lib/vsprintf.c: document formats for dentry and struct file
[linux-2.6.git] / mm / memcontrol.c
blob3d4bb07c76798bae6c0e825ba606e9f522867d2d
1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
28 #include <linux/res_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/mm.h>
32 #include <linux/hugetlb.h>
33 #include <linux/pagemap.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/sort.h>
49 #include <linux/fs.h>
50 #include <linux/seq_file.h>
51 #include <linux/vmalloc.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/page_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include <linux/lockdep.h>
58 #include "internal.h"
59 #include <net/sock.h>
60 #include <net/ip.h>
61 #include <net/tcp_memcontrol.h>
62 #include "slab.h"
64 #include <asm/uaccess.h>
66 #include <trace/events/vmscan.h>
68 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
69 EXPORT_SYMBOL(mem_cgroup_subsys);
71 #define MEM_CGROUP_RECLAIM_RETRIES 5
72 static struct mem_cgroup *root_mem_cgroup __read_mostly;
74 #ifdef CONFIG_MEMCG_SWAP
75 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
76 int do_swap_account __read_mostly;
78 /* for remember boot option*/
79 #ifdef CONFIG_MEMCG_SWAP_ENABLED
80 static int really_do_swap_account __initdata = 1;
81 #else
82 static int really_do_swap_account __initdata = 0;
83 #endif
85 #else
86 #define do_swap_account 0
87 #endif
90 static const char * const mem_cgroup_stat_names[] = {
91 "cache",
92 "rss",
93 "rss_huge",
94 "mapped_file",
95 "writeback",
96 "swap",
99 enum mem_cgroup_events_index {
100 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
101 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
102 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
103 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
104 MEM_CGROUP_EVENTS_NSTATS,
107 static const char * const mem_cgroup_events_names[] = {
108 "pgpgin",
109 "pgpgout",
110 "pgfault",
111 "pgmajfault",
114 static const char * const mem_cgroup_lru_names[] = {
115 "inactive_anon",
116 "active_anon",
117 "inactive_file",
118 "active_file",
119 "unevictable",
123 * Per memcg event counter is incremented at every pagein/pageout. With THP,
124 * it will be incremated by the number of pages. This counter is used for
125 * for trigger some periodic events. This is straightforward and better
126 * than using jiffies etc. to handle periodic memcg event.
128 enum mem_cgroup_events_target {
129 MEM_CGROUP_TARGET_THRESH,
130 MEM_CGROUP_TARGET_SOFTLIMIT,
131 MEM_CGROUP_TARGET_NUMAINFO,
132 MEM_CGROUP_NTARGETS,
134 #define THRESHOLDS_EVENTS_TARGET 128
135 #define SOFTLIMIT_EVENTS_TARGET 1024
136 #define NUMAINFO_EVENTS_TARGET 1024
138 struct mem_cgroup_stat_cpu {
139 long count[MEM_CGROUP_STAT_NSTATS];
140 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
141 unsigned long nr_page_events;
142 unsigned long targets[MEM_CGROUP_NTARGETS];
145 struct mem_cgroup_reclaim_iter {
147 * last scanned hierarchy member. Valid only if last_dead_count
148 * matches memcg->dead_count of the hierarchy root group.
150 struct mem_cgroup *last_visited;
151 unsigned long last_dead_count;
153 /* scan generation, increased every round-trip */
154 unsigned int generation;
158 * per-zone information in memory controller.
160 struct mem_cgroup_per_zone {
161 struct lruvec lruvec;
162 unsigned long lru_size[NR_LRU_LISTS];
164 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
166 struct rb_node tree_node; /* RB tree node */
167 unsigned long long usage_in_excess;/* Set to the value by which */
168 /* the soft limit is exceeded*/
169 bool on_tree;
170 struct mem_cgroup *memcg; /* Back pointer, we cannot */
171 /* use container_of */
174 struct mem_cgroup_per_node {
175 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
179 * Cgroups above their limits are maintained in a RB-Tree, independent of
180 * their hierarchy representation
183 struct mem_cgroup_tree_per_zone {
184 struct rb_root rb_root;
185 spinlock_t lock;
188 struct mem_cgroup_tree_per_node {
189 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
192 struct mem_cgroup_tree {
193 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
196 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
198 struct mem_cgroup_threshold {
199 struct eventfd_ctx *eventfd;
200 u64 threshold;
203 /* For threshold */
204 struct mem_cgroup_threshold_ary {
205 /* An array index points to threshold just below or equal to usage. */
206 int current_threshold;
207 /* Size of entries[] */
208 unsigned int size;
209 /* Array of thresholds */
210 struct mem_cgroup_threshold entries[0];
213 struct mem_cgroup_thresholds {
214 /* Primary thresholds array */
215 struct mem_cgroup_threshold_ary *primary;
217 * Spare threshold array.
218 * This is needed to make mem_cgroup_unregister_event() "never fail".
219 * It must be able to store at least primary->size - 1 entries.
221 struct mem_cgroup_threshold_ary *spare;
224 /* for OOM */
225 struct mem_cgroup_eventfd_list {
226 struct list_head list;
227 struct eventfd_ctx *eventfd;
230 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
231 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
234 * The memory controller data structure. The memory controller controls both
235 * page cache and RSS per cgroup. We would eventually like to provide
236 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
237 * to help the administrator determine what knobs to tune.
239 * TODO: Add a water mark for the memory controller. Reclaim will begin when
240 * we hit the water mark. May be even add a low water mark, such that
241 * no reclaim occurs from a cgroup at it's low water mark, this is
242 * a feature that will be implemented much later in the future.
244 struct mem_cgroup {
245 struct cgroup_subsys_state css;
247 * the counter to account for memory usage
249 struct res_counter res;
251 /* vmpressure notifications */
252 struct vmpressure vmpressure;
255 * the counter to account for mem+swap usage.
257 struct res_counter memsw;
260 * the counter to account for kernel memory usage.
262 struct res_counter kmem;
264 * Should the accounting and control be hierarchical, per subtree?
266 bool use_hierarchy;
267 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
269 bool oom_lock;
270 atomic_t under_oom;
271 atomic_t oom_wakeups;
273 int swappiness;
274 /* OOM-Killer disable */
275 int oom_kill_disable;
277 /* set when res.limit == memsw.limit */
278 bool memsw_is_minimum;
280 /* protect arrays of thresholds */
281 struct mutex thresholds_lock;
283 /* thresholds for memory usage. RCU-protected */
284 struct mem_cgroup_thresholds thresholds;
286 /* thresholds for mem+swap usage. RCU-protected */
287 struct mem_cgroup_thresholds memsw_thresholds;
289 /* For oom notifier event fd */
290 struct list_head oom_notify;
293 * Should we move charges of a task when a task is moved into this
294 * mem_cgroup ? And what type of charges should we move ?
296 unsigned long move_charge_at_immigrate;
298 * set > 0 if pages under this cgroup are moving to other cgroup.
300 atomic_t moving_account;
301 /* taken only while moving_account > 0 */
302 spinlock_t move_lock;
304 * percpu counter.
306 struct mem_cgroup_stat_cpu __percpu *stat;
308 * used when a cpu is offlined or other synchronizations
309 * See mem_cgroup_read_stat().
311 struct mem_cgroup_stat_cpu nocpu_base;
312 spinlock_t pcp_counter_lock;
314 atomic_t dead_count;
315 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
316 struct tcp_memcontrol tcp_mem;
317 #endif
318 #if defined(CONFIG_MEMCG_KMEM)
319 /* analogous to slab_common's slab_caches list. per-memcg */
320 struct list_head memcg_slab_caches;
321 /* Not a spinlock, we can take a lot of time walking the list */
322 struct mutex slab_caches_mutex;
323 /* Index in the kmem_cache->memcg_params->memcg_caches array */
324 int kmemcg_id;
325 #endif
327 int last_scanned_node;
328 #if MAX_NUMNODES > 1
329 nodemask_t scan_nodes;
330 atomic_t numainfo_events;
331 atomic_t numainfo_updating;
332 #endif
334 struct mem_cgroup_per_node *nodeinfo[0];
335 /* WARNING: nodeinfo must be the last member here */
338 static size_t memcg_size(void)
340 return sizeof(struct mem_cgroup) +
341 nr_node_ids * sizeof(struct mem_cgroup_per_node);
344 /* internal only representation about the status of kmem accounting. */
345 enum {
346 KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
347 KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
348 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
351 /* We account when limit is on, but only after call sites are patched */
352 #define KMEM_ACCOUNTED_MASK \
353 ((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
355 #ifdef CONFIG_MEMCG_KMEM
356 static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
358 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
361 static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
363 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
366 static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
368 set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
371 static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
373 clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
376 static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
379 * Our caller must use css_get() first, because memcg_uncharge_kmem()
380 * will call css_put() if it sees the memcg is dead.
382 smp_wmb();
383 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
384 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
387 static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
389 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
390 &memcg->kmem_account_flags);
392 #endif
394 /* Stuffs for move charges at task migration. */
396 * Types of charges to be moved. "move_charge_at_immitgrate" and
397 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
399 enum move_type {
400 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
401 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
402 NR_MOVE_TYPE,
405 /* "mc" and its members are protected by cgroup_mutex */
406 static struct move_charge_struct {
407 spinlock_t lock; /* for from, to */
408 struct mem_cgroup *from;
409 struct mem_cgroup *to;
410 unsigned long immigrate_flags;
411 unsigned long precharge;
412 unsigned long moved_charge;
413 unsigned long moved_swap;
414 struct task_struct *moving_task; /* a task moving charges */
415 wait_queue_head_t waitq; /* a waitq for other context */
416 } mc = {
417 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
418 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
421 static bool move_anon(void)
423 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
426 static bool move_file(void)
428 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
432 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
433 * limit reclaim to prevent infinite loops, if they ever occur.
435 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
436 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
438 enum charge_type {
439 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
440 MEM_CGROUP_CHARGE_TYPE_ANON,
441 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
442 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
443 NR_CHARGE_TYPE,
446 /* for encoding cft->private value on file */
447 enum res_type {
448 _MEM,
449 _MEMSWAP,
450 _OOM_TYPE,
451 _KMEM,
454 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
455 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
456 #define MEMFILE_ATTR(val) ((val) & 0xffff)
457 /* Used for OOM nofiier */
458 #define OOM_CONTROL (0)
461 * Reclaim flags for mem_cgroup_hierarchical_reclaim
463 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
464 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
465 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
466 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
469 * The memcg_create_mutex will be held whenever a new cgroup is created.
470 * As a consequence, any change that needs to protect against new child cgroups
471 * appearing has to hold it as well.
473 static DEFINE_MUTEX(memcg_create_mutex);
475 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
477 return s ? container_of(s, struct mem_cgroup, css) : NULL;
480 /* Some nice accessors for the vmpressure. */
481 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
483 if (!memcg)
484 memcg = root_mem_cgroup;
485 return &memcg->vmpressure;
488 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
490 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
493 struct vmpressure *css_to_vmpressure(struct cgroup_subsys_state *css)
495 return &mem_cgroup_from_css(css)->vmpressure;
498 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
500 return (memcg == root_mem_cgroup);
503 /* Writing them here to avoid exposing memcg's inner layout */
504 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
506 void sock_update_memcg(struct sock *sk)
508 if (mem_cgroup_sockets_enabled) {
509 struct mem_cgroup *memcg;
510 struct cg_proto *cg_proto;
512 BUG_ON(!sk->sk_prot->proto_cgroup);
514 /* Socket cloning can throw us here with sk_cgrp already
515 * filled. It won't however, necessarily happen from
516 * process context. So the test for root memcg given
517 * the current task's memcg won't help us in this case.
519 * Respecting the original socket's memcg is a better
520 * decision in this case.
522 if (sk->sk_cgrp) {
523 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
524 css_get(&sk->sk_cgrp->memcg->css);
525 return;
528 rcu_read_lock();
529 memcg = mem_cgroup_from_task(current);
530 cg_proto = sk->sk_prot->proto_cgroup(memcg);
531 if (!mem_cgroup_is_root(memcg) &&
532 memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) {
533 sk->sk_cgrp = cg_proto;
535 rcu_read_unlock();
538 EXPORT_SYMBOL(sock_update_memcg);
540 void sock_release_memcg(struct sock *sk)
542 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
543 struct mem_cgroup *memcg;
544 WARN_ON(!sk->sk_cgrp->memcg);
545 memcg = sk->sk_cgrp->memcg;
546 css_put(&sk->sk_cgrp->memcg->css);
550 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
552 if (!memcg || mem_cgroup_is_root(memcg))
553 return NULL;
555 return &memcg->tcp_mem.cg_proto;
557 EXPORT_SYMBOL(tcp_proto_cgroup);
559 static void disarm_sock_keys(struct mem_cgroup *memcg)
561 if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
562 return;
563 static_key_slow_dec(&memcg_socket_limit_enabled);
565 #else
566 static void disarm_sock_keys(struct mem_cgroup *memcg)
569 #endif
571 #ifdef CONFIG_MEMCG_KMEM
573 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
574 * There are two main reasons for not using the css_id for this:
575 * 1) this works better in sparse environments, where we have a lot of memcgs,
576 * but only a few kmem-limited. Or also, if we have, for instance, 200
577 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
578 * 200 entry array for that.
580 * 2) In order not to violate the cgroup API, we would like to do all memory
581 * allocation in ->create(). At that point, we haven't yet allocated the
582 * css_id. Having a separate index prevents us from messing with the cgroup
583 * core for this
585 * The current size of the caches array is stored in
586 * memcg_limited_groups_array_size. It will double each time we have to
587 * increase it.
589 static DEFINE_IDA(kmem_limited_groups);
590 int memcg_limited_groups_array_size;
593 * MIN_SIZE is different than 1, because we would like to avoid going through
594 * the alloc/free process all the time. In a small machine, 4 kmem-limited
595 * cgroups is a reasonable guess. In the future, it could be a parameter or
596 * tunable, but that is strictly not necessary.
598 * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
599 * this constant directly from cgroup, but it is understandable that this is
600 * better kept as an internal representation in cgroup.c. In any case, the
601 * css_id space is not getting any smaller, and we don't have to necessarily
602 * increase ours as well if it increases.
604 #define MEMCG_CACHES_MIN_SIZE 4
605 #define MEMCG_CACHES_MAX_SIZE 65535
608 * A lot of the calls to the cache allocation functions are expected to be
609 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
610 * conditional to this static branch, we'll have to allow modules that does
611 * kmem_cache_alloc and the such to see this symbol as well
613 struct static_key memcg_kmem_enabled_key;
614 EXPORT_SYMBOL(memcg_kmem_enabled_key);
616 static void disarm_kmem_keys(struct mem_cgroup *memcg)
618 if (memcg_kmem_is_active(memcg)) {
619 static_key_slow_dec(&memcg_kmem_enabled_key);
620 ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
623 * This check can't live in kmem destruction function,
624 * since the charges will outlive the cgroup
626 WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
628 #else
629 static void disarm_kmem_keys(struct mem_cgroup *memcg)
632 #endif /* CONFIG_MEMCG_KMEM */
634 static void disarm_static_keys(struct mem_cgroup *memcg)
636 disarm_sock_keys(memcg);
637 disarm_kmem_keys(memcg);
640 static void drain_all_stock_async(struct mem_cgroup *memcg);
642 static struct mem_cgroup_per_zone *
643 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
645 VM_BUG_ON((unsigned)nid >= nr_node_ids);
646 return &memcg->nodeinfo[nid]->zoneinfo[zid];
649 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
651 return &memcg->css;
654 static struct mem_cgroup_per_zone *
655 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
657 int nid = page_to_nid(page);
658 int zid = page_zonenum(page);
660 return mem_cgroup_zoneinfo(memcg, nid, zid);
663 static struct mem_cgroup_tree_per_zone *
664 soft_limit_tree_node_zone(int nid, int zid)
666 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
669 static struct mem_cgroup_tree_per_zone *
670 soft_limit_tree_from_page(struct page *page)
672 int nid = page_to_nid(page);
673 int zid = page_zonenum(page);
675 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
678 static void
679 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
680 struct mem_cgroup_per_zone *mz,
681 struct mem_cgroup_tree_per_zone *mctz,
682 unsigned long long new_usage_in_excess)
684 struct rb_node **p = &mctz->rb_root.rb_node;
685 struct rb_node *parent = NULL;
686 struct mem_cgroup_per_zone *mz_node;
688 if (mz->on_tree)
689 return;
691 mz->usage_in_excess = new_usage_in_excess;
692 if (!mz->usage_in_excess)
693 return;
694 while (*p) {
695 parent = *p;
696 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
697 tree_node);
698 if (mz->usage_in_excess < mz_node->usage_in_excess)
699 p = &(*p)->rb_left;
701 * We can't avoid mem cgroups that are over their soft
702 * limit by the same amount
704 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
705 p = &(*p)->rb_right;
707 rb_link_node(&mz->tree_node, parent, p);
708 rb_insert_color(&mz->tree_node, &mctz->rb_root);
709 mz->on_tree = true;
712 static void
713 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
714 struct mem_cgroup_per_zone *mz,
715 struct mem_cgroup_tree_per_zone *mctz)
717 if (!mz->on_tree)
718 return;
719 rb_erase(&mz->tree_node, &mctz->rb_root);
720 mz->on_tree = false;
723 static void
724 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
725 struct mem_cgroup_per_zone *mz,
726 struct mem_cgroup_tree_per_zone *mctz)
728 spin_lock(&mctz->lock);
729 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
730 spin_unlock(&mctz->lock);
734 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
736 unsigned long long excess;
737 struct mem_cgroup_per_zone *mz;
738 struct mem_cgroup_tree_per_zone *mctz;
739 int nid = page_to_nid(page);
740 int zid = page_zonenum(page);
741 mctz = soft_limit_tree_from_page(page);
744 * Necessary to update all ancestors when hierarchy is used.
745 * because their event counter is not touched.
747 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
748 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
749 excess = res_counter_soft_limit_excess(&memcg->res);
751 * We have to update the tree if mz is on RB-tree or
752 * mem is over its softlimit.
754 if (excess || mz->on_tree) {
755 spin_lock(&mctz->lock);
756 /* if on-tree, remove it */
757 if (mz->on_tree)
758 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
760 * Insert again. mz->usage_in_excess will be updated.
761 * If excess is 0, no tree ops.
763 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
764 spin_unlock(&mctz->lock);
769 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
771 int node, zone;
772 struct mem_cgroup_per_zone *mz;
773 struct mem_cgroup_tree_per_zone *mctz;
775 for_each_node(node) {
776 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
777 mz = mem_cgroup_zoneinfo(memcg, node, zone);
778 mctz = soft_limit_tree_node_zone(node, zone);
779 mem_cgroup_remove_exceeded(memcg, mz, mctz);
784 static struct mem_cgroup_per_zone *
785 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
787 struct rb_node *rightmost = NULL;
788 struct mem_cgroup_per_zone *mz;
790 retry:
791 mz = NULL;
792 rightmost = rb_last(&mctz->rb_root);
793 if (!rightmost)
794 goto done; /* Nothing to reclaim from */
796 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
798 * Remove the node now but someone else can add it back,
799 * we will to add it back at the end of reclaim to its correct
800 * position in the tree.
802 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
803 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
804 !css_tryget(&mz->memcg->css))
805 goto retry;
806 done:
807 return mz;
810 static struct mem_cgroup_per_zone *
811 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
813 struct mem_cgroup_per_zone *mz;
815 spin_lock(&mctz->lock);
816 mz = __mem_cgroup_largest_soft_limit_node(mctz);
817 spin_unlock(&mctz->lock);
818 return mz;
822 * Implementation Note: reading percpu statistics for memcg.
824 * Both of vmstat[] and percpu_counter has threshold and do periodic
825 * synchronization to implement "quick" read. There are trade-off between
826 * reading cost and precision of value. Then, we may have a chance to implement
827 * a periodic synchronizion of counter in memcg's counter.
829 * But this _read() function is used for user interface now. The user accounts
830 * memory usage by memory cgroup and he _always_ requires exact value because
831 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
832 * have to visit all online cpus and make sum. So, for now, unnecessary
833 * synchronization is not implemented. (just implemented for cpu hotplug)
835 * If there are kernel internal actions which can make use of some not-exact
836 * value, and reading all cpu value can be performance bottleneck in some
837 * common workload, threashold and synchonization as vmstat[] should be
838 * implemented.
840 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
841 enum mem_cgroup_stat_index idx)
843 long val = 0;
844 int cpu;
846 get_online_cpus();
847 for_each_online_cpu(cpu)
848 val += per_cpu(memcg->stat->count[idx], cpu);
849 #ifdef CONFIG_HOTPLUG_CPU
850 spin_lock(&memcg->pcp_counter_lock);
851 val += memcg->nocpu_base.count[idx];
852 spin_unlock(&memcg->pcp_counter_lock);
853 #endif
854 put_online_cpus();
855 return val;
858 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
859 bool charge)
861 int val = (charge) ? 1 : -1;
862 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
865 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
866 enum mem_cgroup_events_index idx)
868 unsigned long val = 0;
869 int cpu;
871 get_online_cpus();
872 for_each_online_cpu(cpu)
873 val += per_cpu(memcg->stat->events[idx], cpu);
874 #ifdef CONFIG_HOTPLUG_CPU
875 spin_lock(&memcg->pcp_counter_lock);
876 val += memcg->nocpu_base.events[idx];
877 spin_unlock(&memcg->pcp_counter_lock);
878 #endif
879 put_online_cpus();
880 return val;
883 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
884 struct page *page,
885 bool anon, int nr_pages)
887 preempt_disable();
890 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
891 * counted as CACHE even if it's on ANON LRU.
893 if (anon)
894 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
895 nr_pages);
896 else
897 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
898 nr_pages);
900 if (PageTransHuge(page))
901 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
902 nr_pages);
904 /* pagein of a big page is an event. So, ignore page size */
905 if (nr_pages > 0)
906 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
907 else {
908 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
909 nr_pages = -nr_pages; /* for event */
912 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
914 preempt_enable();
917 unsigned long
918 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
920 struct mem_cgroup_per_zone *mz;
922 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
923 return mz->lru_size[lru];
926 static unsigned long
927 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
928 unsigned int lru_mask)
930 struct mem_cgroup_per_zone *mz;
931 enum lru_list lru;
932 unsigned long ret = 0;
934 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
936 for_each_lru(lru) {
937 if (BIT(lru) & lru_mask)
938 ret += mz->lru_size[lru];
940 return ret;
943 static unsigned long
944 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
945 int nid, unsigned int lru_mask)
947 u64 total = 0;
948 int zid;
950 for (zid = 0; zid < MAX_NR_ZONES; zid++)
951 total += mem_cgroup_zone_nr_lru_pages(memcg,
952 nid, zid, lru_mask);
954 return total;
957 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
958 unsigned int lru_mask)
960 int nid;
961 u64 total = 0;
963 for_each_node_state(nid, N_MEMORY)
964 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
965 return total;
968 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
969 enum mem_cgroup_events_target target)
971 unsigned long val, next;
973 val = __this_cpu_read(memcg->stat->nr_page_events);
974 next = __this_cpu_read(memcg->stat->targets[target]);
975 /* from time_after() in jiffies.h */
976 if ((long)next - (long)val < 0) {
977 switch (target) {
978 case MEM_CGROUP_TARGET_THRESH:
979 next = val + THRESHOLDS_EVENTS_TARGET;
980 break;
981 case MEM_CGROUP_TARGET_SOFTLIMIT:
982 next = val + SOFTLIMIT_EVENTS_TARGET;
983 break;
984 case MEM_CGROUP_TARGET_NUMAINFO:
985 next = val + NUMAINFO_EVENTS_TARGET;
986 break;
987 default:
988 break;
990 __this_cpu_write(memcg->stat->targets[target], next);
991 return true;
993 return false;
997 * Check events in order.
1000 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
1002 preempt_disable();
1003 /* threshold event is triggered in finer grain than soft limit */
1004 if (unlikely(mem_cgroup_event_ratelimit(memcg,
1005 MEM_CGROUP_TARGET_THRESH))) {
1006 bool do_softlimit;
1007 bool do_numainfo __maybe_unused;
1009 do_softlimit = mem_cgroup_event_ratelimit(memcg,
1010 MEM_CGROUP_TARGET_SOFTLIMIT);
1011 #if MAX_NUMNODES > 1
1012 do_numainfo = mem_cgroup_event_ratelimit(memcg,
1013 MEM_CGROUP_TARGET_NUMAINFO);
1014 #endif
1015 preempt_enable();
1017 mem_cgroup_threshold(memcg);
1018 if (unlikely(do_softlimit))
1019 mem_cgroup_update_tree(memcg, page);
1020 #if MAX_NUMNODES > 1
1021 if (unlikely(do_numainfo))
1022 atomic_inc(&memcg->numainfo_events);
1023 #endif
1024 } else
1025 preempt_enable();
1028 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1031 * mm_update_next_owner() may clear mm->owner to NULL
1032 * if it races with swapoff, page migration, etc.
1033 * So this can be called with p == NULL.
1035 if (unlikely(!p))
1036 return NULL;
1038 return mem_cgroup_from_css(task_css(p, mem_cgroup_subsys_id));
1041 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
1043 struct mem_cgroup *memcg = NULL;
1045 if (!mm)
1046 return NULL;
1048 * Because we have no locks, mm->owner's may be being moved to other
1049 * cgroup. We use css_tryget() here even if this looks
1050 * pessimistic (rather than adding locks here).
1052 rcu_read_lock();
1053 do {
1054 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1055 if (unlikely(!memcg))
1056 break;
1057 } while (!css_tryget(&memcg->css));
1058 rcu_read_unlock();
1059 return memcg;
1063 * Returns a next (in a pre-order walk) alive memcg (with elevated css
1064 * ref. count) or NULL if the whole root's subtree has been visited.
1066 * helper function to be used by mem_cgroup_iter
1068 static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
1069 struct mem_cgroup *last_visited)
1071 struct cgroup_subsys_state *prev_css, *next_css;
1073 prev_css = last_visited ? &last_visited->css : NULL;
1074 skip_node:
1075 next_css = css_next_descendant_pre(prev_css, &root->css);
1078 * Even if we found a group we have to make sure it is
1079 * alive. css && !memcg means that the groups should be
1080 * skipped and we should continue the tree walk.
1081 * last_visited css is safe to use because it is
1082 * protected by css_get and the tree walk is rcu safe.
1084 if (next_css) {
1085 struct mem_cgroup *mem = mem_cgroup_from_css(next_css);
1087 if (css_tryget(&mem->css))
1088 return mem;
1089 else {
1090 prev_css = next_css;
1091 goto skip_node;
1095 return NULL;
1098 static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
1101 * When a group in the hierarchy below root is destroyed, the
1102 * hierarchy iterator can no longer be trusted since it might
1103 * have pointed to the destroyed group. Invalidate it.
1105 atomic_inc(&root->dead_count);
1108 static struct mem_cgroup *
1109 mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
1110 struct mem_cgroup *root,
1111 int *sequence)
1113 struct mem_cgroup *position = NULL;
1115 * A cgroup destruction happens in two stages: offlining and
1116 * release. They are separated by a RCU grace period.
1118 * If the iterator is valid, we may still race with an
1119 * offlining. The RCU lock ensures the object won't be
1120 * released, tryget will fail if we lost the race.
1122 *sequence = atomic_read(&root->dead_count);
1123 if (iter->last_dead_count == *sequence) {
1124 smp_rmb();
1125 position = iter->last_visited;
1126 if (position && !css_tryget(&position->css))
1127 position = NULL;
1129 return position;
1132 static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
1133 struct mem_cgroup *last_visited,
1134 struct mem_cgroup *new_position,
1135 int sequence)
1137 if (last_visited)
1138 css_put(&last_visited->css);
1140 * We store the sequence count from the time @last_visited was
1141 * loaded successfully instead of rereading it here so that we
1142 * don't lose destruction events in between. We could have
1143 * raced with the destruction of @new_position after all.
1145 iter->last_visited = new_position;
1146 smp_wmb();
1147 iter->last_dead_count = sequence;
1151 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1152 * @root: hierarchy root
1153 * @prev: previously returned memcg, NULL on first invocation
1154 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1156 * Returns references to children of the hierarchy below @root, or
1157 * @root itself, or %NULL after a full round-trip.
1159 * Caller must pass the return value in @prev on subsequent
1160 * invocations for reference counting, or use mem_cgroup_iter_break()
1161 * to cancel a hierarchy walk before the round-trip is complete.
1163 * Reclaimers can specify a zone and a priority level in @reclaim to
1164 * divide up the memcgs in the hierarchy among all concurrent
1165 * reclaimers operating on the same zone and priority.
1167 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1168 struct mem_cgroup *prev,
1169 struct mem_cgroup_reclaim_cookie *reclaim)
1171 struct mem_cgroup *memcg = NULL;
1172 struct mem_cgroup *last_visited = NULL;
1174 if (mem_cgroup_disabled())
1175 return NULL;
1177 if (!root)
1178 root = root_mem_cgroup;
1180 if (prev && !reclaim)
1181 last_visited = prev;
1183 if (!root->use_hierarchy && root != root_mem_cgroup) {
1184 if (prev)
1185 goto out_css_put;
1186 return root;
1189 rcu_read_lock();
1190 while (!memcg) {
1191 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1192 int uninitialized_var(seq);
1194 if (reclaim) {
1195 int nid = zone_to_nid(reclaim->zone);
1196 int zid = zone_idx(reclaim->zone);
1197 struct mem_cgroup_per_zone *mz;
1199 mz = mem_cgroup_zoneinfo(root, nid, zid);
1200 iter = &mz->reclaim_iter[reclaim->priority];
1201 if (prev && reclaim->generation != iter->generation) {
1202 iter->last_visited = NULL;
1203 goto out_unlock;
1206 last_visited = mem_cgroup_iter_load(iter, root, &seq);
1209 memcg = __mem_cgroup_iter_next(root, last_visited);
1211 if (reclaim) {
1212 mem_cgroup_iter_update(iter, last_visited, memcg, seq);
1214 if (!memcg)
1215 iter->generation++;
1216 else if (!prev && memcg)
1217 reclaim->generation = iter->generation;
1220 if (prev && !memcg)
1221 goto out_unlock;
1223 out_unlock:
1224 rcu_read_unlock();
1225 out_css_put:
1226 if (prev && prev != root)
1227 css_put(&prev->css);
1229 return memcg;
1233 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1234 * @root: hierarchy root
1235 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1237 void mem_cgroup_iter_break(struct mem_cgroup *root,
1238 struct mem_cgroup *prev)
1240 if (!root)
1241 root = root_mem_cgroup;
1242 if (prev && prev != root)
1243 css_put(&prev->css);
1247 * Iteration constructs for visiting all cgroups (under a tree). If
1248 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1249 * be used for reference counting.
1251 #define for_each_mem_cgroup_tree(iter, root) \
1252 for (iter = mem_cgroup_iter(root, NULL, NULL); \
1253 iter != NULL; \
1254 iter = mem_cgroup_iter(root, iter, NULL))
1256 #define for_each_mem_cgroup(iter) \
1257 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1258 iter != NULL; \
1259 iter = mem_cgroup_iter(NULL, iter, NULL))
1261 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1263 struct mem_cgroup *memcg;
1265 rcu_read_lock();
1266 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1267 if (unlikely(!memcg))
1268 goto out;
1270 switch (idx) {
1271 case PGFAULT:
1272 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1273 break;
1274 case PGMAJFAULT:
1275 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1276 break;
1277 default:
1278 BUG();
1280 out:
1281 rcu_read_unlock();
1283 EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1286 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1287 * @zone: zone of the wanted lruvec
1288 * @memcg: memcg of the wanted lruvec
1290 * Returns the lru list vector holding pages for the given @zone and
1291 * @mem. This can be the global zone lruvec, if the memory controller
1292 * is disabled.
1294 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1295 struct mem_cgroup *memcg)
1297 struct mem_cgroup_per_zone *mz;
1298 struct lruvec *lruvec;
1300 if (mem_cgroup_disabled()) {
1301 lruvec = &zone->lruvec;
1302 goto out;
1305 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1306 lruvec = &mz->lruvec;
1307 out:
1309 * Since a node can be onlined after the mem_cgroup was created,
1310 * we have to be prepared to initialize lruvec->zone here;
1311 * and if offlined then reonlined, we need to reinitialize it.
1313 if (unlikely(lruvec->zone != zone))
1314 lruvec->zone = zone;
1315 return lruvec;
1319 * Following LRU functions are allowed to be used without PCG_LOCK.
1320 * Operations are called by routine of global LRU independently from memcg.
1321 * What we have to take care of here is validness of pc->mem_cgroup.
1323 * Changes to pc->mem_cgroup happens when
1324 * 1. charge
1325 * 2. moving account
1326 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1327 * It is added to LRU before charge.
1328 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1329 * When moving account, the page is not on LRU. It's isolated.
1333 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1334 * @page: the page
1335 * @zone: zone of the page
1337 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1339 struct mem_cgroup_per_zone *mz;
1340 struct mem_cgroup *memcg;
1341 struct page_cgroup *pc;
1342 struct lruvec *lruvec;
1344 if (mem_cgroup_disabled()) {
1345 lruvec = &zone->lruvec;
1346 goto out;
1349 pc = lookup_page_cgroup(page);
1350 memcg = pc->mem_cgroup;
1353 * Surreptitiously switch any uncharged offlist page to root:
1354 * an uncharged page off lru does nothing to secure
1355 * its former mem_cgroup from sudden removal.
1357 * Our caller holds lru_lock, and PageCgroupUsed is updated
1358 * under page_cgroup lock: between them, they make all uses
1359 * of pc->mem_cgroup safe.
1361 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1362 pc->mem_cgroup = memcg = root_mem_cgroup;
1364 mz = page_cgroup_zoneinfo(memcg, page);
1365 lruvec = &mz->lruvec;
1366 out:
1368 * Since a node can be onlined after the mem_cgroup was created,
1369 * we have to be prepared to initialize lruvec->zone here;
1370 * and if offlined then reonlined, we need to reinitialize it.
1372 if (unlikely(lruvec->zone != zone))
1373 lruvec->zone = zone;
1374 return lruvec;
1378 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1379 * @lruvec: mem_cgroup per zone lru vector
1380 * @lru: index of lru list the page is sitting on
1381 * @nr_pages: positive when adding or negative when removing
1383 * This function must be called when a page is added to or removed from an
1384 * lru list.
1386 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1387 int nr_pages)
1389 struct mem_cgroup_per_zone *mz;
1390 unsigned long *lru_size;
1392 if (mem_cgroup_disabled())
1393 return;
1395 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1396 lru_size = mz->lru_size + lru;
1397 *lru_size += nr_pages;
1398 VM_BUG_ON((long)(*lru_size) < 0);
1402 * Checks whether given mem is same or in the root_mem_cgroup's
1403 * hierarchy subtree
1405 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1406 struct mem_cgroup *memcg)
1408 if (root_memcg == memcg)
1409 return true;
1410 if (!root_memcg->use_hierarchy || !memcg)
1411 return false;
1412 return css_is_ancestor(&memcg->css, &root_memcg->css);
1415 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1416 struct mem_cgroup *memcg)
1418 bool ret;
1420 rcu_read_lock();
1421 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1422 rcu_read_unlock();
1423 return ret;
1426 bool task_in_mem_cgroup(struct task_struct *task,
1427 const struct mem_cgroup *memcg)
1429 struct mem_cgroup *curr = NULL;
1430 struct task_struct *p;
1431 bool ret;
1433 p = find_lock_task_mm(task);
1434 if (p) {
1435 curr = try_get_mem_cgroup_from_mm(p->mm);
1436 task_unlock(p);
1437 } else {
1439 * All threads may have already detached their mm's, but the oom
1440 * killer still needs to detect if they have already been oom
1441 * killed to prevent needlessly killing additional tasks.
1443 rcu_read_lock();
1444 curr = mem_cgroup_from_task(task);
1445 if (curr)
1446 css_get(&curr->css);
1447 rcu_read_unlock();
1449 if (!curr)
1450 return false;
1452 * We should check use_hierarchy of "memcg" not "curr". Because checking
1453 * use_hierarchy of "curr" here make this function true if hierarchy is
1454 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1455 * hierarchy(even if use_hierarchy is disabled in "memcg").
1457 ret = mem_cgroup_same_or_subtree(memcg, curr);
1458 css_put(&curr->css);
1459 return ret;
1462 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1464 unsigned long inactive_ratio;
1465 unsigned long inactive;
1466 unsigned long active;
1467 unsigned long gb;
1469 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1470 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1472 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1473 if (gb)
1474 inactive_ratio = int_sqrt(10 * gb);
1475 else
1476 inactive_ratio = 1;
1478 return inactive * inactive_ratio < active;
1481 #define mem_cgroup_from_res_counter(counter, member) \
1482 container_of(counter, struct mem_cgroup, member)
1485 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1486 * @memcg: the memory cgroup
1488 * Returns the maximum amount of memory @mem can be charged with, in
1489 * pages.
1491 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1493 unsigned long long margin;
1495 margin = res_counter_margin(&memcg->res);
1496 if (do_swap_account)
1497 margin = min(margin, res_counter_margin(&memcg->memsw));
1498 return margin >> PAGE_SHIFT;
1501 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1503 /* root ? */
1504 if (!css_parent(&memcg->css))
1505 return vm_swappiness;
1507 return memcg->swappiness;
1511 * memcg->moving_account is used for checking possibility that some thread is
1512 * calling move_account(). When a thread on CPU-A starts moving pages under
1513 * a memcg, other threads should check memcg->moving_account under
1514 * rcu_read_lock(), like this:
1516 * CPU-A CPU-B
1517 * rcu_read_lock()
1518 * memcg->moving_account+1 if (memcg->mocing_account)
1519 * take heavy locks.
1520 * synchronize_rcu() update something.
1521 * rcu_read_unlock()
1522 * start move here.
1525 /* for quick checking without looking up memcg */
1526 atomic_t memcg_moving __read_mostly;
1528 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1530 atomic_inc(&memcg_moving);
1531 atomic_inc(&memcg->moving_account);
1532 synchronize_rcu();
1535 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1538 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1539 * We check NULL in callee rather than caller.
1541 if (memcg) {
1542 atomic_dec(&memcg_moving);
1543 atomic_dec(&memcg->moving_account);
1548 * 2 routines for checking "mem" is under move_account() or not.
1550 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1551 * is used for avoiding races in accounting. If true,
1552 * pc->mem_cgroup may be overwritten.
1554 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1555 * under hierarchy of moving cgroups. This is for
1556 * waiting at hith-memory prressure caused by "move".
1559 static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1561 VM_BUG_ON(!rcu_read_lock_held());
1562 return atomic_read(&memcg->moving_account) > 0;
1565 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1567 struct mem_cgroup *from;
1568 struct mem_cgroup *to;
1569 bool ret = false;
1571 * Unlike task_move routines, we access mc.to, mc.from not under
1572 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1574 spin_lock(&mc.lock);
1575 from = mc.from;
1576 to = mc.to;
1577 if (!from)
1578 goto unlock;
1580 ret = mem_cgroup_same_or_subtree(memcg, from)
1581 || mem_cgroup_same_or_subtree(memcg, to);
1582 unlock:
1583 spin_unlock(&mc.lock);
1584 return ret;
1587 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1589 if (mc.moving_task && current != mc.moving_task) {
1590 if (mem_cgroup_under_move(memcg)) {
1591 DEFINE_WAIT(wait);
1592 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1593 /* moving charge context might have finished. */
1594 if (mc.moving_task)
1595 schedule();
1596 finish_wait(&mc.waitq, &wait);
1597 return true;
1600 return false;
1604 * Take this lock when
1605 * - a code tries to modify page's memcg while it's USED.
1606 * - a code tries to modify page state accounting in a memcg.
1607 * see mem_cgroup_stolen(), too.
1609 static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1610 unsigned long *flags)
1612 spin_lock_irqsave(&memcg->move_lock, *flags);
1615 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1616 unsigned long *flags)
1618 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1621 #define K(x) ((x) << (PAGE_SHIFT-10))
1623 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1624 * @memcg: The memory cgroup that went over limit
1625 * @p: Task that is going to be killed
1627 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1628 * enabled
1630 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1632 struct cgroup *task_cgrp;
1633 struct cgroup *mem_cgrp;
1635 * Need a buffer in BSS, can't rely on allocations. The code relies
1636 * on the assumption that OOM is serialized for memory controller.
1637 * If this assumption is broken, revisit this code.
1639 static char memcg_name[PATH_MAX];
1640 int ret;
1641 struct mem_cgroup *iter;
1642 unsigned int i;
1644 if (!p)
1645 return;
1647 rcu_read_lock();
1649 mem_cgrp = memcg->css.cgroup;
1650 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1652 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1653 if (ret < 0) {
1655 * Unfortunately, we are unable to convert to a useful name
1656 * But we'll still print out the usage information
1658 rcu_read_unlock();
1659 goto done;
1661 rcu_read_unlock();
1663 pr_info("Task in %s killed", memcg_name);
1665 rcu_read_lock();
1666 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1667 if (ret < 0) {
1668 rcu_read_unlock();
1669 goto done;
1671 rcu_read_unlock();
1674 * Continues from above, so we don't need an KERN_ level
1676 pr_cont(" as a result of limit of %s\n", memcg_name);
1677 done:
1679 pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1680 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1681 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1682 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1683 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1684 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1685 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1686 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1687 pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1688 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1689 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1690 res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1692 for_each_mem_cgroup_tree(iter, memcg) {
1693 pr_info("Memory cgroup stats");
1695 rcu_read_lock();
1696 ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
1697 if (!ret)
1698 pr_cont(" for %s", memcg_name);
1699 rcu_read_unlock();
1700 pr_cont(":");
1702 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1703 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1704 continue;
1705 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1706 K(mem_cgroup_read_stat(iter, i)));
1709 for (i = 0; i < NR_LRU_LISTS; i++)
1710 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1711 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1713 pr_cont("\n");
1718 * This function returns the number of memcg under hierarchy tree. Returns
1719 * 1(self count) if no children.
1721 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1723 int num = 0;
1724 struct mem_cgroup *iter;
1726 for_each_mem_cgroup_tree(iter, memcg)
1727 num++;
1728 return num;
1732 * Return the memory (and swap, if configured) limit for a memcg.
1734 static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1736 u64 limit;
1738 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1741 * Do not consider swap space if we cannot swap due to swappiness
1743 if (mem_cgroup_swappiness(memcg)) {
1744 u64 memsw;
1746 limit += total_swap_pages << PAGE_SHIFT;
1747 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1750 * If memsw is finite and limits the amount of swap space
1751 * available to this memcg, return that limit.
1753 limit = min(limit, memsw);
1756 return limit;
1759 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1760 int order)
1762 struct mem_cgroup *iter;
1763 unsigned long chosen_points = 0;
1764 unsigned long totalpages;
1765 unsigned int points = 0;
1766 struct task_struct *chosen = NULL;
1769 * If current has a pending SIGKILL or is exiting, then automatically
1770 * select it. The goal is to allow it to allocate so that it may
1771 * quickly exit and free its memory.
1773 if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1774 set_thread_flag(TIF_MEMDIE);
1775 return;
1778 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1779 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1780 for_each_mem_cgroup_tree(iter, memcg) {
1781 struct css_task_iter it;
1782 struct task_struct *task;
1784 css_task_iter_start(&iter->css, &it);
1785 while ((task = css_task_iter_next(&it))) {
1786 switch (oom_scan_process_thread(task, totalpages, NULL,
1787 false)) {
1788 case OOM_SCAN_SELECT:
1789 if (chosen)
1790 put_task_struct(chosen);
1791 chosen = task;
1792 chosen_points = ULONG_MAX;
1793 get_task_struct(chosen);
1794 /* fall through */
1795 case OOM_SCAN_CONTINUE:
1796 continue;
1797 case OOM_SCAN_ABORT:
1798 css_task_iter_end(&it);
1799 mem_cgroup_iter_break(memcg, iter);
1800 if (chosen)
1801 put_task_struct(chosen);
1802 return;
1803 case OOM_SCAN_OK:
1804 break;
1806 points = oom_badness(task, memcg, NULL, totalpages);
1807 if (points > chosen_points) {
1808 if (chosen)
1809 put_task_struct(chosen);
1810 chosen = task;
1811 chosen_points = points;
1812 get_task_struct(chosen);
1815 css_task_iter_end(&it);
1818 if (!chosen)
1819 return;
1820 points = chosen_points * 1000 / totalpages;
1821 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1822 NULL, "Memory cgroup out of memory");
1825 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1826 gfp_t gfp_mask,
1827 unsigned long flags)
1829 unsigned long total = 0;
1830 bool noswap = false;
1831 int loop;
1833 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1834 noswap = true;
1835 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1836 noswap = true;
1838 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1839 if (loop)
1840 drain_all_stock_async(memcg);
1841 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1843 * Allow limit shrinkers, which are triggered directly
1844 * by userspace, to catch signals and stop reclaim
1845 * after minimal progress, regardless of the margin.
1847 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1848 break;
1849 if (mem_cgroup_margin(memcg))
1850 break;
1852 * If nothing was reclaimed after two attempts, there
1853 * may be no reclaimable pages in this hierarchy.
1855 if (loop && !total)
1856 break;
1858 return total;
1862 * test_mem_cgroup_node_reclaimable
1863 * @memcg: the target memcg
1864 * @nid: the node ID to be checked.
1865 * @noswap : specify true here if the user wants flle only information.
1867 * This function returns whether the specified memcg contains any
1868 * reclaimable pages on a node. Returns true if there are any reclaimable
1869 * pages in the node.
1871 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1872 int nid, bool noswap)
1874 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1875 return true;
1876 if (noswap || !total_swap_pages)
1877 return false;
1878 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1879 return true;
1880 return false;
1883 #if MAX_NUMNODES > 1
1886 * Always updating the nodemask is not very good - even if we have an empty
1887 * list or the wrong list here, we can start from some node and traverse all
1888 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1891 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1893 int nid;
1895 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1896 * pagein/pageout changes since the last update.
1898 if (!atomic_read(&memcg->numainfo_events))
1899 return;
1900 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1901 return;
1903 /* make a nodemask where this memcg uses memory from */
1904 memcg->scan_nodes = node_states[N_MEMORY];
1906 for_each_node_mask(nid, node_states[N_MEMORY]) {
1908 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1909 node_clear(nid, memcg->scan_nodes);
1912 atomic_set(&memcg->numainfo_events, 0);
1913 atomic_set(&memcg->numainfo_updating, 0);
1917 * Selecting a node where we start reclaim from. Because what we need is just
1918 * reducing usage counter, start from anywhere is O,K. Considering
1919 * memory reclaim from current node, there are pros. and cons.
1921 * Freeing memory from current node means freeing memory from a node which
1922 * we'll use or we've used. So, it may make LRU bad. And if several threads
1923 * hit limits, it will see a contention on a node. But freeing from remote
1924 * node means more costs for memory reclaim because of memory latency.
1926 * Now, we use round-robin. Better algorithm is welcomed.
1928 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1930 int node;
1932 mem_cgroup_may_update_nodemask(memcg);
1933 node = memcg->last_scanned_node;
1935 node = next_node(node, memcg->scan_nodes);
1936 if (node == MAX_NUMNODES)
1937 node = first_node(memcg->scan_nodes);
1939 * We call this when we hit limit, not when pages are added to LRU.
1940 * No LRU may hold pages because all pages are UNEVICTABLE or
1941 * memcg is too small and all pages are not on LRU. In that case,
1942 * we use curret node.
1944 if (unlikely(node == MAX_NUMNODES))
1945 node = numa_node_id();
1947 memcg->last_scanned_node = node;
1948 return node;
1952 * Check all nodes whether it contains reclaimable pages or not.
1953 * For quick scan, we make use of scan_nodes. This will allow us to skip
1954 * unused nodes. But scan_nodes is lazily updated and may not cotain
1955 * enough new information. We need to do double check.
1957 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1959 int nid;
1962 * quick check...making use of scan_node.
1963 * We can skip unused nodes.
1965 if (!nodes_empty(memcg->scan_nodes)) {
1966 for (nid = first_node(memcg->scan_nodes);
1967 nid < MAX_NUMNODES;
1968 nid = next_node(nid, memcg->scan_nodes)) {
1970 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1971 return true;
1975 * Check rest of nodes.
1977 for_each_node_state(nid, N_MEMORY) {
1978 if (node_isset(nid, memcg->scan_nodes))
1979 continue;
1980 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1981 return true;
1983 return false;
1986 #else
1987 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1989 return 0;
1992 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1994 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1996 #endif
1998 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1999 struct zone *zone,
2000 gfp_t gfp_mask,
2001 unsigned long *total_scanned)
2003 struct mem_cgroup *victim = NULL;
2004 int total = 0;
2005 int loop = 0;
2006 unsigned long excess;
2007 unsigned long nr_scanned;
2008 struct mem_cgroup_reclaim_cookie reclaim = {
2009 .zone = zone,
2010 .priority = 0,
2013 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
2015 while (1) {
2016 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
2017 if (!victim) {
2018 loop++;
2019 if (loop >= 2) {
2021 * If we have not been able to reclaim
2022 * anything, it might because there are
2023 * no reclaimable pages under this hierarchy
2025 if (!total)
2026 break;
2028 * We want to do more targeted reclaim.
2029 * excess >> 2 is not to excessive so as to
2030 * reclaim too much, nor too less that we keep
2031 * coming back to reclaim from this cgroup
2033 if (total >= (excess >> 2) ||
2034 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
2035 break;
2037 continue;
2039 if (!mem_cgroup_reclaimable(victim, false))
2040 continue;
2041 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
2042 zone, &nr_scanned);
2043 *total_scanned += nr_scanned;
2044 if (!res_counter_soft_limit_excess(&root_memcg->res))
2045 break;
2047 mem_cgroup_iter_break(root_memcg, victim);
2048 return total;
2051 #ifdef CONFIG_LOCKDEP
2052 static struct lockdep_map memcg_oom_lock_dep_map = {
2053 .name = "memcg_oom_lock",
2055 #endif
2057 static DEFINE_SPINLOCK(memcg_oom_lock);
2060 * Check OOM-Killer is already running under our hierarchy.
2061 * If someone is running, return false.
2063 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
2065 struct mem_cgroup *iter, *failed = NULL;
2067 spin_lock(&memcg_oom_lock);
2069 for_each_mem_cgroup_tree(iter, memcg) {
2070 if (iter->oom_lock) {
2072 * this subtree of our hierarchy is already locked
2073 * so we cannot give a lock.
2075 failed = iter;
2076 mem_cgroup_iter_break(memcg, iter);
2077 break;
2078 } else
2079 iter->oom_lock = true;
2082 if (failed) {
2084 * OK, we failed to lock the whole subtree so we have
2085 * to clean up what we set up to the failing subtree
2087 for_each_mem_cgroup_tree(iter, memcg) {
2088 if (iter == failed) {
2089 mem_cgroup_iter_break(memcg, iter);
2090 break;
2092 iter->oom_lock = false;
2094 } else
2095 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
2097 spin_unlock(&memcg_oom_lock);
2099 return !failed;
2102 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2104 struct mem_cgroup *iter;
2106 spin_lock(&memcg_oom_lock);
2107 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
2108 for_each_mem_cgroup_tree(iter, memcg)
2109 iter->oom_lock = false;
2110 spin_unlock(&memcg_oom_lock);
2113 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2115 struct mem_cgroup *iter;
2117 for_each_mem_cgroup_tree(iter, memcg)
2118 atomic_inc(&iter->under_oom);
2121 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2123 struct mem_cgroup *iter;
2126 * When a new child is created while the hierarchy is under oom,
2127 * mem_cgroup_oom_lock() may not be called. We have to use
2128 * atomic_add_unless() here.
2130 for_each_mem_cgroup_tree(iter, memcg)
2131 atomic_add_unless(&iter->under_oom, -1, 0);
2134 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2136 struct oom_wait_info {
2137 struct mem_cgroup *memcg;
2138 wait_queue_t wait;
2141 static int memcg_oom_wake_function(wait_queue_t *wait,
2142 unsigned mode, int sync, void *arg)
2144 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2145 struct mem_cgroup *oom_wait_memcg;
2146 struct oom_wait_info *oom_wait_info;
2148 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2149 oom_wait_memcg = oom_wait_info->memcg;
2152 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
2153 * Then we can use css_is_ancestor without taking care of RCU.
2155 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2156 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
2157 return 0;
2158 return autoremove_wake_function(wait, mode, sync, arg);
2161 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
2163 atomic_inc(&memcg->oom_wakeups);
2164 /* for filtering, pass "memcg" as argument. */
2165 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
2168 static void memcg_oom_recover(struct mem_cgroup *memcg)
2170 if (memcg && atomic_read(&memcg->under_oom))
2171 memcg_wakeup_oom(memcg);
2174 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
2176 if (!current->memcg_oom.may_oom)
2177 return;
2179 * We are in the middle of the charge context here, so we
2180 * don't want to block when potentially sitting on a callstack
2181 * that holds all kinds of filesystem and mm locks.
2183 * Also, the caller may handle a failed allocation gracefully
2184 * (like optional page cache readahead) and so an OOM killer
2185 * invocation might not even be necessary.
2187 * That's why we don't do anything here except remember the
2188 * OOM context and then deal with it at the end of the page
2189 * fault when the stack is unwound, the locks are released,
2190 * and when we know whether the fault was overall successful.
2192 css_get(&memcg->css);
2193 current->memcg_oom.memcg = memcg;
2194 current->memcg_oom.gfp_mask = mask;
2195 current->memcg_oom.order = order;
2199 * mem_cgroup_oom_synchronize - complete memcg OOM handling
2200 * @handle: actually kill/wait or just clean up the OOM state
2202 * This has to be called at the end of a page fault if the memcg OOM
2203 * handler was enabled.
2205 * Memcg supports userspace OOM handling where failed allocations must
2206 * sleep on a waitqueue until the userspace task resolves the
2207 * situation. Sleeping directly in the charge context with all kinds
2208 * of locks held is not a good idea, instead we remember an OOM state
2209 * in the task and mem_cgroup_oom_synchronize() has to be called at
2210 * the end of the page fault to complete the OOM handling.
2212 * Returns %true if an ongoing memcg OOM situation was detected and
2213 * completed, %false otherwise.
2215 bool mem_cgroup_oom_synchronize(bool handle)
2217 struct mem_cgroup *memcg = current->memcg_oom.memcg;
2218 struct oom_wait_info owait;
2219 bool locked;
2221 /* OOM is global, do not handle */
2222 if (!memcg)
2223 return false;
2225 if (!handle)
2226 goto cleanup;
2228 owait.memcg = memcg;
2229 owait.wait.flags = 0;
2230 owait.wait.func = memcg_oom_wake_function;
2231 owait.wait.private = current;
2232 INIT_LIST_HEAD(&owait.wait.task_list);
2234 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2235 mem_cgroup_mark_under_oom(memcg);
2237 locked = mem_cgroup_oom_trylock(memcg);
2239 if (locked)
2240 mem_cgroup_oom_notify(memcg);
2242 if (locked && !memcg->oom_kill_disable) {
2243 mem_cgroup_unmark_under_oom(memcg);
2244 finish_wait(&memcg_oom_waitq, &owait.wait);
2245 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
2246 current->memcg_oom.order);
2247 } else {
2248 schedule();
2249 mem_cgroup_unmark_under_oom(memcg);
2250 finish_wait(&memcg_oom_waitq, &owait.wait);
2253 if (locked) {
2254 mem_cgroup_oom_unlock(memcg);
2256 * There is no guarantee that an OOM-lock contender
2257 * sees the wakeups triggered by the OOM kill
2258 * uncharges. Wake any sleepers explicitely.
2260 memcg_oom_recover(memcg);
2262 cleanup:
2263 current->memcg_oom.memcg = NULL;
2264 css_put(&memcg->css);
2265 return true;
2269 * Currently used to update mapped file statistics, but the routine can be
2270 * generalized to update other statistics as well.
2272 * Notes: Race condition
2274 * We usually use page_cgroup_lock() for accessing page_cgroup member but
2275 * it tends to be costly. But considering some conditions, we doesn't need
2276 * to do so _always_.
2278 * Considering "charge", lock_page_cgroup() is not required because all
2279 * file-stat operations happen after a page is attached to radix-tree. There
2280 * are no race with "charge".
2282 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2283 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2284 * if there are race with "uncharge". Statistics itself is properly handled
2285 * by flags.
2287 * Considering "move", this is an only case we see a race. To make the race
2288 * small, we check mm->moving_account and detect there are possibility of race
2289 * If there is, we take a lock.
2292 void __mem_cgroup_begin_update_page_stat(struct page *page,
2293 bool *locked, unsigned long *flags)
2295 struct mem_cgroup *memcg;
2296 struct page_cgroup *pc;
2298 pc = lookup_page_cgroup(page);
2299 again:
2300 memcg = pc->mem_cgroup;
2301 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2302 return;
2304 * If this memory cgroup is not under account moving, we don't
2305 * need to take move_lock_mem_cgroup(). Because we already hold
2306 * rcu_read_lock(), any calls to move_account will be delayed until
2307 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2309 if (!mem_cgroup_stolen(memcg))
2310 return;
2312 move_lock_mem_cgroup(memcg, flags);
2313 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2314 move_unlock_mem_cgroup(memcg, flags);
2315 goto again;
2317 *locked = true;
2320 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2322 struct page_cgroup *pc = lookup_page_cgroup(page);
2325 * It's guaranteed that pc->mem_cgroup never changes while
2326 * lock is held because a routine modifies pc->mem_cgroup
2327 * should take move_lock_mem_cgroup().
2329 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2332 void mem_cgroup_update_page_stat(struct page *page,
2333 enum mem_cgroup_stat_index idx, int val)
2335 struct mem_cgroup *memcg;
2336 struct page_cgroup *pc = lookup_page_cgroup(page);
2337 unsigned long uninitialized_var(flags);
2339 if (mem_cgroup_disabled())
2340 return;
2342 VM_BUG_ON(!rcu_read_lock_held());
2343 memcg = pc->mem_cgroup;
2344 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2345 return;
2347 this_cpu_add(memcg->stat->count[idx], val);
2351 * size of first charge trial. "32" comes from vmscan.c's magic value.
2352 * TODO: maybe necessary to use big numbers in big irons.
2354 #define CHARGE_BATCH 32U
2355 struct memcg_stock_pcp {
2356 struct mem_cgroup *cached; /* this never be root cgroup */
2357 unsigned int nr_pages;
2358 struct work_struct work;
2359 unsigned long flags;
2360 #define FLUSHING_CACHED_CHARGE 0
2362 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2363 static DEFINE_MUTEX(percpu_charge_mutex);
2366 * consume_stock: Try to consume stocked charge on this cpu.
2367 * @memcg: memcg to consume from.
2368 * @nr_pages: how many pages to charge.
2370 * The charges will only happen if @memcg matches the current cpu's memcg
2371 * stock, and at least @nr_pages are available in that stock. Failure to
2372 * service an allocation will refill the stock.
2374 * returns true if successful, false otherwise.
2376 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2378 struct memcg_stock_pcp *stock;
2379 bool ret = true;
2381 if (nr_pages > CHARGE_BATCH)
2382 return false;
2384 stock = &get_cpu_var(memcg_stock);
2385 if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2386 stock->nr_pages -= nr_pages;
2387 else /* need to call res_counter_charge */
2388 ret = false;
2389 put_cpu_var(memcg_stock);
2390 return ret;
2394 * Returns stocks cached in percpu to res_counter and reset cached information.
2396 static void drain_stock(struct memcg_stock_pcp *stock)
2398 struct mem_cgroup *old = stock->cached;
2400 if (stock->nr_pages) {
2401 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2403 res_counter_uncharge(&old->res, bytes);
2404 if (do_swap_account)
2405 res_counter_uncharge(&old->memsw, bytes);
2406 stock->nr_pages = 0;
2408 stock->cached = NULL;
2412 * This must be called under preempt disabled or must be called by
2413 * a thread which is pinned to local cpu.
2415 static void drain_local_stock(struct work_struct *dummy)
2417 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2418 drain_stock(stock);
2419 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2422 static void __init memcg_stock_init(void)
2424 int cpu;
2426 for_each_possible_cpu(cpu) {
2427 struct memcg_stock_pcp *stock =
2428 &per_cpu(memcg_stock, cpu);
2429 INIT_WORK(&stock->work, drain_local_stock);
2434 * Cache charges(val) which is from res_counter, to local per_cpu area.
2435 * This will be consumed by consume_stock() function, later.
2437 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2439 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2441 if (stock->cached != memcg) { /* reset if necessary */
2442 drain_stock(stock);
2443 stock->cached = memcg;
2445 stock->nr_pages += nr_pages;
2446 put_cpu_var(memcg_stock);
2450 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2451 * of the hierarchy under it. sync flag says whether we should block
2452 * until the work is done.
2454 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2456 int cpu, curcpu;
2458 /* Notify other cpus that system-wide "drain" is running */
2459 get_online_cpus();
2460 curcpu = get_cpu();
2461 for_each_online_cpu(cpu) {
2462 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2463 struct mem_cgroup *memcg;
2465 memcg = stock->cached;
2466 if (!memcg || !stock->nr_pages)
2467 continue;
2468 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2469 continue;
2470 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2471 if (cpu == curcpu)
2472 drain_local_stock(&stock->work);
2473 else
2474 schedule_work_on(cpu, &stock->work);
2477 put_cpu();
2479 if (!sync)
2480 goto out;
2482 for_each_online_cpu(cpu) {
2483 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2484 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2485 flush_work(&stock->work);
2487 out:
2488 put_online_cpus();
2492 * Tries to drain stocked charges in other cpus. This function is asynchronous
2493 * and just put a work per cpu for draining localy on each cpu. Caller can
2494 * expects some charges will be back to res_counter later but cannot wait for
2495 * it.
2497 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2500 * If someone calls draining, avoid adding more kworker runs.
2502 if (!mutex_trylock(&percpu_charge_mutex))
2503 return;
2504 drain_all_stock(root_memcg, false);
2505 mutex_unlock(&percpu_charge_mutex);
2508 /* This is a synchronous drain interface. */
2509 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2511 /* called when force_empty is called */
2512 mutex_lock(&percpu_charge_mutex);
2513 drain_all_stock(root_memcg, true);
2514 mutex_unlock(&percpu_charge_mutex);
2518 * This function drains percpu counter value from DEAD cpu and
2519 * move it to local cpu. Note that this function can be preempted.
2521 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2523 int i;
2525 spin_lock(&memcg->pcp_counter_lock);
2526 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2527 long x = per_cpu(memcg->stat->count[i], cpu);
2529 per_cpu(memcg->stat->count[i], cpu) = 0;
2530 memcg->nocpu_base.count[i] += x;
2532 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2533 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2535 per_cpu(memcg->stat->events[i], cpu) = 0;
2536 memcg->nocpu_base.events[i] += x;
2538 spin_unlock(&memcg->pcp_counter_lock);
2541 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2542 unsigned long action,
2543 void *hcpu)
2545 int cpu = (unsigned long)hcpu;
2546 struct memcg_stock_pcp *stock;
2547 struct mem_cgroup *iter;
2549 if (action == CPU_ONLINE)
2550 return NOTIFY_OK;
2552 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2553 return NOTIFY_OK;
2555 for_each_mem_cgroup(iter)
2556 mem_cgroup_drain_pcp_counter(iter, cpu);
2558 stock = &per_cpu(memcg_stock, cpu);
2559 drain_stock(stock);
2560 return NOTIFY_OK;
2564 /* See __mem_cgroup_try_charge() for details */
2565 enum {
2566 CHARGE_OK, /* success */
2567 CHARGE_RETRY, /* need to retry but retry is not bad */
2568 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2569 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2572 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2573 unsigned int nr_pages, unsigned int min_pages,
2574 bool invoke_oom)
2576 unsigned long csize = nr_pages * PAGE_SIZE;
2577 struct mem_cgroup *mem_over_limit;
2578 struct res_counter *fail_res;
2579 unsigned long flags = 0;
2580 int ret;
2582 ret = res_counter_charge(&memcg->res, csize, &fail_res);
2584 if (likely(!ret)) {
2585 if (!do_swap_account)
2586 return CHARGE_OK;
2587 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2588 if (likely(!ret))
2589 return CHARGE_OK;
2591 res_counter_uncharge(&memcg->res, csize);
2592 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2593 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2594 } else
2595 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2597 * Never reclaim on behalf of optional batching, retry with a
2598 * single page instead.
2600 if (nr_pages > min_pages)
2601 return CHARGE_RETRY;
2603 if (!(gfp_mask & __GFP_WAIT))
2604 return CHARGE_WOULDBLOCK;
2606 if (gfp_mask & __GFP_NORETRY)
2607 return CHARGE_NOMEM;
2609 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2610 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2611 return CHARGE_RETRY;
2613 * Even though the limit is exceeded at this point, reclaim
2614 * may have been able to free some pages. Retry the charge
2615 * before killing the task.
2617 * Only for regular pages, though: huge pages are rather
2618 * unlikely to succeed so close to the limit, and we fall back
2619 * to regular pages anyway in case of failure.
2621 if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2622 return CHARGE_RETRY;
2625 * At task move, charge accounts can be doubly counted. So, it's
2626 * better to wait until the end of task_move if something is going on.
2628 if (mem_cgroup_wait_acct_move(mem_over_limit))
2629 return CHARGE_RETRY;
2631 if (invoke_oom)
2632 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(csize));
2634 return CHARGE_NOMEM;
2638 * __mem_cgroup_try_charge() does
2639 * 1. detect memcg to be charged against from passed *mm and *ptr,
2640 * 2. update res_counter
2641 * 3. call memory reclaim if necessary.
2643 * In some special case, if the task is fatal, fatal_signal_pending() or
2644 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2645 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2646 * as possible without any hazards. 2: all pages should have a valid
2647 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2648 * pointer, that is treated as a charge to root_mem_cgroup.
2650 * So __mem_cgroup_try_charge() will return
2651 * 0 ... on success, filling *ptr with a valid memcg pointer.
2652 * -ENOMEM ... charge failure because of resource limits.
2653 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2655 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2656 * the oom-killer can be invoked.
2658 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2659 gfp_t gfp_mask,
2660 unsigned int nr_pages,
2661 struct mem_cgroup **ptr,
2662 bool oom)
2664 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2665 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2666 struct mem_cgroup *memcg = NULL;
2667 int ret;
2670 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2671 * in system level. So, allow to go ahead dying process in addition to
2672 * MEMDIE process.
2674 if (unlikely(test_thread_flag(TIF_MEMDIE)
2675 || fatal_signal_pending(current)))
2676 goto bypass;
2678 if (unlikely(task_in_memcg_oom(current)))
2679 goto bypass;
2682 * We always charge the cgroup the mm_struct belongs to.
2683 * The mm_struct's mem_cgroup changes on task migration if the
2684 * thread group leader migrates. It's possible that mm is not
2685 * set, if so charge the root memcg (happens for pagecache usage).
2687 if (!*ptr && !mm)
2688 *ptr = root_mem_cgroup;
2689 again:
2690 if (*ptr) { /* css should be a valid one */
2691 memcg = *ptr;
2692 if (mem_cgroup_is_root(memcg))
2693 goto done;
2694 if (consume_stock(memcg, nr_pages))
2695 goto done;
2696 css_get(&memcg->css);
2697 } else {
2698 struct task_struct *p;
2700 rcu_read_lock();
2701 p = rcu_dereference(mm->owner);
2703 * Because we don't have task_lock(), "p" can exit.
2704 * In that case, "memcg" can point to root or p can be NULL with
2705 * race with swapoff. Then, we have small risk of mis-accouning.
2706 * But such kind of mis-account by race always happens because
2707 * we don't have cgroup_mutex(). It's overkill and we allo that
2708 * small race, here.
2709 * (*) swapoff at el will charge against mm-struct not against
2710 * task-struct. So, mm->owner can be NULL.
2712 memcg = mem_cgroup_from_task(p);
2713 if (!memcg)
2714 memcg = root_mem_cgroup;
2715 if (mem_cgroup_is_root(memcg)) {
2716 rcu_read_unlock();
2717 goto done;
2719 if (consume_stock(memcg, nr_pages)) {
2721 * It seems dagerous to access memcg without css_get().
2722 * But considering how consume_stok works, it's not
2723 * necessary. If consume_stock success, some charges
2724 * from this memcg are cached on this cpu. So, we
2725 * don't need to call css_get()/css_tryget() before
2726 * calling consume_stock().
2728 rcu_read_unlock();
2729 goto done;
2731 /* after here, we may be blocked. we need to get refcnt */
2732 if (!css_tryget(&memcg->css)) {
2733 rcu_read_unlock();
2734 goto again;
2736 rcu_read_unlock();
2739 do {
2740 bool invoke_oom = oom && !nr_oom_retries;
2742 /* If killed, bypass charge */
2743 if (fatal_signal_pending(current)) {
2744 css_put(&memcg->css);
2745 goto bypass;
2748 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch,
2749 nr_pages, invoke_oom);
2750 switch (ret) {
2751 case CHARGE_OK:
2752 break;
2753 case CHARGE_RETRY: /* not in OOM situation but retry */
2754 batch = nr_pages;
2755 css_put(&memcg->css);
2756 memcg = NULL;
2757 goto again;
2758 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2759 css_put(&memcg->css);
2760 goto nomem;
2761 case CHARGE_NOMEM: /* OOM routine works */
2762 if (!oom || invoke_oom) {
2763 css_put(&memcg->css);
2764 goto nomem;
2766 nr_oom_retries--;
2767 break;
2769 } while (ret != CHARGE_OK);
2771 if (batch > nr_pages)
2772 refill_stock(memcg, batch - nr_pages);
2773 css_put(&memcg->css);
2774 done:
2775 *ptr = memcg;
2776 return 0;
2777 nomem:
2778 if (!(gfp_mask & __GFP_NOFAIL)) {
2779 *ptr = NULL;
2780 return -ENOMEM;
2782 bypass:
2783 *ptr = root_mem_cgroup;
2784 return -EINTR;
2788 * Somemtimes we have to undo a charge we got by try_charge().
2789 * This function is for that and do uncharge, put css's refcnt.
2790 * gotten by try_charge().
2792 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2793 unsigned int nr_pages)
2795 if (!mem_cgroup_is_root(memcg)) {
2796 unsigned long bytes = nr_pages * PAGE_SIZE;
2798 res_counter_uncharge(&memcg->res, bytes);
2799 if (do_swap_account)
2800 res_counter_uncharge(&memcg->memsw, bytes);
2805 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2806 * This is useful when moving usage to parent cgroup.
2808 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2809 unsigned int nr_pages)
2811 unsigned long bytes = nr_pages * PAGE_SIZE;
2813 if (mem_cgroup_is_root(memcg))
2814 return;
2816 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2817 if (do_swap_account)
2818 res_counter_uncharge_until(&memcg->memsw,
2819 memcg->memsw.parent, bytes);
2823 * A helper function to get mem_cgroup from ID. must be called under
2824 * rcu_read_lock(). The caller is responsible for calling css_tryget if
2825 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2826 * called against removed memcg.)
2828 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2830 struct cgroup_subsys_state *css;
2832 /* ID 0 is unused ID */
2833 if (!id)
2834 return NULL;
2835 css = css_lookup(&mem_cgroup_subsys, id);
2836 if (!css)
2837 return NULL;
2838 return mem_cgroup_from_css(css);
2841 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2843 struct mem_cgroup *memcg = NULL;
2844 struct page_cgroup *pc;
2845 unsigned short id;
2846 swp_entry_t ent;
2848 VM_BUG_ON(!PageLocked(page));
2850 pc = lookup_page_cgroup(page);
2851 lock_page_cgroup(pc);
2852 if (PageCgroupUsed(pc)) {
2853 memcg = pc->mem_cgroup;
2854 if (memcg && !css_tryget(&memcg->css))
2855 memcg = NULL;
2856 } else if (PageSwapCache(page)) {
2857 ent.val = page_private(page);
2858 id = lookup_swap_cgroup_id(ent);
2859 rcu_read_lock();
2860 memcg = mem_cgroup_lookup(id);
2861 if (memcg && !css_tryget(&memcg->css))
2862 memcg = NULL;
2863 rcu_read_unlock();
2865 unlock_page_cgroup(pc);
2866 return memcg;
2869 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2870 struct page *page,
2871 unsigned int nr_pages,
2872 enum charge_type ctype,
2873 bool lrucare)
2875 struct page_cgroup *pc = lookup_page_cgroup(page);
2876 struct zone *uninitialized_var(zone);
2877 struct lruvec *lruvec;
2878 bool was_on_lru = false;
2879 bool anon;
2881 lock_page_cgroup(pc);
2882 VM_BUG_ON(PageCgroupUsed(pc));
2884 * we don't need page_cgroup_lock about tail pages, becase they are not
2885 * accessed by any other context at this point.
2889 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2890 * may already be on some other mem_cgroup's LRU. Take care of it.
2892 if (lrucare) {
2893 zone = page_zone(page);
2894 spin_lock_irq(&zone->lru_lock);
2895 if (PageLRU(page)) {
2896 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2897 ClearPageLRU(page);
2898 del_page_from_lru_list(page, lruvec, page_lru(page));
2899 was_on_lru = true;
2903 pc->mem_cgroup = memcg;
2905 * We access a page_cgroup asynchronously without lock_page_cgroup().
2906 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2907 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2908 * before USED bit, we need memory barrier here.
2909 * See mem_cgroup_add_lru_list(), etc.
2911 smp_wmb();
2912 SetPageCgroupUsed(pc);
2914 if (lrucare) {
2915 if (was_on_lru) {
2916 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2917 VM_BUG_ON(PageLRU(page));
2918 SetPageLRU(page);
2919 add_page_to_lru_list(page, lruvec, page_lru(page));
2921 spin_unlock_irq(&zone->lru_lock);
2924 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2925 anon = true;
2926 else
2927 anon = false;
2929 mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
2930 unlock_page_cgroup(pc);
2933 * "charge_statistics" updated event counter. Then, check it.
2934 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2935 * if they exceeds softlimit.
2937 memcg_check_events(memcg, page);
2940 static DEFINE_MUTEX(set_limit_mutex);
2942 #ifdef CONFIG_MEMCG_KMEM
2943 static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
2945 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
2946 (memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
2950 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2951 * in the memcg_cache_params struct.
2953 static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2955 struct kmem_cache *cachep;
2957 VM_BUG_ON(p->is_root_cache);
2958 cachep = p->root_cache;
2959 return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg));
2962 #ifdef CONFIG_SLABINFO
2963 static int mem_cgroup_slabinfo_read(struct cgroup_subsys_state *css,
2964 struct cftype *cft, struct seq_file *m)
2966 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2967 struct memcg_cache_params *params;
2969 if (!memcg_can_account_kmem(memcg))
2970 return -EIO;
2972 print_slabinfo_header(m);
2974 mutex_lock(&memcg->slab_caches_mutex);
2975 list_for_each_entry(params, &memcg->memcg_slab_caches, list)
2976 cache_show(memcg_params_to_cache(params), m);
2977 mutex_unlock(&memcg->slab_caches_mutex);
2979 return 0;
2981 #endif
2983 static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
2985 struct res_counter *fail_res;
2986 struct mem_cgroup *_memcg;
2987 int ret = 0;
2989 ret = res_counter_charge(&memcg->kmem, size, &fail_res);
2990 if (ret)
2991 return ret;
2993 _memcg = memcg;
2994 ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
2995 &_memcg, oom_gfp_allowed(gfp));
2997 if (ret == -EINTR) {
2999 * __mem_cgroup_try_charge() chosed to bypass to root due to
3000 * OOM kill or fatal signal. Since our only options are to
3001 * either fail the allocation or charge it to this cgroup, do
3002 * it as a temporary condition. But we can't fail. From a
3003 * kmem/slab perspective, the cache has already been selected,
3004 * by mem_cgroup_kmem_get_cache(), so it is too late to change
3005 * our minds.
3007 * This condition will only trigger if the task entered
3008 * memcg_charge_kmem in a sane state, but was OOM-killed during
3009 * __mem_cgroup_try_charge() above. Tasks that were already
3010 * dying when the allocation triggers should have been already
3011 * directed to the root cgroup in memcontrol.h
3013 res_counter_charge_nofail(&memcg->res, size, &fail_res);
3014 if (do_swap_account)
3015 res_counter_charge_nofail(&memcg->memsw, size,
3016 &fail_res);
3017 ret = 0;
3018 } else if (ret)
3019 res_counter_uncharge(&memcg->kmem, size);
3021 return ret;
3024 static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
3026 res_counter_uncharge(&memcg->res, size);
3027 if (do_swap_account)
3028 res_counter_uncharge(&memcg->memsw, size);
3030 /* Not down to 0 */
3031 if (res_counter_uncharge(&memcg->kmem, size))
3032 return;
3035 * Releases a reference taken in kmem_cgroup_css_offline in case
3036 * this last uncharge is racing with the offlining code or it is
3037 * outliving the memcg existence.
3039 * The memory barrier imposed by test&clear is paired with the
3040 * explicit one in memcg_kmem_mark_dead().
3042 if (memcg_kmem_test_and_clear_dead(memcg))
3043 css_put(&memcg->css);
3046 void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
3048 if (!memcg)
3049 return;
3051 mutex_lock(&memcg->slab_caches_mutex);
3052 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
3053 mutex_unlock(&memcg->slab_caches_mutex);
3057 * helper for acessing a memcg's index. It will be used as an index in the
3058 * child cache array in kmem_cache, and also to derive its name. This function
3059 * will return -1 when this is not a kmem-limited memcg.
3061 int memcg_cache_id(struct mem_cgroup *memcg)
3063 return memcg ? memcg->kmemcg_id : -1;
3067 * This ends up being protected by the set_limit mutex, during normal
3068 * operation, because that is its main call site.
3070 * But when we create a new cache, we can call this as well if its parent
3071 * is kmem-limited. That will have to hold set_limit_mutex as well.
3073 int memcg_update_cache_sizes(struct mem_cgroup *memcg)
3075 int num, ret;
3077 num = ida_simple_get(&kmem_limited_groups,
3078 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
3079 if (num < 0)
3080 return num;
3082 * After this point, kmem_accounted (that we test atomically in
3083 * the beginning of this conditional), is no longer 0. This
3084 * guarantees only one process will set the following boolean
3085 * to true. We don't need test_and_set because we're protected
3086 * by the set_limit_mutex anyway.
3088 memcg_kmem_set_activated(memcg);
3090 ret = memcg_update_all_caches(num+1);
3091 if (ret) {
3092 ida_simple_remove(&kmem_limited_groups, num);
3093 memcg_kmem_clear_activated(memcg);
3094 return ret;
3097 memcg->kmemcg_id = num;
3098 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
3099 mutex_init(&memcg->slab_caches_mutex);
3100 return 0;
3103 static size_t memcg_caches_array_size(int num_groups)
3105 ssize_t size;
3106 if (num_groups <= 0)
3107 return 0;
3109 size = 2 * num_groups;
3110 if (size < MEMCG_CACHES_MIN_SIZE)
3111 size = MEMCG_CACHES_MIN_SIZE;
3112 else if (size > MEMCG_CACHES_MAX_SIZE)
3113 size = MEMCG_CACHES_MAX_SIZE;
3115 return size;
3119 * We should update the current array size iff all caches updates succeed. This
3120 * can only be done from the slab side. The slab mutex needs to be held when
3121 * calling this.
3123 void memcg_update_array_size(int num)
3125 if (num > memcg_limited_groups_array_size)
3126 memcg_limited_groups_array_size = memcg_caches_array_size(num);
3129 static void kmem_cache_destroy_work_func(struct work_struct *w);
3131 int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
3133 struct memcg_cache_params *cur_params = s->memcg_params;
3135 VM_BUG_ON(!is_root_cache(s));
3137 if (num_groups > memcg_limited_groups_array_size) {
3138 int i;
3139 ssize_t size = memcg_caches_array_size(num_groups);
3141 size *= sizeof(void *);
3142 size += offsetof(struct memcg_cache_params, memcg_caches);
3144 s->memcg_params = kzalloc(size, GFP_KERNEL);
3145 if (!s->memcg_params) {
3146 s->memcg_params = cur_params;
3147 return -ENOMEM;
3150 s->memcg_params->is_root_cache = true;
3153 * There is the chance it will be bigger than
3154 * memcg_limited_groups_array_size, if we failed an allocation
3155 * in a cache, in which case all caches updated before it, will
3156 * have a bigger array.
3158 * But if that is the case, the data after
3159 * memcg_limited_groups_array_size is certainly unused
3161 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3162 if (!cur_params->memcg_caches[i])
3163 continue;
3164 s->memcg_params->memcg_caches[i] =
3165 cur_params->memcg_caches[i];
3169 * Ideally, we would wait until all caches succeed, and only
3170 * then free the old one. But this is not worth the extra
3171 * pointer per-cache we'd have to have for this.
3173 * It is not a big deal if some caches are left with a size
3174 * bigger than the others. And all updates will reset this
3175 * anyway.
3177 kfree(cur_params);
3179 return 0;
3182 int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
3183 struct kmem_cache *root_cache)
3185 size_t size;
3187 if (!memcg_kmem_enabled())
3188 return 0;
3190 if (!memcg) {
3191 size = offsetof(struct memcg_cache_params, memcg_caches);
3192 size += memcg_limited_groups_array_size * sizeof(void *);
3193 } else
3194 size = sizeof(struct memcg_cache_params);
3196 s->memcg_params = kzalloc(size, GFP_KERNEL);
3197 if (!s->memcg_params)
3198 return -ENOMEM;
3200 if (memcg) {
3201 s->memcg_params->memcg = memcg;
3202 s->memcg_params->root_cache = root_cache;
3203 INIT_WORK(&s->memcg_params->destroy,
3204 kmem_cache_destroy_work_func);
3205 } else
3206 s->memcg_params->is_root_cache = true;
3208 return 0;
3211 void memcg_release_cache(struct kmem_cache *s)
3213 struct kmem_cache *root;
3214 struct mem_cgroup *memcg;
3215 int id;
3218 * This happens, for instance, when a root cache goes away before we
3219 * add any memcg.
3221 if (!s->memcg_params)
3222 return;
3224 if (s->memcg_params->is_root_cache)
3225 goto out;
3227 memcg = s->memcg_params->memcg;
3228 id = memcg_cache_id(memcg);
3230 root = s->memcg_params->root_cache;
3231 root->memcg_params->memcg_caches[id] = NULL;
3233 mutex_lock(&memcg->slab_caches_mutex);
3234 list_del(&s->memcg_params->list);
3235 mutex_unlock(&memcg->slab_caches_mutex);
3237 css_put(&memcg->css);
3238 out:
3239 kfree(s->memcg_params);
3243 * During the creation a new cache, we need to disable our accounting mechanism
3244 * altogether. This is true even if we are not creating, but rather just
3245 * enqueing new caches to be created.
3247 * This is because that process will trigger allocations; some visible, like
3248 * explicit kmallocs to auxiliary data structures, name strings and internal
3249 * cache structures; some well concealed, like INIT_WORK() that can allocate
3250 * objects during debug.
3252 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3253 * to it. This may not be a bounded recursion: since the first cache creation
3254 * failed to complete (waiting on the allocation), we'll just try to create the
3255 * cache again, failing at the same point.
3257 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3258 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3259 * inside the following two functions.
3261 static inline void memcg_stop_kmem_account(void)
3263 VM_BUG_ON(!current->mm);
3264 current->memcg_kmem_skip_account++;
3267 static inline void memcg_resume_kmem_account(void)
3269 VM_BUG_ON(!current->mm);
3270 current->memcg_kmem_skip_account--;
3273 static void kmem_cache_destroy_work_func(struct work_struct *w)
3275 struct kmem_cache *cachep;
3276 struct memcg_cache_params *p;
3278 p = container_of(w, struct memcg_cache_params, destroy);
3280 cachep = memcg_params_to_cache(p);
3283 * If we get down to 0 after shrink, we could delete right away.
3284 * However, memcg_release_pages() already puts us back in the workqueue
3285 * in that case. If we proceed deleting, we'll get a dangling
3286 * reference, and removing the object from the workqueue in that case
3287 * is unnecessary complication. We are not a fast path.
3289 * Note that this case is fundamentally different from racing with
3290 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
3291 * kmem_cache_shrink, not only we would be reinserting a dead cache
3292 * into the queue, but doing so from inside the worker racing to
3293 * destroy it.
3295 * So if we aren't down to zero, we'll just schedule a worker and try
3296 * again
3298 if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
3299 kmem_cache_shrink(cachep);
3300 if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
3301 return;
3302 } else
3303 kmem_cache_destroy(cachep);
3306 void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
3308 if (!cachep->memcg_params->dead)
3309 return;
3312 * There are many ways in which we can get here.
3314 * We can get to a memory-pressure situation while the delayed work is
3315 * still pending to run. The vmscan shrinkers can then release all
3316 * cache memory and get us to destruction. If this is the case, we'll
3317 * be executed twice, which is a bug (the second time will execute over
3318 * bogus data). In this case, cancelling the work should be fine.
3320 * But we can also get here from the worker itself, if
3321 * kmem_cache_shrink is enough to shake all the remaining objects and
3322 * get the page count to 0. In this case, we'll deadlock if we try to
3323 * cancel the work (the worker runs with an internal lock held, which
3324 * is the same lock we would hold for cancel_work_sync().)
3326 * Since we can't possibly know who got us here, just refrain from
3327 * running if there is already work pending
3329 if (work_pending(&cachep->memcg_params->destroy))
3330 return;
3332 * We have to defer the actual destroying to a workqueue, because
3333 * we might currently be in a context that cannot sleep.
3335 schedule_work(&cachep->memcg_params->destroy);
3339 * This lock protects updaters, not readers. We want readers to be as fast as
3340 * they can, and they will either see NULL or a valid cache value. Our model
3341 * allow them to see NULL, in which case the root memcg will be selected.
3343 * We need this lock because multiple allocations to the same cache from a non
3344 * will span more than one worker. Only one of them can create the cache.
3346 static DEFINE_MUTEX(memcg_cache_mutex);
3349 * Called with memcg_cache_mutex held
3351 static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
3352 struct kmem_cache *s)
3354 struct kmem_cache *new;
3355 static char *tmp_name = NULL;
3357 lockdep_assert_held(&memcg_cache_mutex);
3360 * kmem_cache_create_memcg duplicates the given name and
3361 * cgroup_name for this name requires RCU context.
3362 * This static temporary buffer is used to prevent from
3363 * pointless shortliving allocation.
3365 if (!tmp_name) {
3366 tmp_name = kmalloc(PATH_MAX, GFP_KERNEL);
3367 if (!tmp_name)
3368 return NULL;
3371 rcu_read_lock();
3372 snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name,
3373 memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup));
3374 rcu_read_unlock();
3376 new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align,
3377 (s->flags & ~SLAB_PANIC), s->ctor, s);
3379 if (new)
3380 new->allocflags |= __GFP_KMEMCG;
3382 return new;
3385 static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
3386 struct kmem_cache *cachep)
3388 struct kmem_cache *new_cachep;
3389 int idx;
3391 BUG_ON(!memcg_can_account_kmem(memcg));
3393 idx = memcg_cache_id(memcg);
3395 mutex_lock(&memcg_cache_mutex);
3396 new_cachep = cache_from_memcg_idx(cachep, idx);
3397 if (new_cachep) {
3398 css_put(&memcg->css);
3399 goto out;
3402 new_cachep = kmem_cache_dup(memcg, cachep);
3403 if (new_cachep == NULL) {
3404 new_cachep = cachep;
3405 css_put(&memcg->css);
3406 goto out;
3409 atomic_set(&new_cachep->memcg_params->nr_pages , 0);
3411 cachep->memcg_params->memcg_caches[idx] = new_cachep;
3413 * the readers won't lock, make sure everybody sees the updated value,
3414 * so they won't put stuff in the queue again for no reason
3416 wmb();
3417 out:
3418 mutex_unlock(&memcg_cache_mutex);
3419 return new_cachep;
3422 void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
3424 struct kmem_cache *c;
3425 int i;
3427 if (!s->memcg_params)
3428 return;
3429 if (!s->memcg_params->is_root_cache)
3430 return;
3433 * If the cache is being destroyed, we trust that there is no one else
3434 * requesting objects from it. Even if there are, the sanity checks in
3435 * kmem_cache_destroy should caught this ill-case.
3437 * Still, we don't want anyone else freeing memcg_caches under our
3438 * noses, which can happen if a new memcg comes to life. As usual,
3439 * we'll take the set_limit_mutex to protect ourselves against this.
3441 mutex_lock(&set_limit_mutex);
3442 for_each_memcg_cache_index(i) {
3443 c = cache_from_memcg_idx(s, i);
3444 if (!c)
3445 continue;
3448 * We will now manually delete the caches, so to avoid races
3449 * we need to cancel all pending destruction workers and
3450 * proceed with destruction ourselves.
3452 * kmem_cache_destroy() will call kmem_cache_shrink internally,
3453 * and that could spawn the workers again: it is likely that
3454 * the cache still have active pages until this very moment.
3455 * This would lead us back to mem_cgroup_destroy_cache.
3457 * But that will not execute at all if the "dead" flag is not
3458 * set, so flip it down to guarantee we are in control.
3460 c->memcg_params->dead = false;
3461 cancel_work_sync(&c->memcg_params->destroy);
3462 kmem_cache_destroy(c);
3464 mutex_unlock(&set_limit_mutex);
3467 struct create_work {
3468 struct mem_cgroup *memcg;
3469 struct kmem_cache *cachep;
3470 struct work_struct work;
3473 static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3475 struct kmem_cache *cachep;
3476 struct memcg_cache_params *params;
3478 if (!memcg_kmem_is_active(memcg))
3479 return;
3481 mutex_lock(&memcg->slab_caches_mutex);
3482 list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
3483 cachep = memcg_params_to_cache(params);
3484 cachep->memcg_params->dead = true;
3485 schedule_work(&cachep->memcg_params->destroy);
3487 mutex_unlock(&memcg->slab_caches_mutex);
3490 static void memcg_create_cache_work_func(struct work_struct *w)
3492 struct create_work *cw;
3494 cw = container_of(w, struct create_work, work);
3495 memcg_create_kmem_cache(cw->memcg, cw->cachep);
3496 kfree(cw);
3500 * Enqueue the creation of a per-memcg kmem_cache.
3502 static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3503 struct kmem_cache *cachep)
3505 struct create_work *cw;
3507 cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
3508 if (cw == NULL) {
3509 css_put(&memcg->css);
3510 return;
3513 cw->memcg = memcg;
3514 cw->cachep = cachep;
3516 INIT_WORK(&cw->work, memcg_create_cache_work_func);
3517 schedule_work(&cw->work);
3520 static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3521 struct kmem_cache *cachep)
3524 * We need to stop accounting when we kmalloc, because if the
3525 * corresponding kmalloc cache is not yet created, the first allocation
3526 * in __memcg_create_cache_enqueue will recurse.
3528 * However, it is better to enclose the whole function. Depending on
3529 * the debugging options enabled, INIT_WORK(), for instance, can
3530 * trigger an allocation. This too, will make us recurse. Because at
3531 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3532 * the safest choice is to do it like this, wrapping the whole function.
3534 memcg_stop_kmem_account();
3535 __memcg_create_cache_enqueue(memcg, cachep);
3536 memcg_resume_kmem_account();
3539 * Return the kmem_cache we're supposed to use for a slab allocation.
3540 * We try to use the current memcg's version of the cache.
3542 * If the cache does not exist yet, if we are the first user of it,
3543 * we either create it immediately, if possible, or create it asynchronously
3544 * in a workqueue.
3545 * In the latter case, we will let the current allocation go through with
3546 * the original cache.
3548 * Can't be called in interrupt context or from kernel threads.
3549 * This function needs to be called with rcu_read_lock() held.
3551 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3552 gfp_t gfp)
3554 struct mem_cgroup *memcg;
3555 int idx;
3557 VM_BUG_ON(!cachep->memcg_params);
3558 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3560 if (!current->mm || current->memcg_kmem_skip_account)
3561 return cachep;
3563 rcu_read_lock();
3564 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
3566 if (!memcg_can_account_kmem(memcg))
3567 goto out;
3569 idx = memcg_cache_id(memcg);
3572 * barrier to mare sure we're always seeing the up to date value. The
3573 * code updating memcg_caches will issue a write barrier to match this.
3575 read_barrier_depends();
3576 if (likely(cache_from_memcg_idx(cachep, idx))) {
3577 cachep = cache_from_memcg_idx(cachep, idx);
3578 goto out;
3581 /* The corresponding put will be done in the workqueue. */
3582 if (!css_tryget(&memcg->css))
3583 goto out;
3584 rcu_read_unlock();
3587 * If we are in a safe context (can wait, and not in interrupt
3588 * context), we could be be predictable and return right away.
3589 * This would guarantee that the allocation being performed
3590 * already belongs in the new cache.
3592 * However, there are some clashes that can arrive from locking.
3593 * For instance, because we acquire the slab_mutex while doing
3594 * kmem_cache_dup, this means no further allocation could happen
3595 * with the slab_mutex held.
3597 * Also, because cache creation issue get_online_cpus(), this
3598 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
3599 * that ends up reversed during cpu hotplug. (cpuset allocates
3600 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
3601 * better to defer everything.
3603 memcg_create_cache_enqueue(memcg, cachep);
3604 return cachep;
3605 out:
3606 rcu_read_unlock();
3607 return cachep;
3609 EXPORT_SYMBOL(__memcg_kmem_get_cache);
3612 * We need to verify if the allocation against current->mm->owner's memcg is
3613 * possible for the given order. But the page is not allocated yet, so we'll
3614 * need a further commit step to do the final arrangements.
3616 * It is possible for the task to switch cgroups in this mean time, so at
3617 * commit time, we can't rely on task conversion any longer. We'll then use
3618 * the handle argument to return to the caller which cgroup we should commit
3619 * against. We could also return the memcg directly and avoid the pointer
3620 * passing, but a boolean return value gives better semantics considering
3621 * the compiled-out case as well.
3623 * Returning true means the allocation is possible.
3625 bool
3626 __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3628 struct mem_cgroup *memcg;
3629 int ret;
3631 *_memcg = NULL;
3634 * Disabling accounting is only relevant for some specific memcg
3635 * internal allocations. Therefore we would initially not have such
3636 * check here, since direct calls to the page allocator that are marked
3637 * with GFP_KMEMCG only happen outside memcg core. We are mostly
3638 * concerned with cache allocations, and by having this test at
3639 * memcg_kmem_get_cache, we are already able to relay the allocation to
3640 * the root cache and bypass the memcg cache altogether.
3642 * There is one exception, though: the SLUB allocator does not create
3643 * large order caches, but rather service large kmallocs directly from
3644 * the page allocator. Therefore, the following sequence when backed by
3645 * the SLUB allocator:
3647 * memcg_stop_kmem_account();
3648 * kmalloc(<large_number>)
3649 * memcg_resume_kmem_account();
3651 * would effectively ignore the fact that we should skip accounting,
3652 * since it will drive us directly to this function without passing
3653 * through the cache selector memcg_kmem_get_cache. Such large
3654 * allocations are extremely rare but can happen, for instance, for the
3655 * cache arrays. We bring this test here.
3657 if (!current->mm || current->memcg_kmem_skip_account)
3658 return true;
3660 memcg = try_get_mem_cgroup_from_mm(current->mm);
3663 * very rare case described in mem_cgroup_from_task. Unfortunately there
3664 * isn't much we can do without complicating this too much, and it would
3665 * be gfp-dependent anyway. Just let it go
3667 if (unlikely(!memcg))
3668 return true;
3670 if (!memcg_can_account_kmem(memcg)) {
3671 css_put(&memcg->css);
3672 return true;
3675 ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3676 if (!ret)
3677 *_memcg = memcg;
3679 css_put(&memcg->css);
3680 return (ret == 0);
3683 void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3684 int order)
3686 struct page_cgroup *pc;
3688 VM_BUG_ON(mem_cgroup_is_root(memcg));
3690 /* The page allocation failed. Revert */
3691 if (!page) {
3692 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3693 return;
3696 pc = lookup_page_cgroup(page);
3697 lock_page_cgroup(pc);
3698 pc->mem_cgroup = memcg;
3699 SetPageCgroupUsed(pc);
3700 unlock_page_cgroup(pc);
3703 void __memcg_kmem_uncharge_pages(struct page *page, int order)
3705 struct mem_cgroup *memcg = NULL;
3706 struct page_cgroup *pc;
3709 pc = lookup_page_cgroup(page);
3711 * Fast unlocked return. Theoretically might have changed, have to
3712 * check again after locking.
3714 if (!PageCgroupUsed(pc))
3715 return;
3717 lock_page_cgroup(pc);
3718 if (PageCgroupUsed(pc)) {
3719 memcg = pc->mem_cgroup;
3720 ClearPageCgroupUsed(pc);
3722 unlock_page_cgroup(pc);
3725 * We trust that only if there is a memcg associated with the page, it
3726 * is a valid allocation
3728 if (!memcg)
3729 return;
3731 VM_BUG_ON(mem_cgroup_is_root(memcg));
3732 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3734 #else
3735 static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3738 #endif /* CONFIG_MEMCG_KMEM */
3740 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3742 #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3744 * Because tail pages are not marked as "used", set it. We're under
3745 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3746 * charge/uncharge will be never happen and move_account() is done under
3747 * compound_lock(), so we don't have to take care of races.
3749 void mem_cgroup_split_huge_fixup(struct page *head)
3751 struct page_cgroup *head_pc = lookup_page_cgroup(head);
3752 struct page_cgroup *pc;
3753 struct mem_cgroup *memcg;
3754 int i;
3756 if (mem_cgroup_disabled())
3757 return;
3759 memcg = head_pc->mem_cgroup;
3760 for (i = 1; i < HPAGE_PMD_NR; i++) {
3761 pc = head_pc + i;
3762 pc->mem_cgroup = memcg;
3763 smp_wmb();/* see __commit_charge() */
3764 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
3766 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3767 HPAGE_PMD_NR);
3769 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3771 static inline
3772 void mem_cgroup_move_account_page_stat(struct mem_cgroup *from,
3773 struct mem_cgroup *to,
3774 unsigned int nr_pages,
3775 enum mem_cgroup_stat_index idx)
3777 /* Update stat data for mem_cgroup */
3778 preempt_disable();
3779 __this_cpu_sub(from->stat->count[idx], nr_pages);
3780 __this_cpu_add(to->stat->count[idx], nr_pages);
3781 preempt_enable();
3785 * mem_cgroup_move_account - move account of the page
3786 * @page: the page
3787 * @nr_pages: number of regular pages (>1 for huge pages)
3788 * @pc: page_cgroup of the page.
3789 * @from: mem_cgroup which the page is moved from.
3790 * @to: mem_cgroup which the page is moved to. @from != @to.
3792 * The caller must confirm following.
3793 * - page is not on LRU (isolate_page() is useful.)
3794 * - compound_lock is held when nr_pages > 1
3796 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3797 * from old cgroup.
3799 static int mem_cgroup_move_account(struct page *page,
3800 unsigned int nr_pages,
3801 struct page_cgroup *pc,
3802 struct mem_cgroup *from,
3803 struct mem_cgroup *to)
3805 unsigned long flags;
3806 int ret;
3807 bool anon = PageAnon(page);
3809 VM_BUG_ON(from == to);
3810 VM_BUG_ON(PageLRU(page));
3812 * The page is isolated from LRU. So, collapse function
3813 * will not handle this page. But page splitting can happen.
3814 * Do this check under compound_page_lock(). The caller should
3815 * hold it.
3817 ret = -EBUSY;
3818 if (nr_pages > 1 && !PageTransHuge(page))
3819 goto out;
3821 lock_page_cgroup(pc);
3823 ret = -EINVAL;
3824 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3825 goto unlock;
3827 move_lock_mem_cgroup(from, &flags);
3829 if (!anon && page_mapped(page))
3830 mem_cgroup_move_account_page_stat(from, to, nr_pages,
3831 MEM_CGROUP_STAT_FILE_MAPPED);
3833 if (PageWriteback(page))
3834 mem_cgroup_move_account_page_stat(from, to, nr_pages,
3835 MEM_CGROUP_STAT_WRITEBACK);
3837 mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
3839 /* caller should have done css_get */
3840 pc->mem_cgroup = to;
3841 mem_cgroup_charge_statistics(to, page, anon, nr_pages);
3842 move_unlock_mem_cgroup(from, &flags);
3843 ret = 0;
3844 unlock:
3845 unlock_page_cgroup(pc);
3847 * check events
3849 memcg_check_events(to, page);
3850 memcg_check_events(from, page);
3851 out:
3852 return ret;
3856 * mem_cgroup_move_parent - moves page to the parent group
3857 * @page: the page to move
3858 * @pc: page_cgroup of the page
3859 * @child: page's cgroup
3861 * move charges to its parent or the root cgroup if the group has no
3862 * parent (aka use_hierarchy==0).
3863 * Although this might fail (get_page_unless_zero, isolate_lru_page or
3864 * mem_cgroup_move_account fails) the failure is always temporary and
3865 * it signals a race with a page removal/uncharge or migration. In the
3866 * first case the page is on the way out and it will vanish from the LRU
3867 * on the next attempt and the call should be retried later.
3868 * Isolation from the LRU fails only if page has been isolated from
3869 * the LRU since we looked at it and that usually means either global
3870 * reclaim or migration going on. The page will either get back to the
3871 * LRU or vanish.
3872 * Finaly mem_cgroup_move_account fails only if the page got uncharged
3873 * (!PageCgroupUsed) or moved to a different group. The page will
3874 * disappear in the next attempt.
3876 static int mem_cgroup_move_parent(struct page *page,
3877 struct page_cgroup *pc,
3878 struct mem_cgroup *child)
3880 struct mem_cgroup *parent;
3881 unsigned int nr_pages;
3882 unsigned long uninitialized_var(flags);
3883 int ret;
3885 VM_BUG_ON(mem_cgroup_is_root(child));
3887 ret = -EBUSY;
3888 if (!get_page_unless_zero(page))
3889 goto out;
3890 if (isolate_lru_page(page))
3891 goto put;
3893 nr_pages = hpage_nr_pages(page);
3895 parent = parent_mem_cgroup(child);
3897 * If no parent, move charges to root cgroup.
3899 if (!parent)
3900 parent = root_mem_cgroup;
3902 if (nr_pages > 1) {
3903 VM_BUG_ON(!PageTransHuge(page));
3904 flags = compound_lock_irqsave(page);
3907 ret = mem_cgroup_move_account(page, nr_pages,
3908 pc, child, parent);
3909 if (!ret)
3910 __mem_cgroup_cancel_local_charge(child, nr_pages);
3912 if (nr_pages > 1)
3913 compound_unlock_irqrestore(page, flags);
3914 putback_lru_page(page);
3915 put:
3916 put_page(page);
3917 out:
3918 return ret;
3922 * Charge the memory controller for page usage.
3923 * Return
3924 * 0 if the charge was successful
3925 * < 0 if the cgroup is over its limit
3927 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
3928 gfp_t gfp_mask, enum charge_type ctype)
3930 struct mem_cgroup *memcg = NULL;
3931 unsigned int nr_pages = 1;
3932 bool oom = true;
3933 int ret;
3935 if (PageTransHuge(page)) {
3936 nr_pages <<= compound_order(page);
3937 VM_BUG_ON(!PageTransHuge(page));
3939 * Never OOM-kill a process for a huge page. The
3940 * fault handler will fall back to regular pages.
3942 oom = false;
3945 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
3946 if (ret == -ENOMEM)
3947 return ret;
3948 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
3949 return 0;
3952 int mem_cgroup_newpage_charge(struct page *page,
3953 struct mm_struct *mm, gfp_t gfp_mask)
3955 if (mem_cgroup_disabled())
3956 return 0;
3957 VM_BUG_ON(page_mapped(page));
3958 VM_BUG_ON(page->mapping && !PageAnon(page));
3959 VM_BUG_ON(!mm);
3960 return mem_cgroup_charge_common(page, mm, gfp_mask,
3961 MEM_CGROUP_CHARGE_TYPE_ANON);
3965 * While swap-in, try_charge -> commit or cancel, the page is locked.
3966 * And when try_charge() successfully returns, one refcnt to memcg without
3967 * struct page_cgroup is acquired. This refcnt will be consumed by
3968 * "commit()" or removed by "cancel()"
3970 static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
3971 struct page *page,
3972 gfp_t mask,
3973 struct mem_cgroup **memcgp)
3975 struct mem_cgroup *memcg;
3976 struct page_cgroup *pc;
3977 int ret;
3979 pc = lookup_page_cgroup(page);
3981 * Every swap fault against a single page tries to charge the
3982 * page, bail as early as possible. shmem_unuse() encounters
3983 * already charged pages, too. The USED bit is protected by
3984 * the page lock, which serializes swap cache removal, which
3985 * in turn serializes uncharging.
3987 if (PageCgroupUsed(pc))
3988 return 0;
3989 if (!do_swap_account)
3990 goto charge_cur_mm;
3991 memcg = try_get_mem_cgroup_from_page(page);
3992 if (!memcg)
3993 goto charge_cur_mm;
3994 *memcgp = memcg;
3995 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
3996 css_put(&memcg->css);
3997 if (ret == -EINTR)
3998 ret = 0;
3999 return ret;
4000 charge_cur_mm:
4001 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
4002 if (ret == -EINTR)
4003 ret = 0;
4004 return ret;
4007 int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
4008 gfp_t gfp_mask, struct mem_cgroup **memcgp)
4010 *memcgp = NULL;
4011 if (mem_cgroup_disabled())
4012 return 0;
4014 * A racing thread's fault, or swapoff, may have already
4015 * updated the pte, and even removed page from swap cache: in
4016 * those cases unuse_pte()'s pte_same() test will fail; but
4017 * there's also a KSM case which does need to charge the page.
4019 if (!PageSwapCache(page)) {
4020 int ret;
4022 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
4023 if (ret == -EINTR)
4024 ret = 0;
4025 return ret;
4027 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
4030 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
4032 if (mem_cgroup_disabled())
4033 return;
4034 if (!memcg)
4035 return;
4036 __mem_cgroup_cancel_charge(memcg, 1);
4039 static void
4040 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
4041 enum charge_type ctype)
4043 if (mem_cgroup_disabled())
4044 return;
4045 if (!memcg)
4046 return;
4048 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
4050 * Now swap is on-memory. This means this page may be
4051 * counted both as mem and swap....double count.
4052 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
4053 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
4054 * may call delete_from_swap_cache() before reach here.
4056 if (do_swap_account && PageSwapCache(page)) {
4057 swp_entry_t ent = {.val = page_private(page)};
4058 mem_cgroup_uncharge_swap(ent);
4062 void mem_cgroup_commit_charge_swapin(struct page *page,
4063 struct mem_cgroup *memcg)
4065 __mem_cgroup_commit_charge_swapin(page, memcg,
4066 MEM_CGROUP_CHARGE_TYPE_ANON);
4069 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
4070 gfp_t gfp_mask)
4072 struct mem_cgroup *memcg = NULL;
4073 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4074 int ret;
4076 if (mem_cgroup_disabled())
4077 return 0;
4078 if (PageCompound(page))
4079 return 0;
4081 if (!PageSwapCache(page))
4082 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
4083 else { /* page is swapcache/shmem */
4084 ret = __mem_cgroup_try_charge_swapin(mm, page,
4085 gfp_mask, &memcg);
4086 if (!ret)
4087 __mem_cgroup_commit_charge_swapin(page, memcg, type);
4089 return ret;
4092 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
4093 unsigned int nr_pages,
4094 const enum charge_type ctype)
4096 struct memcg_batch_info *batch = NULL;
4097 bool uncharge_memsw = true;
4099 /* If swapout, usage of swap doesn't decrease */
4100 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
4101 uncharge_memsw = false;
4103 batch = &current->memcg_batch;
4105 * In usual, we do css_get() when we remember memcg pointer.
4106 * But in this case, we keep res->usage until end of a series of
4107 * uncharges. Then, it's ok to ignore memcg's refcnt.
4109 if (!batch->memcg)
4110 batch->memcg = memcg;
4112 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
4113 * In those cases, all pages freed continuously can be expected to be in
4114 * the same cgroup and we have chance to coalesce uncharges.
4115 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
4116 * because we want to do uncharge as soon as possible.
4119 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
4120 goto direct_uncharge;
4122 if (nr_pages > 1)
4123 goto direct_uncharge;
4126 * In typical case, batch->memcg == mem. This means we can
4127 * merge a series of uncharges to an uncharge of res_counter.
4128 * If not, we uncharge res_counter ony by one.
4130 if (batch->memcg != memcg)
4131 goto direct_uncharge;
4132 /* remember freed charge and uncharge it later */
4133 batch->nr_pages++;
4134 if (uncharge_memsw)
4135 batch->memsw_nr_pages++;
4136 return;
4137 direct_uncharge:
4138 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
4139 if (uncharge_memsw)
4140 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
4141 if (unlikely(batch->memcg != memcg))
4142 memcg_oom_recover(memcg);
4146 * uncharge if !page_mapped(page)
4148 static struct mem_cgroup *
4149 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
4150 bool end_migration)
4152 struct mem_cgroup *memcg = NULL;
4153 unsigned int nr_pages = 1;
4154 struct page_cgroup *pc;
4155 bool anon;
4157 if (mem_cgroup_disabled())
4158 return NULL;
4160 if (PageTransHuge(page)) {
4161 nr_pages <<= compound_order(page);
4162 VM_BUG_ON(!PageTransHuge(page));
4165 * Check if our page_cgroup is valid
4167 pc = lookup_page_cgroup(page);
4168 if (unlikely(!PageCgroupUsed(pc)))
4169 return NULL;
4171 lock_page_cgroup(pc);
4173 memcg = pc->mem_cgroup;
4175 if (!PageCgroupUsed(pc))
4176 goto unlock_out;
4178 anon = PageAnon(page);
4180 switch (ctype) {
4181 case MEM_CGROUP_CHARGE_TYPE_ANON:
4183 * Generally PageAnon tells if it's the anon statistics to be
4184 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
4185 * used before page reached the stage of being marked PageAnon.
4187 anon = true;
4188 /* fallthrough */
4189 case MEM_CGROUP_CHARGE_TYPE_DROP:
4190 /* See mem_cgroup_prepare_migration() */
4191 if (page_mapped(page))
4192 goto unlock_out;
4194 * Pages under migration may not be uncharged. But
4195 * end_migration() /must/ be the one uncharging the
4196 * unused post-migration page and so it has to call
4197 * here with the migration bit still set. See the
4198 * res_counter handling below.
4200 if (!end_migration && PageCgroupMigration(pc))
4201 goto unlock_out;
4202 break;
4203 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
4204 if (!PageAnon(page)) { /* Shared memory */
4205 if (page->mapping && !page_is_file_cache(page))
4206 goto unlock_out;
4207 } else if (page_mapped(page)) /* Anon */
4208 goto unlock_out;
4209 break;
4210 default:
4211 break;
4214 mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
4216 ClearPageCgroupUsed(pc);
4218 * pc->mem_cgroup is not cleared here. It will be accessed when it's
4219 * freed from LRU. This is safe because uncharged page is expected not
4220 * to be reused (freed soon). Exception is SwapCache, it's handled by
4221 * special functions.
4224 unlock_page_cgroup(pc);
4226 * even after unlock, we have memcg->res.usage here and this memcg
4227 * will never be freed, so it's safe to call css_get().
4229 memcg_check_events(memcg, page);
4230 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
4231 mem_cgroup_swap_statistics(memcg, true);
4232 css_get(&memcg->css);
4235 * Migration does not charge the res_counter for the
4236 * replacement page, so leave it alone when phasing out the
4237 * page that is unused after the migration.
4239 if (!end_migration && !mem_cgroup_is_root(memcg))
4240 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
4242 return memcg;
4244 unlock_out:
4245 unlock_page_cgroup(pc);
4246 return NULL;
4249 void mem_cgroup_uncharge_page(struct page *page)
4251 /* early check. */
4252 if (page_mapped(page))
4253 return;
4254 VM_BUG_ON(page->mapping && !PageAnon(page));
4256 * If the page is in swap cache, uncharge should be deferred
4257 * to the swap path, which also properly accounts swap usage
4258 * and handles memcg lifetime.
4260 * Note that this check is not stable and reclaim may add the
4261 * page to swap cache at any time after this. However, if the
4262 * page is not in swap cache by the time page->mapcount hits
4263 * 0, there won't be any page table references to the swap
4264 * slot, and reclaim will free it and not actually write the
4265 * page to disk.
4267 if (PageSwapCache(page))
4268 return;
4269 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4272 void mem_cgroup_uncharge_cache_page(struct page *page)
4274 VM_BUG_ON(page_mapped(page));
4275 VM_BUG_ON(page->mapping);
4276 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4280 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
4281 * In that cases, pages are freed continuously and we can expect pages
4282 * are in the same memcg. All these calls itself limits the number of
4283 * pages freed at once, then uncharge_start/end() is called properly.
4284 * This may be called prural(2) times in a context,
4287 void mem_cgroup_uncharge_start(void)
4289 current->memcg_batch.do_batch++;
4290 /* We can do nest. */
4291 if (current->memcg_batch.do_batch == 1) {
4292 current->memcg_batch.memcg = NULL;
4293 current->memcg_batch.nr_pages = 0;
4294 current->memcg_batch.memsw_nr_pages = 0;
4298 void mem_cgroup_uncharge_end(void)
4300 struct memcg_batch_info *batch = &current->memcg_batch;
4302 if (!batch->do_batch)
4303 return;
4305 batch->do_batch--;
4306 if (batch->do_batch) /* If stacked, do nothing. */
4307 return;
4309 if (!batch->memcg)
4310 return;
4312 * This "batch->memcg" is valid without any css_get/put etc...
4313 * bacause we hide charges behind us.
4315 if (batch->nr_pages)
4316 res_counter_uncharge(&batch->memcg->res,
4317 batch->nr_pages * PAGE_SIZE);
4318 if (batch->memsw_nr_pages)
4319 res_counter_uncharge(&batch->memcg->memsw,
4320 batch->memsw_nr_pages * PAGE_SIZE);
4321 memcg_oom_recover(batch->memcg);
4322 /* forget this pointer (for sanity check) */
4323 batch->memcg = NULL;
4326 #ifdef CONFIG_SWAP
4328 * called after __delete_from_swap_cache() and drop "page" account.
4329 * memcg information is recorded to swap_cgroup of "ent"
4331 void
4332 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4334 struct mem_cgroup *memcg;
4335 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
4337 if (!swapout) /* this was a swap cache but the swap is unused ! */
4338 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
4340 memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4343 * record memcg information, if swapout && memcg != NULL,
4344 * css_get() was called in uncharge().
4346 if (do_swap_account && swapout && memcg)
4347 swap_cgroup_record(ent, css_id(&memcg->css));
4349 #endif
4351 #ifdef CONFIG_MEMCG_SWAP
4353 * called from swap_entry_free(). remove record in swap_cgroup and
4354 * uncharge "memsw" account.
4356 void mem_cgroup_uncharge_swap(swp_entry_t ent)
4358 struct mem_cgroup *memcg;
4359 unsigned short id;
4361 if (!do_swap_account)
4362 return;
4364 id = swap_cgroup_record(ent, 0);
4365 rcu_read_lock();
4366 memcg = mem_cgroup_lookup(id);
4367 if (memcg) {
4369 * We uncharge this because swap is freed.
4370 * This memcg can be obsolete one. We avoid calling css_tryget
4372 if (!mem_cgroup_is_root(memcg))
4373 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4374 mem_cgroup_swap_statistics(memcg, false);
4375 css_put(&memcg->css);
4377 rcu_read_unlock();
4381 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
4382 * @entry: swap entry to be moved
4383 * @from: mem_cgroup which the entry is moved from
4384 * @to: mem_cgroup which the entry is moved to
4386 * It succeeds only when the swap_cgroup's record for this entry is the same
4387 * as the mem_cgroup's id of @from.
4389 * Returns 0 on success, -EINVAL on failure.
4391 * The caller must have charged to @to, IOW, called res_counter_charge() about
4392 * both res and memsw, and called css_get().
4394 static int mem_cgroup_move_swap_account(swp_entry_t entry,
4395 struct mem_cgroup *from, struct mem_cgroup *to)
4397 unsigned short old_id, new_id;
4399 old_id = css_id(&from->css);
4400 new_id = css_id(&to->css);
4402 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
4403 mem_cgroup_swap_statistics(from, false);
4404 mem_cgroup_swap_statistics(to, true);
4406 * This function is only called from task migration context now.
4407 * It postpones res_counter and refcount handling till the end
4408 * of task migration(mem_cgroup_clear_mc()) for performance
4409 * improvement. But we cannot postpone css_get(to) because if
4410 * the process that has been moved to @to does swap-in, the
4411 * refcount of @to might be decreased to 0.
4413 * We are in attach() phase, so the cgroup is guaranteed to be
4414 * alive, so we can just call css_get().
4416 css_get(&to->css);
4417 return 0;
4419 return -EINVAL;
4421 #else
4422 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4423 struct mem_cgroup *from, struct mem_cgroup *to)
4425 return -EINVAL;
4427 #endif
4430 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
4431 * page belongs to.
4433 void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
4434 struct mem_cgroup **memcgp)
4436 struct mem_cgroup *memcg = NULL;
4437 unsigned int nr_pages = 1;
4438 struct page_cgroup *pc;
4439 enum charge_type ctype;
4441 *memcgp = NULL;
4443 if (mem_cgroup_disabled())
4444 return;
4446 if (PageTransHuge(page))
4447 nr_pages <<= compound_order(page);
4449 pc = lookup_page_cgroup(page);
4450 lock_page_cgroup(pc);
4451 if (PageCgroupUsed(pc)) {
4452 memcg = pc->mem_cgroup;
4453 css_get(&memcg->css);
4455 * At migrating an anonymous page, its mapcount goes down
4456 * to 0 and uncharge() will be called. But, even if it's fully
4457 * unmapped, migration may fail and this page has to be
4458 * charged again. We set MIGRATION flag here and delay uncharge
4459 * until end_migration() is called
4461 * Corner Case Thinking
4462 * A)
4463 * When the old page was mapped as Anon and it's unmap-and-freed
4464 * while migration was ongoing.
4465 * If unmap finds the old page, uncharge() of it will be delayed
4466 * until end_migration(). If unmap finds a new page, it's
4467 * uncharged when it make mapcount to be 1->0. If unmap code
4468 * finds swap_migration_entry, the new page will not be mapped
4469 * and end_migration() will find it(mapcount==0).
4471 * B)
4472 * When the old page was mapped but migraion fails, the kernel
4473 * remaps it. A charge for it is kept by MIGRATION flag even
4474 * if mapcount goes down to 0. We can do remap successfully
4475 * without charging it again.
4477 * C)
4478 * The "old" page is under lock_page() until the end of
4479 * migration, so, the old page itself will not be swapped-out.
4480 * If the new page is swapped out before end_migraton, our
4481 * hook to usual swap-out path will catch the event.
4483 if (PageAnon(page))
4484 SetPageCgroupMigration(pc);
4486 unlock_page_cgroup(pc);
4488 * If the page is not charged at this point,
4489 * we return here.
4491 if (!memcg)
4492 return;
4494 *memcgp = memcg;
4496 * We charge new page before it's used/mapped. So, even if unlock_page()
4497 * is called before end_migration, we can catch all events on this new
4498 * page. In the case new page is migrated but not remapped, new page's
4499 * mapcount will be finally 0 and we call uncharge in end_migration().
4501 if (PageAnon(page))
4502 ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4503 else
4504 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4506 * The page is committed to the memcg, but it's not actually
4507 * charged to the res_counter since we plan on replacing the
4508 * old one and only one page is going to be left afterwards.
4510 __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4513 /* remove redundant charge if migration failed*/
4514 void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4515 struct page *oldpage, struct page *newpage, bool migration_ok)
4517 struct page *used, *unused;
4518 struct page_cgroup *pc;
4519 bool anon;
4521 if (!memcg)
4522 return;
4524 if (!migration_ok) {
4525 used = oldpage;
4526 unused = newpage;
4527 } else {
4528 used = newpage;
4529 unused = oldpage;
4531 anon = PageAnon(used);
4532 __mem_cgroup_uncharge_common(unused,
4533 anon ? MEM_CGROUP_CHARGE_TYPE_ANON
4534 : MEM_CGROUP_CHARGE_TYPE_CACHE,
4535 true);
4536 css_put(&memcg->css);
4538 * We disallowed uncharge of pages under migration because mapcount
4539 * of the page goes down to zero, temporarly.
4540 * Clear the flag and check the page should be charged.
4542 pc = lookup_page_cgroup(oldpage);
4543 lock_page_cgroup(pc);
4544 ClearPageCgroupMigration(pc);
4545 unlock_page_cgroup(pc);
4548 * If a page is a file cache, radix-tree replacement is very atomic
4549 * and we can skip this check. When it was an Anon page, its mapcount
4550 * goes down to 0. But because we added MIGRATION flage, it's not
4551 * uncharged yet. There are several case but page->mapcount check
4552 * and USED bit check in mem_cgroup_uncharge_page() will do enough
4553 * check. (see prepare_charge() also)
4555 if (anon)
4556 mem_cgroup_uncharge_page(used);
4560 * At replace page cache, newpage is not under any memcg but it's on
4561 * LRU. So, this function doesn't touch res_counter but handles LRU
4562 * in correct way. Both pages are locked so we cannot race with uncharge.
4564 void mem_cgroup_replace_page_cache(struct page *oldpage,
4565 struct page *newpage)
4567 struct mem_cgroup *memcg = NULL;
4568 struct page_cgroup *pc;
4569 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4571 if (mem_cgroup_disabled())
4572 return;
4574 pc = lookup_page_cgroup(oldpage);
4575 /* fix accounting on old pages */
4576 lock_page_cgroup(pc);
4577 if (PageCgroupUsed(pc)) {
4578 memcg = pc->mem_cgroup;
4579 mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
4580 ClearPageCgroupUsed(pc);
4582 unlock_page_cgroup(pc);
4585 * When called from shmem_replace_page(), in some cases the
4586 * oldpage has already been charged, and in some cases not.
4588 if (!memcg)
4589 return;
4591 * Even if newpage->mapping was NULL before starting replacement,
4592 * the newpage may be on LRU(or pagevec for LRU) already. We lock
4593 * LRU while we overwrite pc->mem_cgroup.
4595 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4598 #ifdef CONFIG_DEBUG_VM
4599 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
4601 struct page_cgroup *pc;
4603 pc = lookup_page_cgroup(page);
4605 * Can be NULL while feeding pages into the page allocator for
4606 * the first time, i.e. during boot or memory hotplug;
4607 * or when mem_cgroup_disabled().
4609 if (likely(pc) && PageCgroupUsed(pc))
4610 return pc;
4611 return NULL;
4614 bool mem_cgroup_bad_page_check(struct page *page)
4616 if (mem_cgroup_disabled())
4617 return false;
4619 return lookup_page_cgroup_used(page) != NULL;
4622 void mem_cgroup_print_bad_page(struct page *page)
4624 struct page_cgroup *pc;
4626 pc = lookup_page_cgroup_used(page);
4627 if (pc) {
4628 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4629 pc, pc->flags, pc->mem_cgroup);
4632 #endif
4634 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4635 unsigned long long val)
4637 int retry_count;
4638 u64 memswlimit, memlimit;
4639 int ret = 0;
4640 int children = mem_cgroup_count_children(memcg);
4641 u64 curusage, oldusage;
4642 int enlarge;
4645 * For keeping hierarchical_reclaim simple, how long we should retry
4646 * is depends on callers. We set our retry-count to be function
4647 * of # of children which we should visit in this loop.
4649 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
4651 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4653 enlarge = 0;
4654 while (retry_count) {
4655 if (signal_pending(current)) {
4656 ret = -EINTR;
4657 break;
4660 * Rather than hide all in some function, I do this in
4661 * open coded manner. You see what this really does.
4662 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4664 mutex_lock(&set_limit_mutex);
4665 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4666 if (memswlimit < val) {
4667 ret = -EINVAL;
4668 mutex_unlock(&set_limit_mutex);
4669 break;
4672 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4673 if (memlimit < val)
4674 enlarge = 1;
4676 ret = res_counter_set_limit(&memcg->res, val);
4677 if (!ret) {
4678 if (memswlimit == val)
4679 memcg->memsw_is_minimum = true;
4680 else
4681 memcg->memsw_is_minimum = false;
4683 mutex_unlock(&set_limit_mutex);
4685 if (!ret)
4686 break;
4688 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4689 MEM_CGROUP_RECLAIM_SHRINK);
4690 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4691 /* Usage is reduced ? */
4692 if (curusage >= oldusage)
4693 retry_count--;
4694 else
4695 oldusage = curusage;
4697 if (!ret && enlarge)
4698 memcg_oom_recover(memcg);
4700 return ret;
4703 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
4704 unsigned long long val)
4706 int retry_count;
4707 u64 memlimit, memswlimit, oldusage, curusage;
4708 int children = mem_cgroup_count_children(memcg);
4709 int ret = -EBUSY;
4710 int enlarge = 0;
4712 /* see mem_cgroup_resize_res_limit */
4713 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
4714 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4715 while (retry_count) {
4716 if (signal_pending(current)) {
4717 ret = -EINTR;
4718 break;
4721 * Rather than hide all in some function, I do this in
4722 * open coded manner. You see what this really does.
4723 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4725 mutex_lock(&set_limit_mutex);
4726 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4727 if (memlimit > val) {
4728 ret = -EINVAL;
4729 mutex_unlock(&set_limit_mutex);
4730 break;
4732 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4733 if (memswlimit < val)
4734 enlarge = 1;
4735 ret = res_counter_set_limit(&memcg->memsw, val);
4736 if (!ret) {
4737 if (memlimit == val)
4738 memcg->memsw_is_minimum = true;
4739 else
4740 memcg->memsw_is_minimum = false;
4742 mutex_unlock(&set_limit_mutex);
4744 if (!ret)
4745 break;
4747 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4748 MEM_CGROUP_RECLAIM_NOSWAP |
4749 MEM_CGROUP_RECLAIM_SHRINK);
4750 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4751 /* Usage is reduced ? */
4752 if (curusage >= oldusage)
4753 retry_count--;
4754 else
4755 oldusage = curusage;
4757 if (!ret && enlarge)
4758 memcg_oom_recover(memcg);
4759 return ret;
4762 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
4763 gfp_t gfp_mask,
4764 unsigned long *total_scanned)
4766 unsigned long nr_reclaimed = 0;
4767 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
4768 unsigned long reclaimed;
4769 int loop = 0;
4770 struct mem_cgroup_tree_per_zone *mctz;
4771 unsigned long long excess;
4772 unsigned long nr_scanned;
4774 if (order > 0)
4775 return 0;
4777 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4779 * This loop can run a while, specially if mem_cgroup's continuously
4780 * keep exceeding their soft limit and putting the system under
4781 * pressure
4783 do {
4784 if (next_mz)
4785 mz = next_mz;
4786 else
4787 mz = mem_cgroup_largest_soft_limit_node(mctz);
4788 if (!mz)
4789 break;
4791 nr_scanned = 0;
4792 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
4793 gfp_mask, &nr_scanned);
4794 nr_reclaimed += reclaimed;
4795 *total_scanned += nr_scanned;
4796 spin_lock(&mctz->lock);
4799 * If we failed to reclaim anything from this memory cgroup
4800 * it is time to move on to the next cgroup
4802 next_mz = NULL;
4803 if (!reclaimed) {
4804 do {
4806 * Loop until we find yet another one.
4808 * By the time we get the soft_limit lock
4809 * again, someone might have aded the
4810 * group back on the RB tree. Iterate to
4811 * make sure we get a different mem.
4812 * mem_cgroup_largest_soft_limit_node returns
4813 * NULL if no other cgroup is present on
4814 * the tree
4816 next_mz =
4817 __mem_cgroup_largest_soft_limit_node(mctz);
4818 if (next_mz == mz)
4819 css_put(&next_mz->memcg->css);
4820 else /* next_mz == NULL or other memcg */
4821 break;
4822 } while (1);
4824 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
4825 excess = res_counter_soft_limit_excess(&mz->memcg->res);
4827 * One school of thought says that we should not add
4828 * back the node to the tree if reclaim returns 0.
4829 * But our reclaim could return 0, simply because due
4830 * to priority we are exposing a smaller subset of
4831 * memory to reclaim from. Consider this as a longer
4832 * term TODO.
4834 /* If excess == 0, no tree ops */
4835 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4836 spin_unlock(&mctz->lock);
4837 css_put(&mz->memcg->css);
4838 loop++;
4840 * Could not reclaim anything and there are no more
4841 * mem cgroups to try or we seem to be looping without
4842 * reclaiming anything.
4844 if (!nr_reclaimed &&
4845 (next_mz == NULL ||
4846 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
4847 break;
4848 } while (!nr_reclaimed);
4849 if (next_mz)
4850 css_put(&next_mz->memcg->css);
4851 return nr_reclaimed;
4855 * mem_cgroup_force_empty_list - clears LRU of a group
4856 * @memcg: group to clear
4857 * @node: NUMA node
4858 * @zid: zone id
4859 * @lru: lru to to clear
4861 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
4862 * reclaim the pages page themselves - pages are moved to the parent (or root)
4863 * group.
4865 static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
4866 int node, int zid, enum lru_list lru)
4868 struct lruvec *lruvec;
4869 unsigned long flags;
4870 struct list_head *list;
4871 struct page *busy;
4872 struct zone *zone;
4874 zone = &NODE_DATA(node)->node_zones[zid];
4875 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
4876 list = &lruvec->lists[lru];
4878 busy = NULL;
4879 do {
4880 struct page_cgroup *pc;
4881 struct page *page;
4883 spin_lock_irqsave(&zone->lru_lock, flags);
4884 if (list_empty(list)) {
4885 spin_unlock_irqrestore(&zone->lru_lock, flags);
4886 break;
4888 page = list_entry(list->prev, struct page, lru);
4889 if (busy == page) {
4890 list_move(&page->lru, list);
4891 busy = NULL;
4892 spin_unlock_irqrestore(&zone->lru_lock, flags);
4893 continue;
4895 spin_unlock_irqrestore(&zone->lru_lock, flags);
4897 pc = lookup_page_cgroup(page);
4899 if (mem_cgroup_move_parent(page, pc, memcg)) {
4900 /* found lock contention or "pc" is obsolete. */
4901 busy = page;
4902 cond_resched();
4903 } else
4904 busy = NULL;
4905 } while (!list_empty(list));
4909 * make mem_cgroup's charge to be 0 if there is no task by moving
4910 * all the charges and pages to the parent.
4911 * This enables deleting this mem_cgroup.
4913 * Caller is responsible for holding css reference on the memcg.
4915 static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4917 int node, zid;
4918 u64 usage;
4920 do {
4921 /* This is for making all *used* pages to be on LRU. */
4922 lru_add_drain_all();
4923 drain_all_stock_sync(memcg);
4924 mem_cgroup_start_move(memcg);
4925 for_each_node_state(node, N_MEMORY) {
4926 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4927 enum lru_list lru;
4928 for_each_lru(lru) {
4929 mem_cgroup_force_empty_list(memcg,
4930 node, zid, lru);
4934 mem_cgroup_end_move(memcg);
4935 memcg_oom_recover(memcg);
4936 cond_resched();
4939 * Kernel memory may not necessarily be trackable to a specific
4940 * process. So they are not migrated, and therefore we can't
4941 * expect their value to drop to 0 here.
4942 * Having res filled up with kmem only is enough.
4944 * This is a safety check because mem_cgroup_force_empty_list
4945 * could have raced with mem_cgroup_replace_page_cache callers
4946 * so the lru seemed empty but the page could have been added
4947 * right after the check. RES_USAGE should be safe as we always
4948 * charge before adding to the LRU.
4950 usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
4951 res_counter_read_u64(&memcg->kmem, RES_USAGE);
4952 } while (usage > 0);
4955 static inline bool memcg_has_children(struct mem_cgroup *memcg)
4957 lockdep_assert_held(&memcg_create_mutex);
4959 * The lock does not prevent addition or deletion to the list
4960 * of children, but it prevents a new child from being
4961 * initialized based on this parent in css_online(), so it's
4962 * enough to decide whether hierarchically inherited
4963 * attributes can still be changed or not.
4965 return memcg->use_hierarchy &&
4966 !list_empty(&memcg->css.cgroup->children);
4970 * Reclaims as many pages from the given memcg as possible and moves
4971 * the rest to the parent.
4973 * Caller is responsible for holding css reference for memcg.
4975 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
4977 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
4978 struct cgroup *cgrp = memcg->css.cgroup;
4980 /* returns EBUSY if there is a task or if we come here twice. */
4981 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
4982 return -EBUSY;
4984 /* we call try-to-free pages for make this cgroup empty */
4985 lru_add_drain_all();
4986 /* try to free all pages in this cgroup */
4987 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
4988 int progress;
4990 if (signal_pending(current))
4991 return -EINTR;
4993 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
4994 false);
4995 if (!progress) {
4996 nr_retries--;
4997 /* maybe some writeback is necessary */
4998 congestion_wait(BLK_RW_ASYNC, HZ/10);
5002 lru_add_drain();
5003 mem_cgroup_reparent_charges(memcg);
5005 return 0;
5008 static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css,
5009 unsigned int event)
5011 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5013 if (mem_cgroup_is_root(memcg))
5014 return -EINVAL;
5015 return mem_cgroup_force_empty(memcg);
5018 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
5019 struct cftype *cft)
5021 return mem_cgroup_from_css(css)->use_hierarchy;
5024 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
5025 struct cftype *cft, u64 val)
5027 int retval = 0;
5028 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5029 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5031 mutex_lock(&memcg_create_mutex);
5033 if (memcg->use_hierarchy == val)
5034 goto out;
5037 * If parent's use_hierarchy is set, we can't make any modifications
5038 * in the child subtrees. If it is unset, then the change can
5039 * occur, provided the current cgroup has no children.
5041 * For the root cgroup, parent_mem is NULL, we allow value to be
5042 * set if there are no children.
5044 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
5045 (val == 1 || val == 0)) {
5046 if (list_empty(&memcg->css.cgroup->children))
5047 memcg->use_hierarchy = val;
5048 else
5049 retval = -EBUSY;
5050 } else
5051 retval = -EINVAL;
5053 out:
5054 mutex_unlock(&memcg_create_mutex);
5056 return retval;
5060 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
5061 enum mem_cgroup_stat_index idx)
5063 struct mem_cgroup *iter;
5064 long val = 0;
5066 /* Per-cpu values can be negative, use a signed accumulator */
5067 for_each_mem_cgroup_tree(iter, memcg)
5068 val += mem_cgroup_read_stat(iter, idx);
5070 if (val < 0) /* race ? */
5071 val = 0;
5072 return val;
5075 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
5077 u64 val;
5079 if (!mem_cgroup_is_root(memcg)) {
5080 if (!swap)
5081 return res_counter_read_u64(&memcg->res, RES_USAGE);
5082 else
5083 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
5087 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
5088 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
5090 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
5091 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
5093 if (swap)
5094 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
5096 return val << PAGE_SHIFT;
5099 static ssize_t mem_cgroup_read(struct cgroup_subsys_state *css,
5100 struct cftype *cft, struct file *file,
5101 char __user *buf, size_t nbytes, loff_t *ppos)
5103 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5104 char str[64];
5105 u64 val;
5106 int name, len;
5107 enum res_type type;
5109 type = MEMFILE_TYPE(cft->private);
5110 name = MEMFILE_ATTR(cft->private);
5112 switch (type) {
5113 case _MEM:
5114 if (name == RES_USAGE)
5115 val = mem_cgroup_usage(memcg, false);
5116 else
5117 val = res_counter_read_u64(&memcg->res, name);
5118 break;
5119 case _MEMSWAP:
5120 if (name == RES_USAGE)
5121 val = mem_cgroup_usage(memcg, true);
5122 else
5123 val = res_counter_read_u64(&memcg->memsw, name);
5124 break;
5125 case _KMEM:
5126 val = res_counter_read_u64(&memcg->kmem, name);
5127 break;
5128 default:
5129 BUG();
5132 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
5133 return simple_read_from_buffer(buf, nbytes, ppos, str, len);
5136 static int memcg_update_kmem_limit(struct cgroup_subsys_state *css, u64 val)
5138 int ret = -EINVAL;
5139 #ifdef CONFIG_MEMCG_KMEM
5140 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5142 * For simplicity, we won't allow this to be disabled. It also can't
5143 * be changed if the cgroup has children already, or if tasks had
5144 * already joined.
5146 * If tasks join before we set the limit, a person looking at
5147 * kmem.usage_in_bytes will have no way to determine when it took
5148 * place, which makes the value quite meaningless.
5150 * After it first became limited, changes in the value of the limit are
5151 * of course permitted.
5153 mutex_lock(&memcg_create_mutex);
5154 mutex_lock(&set_limit_mutex);
5155 if (!memcg->kmem_account_flags && val != RES_COUNTER_MAX) {
5156 if (cgroup_task_count(css->cgroup) || memcg_has_children(memcg)) {
5157 ret = -EBUSY;
5158 goto out;
5160 ret = res_counter_set_limit(&memcg->kmem, val);
5161 VM_BUG_ON(ret);
5163 ret = memcg_update_cache_sizes(memcg);
5164 if (ret) {
5165 res_counter_set_limit(&memcg->kmem, RES_COUNTER_MAX);
5166 goto out;
5168 static_key_slow_inc(&memcg_kmem_enabled_key);
5170 * setting the active bit after the inc will guarantee no one
5171 * starts accounting before all call sites are patched
5173 memcg_kmem_set_active(memcg);
5174 } else
5175 ret = res_counter_set_limit(&memcg->kmem, val);
5176 out:
5177 mutex_unlock(&set_limit_mutex);
5178 mutex_unlock(&memcg_create_mutex);
5179 #endif
5180 return ret;
5183 #ifdef CONFIG_MEMCG_KMEM
5184 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
5186 int ret = 0;
5187 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5188 if (!parent)
5189 goto out;
5191 memcg->kmem_account_flags = parent->kmem_account_flags;
5193 * When that happen, we need to disable the static branch only on those
5194 * memcgs that enabled it. To achieve this, we would be forced to
5195 * complicate the code by keeping track of which memcgs were the ones
5196 * that actually enabled limits, and which ones got it from its
5197 * parents.
5199 * It is a lot simpler just to do static_key_slow_inc() on every child
5200 * that is accounted.
5202 if (!memcg_kmem_is_active(memcg))
5203 goto out;
5206 * __mem_cgroup_free() will issue static_key_slow_dec() because this
5207 * memcg is active already. If the later initialization fails then the
5208 * cgroup core triggers the cleanup so we do not have to do it here.
5210 static_key_slow_inc(&memcg_kmem_enabled_key);
5212 mutex_lock(&set_limit_mutex);
5213 memcg_stop_kmem_account();
5214 ret = memcg_update_cache_sizes(memcg);
5215 memcg_resume_kmem_account();
5216 mutex_unlock(&set_limit_mutex);
5217 out:
5218 return ret;
5220 #endif /* CONFIG_MEMCG_KMEM */
5223 * The user of this function is...
5224 * RES_LIMIT.
5226 static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft,
5227 const char *buffer)
5229 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5230 enum res_type type;
5231 int name;
5232 unsigned long long val;
5233 int ret;
5235 type = MEMFILE_TYPE(cft->private);
5236 name = MEMFILE_ATTR(cft->private);
5238 switch (name) {
5239 case RES_LIMIT:
5240 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
5241 ret = -EINVAL;
5242 break;
5244 /* This function does all necessary parse...reuse it */
5245 ret = res_counter_memparse_write_strategy(buffer, &val);
5246 if (ret)
5247 break;
5248 if (type == _MEM)
5249 ret = mem_cgroup_resize_limit(memcg, val);
5250 else if (type == _MEMSWAP)
5251 ret = mem_cgroup_resize_memsw_limit(memcg, val);
5252 else if (type == _KMEM)
5253 ret = memcg_update_kmem_limit(css, val);
5254 else
5255 return -EINVAL;
5256 break;
5257 case RES_SOFT_LIMIT:
5258 ret = res_counter_memparse_write_strategy(buffer, &val);
5259 if (ret)
5260 break;
5262 * For memsw, soft limits are hard to implement in terms
5263 * of semantics, for now, we support soft limits for
5264 * control without swap
5266 if (type == _MEM)
5267 ret = res_counter_set_soft_limit(&memcg->res, val);
5268 else
5269 ret = -EINVAL;
5270 break;
5271 default:
5272 ret = -EINVAL; /* should be BUG() ? */
5273 break;
5275 return ret;
5278 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
5279 unsigned long long *mem_limit, unsigned long long *memsw_limit)
5281 unsigned long long min_limit, min_memsw_limit, tmp;
5283 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
5284 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5285 if (!memcg->use_hierarchy)
5286 goto out;
5288 while (css_parent(&memcg->css)) {
5289 memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5290 if (!memcg->use_hierarchy)
5291 break;
5292 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
5293 min_limit = min(min_limit, tmp);
5294 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5295 min_memsw_limit = min(min_memsw_limit, tmp);
5297 out:
5298 *mem_limit = min_limit;
5299 *memsw_limit = min_memsw_limit;
5302 static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event)
5304 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5305 int name;
5306 enum res_type type;
5308 type = MEMFILE_TYPE(event);
5309 name = MEMFILE_ATTR(event);
5311 switch (name) {
5312 case RES_MAX_USAGE:
5313 if (type == _MEM)
5314 res_counter_reset_max(&memcg->res);
5315 else if (type == _MEMSWAP)
5316 res_counter_reset_max(&memcg->memsw);
5317 else if (type == _KMEM)
5318 res_counter_reset_max(&memcg->kmem);
5319 else
5320 return -EINVAL;
5321 break;
5322 case RES_FAILCNT:
5323 if (type == _MEM)
5324 res_counter_reset_failcnt(&memcg->res);
5325 else if (type == _MEMSWAP)
5326 res_counter_reset_failcnt(&memcg->memsw);
5327 else if (type == _KMEM)
5328 res_counter_reset_failcnt(&memcg->kmem);
5329 else
5330 return -EINVAL;
5331 break;
5334 return 0;
5337 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
5338 struct cftype *cft)
5340 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
5343 #ifdef CONFIG_MMU
5344 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5345 struct cftype *cft, u64 val)
5347 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5349 if (val >= (1 << NR_MOVE_TYPE))
5350 return -EINVAL;
5353 * No kind of locking is needed in here, because ->can_attach() will
5354 * check this value once in the beginning of the process, and then carry
5355 * on with stale data. This means that changes to this value will only
5356 * affect task migrations starting after the change.
5358 memcg->move_charge_at_immigrate = val;
5359 return 0;
5361 #else
5362 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5363 struct cftype *cft, u64 val)
5365 return -ENOSYS;
5367 #endif
5369 #ifdef CONFIG_NUMA
5370 static int memcg_numa_stat_show(struct cgroup_subsys_state *css,
5371 struct cftype *cft, struct seq_file *m)
5373 struct numa_stat {
5374 const char *name;
5375 unsigned int lru_mask;
5378 static const struct numa_stat stats[] = {
5379 { "total", LRU_ALL },
5380 { "file", LRU_ALL_FILE },
5381 { "anon", LRU_ALL_ANON },
5382 { "unevictable", BIT(LRU_UNEVICTABLE) },
5384 const struct numa_stat *stat;
5385 int nid;
5386 unsigned long nr;
5387 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5389 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
5390 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
5391 seq_printf(m, "%s=%lu", stat->name, nr);
5392 for_each_node_state(nid, N_MEMORY) {
5393 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5394 stat->lru_mask);
5395 seq_printf(m, " N%d=%lu", nid, nr);
5397 seq_putc(m, '\n');
5400 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
5401 struct mem_cgroup *iter;
5403 nr = 0;
5404 for_each_mem_cgroup_tree(iter, memcg)
5405 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
5406 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
5407 for_each_node_state(nid, N_MEMORY) {
5408 nr = 0;
5409 for_each_mem_cgroup_tree(iter, memcg)
5410 nr += mem_cgroup_node_nr_lru_pages(
5411 iter, nid, stat->lru_mask);
5412 seq_printf(m, " N%d=%lu", nid, nr);
5414 seq_putc(m, '\n');
5417 return 0;
5419 #endif /* CONFIG_NUMA */
5421 static inline void mem_cgroup_lru_names_not_uptodate(void)
5423 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
5426 static int memcg_stat_show(struct cgroup_subsys_state *css, struct cftype *cft,
5427 struct seq_file *m)
5429 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5430 struct mem_cgroup *mi;
5431 unsigned int i;
5433 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5434 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5435 continue;
5436 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
5437 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5440 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
5441 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
5442 mem_cgroup_read_events(memcg, i));
5444 for (i = 0; i < NR_LRU_LISTS; i++)
5445 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
5446 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
5448 /* Hierarchical information */
5450 unsigned long long limit, memsw_limit;
5451 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5452 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5453 if (do_swap_account)
5454 seq_printf(m, "hierarchical_memsw_limit %llu\n",
5455 memsw_limit);
5458 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5459 long long val = 0;
5461 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5462 continue;
5463 for_each_mem_cgroup_tree(mi, memcg)
5464 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
5465 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
5468 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
5469 unsigned long long val = 0;
5471 for_each_mem_cgroup_tree(mi, memcg)
5472 val += mem_cgroup_read_events(mi, i);
5473 seq_printf(m, "total_%s %llu\n",
5474 mem_cgroup_events_names[i], val);
5477 for (i = 0; i < NR_LRU_LISTS; i++) {
5478 unsigned long long val = 0;
5480 for_each_mem_cgroup_tree(mi, memcg)
5481 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
5482 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5485 #ifdef CONFIG_DEBUG_VM
5487 int nid, zid;
5488 struct mem_cgroup_per_zone *mz;
5489 struct zone_reclaim_stat *rstat;
5490 unsigned long recent_rotated[2] = {0, 0};
5491 unsigned long recent_scanned[2] = {0, 0};
5493 for_each_online_node(nid)
5494 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5495 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
5496 rstat = &mz->lruvec.reclaim_stat;
5498 recent_rotated[0] += rstat->recent_rotated[0];
5499 recent_rotated[1] += rstat->recent_rotated[1];
5500 recent_scanned[0] += rstat->recent_scanned[0];
5501 recent_scanned[1] += rstat->recent_scanned[1];
5503 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
5504 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
5505 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
5506 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
5508 #endif
5510 return 0;
5513 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
5514 struct cftype *cft)
5516 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5518 return mem_cgroup_swappiness(memcg);
5521 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
5522 struct cftype *cft, u64 val)
5524 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5525 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
5527 if (val > 100 || !parent)
5528 return -EINVAL;
5530 mutex_lock(&memcg_create_mutex);
5532 /* If under hierarchy, only empty-root can set this value */
5533 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5534 mutex_unlock(&memcg_create_mutex);
5535 return -EINVAL;
5538 memcg->swappiness = val;
5540 mutex_unlock(&memcg_create_mutex);
5542 return 0;
5545 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
5547 struct mem_cgroup_threshold_ary *t;
5548 u64 usage;
5549 int i;
5551 rcu_read_lock();
5552 if (!swap)
5553 t = rcu_dereference(memcg->thresholds.primary);
5554 else
5555 t = rcu_dereference(memcg->memsw_thresholds.primary);
5557 if (!t)
5558 goto unlock;
5560 usage = mem_cgroup_usage(memcg, swap);
5563 * current_threshold points to threshold just below or equal to usage.
5564 * If it's not true, a threshold was crossed after last
5565 * call of __mem_cgroup_threshold().
5567 i = t->current_threshold;
5570 * Iterate backward over array of thresholds starting from
5571 * current_threshold and check if a threshold is crossed.
5572 * If none of thresholds below usage is crossed, we read
5573 * only one element of the array here.
5575 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
5576 eventfd_signal(t->entries[i].eventfd, 1);
5578 /* i = current_threshold + 1 */
5579 i++;
5582 * Iterate forward over array of thresholds starting from
5583 * current_threshold+1 and check if a threshold is crossed.
5584 * If none of thresholds above usage is crossed, we read
5585 * only one element of the array here.
5587 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
5588 eventfd_signal(t->entries[i].eventfd, 1);
5590 /* Update current_threshold */
5591 t->current_threshold = i - 1;
5592 unlock:
5593 rcu_read_unlock();
5596 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
5598 while (memcg) {
5599 __mem_cgroup_threshold(memcg, false);
5600 if (do_swap_account)
5601 __mem_cgroup_threshold(memcg, true);
5603 memcg = parent_mem_cgroup(memcg);
5607 static int compare_thresholds(const void *a, const void *b)
5609 const struct mem_cgroup_threshold *_a = a;
5610 const struct mem_cgroup_threshold *_b = b;
5612 if (_a->threshold > _b->threshold)
5613 return 1;
5615 if (_a->threshold < _b->threshold)
5616 return -1;
5618 return 0;
5621 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
5623 struct mem_cgroup_eventfd_list *ev;
5625 list_for_each_entry(ev, &memcg->oom_notify, list)
5626 eventfd_signal(ev->eventfd, 1);
5627 return 0;
5630 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
5632 struct mem_cgroup *iter;
5634 for_each_mem_cgroup_tree(iter, memcg)
5635 mem_cgroup_oom_notify_cb(iter);
5638 static int mem_cgroup_usage_register_event(struct cgroup_subsys_state *css,
5639 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5641 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5642 struct mem_cgroup_thresholds *thresholds;
5643 struct mem_cgroup_threshold_ary *new;
5644 enum res_type type = MEMFILE_TYPE(cft->private);
5645 u64 threshold, usage;
5646 int i, size, ret;
5648 ret = res_counter_memparse_write_strategy(args, &threshold);
5649 if (ret)
5650 return ret;
5652 mutex_lock(&memcg->thresholds_lock);
5654 if (type == _MEM)
5655 thresholds = &memcg->thresholds;
5656 else if (type == _MEMSWAP)
5657 thresholds = &memcg->memsw_thresholds;
5658 else
5659 BUG();
5661 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5663 /* Check if a threshold crossed before adding a new one */
5664 if (thresholds->primary)
5665 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5667 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5669 /* Allocate memory for new array of thresholds */
5670 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5671 GFP_KERNEL);
5672 if (!new) {
5673 ret = -ENOMEM;
5674 goto unlock;
5676 new->size = size;
5678 /* Copy thresholds (if any) to new array */
5679 if (thresholds->primary) {
5680 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5681 sizeof(struct mem_cgroup_threshold));
5684 /* Add new threshold */
5685 new->entries[size - 1].eventfd = eventfd;
5686 new->entries[size - 1].threshold = threshold;
5688 /* Sort thresholds. Registering of new threshold isn't time-critical */
5689 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5690 compare_thresholds, NULL);
5692 /* Find current threshold */
5693 new->current_threshold = -1;
5694 for (i = 0; i < size; i++) {
5695 if (new->entries[i].threshold <= usage) {
5697 * new->current_threshold will not be used until
5698 * rcu_assign_pointer(), so it's safe to increment
5699 * it here.
5701 ++new->current_threshold;
5702 } else
5703 break;
5706 /* Free old spare buffer and save old primary buffer as spare */
5707 kfree(thresholds->spare);
5708 thresholds->spare = thresholds->primary;
5710 rcu_assign_pointer(thresholds->primary, new);
5712 /* To be sure that nobody uses thresholds */
5713 synchronize_rcu();
5715 unlock:
5716 mutex_unlock(&memcg->thresholds_lock);
5718 return ret;
5721 static void mem_cgroup_usage_unregister_event(struct cgroup_subsys_state *css,
5722 struct cftype *cft, struct eventfd_ctx *eventfd)
5724 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5725 struct mem_cgroup_thresholds *thresholds;
5726 struct mem_cgroup_threshold_ary *new;
5727 enum res_type type = MEMFILE_TYPE(cft->private);
5728 u64 usage;
5729 int i, j, size;
5731 mutex_lock(&memcg->thresholds_lock);
5732 if (type == _MEM)
5733 thresholds = &memcg->thresholds;
5734 else if (type == _MEMSWAP)
5735 thresholds = &memcg->memsw_thresholds;
5736 else
5737 BUG();
5739 if (!thresholds->primary)
5740 goto unlock;
5742 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5744 /* Check if a threshold crossed before removing */
5745 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5747 /* Calculate new number of threshold */
5748 size = 0;
5749 for (i = 0; i < thresholds->primary->size; i++) {
5750 if (thresholds->primary->entries[i].eventfd != eventfd)
5751 size++;
5754 new = thresholds->spare;
5756 /* Set thresholds array to NULL if we don't have thresholds */
5757 if (!size) {
5758 kfree(new);
5759 new = NULL;
5760 goto swap_buffers;
5763 new->size = size;
5765 /* Copy thresholds and find current threshold */
5766 new->current_threshold = -1;
5767 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
5768 if (thresholds->primary->entries[i].eventfd == eventfd)
5769 continue;
5771 new->entries[j] = thresholds->primary->entries[i];
5772 if (new->entries[j].threshold <= usage) {
5774 * new->current_threshold will not be used
5775 * until rcu_assign_pointer(), so it's safe to increment
5776 * it here.
5778 ++new->current_threshold;
5780 j++;
5783 swap_buffers:
5784 /* Swap primary and spare array */
5785 thresholds->spare = thresholds->primary;
5786 /* If all events are unregistered, free the spare array */
5787 if (!new) {
5788 kfree(thresholds->spare);
5789 thresholds->spare = NULL;
5792 rcu_assign_pointer(thresholds->primary, new);
5794 /* To be sure that nobody uses thresholds */
5795 synchronize_rcu();
5796 unlock:
5797 mutex_unlock(&memcg->thresholds_lock);
5800 static int mem_cgroup_oom_register_event(struct cgroup_subsys_state *css,
5801 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5803 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5804 struct mem_cgroup_eventfd_list *event;
5805 enum res_type type = MEMFILE_TYPE(cft->private);
5807 BUG_ON(type != _OOM_TYPE);
5808 event = kmalloc(sizeof(*event), GFP_KERNEL);
5809 if (!event)
5810 return -ENOMEM;
5812 spin_lock(&memcg_oom_lock);
5814 event->eventfd = eventfd;
5815 list_add(&event->list, &memcg->oom_notify);
5817 /* already in OOM ? */
5818 if (atomic_read(&memcg->under_oom))
5819 eventfd_signal(eventfd, 1);
5820 spin_unlock(&memcg_oom_lock);
5822 return 0;
5825 static void mem_cgroup_oom_unregister_event(struct cgroup_subsys_state *css,
5826 struct cftype *cft, struct eventfd_ctx *eventfd)
5828 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5829 struct mem_cgroup_eventfd_list *ev, *tmp;
5830 enum res_type type = MEMFILE_TYPE(cft->private);
5832 BUG_ON(type != _OOM_TYPE);
5834 spin_lock(&memcg_oom_lock);
5836 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
5837 if (ev->eventfd == eventfd) {
5838 list_del(&ev->list);
5839 kfree(ev);
5843 spin_unlock(&memcg_oom_lock);
5846 static int mem_cgroup_oom_control_read(struct cgroup_subsys_state *css,
5847 struct cftype *cft, struct cgroup_map_cb *cb)
5849 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5851 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
5853 if (atomic_read(&memcg->under_oom))
5854 cb->fill(cb, "under_oom", 1);
5855 else
5856 cb->fill(cb, "under_oom", 0);
5857 return 0;
5860 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
5861 struct cftype *cft, u64 val)
5863 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5864 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
5866 /* cannot set to root cgroup and only 0 and 1 are allowed */
5867 if (!parent || !((val == 0) || (val == 1)))
5868 return -EINVAL;
5870 mutex_lock(&memcg_create_mutex);
5871 /* oom-kill-disable is a flag for subhierarchy. */
5872 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5873 mutex_unlock(&memcg_create_mutex);
5874 return -EINVAL;
5876 memcg->oom_kill_disable = val;
5877 if (!val)
5878 memcg_oom_recover(memcg);
5879 mutex_unlock(&memcg_create_mutex);
5880 return 0;
5883 #ifdef CONFIG_MEMCG_KMEM
5884 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5886 int ret;
5888 memcg->kmemcg_id = -1;
5889 ret = memcg_propagate_kmem(memcg);
5890 if (ret)
5891 return ret;
5893 return mem_cgroup_sockets_init(memcg, ss);
5896 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5898 mem_cgroup_sockets_destroy(memcg);
5901 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5903 if (!memcg_kmem_is_active(memcg))
5904 return;
5907 * kmem charges can outlive the cgroup. In the case of slab
5908 * pages, for instance, a page contain objects from various
5909 * processes. As we prevent from taking a reference for every
5910 * such allocation we have to be careful when doing uncharge
5911 * (see memcg_uncharge_kmem) and here during offlining.
5913 * The idea is that that only the _last_ uncharge which sees
5914 * the dead memcg will drop the last reference. An additional
5915 * reference is taken here before the group is marked dead
5916 * which is then paired with css_put during uncharge resp. here.
5918 * Although this might sound strange as this path is called from
5919 * css_offline() when the referencemight have dropped down to 0
5920 * and shouldn't be incremented anymore (css_tryget would fail)
5921 * we do not have other options because of the kmem allocations
5922 * lifetime.
5924 css_get(&memcg->css);
5926 memcg_kmem_mark_dead(memcg);
5928 if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
5929 return;
5931 if (memcg_kmem_test_and_clear_dead(memcg))
5932 css_put(&memcg->css);
5934 #else
5935 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5937 return 0;
5940 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5944 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5947 #endif
5949 static struct cftype mem_cgroup_files[] = {
5951 .name = "usage_in_bytes",
5952 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5953 .read = mem_cgroup_read,
5954 .register_event = mem_cgroup_usage_register_event,
5955 .unregister_event = mem_cgroup_usage_unregister_event,
5958 .name = "max_usage_in_bytes",
5959 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5960 .trigger = mem_cgroup_reset,
5961 .read = mem_cgroup_read,
5964 .name = "limit_in_bytes",
5965 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5966 .write_string = mem_cgroup_write,
5967 .read = mem_cgroup_read,
5970 .name = "soft_limit_in_bytes",
5971 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5972 .write_string = mem_cgroup_write,
5973 .read = mem_cgroup_read,
5976 .name = "failcnt",
5977 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5978 .trigger = mem_cgroup_reset,
5979 .read = mem_cgroup_read,
5982 .name = "stat",
5983 .read_seq_string = memcg_stat_show,
5986 .name = "force_empty",
5987 .trigger = mem_cgroup_force_empty_write,
5990 .name = "use_hierarchy",
5991 .flags = CFTYPE_INSANE,
5992 .write_u64 = mem_cgroup_hierarchy_write,
5993 .read_u64 = mem_cgroup_hierarchy_read,
5996 .name = "swappiness",
5997 .read_u64 = mem_cgroup_swappiness_read,
5998 .write_u64 = mem_cgroup_swappiness_write,
6001 .name = "move_charge_at_immigrate",
6002 .read_u64 = mem_cgroup_move_charge_read,
6003 .write_u64 = mem_cgroup_move_charge_write,
6006 .name = "oom_control",
6007 .read_map = mem_cgroup_oom_control_read,
6008 .write_u64 = mem_cgroup_oom_control_write,
6009 .register_event = mem_cgroup_oom_register_event,
6010 .unregister_event = mem_cgroup_oom_unregister_event,
6011 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
6014 .name = "pressure_level",
6015 .register_event = vmpressure_register_event,
6016 .unregister_event = vmpressure_unregister_event,
6018 #ifdef CONFIG_NUMA
6020 .name = "numa_stat",
6021 .read_seq_string = memcg_numa_stat_show,
6023 #endif
6024 #ifdef CONFIG_MEMCG_KMEM
6026 .name = "kmem.limit_in_bytes",
6027 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
6028 .write_string = mem_cgroup_write,
6029 .read = mem_cgroup_read,
6032 .name = "kmem.usage_in_bytes",
6033 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
6034 .read = mem_cgroup_read,
6037 .name = "kmem.failcnt",
6038 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6039 .trigger = mem_cgroup_reset,
6040 .read = mem_cgroup_read,
6043 .name = "kmem.max_usage_in_bytes",
6044 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6045 .trigger = mem_cgroup_reset,
6046 .read = mem_cgroup_read,
6048 #ifdef CONFIG_SLABINFO
6050 .name = "kmem.slabinfo",
6051 .read_seq_string = mem_cgroup_slabinfo_read,
6053 #endif
6054 #endif
6055 { }, /* terminate */
6058 #ifdef CONFIG_MEMCG_SWAP
6059 static struct cftype memsw_cgroup_files[] = {
6061 .name = "memsw.usage_in_bytes",
6062 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6063 .read = mem_cgroup_read,
6064 .register_event = mem_cgroup_usage_register_event,
6065 .unregister_event = mem_cgroup_usage_unregister_event,
6068 .name = "memsw.max_usage_in_bytes",
6069 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6070 .trigger = mem_cgroup_reset,
6071 .read = mem_cgroup_read,
6074 .name = "memsw.limit_in_bytes",
6075 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6076 .write_string = mem_cgroup_write,
6077 .read = mem_cgroup_read,
6080 .name = "memsw.failcnt",
6081 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6082 .trigger = mem_cgroup_reset,
6083 .read = mem_cgroup_read,
6085 { }, /* terminate */
6087 #endif
6088 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6090 struct mem_cgroup_per_node *pn;
6091 struct mem_cgroup_per_zone *mz;
6092 int zone, tmp = node;
6094 * This routine is called against possible nodes.
6095 * But it's BUG to call kmalloc() against offline node.
6097 * TODO: this routine can waste much memory for nodes which will
6098 * never be onlined. It's better to use memory hotplug callback
6099 * function.
6101 if (!node_state(node, N_NORMAL_MEMORY))
6102 tmp = -1;
6103 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6104 if (!pn)
6105 return 1;
6107 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6108 mz = &pn->zoneinfo[zone];
6109 lruvec_init(&mz->lruvec);
6110 mz->usage_in_excess = 0;
6111 mz->on_tree = false;
6112 mz->memcg = memcg;
6114 memcg->nodeinfo[node] = pn;
6115 return 0;
6118 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6120 kfree(memcg->nodeinfo[node]);
6123 static struct mem_cgroup *mem_cgroup_alloc(void)
6125 struct mem_cgroup *memcg;
6126 size_t size = memcg_size();
6128 /* Can be very big if nr_node_ids is very big */
6129 if (size < PAGE_SIZE)
6130 memcg = kzalloc(size, GFP_KERNEL);
6131 else
6132 memcg = vzalloc(size);
6134 if (!memcg)
6135 return NULL;
6137 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
6138 if (!memcg->stat)
6139 goto out_free;
6140 spin_lock_init(&memcg->pcp_counter_lock);
6141 return memcg;
6143 out_free:
6144 if (size < PAGE_SIZE)
6145 kfree(memcg);
6146 else
6147 vfree(memcg);
6148 return NULL;
6152 * At destroying mem_cgroup, references from swap_cgroup can remain.
6153 * (scanning all at force_empty is too costly...)
6155 * Instead of clearing all references at force_empty, we remember
6156 * the number of reference from swap_cgroup and free mem_cgroup when
6157 * it goes down to 0.
6159 * Removal of cgroup itself succeeds regardless of refs from swap.
6162 static void __mem_cgroup_free(struct mem_cgroup *memcg)
6164 int node;
6165 size_t size = memcg_size();
6167 mem_cgroup_remove_from_trees(memcg);
6168 free_css_id(&mem_cgroup_subsys, &memcg->css);
6170 for_each_node(node)
6171 free_mem_cgroup_per_zone_info(memcg, node);
6173 free_percpu(memcg->stat);
6176 * We need to make sure that (at least for now), the jump label
6177 * destruction code runs outside of the cgroup lock. This is because
6178 * get_online_cpus(), which is called from the static_branch update,
6179 * can't be called inside the cgroup_lock. cpusets are the ones
6180 * enforcing this dependency, so if they ever change, we might as well.
6182 * schedule_work() will guarantee this happens. Be careful if you need
6183 * to move this code around, and make sure it is outside
6184 * the cgroup_lock.
6186 disarm_static_keys(memcg);
6187 if (size < PAGE_SIZE)
6188 kfree(memcg);
6189 else
6190 vfree(memcg);
6194 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
6196 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
6198 if (!memcg->res.parent)
6199 return NULL;
6200 return mem_cgroup_from_res_counter(memcg->res.parent, res);
6202 EXPORT_SYMBOL(parent_mem_cgroup);
6204 static void __init mem_cgroup_soft_limit_tree_init(void)
6206 struct mem_cgroup_tree_per_node *rtpn;
6207 struct mem_cgroup_tree_per_zone *rtpz;
6208 int tmp, node, zone;
6210 for_each_node(node) {
6211 tmp = node;
6212 if (!node_state(node, N_NORMAL_MEMORY))
6213 tmp = -1;
6214 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
6215 BUG_ON(!rtpn);
6217 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6219 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6220 rtpz = &rtpn->rb_tree_per_zone[zone];
6221 rtpz->rb_root = RB_ROOT;
6222 spin_lock_init(&rtpz->lock);
6227 static struct cgroup_subsys_state * __ref
6228 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
6230 struct mem_cgroup *memcg;
6231 long error = -ENOMEM;
6232 int node;
6234 memcg = mem_cgroup_alloc();
6235 if (!memcg)
6236 return ERR_PTR(error);
6238 for_each_node(node)
6239 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6240 goto free_out;
6242 /* root ? */
6243 if (parent_css == NULL) {
6244 root_mem_cgroup = memcg;
6245 res_counter_init(&memcg->res, NULL);
6246 res_counter_init(&memcg->memsw, NULL);
6247 res_counter_init(&memcg->kmem, NULL);
6250 memcg->last_scanned_node = MAX_NUMNODES;
6251 INIT_LIST_HEAD(&memcg->oom_notify);
6252 memcg->move_charge_at_immigrate = 0;
6253 mutex_init(&memcg->thresholds_lock);
6254 spin_lock_init(&memcg->move_lock);
6255 vmpressure_init(&memcg->vmpressure);
6257 return &memcg->css;
6259 free_out:
6260 __mem_cgroup_free(memcg);
6261 return ERR_PTR(error);
6264 static int
6265 mem_cgroup_css_online(struct cgroup_subsys_state *css)
6267 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6268 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css));
6269 int error = 0;
6271 if (!parent)
6272 return 0;
6274 mutex_lock(&memcg_create_mutex);
6276 memcg->use_hierarchy = parent->use_hierarchy;
6277 memcg->oom_kill_disable = parent->oom_kill_disable;
6278 memcg->swappiness = mem_cgroup_swappiness(parent);
6280 if (parent->use_hierarchy) {
6281 res_counter_init(&memcg->res, &parent->res);
6282 res_counter_init(&memcg->memsw, &parent->memsw);
6283 res_counter_init(&memcg->kmem, &parent->kmem);
6286 * No need to take a reference to the parent because cgroup
6287 * core guarantees its existence.
6289 } else {
6290 res_counter_init(&memcg->res, NULL);
6291 res_counter_init(&memcg->memsw, NULL);
6292 res_counter_init(&memcg->kmem, NULL);
6294 * Deeper hierachy with use_hierarchy == false doesn't make
6295 * much sense so let cgroup subsystem know about this
6296 * unfortunate state in our controller.
6298 if (parent != root_mem_cgroup)
6299 mem_cgroup_subsys.broken_hierarchy = true;
6302 error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
6303 mutex_unlock(&memcg_create_mutex);
6304 return error;
6308 * Announce all parents that a group from their hierarchy is gone.
6310 static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
6312 struct mem_cgroup *parent = memcg;
6314 while ((parent = parent_mem_cgroup(parent)))
6315 mem_cgroup_iter_invalidate(parent);
6318 * if the root memcg is not hierarchical we have to check it
6319 * explicitely.
6321 if (!root_mem_cgroup->use_hierarchy)
6322 mem_cgroup_iter_invalidate(root_mem_cgroup);
6325 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
6327 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6329 kmem_cgroup_css_offline(memcg);
6331 mem_cgroup_invalidate_reclaim_iterators(memcg);
6332 mem_cgroup_reparent_charges(memcg);
6333 mem_cgroup_destroy_all_caches(memcg);
6334 vmpressure_cleanup(&memcg->vmpressure);
6337 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
6339 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6341 memcg_destroy_kmem(memcg);
6342 __mem_cgroup_free(memcg);
6345 #ifdef CONFIG_MMU
6346 /* Handlers for move charge at task migration. */
6347 #define PRECHARGE_COUNT_AT_ONCE 256
6348 static int mem_cgroup_do_precharge(unsigned long count)
6350 int ret = 0;
6351 int batch_count = PRECHARGE_COUNT_AT_ONCE;
6352 struct mem_cgroup *memcg = mc.to;
6354 if (mem_cgroup_is_root(memcg)) {
6355 mc.precharge += count;
6356 /* we don't need css_get for root */
6357 return ret;
6359 /* try to charge at once */
6360 if (count > 1) {
6361 struct res_counter *dummy;
6363 * "memcg" cannot be under rmdir() because we've already checked
6364 * by cgroup_lock_live_cgroup() that it is not removed and we
6365 * are still under the same cgroup_mutex. So we can postpone
6366 * css_get().
6368 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6369 goto one_by_one;
6370 if (do_swap_account && res_counter_charge(&memcg->memsw,
6371 PAGE_SIZE * count, &dummy)) {
6372 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6373 goto one_by_one;
6375 mc.precharge += count;
6376 return ret;
6378 one_by_one:
6379 /* fall back to one by one charge */
6380 while (count--) {
6381 if (signal_pending(current)) {
6382 ret = -EINTR;
6383 break;
6385 if (!batch_count--) {
6386 batch_count = PRECHARGE_COUNT_AT_ONCE;
6387 cond_resched();
6389 ret = __mem_cgroup_try_charge(NULL,
6390 GFP_KERNEL, 1, &memcg, false);
6391 if (ret)
6392 /* mem_cgroup_clear_mc() will do uncharge later */
6393 return ret;
6394 mc.precharge++;
6396 return ret;
6400 * get_mctgt_type - get target type of moving charge
6401 * @vma: the vma the pte to be checked belongs
6402 * @addr: the address corresponding to the pte to be checked
6403 * @ptent: the pte to be checked
6404 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6406 * Returns
6407 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
6408 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
6409 * move charge. if @target is not NULL, the page is stored in target->page
6410 * with extra refcnt got(Callers should handle it).
6411 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
6412 * target for charge migration. if @target is not NULL, the entry is stored
6413 * in target->ent.
6415 * Called with pte lock held.
6417 union mc_target {
6418 struct page *page;
6419 swp_entry_t ent;
6422 enum mc_target_type {
6423 MC_TARGET_NONE = 0,
6424 MC_TARGET_PAGE,
6425 MC_TARGET_SWAP,
6428 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
6429 unsigned long addr, pte_t ptent)
6431 struct page *page = vm_normal_page(vma, addr, ptent);
6433 if (!page || !page_mapped(page))
6434 return NULL;
6435 if (PageAnon(page)) {
6436 /* we don't move shared anon */
6437 if (!move_anon())
6438 return NULL;
6439 } else if (!move_file())
6440 /* we ignore mapcount for file pages */
6441 return NULL;
6442 if (!get_page_unless_zero(page))
6443 return NULL;
6445 return page;
6448 #ifdef CONFIG_SWAP
6449 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6450 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6452 struct page *page = NULL;
6453 swp_entry_t ent = pte_to_swp_entry(ptent);
6455 if (!move_anon() || non_swap_entry(ent))
6456 return NULL;
6458 * Because lookup_swap_cache() updates some statistics counter,
6459 * we call find_get_page() with swapper_space directly.
6461 page = find_get_page(swap_address_space(ent), ent.val);
6462 if (do_swap_account)
6463 entry->val = ent.val;
6465 return page;
6467 #else
6468 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6469 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6471 return NULL;
6473 #endif
6475 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
6476 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6478 struct page *page = NULL;
6479 struct address_space *mapping;
6480 pgoff_t pgoff;
6482 if (!vma->vm_file) /* anonymous vma */
6483 return NULL;
6484 if (!move_file())
6485 return NULL;
6487 mapping = vma->vm_file->f_mapping;
6488 if (pte_none(ptent))
6489 pgoff = linear_page_index(vma, addr);
6490 else /* pte_file(ptent) is true */
6491 pgoff = pte_to_pgoff(ptent);
6493 /* page is moved even if it's not RSS of this task(page-faulted). */
6494 page = find_get_page(mapping, pgoff);
6496 #ifdef CONFIG_SWAP
6497 /* shmem/tmpfs may report page out on swap: account for that too. */
6498 if (radix_tree_exceptional_entry(page)) {
6499 swp_entry_t swap = radix_to_swp_entry(page);
6500 if (do_swap_account)
6501 *entry = swap;
6502 page = find_get_page(swap_address_space(swap), swap.val);
6504 #endif
6505 return page;
6508 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
6509 unsigned long addr, pte_t ptent, union mc_target *target)
6511 struct page *page = NULL;
6512 struct page_cgroup *pc;
6513 enum mc_target_type ret = MC_TARGET_NONE;
6514 swp_entry_t ent = { .val = 0 };
6516 if (pte_present(ptent))
6517 page = mc_handle_present_pte(vma, addr, ptent);
6518 else if (is_swap_pte(ptent))
6519 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6520 else if (pte_none(ptent) || pte_file(ptent))
6521 page = mc_handle_file_pte(vma, addr, ptent, &ent);
6523 if (!page && !ent.val)
6524 return ret;
6525 if (page) {
6526 pc = lookup_page_cgroup(page);
6528 * Do only loose check w/o page_cgroup lock.
6529 * mem_cgroup_move_account() checks the pc is valid or not under
6530 * the lock.
6532 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6533 ret = MC_TARGET_PAGE;
6534 if (target)
6535 target->page = page;
6537 if (!ret || !target)
6538 put_page(page);
6540 /* There is a swap entry and a page doesn't exist or isn't charged */
6541 if (ent.val && !ret &&
6542 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
6543 ret = MC_TARGET_SWAP;
6544 if (target)
6545 target->ent = ent;
6547 return ret;
6550 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6552 * We don't consider swapping or file mapped pages because THP does not
6553 * support them for now.
6554 * Caller should make sure that pmd_trans_huge(pmd) is true.
6556 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6557 unsigned long addr, pmd_t pmd, union mc_target *target)
6559 struct page *page = NULL;
6560 struct page_cgroup *pc;
6561 enum mc_target_type ret = MC_TARGET_NONE;
6563 page = pmd_page(pmd);
6564 VM_BUG_ON(!page || !PageHead(page));
6565 if (!move_anon())
6566 return ret;
6567 pc = lookup_page_cgroup(page);
6568 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6569 ret = MC_TARGET_PAGE;
6570 if (target) {
6571 get_page(page);
6572 target->page = page;
6575 return ret;
6577 #else
6578 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6579 unsigned long addr, pmd_t pmd, union mc_target *target)
6581 return MC_TARGET_NONE;
6583 #endif
6585 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6586 unsigned long addr, unsigned long end,
6587 struct mm_walk *walk)
6589 struct vm_area_struct *vma = walk->private;
6590 pte_t *pte;
6591 spinlock_t *ptl;
6593 if (pmd_trans_huge_lock(pmd, vma) == 1) {
6594 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6595 mc.precharge += HPAGE_PMD_NR;
6596 spin_unlock(&vma->vm_mm->page_table_lock);
6597 return 0;
6600 if (pmd_trans_unstable(pmd))
6601 return 0;
6602 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6603 for (; addr != end; pte++, addr += PAGE_SIZE)
6604 if (get_mctgt_type(vma, addr, *pte, NULL))
6605 mc.precharge++; /* increment precharge temporarily */
6606 pte_unmap_unlock(pte - 1, ptl);
6607 cond_resched();
6609 return 0;
6612 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6614 unsigned long precharge;
6615 struct vm_area_struct *vma;
6617 down_read(&mm->mmap_sem);
6618 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6619 struct mm_walk mem_cgroup_count_precharge_walk = {
6620 .pmd_entry = mem_cgroup_count_precharge_pte_range,
6621 .mm = mm,
6622 .private = vma,
6624 if (is_vm_hugetlb_page(vma))
6625 continue;
6626 walk_page_range(vma->vm_start, vma->vm_end,
6627 &mem_cgroup_count_precharge_walk);
6629 up_read(&mm->mmap_sem);
6631 precharge = mc.precharge;
6632 mc.precharge = 0;
6634 return precharge;
6637 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6639 unsigned long precharge = mem_cgroup_count_precharge(mm);
6641 VM_BUG_ON(mc.moving_task);
6642 mc.moving_task = current;
6643 return mem_cgroup_do_precharge(precharge);
6646 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6647 static void __mem_cgroup_clear_mc(void)
6649 struct mem_cgroup *from = mc.from;
6650 struct mem_cgroup *to = mc.to;
6651 int i;
6653 /* we must uncharge all the leftover precharges from mc.to */
6654 if (mc.precharge) {
6655 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
6656 mc.precharge = 0;
6659 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6660 * we must uncharge here.
6662 if (mc.moved_charge) {
6663 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6664 mc.moved_charge = 0;
6666 /* we must fixup refcnts and charges */
6667 if (mc.moved_swap) {
6668 /* uncharge swap account from the old cgroup */
6669 if (!mem_cgroup_is_root(mc.from))
6670 res_counter_uncharge(&mc.from->memsw,
6671 PAGE_SIZE * mc.moved_swap);
6673 for (i = 0; i < mc.moved_swap; i++)
6674 css_put(&mc.from->css);
6676 if (!mem_cgroup_is_root(mc.to)) {
6678 * we charged both to->res and to->memsw, so we should
6679 * uncharge to->res.
6681 res_counter_uncharge(&mc.to->res,
6682 PAGE_SIZE * mc.moved_swap);
6684 /* we've already done css_get(mc.to) */
6685 mc.moved_swap = 0;
6687 memcg_oom_recover(from);
6688 memcg_oom_recover(to);
6689 wake_up_all(&mc.waitq);
6692 static void mem_cgroup_clear_mc(void)
6694 struct mem_cgroup *from = mc.from;
6697 * we must clear moving_task before waking up waiters at the end of
6698 * task migration.
6700 mc.moving_task = NULL;
6701 __mem_cgroup_clear_mc();
6702 spin_lock(&mc.lock);
6703 mc.from = NULL;
6704 mc.to = NULL;
6705 spin_unlock(&mc.lock);
6706 mem_cgroup_end_move(from);
6709 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6710 struct cgroup_taskset *tset)
6712 struct task_struct *p = cgroup_taskset_first(tset);
6713 int ret = 0;
6714 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6715 unsigned long move_charge_at_immigrate;
6718 * We are now commited to this value whatever it is. Changes in this
6719 * tunable will only affect upcoming migrations, not the current one.
6720 * So we need to save it, and keep it going.
6722 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
6723 if (move_charge_at_immigrate) {
6724 struct mm_struct *mm;
6725 struct mem_cgroup *from = mem_cgroup_from_task(p);
6727 VM_BUG_ON(from == memcg);
6729 mm = get_task_mm(p);
6730 if (!mm)
6731 return 0;
6732 /* We move charges only when we move a owner of the mm */
6733 if (mm->owner == p) {
6734 VM_BUG_ON(mc.from);
6735 VM_BUG_ON(mc.to);
6736 VM_BUG_ON(mc.precharge);
6737 VM_BUG_ON(mc.moved_charge);
6738 VM_BUG_ON(mc.moved_swap);
6739 mem_cgroup_start_move(from);
6740 spin_lock(&mc.lock);
6741 mc.from = from;
6742 mc.to = memcg;
6743 mc.immigrate_flags = move_charge_at_immigrate;
6744 spin_unlock(&mc.lock);
6745 /* We set mc.moving_task later */
6747 ret = mem_cgroup_precharge_mc(mm);
6748 if (ret)
6749 mem_cgroup_clear_mc();
6751 mmput(mm);
6753 return ret;
6756 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6757 struct cgroup_taskset *tset)
6759 mem_cgroup_clear_mc();
6762 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6763 unsigned long addr, unsigned long end,
6764 struct mm_walk *walk)
6766 int ret = 0;
6767 struct vm_area_struct *vma = walk->private;
6768 pte_t *pte;
6769 spinlock_t *ptl;
6770 enum mc_target_type target_type;
6771 union mc_target target;
6772 struct page *page;
6773 struct page_cgroup *pc;
6776 * We don't take compound_lock() here but no race with splitting thp
6777 * happens because:
6778 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
6779 * under splitting, which means there's no concurrent thp split,
6780 * - if another thread runs into split_huge_page() just after we
6781 * entered this if-block, the thread must wait for page table lock
6782 * to be unlocked in __split_huge_page_splitting(), where the main
6783 * part of thp split is not executed yet.
6785 if (pmd_trans_huge_lock(pmd, vma) == 1) {
6786 if (mc.precharge < HPAGE_PMD_NR) {
6787 spin_unlock(&vma->vm_mm->page_table_lock);
6788 return 0;
6790 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6791 if (target_type == MC_TARGET_PAGE) {
6792 page = target.page;
6793 if (!isolate_lru_page(page)) {
6794 pc = lookup_page_cgroup(page);
6795 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
6796 pc, mc.from, mc.to)) {
6797 mc.precharge -= HPAGE_PMD_NR;
6798 mc.moved_charge += HPAGE_PMD_NR;
6800 putback_lru_page(page);
6802 put_page(page);
6804 spin_unlock(&vma->vm_mm->page_table_lock);
6805 return 0;
6808 if (pmd_trans_unstable(pmd))
6809 return 0;
6810 retry:
6811 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6812 for (; addr != end; addr += PAGE_SIZE) {
6813 pte_t ptent = *(pte++);
6814 swp_entry_t ent;
6816 if (!mc.precharge)
6817 break;
6819 switch (get_mctgt_type(vma, addr, ptent, &target)) {
6820 case MC_TARGET_PAGE:
6821 page = target.page;
6822 if (isolate_lru_page(page))
6823 goto put;
6824 pc = lookup_page_cgroup(page);
6825 if (!mem_cgroup_move_account(page, 1, pc,
6826 mc.from, mc.to)) {
6827 mc.precharge--;
6828 /* we uncharge from mc.from later. */
6829 mc.moved_charge++;
6831 putback_lru_page(page);
6832 put: /* get_mctgt_type() gets the page */
6833 put_page(page);
6834 break;
6835 case MC_TARGET_SWAP:
6836 ent = target.ent;
6837 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6838 mc.precharge--;
6839 /* we fixup refcnts and charges later. */
6840 mc.moved_swap++;
6842 break;
6843 default:
6844 break;
6847 pte_unmap_unlock(pte - 1, ptl);
6848 cond_resched();
6850 if (addr != end) {
6852 * We have consumed all precharges we got in can_attach().
6853 * We try charge one by one, but don't do any additional
6854 * charges to mc.to if we have failed in charge once in attach()
6855 * phase.
6857 ret = mem_cgroup_do_precharge(1);
6858 if (!ret)
6859 goto retry;
6862 return ret;
6865 static void mem_cgroup_move_charge(struct mm_struct *mm)
6867 struct vm_area_struct *vma;
6869 lru_add_drain_all();
6870 retry:
6871 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
6873 * Someone who are holding the mmap_sem might be waiting in
6874 * waitq. So we cancel all extra charges, wake up all waiters,
6875 * and retry. Because we cancel precharges, we might not be able
6876 * to move enough charges, but moving charge is a best-effort
6877 * feature anyway, so it wouldn't be a big problem.
6879 __mem_cgroup_clear_mc();
6880 cond_resched();
6881 goto retry;
6883 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6884 int ret;
6885 struct mm_walk mem_cgroup_move_charge_walk = {
6886 .pmd_entry = mem_cgroup_move_charge_pte_range,
6887 .mm = mm,
6888 .private = vma,
6890 if (is_vm_hugetlb_page(vma))
6891 continue;
6892 ret = walk_page_range(vma->vm_start, vma->vm_end,
6893 &mem_cgroup_move_charge_walk);
6894 if (ret)
6896 * means we have consumed all precharges and failed in
6897 * doing additional charge. Just abandon here.
6899 break;
6901 up_read(&mm->mmap_sem);
6904 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6905 struct cgroup_taskset *tset)
6907 struct task_struct *p = cgroup_taskset_first(tset);
6908 struct mm_struct *mm = get_task_mm(p);
6910 if (mm) {
6911 if (mc.to)
6912 mem_cgroup_move_charge(mm);
6913 mmput(mm);
6915 if (mc.to)
6916 mem_cgroup_clear_mc();
6918 #else /* !CONFIG_MMU */
6919 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6920 struct cgroup_taskset *tset)
6922 return 0;
6924 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6925 struct cgroup_taskset *tset)
6928 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6929 struct cgroup_taskset *tset)
6932 #endif
6935 * Cgroup retains root cgroups across [un]mount cycles making it necessary
6936 * to verify sane_behavior flag on each mount attempt.
6938 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
6941 * use_hierarchy is forced with sane_behavior. cgroup core
6942 * guarantees that @root doesn't have any children, so turning it
6943 * on for the root memcg is enough.
6945 if (cgroup_sane_behavior(root_css->cgroup))
6946 mem_cgroup_from_css(root_css)->use_hierarchy = true;
6949 struct cgroup_subsys mem_cgroup_subsys = {
6950 .name = "memory",
6951 .subsys_id = mem_cgroup_subsys_id,
6952 .css_alloc = mem_cgroup_css_alloc,
6953 .css_online = mem_cgroup_css_online,
6954 .css_offline = mem_cgroup_css_offline,
6955 .css_free = mem_cgroup_css_free,
6956 .can_attach = mem_cgroup_can_attach,
6957 .cancel_attach = mem_cgroup_cancel_attach,
6958 .attach = mem_cgroup_move_task,
6959 .bind = mem_cgroup_bind,
6960 .base_cftypes = mem_cgroup_files,
6961 .early_init = 0,
6962 .use_id = 1,
6965 #ifdef CONFIG_MEMCG_SWAP
6966 static int __init enable_swap_account(char *s)
6968 if (!strcmp(s, "1"))
6969 really_do_swap_account = 1;
6970 else if (!strcmp(s, "0"))
6971 really_do_swap_account = 0;
6972 return 1;
6974 __setup("swapaccount=", enable_swap_account);
6976 static void __init memsw_file_init(void)
6978 WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
6981 static void __init enable_swap_cgroup(void)
6983 if (!mem_cgroup_disabled() && really_do_swap_account) {
6984 do_swap_account = 1;
6985 memsw_file_init();
6989 #else
6990 static void __init enable_swap_cgroup(void)
6993 #endif
6996 * subsys_initcall() for memory controller.
6998 * Some parts like hotcpu_notifier() have to be initialized from this context
6999 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
7000 * everything that doesn't depend on a specific mem_cgroup structure should
7001 * be initialized from here.
7003 static int __init mem_cgroup_init(void)
7005 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
7006 enable_swap_cgroup();
7007 mem_cgroup_soft_limit_tree_init();
7008 memcg_stock_init();
7009 return 0;
7011 subsys_initcall(mem_cgroup_init);