncharge_common(page
, MEM_CGROUP_CHARGE_TYPE_ANON
, false);
4303 void mem_cgroup_uncharge_cache_page(struct page
*page
)
4305 VM_BUG_ON(page_mapped(page
));
4306 VM_BUG_ON(page
->mapping
);
4307 __mem_cgroup_uncharge_common(page
, MEM_CGROUP_CHARGE_TYPE_CACHE
, false);
4311 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
4312 * In that cases, pages are freed continuously and we can expect pages
4313 * are in the same memcg. All these calls itself limits the number of
4314 * pages freed at once, then uncharge_start/end() is called properly.
4315 * This may be called prural(2) times in a context,
4318 void mem_cgroup_uncharge_start(void)
4320 current
->memcg_batch
.do_batch
++;
4321 /* We can do nest. */
4322 if (current
->memcg_batch
.do_batch
== 1) {
4323 current
->memcg_batch
.memcg
= NULL
;
4324 current
->memcg_batch
.nr_pages
= 0;
4325 current
->memcg_batch
.memsw_nr_pages
= 0;
4329 void mem_cgroup_uncharge_end(void)
4331 struct memcg_batch_info
*batch
= ¤t
->memcg_batch
;
4333 if (!batch
->do_batch
)
4337 if (batch
->do_batch
) /* If stacked, do nothing. */
4343 * This "batch->memcg" is valid without any css_get/put etc...
4344 * bacause we hide charges behind us.
4346 if (batch
->nr_pages
)
4347 res_counter_uncharge(&batch
->memcg
->res
,
4348 batch
->nr_pages
* PAGE_SIZE
);
4349 if (batch
->memsw_nr_pages
)
4350 res_counter_uncharge(&batch
->memcg
->memsw
,
4351 batch
->memsw_nr_pages
* PAGE_SIZE
);
4352 memcg_oom_recover(batch
->memcg
);
4353 /* forget this pointer (for sanity check) */
4354 batch
->memcg
= NULL
;
4359 * called after __delete_from_swap_cache() and drop "page" account.
4360 * memcg information is recorded to swap_cgroup of "ent"
4363 mem_cgroup_uncharge_swapcache(struct page
*page
, swp_entry_t ent
, bool swapout
)
4365 struct mem_cgroup
*memcg
;
4366 int ctype
= MEM_CGROUP_CHARGE_TYPE_SWAPOUT
;
4368 if (!swapout
) /* this was a swap cache but the swap is unused ! */
4369 ctype
= MEM_CGROUP_CHARGE_TYPE_DROP
;
4371 memcg
= __mem_cgroup_uncharge_common(page
, ctype
, false);
4374 * record memcg information, if swapout && memcg != NULL,
4375 * css_get() was called in uncharge().
4377 if (do_swap_account
&& swapout
&& memcg
)
4378 swap_cgroup_record(ent
, css_id(&memcg
->css
));
4382 #ifdef CONFIG_MEMCG_SWAP
4384 * called from swap_entry_free(). remove record in swap_cgroup and
4385 * uncharge "memsw" account.
4387 void mem_cgroup_uncharge_swap(swp_entry_t ent
)
4389 struct mem_cgroup
*memcg
;
4392 if (!do_swap_account
)
4395 id
= swap_cgroup_record(ent
, 0);
4397 memcg
= mem_cgroup_lookup(id
);
4400 * We uncharge this because swap is freed.
4401 * This memcg can be obsolete one. We avoid calling css_tryget
4403 if (!mem_cgroup_is_root(memcg
))
4404 res_counter_uncharge(&memcg
->memsw
, PAGE_SIZE
);
4405 mem_cgroup_swap_statistics(memcg
, false);
4406 css_put(&memcg
->css
);
4412 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
4413 * @entry: swap entry to be moved
4414 * @from: mem_cgroup which the entry is moved from
4415 * @to: mem_cgroup which the entry is moved to
4417 * It succeeds only when the swap_cgroup's record for this entry is the same
4418 * as the mem_cgroup's id of @from.
4420 * Returns 0 on success, -EINVAL on failure.
4422 * The caller must have charged to @to, IOW, called res_counter_charge() about
4423 * both res and memsw, and called css_get().
4425 static int mem_cgroup_move_swap_account(swp_entry_t entry
,
4426 struct mem_cgroup
*from
, struct mem_cgroup
*to
)
4428 unsigned short old_id
, new_id
;
4430 old_id
= css_id(&from
->css
);
4431 new_id
= css_id(&to
->css
);
4433 if (swap_cgroup_cmpxchg(entry
, old_id
, new_id
) == old_id
) {
4434 mem_cgroup_swap_statistics(from
, false);
4435 mem_cgroup_swap_statistics(to
, true);
4437 * This function is only called from task migration context now.
4438 * It postpones res_counter and refcount handling till the end
4439 * of task migration(mem_cgroup_clear_mc()) for performance
4440 * improvement. But we cannot postpone css_get(to) because if
4441 * the process that has been moved to @to does swap-in, the
4442 * refcount of @to might be decreased to 0.
4444 * We are in attach() phase, so the cgroup is guaranteed to be
4445 * alive, so we can just call css_get().
4453 static inline int mem_cgroup_move_swap_account(swp_entry_t entry
,
4454 struct mem_cgroup
*from
, struct mem_cgroup
*to
)
4461 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
4464 void mem_cgroup_prepare_migration(struct page
*page
, struct page
*newpage
,
4465 struct mem_cgroup
**memcgp
)
4467 struct mem_cgroup
*memcg
= NULL
;
4468 unsigned int nr_pages
= 1;
4469 struct page_cgroup
*pc
;
4470 enum charge_type ctype
;
4474 if (mem_cgroup_disabled())
4477 if (PageTransHuge(page
))
4478 nr_pages
<<= compound_order(page
);
4480 pc
= lookup_page_cgroup(page
);
4481 lock_page_cgroup(pc
);
4482 if (PageCgroupUsed(pc
)) {
4483 memcg
= pc
->mem_cgroup
;
4484 css_get(&memcg
->css
);
4486 * At migrating an anonymous page, its mapcount goes down
4487 * to 0 and uncharge() will be called. But, even if it's fully
4488 * unmapped, migration may fail and this page has to be
4489 * charged again. We set MIGRATION flag here and delay uncharge
4490 * until end_migration() is called
4492 * Corner Case Thinking
4494 * When the old page was mapped as Anon and it's unmap-and-freed
4495 * while migration was ongoing.
4496 * If unmap finds the old page, uncharge() of it will be delayed
4497 * until end_migration(). If unmap finds a new page, it's
4498 * uncharged when it make mapcount to be 1->0. If unmap code
4499 * finds swap_migration_entry, the new page will not be mapped
4500 * and end_migration() will find it(mapcount==0).
4503 * When the old page was mapped but migraion fails, the kernel
4504 * remaps it. A charge for it is kept by MIGRATION flag even
4505 * if mapcount goes down to 0. We can do remap successfully
4506 * without charging it again.
4509 * The "old" page is under lock_page() until the end of
4510 * migration, so, the old page itself will not be swapped-out.
4511 * If the new page is swapped out before end_migraton, our
4512 * hook to usual swap-out path will catch the event.
4515 SetPageCgroupMigration(pc
);
4517 unlock_page_cgroup(pc
);
4519 * If the page is not charged at this point,
4527 * We charge new page before it's used/mapped. So, even if unlock_page()
4528 * is called before end_migration, we can catch all events on this new
4529 * page. In the case new page is migrated but not remapped, new page's
4530 * mapcount will be finally 0 and we call uncharge in end_migration().
4533 ctype
= MEM_CGROUP_CHARGE_TYPE_ANON
;
4535 ctype
= MEM_CGROUP_CHARGE_TYPE_CACHE
;
4537 * The page is committed to the memcg, but it's not actually
4538 * charged to the res_counter since we plan on replacing the
4539 * old one and only one page is going to be left afterwards.
4541 __mem_cgroup_commit_charge(memcg
, newpage
, nr_pages
, ctype
, false);
4544 /* remove redundant charge if migration failed*/
4545 void mem_cgroup_end_migration(struct mem_cgroup
*memcg
,
4546 struct page
*oldpage
, struct page
*newpage
, bool migration_ok
)
4548 struct page
*used
, *unused
;
4549 struct page_cgroup
*pc
;
4555 if (!migration_ok
) {
4562 anon
= PageAnon(used
);
4563 __mem_cgroup_uncharge_common(unused
,
4564 anon
? MEM_CGROUP_CHARGE_TYPE_ANON
4565 : MEM_CGROUP_CHARGE_TYPE_CACHE
,
4567 css_put(&memcg
->css
);
4569 * We disallowed uncharge of pages under migration because mapcount
4570 * of the page goes down to zero, temporarly.
4571 * Clear the flag and check the page should be charged.
4573 pc
= lookup_page_cgroup(oldpage
);
4574 lock_page_cgroup(pc
);
4575 ClearPageCgroupMigration(pc
);
4576 unlock_page_cgroup(pc
);
4579 * If a page is a file cache, radix-tree replacement is very atomic
4580 * and we can skip this check. When it was an Anon page, its mapcount
4581 * goes down to 0. But because we added MIGRATION flage, it's not
4582 * uncharged yet. There are several case but page->mapcount check
4583 * and USED bit check in mem_cgroup_uncharge_page() will do enough
4584 * check. (see prepare_charge() also)
4587 mem_cgroup_uncharge_page(used
);
4591 * At replace page cache, newpage is not under any memcg but it's on
4592 * LRU. So, this function doesn't touch res_counter but handles LRU
4593 * in correct way. Both pages are locked so we cannot race with uncharge.
4595 void mem_cgroup_replace_page_cache(struct page
*oldpage
,
4596 struct page
*newpage
)
4598 struct mem_cgroup
*memcg
= NULL
;
4599 struct page_cgroup
*pc
;
4600 enum charge_type type
= MEM_CGROUP_CHARGE_TYPE_CACHE
;
4602 if (mem_cgroup_disabled())
4605 pc
= lookup_page_cgroup(oldpage
);
4606 /* fix accounting on old pages */
4607 lock_page_cgroup(pc
);
4608 if (PageCgroupUsed(pc
)) {
4609 memcg
= pc
->mem_cgroup
;
4610 mem_cgroup_charge_statistics(memcg
, oldpage
, false, -1);
4611 ClearPageCgroupUsed(pc
);
4613 unlock_page_cgroup(pc
);
4616 * When called from shmem_replace_page(), in some cases the
4617 * oldpage has already been charged, and in some cases not.
4622 * Even if newpage->mapping was NULL before starting replacement,
4623 * the newpage may be on LRU(or pagevec for LRU) already. We lock
4624 * LRU while we overwrite pc->mem_cgroup.
4626 __mem_cgroup_commit_charge(memcg
, newpage
, 1, type
, true);
4629 #ifdef CONFIG_DEBUG_VM
4630 static struct page_cgroup
*lookup_page_cgroup_used(struct page
*page
)
4632 struct page_cgroup
*pc
;
4634 pc
= lookup_page_cgroup(page
);
4636 * Can be NULL while feeding pages into the page allocator for
4637 * the first time, i.e. during boot or memory hotplug;
4638 * or when mem_cgroup_disabled().
4640 if (likely(pc
) && PageCgroupUsed(pc
))
4645 bool mem_cgroup_bad_page_check(struct page
*page
)
4647 if (mem_cgroup_disabled())
4650 return lookup_page_cgroup_used(page
) != NULL
;
4653 void mem_cgroup_print_bad_page(struct page
*page
)
4655 struct page_cgroup
*pc
;
4657 pc
= lookup_page_cgroup_used(page
);
4659 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4660 pc
, pc
->flags
, pc
->mem_cgroup
);
4665 static int mem_cgroup_resize_limit(struct mem_cgroup
*memcg
,
4666 unsigned long long val
)
4669 u64 memswlimit
, memlimit
;
4671 int children
= mem_cgroup_count_children(memcg
);
4672 u64 curusage
, oldusage
;
4676 * For keeping hierarchical_reclaim simple, how long we should retry
4677 * is depends on callers. We set our retry-count to be function
4678 * of # of children which we should visit in this loop.
4680 retry_count
= MEM_CGROUP_RECLAIM_RETRIES
* children
;
4682 oldusage
= res_counter_read_u64(&memcg
->res
, RES_USAGE
);
4685 while (retry_count
) {
4686 if (signal_pending(current
)) {
4691 * Rather than hide all in some function, I do this in
4692 * open coded manner. You see what this really does.
4693 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4695 mutex_lock(&set_limit_mutex
);
4696 memswlimit
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
4697 if (memswlimit
< val
) {
4699 mutex_unlock(&set_limit_mutex
);
4703 memlimit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
4707 ret
= res_counter_set_limit(&memcg
->res
, val
);
4709 if (memswlimit
== val
)
4710 memcg
->memsw_is_minimum
= true;
4712 memcg
->memsw_is_minimum
= false;
4714 mutex_unlock(&set_limit_mutex
);
4719 mem_cgroup_reclaim(memcg
, GFP_KERNEL
,
4720 MEM_CGROUP_RECLAIM_SHRINK
);
4721 curusage
= res_counter_read_u64(&memcg
->res
, RES_USAGE
);
4722 /* Usage is reduced ? */
4723 if (curusage
>= oldusage
)
4726 oldusage
= curusage
;
4728 if (!ret
&& enlarge
)
4729 memcg_oom_recover(memcg
);
4734 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup
*memcg
,
4735 unsigned long long val
)
4738 u64 memlimit
, memswlimit
, oldusage
, curusage
;
4739 int children
= mem_cgroup_count_children(memcg
);
4743 /* see mem_cgroup_resize_res_limit */
4744 retry_count
= children
* MEM_CGROUP_RECLAIM_RETRIES
;
4745 oldusage
= res_counter_read_u64(&memcg
->memsw
, RES_USAGE
);
4746 while (retry_count
) {
4747 if (signal_pending(current
)) {
4752 * Rather than hide all in some function, I do this in
4753 * open coded manner. You see what this really does.
4754 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4756 mutex_lock(&set_limit_mutex
);
4757 memlimit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
4758 if (memlimit
> val
) {
4760 mutex_unlock(&set_limit_mutex
);
4763 memswlimit
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
4764 if (memswlimit
< val
)
4766 ret
= res_counter_set_limit(&memcg
->memsw
, val
);
4768 if (memlimit
== val
)
4769 memcg
->memsw_is_minimum
= true;
4771 memcg
->memsw_is_minimum
= false;
4773 mutex_unlock(&set_limit_mutex
);
4778 mem_cgroup_reclaim(memcg
, GFP_KERNEL
,
4779 MEM_CGROUP_RECLAIM_NOSWAP
|
4780 MEM_CGROUP_RECLAIM_SHRINK
);
4781 curusage
= res_counter_read_u64(&memcg
->memsw
, RES_USAGE
);
4782 /* Usage is reduced ? */
4783 if (curusage
>= oldusage
)
4786 oldusage
= curusage
;
4788 if (!ret
&& enlarge
)
4789 memcg_oom_recover(memcg
);
4793 unsigned long mem_cgroup_soft_limit_reclaim(struct zone
*zone
, int order
,
4795 unsigned long *total_scanned
)
4797 unsigned long nr_reclaimed
= 0;
4798 struct mem_cgroup_per_zone
*mz
, *next_mz
= NULL
;
4799 unsigned long reclaimed
;
4801 struct mem_cgroup_tree_per_zone
*mctz
;
4802 unsigned long long excess
;
4803 unsigned long nr_scanned
;
4808 mctz
= soft_limit_tree_node_zone(zone_to_nid(zone
), zone_idx(zone
));
4810 * This loop can run a while, specially if mem_cgroup's continuously
4811 * keep exceeding their soft limit and putting the system under
4818 mz
= mem_cgroup_largest_soft_limit_node(mctz
);
4823 reclaimed
= mem_cgroup_soft_reclaim(mz
->memcg
, zone
,
4824 gfp_mask
, &nr_scanned
);
4825 nr_reclaimed
+= reclaimed
;
4826 *total_scanned
+= nr_scanned
;
4827 spin_lock(&mctz
->lock
);
4830 * If we failed to reclaim anything from this memory cgroup
4831 * it is time to move on to the next cgroup
4837 * Loop until we find yet another one.
4839 * By the time we get the soft_limit lock
4840 * again, someone might have aded the
4841 * group back on the RB tree. Iterate to
4842 * make sure we get a different mem.
4843 * mem_cgroup_largest_soft_limit_node returns
4844 * NULL if no other cgroup is present on
4848 __mem_cgroup_largest_soft_limit_node(mctz
);
4850 css_put(&next_mz
->memcg
->css
);
4851 else /* next_mz == NULL or other memcg */
4855 __mem_cgroup_remove_exceeded(mz
->memcg
, mz
, mctz
);
4856 excess
= res_counter_soft_limit_excess(&mz
->memcg
->res
);
4858 * One school of thought says that we should not add
4859 * back the node to the tree if reclaim returns 0.
4860 * But our reclaim could return 0, simply because due
4861 * to priority we are exposing a smaller subset of
4862 * memory to reclaim from. Consider this as a longer
4865 /* If excess == 0, no tree ops */
4866 __mem_cgroup_insert_exceeded(mz
->memcg
, mz
, mctz
, excess
);
4867 spin_unlock(&mctz
->lock
);
4868 css_put(&mz
->memcg
->css
);
4871 * Could not reclaim anything and there are no more
4872 * mem cgroups to try or we seem to be looping without
4873 * reclaiming anything.
4875 if (!nr_reclaimed
&&
4877 loop
> MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS
))
4879 } while (!nr_reclaimed
);
4881 css_put(&next_mz
->memcg
->css
);
4882 return nr_reclaimed
;
4886 * mem_cgroup_force_empty_list - clears LRU of a group
4887 * @memcg: group to clear
4890 * @lru: lru to to clear
4892 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
4893 * reclaim the pages page themselves - pages are moved to the parent (or root)
4896 static void mem_cgroup_force_empty_list(struct mem_cgroup
*memcg
,
4897 int node
, int zid
, enum lru_list lru
)
4899 struct lruvec
*lruvec
;
4900 unsigned long flags
;
4901 struct list_head
*list
;
4905 zone
= &NODE_DATA(node
)->node_zones
[zid
];
4906 lruvec
= mem_cgroup_zone_lruvec(zone
, memcg
);
4907 list
= &lruvec
->lists
[lru
];
4911 struct page_cgroup
*pc
;
4914 spin_lock_irqsave(&zone
->lru_lock
, flags
);
4915 if (list_empty(list
)) {
4916 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
4919 page
= list_entry(list
->prev
, struct page
, lru
);
4921 list_move(&page
->lru
, list
);
4923 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
4926 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
4928 pc
= lookup_page_cgroup(page
);
4930 if (mem_cgroup_move_parent(page
, pc
, memcg
)) {
4931 /* found lock contention or "pc" is obsolete. */
4936 } while (!list_empty(list
));
4940 * make mem_cgroup's charge to be 0 if there is no task by moving
4941 * all the charges and pages to the parent.
4942 * This enables deleting this mem_cgroup.
4944 * Caller is responsible for holding css reference on the memcg.
4946 static void mem_cgroup_reparent_charges(struct mem_cgroup
*memcg
)
4952 /* This is for making all *used* pages to be on LRU. */
4953 lru_add_drain_all();
4954 drain_all_stock_sync(memcg
);
4955 mem_cgroup_start_move(memcg
);
4956 for_each_node_state(node
, N_MEMORY
) {
4957 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
4960 mem_cgroup_force_empty_list(memcg
,
4965 mem_cgroup_end_move(memcg
);
4966 memcg_oom_recover(memcg
);
4970 * Kernel memory may not necessarily be trackable to a specific
4971 * process. So they are not migrated, and therefore we can't
4972 * expect their value to drop to 0 here.
4973 * Having res filled up with kmem only is enough.
4975 * This is a safety check because mem_cgroup_force_empty_list
4976 * could have raced with mem_cgroup_replace_page_cache callers
4977 * so the lru seemed empty but the page could have been added
4978 * right after the check. RES_USAGE should be safe as we always
4979 * charge before adding to the LRU.
4981 usage
= res_counter_read_u64(&memcg
->res
, RES_USAGE
) -
4982 res_counter_read_u64(&memcg
->kmem
, RES_USAGE
);
4983 } while (usage
> 0);
4987 * This mainly exists for tests during the setting of set of use_hierarchy.
4988 * Since this is the very setting we are changing, the current hierarchy value
4991 static inline bool __memcg_has_children(struct mem_cgroup
*memcg
)
4993 struct cgroup_subsys_state
*pos
;
4995 /* bounce at first found */
4996 css_for_each_child(pos
, &memcg
->css
)
5002 * Must be called with memcg_create_mutex held, unless the cgroup is guaranteed
5003 * to be already dead (as in mem_cgroup_force_empty, for instance). This is
5004 * from mem_cgroup_count_children(), in the sense that we don't really care how
5005 * many children we have; we only need to know if we have any. It also counts
5006 * any memcg without hierarchy as infertile.
5008 static inline bool memcg_has_children(struct mem_cgroup
*memcg
)
5010 return memcg
->use_hierarchy
&& __memcg_has_children(memcg
);
5014 * Reclaims as many pages from the given memcg as possible and moves
5015 * the rest to the parent.
5017 * Caller is responsible for holding css reference for memcg.
5019 static int mem_cgroup_force_empty(struct mem_cgroup
*memcg
)
5021 int nr_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
5022 struct cgroup
*cgrp
= memcg
->css
.cgroup
;
5024 /* returns EBUSY if there is a task or if we come here twice. */
5025 if (cgroup_task_count(cgrp
) || !list_empty(&cgrp
->children
))
5028 /* we call try-to-free pages for make this cgroup empty */
5029 lru_add_drain_all();
5030 /* try to free all pages in this cgroup */
5031 while (nr_retries
&& res_counter_read_u64(&memcg
->res
, RES_USAGE
) > 0) {
5034 if (signal_pending(current
))
5037 progress
= try_to_free_mem_cgroup_pages(memcg
, GFP_KERNEL
,
5041 /* maybe some writeback is necessary */
5042 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
5047 mem_cgroup_reparent_charges(memcg
);
5052 static int mem_cgroup_force_empty_write(struct cgroup_subsys_state
*css
,
5055 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
5057 if (mem_cgroup_is_root(memcg
))
5059 return mem_cgroup_force_empty(memcg
);
5062 static u64
mem_cgroup_hierarchy_read(struct cgroup_subsys_state
*css
,
5065 return mem_cgroup_from_css(css
)->use_hierarchy
;
5068 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state
*css
,
5069 struct cftype
*cft
, u64 val
)
5072 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
5073 struct mem_cgroup
*parent_memcg
= mem_cgroup_from_css(css_parent(&memcg
->css
));
5075 mutex_lock(&memcg_create_mutex
);
5077 if (memcg
->use_hierarchy
== val
)
5081 * If parent's use_hierarchy is set, we can't make any modifications
5082 * in the child subtrees. If it is unset, then the change can
5083 * occur, provided the current cgroup has no children.
5085 * For the root cgroup, parent_mem is NULL, we allow value to be
5086 * set if there are no children.
5088 if ((!parent_memcg
|| !parent_memcg
->use_hierarchy
) &&
5089 (val
== 1 || val
== 0)) {
5090 if (!__memcg_has_children(memcg
))
5091 memcg
->use_hierarchy
= val
;
5098 mutex_unlock(&memcg_create_mutex
);
5104 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup
*memcg
,
5105 enum mem_cgroup_stat_index idx
)
5107 struct mem_cgroup
*iter
;
5110 /* Per-cpu values can be negative, use a signed accumulator */
5111 for_each_mem_cgroup_tree(iter
, memcg
)
5112 val
+= mem_cgroup_read_stat(iter
, idx
);
5114 if (val
< 0) /* race ? */
5119 static inline u64
mem_cgroup_usage(struct mem_cgroup
*memcg
, bool swap
)
5123 if (!mem_cgroup_is_root(memcg
)) {
5125 return res_counter_read_u64(&memcg
->res
, RES_USAGE
);
5127 return res_counter_read_u64(&memcg
->memsw
, RES_USAGE
);
5131 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
5132 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
5134 val
= mem_cgroup_recursive_stat(memcg
, MEM_CGROUP_STAT_CACHE
);
5135 val
+= mem_cgroup_recursive_stat(memcg
, MEM_CGROUP_STAT_RSS
);
5138 val
+= mem_cgroup_recursive_stat(memcg
, MEM_CGROUP_STAT_SWAP
);
5140 return val
<< PAGE_SHIFT
;
5143 static ssize_t
mem_cgroup_read(struct cgroup_subsys_state
*css
,
5144 struct cftype
*cft
, struct file
*file
,
5145 char __user
*buf
, size_t nbytes
, loff_t
*ppos
)
5147 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
5153 type
= MEMFILE_TYPE(cft
->private);
5154 name
= MEMFILE_ATTR(cft
->private);
5158 if (name
== RES_USAGE
)
5159 val
= mem_cgroup_usage(memcg
, false);
5161 val
= res_counter_read_u64(&memcg
->res
, name
);
5164 if (name
== RES_USAGE
)
5165 val
= mem_cgroup_usage(memcg
, true);
5167 val
= res_counter_read_u64(&memcg
->memsw
, name
);
5170 val
= res_counter_read_u64(&memcg
->kmem
, name
);
5176 len
= scnprintf(str
, sizeof(str
), "%llu\n", (unsigned long long)val
);
5177 return simple_read_from_buffer(buf
, nbytes
, ppos
, str
, len
);
5180 static int memcg_update_kmem_limit(struct cgroup_subsys_state
*css
, u64 val
)
5183 #ifdef CONFIG_MEMCG_KMEM
5184 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
5186 * For simplicity, we won't allow this to be disabled. It also can't
5187 * be changed if the cgroup has children already, or if tasks had
5190 * If tasks join before we set the limit, a person looking at
5191 * kmem.usage_in_bytes will have no way to determine when it took
5192 * place, which makes the value quite meaningless.
5194 * After it first became limited, changes in the value of the limit are
5195 * of course permitted.
5197 mutex_lock(&memcg_create_mutex
);
5198 mutex_lock(&set_limit_mutex
);
5199 if (!memcg
->kmem_account_flags
&& val
!= RES_COUNTER_MAX
) {
5200 if (cgroup_task_count(css
->cgroup
) || memcg_has_children(memcg
)) {
5204 ret
= res_counter_set_limit(&memcg
->kmem
, val
);
5207 ret
= memcg_update_cache_sizes(memcg
);
5209 res_counter_set_limit(&memcg
->kmem
, RES_COUNTER_MAX
);
5212 static_key_slow_inc(&memcg_kmem_enabled_key
);
5214 * setting the active bit after the inc will guarantee no one
5215 * starts accounting before all call sites are patched
5217 memcg_kmem_set_active(memcg
);
5219 ret
= res_counter_set_limit(&memcg
->kmem
, val
);
5221 mutex_unlock(&set_limit_mutex
);
5222 mutex_unlock(&memcg_create_mutex
);
5227 #ifdef CONFIG_MEMCG_KMEM
5228 static int memcg_propagate_kmem(struct mem_cgroup
*memcg
)
5231 struct mem_cgroup
*parent
= parent_mem_cgroup(memcg
);
5235 memcg
->kmem_account_flags
= parent
->kmem_account_flags
;
5237 * When that happen, we need to disable the static branch only on those
5238 * memcgs that enabled it. To achieve this, we would be forced to
5239 * complicate the code by keeping track of which memcgs were the ones
5240 * that actually enabled limits, and which ones got it from its
5243 * It is a lot simpler just to do static_key_slow_inc() on every child
5244 * that is accounted.
5246 if (!memcg_kmem_is_active(memcg
))
5250 * __mem_cgroup_free() will issue static_key_slow_dec() because this
5251 * memcg is active already. If the later initialization fails then the
5252 * cgroup core triggers the cleanup so we do not have to do it here.
5254 static_key_slow_inc(&memcg_kmem_enabled_key
);
5256 mutex_lock(&set_limit_mutex
);
5257 memcg_stop_kmem_account();
5258 ret
= memcg_update_cache_sizes(memcg
);
5259 memcg_resume_kmem_account();
5260 mutex_unlock(&set_limit_mutex
);
5264 #endif /* CONFIG_MEMCG_KMEM */
5267 * The user of this function is...
5270 static int mem_cgroup_write(struct cgroup_subsys_state
*css
, struct cftype
*cft
,
5273 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
5276 unsigned long long val
;
5279 type
= MEMFILE_TYPE(cft
->private);
5280 name
= MEMFILE_ATTR(cft
->private);
5284 if (mem_cgroup_is_root(memcg
)) { /* Can't set limit on root */
5288 /* This function does all necessary parse...reuse it */
5289 ret
= res_counter_memparse_write_strategy(buffer
, &val
);
5293 ret
= mem_cgroup_resize_limit(memcg
, val
);
5294 else if (type
== _MEMSWAP
)
5295 ret
= mem_cgroup_resize_memsw_limit(memcg
, val
);
5296 else if (type
== _KMEM
)
5297 ret
= memcg_update_kmem_limit(css
, val
);
5301 case RES_SOFT_LIMIT
:
5302 ret
= res_counter_memparse_write_strategy(buffer
, &val
);
5306 * For memsw, soft limits are hard to implement in terms
5307 * of semantics, for now, we support soft limits for
5308 * control without swap
5311 ret
= res_counter_set_soft_limit(&memcg
->res
, val
);
5316 ret
= -EINVAL
; /* should be BUG() ? */
5322 static void memcg_get_hierarchical_limit(struct mem_cgroup
*memcg
,
5323 unsigned long long *mem_limit
, unsigned long long *memsw_limit
)
5325 unsigned long long min_limit
, min_memsw_limit
, tmp
;
5327 min_limit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
5328 min_memsw_limit
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
5329 if (!memcg
->use_hierarchy
)
5332 while (css_parent(&memcg
->css
)) {
5333 memcg
= mem_cgroup_from_css(css_parent(&memcg
->css
));
5334 if (!memcg
->use_hierarchy
)
5336 tmp
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
5337 min_limit
= min(min_limit
, tmp
);
5338 tmp
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
5339 min_memsw_limit
= min(min_memsw_limit
, tmp
);
5342 *mem_limit
= min_limit
;
5343 *memsw_limit
= min_memsw_limit
;
5346 static int mem_cgroup_reset(struct cgroup_subsys_state
*css
, unsigned int event
)
5348 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
5352 type
= MEMFILE_TYPE(event
);
5353 name
= MEMFILE_ATTR(event
);
5358 res_counter_reset_max(&memcg
->res
);
5359 else if (type
== _MEMSWAP
)
5360 res_counter_reset_max(&memcg
->memsw
);
5361 else if (type
== _KMEM
)
5362 res_counter_reset_max(&memcg
->kmem
);
5368 res_counter_reset_failcnt(&memcg
->res
);
5369 else if (type
== _MEMSWAP
)
5370 res_counter_reset_failcnt(&memcg
->memsw
);
5371 else if (type
== _KMEM
)
5372 res_counter_reset_failcnt(&memcg
->kmem
);
5381 static u64
mem_cgroup_move_charge_read(struct cgroup_subsys_state
*css
,
5384 return mem_cgroup_from_css(css
)->move_charge_at_immigrate
;
5388 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state
*css
,
5389 struct cftype
*cft
, u64 val
)
5391 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
5393 if (val
>= (1 << NR_MOVE_TYPE
))
5397 * No kind of locking is needed in here, because ->can_attach() will
5398 * check this value once in the beginning of the process, and then carry
5399 * on with stale data. This means that changes to this value will only
5400 * affect task migrations starting after the change.
5402 memcg
->move_charge_at_immigrate
= val
;
5406 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state
*css
,
5407 struct cftype
*cft
, u64 val
)
5414 static int memcg_numa_stat_show(struct cgroup_subsys_state
*css
,
5415 struct cftype
*cft
, struct seq_file
*m
)
5418 unsigned long total_nr
, file_nr
, anon_nr
, unevictable_nr
;
5419 unsigned long node_nr
;
5420 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
5422 total_nr
= mem_cgroup_nr_lru_pages(memcg
, LRU_ALL
);
5423 seq_printf(m
, "total=%lu", total_nr
);
5424 for_each_node_state(nid
, N_MEMORY
) {
5425 node_nr
= mem_cgroup_node_nr_lru_pages(memcg
, nid
, LRU_ALL
);
5426 seq_printf(m
, " N%d=%lu", nid
, node_nr
);
5430 file_nr
= mem_cgroup_nr_lru_pages(memcg
, LRU_ALL_FILE
);
5431 seq_printf(m
, "file=%lu", file_nr
);
5432 for_each_node_state(nid
, N_MEMORY
) {
5433 node_nr
= mem_cgroup_node_nr_lru_pages(memcg
, nid
,
5435 seq_printf(m
, " N%d=%lu", nid
, node_nr
);
5439 anon_nr
= mem_cgroup_nr_lru_pages(memcg
, LRU_ALL_ANON
);
5440 seq_printf(m
, "anon=%lu", anon_nr
);
5441 for_each_node_state(nid
, N_MEMORY
) {
5442 node_nr
= mem_cgroup_node_nr_lru_pages(memcg
, nid
,
5444 seq_printf(m
, " N%d=%lu", nid
, node_nr
);
5448 unevictable_nr
= mem_cgroup_nr_lru_pages(memcg
, BIT(LRU_UNEVICTABLE
));
5449 seq_printf(m
, "unevictable=%lu", unevictable_nr
);
5450 for_each_node_state(nid
, N_MEMORY
) {
5451 node_nr
= mem_cgroup_node_nr_lru_pages(memcg
, nid
,
5452 BIT(LRU_UNEVICTABLE
));
5453 seq_printf(m
, " N%d=%lu", nid
, node_nr
);
5458 #endif /* CONFIG_NUMA */
5460 static inline void mem_cgroup_lru_names_not_uptodate(void)
5462 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names
) != NR_LRU_LISTS
);
5465 static int memcg_stat_show(struct cgroup_subsys_state
*css
, struct cftype
*cft
,
5468 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
5469 struct mem_cgroup
*mi
;
5472 for (i
= 0; i
< MEM_CGROUP_STAT_NSTATS
; i
++) {
5473 if (i
== MEM_CGROUP_STAT_SWAP
&& !do_swap_account
)
5475 seq_printf(m
, "%s %ld\n", mem_cgroup_stat_names
[i
],
5476 mem_cgroup_read_stat(memcg
, i
) * PAGE_SIZE
);
5479 for (i
= 0; i
< MEM_CGROUP_EVENTS_NSTATS
; i
++)
5480 seq_printf(m
, "%s %lu\n", mem_cgroup_events_names
[i
],
5481 mem_cgroup_read_events(memcg
, i
));
5483 for (i
= 0; i
< NR_LRU_LISTS
; i
++)
5484 seq_printf(m
, "%s %lu\n", mem_cgroup_lru_names
[i
],
5485 mem_cgroup_nr_lru_pages(memcg
, BIT(i
)) * PAGE_SIZE
);
5487 /* Hierarchical information */
5489 unsigned long long limit
, memsw_limit
;
5490 memcg_get_hierarchical_limit(memcg
, &limit
, &memsw_limit
);
5491 seq_printf(m
, "hierarchical_memory_limit %llu\n", limit
);
5492 if (do_swap_account
)
5493 seq_printf(m
, "hierarchical_memsw_limit %llu\n",
5497 for (i
= 0; i
< MEM_CGROUP_STAT_NSTATS
; i
++) {
5500 if (i
== MEM_CGROUP_STAT_SWAP
&& !do_swap_account
)
5502 for_each_mem_cgroup_tree(mi
, memcg
)
5503 val
+= mem_cgroup_read_stat(mi
, i
) * PAGE_SIZE
;
5504 seq_printf(m
, "total_%s %lld\n", mem_cgroup_stat_names
[i
], val
);
5507 for (i
= 0; i
< MEM_CGROUP_EVENTS_NSTATS
; i
++) {
5508 unsigned long long val
= 0;
5510 for_each_mem_cgroup_tree(mi
, memcg
)
5511 val
+= mem_cgroup_read_events(mi
, i
);
5512 seq_printf(m
, "total_%s %llu\n",
5513 mem_cgroup_events_names
[i
], val
);
5516 for (i
= 0; i
< NR_LRU_LISTS
; i
++) {
5517 unsigned long long val
= 0;
5519 for_each_mem_cgroup_tree(mi
, memcg
)
5520 val
+= mem_cgroup_nr_lru_pages(mi
, BIT(i
)) * PAGE_SIZE
;
5521 seq_printf(m
, "total_%s %llu\n", mem_cgroup_lru_names
[i
], val
);
5524 #ifdef CONFIG_DEBUG_VM
5527 struct mem_cgroup_per_zone
*mz
;
5528 struct zone_reclaim_stat
*rstat
;
5529 unsigned long recent_rotated
[2] = {0, 0};
5530 unsigned long recent_scanned
[2] = {0, 0};
5532 for_each_online_node(nid
)
5533 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
5534 mz
= mem_cgroup_zoneinfo(memcg
, nid
, zid
);
5535 rstat
= &mz
->lruvec
.reclaim_stat
;
5537 recent_rotated
[0] += rstat
->recent_rotated
[0];
5538 recent_rotated
[1] += rstat
->recent_rotated
[1];
5539 recent_scanned
[0] += rstat
->recent_scanned
[0];
5540 recent_scanned
[1] += rstat
->recent_scanned
[1];
5542 seq_printf(m
, "recent_rotated_anon %lu\n", recent_rotated
[0]);
5543 seq_printf(m
, "recent_rotated_file %lu\n", recent_rotated
[1]);
5544 seq_printf(m
, "recent_scanned_anon %lu\n", recent_scanned
[0]);
5545 seq_printf(m
, "recent_scanned_file %lu\n", recent_scanned
[1]);
5552 static u64
mem_cgroup_swappiness_read(struct cgroup_subsys_state
*css
,
5555 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
5557 return mem_cgroup_swappiness(memcg
);
5560 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state
*css
,
5561 struct cftype
*cft
, u64 val
)
5563 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
5564 struct mem_cgroup
*parent
= mem_cgroup_from_css(css_parent(&memcg
->css
));
5566 if (val
> 100 || !parent
)
5569 mutex_lock(&memcg_create_mutex
);
5571 /* If under hierarchy, only empty-root can set this value */
5572 if ((parent
->use_hierarchy
) || memcg_has_children(memcg
)) {
5573 mutex_unlock(&memcg_create_mutex
);
5577 memcg
->swappiness
= val
;
5579 mutex_unlock(&memcg_create_mutex
);
5584 static void __mem_cgroup_threshold(struct mem_cgroup
*memcg
, bool swap
)
5586 struct mem_cgroup_threshold_ary
*t
;
5592 t
= rcu_dereference(memcg
->thresholds
.primary
);
5594 t
= rcu_dereference(memcg
->memsw_thresholds
.primary
);
5599 usage
= mem_cgroup_usage(memcg
, swap
);
5602 * current_threshold points to threshold just below or equal to usage.
5603 * If it's not true, a threshold was crossed after last
5604 * call of __mem_cgroup_threshold().
5606 i
= t
->current_threshold
;
5609 * Iterate backward over array of thresholds starting from
5610 * current_threshold and check if a threshold is crossed.
5611 * If none of thresholds below usage is crossed, we read
5612 * only one element of the array here.
5614 for (; i
>= 0 && unlikely(t
->entries
[i
].threshold
> usage
); i
--)
5615 eventfd_signal(t
->entries
[i
].eventfd
, 1);
5617 /* i = current_threshold + 1 */
5621 * Iterate forward over array of thresholds starting from
5622 * current_threshold+1 and check if a threshold is crossed.
5623 * If none of thresholds above usage is crossed, we read
5624 * only one element of the array here.
5626 for (; i
< t
->size
&& unlikely(t
->entries
[i
].threshold
<= usage
); i
++)
5627 eventfd_signal(t
->entries
[i
].eventfd
, 1);
5629 /* Update current_threshold */
5630 t
->current_threshold
= i
- 1;
5635 static void mem_cgroup_threshold(struct mem_cgroup
*memcg
)
5638 __mem_cgroup_threshold(memcg
, false);
5639 if (do_swap_account
)
5640 __mem_cgroup_threshold(memcg
, true);
5642 memcg
= parent_mem_cgroup(memcg
);
5646 static int compare_thresholds(const void *a
, const void *b
)
5648 const struct mem_cgroup_threshold
*_a
= a
;
5649 const struct mem_cgroup_threshold
*_b
= b
;
5651 if (_a
->threshold
> _b
->threshold
)
5654 if (_a
->threshold
< _b
->threshold
)
5660 static int mem_cgroup_oom_notify_cb(struct mem_cgroup
*memcg
)
5662 struct mem_cgroup_eventfd_list
*ev
;
5664 list_for_each_entry(ev
, &memcg
->oom_notify
, list
)
5665 eventfd_signal(ev
->eventfd
, 1);
5669 static void mem_cgroup_oom_notify(struct mem_cgroup
*memcg
)
5671 struct mem_cgroup
*iter
;
5673 for_each_mem_cgroup_tree(iter
, memcg
)
5674 mem_cgroup_oom_notify_cb(iter
);
5677 static int mem_cgroup_usage_register_event(struct cgroup_subsys_state
*css
,
5678 struct cftype
*cft
, struct eventfd_ctx
*eventfd
, const char *args
)
5680 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
5681 struct mem_cgroup_thresholds
*thresholds
;
5682 struct mem_cgroup_threshold_ary
*new;
5683 enum res_type type
= MEMFILE_TYPE(cft
->private);
5684 u64 threshold
, usage
;
5687 ret
= res_counter_memparse_write_strategy(args
, &threshold
);
5691 mutex_lock(&memcg
->thresholds_lock
);
5694 thresholds
= &memcg
->thresholds
;
5695 else if (type
== _MEMSWAP
)
5696 thresholds
= &memcg
->memsw_thresholds
;
5700 usage
= mem_cgroup_usage(memcg
, type
== _MEMSWAP
);
5702 /* Check if a threshold crossed before adding a new one */
5703 if (thresholds
->primary
)
5704 __mem_cgroup_threshold(memcg
, type
== _MEMSWAP
);
5706 size
= thresholds
->primary
? thresholds
->primary
->size
+ 1 : 1;
5708 /* Allocate memory for new array of thresholds */
5709 new = kmalloc(sizeof(*new) + size
* sizeof(struct mem_cgroup_threshold
),
5717 /* Copy thresholds (if any) to new array */
5718 if (thresholds
->primary
) {
5719 memcpy(new->entries
, thresholds
->primary
->entries
, (size
- 1) *
5720 sizeof(struct mem_cgroup_threshold
));
5723 /* Add new threshold */
5724 new->entries
[size
- 1].eventfd
= eventfd
;
5725 new->entries
[size
- 1].threshold
= threshold
;
5727 /* Sort thresholds. Registering of new threshold isn't time-critical */
5728 sort(new->entries
, size
, sizeof(struct mem_cgroup_threshold
),
5729 compare_thresholds
, NULL
);
5731 /* Find current threshold */
5732 new->current_threshold
= -1;
5733 for (i
= 0; i
< size
; i
++) {
5734 if (new->entries
[i
].threshold
<= usage
) {
5736 * new->current_threshold will not be used until
5737 * rcu_assign_pointer(), so it's safe to increment
5740 ++new->current_threshold
;
5745 /* Free old spare buffer and save old primary buffer as spare */
5746 kfree(thresholds
->spare
);
5747 thresholds
->spare
= thresholds
->primary
;
5749 rcu_assign_pointer(thresholds
->primary
, new);
5751 /* To be sure that nobody uses thresholds */
5755 mutex_unlock(&memcg
->thresholds_lock
);
5760 static void mem_cgroup_usage_unregister_event(struct cgroup_subsys_state
*css
,
5761 struct cftype
*cft
, struct eventfd_ctx
*eventfd
)
5763 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
5764 struct mem_cgroup_thresholds
*thresholds
;
5765 struct mem_cgroup_threshold_ary
*new;
5766 enum res_type type
= MEMFILE_TYPE(cft
->private);
5770 mutex_lock(&memcg
->thresholds_lock
);
5772 thresholds
= &memcg
->thresholds
;
5773 else if (type
== _MEMSWAP
)
5774 thresholds
= &memcg
->memsw_thresholds
;
5778 if (!thresholds
->primary
)
5781 usage
= mem_cgroup_usage(memcg
, type
== _MEMSWAP
);
5783 /* Check if a threshold crossed before removing */
5784 __mem_cgroup_threshold(memcg
, type
== _MEMSWAP
);
5786 /* Calculate new number of threshold */
5788 for (i
= 0; i
< thresholds
->primary
->size
; i
++) {
5789 if (thresholds
->primary
->entries
[i
].eventfd
!= eventfd
)
5793 new = thresholds
->spare
;
5795 /* Set thresholds array to NULL if we don't have thresholds */
5804 /* Copy thresholds and find current threshold */
5805 new->current_threshold
= -1;
5806 for (i
= 0, j
= 0; i
< thresholds
->primary
->size
; i
++) {
5807 if (thresholds
->primary
->entries
[i
].eventfd
== eventfd
)
5810 new->entries
[j
] = thresholds
->primary
->entries
[i
];
5811 if (new->entries
[j
].threshold
<= usage
) {
5813 * new->current_threshold will not be used
5814 * until rcu_assign_pointer(), so it's safe to increment
5817 ++new->current_threshold
;
5823 /* Swap primary and spare array */
5824 thresholds
->spare
= thresholds
->primary
;
5825 /* If all events are unregistered, free the spare array */
5827 kfree(thresholds
->spare
);
5828 thresholds
->spare
= NULL
;
5831 rcu_assign_pointer(thresholds
->primary
, new);
5833 /* To be sure that nobody uses thresholds */
5836 mutex_unlock(&memcg
->thresholds_lock
);
5839 static int mem_cgroup_oom_register_event(struct cgroup_subsys_state
*css
,
5840 struct cftype
*cft
, struct eventfd_ctx
*eventfd
, const char *args
)
5842 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
5843 struct mem_cgroup_eventfd_list
*event
;
5844 enum res_type type
= MEMFILE_TYPE(cft
->private);
5846 BUG_ON(type
!= _OOM_TYPE
);
5847 event
= kmalloc(sizeof(*event
), GFP_KERNEL
);
5851 spin_lock(&memcg_oom_lock
);
5853 event
->eventfd
= eventfd
;
5854 list_add(&event
->list
, &memcg
->oom_notify
);
5856 /* already in OOM ? */
5857 if (atomic_read(&memcg
->under_oom
))
5858 eventfd_signal(eventfd
, 1);
5859 spin_unlock(&memcg_oom_lock
);
5864 static void mem_cgroup_oom_unregister_event(struct cgroup_subsys_state
*css
,
5865 struct cftype
*cft
, struct eventfd_ctx
*eventfd
)
5867 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
5868 struct mem_cgroup_eventfd_list
*ev
, *tmp
;
5869 enum res_type type
= MEMFILE_TYPE(cft
->private);
5871 BUG_ON(type
!= _OOM_TYPE
);
5873 spin_lock(&memcg_oom_lock
);
5875 list_for_each_entry_safe(ev
, tmp
, &memcg
->oom_notify
, list
) {
5876 if (ev
->eventfd
== eventfd
) {
5877 list_del(&ev
->list
);
5882 spin_unlock(&memcg_oom_lock
);
5885 static int mem_cgroup_oom_control_read(struct cgroup_subsys_state
*css
,
5886 struct cftype
*cft
, struct cgroup_map_cb
*cb
)
5888 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
5890 cb
->fill(cb
, "oom_kill_disable", memcg
->oom_kill_disable
);
5892 if (atomic_read(&memcg
->under_oom
))
5893 cb
->fill(cb
, "under_oom", 1);
5895 cb
->fill(cb
, "under_oom", 0);
5899 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state
*css
,
5900 struct cftype
*cft
, u64 val
)
5902 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
5903 struct mem_cgroup
*parent
= mem_cgroup_from_css(css_parent(&memcg
->css
));
5905 /* cannot set to root cgroup and only 0 and 1 are allowed */
5906 if (!parent
|| !((val
== 0) || (val
== 1)))
5909 mutex_lock(&memcg_create_mutex
);
5910 /* oom-kill-disable is a flag for subhierarchy. */
5911 if ((parent
->use_hierarchy
) || memcg_has_children(memcg
)) {
5912 mutex_unlock(&memcg_create_mutex
);
5915 memcg
->oom_kill_disable
= val
;
5917 memcg_oom_recover(memcg
);
5918 mutex_unlock(&memcg_create_mutex
);
5922 #ifdef CONFIG_MEMCG_KMEM
5923 static int memcg_init_kmem(struct mem_cgroup
*memcg
, struct cgroup_subsys
*ss
)
5927 memcg
->kmemcg_id
= -1;
5928 ret
= memcg_propagate_kmem(memcg
);
5932 return mem_cgroup_sockets_init(memcg
, ss
);
5935 static void memcg_destroy_kmem(struct mem_cgroup
*memcg
)
5937 mem_cgroup_sockets_destroy(memcg
);
5940 static void kmem_cgroup_css_offline(struct mem_cgroup
*memcg
)
5942 if (!memcg_kmem_is_active(memcg
))
5946 * kmem charges can outlive the cgroup. In the case of slab
5947 * pages, for instance, a page contain objects from various
5948 * processes. As we prevent from taking a reference for every
5949 * such allocation we have to be careful when doing uncharge
5950 * (see memcg_uncharge_kmem) and here during offlining.
5952 * The idea is that that only the _last_ uncharge which sees
5953 * the dead memcg will drop the last reference. An additional
5954 * reference is taken here before the group is marked dead
5955 * which is then paired with css_put during uncharge resp. here.
5957 * Although this might sound strange as this path is called from
5958 * css_offline() when the referencemight have dropped down to 0
5959 * and shouldn't be incremented anymore (css_tryget would fail)
5960 * we do not have other options because of the kmem allocations
5963 css_get(&memcg
->css
);
5965 memcg_kmem_mark_dead(memcg
);
5967 if (res_counter_read_u64(&memcg
->kmem
, RES_USAGE
) != 0)
5970 if (memcg_kmem_test_and_clear_dead(memcg
))
5971 css_put(&memcg
->css
);
5974 static int memcg_init_kmem(struct mem_cgroup
*memcg
, struct cgroup_subsys
*ss
)
5979 static void memcg_destroy_kmem(struct mem_cgroup
*memcg
)
5983 static void kmem_cgroup_css_offline(struct mem_cgroup
*memcg
)
5988 static struct cftype mem_cgroup_files
[] = {
5990 .name
= "usage_in_bytes",
5991 .private = MEMFILE_PRIVATE(_MEM
, RES_USAGE
),
5992 .read
= mem_cgroup_read
,
5993 .register_event
= mem_cgroup_usage_register_event
,
5994 .unregister_event
= mem_cgroup_usage_unregister_event
,
5997 .name
= "max_usage_in_bytes",
5998 .private = MEMFILE_PRIVATE(_MEM
, RES_MAX_USAGE
),
5999 .trigger
= mem_cgroup_reset
,
6000 .read
= mem_cgroup_read
,
6003 .name
= "limit_in_bytes",
6004 .private = MEMFILE_PRIVATE(_MEM
, RES_LIMIT
),
6005 .write_string
= mem_cgroup_write
,
6006 .read
= mem_cgroup_read
,
6009 .name
= "soft_limit_in_bytes",
6010 .private = MEMFILE_PRIVATE(_MEM
, RES_SOFT_LIMIT
),
6011 .write_string
= mem_cgroup_write
,
6012 .read
= mem_cgroup_read
,
6016 .private = MEMFILE_PRIVATE(_MEM
, RES_FAILCNT
),
6017 .trigger
= mem_cgroup_reset
,
6018 .read
= mem_cgroup_read
,
6022 .read_seq_string
= memcg_stat_show
,
6025 .name
= "force_empty",
6026 .trigger
= mem_cgroup_force_empty_write
,
6029 .name
= "use_hierarchy",
6030 .flags
= CFTYPE_INSANE
,
6031 .write_u64
= mem_cgroup_hierarchy_write
,
6032 .read_u64
= mem_cgroup_hierarchy_read
,
6035 .name
= "swappiness",
6036 .read_u64
= mem_cgroup_swappiness_read
,
6037 .write_u64
= mem_cgroup_swappiness_write
,
6040 .name
= "move_charge_at_immigrate",
6041 .read_u64
= mem_cgroup_move_charge_read
,
6042 .write_u64
= mem_cgroup_move_charge_write
,
6045 .name
= "oom_control",
6046 .read_map
= mem_cgroup_oom_control_read
,
6047 .write_u64
= mem_cgroup_oom_control_write
,
6048 .register_event
= mem_cgroup_oom_register_event
,
6049 .unregister_event
= mem_cgroup_oom_unregister_event
,
6050 .private = MEMFILE_PRIVATE(_OOM_TYPE
, OOM_CONTROL
),
6053 .name
= "pressure_level",
6054 .register_event
= vmpressure_register_event
,
6055 .unregister_event
= vmpressure_unregister_event
,
6059 .name
= "numa_stat",
6060 .read_seq_string
= memcg_numa_stat_show
,
6063 #ifdef CONFIG_MEMCG_KMEM
6065 .name
= "kmem.limit_in_bytes",
6066 .private = MEMFILE_PRIVATE(_KMEM
, RES_LIMIT
),
6067 .write_string
= mem_cgroup_write
,
6068 .read
= mem_cgroup_read
,
6071 .name
= "kmem.usage_in_bytes",
6072 .private = MEMFILE_PRIVATE(_KMEM
, RES_USAGE
),
6073 .read
= mem_cgroup_read
,
6076 .name
= "kmem.failcnt",
6077 .private = MEMFILE_PRIVATE(_KMEM
, RES_FAILCNT
),
6078 .trigger
= mem_cgroup_reset
,
6079 .read
= mem_cgroup_read
,
6082 .name
= "kmem.max_usage_in_bytes",
6083 .private = MEMFILE_PRIVATE(_KMEM
, RES_MAX_USAGE
),
6084 .trigger
= mem_cgroup_reset
,
6085 .read
= mem_cgroup_read
,
6087 #ifdef CONFIG_SLABINFO
6089 .name
= "kmem.slabinfo",
6090 .read_seq_string
= mem_cgroup_slabinfo_read
,
6094 { }, /* terminate */
6097 #ifdef CONFIG_MEMCG_SWAP
6098 static struct cftype memsw_cgroup_files
[] = {
6100 .name
= "memsw.usage_in_bytes",
6101 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_USAGE
),
6102 .read
= mem_cgroup_read
,
6103 .register_event
= mem_cgroup_usage_register_event
,
6104 .unregister_event
= mem_cgroup_usage_unregister_event
,
6107 .name
= "memsw.max_usage_in_bytes",
6108 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_MAX_USAGE
),
6109 .trigger
= mem_cgroup_reset
,
6110 .read
= mem_cgroup_read
,
6113 .name
= "memsw.limit_in_bytes",
6114 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_LIMIT
),
6115 .write_string
= mem_cgroup_write
,
6116 .read
= mem_cgroup_read
,
6119 .name
= "memsw.failcnt",
6120 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_FAILCNT
),
6121 .trigger
= mem_cgroup_reset
,
6122 .read
= mem_cgroup_read
,
6124 { }, /* terminate */
6127 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup
*memcg
, int node
)
6129 struct mem_cgroup_per_node
*pn
;
6130 struct mem_cgroup_per_zone
*mz
;
6131 int zone
, tmp
= node
;
6133 * This routine is called against possible nodes.
6134 * But it's BUG to call kmalloc() against offline node.
6136 * TODO: this routine can waste much memory for nodes which will
6137 * never be onlined. It's better to use memory hotplug callback
6140 if (!node_state(node
, N_NORMAL_MEMORY
))
6142 pn
= kzalloc_node(sizeof(*pn
), GFP_KERNEL
, tmp
);
6146 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
6147 mz
= &pn
->zoneinfo
[zone
];
6148 lruvec_init(&mz
->lruvec
);
6149 mz
->usage_in_excess
= 0;
6150 mz
->on_tree
= false;
6153 memcg
->nodeinfo
[node
] = pn
;
6157 static void free_mem_cgroup_per_zone_info(struct mem_cgroup
*memcg
, int node
)
6159 kfree(memcg
->nodeinfo
[node
]);
6162 static struct mem_cgroup
*mem_cgroup_alloc(void)
6164 struct mem_cgroup
*memcg
;
6165 size_t size
= memcg_size();
6167 /* Can be very big if nr_node_ids is very big */
6168 if (size
< PAGE_SIZE
)
6169 memcg
= kzalloc(size
, GFP_KERNEL
);
6171 memcg
= vzalloc(size
);
6176 memcg
->stat
= alloc_percpu(struct mem_cgroup_stat_cpu
);
6179 spin_lock_init(&memcg
->pcp_counter_lock
);
6183 if (size
< PAGE_SIZE
)
6191 * At destroying mem_cgroup, references from swap_cgroup can remain.
6192 * (scanning all at force_empty is too costly...)
6194 * Instead of clearing all references at force_empty, we remember
6195 * the number of reference from swap_cgroup and free mem_cgroup when
6196 * it goes down to 0.
6198 * Removal of cgroup itself succeeds regardless of refs from swap.
6201 static void __mem_cgroup_free(struct mem_cgroup
*memcg
)
6204 size_t size
= memcg_size();
6206 mem_cgroup_remove_from_trees(memcg
);
6207 free_css_id(&mem_cgroup_subsys
, &memcg
->css
);
6210 free_mem_cgroup_per_zone_info(memcg
, node
);
6212 free_percpu(memcg
->stat
);
6215 * We need to make sure that (at least for now), the jump label
6216 * destruction code runs outside of the cgroup lock. This is because
6217 * get_online_cpus(), which is called from the static_branch update,
6218 * can't be called inside the cgroup_lock. cpusets are the ones
6219 * enforcing this dependency, so if they ever change, we might as well.
6221 * schedule_work() will guarantee this happens. Be careful if you need
6222 * to move this code around, and make sure it is outside
6225 disarm_static_keys(memcg
);
6226 if (size
< PAGE_SIZE
)
6233 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
6235 struct mem_cgroup
*parent_mem_cgroup(struct mem_cgroup
*memcg
)
6237 if (!memcg
->res
.parent
)
6239 return mem_cgroup_from_res_counter(memcg
->res
.parent
, res
);
6241 EXPORT_SYMBOL(parent_mem_cgroup
);
6243 static void __init
mem_cgroup_soft_limit_tree_init(void)
6245 struct mem_cgroup_tree_per_node
*rtpn
;
6246 struct mem_cgroup_tree_per_zone
*rtpz
;
6247 int tmp
, node
, zone
;
6249 for_each_node(node
) {
6251 if (!node_state(node
, N_NORMAL_MEMORY
))
6253 rtpn
= kzalloc_node(sizeof(*rtpn
), GFP_KERNEL
, tmp
);
6256 soft_limit_tree
.rb_tree_per_node
[node
] = rtpn
;
6258 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
6259 rtpz
= &rtpn
->rb_tree_per_zone
[zone
];
6260 rtpz
->rb_root
= RB_ROOT
;
6261 spin_lock_init(&rtpz
->lock
);
6266 static struct cgroup_subsys_state
* __ref
6267 mem_cgroup_css_alloc(struct cgroup_subsys_state
*parent_css
)
6269 struct mem_cgroup
*memcg
;
6270 long error
= -ENOMEM
;
6273 memcg
= mem_cgroup_alloc();
6275 return ERR_PTR(error
);
6278 if (alloc_mem_cgroup_per_zone_info(memcg
, node
))
6282 if (parent_css
== NULL
) {
6283 root_mem_cgroup
= memcg
;
6284 res_counter_init(&memcg
->res
, NULL
);
6285 res_counter_init(&memcg
->memsw
, NULL
);
6286 res_counter_init(&memcg
->kmem
, NULL
);
6289 memcg
->last_scanned_node
= MAX_NUMNODES
;
6290 INIT_LIST_HEAD(&memcg
->oom_notify
);
6291 memcg
->move_charge_at_immigrate
= 0;
6292 mutex_init(&memcg
->thresholds_lock
);
6293 spin_lock_init(&memcg
->move_lock
);
6294 vmpressure_init(&memcg
->vmpressure
);
6299 __mem_cgroup_free(memcg
);
6300 return ERR_PTR(error
);
6304 mem_cgroup_css_online(struct cgroup_subsys_state
*css
)
6306 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
6307 struct mem_cgroup
*parent
= mem_cgroup_from_css(css_parent(css
));
6313 mutex_lock(&memcg_create_mutex
);
6315 memcg
->use_hierarchy
= parent
->use_hierarchy
;
6316 memcg
->oom_kill_disable
= parent
->oom_kill_disable
;
6317 memcg
->swappiness
= mem_cgroup_swappiness(parent
);
6319 if (parent
->use_hierarchy
) {
6320 res_counter_init(&memcg
->res
, &parent
->res
);
6321 res_counter_init(&memcg
->memsw
, &parent
->memsw
);
6322 res_counter_init(&memcg
->kmem
, &parent
->kmem
);
6325 * No need to take a reference to the parent because cgroup
6326 * core guarantees its existence.
6329 res_counter_init(&memcg
->res
, NULL
);
6330 res_counter_init(&memcg
->memsw
, NULL
);
6331 res_counter_init(&memcg
->kmem
, NULL
);
6333 * Deeper hierachy with use_hierarchy == false doesn't make
6334 * much sense so let cgroup subsystem know about this
6335 * unfortunate state in our controller.
6337 if (parent
!= root_mem_cgroup
)
6338 mem_cgroup_subsys
.broken_hierarchy
= true;
6341 error
= memcg_init_kmem(memcg
, &mem_cgroup_subsys
);
6342 mutex_unlock(&memcg_create_mutex
);
6347 * Announce all parents that a group from their hierarchy is gone.
6349 static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup
*memcg
)
6351 struct mem_cgroup
*parent
= memcg
;
6353 while ((parent
= parent_mem_cgroup(parent
)))
6354 mem_cgroup_iter_invalidate(parent
);
6357 * if the root memcg is not hierarchical we have to check it
6360 if (!root_mem_cgroup
->use_hierarchy
)
6361 mem_cgroup_iter_invalidate(root_mem_cgroup
);
6364 static void mem_cgroup_css_offline(struct cgroup_subsys_state
*css
)
6366 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
6368 kmem_cgroup_css_offline(memcg
);
6370 mem_cgroup_invalidate_reclaim_iterators(memcg
);
6371 mem_cgroup_reparent_charges(memcg
);
6372 mem_cgroup_destroy_all_caches(memcg
);
6373 vmpressure_cleanup(&memcg
->vmpressure
);
6376 static void mem_cgroup_css_free(struct cgroup_subsys_state
*css
)
6378 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
6380 memcg_destroy_kmem(memcg
);
6381 __mem_cgroup_free(memcg
);
6385 /* Handlers for move charge at task migration. */
6386 #define PRECHARGE_COUNT_AT_ONCE 256
6387 static int mem_cgroup_do_precharge(unsigned long count
)
6390 int batch_count
= PRECHARGE_COUNT_AT_ONCE
;
6391 struct mem_cgroup
*memcg
= mc
.to
;
6393 if (mem_cgroup_is_root(memcg
)) {
6394 mc
.precharge
+= count
;
6395 /* we don't need css_get for root */
6398 /* try to charge at once */
6400 struct res_counter
*dummy
;
6402 * "memcg" cannot be under rmdir() because we've already checked
6403 * by cgroup_lock_live_cgroup() that it is not removed and we
6404 * are still under the same cgroup_mutex. So we can postpone
6407 if (res_counter_charge(&memcg
->res
, PAGE_SIZE
* count
, &dummy
))
6409 if (do_swap_account
&& res_counter_charge(&memcg
->memsw
,
6410 PAGE_SIZE
* count
, &dummy
)) {
6411 res_counter_uncharge(&memcg
->res
, PAGE_SIZE
* count
);
6414 mc
.precharge
+= count
;
6418 /* fall back to one by one charge */
6420 if (signal_pending(current
)) {
6424 if (!batch_count
--) {
6425 batch_count
= PRECHARGE_COUNT_AT_ONCE
;
6428 ret
= __mem_cgroup_try_charge(NULL
,
6429 GFP_KERNEL
, 1, &memcg
, false);
6431 /* mem_cgroup_clear_mc() will do uncharge later */
6439 * get_mctgt_type - get target type of moving charge
6440 * @vma: the vma the pte to be checked belongs
6441 * @addr: the address corresponding to the pte to be checked
6442 * @ptent: the pte to be checked
6443 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6446 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
6447 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
6448 * move charge. if @target is not NULL, the page is stored in target->page
6449 * with extra refcnt got(Callers should handle it).
6450 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
6451 * target for charge migration. if @target is not NULL, the entry is stored
6454 * Called with pte lock held.
6461 enum mc_target_type
{
6467 static struct page
*mc_handle_present_pte(struct vm_area_struct
*vma
,
6468 unsigned long addr
, pte_t ptent
)
6470 struct page
*page
= vm_normal_page(vma
, addr
, ptent
);
6472 if (!page
|| !page_mapped(page
))
6474 if (PageAnon(page
)) {
6475 /* we don't move shared anon */
6478 } else if (!move_file())
6479 /* we ignore mapcount for file pages */
6481 if (!get_page_unless_zero(page
))
6488 static struct page
*mc_handle_swap_pte(struct vm_area_struct
*vma
,
6489 unsigned long addr
, pte_t ptent
, swp_entry_t
*entry
)
6491 struct page
*page
= NULL
;
6492 swp_entry_t ent
= pte_to_swp_entry(ptent
);
6494 if (!move_anon() || non_swap_entry(ent
))
6497 * Because lookup_swap_cache() updates some statistics counter,
6498 * we call find_get_page() with swapper_space directly.
6500 page
= find_get_page(swap_address_space(ent
), ent
.val
);
6501 if (do_swap_account
)
6502 entry
->val
= ent
.val
;
6507 static struct page
*mc_handle_swap_pte(struct vm_area_struct
*vma
,
6508 unsigned long addr
, pte_t ptent
, swp_entry_t
*entry
)
6514 static struct page
*mc_handle_file_pte(struct vm_area_struct
*vma
,
6515 unsigned long addr
, pte_t ptent
, swp_entry_t
*entry
)
6517 struct page
*page
= NULL
;
6518 struct address_space
*mapping
;
6521 if (!vma
->vm_file
) /* anonymous vma */
6526 mapping
= vma
->vm_file
->f_mapping
;
6527 if (pte_none(ptent
))
6528 pgoff
= linear_page_index(vma
, addr
);
6529 else /* pte_file(ptent) is true */
6530 pgoff
= pte_to_pgoff(ptent
);
6532 /* page is moved even if it's not RSS of this task(page-faulted). */
6533 page
= find_get_page(mapping
, pgoff
);
6536 /* shmem/tmpfs may report page out on swap: account for that too. */
6537 if (radix_tree_exceptional_entry(page
)) {
6538 swp_entry_t swap
= radix_to_swp_entry(page
);
6539 if (do_swap_account
)
6541 page
= find_get_page(swap_address_space(swap
), swap
.val
);
6547 static enum mc_target_type
get_mctgt_type(struct vm_area_struct
*vma
,
6548 unsigned long addr
, pte_t ptent
, union mc_target
*target
)
6550 struct page
*page
= NULL
;
6551 struct page_cgroup
*pc
;
6552 enum mc_target_type ret
= MC_TARGET_NONE
;
6553 swp_entry_t ent
= { .val
= 0 };
6555 if (pte_present(ptent
))
6556 page
= mc_handle_present_pte(vma
, addr
, ptent
);
6557 else if (is_swap_pte(ptent
))
6558 page
= mc_handle_swap_pte(vma
, addr
, ptent
, &ent
);
6559 else if (pte_none(ptent
) || pte_file(ptent
))
6560 page
= mc_handle_file_pte(vma
, addr
, ptent
, &ent
);
6562 if (!page
&& !ent
.val
)
6565 pc
= lookup_page_cgroup(page
);
6567 * Do only loose check w/o page_cgroup lock.
6568 * mem_cgroup_move_account() checks the pc is valid or not under
6571 if (PageCgroupUsed(pc
) && pc
->mem_cgroup
== mc
.from
) {
6572 ret
= MC_TARGET_PAGE
;
6574 target
->page
= page
;
6576 if (!ret
|| !target
)
6579 /* There is a swap entry and a page doesn't exist or isn't charged */
6580 if (ent
.val
&& !ret
&&
6581 css_id(&mc
.from
->css
) == lookup_swap_cgroup_id(ent
)) {
6582 ret
= MC_TARGET_SWAP
;
6589 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6591 * We don't consider swapping or file mapped pages because THP does not
6592 * support them for now.
6593 * Caller should make sure that pmd_trans_huge(pmd) is true.
6595 static enum mc_target_type
get_mctgt_type_thp(struct vm_area_struct
*vma
,
6596 unsigned long addr
, pmd_t pmd
, union mc_target
*target
)
6598 struct page
*page
= NULL
;
6599 struct page_cgroup
*pc
;
6600 enum mc_target_type ret
= MC_TARGET_NONE
;
6602 page
= pmd_page(pmd
);
6603 VM_BUG_ON(!page
|| !PageHead(page
));
6606 pc
= lookup_page_cgroup(page
);
6607 if (PageCgroupUsed(pc
) && pc
->mem_cgroup
== mc
.from
) {
6608 ret
= MC_TARGET_PAGE
;
6611 target
->page
= page
;
6617 static inline enum mc_target_type
get_mctgt_type_thp(struct vm_area_struct
*vma
,
6618 unsigned long addr
, pmd_t pmd
, union mc_target
*target
)
6620 return MC_TARGET_NONE
;
6624 static int mem_cgroup_count_precharge_pte_range(pmd_t
*pmd
,
6625 unsigned long addr
, unsigned long end
,
6626 struct mm_walk
*walk
)
6628 struct vm_area_struct
*vma
= walk
->private;
6632 if (pmd_trans_huge_lock(pmd
, vma
) == 1) {
6633 if (get_mctgt_type_thp(vma
, addr
, *pmd
, NULL
) == MC_TARGET_PAGE
)
6634 mc
.precharge
+= HPAGE_PMD_NR
;
6635 spin_unlock(&vma
->vm_mm
->page_table_lock
);
6639 if (pmd_trans_unstable(pmd
))
6641 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
6642 for (; addr
!= end
; pte
++, addr
+= PAGE_SIZE
)
6643 if (get_mctgt_type(vma
, addr
, *pte
, NULL
))
6644 mc
.precharge
++; /* increment precharge temporarily */
6645 pte_unmap_unlock(pte
- 1, ptl
);
6651 static unsigned long mem_cgroup_count_precharge(struct mm_struct
*mm
)
6653 unsigned long precharge
;
6654 struct vm_area_struct
*vma
;
6656 down_read(&mm
->mmap_sem
);
6657 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
6658 struct mm_walk mem_cgroup_count_precharge_walk
= {
6659 .pmd_entry
= mem_cgroup_count_precharge_pte_range
,
6663 if (is_vm_hugetlb_page(vma
))
6665 walk_page_range(vma
->vm_start
, vma
->vm_end
,
6666 &mem_cgroup_count_precharge_walk
);
6668 up_read(&mm
->mmap_sem
);
6670 precharge
= mc
.precharge
;
6676 static int mem_cgroup_precharge_mc(struct mm_struct
*mm
)
6678 unsigned long precharge
= mem_cgroup_count_precharge(mm
);
6680 VM_BUG_ON(mc
.moving_task
);
6681 mc
.moving_task
= current
;
6682 return mem_cgroup_do_precharge(precharge
);
6685 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6686 static void __mem_cgroup_clear_mc(void)
6688 struct mem_cgroup
*from
= mc
.from
;
6689 struct mem_cgroup
*to
= mc
.to
;
6692 /* we must uncharge all the leftover precharges from mc.to */
6694 __mem_cgroup_cancel_charge(mc
.to
, mc
.precharge
);
6698 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6699 * we must uncharge here.
6701 if (mc
.moved_charge
) {
6702 __mem_cgroup_cancel_charge(mc
.from
, mc
.moved_charge
);
6703 mc
.moved_charge
= 0;
6705 /* we must fixup refcnts and charges */
6706 if (mc
.moved_swap
) {
6707 /* uncharge swap account from the old cgroup */
6708 if (!mem_cgroup_is_root(mc
.from
))
6709 res_counter_uncharge(&mc
.from
->memsw
,
6710 PAGE_SIZE
* mc
.moved_swap
);
6712 for (i
= 0; i
< mc
.moved_swap
; i
++)
6713 css_put(&mc
.from
->css
);
6715 if (!mem_cgroup_is_root(mc
.to
)) {
6717 * we charged both to->res and to->memsw, so we should
6720 res_counter_uncharge(&mc
.to
->res
,
6721 PAGE_SIZE
* mc
.moved_swap
);
6723 /* we've already done css_get(mc.to) */
6726 memcg_oom_recover(from
);
6727 memcg_oom_recover(to
);
6728 wake_up_all(&mc
.waitq
);
6731 static void mem_cgroup_clear_mc(void)
6733 struct mem_cgroup
*from
= mc
.from
;
6736 * we must clear moving_task before waking up waiters at the end of
6739 mc
.moving_task
= NULL
;
6740 __mem_cgroup_clear_mc();
6741 spin_lock(&mc
.lock
);
6744 spin_unlock(&mc
.lock
);
6745 mem_cgroup_end_move(from
);
6748 static int mem_cgroup_can_attach(struct cgroup_subsys_state
*css
,
6749 struct cgroup_taskset
*tset
)
6751 struct task_struct
*p
= cgroup_taskset_first(tset
);
6753 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
6754 unsigned long move_charge_at_immigrate
;
6757 * We are now commited to this value whatever it is. Changes in this
6758 * tunable will only affect upcoming migrations, not the current one.
6759 * So we need to save it, and keep it going.
6761 move_charge_at_immigrate
= memcg
->move_charge_at_immigrate
;
6762 if (move_charge_at_immigrate
) {
6763 struct mm_struct
*mm
;
6764 struct mem_cgroup
*from
= mem_cgroup_from_task(p
);
6766 VM_BUG_ON(from
== memcg
);
6768 mm
= get_task_mm(p
);
6771 /* We move charges only when we move a owner of the mm */
6772 if (mm
->owner
== p
) {
6775 VM_BUG_ON(mc
.precharge
);
6776 VM_BUG_ON(mc
.moved_charge
);
6777 VM_BUG_ON(mc
.moved_swap
);
6778 mem_cgroup_start_move(from
);
6779 spin_lock(&mc
.lock
);
6782 mc
.immigrate_flags
= move_charge_at_immigrate
;
6783 spin_unlock(&mc
.lock
);
6784 /* We set mc.moving_task later */
6786 ret
= mem_cgroup_precharge_mc(mm
);
6788 mem_cgroup_clear_mc();
6795 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state
*css
,
6796 struct cgroup_taskset
*tset
)
6798 mem_cgroup_clear_mc();
6801 static int mem_cgroup_move_charge_pte_range(pmd_t
*pmd
,
6802 unsigned long addr
, unsigned long end
,
6803 struct mm_walk
*walk
)
6806 struct vm_area_struct
*vma
= walk
->private;
6809 enum mc_target_type target_type
;
6810 union mc_target target
;
6812 struct page_cgroup
*pc
;
6815 * We don't take compound_lock() here but no race with splitting thp
6817 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
6818 * under splitting, which means there's no concurrent thp split,
6819 * - if another thread runs into split_huge_page() just after we
6820 * entered this if-block, the thread must wait for page table lock
6821 * to be unlocked in __split_huge_page_splitting(), where the main
6822 * part of thp split is not executed yet.
6824 if (pmd_trans_huge_lock(pmd
, vma
) == 1) {
6825 if (mc
.precharge
< HPAGE_PMD_NR
) {
6826 spin_unlock(&vma
->vm_mm
->page_table_lock
);
6829 target_type
= get_mctgt_type_thp(vma
, addr
, *pmd
, &target
);
6830 if (target_type
== MC_TARGET_PAGE
) {
6832 if (!isolate_lru_page(page
)) {
6833 pc
= lookup_page_cgroup(page
);
6834 if (!mem_cgroup_move_account(page
, HPAGE_PMD_NR
,
6835 pc
, mc
.from
, mc
.to
)) {
6836 mc
.precharge
-= HPAGE_PMD_NR
;
6837 mc
.moved_charge
+= HPAGE_PMD_NR
;
6839 putback_lru_page(page
);
6843 spin_unlock(&vma
->vm_mm
->page_table_lock
);
6847 if (pmd_trans_unstable(pmd
))
6850 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
6851 for (; addr
!= end
; addr
+= PAGE_SIZE
) {
6852 pte_t ptent
= *(pte
++);
6858 switch (get_mctgt_type(vma
, addr
, ptent
, &target
)) {
6859 case MC_TARGET_PAGE
:
6861 if (isolate_lru_page(page
))
6863 pc
= lookup_page_cgroup(page
);
6864 if (!mem_cgroup_move_account(page
, 1, pc
,
6867 /* we uncharge from mc.from later. */
6870 putback_lru_page(page
);
6871 put
: /* get_mctgt_type() gets the page */
6874 case MC_TARGET_SWAP
:
6876 if (!mem_cgroup_move_swap_account(ent
, mc
.from
, mc
.to
)) {
6878 /* we fixup refcnts and charges later. */
6886 pte_unmap_unlock(pte
- 1, ptl
);
6891 * We have consumed all precharges we got in can_attach().
6892 * We try charge one by one, but don't do any additional
6893 * charges to mc.to if we have failed in charge once in attach()
6896 ret
= mem_cgroup_do_precharge(1);
6904 static void mem_cgroup_move_charge(struct mm_struct
*mm
)
6906 struct vm_area_struct
*vma
;
6908 lru_add_drain_all();
6910 if (unlikely(!down_read_trylock(&mm
->mmap_sem
))) {
6912 * Someone who are holding the mmap_sem might be waiting in
6913 * waitq. So we cancel all extra charges, wake up all waiters,
6914 * and retry. Because we cancel precharges, we might not be able
6915 * to move enough charges, but moving charge is a best-effort
6916 * feature anyway, so it wouldn't be a big problem.
6918 __mem_cgroup_clear_mc();
6922 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
6924 struct mm_walk mem_cgroup_move_charge_walk
= {
6925 .pmd_entry
= mem_cgroup_move_charge_pte_range
,
6929 if (is_vm_hugetlb_page(vma
))
6931 ret
= walk_page_range(vma
->vm_start
, vma
->vm_end
,
6932 &mem_cgroup_move_charge_walk
);
6935 * means we have consumed all precharges and failed in
6936 * doing additional charge. Just abandon here.
6940 up_read(&mm
->mmap_sem
);
6943 static void mem_cgroup_move_task(struct cgroup_subsys_state
*css
,
6944 struct cgroup_taskset
*tset
)
6946 struct task_struct
*p
= cgroup_taskset_first(tset
);
6947 struct mm_struct
*mm
= get_task_mm(p
);
6951 mem_cgroup_move_charge(mm
);
6955 mem_cgroup_clear_mc();
6957 #else /* !CONFIG_MMU */
6958 static int mem_cgroup_can_attach(struct cgroup_subsys_state
*css
,
6959 struct cgroup_taskset
*tset
)
6963 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state
*css
,
6964 struct cgroup_taskset
*tset
)
6967 static void mem_cgroup_move_task(struct cgroup_subsys_state
*css
,
6968 struct cgroup_taskset
*tset
)
6974 * Cgroup retains root cgroups across [un]mount cycles making it necessary
6975 * to verify sane_behavior flag on each mount attempt.
6977 static void mem_cgroup_bind(struct cgroup_subsys_state
*root_css
)
6980 * use_hierarchy is forced with sane_behavior. cgroup core
6981 * guarantees that @root doesn't have any children, so turning it
6982 * on for the root memcg is enough.
6984 if (cgroup_sane_behavior(root_css
->cgroup
))
6985 mem_cgroup_from_css(root_css
)->use_hierarchy
= true;
6988 struct cgroup_subsys mem_cgroup_subsys
= {
6990 .subsys_id
= mem_cgroup_subsys_id
,
6991 .css_alloc
= mem_cgroup_css_alloc
,
6992 .css_online
= mem_cgroup_css_online
,
6993 .css_offline
= mem_cgroup_css_offline
,
6994 .css_free
= mem_cgroup_css_free
,
6995 .can_attach
= mem_cgroup_can_attach
,
6996 .cancel_attach
= mem_cgroup_cancel_attach
,
6997 .attach
= mem_cgroup_move_task
,
6998 .bind
= mem_cgroup_bind
,
6999 .base_cftypes
= mem_cgroup_files
,
7004 #ifdef CONFIG_MEMCG_SWAP
7005 static int __init
enable_swap_account(char *s
)
7007 if (!strcmp(s
, "1"))
7008 really_do_swap_account
= 1;
7009 else if (!strcmp(s
, "0"))
7010 really_do_swap_account
= 0;
7013 __setup("swapaccount=", enable_swap_account
);
7015 static void __init
memsw_file_init(void)
7017 WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys
, memsw_cgroup_files
));
7020 static void __init
enable_swap_cgroup(void)
7022 if (!mem_cgroup_disabled() && really_do_swap_account
) {
7023 do_swap_account
= 1;
7029 static void __init
enable_swap_cgroup(void)
7035 * subsys_initcall() for memory controller.
7037 * Some parts like hotcpu_notifier() have to be initialized from this context
7038 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
7039 * everything that doesn't depend on a specific mem_cgroup structure should
7040 * be initialized from here.
7042 static int __init
mem_cgroup_init(void)
7044 hotcpu_notifier(memcg_cpu_hotplug_callback
, 0);
7045 enable_swap_cgroup();
7046 mem_cgroup_soft_limit_tree_init();
7050 subsys_initcall(mem_cgroup_init
);