1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/export.h>
37 #include <linux/mutex.h>
38 #include <linux/rbtree.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/swapops.h>
42 #include <linux/spinlock.h>
43 #include <linux/eventfd.h>
44 #include <linux/sort.h>
46 #include <linux/seq_file.h>
47 #include <linux/vmalloc.h>
48 #include <linux/mm_inline.h>
49 #include <linux/page_cgroup.h>
50 #include <linux/cpu.h>
51 #include <linux/oom.h>
54 #include <asm/uaccess.h>
56 #include <trace/events/vmscan.h>
58 struct cgroup_subsys mem_cgroup_subsys __read_mostly
;
59 #define MEM_CGROUP_RECLAIM_RETRIES 5
60 struct mem_cgroup
*root_mem_cgroup __read_mostly
;
62 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
63 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
64 int do_swap_account __read_mostly
;
66 /* for remember boot option*/
67 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
68 static int really_do_swap_account __initdata
= 1;
70 static int really_do_swap_account __initdata
= 0;
74 #define do_swap_account (0)
79 * Statistics for memory cgroup.
81 enum mem_cgroup_stat_index
{
83 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
85 MEM_CGROUP_STAT_CACHE
, /* # of pages charged as cache */
86 MEM_CGROUP_STAT_RSS
, /* # of pages charged as anon rss */
87 MEM_CGROUP_STAT_FILE_MAPPED
, /* # of pages charged as file rss */
88 MEM_CGROUP_STAT_SWAPOUT
, /* # of pages, swapped out */
89 MEM_CGROUP_STAT_DATA
, /* end of data requires synchronization */
90 MEM_CGROUP_ON_MOVE
, /* someone is moving account between groups */
91 MEM_CGROUP_STAT_NSTATS
,
94 enum mem_cgroup_events_index
{
95 MEM_CGROUP_EVENTS_PGPGIN
, /* # of pages paged in */
96 MEM_CGROUP_EVENTS_PGPGOUT
, /* # of pages paged out */
97 MEM_CGROUP_EVENTS_COUNT
, /* # of pages paged in/out */
98 MEM_CGROUP_EVENTS_PGFAULT
, /* # of page-faults */
99 MEM_CGROUP_EVENTS_PGMAJFAULT
, /* # of major page-faults */
100 MEM_CGROUP_EVENTS_NSTATS
,
103 * Per memcg event counter is incremented at every pagein/pageout. With THP,
104 * it will be incremated by the number of pages. This counter is used for
105 * for trigger some periodic events. This is straightforward and better
106 * than using jiffies etc. to handle periodic memcg event.
108 enum mem_cgroup_events_target
{
109 MEM_CGROUP_TARGET_THRESH
,
110 MEM_CGROUP_TARGET_SOFTLIMIT
,
111 MEM_CGROUP_TARGET_NUMAINFO
,
114 #define THRESHOLDS_EVENTS_TARGET (128)
115 #define SOFTLIMIT_EVENTS_TARGET (1024)
116 #define NUMAINFO_EVENTS_TARGET (1024)
118 struct mem_cgroup_stat_cpu
{
119 long count
[MEM_CGROUP_STAT_NSTATS
];
120 unsigned long events
[MEM_CGROUP_EVENTS_NSTATS
];
121 unsigned long targets
[MEM_CGROUP_NTARGETS
];
125 * per-zone information in memory controller.
127 struct mem_cgroup_per_zone
{
129 * spin_lock to protect the per cgroup LRU
131 struct list_head lists
[NR_LRU_LISTS
];
132 unsigned long count
[NR_LRU_LISTS
];
134 struct zone_reclaim_stat reclaim_stat
;
135 struct rb_node tree_node
; /* RB tree node */
136 unsigned long long usage_in_excess
;/* Set to the value by which */
137 /* the soft limit is exceeded*/
139 struct mem_cgroup
*mem
; /* Back pointer, we cannot */
140 /* use container_of */
142 /* Macro for accessing counter */
143 #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
145 struct mem_cgroup_per_node
{
146 struct mem_cgroup_per_zone zoneinfo
[MAX_NR_ZONES
];
149 struct mem_cgroup_lru_info
{
150 struct mem_cgroup_per_node
*nodeinfo
[MAX_NUMNODES
];
154 * Cgroups above their limits are maintained in a RB-Tree, independent of
155 * their hierarchy representation
158 struct mem_cgroup_tree_per_zone
{
159 struct rb_root rb_root
;
163 struct mem_cgroup_tree_per_node
{
164 struct mem_cgroup_tree_per_zone rb_tree_per_zone
[MAX_NR_ZONES
];
167 struct mem_cgroup_tree
{
168 struct mem_cgroup_tree_per_node
*rb_tree_per_node
[MAX_NUMNODES
];
171 static struct mem_cgroup_tree soft_limit_tree __read_mostly
;
173 struct mem_cgroup_threshold
{
174 struct eventfd_ctx
*eventfd
;
179 struct mem_cgroup_threshold_ary
{
180 /* An array index points to threshold just below usage. */
181 int current_threshold
;
182 /* Size of entries[] */
184 /* Array of thresholds */
185 struct mem_cgroup_threshold entries
[0];
188 struct mem_cgroup_thresholds
{
189 /* Primary thresholds array */
190 struct mem_cgroup_threshold_ary
*primary
;
192 * Spare threshold array.
193 * This is needed to make mem_cgroup_unregister_event() "never fail".
194 * It must be able to store at least primary->size - 1 entries.
196 struct mem_cgroup_threshold_ary
*spare
;
200 struct mem_cgroup_eventfd_list
{
201 struct list_head list
;
202 struct eventfd_ctx
*eventfd
;
205 static void mem_cgroup_threshold(struct mem_cgroup
*memcg
);
206 static void mem_cgroup_oom_notify(struct mem_cgroup
*memcg
);
209 * The memory controller data structure. The memory controller controls both
210 * page cache and RSS per cgroup. We would eventually like to provide
211 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
212 * to help the administrator determine what knobs to tune.
214 * TODO: Add a water mark for the memory controller. Reclaim will begin when
215 * we hit the water mark. May be even add a low water mark, such that
216 * no reclaim occurs from a cgroup at it's low water mark, this is
217 * a feature that will be implemented much later in the future.
220 struct cgroup_subsys_state css
;
222 * the counter to account for memory usage
224 struct res_counter res
;
226 * the counter to account for mem+swap usage.
228 struct res_counter memsw
;
230 * Per cgroup active and inactive list, similar to the
231 * per zone LRU lists.
233 struct mem_cgroup_lru_info info
;
235 * While reclaiming in a hierarchy, we cache the last child we
238 int last_scanned_child
;
239 int last_scanned_node
;
241 nodemask_t scan_nodes
;
242 atomic_t numainfo_events
;
243 atomic_t numainfo_updating
;
246 * Should the accounting and control be hierarchical, per subtree?
256 /* OOM-Killer disable */
257 int oom_kill_disable
;
259 /* set when res.limit == memsw.limit */
260 bool memsw_is_minimum
;
262 /* protect arrays of thresholds */
263 struct mutex thresholds_lock
;
265 /* thresholds for memory usage. RCU-protected */
266 struct mem_cgroup_thresholds thresholds
;
268 /* thresholds for mem+swap usage. RCU-protected */
269 struct mem_cgroup_thresholds memsw_thresholds
;
271 /* For oom notifier event fd */
272 struct list_head oom_notify
;
275 * Should we move charges of a task when a task is moved into this
276 * mem_cgroup ? And what type of charges should we move ?
278 unsigned long move_charge_at_immigrate
;
282 struct mem_cgroup_stat_cpu
*stat
;
284 * used when a cpu is offlined or other synchronizations
285 * See mem_cgroup_read_stat().
287 struct mem_cgroup_stat_cpu nocpu_base
;
288 spinlock_t pcp_counter_lock
;
291 /* Stuffs for move charges at task migration. */
293 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
294 * left-shifted bitmap of these types.
297 MOVE_CHARGE_TYPE_ANON
, /* private anonymous page and swap of it */
298 MOVE_CHARGE_TYPE_FILE
, /* file page(including tmpfs) and swap of it */
302 /* "mc" and its members are protected by cgroup_mutex */
303 static struct move_charge_struct
{
304 spinlock_t lock
; /* for from, to */
305 struct mem_cgroup
*from
;
306 struct mem_cgroup
*to
;
307 unsigned long precharge
;
308 unsigned long moved_charge
;
309 unsigned long moved_swap
;
310 struct task_struct
*moving_task
; /* a task moving charges */
311 wait_queue_head_t waitq
; /* a waitq for other context */
313 .lock
= __SPIN_LOCK_UNLOCKED(mc
.lock
),
314 .waitq
= __WAIT_QUEUE_HEAD_INITIALIZER(mc
.waitq
),
317 static bool move_anon(void)
319 return test_bit(MOVE_CHARGE_TYPE_ANON
,
320 &mc
.to
->move_charge_at_immigrate
);
323 static bool move_file(void)
325 return test_bit(MOVE_CHARGE_TYPE_FILE
,
326 &mc
.to
->move_charge_at_immigrate
);
330 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
331 * limit reclaim to prevent infinite loops, if they ever occur.
333 #define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
334 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
337 MEM_CGROUP_CHARGE_TYPE_CACHE
= 0,
338 MEM_CGROUP_CHARGE_TYPE_MAPPED
,
339 MEM_CGROUP_CHARGE_TYPE_SHMEM
, /* used by page migration of shmem */
340 MEM_CGROUP_CHARGE_TYPE_FORCE
, /* used by force_empty */
341 MEM_CGROUP_CHARGE_TYPE_SWAPOUT
, /* for accounting swapcache */
342 MEM_CGROUP_CHARGE_TYPE_DROP
, /* a page was unused swap cache */
346 /* for encoding cft->private value on file */
349 #define _OOM_TYPE (2)
350 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
351 #define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
352 #define MEMFILE_ATTR(val) ((val) & 0xffff)
353 /* Used for OOM nofiier */
354 #define OOM_CONTROL (0)
357 * Reclaim flags for mem_cgroup_hierarchical_reclaim
359 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
360 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
361 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
362 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
363 #define MEM_CGROUP_RECLAIM_SOFT_BIT 0x2
364 #define MEM_CGROUP_RECLAIM_SOFT (1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
366 static void mem_cgroup_get(struct mem_cgroup
*memcg
);
367 static void mem_cgroup_put(struct mem_cgroup
*memcg
);
368 static struct mem_cgroup
*parent_mem_cgroup(struct mem_cgroup
*memcg
);
369 static void drain_all_stock_async(struct mem_cgroup
*memcg
);
371 static struct mem_cgroup_per_zone
*
372 mem_cgroup_zoneinfo(struct mem_cgroup
*memcg
, int nid
, int zid
)
374 return &memcg
->info
.nodeinfo
[nid
]->zoneinfo
[zid
];
377 struct cgroup_subsys_state
*mem_cgroup_css(struct mem_cgroup
*memcg
)
382 static struct mem_cgroup_per_zone
*
383 page_cgroup_zoneinfo(struct mem_cgroup
*memcg
, struct page
*page
)
385 int nid
= page_to_nid(page
);
386 int zid
= page_zonenum(page
);
388 return mem_cgroup_zoneinfo(memcg
, nid
, zid
);
391 static struct mem_cgroup_tree_per_zone
*
392 soft_limit_tree_node_zone(int nid
, int zid
)
394 return &soft_limit_tree
.rb_tree_per_node
[nid
]->rb_tree_per_zone
[zid
];
397 static struct mem_cgroup_tree_per_zone
*
398 soft_limit_tree_from_page(struct page
*page
)
400 int nid
= page_to_nid(page
);
401 int zid
= page_zonenum(page
);
403 return &soft_limit_tree
.rb_tree_per_node
[nid
]->rb_tree_per_zone
[zid
];
407 __mem_cgroup_insert_exceeded(struct mem_cgroup
*memcg
,
408 struct mem_cgroup_per_zone
*mz
,
409 struct mem_cgroup_tree_per_zone
*mctz
,
410 unsigned long long new_usage_in_excess
)
412 struct rb_node
**p
= &mctz
->rb_root
.rb_node
;
413 struct rb_node
*parent
= NULL
;
414 struct mem_cgroup_per_zone
*mz_node
;
419 mz
->usage_in_excess
= new_usage_in_excess
;
420 if (!mz
->usage_in_excess
)
424 mz_node
= rb_entry(parent
, struct mem_cgroup_per_zone
,
426 if (mz
->usage_in_excess
< mz_node
->usage_in_excess
)
429 * We can't avoid mem cgroups that are over their soft
430 * limit by the same amount
432 else if (mz
->usage_in_excess
>= mz_node
->usage_in_excess
)
435 rb_link_node(&mz
->tree_node
, parent
, p
);
436 rb_insert_color(&mz
->tree_node
, &mctz
->rb_root
);
441 __mem_cgroup_remove_exceeded(struct mem_cgroup
*memcg
,
442 struct mem_cgroup_per_zone
*mz
,
443 struct mem_cgroup_tree_per_zone
*mctz
)
447 rb_erase(&mz
->tree_node
, &mctz
->rb_root
);
452 mem_cgroup_remove_exceeded(struct mem_cgroup
*memcg
,
453 struct mem_cgroup_per_zone
*mz
,
454 struct mem_cgroup_tree_per_zone
*mctz
)
456 spin_lock(&mctz
->lock
);
457 __mem_cgroup_remove_exceeded(memcg
, mz
, mctz
);
458 spin_unlock(&mctz
->lock
);
462 static void mem_cgroup_update_tree(struct mem_cgroup
*memcg
, struct page
*page
)
464 unsigned long long excess
;
465 struct mem_cgroup_per_zone
*mz
;
466 struct mem_cgroup_tree_per_zone
*mctz
;
467 int nid
= page_to_nid(page
);
468 int zid
= page_zonenum(page
);
469 mctz
= soft_limit_tree_from_page(page
);
472 * Necessary to update all ancestors when hierarchy is used.
473 * because their event counter is not touched.
475 for (; memcg
; memcg
= parent_mem_cgroup(memcg
)) {
476 mz
= mem_cgroup_zoneinfo(memcg
, nid
, zid
);
477 excess
= res_counter_soft_limit_excess(&memcg
->res
);
479 * We have to update the tree if mz is on RB-tree or
480 * mem is over its softlimit.
482 if (excess
|| mz
->on_tree
) {
483 spin_lock(&mctz
->lock
);
484 /* if on-tree, remove it */
486 __mem_cgroup_remove_exceeded(memcg
, mz
, mctz
);
488 * Insert again. mz->usage_in_excess will be updated.
489 * If excess is 0, no tree ops.
491 __mem_cgroup_insert_exceeded(memcg
, mz
, mctz
, excess
);
492 spin_unlock(&mctz
->lock
);
497 static void mem_cgroup_remove_from_trees(struct mem_cgroup
*memcg
)
500 struct mem_cgroup_per_zone
*mz
;
501 struct mem_cgroup_tree_per_zone
*mctz
;
503 for_each_node_state(node
, N_POSSIBLE
) {
504 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
505 mz
= mem_cgroup_zoneinfo(memcg
, node
, zone
);
506 mctz
= soft_limit_tree_node_zone(node
, zone
);
507 mem_cgroup_remove_exceeded(memcg
, mz
, mctz
);
512 static struct mem_cgroup_per_zone
*
513 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone
*mctz
)
515 struct rb_node
*rightmost
= NULL
;
516 struct mem_cgroup_per_zone
*mz
;
520 rightmost
= rb_last(&mctz
->rb_root
);
522 goto done
; /* Nothing to reclaim from */
524 mz
= rb_entry(rightmost
, struct mem_cgroup_per_zone
, tree_node
);
526 * Remove the node now but someone else can add it back,
527 * we will to add it back at the end of reclaim to its correct
528 * position in the tree.
530 __mem_cgroup_remove_exceeded(mz
->mem
, mz
, mctz
);
531 if (!res_counter_soft_limit_excess(&mz
->mem
->res
) ||
532 !css_tryget(&mz
->mem
->css
))
538 static struct mem_cgroup_per_zone
*
539 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone
*mctz
)
541 struct mem_cgroup_per_zone
*mz
;
543 spin_lock(&mctz
->lock
);
544 mz
= __mem_cgroup_largest_soft_limit_node(mctz
);
545 spin_unlock(&mctz
->lock
);
550 * Implementation Note: reading percpu statistics for memcg.
552 * Both of vmstat[] and percpu_counter has threshold and do periodic
553 * synchronization to implement "quick" read. There are trade-off between
554 * reading cost and precision of value. Then, we may have a chance to implement
555 * a periodic synchronizion of counter in memcg's counter.
557 * But this _read() function is used for user interface now. The user accounts
558 * memory usage by memory cgroup and he _always_ requires exact value because
559 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
560 * have to visit all online cpus and make sum. So, for now, unnecessary
561 * synchronization is not implemented. (just implemented for cpu hotplug)
563 * If there are kernel internal actions which can make use of some not-exact
564 * value, and reading all cpu value can be performance bottleneck in some
565 * common workload, threashold and synchonization as vmstat[] should be
568 static long mem_cgroup_read_stat(struct mem_cgroup
*memcg
,
569 enum mem_cgroup_stat_index idx
)
575 for_each_online_cpu(cpu
)
576 val
+= per_cpu(memcg
->stat
->count
[idx
], cpu
);
577 #ifdef CONFIG_HOTPLUG_CPU
578 spin_lock(&memcg
->pcp_counter_lock
);
579 val
+= memcg
->nocpu_base
.count
[idx
];
580 spin_unlock(&memcg
->pcp_counter_lock
);
586 static void mem_cgroup_swap_statistics(struct mem_cgroup
*memcg
,
589 int val
= (charge
) ? 1 : -1;
590 this_cpu_add(memcg
->stat
->count
[MEM_CGROUP_STAT_SWAPOUT
], val
);
593 void mem_cgroup_pgfault(struct mem_cgroup
*memcg
, int val
)
595 this_cpu_add(memcg
->stat
->events
[MEM_CGROUP_EVENTS_PGFAULT
], val
);
598 void mem_cgroup_pgmajfault(struct mem_cgroup
*memcg
, int val
)
600 this_cpu_add(memcg
->stat
->events
[MEM_CGROUP_EVENTS_PGMAJFAULT
], val
);
603 static unsigned long mem_cgroup_read_events(struct mem_cgroup
*memcg
,
604 enum mem_cgroup_events_index idx
)
606 unsigned long val
= 0;
609 for_each_online_cpu(cpu
)
610 val
+= per_cpu(memcg
->stat
->events
[idx
], cpu
);
611 #ifdef CONFIG_HOTPLUG_CPU
612 spin_lock(&memcg
->pcp_counter_lock
);
613 val
+= memcg
->nocpu_base
.events
[idx
];
614 spin_unlock(&memcg
->pcp_counter_lock
);
619 static void mem_cgroup_charge_statistics(struct mem_cgroup
*memcg
,
620 bool file
, int nr_pages
)
625 __this_cpu_add(memcg
->stat
->count
[MEM_CGROUP_STAT_CACHE
],
628 __this_cpu_add(memcg
->stat
->count
[MEM_CGROUP_STAT_RSS
],
631 /* pagein of a big page is an event. So, ignore page size */
633 __this_cpu_inc(memcg
->stat
->events
[MEM_CGROUP_EVENTS_PGPGIN
]);
635 __this_cpu_inc(memcg
->stat
->events
[MEM_CGROUP_EVENTS_PGPGOUT
]);
636 nr_pages
= -nr_pages
; /* for event */
639 __this_cpu_add(memcg
->stat
->events
[MEM_CGROUP_EVENTS_COUNT
], nr_pages
);
645 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup
*memcg
, int nid
, int zid
,
646 unsigned int lru_mask
)
648 struct mem_cgroup_per_zone
*mz
;
650 unsigned long ret
= 0;
652 mz
= mem_cgroup_zoneinfo(memcg
, nid
, zid
);
655 if (BIT(l
) & lru_mask
)
656 ret
+= MEM_CGROUP_ZSTAT(mz
, l
);
662 mem_cgroup_node_nr_lru_pages(struct mem_cgroup
*memcg
,
663 int nid
, unsigned int lru_mask
)
668 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++)
669 total
+= mem_cgroup_zone_nr_lru_pages(memcg
,
675 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup
*memcg
,
676 unsigned int lru_mask
)
681 for_each_node_state(nid
, N_HIGH_MEMORY
)
682 total
+= mem_cgroup_node_nr_lru_pages(memcg
, nid
, lru_mask
);
686 static bool __memcg_event_check(struct mem_cgroup
*memcg
, int target
)
688 unsigned long val
, next
;
690 val
= __this_cpu_read(memcg
->stat
->events
[MEM_CGROUP_EVENTS_COUNT
]);
691 next
= __this_cpu_read(memcg
->stat
->targets
[target
]);
692 /* from time_after() in jiffies.h */
693 return ((long)next
- (long)val
< 0);
696 static void __mem_cgroup_target_update(struct mem_cgroup
*memcg
, int target
)
698 unsigned long val
, next
;
700 val
= __this_cpu_read(memcg
->stat
->events
[MEM_CGROUP_EVENTS_COUNT
]);
703 case MEM_CGROUP_TARGET_THRESH
:
704 next
= val
+ THRESHOLDS_EVENTS_TARGET
;
706 case MEM_CGROUP_TARGET_SOFTLIMIT
:
707 next
= val
+ SOFTLIMIT_EVENTS_TARGET
;
709 case MEM_CGROUP_TARGET_NUMAINFO
:
710 next
= val
+ NUMAINFO_EVENTS_TARGET
;
716 __this_cpu_write(memcg
->stat
->targets
[target
], next
);
720 * Check events in order.
723 static void memcg_check_events(struct mem_cgroup
*memcg
, struct page
*page
)
726 /* threshold event is triggered in finer grain than soft limit */
727 if (unlikely(__memcg_event_check(memcg
, MEM_CGROUP_TARGET_THRESH
))) {
728 mem_cgroup_threshold(memcg
);
729 __mem_cgroup_target_update(memcg
, MEM_CGROUP_TARGET_THRESH
);
730 if (unlikely(__memcg_event_check(memcg
,
731 MEM_CGROUP_TARGET_SOFTLIMIT
))) {
732 mem_cgroup_update_tree(memcg
, page
);
733 __mem_cgroup_target_update(memcg
,
734 MEM_CGROUP_TARGET_SOFTLIMIT
);
737 if (unlikely(__memcg_event_check(memcg
,
738 MEM_CGROUP_TARGET_NUMAINFO
))) {
739 atomic_inc(&memcg
->numainfo_events
);
740 __mem_cgroup_target_update(memcg
,
741 MEM_CGROUP_TARGET_NUMAINFO
);
748 static struct mem_cgroup
*mem_cgroup_from_cont(struct cgroup
*cont
)
750 return container_of(cgroup_subsys_state(cont
,
751 mem_cgroup_subsys_id
), struct mem_cgroup
,
755 struct mem_cgroup
*mem_cgroup_from_task(struct task_struct
*p
)
758 * mm_update_next_owner() may clear mm->owner to NULL
759 * if it races with swapoff, page migration, etc.
760 * So this can be called with p == NULL.
765 return container_of(task_subsys_state(p
, mem_cgroup_subsys_id
),
766 struct mem_cgroup
, css
);
769 struct mem_cgroup
*try_get_mem_cgroup_from_mm(struct mm_struct
*mm
)
771 struct mem_cgroup
*memcg
= NULL
;
776 * Because we have no locks, mm->owner's may be being moved to other
777 * cgroup. We use css_tryget() here even if this looks
778 * pessimistic (rather than adding locks here).
782 memcg
= mem_cgroup_from_task(rcu_dereference(mm
->owner
));
783 if (unlikely(!memcg
))
785 } while (!css_tryget(&memcg
->css
));
790 /* The caller has to guarantee "mem" exists before calling this */
791 static struct mem_cgroup
*mem_cgroup_start_loop(struct mem_cgroup
*memcg
)
793 struct cgroup_subsys_state
*css
;
796 if (!memcg
) /* ROOT cgroup has the smallest ID */
797 return root_mem_cgroup
; /*css_put/get against root is ignored*/
798 if (!memcg
->use_hierarchy
) {
799 if (css_tryget(&memcg
->css
))
805 * searching a memory cgroup which has the smallest ID under given
806 * ROOT cgroup. (ID >= 1)
808 css
= css_get_next(&mem_cgroup_subsys
, 1, &memcg
->css
, &found
);
809 if (css
&& css_tryget(css
))
810 memcg
= container_of(css
, struct mem_cgroup
, css
);
817 static struct mem_cgroup
*mem_cgroup_get_next(struct mem_cgroup
*iter
,
818 struct mem_cgroup
*root
,
821 int nextid
= css_id(&iter
->css
) + 1;
824 struct cgroup_subsys_state
*css
;
826 hierarchy_used
= iter
->use_hierarchy
;
829 /* If no ROOT, walk all, ignore hierarchy */
830 if (!cond
|| (root
&& !hierarchy_used
))
834 root
= root_mem_cgroup
;
840 css
= css_get_next(&mem_cgroup_subsys
, nextid
,
842 if (css
&& css_tryget(css
))
843 iter
= container_of(css
, struct mem_cgroup
, css
);
845 /* If css is NULL, no more cgroups will be found */
847 } while (css
&& !iter
);
852 * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
853 * be careful that "break" loop is not allowed. We have reference count.
854 * Instead of that modify "cond" to be false and "continue" to exit the loop.
856 #define for_each_mem_cgroup_tree_cond(iter, root, cond) \
857 for (iter = mem_cgroup_start_loop(root);\
859 iter = mem_cgroup_get_next(iter, root, cond))
861 #define for_each_mem_cgroup_tree(iter, root) \
862 for_each_mem_cgroup_tree_cond(iter, root, true)
864 #define for_each_mem_cgroup_all(iter) \
865 for_each_mem_cgroup_tree_cond(iter, NULL, true)
868 static inline bool mem_cgroup_is_root(struct mem_cgroup
*memcg
)
870 return (memcg
== root_mem_cgroup
);
873 void mem_cgroup_count_vm_event(struct mm_struct
*mm
, enum vm_event_item idx
)
875 struct mem_cgroup
*memcg
;
881 memcg
= mem_cgroup_from_task(rcu_dereference(mm
->owner
));
882 if (unlikely(!memcg
))
887 mem_cgroup_pgmajfault(memcg
, 1);
890 mem_cgroup_pgfault(memcg
, 1);
898 EXPORT_SYMBOL(mem_cgroup_count_vm_event
);
901 * Following LRU functions are allowed to be used without PCG_LOCK.
902 * Operations are called by routine of global LRU independently from memcg.
903 * What we have to take care of here is validness of pc->mem_cgroup.
905 * Changes to pc->mem_cgroup happens when
908 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
909 * It is added to LRU before charge.
910 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
911 * When moving account, the page is not on LRU. It's isolated.
914 void mem_cgroup_del_lru_list(struct page
*page
, enum lru_list lru
)
916 struct page_cgroup
*pc
;
917 struct mem_cgroup_per_zone
*mz
;
919 if (mem_cgroup_disabled())
921 pc
= lookup_page_cgroup(page
);
922 /* can happen while we handle swapcache. */
923 if (!TestClearPageCgroupAcctLRU(pc
))
925 VM_BUG_ON(!pc
->mem_cgroup
);
927 * We don't check PCG_USED bit. It's cleared when the "page" is finally
928 * removed from global LRU.
930 mz
= page_cgroup_zoneinfo(pc
->mem_cgroup
, page
);
931 /* huge page split is done under lru_lock. so, we have no races. */
932 MEM_CGROUP_ZSTAT(mz
, lru
) -= 1 << compound_order(page
);
933 if (mem_cgroup_is_root(pc
->mem_cgroup
))
935 VM_BUG_ON(list_empty(&pc
->lru
));
936 list_del_init(&pc
->lru
);
939 void mem_cgroup_del_lru(struct page
*page
)
941 mem_cgroup_del_lru_list(page
, page_lru(page
));
945 * Writeback is about to end against a page which has been marked for immediate
946 * reclaim. If it still appears to be reclaimable, move it to the tail of the
949 void mem_cgroup_rotate_reclaimable_page(struct page
*page
)
951 struct mem_cgroup_per_zone
*mz
;
952 struct page_cgroup
*pc
;
953 enum lru_list lru
= page_lru(page
);
955 if (mem_cgroup_disabled())
958 pc
= lookup_page_cgroup(page
);
959 /* unused or root page is not rotated. */
960 if (!PageCgroupUsed(pc
))
962 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
964 if (mem_cgroup_is_root(pc
->mem_cgroup
))
966 mz
= page_cgroup_zoneinfo(pc
->mem_cgroup
, page
);
967 list_move_tail(&pc
->lru
, &mz
->lists
[lru
]);
970 void mem_cgroup_rotate_lru_list(struct page
*page
, enum lru_list lru
)
972 struct mem_cgroup_per_zone
*mz
;
973 struct page_cgroup
*pc
;
975 if (mem_cgroup_disabled())
978 pc
= lookup_page_cgroup(page
);
979 /* unused or root page is not rotated. */
980 if (!PageCgroupUsed(pc
))
982 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
984 if (mem_cgroup_is_root(pc
->mem_cgroup
))
986 mz
= page_cgroup_zoneinfo(pc
->mem_cgroup
, page
);
987 list_move(&pc
->lru
, &mz
->lists
[lru
]);
990 void mem_cgroup_add_lru_list(struct page
*page
, enum lru_list lru
)
992 struct page_cgroup
*pc
;
993 struct mem_cgroup_per_zone
*mz
;
995 if (mem_cgroup_disabled())
997 pc
= lookup_page_cgroup(page
);
998 VM_BUG_ON(PageCgroupAcctLRU(pc
));
1001 * SetPageLRU SetPageCgroupUsed
1003 * PageCgroupUsed && add to memcg LRU PageLRU && add to memcg LRU
1005 * Ensure that one of the two sides adds the page to the memcg
1006 * LRU during a race.
1009 if (!PageCgroupUsed(pc
))
1011 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1013 mz
= page_cgroup_zoneinfo(pc
->mem_cgroup
, page
);
1014 /* huge page split is done under lru_lock. so, we have no races. */
1015 MEM_CGROUP_ZSTAT(mz
, lru
) += 1 << compound_order(page
);
1016 SetPageCgroupAcctLRU(pc
);
1017 if (mem_cgroup_is_root(pc
->mem_cgroup
))
1019 list_add(&pc
->lru
, &mz
->lists
[lru
]);
1023 * At handling SwapCache and other FUSE stuff, pc->mem_cgroup may be changed
1024 * while it's linked to lru because the page may be reused after it's fully
1025 * uncharged. To handle that, unlink page_cgroup from LRU when charge it again.
1026 * It's done under lock_page and expected that zone->lru_lock isnever held.
1028 static void mem_cgroup_lru_del_before_commit(struct page
*page
)
1030 unsigned long flags
;
1031 struct zone
*zone
= page_zone(page
);
1032 struct page_cgroup
*pc
= lookup_page_cgroup(page
);
1035 * Doing this check without taking ->lru_lock seems wrong but this
1036 * is safe. Because if page_cgroup's USED bit is unset, the page
1037 * will not be added to any memcg's LRU. If page_cgroup's USED bit is
1038 * set, the commit after this will fail, anyway.
1039 * This all charge/uncharge is done under some mutual execustion.
1040 * So, we don't need to taking care of changes in USED bit.
1042 if (likely(!PageLRU(page
)))
1045 spin_lock_irqsave(&zone
->lru_lock
, flags
);
1047 * Forget old LRU when this page_cgroup is *not* used. This Used bit
1048 * is guarded by lock_page() because the page is SwapCache.
1050 if (!PageCgroupUsed(pc
))
1051 mem_cgroup_del_lru_list(page
, page_lru(page
));
1052 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
1055 static void mem_cgroup_lru_add_after_commit(struct page
*page
)
1057 unsigned long flags
;
1058 struct zone
*zone
= page_zone(page
);
1059 struct page_cgroup
*pc
= lookup_page_cgroup(page
);
1062 * SetPageLRU SetPageCgroupUsed
1064 * PageCgroupUsed && add to memcg LRU PageLRU && add to memcg LRU
1066 * Ensure that one of the two sides adds the page to the memcg
1067 * LRU during a race.
1070 /* taking care of that the page is added to LRU while we commit it */
1071 if (likely(!PageLRU(page
)))
1073 spin_lock_irqsave(&zone
->lru_lock
, flags
);
1074 /* link when the page is linked to LRU but page_cgroup isn't */
1075 if (PageLRU(page
) && !PageCgroupAcctLRU(pc
))
1076 mem_cgroup_add_lru_list(page
, page_lru(page
));
1077 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
1081 void mem_cgroup_move_lists(struct page
*page
,
1082 enum lru_list from
, enum lru_list to
)
1084 if (mem_cgroup_disabled())
1086 mem_cgroup_del_lru_list(page
, from
);
1087 mem_cgroup_add_lru_list(page
, to
);
1091 * Checks whether given mem is same or in the root_mem_cgroup's
1094 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup
*root_memcg
,
1095 struct mem_cgroup
*memcg
)
1097 if (root_memcg
!= memcg
) {
1098 return (root_memcg
->use_hierarchy
&&
1099 css_is_ancestor(&memcg
->css
, &root_memcg
->css
));
1105 int task_in_mem_cgroup(struct task_struct
*task
, const struct mem_cgroup
*memcg
)
1108 struct mem_cgroup
*curr
= NULL
;
1109 struct task_struct
*p
;
1111 p
= find_lock_task_mm(task
);
1114 curr
= try_get_mem_cgroup_from_mm(p
->mm
);
1119 * We should check use_hierarchy of "memcg" not "curr". Because checking
1120 * use_hierarchy of "curr" here make this function true if hierarchy is
1121 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1122 * hierarchy(even if use_hierarchy is disabled in "memcg").
1124 ret
= mem_cgroup_same_or_subtree(memcg
, curr
);
1125 css_put(&curr
->css
);
1129 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup
*memcg
, struct zone
*zone
)
1131 unsigned long inactive_ratio
;
1132 int nid
= zone_to_nid(zone
);
1133 int zid
= zone_idx(zone
);
1134 unsigned long inactive
;
1135 unsigned long active
;
1138 inactive
= mem_cgroup_zone_nr_lru_pages(memcg
, nid
, zid
,
1139 BIT(LRU_INACTIVE_ANON
));
1140 active
= mem_cgroup_zone_nr_lru_pages(memcg
, nid
, zid
,
1141 BIT(LRU_ACTIVE_ANON
));
1143 gb
= (inactive
+ active
) >> (30 - PAGE_SHIFT
);
1145 inactive_ratio
= int_sqrt(10 * gb
);
1149 return inactive
* inactive_ratio
< active
;
1152 int mem_cgroup_inactive_file_is_low(struct mem_cgroup
*memcg
, struct zone
*zone
)
1154 unsigned long active
;
1155 unsigned long inactive
;
1156 int zid
= zone_idx(zone
);
1157 int nid
= zone_to_nid(zone
);
1159 inactive
= mem_cgroup_zone_nr_lru_pages(memcg
, nid
, zid
,
1160 BIT(LRU_INACTIVE_FILE
));
1161 active
= mem_cgroup_zone_nr_lru_pages(memcg
, nid
, zid
,
1162 BIT(LRU_ACTIVE_FILE
));
1164 return (active
> inactive
);
1167 struct zone_reclaim_stat
*mem_cgroup_get_reclaim_stat(struct mem_cgroup
*memcg
,
1170 int nid
= zone_to_nid(zone
);
1171 int zid
= zone_idx(zone
);
1172 struct mem_cgroup_per_zone
*mz
= mem_cgroup_zoneinfo(memcg
, nid
, zid
);
1174 return &mz
->reclaim_stat
;
1177 struct zone_reclaim_stat
*
1178 mem_cgroup_get_reclaim_stat_from_page(struct page
*page
)
1180 struct page_cgroup
*pc
;
1181 struct mem_cgroup_per_zone
*mz
;
1183 if (mem_cgroup_disabled())
1186 pc
= lookup_page_cgroup(page
);
1187 if (!PageCgroupUsed(pc
))
1189 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1191 mz
= page_cgroup_zoneinfo(pc
->mem_cgroup
, page
);
1192 return &mz
->reclaim_stat
;
1195 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan
,
1196 struct list_head
*dst
,
1197 unsigned long *scanned
, int order
,
1198 isolate_mode_t mode
,
1200 struct mem_cgroup
*mem_cont
,
1201 int active
, int file
)
1203 unsigned long nr_taken
= 0;
1207 struct list_head
*src
;
1208 struct page_cgroup
*pc
, *tmp
;
1209 int nid
= zone_to_nid(z
);
1210 int zid
= zone_idx(z
);
1211 struct mem_cgroup_per_zone
*mz
;
1212 int lru
= LRU_FILE
* file
+ active
;
1216 mz
= mem_cgroup_zoneinfo(mem_cont
, nid
, zid
);
1217 src
= &mz
->lists
[lru
];
1220 list_for_each_entry_safe_reverse(pc
, tmp
, src
, lru
) {
1221 if (scan
>= nr_to_scan
)
1224 if (unlikely(!PageCgroupUsed(pc
)))
1227 page
= lookup_cgroup_page(pc
);
1229 if (unlikely(!PageLRU(page
)))
1233 ret
= __isolate_lru_page(page
, mode
, file
);
1236 list_move(&page
->lru
, dst
);
1237 mem_cgroup_del_lru(page
);
1238 nr_taken
+= hpage_nr_pages(page
);
1241 /* we don't affect global LRU but rotate in our LRU */
1242 mem_cgroup_rotate_lru_list(page
, page_lru(page
));
1251 trace_mm_vmscan_memcg_isolate(0, nr_to_scan
, scan
, nr_taken
,
1257 #define mem_cgroup_from_res_counter(counter, member) \
1258 container_of(counter, struct mem_cgroup, member)
1261 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1262 * @mem: the memory cgroup
1264 * Returns the maximum amount of memory @mem can be charged with, in
1267 static unsigned long mem_cgroup_margin(struct mem_cgroup
*memcg
)
1269 unsigned long long margin
;
1271 margin
= res_counter_margin(&memcg
->res
);
1272 if (do_swap_account
)
1273 margin
= min(margin
, res_counter_margin(&memcg
->memsw
));
1274 return margin
>> PAGE_SHIFT
;
1277 int mem_cgroup_swappiness(struct mem_cgroup
*memcg
)
1279 struct cgroup
*cgrp
= memcg
->css
.cgroup
;
1282 if (cgrp
->parent
== NULL
)
1283 return vm_swappiness
;
1285 return memcg
->swappiness
;
1288 static void mem_cgroup_start_move(struct mem_cgroup
*memcg
)
1293 spin_lock(&memcg
->pcp_counter_lock
);
1294 for_each_online_cpu(cpu
)
1295 per_cpu(memcg
->stat
->count
[MEM_CGROUP_ON_MOVE
], cpu
) += 1;
1296 memcg
->nocpu_base
.count
[MEM_CGROUP_ON_MOVE
] += 1;
1297 spin_unlock(&memcg
->pcp_counter_lock
);
1303 static void mem_cgroup_end_move(struct mem_cgroup
*memcg
)
1310 spin_lock(&memcg
->pcp_counter_lock
);
1311 for_each_online_cpu(cpu
)
1312 per_cpu(memcg
->stat
->count
[MEM_CGROUP_ON_MOVE
], cpu
) -= 1;
1313 memcg
->nocpu_base
.count
[MEM_CGROUP_ON_MOVE
] -= 1;
1314 spin_unlock(&memcg
->pcp_counter_lock
);
1318 * 2 routines for checking "mem" is under move_account() or not.
1320 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1321 * for avoiding race in accounting. If true,
1322 * pc->mem_cgroup may be overwritten.
1324 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1325 * under hierarchy of moving cgroups. This is for
1326 * waiting at hith-memory prressure caused by "move".
1329 static bool mem_cgroup_stealed(struct mem_cgroup
*memcg
)
1331 VM_BUG_ON(!rcu_read_lock_held());
1332 return this_cpu_read(memcg
->stat
->count
[MEM_CGROUP_ON_MOVE
]) > 0;
1335 static bool mem_cgroup_under_move(struct mem_cgroup
*memcg
)
1337 struct mem_cgroup
*from
;
1338 struct mem_cgroup
*to
;
1341 * Unlike task_move routines, we access mc.to, mc.from not under
1342 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1344 spin_lock(&mc
.lock
);
1350 ret
= mem_cgroup_same_or_subtree(memcg
, from
)
1351 || mem_cgroup_same_or_subtree(memcg
, to
);
1353 spin_unlock(&mc
.lock
);
1357 static bool mem_cgroup_wait_acct_move(struct mem_cgroup
*memcg
)
1359 if (mc
.moving_task
&& current
!= mc
.moving_task
) {
1360 if (mem_cgroup_under_move(memcg
)) {
1362 prepare_to_wait(&mc
.waitq
, &wait
, TASK_INTERRUPTIBLE
);
1363 /* moving charge context might have finished. */
1366 finish_wait(&mc
.waitq
, &wait
);
1374 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1375 * @memcg: The memory cgroup that went over limit
1376 * @p: Task that is going to be killed
1378 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1381 void mem_cgroup_print_oom_info(struct mem_cgroup
*memcg
, struct task_struct
*p
)
1383 struct cgroup
*task_cgrp
;
1384 struct cgroup
*mem_cgrp
;
1386 * Need a buffer in BSS, can't rely on allocations. The code relies
1387 * on the assumption that OOM is serialized for memory controller.
1388 * If this assumption is broken, revisit this code.
1390 static char memcg_name
[PATH_MAX
];
1399 mem_cgrp
= memcg
->css
.cgroup
;
1400 task_cgrp
= task_cgroup(p
, mem_cgroup_subsys_id
);
1402 ret
= cgroup_path(task_cgrp
, memcg_name
, PATH_MAX
);
1405 * Unfortunately, we are unable to convert to a useful name
1406 * But we'll still print out the usage information
1413 printk(KERN_INFO
"Task in %s killed", memcg_name
);
1416 ret
= cgroup_path(mem_cgrp
, memcg_name
, PATH_MAX
);
1424 * Continues from above, so we don't need an KERN_ level
1426 printk(KERN_CONT
" as a result of limit of %s\n", memcg_name
);
1429 printk(KERN_INFO
"memory: usage %llukB, limit %llukB, failcnt %llu\n",
1430 res_counter_read_u64(&memcg
->res
, RES_USAGE
) >> 10,
1431 res_counter_read_u64(&memcg
->res
, RES_LIMIT
) >> 10,
1432 res_counter_read_u64(&memcg
->res
, RES_FAILCNT
));
1433 printk(KERN_INFO
"memory+swap: usage %llukB, limit %llukB, "
1435 res_counter_read_u64(&memcg
->memsw
, RES_USAGE
) >> 10,
1436 res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
) >> 10,
1437 res_counter_read_u64(&memcg
->memsw
, RES_FAILCNT
));
1441 * This function returns the number of memcg under hierarchy tree. Returns
1442 * 1(self count) if no children.
1444 static int mem_cgroup_count_children(struct mem_cgroup
*memcg
)
1447 struct mem_cgroup
*iter
;
1449 for_each_mem_cgroup_tree(iter
, memcg
)
1455 * Return the memory (and swap, if configured) limit for a memcg.
1457 u64
mem_cgroup_get_limit(struct mem_cgroup
*memcg
)
1462 limit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
1463 limit
+= total_swap_pages
<< PAGE_SHIFT
;
1465 memsw
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
1467 * If memsw is finite and limits the amount of swap space available
1468 * to this memcg, return that limit.
1470 return min(limit
, memsw
);
1474 * Visit the first child (need not be the first child as per the ordering
1475 * of the cgroup list, since we track last_scanned_child) of @mem and use
1476 * that to reclaim free pages from.
1478 static struct mem_cgroup
*
1479 mem_cgroup_select_victim(struct mem_cgroup
*root_memcg
)
1481 struct mem_cgroup
*ret
= NULL
;
1482 struct cgroup_subsys_state
*css
;
1485 if (!root_memcg
->use_hierarchy
) {
1486 css_get(&root_memcg
->css
);
1492 nextid
= root_memcg
->last_scanned_child
+ 1;
1493 css
= css_get_next(&mem_cgroup_subsys
, nextid
, &root_memcg
->css
,
1495 if (css
&& css_tryget(css
))
1496 ret
= container_of(css
, struct mem_cgroup
, css
);
1499 /* Updates scanning parameter */
1501 /* this means start scan from ID:1 */
1502 root_memcg
->last_scanned_child
= 0;
1504 root_memcg
->last_scanned_child
= found
;
1511 * test_mem_cgroup_node_reclaimable
1512 * @mem: the target memcg
1513 * @nid: the node ID to be checked.
1514 * @noswap : specify true here if the user wants flle only information.
1516 * This function returns whether the specified memcg contains any
1517 * reclaimable pages on a node. Returns true if there are any reclaimable
1518 * pages in the node.
1520 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup
*memcg
,
1521 int nid
, bool noswap
)
1523 if (mem_cgroup_node_nr_lru_pages(memcg
, nid
, LRU_ALL_FILE
))
1525 if (noswap
|| !total_swap_pages
)
1527 if (mem_cgroup_node_nr_lru_pages(memcg
, nid
, LRU_ALL_ANON
))
1532 #if MAX_NUMNODES > 1
1535 * Always updating the nodemask is not very good - even if we have an empty
1536 * list or the wrong list here, we can start from some node and traverse all
1537 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1540 static void mem_cgroup_may_update_nodemask(struct mem_cgroup
*memcg
)
1544 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1545 * pagein/pageout changes since the last update.
1547 if (!atomic_read(&memcg
->numainfo_events
))
1549 if (atomic_inc_return(&memcg
->numainfo_updating
) > 1)
1552 /* make a nodemask where this memcg uses memory from */
1553 memcg
->scan_nodes
= node_states
[N_HIGH_MEMORY
];
1555 for_each_node_mask(nid
, node_states
[N_HIGH_MEMORY
]) {
1557 if (!test_mem_cgroup_node_reclaimable(memcg
, nid
, false))
1558 node_clear(nid
, memcg
->scan_nodes
);
1561 atomic_set(&memcg
->numainfo_events
, 0);
1562 atomic_set(&memcg
->numainfo_updating
, 0);
1566 * Selecting a node where we start reclaim from. Because what we need is just
1567 * reducing usage counter, start from anywhere is O,K. Considering
1568 * memory reclaim from current node, there are pros. and cons.
1570 * Freeing memory from current node means freeing memory from a node which
1571 * we'll use or we've used. So, it may make LRU bad. And if several threads
1572 * hit limits, it will see a contention on a node. But freeing from remote
1573 * node means more costs for memory reclaim because of memory latency.
1575 * Now, we use round-robin. Better algorithm is welcomed.
1577 int mem_cgroup_select_victim_node(struct mem_cgroup
*memcg
)
1581 mem_cgroup_may_update_nodemask(memcg
);
1582 node
= memcg
->last_scanned_node
;
1584 node
= next_node(node
, memcg
->scan_nodes
);
1585 if (node
== MAX_NUMNODES
)
1586 node
= first_node(memcg
->scan_nodes
);
1588 * We call this when we hit limit, not when pages are added to LRU.
1589 * No LRU may hold pages because all pages are UNEVICTABLE or
1590 * memcg is too small and all pages are not on LRU. In that case,
1591 * we use curret node.
1593 if (unlikely(node
== MAX_NUMNODES
))
1594 node
= numa_node_id();
1596 memcg
->last_scanned_node
= node
;
1601 * Check all nodes whether it contains reclaimable pages or not.
1602 * For quick scan, we make use of scan_nodes. This will allow us to skip
1603 * unused nodes. But scan_nodes is lazily updated and may not cotain
1604 * enough new information. We need to do double check.
1606 bool mem_cgroup_reclaimable(struct mem_cgroup
*memcg
, bool noswap
)
1611 * quick check...making use of scan_node.
1612 * We can skip unused nodes.
1614 if (!nodes_empty(memcg
->scan_nodes
)) {
1615 for (nid
= first_node(memcg
->scan_nodes
);
1617 nid
= next_node(nid
, memcg
->scan_nodes
)) {
1619 if (test_mem_cgroup_node_reclaimable(memcg
, nid
, noswap
))
1624 * Check rest of nodes.
1626 for_each_node_state(nid
, N_HIGH_MEMORY
) {
1627 if (node_isset(nid
, memcg
->scan_nodes
))
1629 if (test_mem_cgroup_node_reclaimable(memcg
, nid
, noswap
))
1636 int mem_cgroup_select_victim_node(struct mem_cgroup
*memcg
)
1641 bool mem_cgroup_reclaimable(struct mem_cgroup
*memcg
, bool noswap
)
1643 return test_mem_cgroup_node_reclaimable(memcg
, 0, noswap
);
1648 * Scan the hierarchy if needed to reclaim memory. We remember the last child
1649 * we reclaimed from, so that we don't end up penalizing one child extensively
1650 * based on its position in the children list.
1652 * root_memcg is the original ancestor that we've been reclaim from.
1654 * We give up and return to the caller when we visit root_memcg twice.
1655 * (other groups can be removed while we're walking....)
1657 * If shrink==true, for avoiding to free too much, this returns immedieately.
1659 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup
*root_memcg
,
1662 unsigned long reclaim_options
,
1663 unsigned long *total_scanned
)
1665 struct mem_cgroup
*victim
;
1668 bool noswap
= reclaim_options
& MEM_CGROUP_RECLAIM_NOSWAP
;
1669 bool shrink
= reclaim_options
& MEM_CGROUP_RECLAIM_SHRINK
;
1670 bool check_soft
= reclaim_options
& MEM_CGROUP_RECLAIM_SOFT
;
1671 unsigned long excess
;
1672 unsigned long nr_scanned
;
1674 excess
= res_counter_soft_limit_excess(&root_memcg
->res
) >> PAGE_SHIFT
;
1676 /* If memsw_is_minimum==1, swap-out is of-no-use. */
1677 if (!check_soft
&& !shrink
&& root_memcg
->memsw_is_minimum
)
1681 victim
= mem_cgroup_select_victim(root_memcg
);
1682 if (victim
== root_memcg
) {
1685 * We are not draining per cpu cached charges during
1686 * soft limit reclaim because global reclaim doesn't
1687 * care about charges. It tries to free some memory and
1688 * charges will not give any.
1690 if (!check_soft
&& loop
>= 1)
1691 drain_all_stock_async(root_memcg
);
1694 * If we have not been able to reclaim
1695 * anything, it might because there are
1696 * no reclaimable pages under this hierarchy
1698 if (!check_soft
|| !total
) {
1699 css_put(&victim
->css
);
1703 * We want to do more targeted reclaim.
1704 * excess >> 2 is not to excessive so as to
1705 * reclaim too much, nor too less that we keep
1706 * coming back to reclaim from this cgroup
1708 if (total
>= (excess
>> 2) ||
1709 (loop
> MEM_CGROUP_MAX_RECLAIM_LOOPS
)) {
1710 css_put(&victim
->css
);
1715 if (!mem_cgroup_reclaimable(victim
, noswap
)) {
1716 /* this cgroup's local usage == 0 */
1717 css_put(&victim
->css
);
1720 /* we use swappiness of local cgroup */
1722 ret
= mem_cgroup_shrink_node_zone(victim
, gfp_mask
,
1723 noswap
, zone
, &nr_scanned
);
1724 *total_scanned
+= nr_scanned
;
1726 ret
= try_to_free_mem_cgroup_pages(victim
, gfp_mask
,
1728 css_put(&victim
->css
);
1730 * At shrinking usage, we can't check we should stop here or
1731 * reclaim more. It's depends on callers. last_scanned_child
1732 * will work enough for keeping fairness under tree.
1738 if (!res_counter_soft_limit_excess(&root_memcg
->res
))
1740 } else if (mem_cgroup_margin(root_memcg
))
1747 * Check OOM-Killer is already running under our hierarchy.
1748 * If someone is running, return false.
1749 * Has to be called with memcg_oom_lock
1751 static bool mem_cgroup_oom_lock(struct mem_cgroup
*memcg
)
1753 struct mem_cgroup
*iter
, *failed
= NULL
;
1756 for_each_mem_cgroup_tree_cond(iter
, memcg
, cond
) {
1757 if (iter
->oom_lock
) {
1759 * this subtree of our hierarchy is already locked
1760 * so we cannot give a lock.
1765 iter
->oom_lock
= true;
1772 * OK, we failed to lock the whole subtree so we have to clean up
1773 * what we set up to the failing subtree
1776 for_each_mem_cgroup_tree_cond(iter
, memcg
, cond
) {
1777 if (iter
== failed
) {
1781 iter
->oom_lock
= false;
1787 * Has to be called with memcg_oom_lock
1789 static int mem_cgroup_oom_unlock(struct mem_cgroup
*memcg
)
1791 struct mem_cgroup
*iter
;
1793 for_each_mem_cgroup_tree(iter
, memcg
)
1794 iter
->oom_lock
= false;
1798 static void mem_cgroup_mark_under_oom(struct mem_cgroup
*memcg
)
1800 struct mem_cgroup
*iter
;
1802 for_each_mem_cgroup_tree(iter
, memcg
)
1803 atomic_inc(&iter
->under_oom
);
1806 static void mem_cgroup_unmark_under_oom(struct mem_cgroup
*memcg
)
1808 struct mem_cgroup
*iter
;
1811 * When a new child is created while the hierarchy is under oom,
1812 * mem_cgroup_oom_lock() may not be called. We have to use
1813 * atomic_add_unless() here.
1815 for_each_mem_cgroup_tree(iter
, memcg
)
1816 atomic_add_unless(&iter
->under_oom
, -1, 0);
1819 static DEFINE_SPINLOCK(memcg_oom_lock
);
1820 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq
);
1822 struct oom_wait_info
{
1823 struct mem_cgroup
*mem
;
1827 static int memcg_oom_wake_function(wait_queue_t
*wait
,
1828 unsigned mode
, int sync
, void *arg
)
1830 struct mem_cgroup
*wake_memcg
= (struct mem_cgroup
*)arg
,
1832 struct oom_wait_info
*oom_wait_info
;
1834 oom_wait_info
= container_of(wait
, struct oom_wait_info
, wait
);
1835 oom_wait_memcg
= oom_wait_info
->mem
;
1838 * Both of oom_wait_info->mem and wake_mem are stable under us.
1839 * Then we can use css_is_ancestor without taking care of RCU.
1841 if (!mem_cgroup_same_or_subtree(oom_wait_memcg
, wake_memcg
)
1842 && !mem_cgroup_same_or_subtree(wake_memcg
, oom_wait_memcg
))
1844 return autoremove_wake_function(wait
, mode
, sync
, arg
);
1847 static void memcg_wakeup_oom(struct mem_cgroup
*memcg
)
1849 /* for filtering, pass "memcg" as argument. */
1850 __wake_up(&memcg_oom_waitq
, TASK_NORMAL
, 0, memcg
);
1853 static void memcg_oom_recover(struct mem_cgroup
*memcg
)
1855 if (memcg
&& atomic_read(&memcg
->under_oom
))
1856 memcg_wakeup_oom(memcg
);
1860 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1862 bool mem_cgroup_handle_oom(struct mem_cgroup
*memcg
, gfp_t mask
)
1864 struct oom_wait_info owait
;
1865 bool locked
, need_to_kill
;
1868 owait
.wait
.flags
= 0;
1869 owait
.wait
.func
= memcg_oom_wake_function
;
1870 owait
.wait
.private = current
;
1871 INIT_LIST_HEAD(&owait
.wait
.task_list
);
1872 need_to_kill
= true;
1873 mem_cgroup_mark_under_oom(memcg
);
1875 /* At first, try to OOM lock hierarchy under memcg.*/
1876 spin_lock(&memcg_oom_lock
);
1877 locked
= mem_cgroup_oom_lock(memcg
);
1879 * Even if signal_pending(), we can't quit charge() loop without
1880 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1881 * under OOM is always welcomed, use TASK_KILLABLE here.
1883 prepare_to_wait(&memcg_oom_waitq
, &owait
.wait
, TASK_KILLABLE
);
1884 if (!locked
|| memcg
->oom_kill_disable
)
1885 need_to_kill
= false;
1887 mem_cgroup_oom_notify(memcg
);
1888 spin_unlock(&memcg_oom_lock
);
1891 finish_wait(&memcg_oom_waitq
, &owait
.wait
);
1892 mem_cgroup_out_of_memory(memcg
, mask
);
1895 finish_wait(&memcg_oom_waitq
, &owait
.wait
);
1897 spin_lock(&memcg_oom_lock
);
1899 mem_cgroup_oom_unlock(memcg
);
1900 memcg_wakeup_oom(memcg
);
1901 spin_unlock(&memcg_oom_lock
);
1903 mem_cgroup_unmark_under_oom(memcg
);
1905 if (test_thread_flag(TIF_MEMDIE
) || fatal_signal_pending(current
))
1907 /* Give chance to dying process */
1908 schedule_timeout_uninterruptible(1);
1913 * Currently used to update mapped file statistics, but the routine can be
1914 * generalized to update other statistics as well.
1916 * Notes: Race condition
1918 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1919 * it tends to be costly. But considering some conditions, we doesn't need
1920 * to do so _always_.
1922 * Considering "charge", lock_page_cgroup() is not required because all
1923 * file-stat operations happen after a page is attached to radix-tree. There
1924 * are no race with "charge".
1926 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1927 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1928 * if there are race with "uncharge". Statistics itself is properly handled
1931 * Considering "move", this is an only case we see a race. To make the race
1932 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1933 * possibility of race condition. If there is, we take a lock.
1936 void mem_cgroup_update_page_stat(struct page
*page
,
1937 enum mem_cgroup_page_stat_item idx
, int val
)
1939 struct mem_cgroup
*memcg
;
1940 struct page_cgroup
*pc
= lookup_page_cgroup(page
);
1941 bool need_unlock
= false;
1942 unsigned long uninitialized_var(flags
);
1948 memcg
= pc
->mem_cgroup
;
1949 if (unlikely(!memcg
|| !PageCgroupUsed(pc
)))
1951 /* pc->mem_cgroup is unstable ? */
1952 if (unlikely(mem_cgroup_stealed(memcg
)) || PageTransHuge(page
)) {
1953 /* take a lock against to access pc->mem_cgroup */
1954 move_lock_page_cgroup(pc
, &flags
);
1956 memcg
= pc
->mem_cgroup
;
1957 if (!memcg
|| !PageCgroupUsed(pc
))
1962 case MEMCG_NR_FILE_MAPPED
:
1964 SetPageCgroupFileMapped(pc
);
1965 else if (!page_mapped(page
))
1966 ClearPageCgroupFileMapped(pc
);
1967 idx
= MEM_CGROUP_STAT_FILE_MAPPED
;
1973 this_cpu_add(memcg
->stat
->count
[idx
], val
);
1976 if (unlikely(need_unlock
))
1977 move_unlock_page_cgroup(pc
, &flags
);
1981 EXPORT_SYMBOL(mem_cgroup_update_page_stat
);
1984 * size of first charge trial. "32" comes from vmscan.c's magic value.
1985 * TODO: maybe necessary to use big numbers in big irons.
1987 #define CHARGE_BATCH 32U
1988 struct memcg_stock_pcp
{
1989 struct mem_cgroup
*cached
; /* this never be root cgroup */
1990 unsigned int nr_pages
;
1991 struct work_struct work
;
1992 unsigned long flags
;
1993 #define FLUSHING_CACHED_CHARGE (0)
1995 static DEFINE_PER_CPU(struct memcg_stock_pcp
, memcg_stock
);
1996 static DEFINE_MUTEX(percpu_charge_mutex
);
1999 * Try to consume stocked charge on this cpu. If success, one page is consumed
2000 * from local stock and true is returned. If the stock is 0 or charges from a
2001 * cgroup which is not current target, returns false. This stock will be
2004 static bool consume_stock(struct mem_cgroup
*memcg
)
2006 struct memcg_stock_pcp
*stock
;
2009 stock
= &get_cpu_var(memcg_stock
);
2010 if (memcg
== stock
->cached
&& stock
->nr_pages
)
2012 else /* need to call res_counter_charge */
2014 put_cpu_var(memcg_stock
);
2019 * Returns stocks cached in percpu to res_counter and reset cached information.
2021 static void drain_stock(struct memcg_stock_pcp
*stock
)
2023 struct mem_cgroup
*old
= stock
->cached
;
2025 if (stock
->nr_pages
) {
2026 unsigned long bytes
= stock
->nr_pages
* PAGE_SIZE
;
2028 res_counter_uncharge(&old
->res
, bytes
);
2029 if (do_swap_account
)
2030 res_counter_uncharge(&old
->memsw
, bytes
);
2031 stock
->nr_pages
= 0;
2033 stock
->cached
= NULL
;
2037 * This must be called under preempt disabled or must be called by
2038 * a thread which is pinned to local cpu.
2040 static void drain_local_stock(struct work_struct
*dummy
)
2042 struct memcg_stock_pcp
*stock
= &__get_cpu_var(memcg_stock
);
2044 clear_bit(FLUSHING_CACHED_CHARGE
, &stock
->flags
);
2048 * Cache charges(val) which is from res_counter, to local per_cpu area.
2049 * This will be consumed by consume_stock() function, later.
2051 static void refill_stock(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
2053 struct memcg_stock_pcp
*stock
= &get_cpu_var(memcg_stock
);
2055 if (stock
->cached
!= memcg
) { /* reset if necessary */
2057 stock
->cached
= memcg
;
2059 stock
->nr_pages
+= nr_pages
;
2060 put_cpu_var(memcg_stock
);
2064 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2065 * of the hierarchy under it. sync flag says whether we should block
2066 * until the work is done.
2068 static void drain_all_stock(struct mem_cgroup
*root_memcg
, bool sync
)
2072 /* Notify other cpus that system-wide "drain" is running */
2075 for_each_online_cpu(cpu
) {
2076 struct memcg_stock_pcp
*stock
= &per_cpu(memcg_stock
, cpu
);
2077 struct mem_cgroup
*memcg
;
2079 memcg
= stock
->cached
;
2080 if (!memcg
|| !stock
->nr_pages
)
2082 if (!mem_cgroup_same_or_subtree(root_memcg
, memcg
))
2084 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE
, &stock
->flags
)) {
2086 drain_local_stock(&stock
->work
);
2088 schedule_work_on(cpu
, &stock
->work
);
2096 for_each_online_cpu(cpu
) {
2097 struct memcg_stock_pcp
*stock
= &per_cpu(memcg_stock
, cpu
);
2098 if (test_bit(FLUSHING_CACHED_CHARGE
, &stock
->flags
))
2099 flush_work(&stock
->work
);
2106 * Tries to drain stocked charges in other cpus. This function is asynchronous
2107 * and just put a work per cpu for draining localy on each cpu. Caller can
2108 * expects some charges will be back to res_counter later but cannot wait for
2111 static void drain_all_stock_async(struct mem_cgroup
*root_memcg
)
2114 * If someone calls draining, avoid adding more kworker runs.
2116 if (!mutex_trylock(&percpu_charge_mutex
))
2118 drain_all_stock(root_memcg
, false);
2119 mutex_unlock(&percpu_charge_mutex
);
2122 /* This is a synchronous drain interface. */
2123 static void drain_all_stock_sync(struct mem_cgroup
*root_memcg
)
2125 /* called when force_empty is called */
2126 mutex_lock(&percpu_charge_mutex
);
2127 drain_all_stock(root_memcg
, true);
2128 mutex_unlock(&percpu_charge_mutex
);
2132 * This function drains percpu counter value from DEAD cpu and
2133 * move it to local cpu. Note that this function can be preempted.
2135 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup
*memcg
, int cpu
)
2139 spin_lock(&memcg
->pcp_counter_lock
);
2140 for (i
= 0; i
< MEM_CGROUP_STAT_DATA
; i
++) {
2141 long x
= per_cpu(memcg
->stat
->count
[i
], cpu
);
2143 per_cpu(memcg
->stat
->count
[i
], cpu
) = 0;
2144 memcg
->nocpu_base
.count
[i
] += x
;
2146 for (i
= 0; i
< MEM_CGROUP_EVENTS_NSTATS
; i
++) {
2147 unsigned long x
= per_cpu(memcg
->stat
->events
[i
], cpu
);
2149 per_cpu(memcg
->stat
->events
[i
], cpu
) = 0;
2150 memcg
->nocpu_base
.events
[i
] += x
;
2152 /* need to clear ON_MOVE value, works as a kind of lock. */
2153 per_cpu(memcg
->stat
->count
[MEM_CGROUP_ON_MOVE
], cpu
) = 0;
2154 spin_unlock(&memcg
->pcp_counter_lock
);
2157 static void synchronize_mem_cgroup_on_move(struct mem_cgroup
*memcg
, int cpu
)
2159 int idx
= MEM_CGROUP_ON_MOVE
;
2161 spin_lock(&memcg
->pcp_counter_lock
);
2162 per_cpu(memcg
->stat
->count
[idx
], cpu
) = memcg
->nocpu_base
.count
[idx
];
2163 spin_unlock(&memcg
->pcp_counter_lock
);
2166 static int __cpuinit
memcg_cpu_hotplug_callback(struct notifier_block
*nb
,
2167 unsigned long action
,
2170 int cpu
= (unsigned long)hcpu
;
2171 struct memcg_stock_pcp
*stock
;
2172 struct mem_cgroup
*iter
;
2174 if ((action
== CPU_ONLINE
)) {
2175 for_each_mem_cgroup_all(iter
)
2176 synchronize_mem_cgroup_on_move(iter
, cpu
);
2180 if ((action
!= CPU_DEAD
) || action
!= CPU_DEAD_FROZEN
)
2183 for_each_mem_cgroup_all(iter
)
2184 mem_cgroup_drain_pcp_counter(iter
, cpu
);
2186 stock
= &per_cpu(memcg_stock
, cpu
);
2192 /* See __mem_cgroup_try_charge() for details */
2194 CHARGE_OK
, /* success */
2195 CHARGE_RETRY
, /* need to retry but retry is not bad */
2196 CHARGE_NOMEM
, /* we can't do more. return -ENOMEM */
2197 CHARGE_WOULDBLOCK
, /* GFP_WAIT wasn't set and no enough res. */
2198 CHARGE_OOM_DIE
, /* the current is killed because of OOM */
2201 static int mem_cgroup_do_charge(struct mem_cgroup
*memcg
, gfp_t gfp_mask
,
2202 unsigned int nr_pages
, bool oom_check
)
2204 unsigned long csize
= nr_pages
* PAGE_SIZE
;
2205 struct mem_cgroup
*mem_over_limit
;
2206 struct res_counter
*fail_res
;
2207 unsigned long flags
= 0;
2210 ret
= res_counter_charge(&memcg
->res
, csize
, &fail_res
);
2213 if (!do_swap_account
)
2215 ret
= res_counter_charge(&memcg
->memsw
, csize
, &fail_res
);
2219 res_counter_uncharge(&memcg
->res
, csize
);
2220 mem_over_limit
= mem_cgroup_from_res_counter(fail_res
, memsw
);
2221 flags
|= MEM_CGROUP_RECLAIM_NOSWAP
;
2223 mem_over_limit
= mem_cgroup_from_res_counter(fail_res
, res
);
2225 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2226 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2228 * Never reclaim on behalf of optional batching, retry with a
2229 * single page instead.
2231 if (nr_pages
== CHARGE_BATCH
)
2232 return CHARGE_RETRY
;
2234 if (!(gfp_mask
& __GFP_WAIT
))
2235 return CHARGE_WOULDBLOCK
;
2237 ret
= mem_cgroup_hierarchical_reclaim(mem_over_limit
, NULL
,
2238 gfp_mask
, flags
, NULL
);
2239 if (mem_cgroup_margin(mem_over_limit
) >= nr_pages
)
2240 return CHARGE_RETRY
;
2242 * Even though the limit is exceeded at this point, reclaim
2243 * may have been able to free some pages. Retry the charge
2244 * before killing the task.
2246 * Only for regular pages, though: huge pages are rather
2247 * unlikely to succeed so close to the limit, and we fall back
2248 * to regular pages anyway in case of failure.
2250 if (nr_pages
== 1 && ret
)
2251 return CHARGE_RETRY
;
2254 * At task move, charge accounts can be doubly counted. So, it's
2255 * better to wait until the end of task_move if something is going on.
2257 if (mem_cgroup_wait_acct_move(mem_over_limit
))
2258 return CHARGE_RETRY
;
2260 /* If we don't need to call oom-killer at el, return immediately */
2262 return CHARGE_NOMEM
;
2264 if (!mem_cgroup_handle_oom(mem_over_limit
, gfp_mask
))
2265 return CHARGE_OOM_DIE
;
2267 return CHARGE_RETRY
;
2271 * Unlike exported interface, "oom" parameter is added. if oom==true,
2272 * oom-killer can be invoked.
2274 static int __mem_cgroup_try_charge(struct mm_struct
*mm
,
2276 unsigned int nr_pages
,
2277 struct mem_cgroup
**ptr
,
2280 unsigned int batch
= max(CHARGE_BATCH
, nr_pages
);
2281 int nr_oom_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
2282 struct mem_cgroup
*memcg
= NULL
;
2286 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2287 * in system level. So, allow to go ahead dying process in addition to
2290 if (unlikely(test_thread_flag(TIF_MEMDIE
)
2291 || fatal_signal_pending(current
)))
2295 * We always charge the cgroup the mm_struct belongs to.
2296 * The mm_struct's mem_cgroup changes on task migration if the
2297 * thread group leader migrates. It's possible that mm is not
2298 * set, if so charge the init_mm (happens for pagecache usage).
2303 if (*ptr
) { /* css should be a valid one */
2305 VM_BUG_ON(css_is_removed(&memcg
->css
));
2306 if (mem_cgroup_is_root(memcg
))
2308 if (nr_pages
== 1 && consume_stock(memcg
))
2310 css_get(&memcg
->css
);
2312 struct task_struct
*p
;
2315 p
= rcu_dereference(mm
->owner
);
2317 * Because we don't have task_lock(), "p" can exit.
2318 * In that case, "memcg" can point to root or p can be NULL with
2319 * race with swapoff. Then, we have small risk of mis-accouning.
2320 * But such kind of mis-account by race always happens because
2321 * we don't have cgroup_mutex(). It's overkill and we allo that
2323 * (*) swapoff at el will charge against mm-struct not against
2324 * task-struct. So, mm->owner can be NULL.
2326 memcg
= mem_cgroup_from_task(p
);
2327 if (!memcg
|| mem_cgroup_is_root(memcg
)) {
2331 if (nr_pages
== 1 && consume_stock(memcg
)) {
2333 * It seems dagerous to access memcg without css_get().
2334 * But considering how consume_stok works, it's not
2335 * necessary. If consume_stock success, some charges
2336 * from this memcg are cached on this cpu. So, we
2337 * don't need to call css_get()/css_tryget() before
2338 * calling consume_stock().
2343 /* after here, we may be blocked. we need to get refcnt */
2344 if (!css_tryget(&memcg
->css
)) {
2354 /* If killed, bypass charge */
2355 if (fatal_signal_pending(current
)) {
2356 css_put(&memcg
->css
);
2361 if (oom
&& !nr_oom_retries
) {
2363 nr_oom_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
2366 ret
= mem_cgroup_do_charge(memcg
, gfp_mask
, batch
, oom_check
);
2370 case CHARGE_RETRY
: /* not in OOM situation but retry */
2372 css_put(&memcg
->css
);
2375 case CHARGE_WOULDBLOCK
: /* !__GFP_WAIT */
2376 css_put(&memcg
->css
);
2378 case CHARGE_NOMEM
: /* OOM routine works */
2380 css_put(&memcg
->css
);
2383 /* If oom, we never return -ENOMEM */
2386 case CHARGE_OOM_DIE
: /* Killed by OOM Killer */
2387 css_put(&memcg
->css
);
2390 } while (ret
!= CHARGE_OK
);
2392 if (batch
> nr_pages
)
2393 refill_stock(memcg
, batch
- nr_pages
);
2394 css_put(&memcg
->css
);
2407 * Somemtimes we have to undo a charge we got by try_charge().
2408 * This function is for that and do uncharge, put css's refcnt.
2409 * gotten by try_charge().
2411 static void __mem_cgroup_cancel_charge(struct mem_cgroup
*memcg
,
2412 unsigned int nr_pages
)
2414 if (!mem_cgroup_is_root(memcg
)) {
2415 unsigned long bytes
= nr_pages
* PAGE_SIZE
;
2417 res_counter_uncharge(&memcg
->res
, bytes
);
2418 if (do_swap_account
)
2419 res_counter_uncharge(&memcg
->memsw
, bytes
);
2424 * A helper function to get mem_cgroup from ID. must be called under
2425 * rcu_read_lock(). The caller must check css_is_removed() or some if
2426 * it's concern. (dropping refcnt from swap can be called against removed
2429 static struct mem_cgroup
*mem_cgroup_lookup(unsigned short id
)
2431 struct cgroup_subsys_state
*css
;
2433 /* ID 0 is unused ID */
2436 css
= css_lookup(&mem_cgroup_subsys
, id
);
2439 return container_of(css
, struct mem_cgroup
, css
);
2442 struct mem_cgroup
*try_get_mem_cgroup_from_page(struct page
*page
)
2444 struct mem_cgroup
*memcg
= NULL
;
2445 struct page_cgroup
*pc
;
2449 VM_BUG_ON(!PageLocked(page
));
2451 pc
= lookup_page_cgroup(page
);
2452 lock_page_cgroup(pc
);
2453 if (PageCgroupUsed(pc
)) {
2454 memcg
= pc
->mem_cgroup
;
2455 if (memcg
&& !css_tryget(&memcg
->css
))
2457 } else if (PageSwapCache(page
)) {
2458 ent
.val
= page_private(page
);
2459 id
= lookup_swap_cgroup(ent
);
2461 memcg
= mem_cgroup_lookup(id
);
2462 if (memcg
&& !css_tryget(&memcg
->css
))
2466 unlock_page_cgroup(pc
);
2470 static void __mem_cgroup_commit_charge(struct mem_cgroup
*memcg
,
2472 unsigned int nr_pages
,
2473 struct page_cgroup
*pc
,
2474 enum charge_type ctype
)
2476 lock_page_cgroup(pc
);
2477 if (unlikely(PageCgroupUsed(pc
))) {
2478 unlock_page_cgroup(pc
);
2479 __mem_cgroup_cancel_charge(memcg
, nr_pages
);
2483 * we don't need page_cgroup_lock about tail pages, becase they are not
2484 * accessed by any other context at this point.
2486 pc
->mem_cgroup
= memcg
;
2488 * We access a page_cgroup asynchronously without lock_page_cgroup().
2489 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2490 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2491 * before USED bit, we need memory barrier here.
2492 * See mem_cgroup_add_lru_list(), etc.
2496 case MEM_CGROUP_CHARGE_TYPE_CACHE
:
2497 case MEM_CGROUP_CHARGE_TYPE_SHMEM
:
2498 SetPageCgroupCache(pc
);
2499 SetPageCgroupUsed(pc
);
2501 case MEM_CGROUP_CHARGE_TYPE_MAPPED
:
2502 ClearPageCgroupCache(pc
);
2503 SetPageCgroupUsed(pc
);
2509 mem_cgroup_charge_statistics(memcg
, PageCgroupCache(pc
), nr_pages
);
2510 unlock_page_cgroup(pc
);
2512 * "charge_statistics" updated event counter. Then, check it.
2513 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2514 * if they exceeds softlimit.
2516 memcg_check_events(memcg
, page
);
2519 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2521 #define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2522 (1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
2524 * Because tail pages are not marked as "used", set it. We're under
2525 * zone->lru_lock, 'splitting on pmd' and compund_lock.
2527 void mem_cgroup_split_huge_fixup(struct page
*head
, struct page
*tail
)
2529 struct page_cgroup
*head_pc
= lookup_page_cgroup(head
);
2530 struct page_cgroup
*tail_pc
= lookup_page_cgroup(tail
);
2531 unsigned long flags
;
2533 if (mem_cgroup_disabled())
2536 * We have no races with charge/uncharge but will have races with
2537 * page state accounting.
2539 move_lock_page_cgroup(head_pc
, &flags
);
2541 tail_pc
->mem_cgroup
= head_pc
->mem_cgroup
;
2542 smp_wmb(); /* see __commit_charge() */
2543 if (PageCgroupAcctLRU(head_pc
)) {
2545 struct mem_cgroup_per_zone
*mz
;
2548 * LRU flags cannot be copied because we need to add tail
2549 *.page to LRU by generic call and our hook will be called.
2550 * We hold lru_lock, then, reduce counter directly.
2552 lru
= page_lru(head
);
2553 mz
= page_cgroup_zoneinfo(head_pc
->mem_cgroup
, head
);
2554 MEM_CGROUP_ZSTAT(mz
, lru
) -= 1;
2556 tail_pc
->flags
= head_pc
->flags
& ~PCGF_NOCOPY_AT_SPLIT
;
2557 move_unlock_page_cgroup(head_pc
, &flags
);
2562 * mem_cgroup_move_account - move account of the page
2564 * @nr_pages: number of regular pages (>1 for huge pages)
2565 * @pc: page_cgroup of the page.
2566 * @from: mem_cgroup which the page is moved from.
2567 * @to: mem_cgroup which the page is moved to. @from != @to.
2568 * @uncharge: whether we should call uncharge and css_put against @from.
2570 * The caller must confirm following.
2571 * - page is not on LRU (isolate_page() is useful.)
2572 * - compound_lock is held when nr_pages > 1
2574 * This function doesn't do "charge" nor css_get to new cgroup. It should be
2575 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
2576 * true, this function does "uncharge" from old cgroup, but it doesn't if
2577 * @uncharge is false, so a caller should do "uncharge".
2579 static int mem_cgroup_move_account(struct page
*page
,
2580 unsigned int nr_pages
,
2581 struct page_cgroup
*pc
,
2582 struct mem_cgroup
*from
,
2583 struct mem_cgroup
*to
,
2586 unsigned long flags
;
2589 VM_BUG_ON(from
== to
);
2590 VM_BUG_ON(PageLRU(page
));
2592 * The page is isolated from LRU. So, collapse function
2593 * will not handle this page. But page splitting can happen.
2594 * Do this check under compound_page_lock(). The caller should
2598 if (nr_pages
> 1 && !PageTransHuge(page
))
2601 lock_page_cgroup(pc
);
2604 if (!PageCgroupUsed(pc
) || pc
->mem_cgroup
!= from
)
2607 move_lock_page_cgroup(pc
, &flags
);
2609 if (PageCgroupFileMapped(pc
)) {
2610 /* Update mapped_file data for mem_cgroup */
2612 __this_cpu_dec(from
->stat
->count
[MEM_CGROUP_STAT_FILE_MAPPED
]);
2613 __this_cpu_inc(to
->stat
->count
[MEM_CGROUP_STAT_FILE_MAPPED
]);
2616 mem_cgroup_charge_statistics(from
, PageCgroupCache(pc
), -nr_pages
);
2618 /* This is not "cancel", but cancel_charge does all we need. */
2619 __mem_cgroup_cancel_charge(from
, nr_pages
);
2621 /* caller should have done css_get */
2622 pc
->mem_cgroup
= to
;
2623 mem_cgroup_charge_statistics(to
, PageCgroupCache(pc
), nr_pages
);
2625 * We charges against "to" which may not have any tasks. Then, "to"
2626 * can be under rmdir(). But in current implementation, caller of
2627 * this function is just force_empty() and move charge, so it's
2628 * guaranteed that "to" is never removed. So, we don't check rmdir
2631 move_unlock_page_cgroup(pc
, &flags
);
2634 unlock_page_cgroup(pc
);
2638 memcg_check_events(to
, page
);
2639 memcg_check_events(from
, page
);
2645 * move charges to its parent.
2648 static int mem_cgroup_move_parent(struct page
*page
,
2649 struct page_cgroup
*pc
,
2650 struct mem_cgroup
*child
,
2653 struct cgroup
*cg
= child
->css
.cgroup
;
2654 struct cgroup
*pcg
= cg
->parent
;
2655 struct mem_cgroup
*parent
;
2656 unsigned int nr_pages
;
2657 unsigned long uninitialized_var(flags
);
2665 if (!get_page_unless_zero(page
))
2667 if (isolate_lru_page(page
))
2670 nr_pages
= hpage_nr_pages(page
);
2672 parent
= mem_cgroup_from_cont(pcg
);
2673 ret
= __mem_cgroup_try_charge(NULL
, gfp_mask
, nr_pages
, &parent
, false);
2678 flags
= compound_lock_irqsave(page
);
2680 ret
= mem_cgroup_move_account(page
, nr_pages
, pc
, child
, parent
, true);
2682 __mem_cgroup_cancel_charge(parent
, nr_pages
);
2685 compound_unlock_irqrestore(page
, flags
);
2687 putback_lru_page(page
);
2695 * Charge the memory controller for page usage.
2697 * 0 if the charge was successful
2698 * < 0 if the cgroup is over its limit
2700 static int mem_cgroup_charge_common(struct page
*page
, struct mm_struct
*mm
,
2701 gfp_t gfp_mask
, enum charge_type ctype
)
2703 struct mem_cgroup
*memcg
= NULL
;
2704 unsigned int nr_pages
= 1;
2705 struct page_cgroup
*pc
;
2709 if (PageTransHuge(page
)) {
2710 nr_pages
<<= compound_order(page
);
2711 VM_BUG_ON(!PageTransHuge(page
));
2713 * Never OOM-kill a process for a huge page. The
2714 * fault handler will fall back to regular pages.
2719 pc
= lookup_page_cgroup(page
);
2720 BUG_ON(!pc
); /* XXX: remove this and move pc lookup into commit */
2722 ret
= __mem_cgroup_try_charge(mm
, gfp_mask
, nr_pages
, &memcg
, oom
);
2726 __mem_cgroup_commit_charge(memcg
, page
, nr_pages
, pc
, ctype
);
2730 int mem_cgroup_newpage_charge(struct page
*page
,
2731 struct mm_struct
*mm
, gfp_t gfp_mask
)
2733 if (mem_cgroup_disabled())
2736 * If already mapped, we don't have to account.
2737 * If page cache, page->mapping has address_space.
2738 * But page->mapping may have out-of-use anon_vma pointer,
2739 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2742 if (page_mapped(page
) || (page
->mapping
&& !PageAnon(page
)))
2746 return mem_cgroup_charge_common(page
, mm
, gfp_mask
,
2747 MEM_CGROUP_CHARGE_TYPE_MAPPED
);
2751 __mem_cgroup_commit_charge_swapin(struct page
*page
, struct mem_cgroup
*ptr
,
2752 enum charge_type ctype
);
2755 __mem_cgroup_commit_charge_lrucare(struct page
*page
, struct mem_cgroup
*memcg
,
2756 enum charge_type ctype
)
2758 struct page_cgroup
*pc
= lookup_page_cgroup(page
);
2760 * In some case, SwapCache, FUSE(splice_buf->radixtree), the page
2761 * is already on LRU. It means the page may on some other page_cgroup's
2762 * LRU. Take care of it.
2764 mem_cgroup_lru_del_before_commit(page
);
2765 __mem_cgroup_commit_charge(memcg
, page
, 1, pc
, ctype
);
2766 mem_cgroup_lru_add_after_commit(page
);
2770 int mem_cgroup_cache_charge(struct page
*page
, struct mm_struct
*mm
,
2773 struct mem_cgroup
*memcg
= NULL
;
2776 if (mem_cgroup_disabled())
2778 if (PageCompound(page
))
2784 if (page_is_file_cache(page
)) {
2785 ret
= __mem_cgroup_try_charge(mm
, gfp_mask
, 1, &memcg
, true);
2790 * FUSE reuses pages without going through the final
2791 * put that would remove them from the LRU list, make
2792 * sure that they get relinked properly.
2794 __mem_cgroup_commit_charge_lrucare(page
, memcg
,
2795 MEM_CGROUP_CHARGE_TYPE_CACHE
);
2799 if (PageSwapCache(page
)) {
2800 ret
= mem_cgroup_try_charge_swapin(mm
, page
, gfp_mask
, &memcg
);
2802 __mem_cgroup_commit_charge_swapin(page
, memcg
,
2803 MEM_CGROUP_CHARGE_TYPE_SHMEM
);
2805 ret
= mem_cgroup_charge_common(page
, mm
, gfp_mask
,
2806 MEM_CGROUP_CHARGE_TYPE_SHMEM
);
2812 * While swap-in, try_charge -> commit or cancel, the page is locked.
2813 * And when try_charge() successfully returns, one refcnt to memcg without
2814 * struct page_cgroup is acquired. This refcnt will be consumed by
2815 * "commit()" or removed by "cancel()"
2817 int mem_cgroup_try_charge_swapin(struct mm_struct
*mm
,
2819 gfp_t mask
, struct mem_cgroup
**ptr
)
2821 struct mem_cgroup
*memcg
;
2826 if (mem_cgroup_disabled())
2829 if (!do_swap_account
)
2832 * A racing thread's fault, or swapoff, may have already updated
2833 * the pte, and even removed page from swap cache: in those cases
2834 * do_swap_page()'s pte_same() test will fail; but there's also a
2835 * KSM case which does need to charge the page.
2837 if (!PageSwapCache(page
))
2839 memcg
= try_get_mem_cgroup_from_page(page
);
2843 ret
= __mem_cgroup_try_charge(NULL
, mask
, 1, ptr
, true);
2844 css_put(&memcg
->css
);
2849 return __mem_cgroup_try_charge(mm
, mask
, 1, ptr
, true);
2853 __mem_cgroup_commit_charge_swapin(struct page
*page
, struct mem_cgroup
*ptr
,
2854 enum charge_type ctype
)
2856 if (mem_cgroup_disabled())
2860 cgroup_exclude_rmdir(&ptr
->css
);
2862 __mem_cgroup_commit_charge_lrucare(page
, ptr
, ctype
);
2864 * Now swap is on-memory. This means this page may be
2865 * counted both as mem and swap....double count.
2866 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2867 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2868 * may call delete_from_swap_cache() before reach here.
2870 if (do_swap_account
&& PageSwapCache(page
)) {
2871 swp_entry_t ent
= {.val
= page_private(page
)};
2873 struct mem_cgroup
*memcg
;
2875 id
= swap_cgroup_record(ent
, 0);
2877 memcg
= mem_cgroup_lookup(id
);
2880 * This recorded memcg can be obsolete one. So, avoid
2881 * calling css_tryget
2883 if (!mem_cgroup_is_root(memcg
))
2884 res_counter_uncharge(&memcg
->memsw
, PAGE_SIZE
);
2885 mem_cgroup_swap_statistics(memcg
, false);
2886 mem_cgroup_put(memcg
);
2891 * At swapin, we may charge account against cgroup which has no tasks.
2892 * So, rmdir()->pre_destroy() can be called while we do this charge.
2893 * In that case, we need to call pre_destroy() again. check it here.
2895 cgroup_release_and_wakeup_rmdir(&ptr
->css
);
2898 void mem_cgroup_commit_charge_swapin(struct page
*page
, struct mem_cgroup
*ptr
)
2900 __mem_cgroup_commit_charge_swapin(page
, ptr
,
2901 MEM_CGROUP_CHARGE_TYPE_MAPPED
);
2904 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup
*memcg
)
2906 if (mem_cgroup_disabled())
2910 __mem_cgroup_cancel_charge(memcg
, 1);
2913 static void mem_cgroup_do_uncharge(struct mem_cgroup
*memcg
,
2914 unsigned int nr_pages
,
2915 const enum charge_type ctype
)
2917 struct memcg_batch_info
*batch
= NULL
;
2918 bool uncharge_memsw
= true;
2920 /* If swapout, usage of swap doesn't decrease */
2921 if (!do_swap_account
|| ctype
== MEM_CGROUP_CHARGE_TYPE_SWAPOUT
)
2922 uncharge_memsw
= false;
2924 batch
= ¤t
->memcg_batch
;
2926 * In usual, we do css_get() when we remember memcg pointer.
2927 * But in this case, we keep res->usage until end of a series of
2928 * uncharges. Then, it's ok to ignore memcg's refcnt.
2931 batch
->memcg
= memcg
;
2933 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2934 * In those cases, all pages freed continuously can be expected to be in
2935 * the same cgroup and we have chance to coalesce uncharges.
2936 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2937 * because we want to do uncharge as soon as possible.
2940 if (!batch
->do_batch
|| test_thread_flag(TIF_MEMDIE
))
2941 goto direct_uncharge
;
2944 goto direct_uncharge
;
2947 * In typical case, batch->memcg == mem. This means we can
2948 * merge a series of uncharges to an uncharge of res_counter.
2949 * If not, we uncharge res_counter ony by one.
2951 if (batch
->memcg
!= memcg
)
2952 goto direct_uncharge
;
2953 /* remember freed charge and uncharge it later */
2956 batch
->memsw_nr_pages
++;
2959 res_counter_uncharge(&memcg
->res
, nr_pages
* PAGE_SIZE
);
2961 res_counter_uncharge(&memcg
->memsw
, nr_pages
* PAGE_SIZE
);
2962 if (unlikely(batch
->memcg
!= memcg
))
2963 memcg_oom_recover(memcg
);
2968 * uncharge if !page_mapped(page)
2970 static struct mem_cgroup
*
2971 __mem_cgroup_uncharge_common(struct page
*page
, enum charge_type ctype
)
2973 struct mem_cgroup
*memcg
= NULL
;
2974 unsigned int nr_pages
= 1;
2975 struct page_cgroup
*pc
;
2977 if (mem_cgroup_disabled())
2980 if (PageSwapCache(page
))
2983 if (PageTransHuge(page
)) {
2984 nr_pages
<<= compound_order(page
);
2985 VM_BUG_ON(!PageTransHuge(page
));
2988 * Check if our page_cgroup is valid
2990 pc
= lookup_page_cgroup(page
);
2991 if (unlikely(!pc
|| !PageCgroupUsed(pc
)))
2994 lock_page_cgroup(pc
);
2996 memcg
= pc
->mem_cgroup
;
2998 if (!PageCgroupUsed(pc
))
3002 case MEM_CGROUP_CHARGE_TYPE_MAPPED
:
3003 case MEM_CGROUP_CHARGE_TYPE_DROP
:
3004 /* See mem_cgroup_prepare_migration() */
3005 if (page_mapped(page
) || PageCgroupMigration(pc
))
3008 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT
:
3009 if (!PageAnon(page
)) { /* Shared memory */
3010 if (page
->mapping
&& !page_is_file_cache(page
))
3012 } else if (page_mapped(page
)) /* Anon */
3019 mem_cgroup_charge_statistics(memcg
, PageCgroupCache(pc
), -nr_pages
);
3021 ClearPageCgroupUsed(pc
);
3023 * pc->mem_cgroup is not cleared here. It will be accessed when it's
3024 * freed from LRU. This is safe because uncharged page is expected not
3025 * to be reused (freed soon). Exception is SwapCache, it's handled by
3026 * special functions.
3029 unlock_page_cgroup(pc
);
3031 * even after unlock, we have memcg->res.usage here and this memcg
3032 * will never be freed.
3034 memcg_check_events(memcg
, page
);
3035 if (do_swap_account
&& ctype
== MEM_CGROUP_CHARGE_TYPE_SWAPOUT
) {
3036 mem_cgroup_swap_statistics(memcg
, true);
3037 mem_cgroup_get(memcg
);
3039 if (!mem_cgroup_is_root(memcg
))
3040 mem_cgroup_do_uncharge(memcg
, nr_pages
, ctype
);
3045 unlock_page_cgroup(pc
);
3049 void mem_cgroup_uncharge_page(struct page
*page
)
3052 if (page_mapped(page
))
3054 if (page
->mapping
&& !PageAnon(page
))
3056 __mem_cgroup_uncharge_common(page
, MEM_CGROUP_CHARGE_TYPE_MAPPED
);
3059 void mem_cgroup_uncharge_cache_page(struct page
*page
)
3061 VM_BUG_ON(page_mapped(page
));
3062 VM_BUG_ON(page
->mapping
);
3063 __mem_cgroup_uncharge_common(page
, MEM_CGROUP_CHARGE_TYPE_CACHE
);
3067 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3068 * In that cases, pages are freed continuously and we can expect pages
3069 * are in the same memcg. All these calls itself limits the number of
3070 * pages freed at once, then uncharge_start/end() is called properly.
3071 * This may be called prural(2) times in a context,
3074 void mem_cgroup_uncharge_start(void)
3076 current
->memcg_batch
.do_batch
++;
3077 /* We can do nest. */
3078 if (current
->memcg_batch
.do_batch
== 1) {
3079 current
->memcg_batch
.memcg
= NULL
;
3080 current
->memcg_batch
.nr_pages
= 0;
3081 current
->memcg_batch
.memsw_nr_pages
= 0;
3085 void mem_cgroup_uncharge_end(void)
3087 struct memcg_batch_info
*batch
= ¤t
->memcg_batch
;
3089 if (!batch
->do_batch
)
3093 if (batch
->do_batch
) /* If stacked, do nothing. */
3099 * This "batch->memcg" is valid without any css_get/put etc...
3100 * bacause we hide charges behind us.
3102 if (batch
->nr_pages
)
3103 res_counter_uncharge(&batch
->memcg
->res
,
3104 batch
->nr_pages
* PAGE_SIZE
);
3105 if (batch
->memsw_nr_pages
)
3106 res_counter_uncharge(&batch
->memcg
->memsw
,
3107 batch
->memsw_nr_pages
* PAGE_SIZE
);
3108 memcg_oom_recover(batch
->memcg
);
3109 /* forget this pointer (for sanity check) */
3110 batch
->memcg
= NULL
;
3115 * called after __delete_from_swap_cache() and drop "page" account.
3116 * memcg information is recorded to swap_cgroup of "ent"
3119 mem_cgroup_uncharge_swapcache(struct page
*page
, swp_entry_t ent
, bool swapout
)
3121 struct mem_cgroup
*memcg
;
3122 int ctype
= MEM_CGROUP_CHARGE_TYPE_SWAPOUT
;
3124 if (!swapout
) /* this was a swap cache but the swap is unused ! */
3125 ctype
= MEM_CGROUP_CHARGE_TYPE_DROP
;
3127 memcg
= __mem_cgroup_uncharge_common(page
, ctype
);
3130 * record memcg information, if swapout && memcg != NULL,
3131 * mem_cgroup_get() was called in uncharge().
3133 if (do_swap_account
&& swapout
&& memcg
)
3134 swap_cgroup_record(ent
, css_id(&memcg
->css
));
3138 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3140 * called from swap_entry_free(). remove record in swap_cgroup and
3141 * uncharge "memsw" account.
3143 void mem_cgroup_uncharge_swap(swp_entry_t ent
)
3145 struct mem_cgroup
*memcg
;
3148 if (!do_swap_account
)
3151 id
= swap_cgroup_record(ent
, 0);
3153 memcg
= mem_cgroup_lookup(id
);
3156 * We uncharge this because swap is freed.
3157 * This memcg can be obsolete one. We avoid calling css_tryget
3159 if (!mem_cgroup_is_root(memcg
))
3160 res_counter_uncharge(&memcg
->memsw
, PAGE_SIZE
);
3161 mem_cgroup_swap_statistics(memcg
, false);
3162 mem_cgroup_put(memcg
);
3168 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3169 * @entry: swap entry to be moved
3170 * @from: mem_cgroup which the entry is moved from
3171 * @to: mem_cgroup which the entry is moved to
3172 * @need_fixup: whether we should fixup res_counters and refcounts.
3174 * It succeeds only when the swap_cgroup's record for this entry is the same
3175 * as the mem_cgroup's id of @from.
3177 * Returns 0 on success, -EINVAL on failure.
3179 * The caller must have charged to @to, IOW, called res_counter_charge() about
3180 * both res and memsw, and called css_get().
3182 static int mem_cgroup_move_swap_account(swp_entry_t entry
,
3183 struct mem_cgroup
*from
, struct mem_cgroup
*to
, bool need_fixup
)
3185 unsigned short old_id
, new_id
;
3187 old_id
= css_id(&from
->css
);
3188 new_id
= css_id(&to
->css
);
3190 if (swap_cgroup_cmpxchg(entry
, old_id
, new_id
) == old_id
) {
3191 mem_cgroup_swap_statistics(from
, false);
3192 mem_cgroup_swap_statistics(to
, true);
3194 * This function is only called from task migration context now.
3195 * It postpones res_counter and refcount handling till the end
3196 * of task migration(mem_cgroup_clear_mc()) for performance
3197 * improvement. But we cannot postpone mem_cgroup_get(to)
3198 * because if the process that has been moved to @to does
3199 * swap-in, the refcount of @to might be decreased to 0.
3203 if (!mem_cgroup_is_root(from
))
3204 res_counter_uncharge(&from
->memsw
, PAGE_SIZE
);
3205 mem_cgroup_put(from
);
3207 * we charged both to->res and to->memsw, so we should
3210 if (!mem_cgroup_is_root(to
))
3211 res_counter_uncharge(&to
->res
, PAGE_SIZE
);
3218 static inline int mem_cgroup_move_swap_account(swp_entry_t entry
,
3219 struct mem_cgroup
*from
, struct mem_cgroup
*to
, bool need_fixup
)
3226 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3229 int mem_cgroup_prepare_migration(struct page
*page
,
3230 struct page
*newpage
, struct mem_cgroup
**ptr
, gfp_t gfp_mask
)
3232 struct mem_cgroup
*memcg
= NULL
;
3233 struct page_cgroup
*pc
;
3234 enum charge_type ctype
;
3239 VM_BUG_ON(PageTransHuge(page
));
3240 if (mem_cgroup_disabled())
3243 pc
= lookup_page_cgroup(page
);
3244 lock_page_cgroup(pc
);
3245 if (PageCgroupUsed(pc
)) {
3246 memcg
= pc
->mem_cgroup
;
3247 css_get(&memcg
->css
);
3249 * At migrating an anonymous page, its mapcount goes down
3250 * to 0 and uncharge() will be called. But, even if it's fully
3251 * unmapped, migration may fail and this page has to be
3252 * charged again. We set MIGRATION flag here and delay uncharge
3253 * until end_migration() is called
3255 * Corner Case Thinking
3257 * When the old page was mapped as Anon and it's unmap-and-freed
3258 * while migration was ongoing.
3259 * If unmap finds the old page, uncharge() of it will be delayed
3260 * until end_migration(). If unmap finds a new page, it's
3261 * uncharged when it make mapcount to be 1->0. If unmap code
3262 * finds swap_migration_entry, the new page will not be mapped
3263 * and end_migration() will find it(mapcount==0).
3266 * When the old page was mapped but migraion fails, the kernel
3267 * remaps it. A charge for it is kept by MIGRATION flag even
3268 * if mapcount goes down to 0. We can do remap successfully
3269 * without charging it again.
3272 * The "old" page is under lock_page() until the end of
3273 * migration, so, the old page itself will not be swapped-out.
3274 * If the new page is swapped out before end_migraton, our
3275 * hook to usual swap-out path will catch the event.
3278 SetPageCgroupMigration(pc
);
3280 unlock_page_cgroup(pc
);
3282 * If the page is not charged at this point,
3289 ret
= __mem_cgroup_try_charge(NULL
, gfp_mask
, 1, ptr
, false);
3290 css_put(&memcg
->css
);/* drop extra refcnt */
3291 if (ret
|| *ptr
== NULL
) {
3292 if (PageAnon(page
)) {
3293 lock_page_cgroup(pc
);
3294 ClearPageCgroupMigration(pc
);
3295 unlock_page_cgroup(pc
);
3297 * The old page may be fully unmapped while we kept it.
3299 mem_cgroup_uncharge_page(page
);
3304 * We charge new page before it's used/mapped. So, even if unlock_page()
3305 * is called before end_migration, we can catch all events on this new
3306 * page. In the case new page is migrated but not remapped, new page's
3307 * mapcount will be finally 0 and we call uncharge in end_migration().
3309 pc
= lookup_page_cgroup(newpage
);
3311 ctype
= MEM_CGROUP_CHARGE_TYPE_MAPPED
;
3312 else if (page_is_file_cache(page
))
3313 ctype
= MEM_CGROUP_CHARGE_TYPE_CACHE
;
3315 ctype
= MEM_CGROUP_CHARGE_TYPE_SHMEM
;
3316 __mem_cgroup_commit_charge(memcg
, page
, 1, pc
, ctype
);
3320 /* remove redundant charge if migration failed*/
3321 void mem_cgroup_end_migration(struct mem_cgroup
*memcg
,
3322 struct page
*oldpage
, struct page
*newpage
, bool migration_ok
)
3324 struct page
*used
, *unused
;
3325 struct page_cgroup
*pc
;
3329 /* blocks rmdir() */
3330 cgroup_exclude_rmdir(&memcg
->css
);
3331 if (!migration_ok
) {
3339 * We disallowed uncharge of pages under migration because mapcount
3340 * of the page goes down to zero, temporarly.
3341 * Clear the flag and check the page should be charged.
3343 pc
= lookup_page_cgroup(oldpage
);
3344 lock_page_cgroup(pc
);
3345 ClearPageCgroupMigration(pc
);
3346 unlock_page_cgroup(pc
);
3348 __mem_cgroup_uncharge_common(unused
, MEM_CGROUP_CHARGE_TYPE_FORCE
);
3351 * If a page is a file cache, radix-tree replacement is very atomic
3352 * and we can skip this check. When it was an Anon page, its mapcount
3353 * goes down to 0. But because we added MIGRATION flage, it's not
3354 * uncharged yet. There are several case but page->mapcount check
3355 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3356 * check. (see prepare_charge() also)
3359 mem_cgroup_uncharge_page(used
);
3361 * At migration, we may charge account against cgroup which has no
3363 * So, rmdir()->pre_destroy() can be called while we do this charge.
3364 * In that case, we need to call pre_destroy() again. check it here.
3366 cgroup_release_and_wakeup_rmdir(&memcg
->css
);
3369 #ifdef CONFIG_DEBUG_VM
3370 static struct page_cgroup
*lookup_page_cgroup_used(struct page
*page
)
3372 struct page_cgroup
*pc
;
3374 pc
= lookup_page_cgroup(page
);
3375 if (likely(pc
) && PageCgroupUsed(pc
))
3380 bool mem_cgroup_bad_page_check(struct page
*page
)
3382 if (mem_cgroup_disabled())
3385 return lookup_page_cgroup_used(page
) != NULL
;
3388 void mem_cgroup_print_bad_page(struct page
*page
)
3390 struct page_cgroup
*pc
;
3392 pc
= lookup_page_cgroup_used(page
);
3397 printk(KERN_ALERT
"pc:%p pc->flags:%lx pc->mem_cgroup:%p",
3398 pc
, pc
->flags
, pc
->mem_cgroup
);
3400 path
= kmalloc(PATH_MAX
, GFP_KERNEL
);
3403 ret
= cgroup_path(pc
->mem_cgroup
->css
.cgroup
,
3408 printk(KERN_CONT
"(%s)\n",
3409 (ret
< 0) ? "cannot get the path" : path
);
3415 static DEFINE_MUTEX(set_limit_mutex
);
3417 static int mem_cgroup_resize_limit(struct mem_cgroup
*memcg
,
3418 unsigned long long val
)
3421 u64 memswlimit
, memlimit
;
3423 int children
= mem_cgroup_count_children(memcg
);
3424 u64 curusage
, oldusage
;
3428 * For keeping hierarchical_reclaim simple, how long we should retry
3429 * is depends on callers. We set our retry-count to be function
3430 * of # of children which we should visit in this loop.
3432 retry_count
= MEM_CGROUP_RECLAIM_RETRIES
* children
;
3434 oldusage
= res_counter_read_u64(&memcg
->res
, RES_USAGE
);
3437 while (retry_count
) {
3438 if (signal_pending(current
)) {
3443 * Rather than hide all in some function, I do this in
3444 * open coded manner. You see what this really does.
3445 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3447 mutex_lock(&set_limit_mutex
);
3448 memswlimit
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
3449 if (memswlimit
< val
) {
3451 mutex_unlock(&set_limit_mutex
);
3455 memlimit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
3459 ret
= res_counter_set_limit(&memcg
->res
, val
);
3461 if (memswlimit
== val
)
3462 memcg
->memsw_is_minimum
= true;
3464 memcg
->memsw_is_minimum
= false;
3466 mutex_unlock(&set_limit_mutex
);
3471 mem_cgroup_hierarchical_reclaim(memcg
, NULL
, GFP_KERNEL
,
3472 MEM_CGROUP_RECLAIM_SHRINK
,
3474 curusage
= res_counter_read_u64(&memcg
->res
, RES_USAGE
);
3475 /* Usage is reduced ? */
3476 if (curusage
>= oldusage
)
3479 oldusage
= curusage
;
3481 if (!ret
&& enlarge
)
3482 memcg_oom_recover(memcg
);
3487 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup
*memcg
,
3488 unsigned long long val
)
3491 u64 memlimit
, memswlimit
, oldusage
, curusage
;
3492 int children
= mem_cgroup_count_children(memcg
);
3496 /* see mem_cgroup_resize_res_limit */
3497 retry_count
= children
* MEM_CGROUP_RECLAIM_RETRIES
;
3498 oldusage
= res_counter_read_u64(&memcg
->memsw
, RES_USAGE
);
3499 while (retry_count
) {
3500 if (signal_pending(current
)) {
3505 * Rather than hide all in some function, I do this in
3506 * open coded manner. You see what this really does.
3507 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3509 mutex_lock(&set_limit_mutex
);
3510 memlimit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
3511 if (memlimit
> val
) {
3513 mutex_unlock(&set_limit_mutex
);
3516 memswlimit
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
3517 if (memswlimit
< val
)
3519 ret
= res_counter_set_limit(&memcg
->memsw
, val
);
3521 if (memlimit
== val
)
3522 memcg
->memsw_is_minimum
= true;
3524 memcg
->memsw_is_minimum
= false;
3526 mutex_unlock(&set_limit_mutex
);
3531 mem_cgroup_hierarchical_reclaim(memcg
, NULL
, GFP_KERNEL
,
3532 MEM_CGROUP_RECLAIM_NOSWAP
|
3533 MEM_CGROUP_RECLAIM_SHRINK
,
3535 curusage
= res_counter_read_u64(&memcg
->memsw
, RES_USAGE
);
3536 /* Usage is reduced ? */
3537 if (curusage
>= oldusage
)
3540 oldusage
= curusage
;
3542 if (!ret
&& enlarge
)
3543 memcg_oom_recover(memcg
);
3547 unsigned long mem_cgroup_soft_limit_reclaim(struct zone
*zone
, int order
,
3549 unsigned long *total_scanned
)
3551 unsigned long nr_reclaimed
= 0;
3552 struct mem_cgroup_per_zone
*mz
, *next_mz
= NULL
;
3553 unsigned long reclaimed
;
3555 struct mem_cgroup_tree_per_zone
*mctz
;
3556 unsigned long long excess
;
3557 unsigned long nr_scanned
;
3562 mctz
= soft_limit_tree_node_zone(zone_to_nid(zone
), zone_idx(zone
));
3564 * This loop can run a while, specially if mem_cgroup's continuously
3565 * keep exceeding their soft limit and putting the system under
3572 mz
= mem_cgroup_largest_soft_limit_node(mctz
);
3577 reclaimed
= mem_cgroup_hierarchical_reclaim(mz
->mem
, zone
,
3579 MEM_CGROUP_RECLAIM_SOFT
,
3581 nr_reclaimed
+= reclaimed
;
3582 *total_scanned
+= nr_scanned
;
3583 spin_lock(&mctz
->lock
);
3586 * If we failed to reclaim anything from this memory cgroup
3587 * it is time to move on to the next cgroup
3593 * Loop until we find yet another one.
3595 * By the time we get the soft_limit lock
3596 * again, someone might have aded the
3597 * group back on the RB tree. Iterate to
3598 * make sure we get a different mem.
3599 * mem_cgroup_largest_soft_limit_node returns
3600 * NULL if no other cgroup is present on
3604 __mem_cgroup_largest_soft_limit_node(mctz
);
3606 css_put(&next_mz
->mem
->css
);
3607 else /* next_mz == NULL or other memcg */
3611 __mem_cgroup_remove_exceeded(mz
->mem
, mz
, mctz
);
3612 excess
= res_counter_soft_limit_excess(&mz
->mem
->res
);
3614 * One school of thought says that we should not add
3615 * back the node to the tree if reclaim returns 0.
3616 * But our reclaim could return 0, simply because due
3617 * to priority we are exposing a smaller subset of
3618 * memory to reclaim from. Consider this as a longer
3621 /* If excess == 0, no tree ops */
3622 __mem_cgroup_insert_exceeded(mz
->mem
, mz
, mctz
, excess
);
3623 spin_unlock(&mctz
->lock
);
3624 css_put(&mz
->mem
->css
);
3627 * Could not reclaim anything and there are no more
3628 * mem cgroups to try or we seem to be looping without
3629 * reclaiming anything.
3631 if (!nr_reclaimed
&&
3633 loop
> MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS
))
3635 } while (!nr_reclaimed
);
3637 css_put(&next_mz
->mem
->css
);
3638 return nr_reclaimed
;
3642 * This routine traverse page_cgroup in given list and drop them all.
3643 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3645 static int mem_cgroup_force_empty_list(struct mem_cgroup
*memcg
,
3646 int node
, int zid
, enum lru_list lru
)
3649 struct mem_cgroup_per_zone
*mz
;
3650 struct page_cgroup
*pc
, *busy
;
3651 unsigned long flags
, loop
;
3652 struct list_head
*list
;
3655 zone
= &NODE_DATA(node
)->node_zones
[zid
];
3656 mz
= mem_cgroup_zoneinfo(memcg
, node
, zid
);
3657 list
= &mz
->lists
[lru
];
3659 loop
= MEM_CGROUP_ZSTAT(mz
, lru
);
3660 /* give some margin against EBUSY etc...*/
3667 spin_lock_irqsave(&zone
->lru_lock
, flags
);
3668 if (list_empty(list
)) {
3669 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
3672 pc
= list_entry(list
->prev
, struct page_cgroup
, lru
);
3674 list_move(&pc
->lru
, list
);
3676 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
3679 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
3681 page
= lookup_cgroup_page(pc
);
3683 ret
= mem_cgroup_move_parent(page
, pc
, memcg
, GFP_KERNEL
);
3687 if (ret
== -EBUSY
|| ret
== -EINVAL
) {
3688 /* found lock contention or "pc" is obsolete. */
3695 if (!ret
&& !list_empty(list
))
3701 * make mem_cgroup's charge to be 0 if there is no task.
3702 * This enables deleting this mem_cgroup.
3704 static int mem_cgroup_force_empty(struct mem_cgroup
*memcg
, bool free_all
)
3707 int node
, zid
, shrink
;
3708 int nr_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
3709 struct cgroup
*cgrp
= memcg
->css
.cgroup
;
3711 css_get(&memcg
->css
);
3714 /* should free all ? */
3720 if (cgroup_task_count(cgrp
) || !list_empty(&cgrp
->children
))
3723 if (signal_pending(current
))
3725 /* This is for making all *used* pages to be on LRU. */
3726 lru_add_drain_all();
3727 drain_all_stock_sync(memcg
);
3729 mem_cgroup_start_move(memcg
);
3730 for_each_node_state(node
, N_HIGH_MEMORY
) {
3731 for (zid
= 0; !ret
&& zid
< MAX_NR_ZONES
; zid
++) {
3734 ret
= mem_cgroup_force_empty_list(memcg
,
3743 mem_cgroup_end_move(memcg
);
3744 memcg_oom_recover(memcg
);
3745 /* it seems parent cgroup doesn't have enough mem */
3749 /* "ret" should also be checked to ensure all lists are empty. */
3750 } while (memcg
->res
.usage
> 0 || ret
);
3752 css_put(&memcg
->css
);
3756 /* returns EBUSY if there is a task or if we come here twice. */
3757 if (cgroup_task_count(cgrp
) || !list_empty(&cgrp
->children
) || shrink
) {
3761 /* we call try-to-free pages for make this cgroup empty */
3762 lru_add_drain_all();
3763 /* try to free all pages in this cgroup */
3765 while (nr_retries
&& memcg
->res
.usage
> 0) {
3768 if (signal_pending(current
)) {
3772 progress
= try_to_free_mem_cgroup_pages(memcg
, GFP_KERNEL
,
3776 /* maybe some writeback is necessary */
3777 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
3782 /* try move_account...there may be some *locked* pages. */
3786 int mem_cgroup_force_empty_write(struct cgroup
*cont
, unsigned int event
)
3788 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont
), true);
3792 static u64
mem_cgroup_hierarchy_read(struct cgroup
*cont
, struct cftype
*cft
)
3794 return mem_cgroup_from_cont(cont
)->use_hierarchy
;
3797 static int mem_cgroup_hierarchy_write(struct cgroup
*cont
, struct cftype
*cft
,
3801 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cont
);
3802 struct cgroup
*parent
= cont
->parent
;
3803 struct mem_cgroup
*parent_memcg
= NULL
;
3806 parent_memcg
= mem_cgroup_from_cont(parent
);
3810 * If parent's use_hierarchy is set, we can't make any modifications
3811 * in the child subtrees. If it is unset, then the change can
3812 * occur, provided the current cgroup has no children.
3814 * For the root cgroup, parent_mem is NULL, we allow value to be
3815 * set if there are no children.
3817 if ((!parent_memcg
|| !parent_memcg
->use_hierarchy
) &&
3818 (val
== 1 || val
== 0)) {
3819 if (list_empty(&cont
->children
))
3820 memcg
->use_hierarchy
= val
;
3831 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup
*memcg
,
3832 enum mem_cgroup_stat_index idx
)
3834 struct mem_cgroup
*iter
;
3837 /* Per-cpu values can be negative, use a signed accumulator */
3838 for_each_mem_cgroup_tree(iter
, memcg
)
3839 val
+= mem_cgroup_read_stat(iter
, idx
);
3841 if (val
< 0) /* race ? */
3846 static inline u64
mem_cgroup_usage(struct mem_cgroup
*memcg
, bool swap
)
3850 if (!mem_cgroup_is_root(memcg
)) {
3852 return res_counter_read_u64(&memcg
->res
, RES_USAGE
);
3854 return res_counter_read_u64(&memcg
->memsw
, RES_USAGE
);
3857 val
= mem_cgroup_recursive_stat(memcg
, MEM_CGROUP_STAT_CACHE
);
3858 val
+= mem_cgroup_recursive_stat(memcg
, MEM_CGROUP_STAT_RSS
);
3861 val
+= mem_cgroup_recursive_stat(memcg
, MEM_CGROUP_STAT_SWAPOUT
);
3863 return val
<< PAGE_SHIFT
;
3866 static u64
mem_cgroup_read(struct cgroup
*cont
, struct cftype
*cft
)
3868 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cont
);
3872 type
= MEMFILE_TYPE(cft
->private);
3873 name
= MEMFILE_ATTR(cft
->private);
3876 if (name
== RES_USAGE
)
3877 val
= mem_cgroup_usage(memcg
, false);
3879 val
= res_counter_read_u64(&memcg
->res
, name
);
3882 if (name
== RES_USAGE
)
3883 val
= mem_cgroup_usage(memcg
, true);
3885 val
= res_counter_read_u64(&memcg
->memsw
, name
);
3894 * The user of this function is...
3897 static int mem_cgroup_write(struct cgroup
*cont
, struct cftype
*cft
,
3900 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cont
);
3902 unsigned long long val
;
3905 type
= MEMFILE_TYPE(cft
->private);
3906 name
= MEMFILE_ATTR(cft
->private);
3909 if (mem_cgroup_is_root(memcg
)) { /* Can't set limit on root */
3913 /* This function does all necessary parse...reuse it */
3914 ret
= res_counter_memparse_write_strategy(buffer
, &val
);
3918 ret
= mem_cgroup_resize_limit(memcg
, val
);
3920 ret
= mem_cgroup_resize_memsw_limit(memcg
, val
);
3922 case RES_SOFT_LIMIT
:
3923 ret
= res_counter_memparse_write_strategy(buffer
, &val
);
3927 * For memsw, soft limits are hard to implement in terms
3928 * of semantics, for now, we support soft limits for
3929 * control without swap
3932 ret
= res_counter_set_soft_limit(&memcg
->res
, val
);
3937 ret
= -EINVAL
; /* should be BUG() ? */
3943 static void memcg_get_hierarchical_limit(struct mem_cgroup
*memcg
,
3944 unsigned long long *mem_limit
, unsigned long long *memsw_limit
)
3946 struct cgroup
*cgroup
;
3947 unsigned long long min_limit
, min_memsw_limit
, tmp
;
3949 min_limit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
3950 min_memsw_limit
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
3951 cgroup
= memcg
->css
.cgroup
;
3952 if (!memcg
->use_hierarchy
)
3955 while (cgroup
->parent
) {
3956 cgroup
= cgroup
->parent
;
3957 memcg
= mem_cgroup_from_cont(cgroup
);
3958 if (!memcg
->use_hierarchy
)
3960 tmp
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
3961 min_limit
= min(min_limit
, tmp
);
3962 tmp
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
3963 min_memsw_limit
= min(min_memsw_limit
, tmp
);
3966 *mem_limit
= min_limit
;
3967 *memsw_limit
= min_memsw_limit
;
3971 static int mem_cgroup_reset(struct cgroup
*cont
, unsigned int event
)
3973 struct mem_cgroup
*memcg
;
3976 memcg
= mem_cgroup_from_cont(cont
);
3977 type
= MEMFILE_TYPE(event
);
3978 name
= MEMFILE_ATTR(event
);
3982 res_counter_reset_max(&memcg
->res
);
3984 res_counter_reset_max(&memcg
->memsw
);
3988 res_counter_reset_failcnt(&memcg
->res
);
3990 res_counter_reset_failcnt(&memcg
->memsw
);
3997 static u64
mem_cgroup_move_charge_read(struct cgroup
*cgrp
,
4000 return mem_cgroup_from_cont(cgrp
)->move_charge_at_immigrate
;
4004 static int mem_cgroup_move_charge_write(struct cgroup
*cgrp
,
4005 struct cftype
*cft
, u64 val
)
4007 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
4009 if (val
>= (1 << NR_MOVE_TYPE
))
4012 * We check this value several times in both in can_attach() and
4013 * attach(), so we need cgroup lock to prevent this value from being
4017 memcg
->move_charge_at_immigrate
= val
;
4023 static int mem_cgroup_move_charge_write(struct cgroup
*cgrp
,
4024 struct cftype
*cft
, u64 val
)
4031 /* For read statistics */
4049 struct mcs_total_stat
{
4050 s64 stat
[NR_MCS_STAT
];
4056 } memcg_stat_strings
[NR_MCS_STAT
] = {
4057 {"cache", "total_cache"},
4058 {"rss", "total_rss"},
4059 {"mapped_file", "total_mapped_file"},
4060 {"pgpgin", "total_pgpgin"},
4061 {"pgpgout", "total_pgpgout"},
4062 {"swap", "total_swap"},
4063 {"pgfault", "total_pgfault"},
4064 {"pgmajfault", "total_pgmajfault"},
4065 {"inactive_anon", "total_inactive_anon"},
4066 {"active_anon", "total_active_anon"},
4067 {"inactive_file", "total_inactive_file"},
4068 {"active_file", "total_active_file"},
4069 {"unevictable", "total_unevictable"}
4074 mem_cgroup_get_local_stat(struct mem_cgroup
*memcg
, struct mcs_total_stat
*s
)
4079 val
= mem_cgroup_read_stat(memcg
, MEM_CGROUP_STAT_CACHE
);
4080 s
->stat
[MCS_CACHE
] += val
* PAGE_SIZE
;
4081 val
= mem_cgroup_read_stat(memcg
, MEM_CGROUP_STAT_RSS
);
4082 s
->stat
[MCS_RSS
] += val
* PAGE_SIZE
;
4083 val
= mem_cgroup_read_stat(memcg
, MEM_CGROUP_STAT_FILE_MAPPED
);
4084 s
->stat
[MCS_FILE_MAPPED
] += val
* PAGE_SIZE
;
4085 val
= mem_cgroup_read_events(memcg
, MEM_CGROUP_EVENTS_PGPGIN
);
4086 s
->stat
[MCS_PGPGIN
] += val
;
4087 val
= mem_cgroup_read_events(memcg
, MEM_CGROUP_EVENTS_PGPGOUT
);
4088 s
->stat
[MCS_PGPGOUT
] += val
;
4089 if (do_swap_account
) {
4090 val
= mem_cgroup_read_stat(memcg
, MEM_CGROUP_STAT_SWAPOUT
);
4091 s
->stat
[MCS_SWAP
] += val
* PAGE_SIZE
;
4093 val
= mem_cgroup_read_events(memcg
, MEM_CGROUP_EVENTS_PGFAULT
);
4094 s
->stat
[MCS_PGFAULT
] += val
;
4095 val
= mem_cgroup_read_events(memcg
, MEM_CGROUP_EVENTS_PGMAJFAULT
);
4096 s
->stat
[MCS_PGMAJFAULT
] += val
;
4099 val
= mem_cgroup_nr_lru_pages(memcg
, BIT(LRU_INACTIVE_ANON
));
4100 s
->stat
[MCS_INACTIVE_ANON
] += val
* PAGE_SIZE
;
4101 val
= mem_cgroup_nr_lru_pages(memcg
, BIT(LRU_ACTIVE_ANON
));
4102 s
->stat
[MCS_ACTIVE_ANON
] += val
* PAGE_SIZE
;
4103 val
= mem_cgroup_nr_lru_pages(memcg
, BIT(LRU_INACTIVE_FILE
));
4104 s
->stat
[MCS_INACTIVE_FILE
] += val
* PAGE_SIZE
;
4105 val
= mem_cgroup_nr_lru_pages(memcg
, BIT(LRU_ACTIVE_FILE
));
4106 s
->stat
[MCS_ACTIVE_FILE
] += val
* PAGE_SIZE
;
4107 val
= mem_cgroup_nr_lru_pages(memcg
, BIT(LRU_UNEVICTABLE
));
4108 s
->stat
[MCS_UNEVICTABLE
] += val
* PAGE_SIZE
;
4112 mem_cgroup_get_total_stat(struct mem_cgroup
*memcg
, struct mcs_total_stat
*s
)
4114 struct mem_cgroup
*iter
;
4116 for_each_mem_cgroup_tree(iter
, memcg
)
4117 mem_cgroup_get_local_stat(iter
, s
);
4121 static int mem_control_numa_stat_show(struct seq_file
*m
, void *arg
)
4124 unsigned long total_nr
, file_nr
, anon_nr
, unevictable_nr
;
4125 unsigned long node_nr
;
4126 struct cgroup
*cont
= m
->private;
4127 struct mem_cgroup
*mem_cont
= mem_cgroup_from_cont(cont
);
4129 total_nr
= mem_cgroup_nr_lru_pages(mem_cont
, LRU_ALL
);
4130 seq_printf(m
, "total=%lu", total_nr
);
4131 for_each_node_state(nid
, N_HIGH_MEMORY
) {
4132 node_nr
= mem_cgroup_node_nr_lru_pages(mem_cont
, nid
, LRU_ALL
);
4133 seq_printf(m
, " N%d=%lu", nid
, node_nr
);
4137 file_nr
= mem_cgroup_nr_lru_pages(mem_cont
, LRU_ALL_FILE
);
4138 seq_printf(m
, "file=%lu", file_nr
);
4139 for_each_node_state(nid
, N_HIGH_MEMORY
) {
4140 node_nr
= mem_cgroup_node_nr_lru_pages(mem_cont
, nid
,
4142 seq_printf(m
, " N%d=%lu", nid
, node_nr
);
4146 anon_nr
= mem_cgroup_nr_lru_pages(mem_cont
, LRU_ALL_ANON
);
4147 seq_printf(m
, "anon=%lu", anon_nr
);
4148 for_each_node_state(nid
, N_HIGH_MEMORY
) {
4149 node_nr
= mem_cgroup_node_nr_lru_pages(mem_cont
, nid
,
4151 seq_printf(m
, " N%d=%lu", nid
, node_nr
);
4155 unevictable_nr
= mem_cgroup_nr_lru_pages(mem_cont
, BIT(LRU_UNEVICTABLE
));
4156 seq_printf(m
, "unevictable=%lu", unevictable_nr
);
4157 for_each_node_state(nid
, N_HIGH_MEMORY
) {
4158 node_nr
= mem_cgroup_node_nr_lru_pages(mem_cont
, nid
,
4159 BIT(LRU_UNEVICTABLE
));
4160 seq_printf(m
, " N%d=%lu", nid
, node_nr
);
4165 #endif /* CONFIG_NUMA */
4167 static int mem_control_stat_show(struct cgroup
*cont
, struct cftype
*cft
,
4168 struct cgroup_map_cb
*cb
)
4170 struct mem_cgroup
*mem_cont
= mem_cgroup_from_cont(cont
);
4171 struct mcs_total_stat mystat
;
4174 memset(&mystat
, 0, sizeof(mystat
));
4175 mem_cgroup_get_local_stat(mem_cont
, &mystat
);
4178 for (i
= 0; i
< NR_MCS_STAT
; i
++) {
4179 if (i
== MCS_SWAP
&& !do_swap_account
)
4181 cb
->fill(cb
, memcg_stat_strings
[i
].local_name
, mystat
.stat
[i
]);
4184 /* Hierarchical information */
4186 unsigned long long limit
, memsw_limit
;
4187 memcg_get_hierarchical_limit(mem_cont
, &limit
, &memsw_limit
);
4188 cb
->fill(cb
, "hierarchical_memory_limit", limit
);
4189 if (do_swap_account
)
4190 cb
->fill(cb
, "hierarchical_memsw_limit", memsw_limit
);
4193 memset(&mystat
, 0, sizeof(mystat
));
4194 mem_cgroup_get_total_stat(mem_cont
, &mystat
);
4195 for (i
= 0; i
< NR_MCS_STAT
; i
++) {
4196 if (i
== MCS_SWAP
&& !do_swap_account
)
4198 cb
->fill(cb
, memcg_stat_strings
[i
].total_name
, mystat
.stat
[i
]);
4201 #ifdef CONFIG_DEBUG_VM
4204 struct mem_cgroup_per_zone
*mz
;
4205 unsigned long recent_rotated
[2] = {0, 0};
4206 unsigned long recent_scanned
[2] = {0, 0};
4208 for_each_online_node(nid
)
4209 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
4210 mz
= mem_cgroup_zoneinfo(mem_cont
, nid
, zid
);
4212 recent_rotated
[0] +=
4213 mz
->reclaim_stat
.recent_rotated
[0];
4214 recent_rotated
[1] +=
4215 mz
->reclaim_stat
.recent_rotated
[1];
4216 recent_scanned
[0] +=
4217 mz
->reclaim_stat
.recent_scanned
[0];
4218 recent_scanned
[1] +=
4219 mz
->reclaim_stat
.recent_scanned
[1];
4221 cb
->fill(cb
, "recent_rotated_anon", recent_rotated
[0]);
4222 cb
->fill(cb
, "recent_rotated_file", recent_rotated
[1]);
4223 cb
->fill(cb
, "recent_scanned_anon", recent_scanned
[0]);
4224 cb
->fill(cb
, "recent_scanned_file", recent_scanned
[1]);
4231 static u64
mem_cgroup_swappiness_read(struct cgroup
*cgrp
, struct cftype
*cft
)
4233 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
4235 return mem_cgroup_swappiness(memcg
);
4238 static int mem_cgroup_swappiness_write(struct cgroup
*cgrp
, struct cftype
*cft
,
4241 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
4242 struct mem_cgroup
*parent
;
4247 if (cgrp
->parent
== NULL
)
4250 parent
= mem_cgroup_from_cont(cgrp
->parent
);
4254 /* If under hierarchy, only empty-root can set this value */
4255 if ((parent
->use_hierarchy
) ||
4256 (memcg
->use_hierarchy
&& !list_empty(&cgrp
->children
))) {
4261 memcg
->swappiness
= val
;
4268 static void __mem_cgroup_threshold(struct mem_cgroup
*memcg
, bool swap
)
4270 struct mem_cgroup_threshold_ary
*t
;
4276 t
= rcu_dereference(memcg
->thresholds
.primary
);
4278 t
= rcu_dereference(memcg
->memsw_thresholds
.primary
);
4283 usage
= mem_cgroup_usage(memcg
, swap
);
4286 * current_threshold points to threshold just below usage.
4287 * If it's not true, a threshold was crossed after last
4288 * call of __mem_cgroup_threshold().
4290 i
= t
->current_threshold
;
4293 * Iterate backward over array of thresholds starting from
4294 * current_threshold and check if a threshold is crossed.
4295 * If none of thresholds below usage is crossed, we read
4296 * only one element of the array here.
4298 for (; i
>= 0 && unlikely(t
->entries
[i
].threshold
> usage
); i
--)
4299 eventfd_signal(t
->entries
[i
].eventfd
, 1);
4301 /* i = current_threshold + 1 */
4305 * Iterate forward over array of thresholds starting from
4306 * current_threshold+1 and check if a threshold is crossed.
4307 * If none of thresholds above usage is crossed, we read
4308 * only one element of the array here.
4310 for (; i
< t
->size
&& unlikely(t
->entries
[i
].threshold
<= usage
); i
++)
4311 eventfd_signal(t
->entries
[i
].eventfd
, 1);
4313 /* Update current_threshold */
4314 t
->current_threshold
= i
- 1;
4319 static void mem_cgroup_threshold(struct mem_cgroup
*memcg
)
4322 __mem_cgroup_threshold(memcg
, false);
4323 if (do_swap_account
)
4324 __mem_cgroup_threshold(memcg
, true);
4326 memcg
= parent_mem_cgroup(memcg
);
4330 static int compare_thresholds(const void *a
, const void *b
)
4332 const struct mem_cgroup_threshold
*_a
= a
;
4333 const struct mem_cgroup_threshold
*_b
= b
;
4335 return _a
->threshold
- _b
->threshold
;
4338 static int mem_cgroup_oom_notify_cb(struct mem_cgroup
*memcg
)
4340 struct mem_cgroup_eventfd_list
*ev
;
4342 list_for_each_entry(ev
, &memcg
->oom_notify
, list
)
4343 eventfd_signal(ev
->eventfd
, 1);
4347 static void mem_cgroup_oom_notify(struct mem_cgroup
*memcg
)
4349 struct mem_cgroup
*iter
;
4351 for_each_mem_cgroup_tree(iter
, memcg
)
4352 mem_cgroup_oom_notify_cb(iter
);
4355 static int mem_cgroup_usage_register_event(struct cgroup
*cgrp
,
4356 struct cftype
*cft
, struct eventfd_ctx
*eventfd
, const char *args
)
4358 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
4359 struct mem_cgroup_thresholds
*thresholds
;
4360 struct mem_cgroup_threshold_ary
*new;
4361 int type
= MEMFILE_TYPE(cft
->private);
4362 u64 threshold
, usage
;
4365 ret
= res_counter_memparse_write_strategy(args
, &threshold
);
4369 mutex_lock(&memcg
->thresholds_lock
);
4372 thresholds
= &memcg
->thresholds
;
4373 else if (type
== _MEMSWAP
)
4374 thresholds
= &memcg
->memsw_thresholds
;
4378 usage
= mem_cgroup_usage(memcg
, type
== _MEMSWAP
);
4380 /* Check if a threshold crossed before adding a new one */
4381 if (thresholds
->primary
)
4382 __mem_cgroup_threshold(memcg
, type
== _MEMSWAP
);
4384 size
= thresholds
->primary
? thresholds
->primary
->size
+ 1 : 1;
4386 /* Allocate memory for new array of thresholds */
4387 new = kmalloc(sizeof(*new) + size
* sizeof(struct mem_cgroup_threshold
),
4395 /* Copy thresholds (if any) to new array */
4396 if (thresholds
->primary
) {
4397 memcpy(new->entries
, thresholds
->primary
->entries
, (size
- 1) *
4398 sizeof(struct mem_cgroup_threshold
));
4401 /* Add new threshold */
4402 new->entries
[size
- 1].eventfd
= eventfd
;
4403 new->entries
[size
- 1].threshold
= threshold
;
4405 /* Sort thresholds. Registering of new threshold isn't time-critical */
4406 sort(new->entries
, size
, sizeof(struct mem_cgroup_threshold
),
4407 compare_thresholds
, NULL
);
4409 /* Find current threshold */
4410 new->current_threshold
= -1;
4411 for (i
= 0; i
< size
; i
++) {
4412 if (new->entries
[i
].threshold
< usage
) {
4414 * new->current_threshold will not be used until
4415 * rcu_assign_pointer(), so it's safe to increment
4418 ++new->current_threshold
;
4422 /* Free old spare buffer and save old primary buffer as spare */
4423 kfree(thresholds
->spare
);
4424 thresholds
->spare
= thresholds
->primary
;
4426 rcu_assign_pointer(thresholds
->primary
, new);
4428 /* To be sure that nobody uses thresholds */
4432 mutex_unlock(&memcg
->thresholds_lock
);
4437 static void mem_cgroup_usage_unregister_event(struct cgroup
*cgrp
,
4438 struct cftype
*cft
, struct eventfd_ctx
*eventfd
)
4440 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
4441 struct mem_cgroup_thresholds
*thresholds
;
4442 struct mem_cgroup_threshold_ary
*new;
4443 int type
= MEMFILE_TYPE(cft
->private);
4447 mutex_lock(&memcg
->thresholds_lock
);
4449 thresholds
= &memcg
->thresholds
;
4450 else if (type
== _MEMSWAP
)
4451 thresholds
= &memcg
->memsw_thresholds
;
4456 * Something went wrong if we trying to unregister a threshold
4457 * if we don't have thresholds
4459 BUG_ON(!thresholds
);
4461 usage
= mem_cgroup_usage(memcg
, type
== _MEMSWAP
);
4463 /* Check if a threshold crossed before removing */
4464 __mem_cgroup_threshold(memcg
, type
== _MEMSWAP
);
4466 /* Calculate new number of threshold */
4468 for (i
= 0; i
< thresholds
->primary
->size
; i
++) {
4469 if (thresholds
->primary
->entries
[i
].eventfd
!= eventfd
)
4473 new = thresholds
->spare
;
4475 /* Set thresholds array to NULL if we don't have thresholds */
4484 /* Copy thresholds and find current threshold */
4485 new->current_threshold
= -1;
4486 for (i
= 0, j
= 0; i
< thresholds
->primary
->size
; i
++) {
4487 if (thresholds
->primary
->entries
[i
].eventfd
== eventfd
)
4490 new->entries
[j
] = thresholds
->primary
->entries
[i
];
4491 if (new->entries
[j
].threshold
< usage
) {
4493 * new->current_threshold will not be used
4494 * until rcu_assign_pointer(), so it's safe to increment
4497 ++new->current_threshold
;
4503 /* Swap primary and spare array */
4504 thresholds
->spare
= thresholds
->primary
;
4505 rcu_assign_pointer(thresholds
->primary
, new);
4507 /* To be sure that nobody uses thresholds */
4510 mutex_unlock(&memcg
->thresholds_lock
);
4513 static int mem_cgroup_oom_register_event(struct cgroup
*cgrp
,
4514 struct cftype
*cft
, struct eventfd_ctx
*eventfd
, const char *args
)
4516 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
4517 struct mem_cgroup_eventfd_list
*event
;
4518 int type
= MEMFILE_TYPE(cft
->private);
4520 BUG_ON(type
!= _OOM_TYPE
);
4521 event
= kmalloc(sizeof(*event
), GFP_KERNEL
);
4525 spin_lock(&memcg_oom_lock
);
4527 event
->eventfd
= eventfd
;
4528 list_add(&event
->list
, &memcg
->oom_notify
);
4530 /* already in OOM ? */
4531 if (atomic_read(&memcg
->under_oom
))
4532 eventfd_signal(eventfd
, 1);
4533 spin_unlock(&memcg_oom_lock
);
4538 static void mem_cgroup_oom_unregister_event(struct cgroup
*cgrp
,
4539 struct cftype
*cft
, struct eventfd_ctx
*eventfd
)
4541 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
4542 struct mem_cgroup_eventfd_list
*ev
, *tmp
;
4543 int type
= MEMFILE_TYPE(cft
->private);
4545 BUG_ON(type
!= _OOM_TYPE
);
4547 spin_lock(&memcg_oom_lock
);
4549 list_for_each_entry_safe(ev
, tmp
, &memcg
->oom_notify
, list
) {
4550 if (ev
->eventfd
== eventfd
) {
4551 list_del(&ev
->list
);
4556 spin_unlock(&memcg_oom_lock
);
4559 static int mem_cgroup_oom_control_read(struct cgroup
*cgrp
,
4560 struct cftype
*cft
, struct cgroup_map_cb
*cb
)
4562 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
4564 cb
->fill(cb
, "oom_kill_disable", memcg
->oom_kill_disable
);
4566 if (atomic_read(&memcg
->under_oom
))
4567 cb
->fill(cb
, "under_oom", 1);
4569 cb
->fill(cb
, "under_oom", 0);
4573 static int mem_cgroup_oom_control_write(struct cgroup
*cgrp
,
4574 struct cftype
*cft
, u64 val
)
4576 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
4577 struct mem_cgroup
*parent
;
4579 /* cannot set to root cgroup and only 0 and 1 are allowed */
4580 if (!cgrp
->parent
|| !((val
== 0) || (val
== 1)))
4583 parent
= mem_cgroup_from_cont(cgrp
->parent
);
4586 /* oom-kill-disable is a flag for subhierarchy. */
4587 if ((parent
->use_hierarchy
) ||
4588 (memcg
->use_hierarchy
&& !list_empty(&cgrp
->children
))) {
4592 memcg
->oom_kill_disable
= val
;
4594 memcg_oom_recover(memcg
);
4600 static const struct file_operations mem_control_numa_stat_file_operations
= {
4602 .llseek
= seq_lseek
,
4603 .release
= single_release
,
4606 static int mem_control_numa_stat_open(struct inode
*unused
, struct file
*file
)
4608 struct cgroup
*cont
= file
->f_dentry
->d_parent
->d_fsdata
;
4610 file
->f_op
= &mem_control_numa_stat_file_operations
;
4611 return single_open(file
, mem_control_numa_stat_show
, cont
);
4613 #endif /* CONFIG_NUMA */
4615 static struct cftype mem_cgroup_files
[] = {
4617 .name
= "usage_in_bytes",
4618 .private = MEMFILE_PRIVATE(_MEM
, RES_USAGE
),
4619 .read_u64
= mem_cgroup_read
,
4620 .register_event
= mem_cgroup_usage_register_event
,
4621 .unregister_event
= mem_cgroup_usage_unregister_event
,
4624 .name
= "max_usage_in_bytes",
4625 .private = MEMFILE_PRIVATE(_MEM
, RES_MAX_USAGE
),
4626 .trigger
= mem_cgroup_reset
,
4627 .read_u64
= mem_cgroup_read
,
4630 .name
= "limit_in_bytes",
4631 .private = MEMFILE_PRIVATE(_MEM
, RES_LIMIT
),
4632 .write_string
= mem_cgroup_write
,
4633 .read_u64
= mem_cgroup_read
,
4636 .name
= "soft_limit_in_bytes",
4637 .private = MEMFILE_PRIVATE(_MEM
, RES_SOFT_LIMIT
),
4638 .write_string
= mem_cgroup_write
,
4639 .read_u64
= mem_cgroup_read
,
4643 .private = MEMFILE_PRIVATE(_MEM
, RES_FAILCNT
),
4644 .trigger
= mem_cgroup_reset
,
4645 .read_u64
= mem_cgroup_read
,
4649 .read_map
= mem_control_stat_show
,
4652 .name
= "force_empty",
4653 .trigger
= mem_cgroup_force_empty_write
,
4656 .name
= "use_hierarchy",
4657 .write_u64
= mem_cgroup_hierarchy_write
,
4658 .read_u64
= mem_cgroup_hierarchy_read
,
4661 .name
= "swappiness",
4662 .read_u64
= mem_cgroup_swappiness_read
,
4663 .write_u64
= mem_cgroup_swappiness_write
,
4666 .name
= "move_charge_at_immigrate",
4667 .read_u64
= mem_cgroup_move_charge_read
,
4668 .write_u64
= mem_cgroup_move_charge_write
,
4671 .name
= "oom_control",
4672 .read_map
= mem_cgroup_oom_control_read
,
4673 .write_u64
= mem_cgroup_oom_control_write
,
4674 .register_event
= mem_cgroup_oom_register_event
,
4675 .unregister_event
= mem_cgroup_oom_unregister_event
,
4676 .private = MEMFILE_PRIVATE(_OOM_TYPE
, OOM_CONTROL
),
4680 .name
= "numa_stat",
4681 .open
= mem_control_numa_stat_open
,
4687 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4688 static struct cftype memsw_cgroup_files
[] = {
4690 .name
= "memsw.usage_in_bytes",
4691 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_USAGE
),
4692 .read_u64
= mem_cgroup_read
,
4693 .register_event
= mem_cgroup_usage_register_event
,
4694 .unregister_event
= mem_cgroup_usage_unregister_event
,
4697 .name
= "memsw.max_usage_in_bytes",
4698 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_MAX_USAGE
),
4699 .trigger
= mem_cgroup_reset
,
4700 .read_u64
= mem_cgroup_read
,
4703 .name
= "memsw.limit_in_bytes",
4704 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_LIMIT
),
4705 .write_string
= mem_cgroup_write
,
4706 .read_u64
= mem_cgroup_read
,
4709 .name
= "memsw.failcnt",
4710 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_FAILCNT
),
4711 .trigger
= mem_cgroup_reset
,
4712 .read_u64
= mem_cgroup_read
,
4716 static int register_memsw_files(struct cgroup
*cont
, struct cgroup_subsys
*ss
)
4718 if (!do_swap_account
)
4720 return cgroup_add_files(cont
, ss
, memsw_cgroup_files
,
4721 ARRAY_SIZE(memsw_cgroup_files
));
4724 static int register_memsw_files(struct cgroup
*cont
, struct cgroup_subsys
*ss
)
4730 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup
*memcg
, int node
)
4732 struct mem_cgroup_per_node
*pn
;
4733 struct mem_cgroup_per_zone
*mz
;
4735 int zone
, tmp
= node
;
4737 * This routine is called against possible nodes.
4738 * But it's BUG to call kmalloc() against offline node.
4740 * TODO: this routine can waste much memory for nodes which will
4741 * never be onlined. It's better to use memory hotplug callback
4744 if (!node_state(node
, N_NORMAL_MEMORY
))
4746 pn
= kzalloc_node(sizeof(*pn
), GFP_KERNEL
, tmp
);
4750 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
4751 mz
= &pn
->zoneinfo
[zone
];
4753 INIT_LIST_HEAD(&mz
->lists
[l
]);
4754 mz
->usage_in_excess
= 0;
4755 mz
->on_tree
= false;
4758 memcg
->info
.nodeinfo
[node
] = pn
;
4762 static void free_mem_cgroup_per_zone_info(struct mem_cgroup
*memcg
, int node
)
4764 kfree(memcg
->info
.nodeinfo
[node
]);
4767 static struct mem_cgroup
*mem_cgroup_alloc(void)
4769 struct mem_cgroup
*mem
;
4770 int size
= sizeof(struct mem_cgroup
);
4772 /* Can be very big if MAX_NUMNODES is very big */
4773 if (size
< PAGE_SIZE
)
4774 mem
= kzalloc(size
, GFP_KERNEL
);
4776 mem
= vzalloc(size
);
4781 mem
->stat
= alloc_percpu(struct mem_cgroup_stat_cpu
);
4784 spin_lock_init(&mem
->pcp_counter_lock
);
4788 if (size
< PAGE_SIZE
)
4796 * At destroying mem_cgroup, references from swap_cgroup can remain.
4797 * (scanning all at force_empty is too costly...)
4799 * Instead of clearing all references at force_empty, we remember
4800 * the number of reference from swap_cgroup and free mem_cgroup when
4801 * it goes down to 0.
4803 * Removal of cgroup itself succeeds regardless of refs from swap.
4806 static void __mem_cgroup_free(struct mem_cgroup
*memcg
)
4810 mem_cgroup_remove_from_trees(memcg
);
4811 free_css_id(&mem_cgroup_subsys
, &memcg
->css
);
4813 for_each_node_state(node
, N_POSSIBLE
)
4814 free_mem_cgroup_per_zone_info(memcg
, node
);
4816 free_percpu(memcg
->stat
);
4817 if (sizeof(struct mem_cgroup
) < PAGE_SIZE
)
4823 static void mem_cgroup_get(struct mem_cgroup
*memcg
)
4825 atomic_inc(&memcg
->refcnt
);
4828 static void __mem_cgroup_put(struct mem_cgroup
*memcg
, int count
)
4830 if (atomic_sub_and_test(count
, &memcg
->refcnt
)) {
4831 struct mem_cgroup
*parent
= parent_mem_cgroup(memcg
);
4832 __mem_cgroup_free(memcg
);
4834 mem_cgroup_put(parent
);
4838 static void mem_cgroup_put(struct mem_cgroup
*memcg
)
4840 __mem_cgroup_put(memcg
, 1);
4844 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4846 static struct mem_cgroup
*parent_mem_cgroup(struct mem_cgroup
*memcg
)
4848 if (!memcg
->res
.parent
)
4850 return mem_cgroup_from_res_counter(memcg
->res
.parent
, res
);
4853 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4854 static void __init
enable_swap_cgroup(void)
4856 if (!mem_cgroup_disabled() && really_do_swap_account
)
4857 do_swap_account
= 1;
4860 static void __init
enable_swap_cgroup(void)
4865 static int mem_cgroup_soft_limit_tree_init(void)
4867 struct mem_cgroup_tree_per_node
*rtpn
;
4868 struct mem_cgroup_tree_per_zone
*rtpz
;
4869 int tmp
, node
, zone
;
4871 for_each_node_state(node
, N_POSSIBLE
) {
4873 if (!node_state(node
, N_NORMAL_MEMORY
))
4875 rtpn
= kzalloc_node(sizeof(*rtpn
), GFP_KERNEL
, tmp
);
4879 soft_limit_tree
.rb_tree_per_node
[node
] = rtpn
;
4881 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
4882 rtpz
= &rtpn
->rb_tree_per_zone
[zone
];
4883 rtpz
->rb_root
= RB_ROOT
;
4884 spin_lock_init(&rtpz
->lock
);
4890 static struct cgroup_subsys_state
* __ref
4891 mem_cgroup_create(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
4893 struct mem_cgroup
*memcg
, *parent
;
4894 long error
= -ENOMEM
;
4897 memcg
= mem_cgroup_alloc();
4899 return ERR_PTR(error
);
4901 for_each_node_state(node
, N_POSSIBLE
)
4902 if (alloc_mem_cgroup_per_zone_info(memcg
, node
))
4906 if (cont
->parent
== NULL
) {
4908 enable_swap_cgroup();
4910 root_mem_cgroup
= memcg
;
4911 if (mem_cgroup_soft_limit_tree_init())
4913 for_each_possible_cpu(cpu
) {
4914 struct memcg_stock_pcp
*stock
=
4915 &per_cpu(memcg_stock
, cpu
);
4916 INIT_WORK(&stock
->work
, drain_local_stock
);
4918 hotcpu_notifier(memcg_cpu_hotplug_callback
, 0);
4920 parent
= mem_cgroup_from_cont(cont
->parent
);
4921 memcg
->use_hierarchy
= parent
->use_hierarchy
;
4922 memcg
->oom_kill_disable
= parent
->oom_kill_disable
;
4925 if (parent
&& parent
->use_hierarchy
) {
4926 res_counter_init(&memcg
->res
, &parent
->res
);
4927 res_counter_init(&memcg
->memsw
, &parent
->memsw
);
4929 * We increment refcnt of the parent to ensure that we can
4930 * safely access it on res_counter_charge/uncharge.
4931 * This refcnt will be decremented when freeing this
4932 * mem_cgroup(see mem_cgroup_put).
4934 mem_cgroup_get(parent
);
4936 res_counter_init(&memcg
->res
, NULL
);
4937 res_counter_init(&memcg
->memsw
, NULL
);
4939 memcg
->last_scanned_child
= 0;
4940 memcg
->last_scanned_node
= MAX_NUMNODES
;
4941 INIT_LIST_HEAD(&memcg
->oom_notify
);
4944 memcg
->swappiness
= mem_cgroup_swappiness(parent
);
4945 atomic_set(&memcg
->refcnt
, 1);
4946 memcg
->move_charge_at_immigrate
= 0;
4947 mutex_init(&memcg
->thresholds_lock
);
4950 __mem_cgroup_free(memcg
);
4951 root_mem_cgroup
= NULL
;
4952 return ERR_PTR(error
);
4955 static int mem_cgroup_pre_destroy(struct cgroup_subsys
*ss
,
4956 struct cgroup
*cont
)
4958 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cont
);
4960 return mem_cgroup_force_empty(memcg
, false);
4963 static void mem_cgroup_destroy(struct cgroup_subsys
*ss
,
4964 struct cgroup
*cont
)
4966 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cont
);
4968 mem_cgroup_put(memcg
);
4971 static int mem_cgroup_populate(struct cgroup_subsys
*ss
,
4972 struct cgroup
*cont
)
4976 ret
= cgroup_add_files(cont
, ss
, mem_cgroup_files
,
4977 ARRAY_SIZE(mem_cgroup_files
));
4980 ret
= register_memsw_files(cont
, ss
);
4985 /* Handlers for move charge at task migration. */
4986 #define PRECHARGE_COUNT_AT_ONCE 256
4987 static int mem_cgroup_do_precharge(unsigned long count
)
4990 int batch_count
= PRECHARGE_COUNT_AT_ONCE
;
4991 struct mem_cgroup
*memcg
= mc
.to
;
4993 if (mem_cgroup_is_root(memcg
)) {
4994 mc
.precharge
+= count
;
4995 /* we don't need css_get for root */
4998 /* try to charge at once */
5000 struct res_counter
*dummy
;
5002 * "memcg" cannot be under rmdir() because we've already checked
5003 * by cgroup_lock_live_cgroup() that it is not removed and we
5004 * are still under the same cgroup_mutex. So we can postpone
5007 if (res_counter_charge(&memcg
->res
, PAGE_SIZE
* count
, &dummy
))
5009 if (do_swap_account
&& res_counter_charge(&memcg
->memsw
,
5010 PAGE_SIZE
* count
, &dummy
)) {
5011 res_counter_uncharge(&memcg
->res
, PAGE_SIZE
* count
);
5014 mc
.precharge
+= count
;
5018 /* fall back to one by one charge */
5020 if (signal_pending(current
)) {
5024 if (!batch_count
--) {
5025 batch_count
= PRECHARGE_COUNT_AT_ONCE
;
5028 ret
= __mem_cgroup_try_charge(NULL
,
5029 GFP_KERNEL
, 1, &memcg
, false);
5031 /* mem_cgroup_clear_mc() will do uncharge later */
5039 * is_target_pte_for_mc - check a pte whether it is valid for move charge
5040 * @vma: the vma the pte to be checked belongs
5041 * @addr: the address corresponding to the pte to be checked
5042 * @ptent: the pte to be checked
5043 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5046 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5047 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5048 * move charge. if @target is not NULL, the page is stored in target->page
5049 * with extra refcnt got(Callers should handle it).
5050 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5051 * target for charge migration. if @target is not NULL, the entry is stored
5054 * Called with pte lock held.
5061 enum mc_target_type
{
5062 MC_TARGET_NONE
, /* not used */
5067 static struct page
*mc_handle_present_pte(struct vm_area_struct
*vma
,
5068 unsigned long addr
, pte_t ptent
)
5070 struct page
*page
= vm_normal_page(vma
, addr
, ptent
);
5072 if (!page
|| !page_mapped(page
))
5074 if (PageAnon(page
)) {
5075 /* we don't move shared anon */
5076 if (!move_anon() || page_mapcount(page
) > 2)
5078 } else if (!move_file())
5079 /* we ignore mapcount for file pages */
5081 if (!get_page_unless_zero(page
))
5087 static struct page
*mc_handle_swap_pte(struct vm_area_struct
*vma
,
5088 unsigned long addr
, pte_t ptent
, swp_entry_t
*entry
)
5091 struct page
*page
= NULL
;
5092 swp_entry_t ent
= pte_to_swp_entry(ptent
);
5094 if (!move_anon() || non_swap_entry(ent
))
5096 usage_count
= mem_cgroup_count_swap_user(ent
, &page
);
5097 if (usage_count
> 1) { /* we don't move shared anon */
5102 if (do_swap_account
)
5103 entry
->val
= ent
.val
;
5108 static struct page
*mc_handle_file_pte(struct vm_area_struct
*vma
,
5109 unsigned long addr
, pte_t ptent
, swp_entry_t
*entry
)
5111 struct page
*page
= NULL
;
5112 struct inode
*inode
;
5113 struct address_space
*mapping
;
5116 if (!vma
->vm_file
) /* anonymous vma */
5121 inode
= vma
->vm_file
->f_path
.dentry
->d_inode
;
5122 mapping
= vma
->vm_file
->f_mapping
;
5123 if (pte_none(ptent
))
5124 pgoff
= linear_page_index(vma
, addr
);
5125 else /* pte_file(ptent) is true */
5126 pgoff
= pte_to_pgoff(ptent
);
5128 /* page is moved even if it's not RSS of this task(page-faulted). */
5129 page
= find_get_page(mapping
, pgoff
);
5132 /* shmem/tmpfs may report page out on swap: account for that too. */
5133 if (radix_tree_exceptional_entry(page
)) {
5134 swp_entry_t swap
= radix_to_swp_entry(page
);
5135 if (do_swap_account
)
5137 page
= find_get_page(&swapper_space
, swap
.val
);
5143 static int is_target_pte_for_mc(struct vm_area_struct
*vma
,
5144 unsigned long addr
, pte_t ptent
, union mc_target
*target
)
5146 struct page
*page
= NULL
;
5147 struct page_cgroup
*pc
;
5149 swp_entry_t ent
= { .val
= 0 };
5151 if (pte_present(ptent
))
5152 page
= mc_handle_present_pte(vma
, addr
, ptent
);
5153 else if (is_swap_pte(ptent
))
5154 page
= mc_handle_swap_pte(vma
, addr
, ptent
, &ent
);
5155 else if (pte_none(ptent
) || pte_file(ptent
))
5156 page
= mc_handle_file_pte(vma
, addr
, ptent
, &ent
);
5158 if (!page
&& !ent
.val
)
5161 pc
= lookup_page_cgroup(page
);
5163 * Do only loose check w/o page_cgroup lock.
5164 * mem_cgroup_move_account() checks the pc is valid or not under
5167 if (PageCgroupUsed(pc
) && pc
->mem_cgroup
== mc
.from
) {
5168 ret
= MC_TARGET_PAGE
;
5170 target
->page
= page
;
5172 if (!ret
|| !target
)
5175 /* There is a swap entry and a page doesn't exist or isn't charged */
5176 if (ent
.val
&& !ret
&&
5177 css_id(&mc
.from
->css
) == lookup_swap_cgroup(ent
)) {
5178 ret
= MC_TARGET_SWAP
;
5185 static int mem_cgroup_count_precharge_pte_range(pmd_t
*pmd
,
5186 unsigned long addr
, unsigned long end
,
5187 struct mm_walk
*walk
)
5189 struct vm_area_struct
*vma
= walk
->private;
5193 split_huge_page_pmd(walk
->mm
, pmd
);
5195 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
5196 for (; addr
!= end
; pte
++, addr
+= PAGE_SIZE
)
5197 if (is_target_pte_for_mc(vma
, addr
, *pte
, NULL
))
5198 mc
.precharge
++; /* increment precharge temporarily */
5199 pte_unmap_unlock(pte
- 1, ptl
);
5205 static unsigned long mem_cgroup_count_precharge(struct mm_struct
*mm
)
5207 unsigned long precharge
;
5208 struct vm_area_struct
*vma
;
5210 down_read(&mm
->mmap_sem
);
5211 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
5212 struct mm_walk mem_cgroup_count_precharge_walk
= {
5213 .pmd_entry
= mem_cgroup_count_precharge_pte_range
,
5217 if (is_vm_hugetlb_page(vma
))
5219 walk_page_range(vma
->vm_start
, vma
->vm_end
,
5220 &mem_cgroup_count_precharge_walk
);
5222 up_read(&mm
->mmap_sem
);
5224 precharge
= mc
.precharge
;
5230 static int mem_cgroup_precharge_mc(struct mm_struct
*mm
)
5232 unsigned long precharge
= mem_cgroup_count_precharge(mm
);
5234 VM_BUG_ON(mc
.moving_task
);
5235 mc
.moving_task
= current
;
5236 return mem_cgroup_do_precharge(precharge
);
5239 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5240 static void __mem_cgroup_clear_mc(void)
5242 struct mem_cgroup
*from
= mc
.from
;
5243 struct mem_cgroup
*to
= mc
.to
;
5245 /* we must uncharge all the leftover precharges from mc.to */
5247 __mem_cgroup_cancel_charge(mc
.to
, mc
.precharge
);
5251 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5252 * we must uncharge here.
5254 if (mc
.moved_charge
) {
5255 __mem_cgroup_cancel_charge(mc
.from
, mc
.moved_charge
);
5256 mc
.moved_charge
= 0;
5258 /* we must fixup refcnts and charges */
5259 if (mc
.moved_swap
) {
5260 /* uncharge swap account from the old cgroup */
5261 if (!mem_cgroup_is_root(mc
.from
))
5262 res_counter_uncharge(&mc
.from
->memsw
,
5263 PAGE_SIZE
* mc
.moved_swap
);
5264 __mem_cgroup_put(mc
.from
, mc
.moved_swap
);
5266 if (!mem_cgroup_is_root(mc
.to
)) {
5268 * we charged both to->res and to->memsw, so we should
5271 res_counter_uncharge(&mc
.to
->res
,
5272 PAGE_SIZE
* mc
.moved_swap
);
5274 /* we've already done mem_cgroup_get(mc.to) */
5277 memcg_oom_recover(from
);
5278 memcg_oom_recover(to
);
5279 wake_up_all(&mc
.waitq
);
5282 static void mem_cgroup_clear_mc(void)
5284 struct mem_cgroup
*from
= mc
.from
;
5287 * we must clear moving_task before waking up waiters at the end of
5290 mc
.moving_task
= NULL
;
5291 __mem_cgroup_clear_mc();
5292 spin_lock(&mc
.lock
);
5295 spin_unlock(&mc
.lock
);
5296 mem_cgroup_end_move(from
);
5299 static int mem_cgroup_can_attach(struct cgroup_subsys
*ss
,
5300 struct cgroup
*cgroup
,
5301 struct task_struct
*p
)
5304 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgroup
);
5306 if (memcg
->move_charge_at_immigrate
) {
5307 struct mm_struct
*mm
;
5308 struct mem_cgroup
*from
= mem_cgroup_from_task(p
);
5310 VM_BUG_ON(from
== memcg
);
5312 mm
= get_task_mm(p
);
5315 /* We move charges only when we move a owner of the mm */
5316 if (mm
->owner
== p
) {
5319 VM_BUG_ON(mc
.precharge
);
5320 VM_BUG_ON(mc
.moved_charge
);
5321 VM_BUG_ON(mc
.moved_swap
);
5322 mem_cgroup_start_move(from
);
5323 spin_lock(&mc
.lock
);
5326 spin_unlock(&mc
.lock
);
5327 /* We set mc.moving_task later */
5329 ret
= mem_cgroup_precharge_mc(mm
);
5331 mem_cgroup_clear_mc();
5338 static void mem_cgroup_cancel_attach(struct cgroup_subsys
*ss
,
5339 struct cgroup
*cgroup
,
5340 struct task_struct
*p
)
5342 mem_cgroup_clear_mc();
5345 static int mem_cgroup_move_charge_pte_range(pmd_t
*pmd
,
5346 unsigned long addr
, unsigned long end
,
5347 struct mm_walk
*walk
)
5350 struct vm_area_struct
*vma
= walk
->private;
5354 split_huge_page_pmd(walk
->mm
, pmd
);
5356 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
5357 for (; addr
!= end
; addr
+= PAGE_SIZE
) {
5358 pte_t ptent
= *(pte
++);
5359 union mc_target target
;
5362 struct page_cgroup
*pc
;
5368 type
= is_target_pte_for_mc(vma
, addr
, ptent
, &target
);
5370 case MC_TARGET_PAGE
:
5372 if (isolate_lru_page(page
))
5374 pc
= lookup_page_cgroup(page
);
5375 if (!mem_cgroup_move_account(page
, 1, pc
,
5376 mc
.from
, mc
.to
, false)) {
5378 /* we uncharge from mc.from later. */
5381 putback_lru_page(page
);
5382 put
: /* is_target_pte_for_mc() gets the page */
5385 case MC_TARGET_SWAP
:
5387 if (!mem_cgroup_move_swap_account(ent
,
5388 mc
.from
, mc
.to
, false)) {
5390 /* we fixup refcnts and charges later. */
5398 pte_unmap_unlock(pte
- 1, ptl
);
5403 * We have consumed all precharges we got in can_attach().
5404 * We try charge one by one, but don't do any additional
5405 * charges to mc.to if we have failed in charge once in attach()
5408 ret
= mem_cgroup_do_precharge(1);
5416 static void mem_cgroup_move_charge(struct mm_struct
*mm
)
5418 struct vm_area_struct
*vma
;
5420 lru_add_drain_all();
5422 if (unlikely(!down_read_trylock(&mm
->mmap_sem
))) {
5424 * Someone who are holding the mmap_sem might be waiting in
5425 * waitq. So we cancel all extra charges, wake up all waiters,
5426 * and retry. Because we cancel precharges, we might not be able
5427 * to move enough charges, but moving charge is a best-effort
5428 * feature anyway, so it wouldn't be a big problem.
5430 __mem_cgroup_clear_mc();
5434 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
5436 struct mm_walk mem_cgroup_move_charge_walk
= {
5437 .pmd_entry
= mem_cgroup_move_charge_pte_range
,
5441 if (is_vm_hugetlb_page(vma
))
5443 ret
= walk_page_range(vma
->vm_start
, vma
->vm_end
,
5444 &mem_cgroup_move_charge_walk
);
5447 * means we have consumed all precharges and failed in
5448 * doing additional charge. Just abandon here.
5452 up_read(&mm
->mmap_sem
);
5455 static void mem_cgroup_move_task(struct cgroup_subsys
*ss
,
5456 struct cgroup
*cont
,
5457 struct cgroup
*old_cont
,
5458 struct task_struct
*p
)
5460 struct mm_struct
*mm
= get_task_mm(p
);
5464 mem_cgroup_move_charge(mm
);
5469 mem_cgroup_clear_mc();
5471 #else /* !CONFIG_MMU */
5472 static int mem_cgroup_can_attach(struct cgroup_subsys
*ss
,
5473 struct cgroup
*cgroup
,
5474 struct task_struct
*p
)
5478 static void mem_cgroup_cancel_attach(struct cgroup_subsys
*ss
,
5479 struct cgroup
*cgroup
,
5480 struct task_struct
*p
)
5483 static void mem_cgroup_move_task(struct cgroup_subsys
*ss
,
5484 struct cgroup
*cont
,
5485 struct cgroup
*old_cont
,
5486 struct task_struct
*p
)
5491 struct cgroup_subsys mem_cgroup_subsys
= {
5493 .subsys_id
= mem_cgroup_subsys_id
,
5494 .create
= mem_cgroup_create
,
5495 .pre_destroy
= mem_cgroup_pre_destroy
,
5496 .destroy
= mem_cgroup_destroy
,
5497 .populate
= mem_cgroup_populate
,
5498 .can_attach
= mem_cgroup_can_attach
,
5499 .cancel_attach
= mem_cgroup_cancel_attach
,
5500 .attach
= mem_cgroup_move_task
,
5505 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5506 static int __init
enable_swap_account(char *s
)
5508 /* consider enabled if no parameter or 1 is given */
5509 if (!strcmp(s
, "1"))
5510 really_do_swap_account
= 1;
5511 else if (!strcmp(s
, "0"))
5512 really_do_swap_account
= 0;
5515 __setup("swapaccount=", enable_swap_account
);