lib/vsprintf.c: document formats for dentry and struct file
[linux-2.6.git] / mm / huge_memory.c
blob0556c6a44959130e244127183acb9f16b7c3e604
1 /*
2 * Copyright (C) 2009 Red Hat, Inc.
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/highmem.h>
11 #include <linux/hugetlb.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/rmap.h>
14 #include <linux/swap.h>
15 #include <linux/shrinker.h>
16 #include <linux/mm_inline.h>
17 #include <linux/kthread.h>
18 #include <linux/khugepaged.h>
19 #include <linux/freezer.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/migrate.h>
23 #include <linux/hashtable.h>
25 #include <asm/tlb.h>
26 #include <asm/pgalloc.h>
27 #include "internal.h"
30 * By default transparent hugepage support is disabled in order that avoid
31 * to risk increase the memory footprint of applications without a guaranteed
32 * benefit. When transparent hugepage support is enabled, is for all mappings,
33 * and khugepaged scans all mappings.
34 * Defrag is invoked by khugepaged hugepage allocations and by page faults
35 * for all hugepage allocations.
37 unsigned long transparent_hugepage_flags __read_mostly =
38 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
39 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
40 #endif
41 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
42 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
43 #endif
44 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
45 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
46 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
48 /* default scan 8*512 pte (or vmas) every 30 second */
49 static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
50 static unsigned int khugepaged_pages_collapsed;
51 static unsigned int khugepaged_full_scans;
52 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
53 /* during fragmentation poll the hugepage allocator once every minute */
54 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
55 static struct task_struct *khugepaged_thread __read_mostly;
56 static DEFINE_MUTEX(khugepaged_mutex);
57 static DEFINE_SPINLOCK(khugepaged_mm_lock);
58 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
60 * default collapse hugepages if there is at least one pte mapped like
61 * it would have happened if the vma was large enough during page
62 * fault.
64 static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
66 static int khugepaged(void *none);
67 static int khugepaged_slab_init(void);
69 #define MM_SLOTS_HASH_BITS 10
70 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
72 static struct kmem_cache *mm_slot_cache __read_mostly;
74 /**
75 * struct mm_slot - hash lookup from mm to mm_slot
76 * @hash: hash collision list
77 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
78 * @mm: the mm that this information is valid for
80 struct mm_slot {
81 struct hlist_node hash;
82 struct list_head mm_node;
83 struct mm_struct *mm;
86 /**
87 * struct khugepaged_scan - cursor for scanning
88 * @mm_head: the head of the mm list to scan
89 * @mm_slot: the current mm_slot we are scanning
90 * @address: the next address inside that to be scanned
92 * There is only the one khugepaged_scan instance of this cursor structure.
94 struct khugepaged_scan {
95 struct list_head mm_head;
96 struct mm_slot *mm_slot;
97 unsigned long address;
99 static struct khugepaged_scan khugepaged_scan = {
100 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
104 static int set_recommended_min_free_kbytes(void)
106 struct zone *zone;
107 int nr_zones = 0;
108 unsigned long recommended_min;
110 if (!khugepaged_enabled())
111 return 0;
113 for_each_populated_zone(zone)
114 nr_zones++;
116 /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
117 recommended_min = pageblock_nr_pages * nr_zones * 2;
120 * Make sure that on average at least two pageblocks are almost free
121 * of another type, one for a migratetype to fall back to and a
122 * second to avoid subsequent fallbacks of other types There are 3
123 * MIGRATE_TYPES we care about.
125 recommended_min += pageblock_nr_pages * nr_zones *
126 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
128 /* don't ever allow to reserve more than 5% of the lowmem */
129 recommended_min = min(recommended_min,
130 (unsigned long) nr_free_buffer_pages() / 20);
131 recommended_min <<= (PAGE_SHIFT-10);
133 if (recommended_min > min_free_kbytes)
134 min_free_kbytes = recommended_min;
135 setup_per_zone_wmarks();
136 return 0;
138 late_initcall(set_recommended_min_free_kbytes);
140 static int start_khugepaged(void)
142 int err = 0;
143 if (khugepaged_enabled()) {
144 if (!khugepaged_thread)
145 khugepaged_thread = kthread_run(khugepaged, NULL,
146 "khugepaged");
147 if (unlikely(IS_ERR(khugepaged_thread))) {
148 printk(KERN_ERR
149 "khugepaged: kthread_run(khugepaged) failed\n");
150 err = PTR_ERR(khugepaged_thread);
151 khugepaged_thread = NULL;
154 if (!list_empty(&khugepaged_scan.mm_head))
155 wake_up_interruptible(&khugepaged_wait);
157 set_recommended_min_free_kbytes();
158 } else if (khugepaged_thread) {
159 kthread_stop(khugepaged_thread);
160 khugepaged_thread = NULL;
163 return err;
166 static atomic_t huge_zero_refcount;
167 static struct page *huge_zero_page __read_mostly;
169 static inline bool is_huge_zero_page(struct page *page)
171 return ACCESS_ONCE(huge_zero_page) == page;
174 static inline bool is_huge_zero_pmd(pmd_t pmd)
176 return is_huge_zero_page(pmd_page(pmd));
179 static struct page *get_huge_zero_page(void)
181 struct page *zero_page;
182 retry:
183 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
184 return ACCESS_ONCE(huge_zero_page);
186 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
187 HPAGE_PMD_ORDER);
188 if (!zero_page) {
189 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
190 return NULL;
192 count_vm_event(THP_ZERO_PAGE_ALLOC);
193 preempt_disable();
194 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
195 preempt_enable();
196 __free_page(zero_page);
197 goto retry;
200 /* We take additional reference here. It will be put back by shrinker */
201 atomic_set(&huge_zero_refcount, 2);
202 preempt_enable();
203 return ACCESS_ONCE(huge_zero_page);
206 static void put_huge_zero_page(void)
209 * Counter should never go to zero here. Only shrinker can put
210 * last reference.
212 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
215 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
216 struct shrink_control *sc)
218 /* we can free zero page only if last reference remains */
219 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
222 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
223 struct shrink_control *sc)
225 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
226 struct page *zero_page = xchg(&huge_zero_page, NULL);
227 BUG_ON(zero_page == NULL);
228 __free_page(zero_page);
229 return HPAGE_PMD_NR;
232 return 0;
235 static struct shrinker huge_zero_page_shrinker = {
236 .count_objects = shrink_huge_zero_page_count,
237 .scan_objects = shrink_huge_zero_page_scan,
238 .seeks = DEFAULT_SEEKS,
241 #ifdef CONFIG_SYSFS
243 static ssize_t double_flag_show(struct kobject *kobj,
244 struct kobj_attribute *attr, char *buf,
245 enum transparent_hugepage_flag enabled,
246 enum transparent_hugepage_flag req_madv)
248 if (test_bit(enabled, &transparent_hugepage_flags)) {
249 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
250 return sprintf(buf, "[always] madvise never\n");
251 } else if (test_bit(req_madv, &transparent_hugepage_flags))
252 return sprintf(buf, "always [madvise] never\n");
253 else
254 return sprintf(buf, "always madvise [never]\n");
256 static ssize_t double_flag_store(struct kobject *kobj,
257 struct kobj_attribute *attr,
258 const char *buf, size_t count,
259 enum transparent_hugepage_flag enabled,
260 enum transparent_hugepage_flag req_madv)
262 if (!memcmp("always", buf,
263 min(sizeof("always")-1, count))) {
264 set_bit(enabled, &transparent_hugepage_flags);
265 clear_bit(req_madv, &transparent_hugepage_flags);
266 } else if (!memcmp("madvise", buf,
267 min(sizeof("madvise")-1, count))) {
268 clear_bit(enabled, &transparent_hugepage_flags);
269 set_bit(req_madv, &transparent_hugepage_flags);
270 } else if (!memcmp("never", buf,
271 min(sizeof("never")-1, count))) {
272 clear_bit(enabled, &transparent_hugepage_flags);
273 clear_bit(req_madv, &transparent_hugepage_flags);
274 } else
275 return -EINVAL;
277 return count;
280 static ssize_t enabled_show(struct kobject *kobj,
281 struct kobj_attribute *attr, char *buf)
283 return double_flag_show(kobj, attr, buf,
284 TRANSPARENT_HUGEPAGE_FLAG,
285 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
287 static ssize_t enabled_store(struct kobject *kobj,
288 struct kobj_attribute *attr,
289 const char *buf, size_t count)
291 ssize_t ret;
293 ret = double_flag_store(kobj, attr, buf, count,
294 TRANSPARENT_HUGEPAGE_FLAG,
295 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
297 if (ret > 0) {
298 int err;
300 mutex_lock(&khugepaged_mutex);
301 err = start_khugepaged();
302 mutex_unlock(&khugepaged_mutex);
304 if (err)
305 ret = err;
308 return ret;
310 static struct kobj_attribute enabled_attr =
311 __ATTR(enabled, 0644, enabled_show, enabled_store);
313 static ssize_t single_flag_show(struct kobject *kobj,
314 struct kobj_attribute *attr, char *buf,
315 enum transparent_hugepage_flag flag)
317 return sprintf(buf, "%d\n",
318 !!test_bit(flag, &transparent_hugepage_flags));
321 static ssize_t single_flag_store(struct kobject *kobj,
322 struct kobj_attribute *attr,
323 const char *buf, size_t count,
324 enum transparent_hugepage_flag flag)
326 unsigned long value;
327 int ret;
329 ret = kstrtoul(buf, 10, &value);
330 if (ret < 0)
331 return ret;
332 if (value > 1)
333 return -EINVAL;
335 if (value)
336 set_bit(flag, &transparent_hugepage_flags);
337 else
338 clear_bit(flag, &transparent_hugepage_flags);
340 return count;
344 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
345 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
346 * memory just to allocate one more hugepage.
348 static ssize_t defrag_show(struct kobject *kobj,
349 struct kobj_attribute *attr, char *buf)
351 return double_flag_show(kobj, attr, buf,
352 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
353 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
355 static ssize_t defrag_store(struct kobject *kobj,
356 struct kobj_attribute *attr,
357 const char *buf, size_t count)
359 return double_flag_store(kobj, attr, buf, count,
360 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
361 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
363 static struct kobj_attribute defrag_attr =
364 __ATTR(defrag, 0644, defrag_show, defrag_store);
366 static ssize_t use_zero_page_show(struct kobject *kobj,
367 struct kobj_attribute *attr, char *buf)
369 return single_flag_show(kobj, attr, buf,
370 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
372 static ssize_t use_zero_page_store(struct kobject *kobj,
373 struct kobj_attribute *attr, const char *buf, size_t count)
375 return single_flag_store(kobj, attr, buf, count,
376 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
378 static struct kobj_attribute use_zero_page_attr =
379 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
380 #ifdef CONFIG_DEBUG_VM
381 static ssize_t debug_cow_show(struct kobject *kobj,
382 struct kobj_attribute *attr, char *buf)
384 return single_flag_show(kobj, attr, buf,
385 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
387 static ssize_t debug_cow_store(struct kobject *kobj,
388 struct kobj_attribute *attr,
389 const char *buf, size_t count)
391 return single_flag_store(kobj, attr, buf, count,
392 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
394 static struct kobj_attribute debug_cow_attr =
395 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
396 #endif /* CONFIG_DEBUG_VM */
398 static struct attribute *hugepage_attr[] = {
399 &enabled_attr.attr,
400 &defrag_attr.attr,
401 &use_zero_page_attr.attr,
402 #ifdef CONFIG_DEBUG_VM
403 &debug_cow_attr.attr,
404 #endif
405 NULL,
408 static struct attribute_group hugepage_attr_group = {
409 .attrs = hugepage_attr,
412 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
413 struct kobj_attribute *attr,
414 char *buf)
416 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
419 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
420 struct kobj_attribute *attr,
421 const char *buf, size_t count)
423 unsigned long msecs;
424 int err;
426 err = kstrtoul(buf, 10, &msecs);
427 if (err || msecs > UINT_MAX)
428 return -EINVAL;
430 khugepaged_scan_sleep_millisecs = msecs;
431 wake_up_interruptible(&khugepaged_wait);
433 return count;
435 static struct kobj_attribute scan_sleep_millisecs_attr =
436 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
437 scan_sleep_millisecs_store);
439 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
440 struct kobj_attribute *attr,
441 char *buf)
443 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
446 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
447 struct kobj_attribute *attr,
448 const char *buf, size_t count)
450 unsigned long msecs;
451 int err;
453 err = kstrtoul(buf, 10, &msecs);
454 if (err || msecs > UINT_MAX)
455 return -EINVAL;
457 khugepaged_alloc_sleep_millisecs = msecs;
458 wake_up_interruptible(&khugepaged_wait);
460 return count;
462 static struct kobj_attribute alloc_sleep_millisecs_attr =
463 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
464 alloc_sleep_millisecs_store);
466 static ssize_t pages_to_scan_show(struct kobject *kobj,
467 struct kobj_attribute *attr,
468 char *buf)
470 return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
472 static ssize_t pages_to_scan_store(struct kobject *kobj,
473 struct kobj_attribute *attr,
474 const char *buf, size_t count)
476 int err;
477 unsigned long pages;
479 err = kstrtoul(buf, 10, &pages);
480 if (err || !pages || pages > UINT_MAX)
481 return -EINVAL;
483 khugepaged_pages_to_scan = pages;
485 return count;
487 static struct kobj_attribute pages_to_scan_attr =
488 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
489 pages_to_scan_store);
491 static ssize_t pages_collapsed_show(struct kobject *kobj,
492 struct kobj_attribute *attr,
493 char *buf)
495 return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
497 static struct kobj_attribute pages_collapsed_attr =
498 __ATTR_RO(pages_collapsed);
500 static ssize_t full_scans_show(struct kobject *kobj,
501 struct kobj_attribute *attr,
502 char *buf)
504 return sprintf(buf, "%u\n", khugepaged_full_scans);
506 static struct kobj_attribute full_scans_attr =
507 __ATTR_RO(full_scans);
509 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
510 struct kobj_attribute *attr, char *buf)
512 return single_flag_show(kobj, attr, buf,
513 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
515 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
516 struct kobj_attribute *attr,
517 const char *buf, size_t count)
519 return single_flag_store(kobj, attr, buf, count,
520 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
522 static struct kobj_attribute khugepaged_defrag_attr =
523 __ATTR(defrag, 0644, khugepaged_defrag_show,
524 khugepaged_defrag_store);
527 * max_ptes_none controls if khugepaged should collapse hugepages over
528 * any unmapped ptes in turn potentially increasing the memory
529 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
530 * reduce the available free memory in the system as it
531 * runs. Increasing max_ptes_none will instead potentially reduce the
532 * free memory in the system during the khugepaged scan.
534 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
535 struct kobj_attribute *attr,
536 char *buf)
538 return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
540 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
541 struct kobj_attribute *attr,
542 const char *buf, size_t count)
544 int err;
545 unsigned long max_ptes_none;
547 err = kstrtoul(buf, 10, &max_ptes_none);
548 if (err || max_ptes_none > HPAGE_PMD_NR-1)
549 return -EINVAL;
551 khugepaged_max_ptes_none = max_ptes_none;
553 return count;
555 static struct kobj_attribute khugepaged_max_ptes_none_attr =
556 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
557 khugepaged_max_ptes_none_store);
559 static struct attribute *khugepaged_attr[] = {
560 &khugepaged_defrag_attr.attr,
561 &khugepaged_max_ptes_none_attr.attr,
562 &pages_to_scan_attr.attr,
563 &pages_collapsed_attr.attr,
564 &full_scans_attr.attr,
565 &scan_sleep_millisecs_attr.attr,
566 &alloc_sleep_millisecs_attr.attr,
567 NULL,
570 static struct attribute_group khugepaged_attr_group = {
571 .attrs = khugepaged_attr,
572 .name = "khugepaged",
575 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
577 int err;
579 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
580 if (unlikely(!*hugepage_kobj)) {
581 printk(KERN_ERR "hugepage: failed to create transparent hugepage kobject\n");
582 return -ENOMEM;
585 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
586 if (err) {
587 printk(KERN_ERR "hugepage: failed to register transparent hugepage group\n");
588 goto delete_obj;
591 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
592 if (err) {
593 printk(KERN_ERR "hugepage: failed to register transparent hugepage group\n");
594 goto remove_hp_group;
597 return 0;
599 remove_hp_group:
600 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
601 delete_obj:
602 kobject_put(*hugepage_kobj);
603 return err;
606 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
608 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
609 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
610 kobject_put(hugepage_kobj);
612 #else
613 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
615 return 0;
618 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
621 #endif /* CONFIG_SYSFS */
623 static int __init hugepage_init(void)
625 int err;
626 struct kobject *hugepage_kobj;
628 if (!has_transparent_hugepage()) {
629 transparent_hugepage_flags = 0;
630 return -EINVAL;
633 err = hugepage_init_sysfs(&hugepage_kobj);
634 if (err)
635 return err;
637 err = khugepaged_slab_init();
638 if (err)
639 goto out;
641 register_shrinker(&huge_zero_page_shrinker);
644 * By default disable transparent hugepages on smaller systems,
645 * where the extra memory used could hurt more than TLB overhead
646 * is likely to save. The admin can still enable it through /sys.
648 if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
649 transparent_hugepage_flags = 0;
651 start_khugepaged();
653 return 0;
654 out:
655 hugepage_exit_sysfs(hugepage_kobj);
656 return err;
658 module_init(hugepage_init)
660 static int __init setup_transparent_hugepage(char *str)
662 int ret = 0;
663 if (!str)
664 goto out;
665 if (!strcmp(str, "always")) {
666 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
667 &transparent_hugepage_flags);
668 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
669 &transparent_hugepage_flags);
670 ret = 1;
671 } else if (!strcmp(str, "madvise")) {
672 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
673 &transparent_hugepage_flags);
674 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
675 &transparent_hugepage_flags);
676 ret = 1;
677 } else if (!strcmp(str, "never")) {
678 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
679 &transparent_hugepage_flags);
680 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
681 &transparent_hugepage_flags);
682 ret = 1;
684 out:
685 if (!ret)
686 printk(KERN_WARNING
687 "transparent_hugepage= cannot parse, ignored\n");
688 return ret;
690 __setup("transparent_hugepage=", setup_transparent_hugepage);
692 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
694 if (likely(vma->vm_flags & VM_WRITE))
695 pmd = pmd_mkwrite(pmd);
696 return pmd;
699 static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
701 pmd_t entry;
702 entry = mk_pmd(page, prot);
703 entry = pmd_mkhuge(entry);
704 return entry;
707 static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
708 struct vm_area_struct *vma,
709 unsigned long haddr, pmd_t *pmd,
710 struct page *page)
712 pgtable_t pgtable;
714 VM_BUG_ON(!PageCompound(page));
715 pgtable = pte_alloc_one(mm, haddr);
716 if (unlikely(!pgtable))
717 return VM_FAULT_OOM;
719 clear_huge_page(page, haddr, HPAGE_PMD_NR);
721 * The memory barrier inside __SetPageUptodate makes sure that
722 * clear_huge_page writes become visible before the set_pmd_at()
723 * write.
725 __SetPageUptodate(page);
727 spin_lock(&mm->page_table_lock);
728 if (unlikely(!pmd_none(*pmd))) {
729 spin_unlock(&mm->page_table_lock);
730 mem_cgroup_uncharge_page(page);
731 put_page(page);
732 pte_free(mm, pgtable);
733 } else {
734 pmd_t entry;
735 entry = mk_huge_pmd(page, vma->vm_page_prot);
736 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
737 page_add_new_anon_rmap(page, vma, haddr);
738 pgtable_trans_huge_deposit(mm, pmd, pgtable);
739 set_pmd_at(mm, haddr, pmd, entry);
740 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
741 mm->nr_ptes++;
742 spin_unlock(&mm->page_table_lock);
745 return 0;
748 static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
750 return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
753 static inline struct page *alloc_hugepage_vma(int defrag,
754 struct vm_area_struct *vma,
755 unsigned long haddr, int nd,
756 gfp_t extra_gfp)
758 return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
759 HPAGE_PMD_ORDER, vma, haddr, nd);
762 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
763 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
764 struct page *zero_page)
766 pmd_t entry;
767 if (!pmd_none(*pmd))
768 return false;
769 entry = mk_pmd(zero_page, vma->vm_page_prot);
770 entry = pmd_wrprotect(entry);
771 entry = pmd_mkhuge(entry);
772 pgtable_trans_huge_deposit(mm, pmd, pgtable);
773 set_pmd_at(mm, haddr, pmd, entry);
774 mm->nr_ptes++;
775 return true;
778 int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
779 unsigned long address, pmd_t *pmd,
780 unsigned int flags)
782 struct page *page;
783 unsigned long haddr = address & HPAGE_PMD_MASK;
785 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
786 return VM_FAULT_FALLBACK;
787 if (unlikely(anon_vma_prepare(vma)))
788 return VM_FAULT_OOM;
789 if (unlikely(khugepaged_enter(vma)))
790 return VM_FAULT_OOM;
791 if (!(flags & FAULT_FLAG_WRITE) &&
792 transparent_hugepage_use_zero_page()) {
793 pgtable_t pgtable;
794 struct page *zero_page;
795 bool set;
796 pgtable = pte_alloc_one(mm, haddr);
797 if (unlikely(!pgtable))
798 return VM_FAULT_OOM;
799 zero_page = get_huge_zero_page();
800 if (unlikely(!zero_page)) {
801 pte_free(mm, pgtable);
802 count_vm_event(THP_FAULT_FALLBACK);
803 return VM_FAULT_FALLBACK;
805 spin_lock(&mm->page_table_lock);
806 set = set_huge_zero_page(pgtable, mm, vma, haddr, pmd,
807 zero_page);
808 spin_unlock(&mm->page_table_lock);
809 if (!set) {
810 pte_free(mm, pgtable);
811 put_huge_zero_page();
813 return 0;
815 page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
816 vma, haddr, numa_node_id(), 0);
817 if (unlikely(!page)) {
818 count_vm_event(THP_FAULT_FALLBACK);
819 return VM_FAULT_FALLBACK;
821 if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
822 put_page(page);
823 count_vm_event(THP_FAULT_FALLBACK);
824 return VM_FAULT_FALLBACK;
826 if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page))) {
827 mem_cgroup_uncharge_page(page);
828 put_page(page);
829 count_vm_event(THP_FAULT_FALLBACK);
830 return VM_FAULT_FALLBACK;
833 count_vm_event(THP_FAULT_ALLOC);
834 return 0;
837 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
838 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
839 struct vm_area_struct *vma)
841 struct page *src_page;
842 pmd_t pmd;
843 pgtable_t pgtable;
844 int ret;
846 ret = -ENOMEM;
847 pgtable = pte_alloc_one(dst_mm, addr);
848 if (unlikely(!pgtable))
849 goto out;
851 spin_lock(&dst_mm->page_table_lock);
852 spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
854 ret = -EAGAIN;
855 pmd = *src_pmd;
856 if (unlikely(!pmd_trans_huge(pmd))) {
857 pte_free(dst_mm, pgtable);
858 goto out_unlock;
861 * mm->page_table_lock is enough to be sure that huge zero pmd is not
862 * under splitting since we don't split the page itself, only pmd to
863 * a page table.
865 if (is_huge_zero_pmd(pmd)) {
866 struct page *zero_page;
867 bool set;
869 * get_huge_zero_page() will never allocate a new page here,
870 * since we already have a zero page to copy. It just takes a
871 * reference.
873 zero_page = get_huge_zero_page();
874 set = set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
875 zero_page);
876 BUG_ON(!set); /* unexpected !pmd_none(dst_pmd) */
877 ret = 0;
878 goto out_unlock;
880 if (unlikely(pmd_trans_splitting(pmd))) {
881 /* split huge page running from under us */
882 spin_unlock(&src_mm->page_table_lock);
883 spin_unlock(&dst_mm->page_table_lock);
884 pte_free(dst_mm, pgtable);
886 wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
887 goto out;
889 src_page = pmd_page(pmd);
890 VM_BUG_ON(!PageHead(src_page));
891 get_page(src_page);
892 page_dup_rmap(src_page);
893 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
895 pmdp_set_wrprotect(src_mm, addr, src_pmd);
896 pmd = pmd_mkold(pmd_wrprotect(pmd));
897 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
898 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
899 dst_mm->nr_ptes++;
901 ret = 0;
902 out_unlock:
903 spin_unlock(&src_mm->page_table_lock);
904 spin_unlock(&dst_mm->page_table_lock);
905 out:
906 return ret;
909 void huge_pmd_set_accessed(struct mm_struct *mm,
910 struct vm_area_struct *vma,
911 unsigned long address,
912 pmd_t *pmd, pmd_t orig_pmd,
913 int dirty)
915 pmd_t entry;
916 unsigned long haddr;
918 spin_lock(&mm->page_table_lock);
919 if (unlikely(!pmd_same(*pmd, orig_pmd)))
920 goto unlock;
922 entry = pmd_mkyoung(orig_pmd);
923 haddr = address & HPAGE_PMD_MASK;
924 if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
925 update_mmu_cache_pmd(vma, address, pmd);
927 unlock:
928 spin_unlock(&mm->page_table_lock);
931 static int do_huge_pmd_wp_zero_page_fallback(struct mm_struct *mm,
932 struct vm_area_struct *vma, unsigned long address,
933 pmd_t *pmd, pmd_t orig_pmd, unsigned long haddr)
935 pgtable_t pgtable;
936 pmd_t _pmd;
937 struct page *page;
938 int i, ret = 0;
939 unsigned long mmun_start; /* For mmu_notifiers */
940 unsigned long mmun_end; /* For mmu_notifiers */
942 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
943 if (!page) {
944 ret |= VM_FAULT_OOM;
945 goto out;
948 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
949 put_page(page);
950 ret |= VM_FAULT_OOM;
951 goto out;
954 clear_user_highpage(page, address);
955 __SetPageUptodate(page);
957 mmun_start = haddr;
958 mmun_end = haddr + HPAGE_PMD_SIZE;
959 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
961 spin_lock(&mm->page_table_lock);
962 if (unlikely(!pmd_same(*pmd, orig_pmd)))
963 goto out_free_page;
965 pmdp_clear_flush(vma, haddr, pmd);
966 /* leave pmd empty until pte is filled */
968 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
969 pmd_populate(mm, &_pmd, pgtable);
971 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
972 pte_t *pte, entry;
973 if (haddr == (address & PAGE_MASK)) {
974 entry = mk_pte(page, vma->vm_page_prot);
975 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
976 page_add_new_anon_rmap(page, vma, haddr);
977 } else {
978 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
979 entry = pte_mkspecial(entry);
981 pte = pte_offset_map(&_pmd, haddr);
982 VM_BUG_ON(!pte_none(*pte));
983 set_pte_at(mm, haddr, pte, entry);
984 pte_unmap(pte);
986 smp_wmb(); /* make pte visible before pmd */
987 pmd_populate(mm, pmd, pgtable);
988 spin_unlock(&mm->page_table_lock);
989 put_huge_zero_page();
990 inc_mm_counter(mm, MM_ANONPAGES);
992 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
994 ret |= VM_FAULT_WRITE;
995 out:
996 return ret;
997 out_free_page:
998 spin_unlock(&mm->page_table_lock);
999 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1000 mem_cgroup_uncharge_page(page);
1001 put_page(page);
1002 goto out;
1005 static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
1006 struct vm_area_struct *vma,
1007 unsigned long address,
1008 pmd_t *pmd, pmd_t orig_pmd,
1009 struct page *page,
1010 unsigned long haddr)
1012 pgtable_t pgtable;
1013 pmd_t _pmd;
1014 int ret = 0, i;
1015 struct page **pages;
1016 unsigned long mmun_start; /* For mmu_notifiers */
1017 unsigned long mmun_end; /* For mmu_notifiers */
1019 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1020 GFP_KERNEL);
1021 if (unlikely(!pages)) {
1022 ret |= VM_FAULT_OOM;
1023 goto out;
1026 for (i = 0; i < HPAGE_PMD_NR; i++) {
1027 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
1028 __GFP_OTHER_NODE,
1029 vma, address, page_to_nid(page));
1030 if (unlikely(!pages[i] ||
1031 mem_cgroup_newpage_charge(pages[i], mm,
1032 GFP_KERNEL))) {
1033 if (pages[i])
1034 put_page(pages[i]);
1035 mem_cgroup_uncharge_start();
1036 while (--i >= 0) {
1037 mem_cgroup_uncharge_page(pages[i]);
1038 put_page(pages[i]);
1040 mem_cgroup_uncharge_end();
1041 kfree(pages);
1042 ret |= VM_FAULT_OOM;
1043 goto out;
1047 for (i = 0; i < HPAGE_PMD_NR; i++) {
1048 copy_user_highpage(pages[i], page + i,
1049 haddr + PAGE_SIZE * i, vma);
1050 __SetPageUptodate(pages[i]);
1051 cond_resched();
1054 mmun_start = haddr;
1055 mmun_end = haddr + HPAGE_PMD_SIZE;
1056 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1058 spin_lock(&mm->page_table_lock);
1059 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1060 goto out_free_pages;
1061 VM_BUG_ON(!PageHead(page));
1063 pmdp_clear_flush(vma, haddr, pmd);
1064 /* leave pmd empty until pte is filled */
1066 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1067 pmd_populate(mm, &_pmd, pgtable);
1069 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1070 pte_t *pte, entry;
1071 entry = mk_pte(pages[i], vma->vm_page_prot);
1072 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1073 page_add_new_anon_rmap(pages[i], vma, haddr);
1074 pte = pte_offset_map(&_pmd, haddr);
1075 VM_BUG_ON(!pte_none(*pte));
1076 set_pte_at(mm, haddr, pte, entry);
1077 pte_unmap(pte);
1079 kfree(pages);
1081 smp_wmb(); /* make pte visible before pmd */
1082 pmd_populate(mm, pmd, pgtable);
1083 page_remove_rmap(page);
1084 spin_unlock(&mm->page_table_lock);
1086 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1088 ret |= VM_FAULT_WRITE;
1089 put_page(page);
1091 out:
1092 return ret;
1094 out_free_pages:
1095 spin_unlock(&mm->page_table_lock);
1096 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1097 mem_cgroup_uncharge_start();
1098 for (i = 0; i < HPAGE_PMD_NR; i++) {
1099 mem_cgroup_uncharge_page(pages[i]);
1100 put_page(pages[i]);
1102 mem_cgroup_uncharge_end();
1103 kfree(pages);
1104 goto out;
1107 int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1108 unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
1110 int ret = 0;
1111 struct page *page = NULL, *new_page;
1112 unsigned long haddr;
1113 unsigned long mmun_start; /* For mmu_notifiers */
1114 unsigned long mmun_end; /* For mmu_notifiers */
1116 VM_BUG_ON(!vma->anon_vma);
1117 haddr = address & HPAGE_PMD_MASK;
1118 if (is_huge_zero_pmd(orig_pmd))
1119 goto alloc;
1120 spin_lock(&mm->page_table_lock);
1121 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1122 goto out_unlock;
1124 page = pmd_page(orig_pmd);
1125 VM_BUG_ON(!PageCompound(page) || !PageHead(page));
1126 if (page_mapcount(page) == 1) {
1127 pmd_t entry;
1128 entry = pmd_mkyoung(orig_pmd);
1129 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1130 if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
1131 update_mmu_cache_pmd(vma, address, pmd);
1132 ret |= VM_FAULT_WRITE;
1133 goto out_unlock;
1135 get_page(page);
1136 spin_unlock(&mm->page_table_lock);
1137 alloc:
1138 if (transparent_hugepage_enabled(vma) &&
1139 !transparent_hugepage_debug_cow())
1140 new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
1141 vma, haddr, numa_node_id(), 0);
1142 else
1143 new_page = NULL;
1145 if (unlikely(!new_page)) {
1146 if (is_huge_zero_pmd(orig_pmd)) {
1147 ret = do_huge_pmd_wp_zero_page_fallback(mm, vma,
1148 address, pmd, orig_pmd, haddr);
1149 } else {
1150 ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
1151 pmd, orig_pmd, page, haddr);
1152 if (ret & VM_FAULT_OOM)
1153 split_huge_page(page);
1154 put_page(page);
1156 count_vm_event(THP_FAULT_FALLBACK);
1157 goto out;
1160 if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
1161 put_page(new_page);
1162 if (page) {
1163 split_huge_page(page);
1164 put_page(page);
1166 count_vm_event(THP_FAULT_FALLBACK);
1167 ret |= VM_FAULT_OOM;
1168 goto out;
1171 count_vm_event(THP_FAULT_ALLOC);
1173 if (is_huge_zero_pmd(orig_pmd))
1174 clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1175 else
1176 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1177 __SetPageUptodate(new_page);
1179 mmun_start = haddr;
1180 mmun_end = haddr + HPAGE_PMD_SIZE;
1181 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1183 spin_lock(&mm->page_table_lock);
1184 if (page)
1185 put_page(page);
1186 if (unlikely(!pmd_same(*pmd, orig_pmd))) {
1187 spin_unlock(&mm->page_table_lock);
1188 mem_cgroup_uncharge_page(new_page);
1189 put_page(new_page);
1190 goto out_mn;
1191 } else {
1192 pmd_t entry;
1193 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1194 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1195 pmdp_clear_flush(vma, haddr, pmd);
1196 page_add_new_anon_rmap(new_page, vma, haddr);
1197 set_pmd_at(mm, haddr, pmd, entry);
1198 update_mmu_cache_pmd(vma, address, pmd);
1199 if (is_huge_zero_pmd(orig_pmd)) {
1200 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
1201 put_huge_zero_page();
1202 } else {
1203 VM_BUG_ON(!PageHead(page));
1204 page_remove_rmap(page);
1205 put_page(page);
1207 ret |= VM_FAULT_WRITE;
1209 spin_unlock(&mm->page_table_lock);
1210 out_mn:
1211 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1212 out:
1213 return ret;
1214 out_unlock:
1215 spin_unlock(&mm->page_table_lock);
1216 return ret;
1219 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1220 unsigned long addr,
1221 pmd_t *pmd,
1222 unsigned int flags)
1224 struct mm_struct *mm = vma->vm_mm;
1225 struct page *page = NULL;
1227 assert_spin_locked(&mm->page_table_lock);
1229 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1230 goto out;
1232 /* Avoid dumping huge zero page */
1233 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1234 return ERR_PTR(-EFAULT);
1236 page = pmd_page(*pmd);
1237 VM_BUG_ON(!PageHead(page));
1238 if (flags & FOLL_TOUCH) {
1239 pmd_t _pmd;
1241 * We should set the dirty bit only for FOLL_WRITE but
1242 * for now the dirty bit in the pmd is meaningless.
1243 * And if the dirty bit will become meaningful and
1244 * we'll only set it with FOLL_WRITE, an atomic
1245 * set_bit will be required on the pmd to set the
1246 * young bit, instead of the current set_pmd_at.
1248 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1249 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1250 pmd, _pmd, 1))
1251 update_mmu_cache_pmd(vma, addr, pmd);
1253 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1254 if (page->mapping && trylock_page(page)) {
1255 lru_add_drain();
1256 if (page->mapping)
1257 mlock_vma_page(page);
1258 unlock_page(page);
1261 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1262 VM_BUG_ON(!PageCompound(page));
1263 if (flags & FOLL_GET)
1264 get_page_foll(page);
1266 out:
1267 return page;
1270 /* NUMA hinting page fault entry point for trans huge pmds */
1271 int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
1272 unsigned long addr, pmd_t pmd, pmd_t *pmdp)
1274 struct anon_vma *anon_vma = NULL;
1275 struct page *page;
1276 unsigned long haddr = addr & HPAGE_PMD_MASK;
1277 int page_nid = -1, this_nid = numa_node_id();
1278 int target_nid, last_cpupid = -1;
1279 bool page_locked;
1280 bool migrated = false;
1281 int flags = 0;
1283 spin_lock(&mm->page_table_lock);
1284 if (unlikely(!pmd_same(pmd, *pmdp)))
1285 goto out_unlock;
1287 page = pmd_page(pmd);
1288 BUG_ON(is_huge_zero_page(page));
1289 page_nid = page_to_nid(page);
1290 last_cpupid = page_cpupid_last(page);
1291 count_vm_numa_event(NUMA_HINT_FAULTS);
1292 if (page_nid == this_nid) {
1293 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1294 flags |= TNF_FAULT_LOCAL;
1298 * Avoid grouping on DSO/COW pages in specific and RO pages
1299 * in general, RO pages shouldn't hurt as much anyway since
1300 * they can be in shared cache state.
1302 if (!pmd_write(pmd))
1303 flags |= TNF_NO_GROUP;
1306 * Acquire the page lock to serialise THP migrations but avoid dropping
1307 * page_table_lock if at all possible
1309 page_locked = trylock_page(page);
1310 target_nid = mpol_misplaced(page, vma, haddr);
1311 if (target_nid == -1) {
1312 /* If the page was locked, there are no parallel migrations */
1313 if (page_locked)
1314 goto clear_pmdnuma;
1317 * Otherwise wait for potential migrations and retry. We do
1318 * relock and check_same as the page may no longer be mapped.
1319 * As the fault is being retried, do not account for it.
1321 spin_unlock(&mm->page_table_lock);
1322 wait_on_page_locked(page);
1323 page_nid = -1;
1324 goto out;
1327 /* Page is misplaced, serialise migrations and parallel THP splits */
1328 get_page(page);
1329 spin_unlock(&mm->page_table_lock);
1330 if (!page_locked)
1331 lock_page(page);
1332 anon_vma = page_lock_anon_vma_read(page);
1334 /* Confirm the PMD did not change while page_table_lock was released */
1335 spin_lock(&mm->page_table_lock);
1336 if (unlikely(!pmd_same(pmd, *pmdp))) {
1337 unlock_page(page);
1338 put_page(page);
1339 page_nid = -1;
1340 goto out_unlock;
1344 * Migrate the THP to the requested node, returns with page unlocked
1345 * and pmd_numa cleared.
1347 spin_unlock(&mm->page_table_lock);
1348 migrated = migrate_misplaced_transhuge_page(mm, vma,
1349 pmdp, pmd, addr, page, target_nid);
1350 if (migrated) {
1351 flags |= TNF_MIGRATED;
1352 page_nid = target_nid;
1355 goto out;
1356 clear_pmdnuma:
1357 BUG_ON(!PageLocked(page));
1358 pmd = pmd_mknonnuma(pmd);
1359 set_pmd_at(mm, haddr, pmdp, pmd);
1360 VM_BUG_ON(pmd_numa(*pmdp));
1361 update_mmu_cache_pmd(vma, addr, pmdp);
1362 unlock_page(page);
1363 out_unlock:
1364 spin_unlock(&mm->page_table_lock);
1366 out:
1367 if (anon_vma)
1368 page_unlock_anon_vma_read(anon_vma);
1370 if (page_nid != -1)
1371 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags);
1373 return 0;
1376 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1377 pmd_t *pmd, unsigned long addr)
1379 int ret = 0;
1381 if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1382 struct page *page;
1383 pgtable_t pgtable;
1384 pmd_t orig_pmd;
1386 * For architectures like ppc64 we look at deposited pgtable
1387 * when calling pmdp_get_and_clear. So do the
1388 * pgtable_trans_huge_withdraw after finishing pmdp related
1389 * operations.
1391 orig_pmd = pmdp_get_and_clear(tlb->mm, addr, pmd);
1392 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1393 pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
1394 if (is_huge_zero_pmd(orig_pmd)) {
1395 tlb->mm->nr_ptes--;
1396 spin_unlock(&tlb->mm->page_table_lock);
1397 put_huge_zero_page();
1398 } else {
1399 page = pmd_page(orig_pmd);
1400 page_remove_rmap(page);
1401 VM_BUG_ON(page_mapcount(page) < 0);
1402 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1403 VM_BUG_ON(!PageHead(page));
1404 tlb->mm->nr_ptes--;
1405 spin_unlock(&tlb->mm->page_table_lock);
1406 tlb_remove_page(tlb, page);
1408 pte_free(tlb->mm, pgtable);
1409 ret = 1;
1411 return ret;
1414 int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1415 unsigned long addr, unsigned long end,
1416 unsigned char *vec)
1418 int ret = 0;
1420 if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1422 * All logical pages in the range are present
1423 * if backed by a huge page.
1425 spin_unlock(&vma->vm_mm->page_table_lock);
1426 memset(vec, 1, (end - addr) >> PAGE_SHIFT);
1427 ret = 1;
1430 return ret;
1433 int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1434 unsigned long old_addr,
1435 unsigned long new_addr, unsigned long old_end,
1436 pmd_t *old_pmd, pmd_t *new_pmd)
1438 int ret = 0;
1439 pmd_t pmd;
1441 struct mm_struct *mm = vma->vm_mm;
1443 if ((old_addr & ~HPAGE_PMD_MASK) ||
1444 (new_addr & ~HPAGE_PMD_MASK) ||
1445 old_end - old_addr < HPAGE_PMD_SIZE ||
1446 (new_vma->vm_flags & VM_NOHUGEPAGE))
1447 goto out;
1450 * The destination pmd shouldn't be established, free_pgtables()
1451 * should have release it.
1453 if (WARN_ON(!pmd_none(*new_pmd))) {
1454 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1455 goto out;
1458 ret = __pmd_trans_huge_lock(old_pmd, vma);
1459 if (ret == 1) {
1460 pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
1461 VM_BUG_ON(!pmd_none(*new_pmd));
1462 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1463 spin_unlock(&mm->page_table_lock);
1465 out:
1466 return ret;
1470 * Returns
1471 * - 0 if PMD could not be locked
1472 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1473 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1475 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1476 unsigned long addr, pgprot_t newprot, int prot_numa)
1478 struct mm_struct *mm = vma->vm_mm;
1479 int ret = 0;
1481 if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1482 pmd_t entry;
1483 ret = 1;
1484 if (!prot_numa) {
1485 entry = pmdp_get_and_clear(mm, addr, pmd);
1486 entry = pmd_modify(entry, newprot);
1487 ret = HPAGE_PMD_NR;
1488 BUG_ON(pmd_write(entry));
1489 } else {
1490 struct page *page = pmd_page(*pmd);
1493 * Do not trap faults against the zero page. The
1494 * read-only data is likely to be read-cached on the
1495 * local CPU cache and it is less useful to know about
1496 * local vs remote hits on the zero page.
1498 if (!is_huge_zero_page(page) &&
1499 !pmd_numa(*pmd)) {
1500 entry = pmdp_get_and_clear(mm, addr, pmd);
1501 entry = pmd_mknuma(entry);
1502 ret = HPAGE_PMD_NR;
1506 /* Set PMD if cleared earlier */
1507 if (ret == HPAGE_PMD_NR)
1508 set_pmd_at(mm, addr, pmd, entry);
1510 spin_unlock(&vma->vm_mm->page_table_lock);
1513 return ret;
1517 * Returns 1 if a given pmd maps a stable (not under splitting) thp.
1518 * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
1520 * Note that if it returns 1, this routine returns without unlocking page
1521 * table locks. So callers must unlock them.
1523 int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1525 spin_lock(&vma->vm_mm->page_table_lock);
1526 if (likely(pmd_trans_huge(*pmd))) {
1527 if (unlikely(pmd_trans_splitting(*pmd))) {
1528 spin_unlock(&vma->vm_mm->page_table_lock);
1529 wait_split_huge_page(vma->anon_vma, pmd);
1530 return -1;
1531 } else {
1532 /* Thp mapped by 'pmd' is stable, so we can
1533 * handle it as it is. */
1534 return 1;
1537 spin_unlock(&vma->vm_mm->page_table_lock);
1538 return 0;
1541 pmd_t *page_check_address_pmd(struct page *page,
1542 struct mm_struct *mm,
1543 unsigned long address,
1544 enum page_check_address_pmd_flag flag)
1546 pmd_t *pmd, *ret = NULL;
1548 if (address & ~HPAGE_PMD_MASK)
1549 goto out;
1551 pmd = mm_find_pmd(mm, address);
1552 if (!pmd)
1553 goto out;
1554 if (pmd_none(*pmd))
1555 goto out;
1556 if (pmd_page(*pmd) != page)
1557 goto out;
1559 * split_vma() may create temporary aliased mappings. There is
1560 * no risk as long as all huge pmd are found and have their
1561 * splitting bit set before __split_huge_page_refcount
1562 * runs. Finding the same huge pmd more than once during the
1563 * same rmap walk is not a problem.
1565 if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1566 pmd_trans_splitting(*pmd))
1567 goto out;
1568 if (pmd_trans_huge(*pmd)) {
1569 VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1570 !pmd_trans_splitting(*pmd));
1571 ret = pmd;
1573 out:
1574 return ret;
1577 static int __split_huge_page_splitting(struct page *page,
1578 struct vm_area_struct *vma,
1579 unsigned long address)
1581 struct mm_struct *mm = vma->vm_mm;
1582 pmd_t *pmd;
1583 int ret = 0;
1584 /* For mmu_notifiers */
1585 const unsigned long mmun_start = address;
1586 const unsigned long mmun_end = address + HPAGE_PMD_SIZE;
1588 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1589 spin_lock(&mm->page_table_lock);
1590 pmd = page_check_address_pmd(page, mm, address,
1591 PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
1592 if (pmd) {
1594 * We can't temporarily set the pmd to null in order
1595 * to split it, the pmd must remain marked huge at all
1596 * times or the VM won't take the pmd_trans_huge paths
1597 * and it won't wait on the anon_vma->root->rwsem to
1598 * serialize against split_huge_page*.
1600 pmdp_splitting_flush(vma, address, pmd);
1601 ret = 1;
1603 spin_unlock(&mm->page_table_lock);
1604 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1606 return ret;
1609 static void __split_huge_page_refcount(struct page *page,
1610 struct list_head *list)
1612 int i;
1613 struct zone *zone = page_zone(page);
1614 struct lruvec *lruvec;
1615 int tail_count = 0;
1617 /* prevent PageLRU to go away from under us, and freeze lru stats */
1618 spin_lock_irq(&zone->lru_lock);
1619 lruvec = mem_cgroup_page_lruvec(page, zone);
1621 compound_lock(page);
1622 /* complete memcg works before add pages to LRU */
1623 mem_cgroup_split_huge_fixup(page);
1625 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
1626 struct page *page_tail = page + i;
1628 /* tail_page->_mapcount cannot change */
1629 BUG_ON(page_mapcount(page_tail) < 0);
1630 tail_count += page_mapcount(page_tail);
1631 /* check for overflow */
1632 BUG_ON(tail_count < 0);
1633 BUG_ON(atomic_read(&page_tail->_count) != 0);
1635 * tail_page->_count is zero and not changing from
1636 * under us. But get_page_unless_zero() may be running
1637 * from under us on the tail_page. If we used
1638 * atomic_set() below instead of atomic_add(), we
1639 * would then run atomic_set() concurrently with
1640 * get_page_unless_zero(), and atomic_set() is
1641 * implemented in C not using locked ops. spin_unlock
1642 * on x86 sometime uses locked ops because of PPro
1643 * errata 66, 92, so unless somebody can guarantee
1644 * atomic_set() here would be safe on all archs (and
1645 * not only on x86), it's safer to use atomic_add().
1647 atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
1648 &page_tail->_count);
1650 /* after clearing PageTail the gup refcount can be released */
1651 smp_mb();
1654 * retain hwpoison flag of the poisoned tail page:
1655 * fix for the unsuitable process killed on Guest Machine(KVM)
1656 * by the memory-failure.
1658 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
1659 page_tail->flags |= (page->flags &
1660 ((1L << PG_referenced) |
1661 (1L << PG_swapbacked) |
1662 (1L << PG_mlocked) |
1663 (1L << PG_uptodate) |
1664 (1L << PG_active) |
1665 (1L << PG_unevictable)));
1666 page_tail->flags |= (1L << PG_dirty);
1668 /* clear PageTail before overwriting first_page */
1669 smp_wmb();
1672 * __split_huge_page_splitting() already set the
1673 * splitting bit in all pmd that could map this
1674 * hugepage, that will ensure no CPU can alter the
1675 * mapcount on the head page. The mapcount is only
1676 * accounted in the head page and it has to be
1677 * transferred to all tail pages in the below code. So
1678 * for this code to be safe, the split the mapcount
1679 * can't change. But that doesn't mean userland can't
1680 * keep changing and reading the page contents while
1681 * we transfer the mapcount, so the pmd splitting
1682 * status is achieved setting a reserved bit in the
1683 * pmd, not by clearing the present bit.
1685 page_tail->_mapcount = page->_mapcount;
1687 BUG_ON(page_tail->mapping);
1688 page_tail->mapping = page->mapping;
1690 page_tail->index = page->index + i;
1691 page_cpupid_xchg_last(page_tail, page_cpupid_last(page));
1693 BUG_ON(!PageAnon(page_tail));
1694 BUG_ON(!PageUptodate(page_tail));
1695 BUG_ON(!PageDirty(page_tail));
1696 BUG_ON(!PageSwapBacked(page_tail));
1698 lru_add_page_tail(page, page_tail, lruvec, list);
1700 atomic_sub(tail_count, &page->_count);
1701 BUG_ON(atomic_read(&page->_count) <= 0);
1703 __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
1705 ClearPageCompound(page);
1706 compound_unlock(page);
1707 spin_unlock_irq(&zone->lru_lock);
1709 for (i = 1; i < HPAGE_PMD_NR; i++) {
1710 struct page *page_tail = page + i;
1711 BUG_ON(page_count(page_tail) <= 0);
1713 * Tail pages may be freed if there wasn't any mapping
1714 * like if add_to_swap() is running on a lru page that
1715 * had its mapping zapped. And freeing these pages
1716 * requires taking the lru_lock so we do the put_page
1717 * of the tail pages after the split is complete.
1719 put_page(page_tail);
1723 * Only the head page (now become a regular page) is required
1724 * to be pinned by the caller.
1726 BUG_ON(page_count(page) <= 0);
1729 static int __split_huge_page_map(struct page *page,
1730 struct vm_area_struct *vma,
1731 unsigned long address)
1733 struct mm_struct *mm = vma->vm_mm;
1734 pmd_t *pmd, _pmd;
1735 int ret = 0, i;
1736 pgtable_t pgtable;
1737 unsigned long haddr;
1739 spin_lock(&mm->page_table_lock);
1740 pmd = page_check_address_pmd(page, mm, address,
1741 PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
1742 if (pmd) {
1743 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1744 pmd_populate(mm, &_pmd, pgtable);
1746 haddr = address;
1747 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1748 pte_t *pte, entry;
1749 BUG_ON(PageCompound(page+i));
1750 entry = mk_pte(page + i, vma->vm_page_prot);
1751 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1752 if (!pmd_write(*pmd))
1753 entry = pte_wrprotect(entry);
1754 else
1755 BUG_ON(page_mapcount(page) != 1);
1756 if (!pmd_young(*pmd))
1757 entry = pte_mkold(entry);
1758 if (pmd_numa(*pmd))
1759 entry = pte_mknuma(entry);
1760 pte = pte_offset_map(&_pmd, haddr);
1761 BUG_ON(!pte_none(*pte));
1762 set_pte_at(mm, haddr, pte, entry);
1763 pte_unmap(pte);
1766 smp_wmb(); /* make pte visible before pmd */
1768 * Up to this point the pmd is present and huge and
1769 * userland has the whole access to the hugepage
1770 * during the split (which happens in place). If we
1771 * overwrite the pmd with the not-huge version
1772 * pointing to the pte here (which of course we could
1773 * if all CPUs were bug free), userland could trigger
1774 * a small page size TLB miss on the small sized TLB
1775 * while the hugepage TLB entry is still established
1776 * in the huge TLB. Some CPU doesn't like that. See
1777 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1778 * Erratum 383 on page 93. Intel should be safe but is
1779 * also warns that it's only safe if the permission
1780 * and cache attributes of the two entries loaded in
1781 * the two TLB is identical (which should be the case
1782 * here). But it is generally safer to never allow
1783 * small and huge TLB entries for the same virtual
1784 * address to be loaded simultaneously. So instead of
1785 * doing "pmd_populate(); flush_tlb_range();" we first
1786 * mark the current pmd notpresent (atomically because
1787 * here the pmd_trans_huge and pmd_trans_splitting
1788 * must remain set at all times on the pmd until the
1789 * split is complete for this pmd), then we flush the
1790 * SMP TLB and finally we write the non-huge version
1791 * of the pmd entry with pmd_populate.
1793 pmdp_invalidate(vma, address, pmd);
1794 pmd_populate(mm, pmd, pgtable);
1795 ret = 1;
1797 spin_unlock(&mm->page_table_lock);
1799 return ret;
1802 /* must be called with anon_vma->root->rwsem held */
1803 static void __split_huge_page(struct page *page,
1804 struct anon_vma *anon_vma,
1805 struct list_head *list)
1807 int mapcount, mapcount2;
1808 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1809 struct anon_vma_chain *avc;
1811 BUG_ON(!PageHead(page));
1812 BUG_ON(PageTail(page));
1814 mapcount = 0;
1815 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1816 struct vm_area_struct *vma = avc->vma;
1817 unsigned long addr = vma_address(page, vma);
1818 BUG_ON(is_vma_temporary_stack(vma));
1819 mapcount += __split_huge_page_splitting(page, vma, addr);
1822 * It is critical that new vmas are added to the tail of the
1823 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1824 * and establishes a child pmd before
1825 * __split_huge_page_splitting() freezes the parent pmd (so if
1826 * we fail to prevent copy_huge_pmd() from running until the
1827 * whole __split_huge_page() is complete), we will still see
1828 * the newly established pmd of the child later during the
1829 * walk, to be able to set it as pmd_trans_splitting too.
1831 if (mapcount != page_mapcount(page))
1832 printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1833 mapcount, page_mapcount(page));
1834 BUG_ON(mapcount != page_mapcount(page));
1836 __split_huge_page_refcount(page, list);
1838 mapcount2 = 0;
1839 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1840 struct vm_area_struct *vma = avc->vma;
1841 unsigned long addr = vma_address(page, vma);
1842 BUG_ON(is_vma_temporary_stack(vma));
1843 mapcount2 += __split_huge_page_map(page, vma, addr);
1845 if (mapcount != mapcount2)
1846 printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
1847 mapcount, mapcount2, page_mapcount(page));
1848 BUG_ON(mapcount != mapcount2);
1852 * Split a hugepage into normal pages. This doesn't change the position of head
1853 * page. If @list is null, tail pages will be added to LRU list, otherwise, to
1854 * @list. Both head page and tail pages will inherit mapping, flags, and so on
1855 * from the hugepage.
1856 * Return 0 if the hugepage is split successfully otherwise return 1.
1858 int split_huge_page_to_list(struct page *page, struct list_head *list)
1860 struct anon_vma *anon_vma;
1861 int ret = 1;
1863 BUG_ON(is_huge_zero_page(page));
1864 BUG_ON(!PageAnon(page));
1867 * The caller does not necessarily hold an mmap_sem that would prevent
1868 * the anon_vma disappearing so we first we take a reference to it
1869 * and then lock the anon_vma for write. This is similar to
1870 * page_lock_anon_vma_read except the write lock is taken to serialise
1871 * against parallel split or collapse operations.
1873 anon_vma = page_get_anon_vma(page);
1874 if (!anon_vma)
1875 goto out;
1876 anon_vma_lock_write(anon_vma);
1878 ret = 0;
1879 if (!PageCompound(page))
1880 goto out_unlock;
1882 BUG_ON(!PageSwapBacked(page));
1883 __split_huge_page(page, anon_vma, list);
1884 count_vm_event(THP_SPLIT);
1886 BUG_ON(PageCompound(page));
1887 out_unlock:
1888 anon_vma_unlock_write(anon_vma);
1889 put_anon_vma(anon_vma);
1890 out:
1891 return ret;
1894 #define VM_NO_THP (VM_SPECIAL|VM_MIXEDMAP|VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
1896 int hugepage_madvise(struct vm_area_struct *vma,
1897 unsigned long *vm_flags, int advice)
1899 struct mm_struct *mm = vma->vm_mm;
1901 switch (advice) {
1902 case MADV_HUGEPAGE:
1904 * Be somewhat over-protective like KSM for now!
1906 if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
1907 return -EINVAL;
1908 if (mm->def_flags & VM_NOHUGEPAGE)
1909 return -EINVAL;
1910 *vm_flags &= ~VM_NOHUGEPAGE;
1911 *vm_flags |= VM_HUGEPAGE;
1913 * If the vma become good for khugepaged to scan,
1914 * register it here without waiting a page fault that
1915 * may not happen any time soon.
1917 if (unlikely(khugepaged_enter_vma_merge(vma)))
1918 return -ENOMEM;
1919 break;
1920 case MADV_NOHUGEPAGE:
1922 * Be somewhat over-protective like KSM for now!
1924 if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
1925 return -EINVAL;
1926 *vm_flags &= ~VM_HUGEPAGE;
1927 *vm_flags |= VM_NOHUGEPAGE;
1929 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1930 * this vma even if we leave the mm registered in khugepaged if
1931 * it got registered before VM_NOHUGEPAGE was set.
1933 break;
1936 return 0;
1939 static int __init khugepaged_slab_init(void)
1941 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1942 sizeof(struct mm_slot),
1943 __alignof__(struct mm_slot), 0, NULL);
1944 if (!mm_slot_cache)
1945 return -ENOMEM;
1947 return 0;
1950 static inline struct mm_slot *alloc_mm_slot(void)
1952 if (!mm_slot_cache) /* initialization failed */
1953 return NULL;
1954 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1957 static inline void free_mm_slot(struct mm_slot *mm_slot)
1959 kmem_cache_free(mm_slot_cache, mm_slot);
1962 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1964 struct mm_slot *mm_slot;
1966 hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
1967 if (mm == mm_slot->mm)
1968 return mm_slot;
1970 return NULL;
1973 static void insert_to_mm_slots_hash(struct mm_struct *mm,
1974 struct mm_slot *mm_slot)
1976 mm_slot->mm = mm;
1977 hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
1980 static inline int khugepaged_test_exit(struct mm_struct *mm)
1982 return atomic_read(&mm->mm_users) == 0;
1985 int __khugepaged_enter(struct mm_struct *mm)
1987 struct mm_slot *mm_slot;
1988 int wakeup;
1990 mm_slot = alloc_mm_slot();
1991 if (!mm_slot)
1992 return -ENOMEM;
1994 /* __khugepaged_exit() must not run from under us */
1995 VM_BUG_ON(khugepaged_test_exit(mm));
1996 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1997 free_mm_slot(mm_slot);
1998 return 0;
2001 spin_lock(&khugepaged_mm_lock);
2002 insert_to_mm_slots_hash(mm, mm_slot);
2004 * Insert just behind the scanning cursor, to let the area settle
2005 * down a little.
2007 wakeup = list_empty(&khugepaged_scan.mm_head);
2008 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
2009 spin_unlock(&khugepaged_mm_lock);
2011 atomic_inc(&mm->mm_count);
2012 if (wakeup)
2013 wake_up_interruptible(&khugepaged_wait);
2015 return 0;
2018 int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
2020 unsigned long hstart, hend;
2021 if (!vma->anon_vma)
2023 * Not yet faulted in so we will register later in the
2024 * page fault if needed.
2026 return 0;
2027 if (vma->vm_ops)
2028 /* khugepaged not yet working on file or special mappings */
2029 return 0;
2030 VM_BUG_ON(vma->vm_flags & VM_NO_THP);
2031 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2032 hend = vma->vm_end & HPAGE_PMD_MASK;
2033 if (hstart < hend)
2034 return khugepaged_enter(vma);
2035 return 0;
2038 void __khugepaged_exit(struct mm_struct *mm)
2040 struct mm_slot *mm_slot;
2041 int free = 0;
2043 spin_lock(&khugepaged_mm_lock);
2044 mm_slot = get_mm_slot(mm);
2045 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
2046 hash_del(&mm_slot->hash);
2047 list_del(&mm_slot->mm_node);
2048 free = 1;
2050 spin_unlock(&khugepaged_mm_lock);
2052 if (free) {
2053 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2054 free_mm_slot(mm_slot);
2055 mmdrop(mm);
2056 } else if (mm_slot) {
2058 * This is required to serialize against
2059 * khugepaged_test_exit() (which is guaranteed to run
2060 * under mmap sem read mode). Stop here (after we
2061 * return all pagetables will be destroyed) until
2062 * khugepaged has finished working on the pagetables
2063 * under the mmap_sem.
2065 down_write(&mm->mmap_sem);
2066 up_write(&mm->mmap_sem);
2070 static void release_pte_page(struct page *page)
2072 /* 0 stands for page_is_file_cache(page) == false */
2073 dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
2074 unlock_page(page);
2075 putback_lru_page(page);
2078 static void release_pte_pages(pte_t *pte, pte_t *_pte)
2080 while (--_pte >= pte) {
2081 pte_t pteval = *_pte;
2082 if (!pte_none(pteval))
2083 release_pte_page(pte_page(pteval));
2087 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
2088 unsigned long address,
2089 pte_t *pte)
2091 struct page *page;
2092 pte_t *_pte;
2093 int referenced = 0, none = 0;
2094 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
2095 _pte++, address += PAGE_SIZE) {
2096 pte_t pteval = *_pte;
2097 if (pte_none(pteval)) {
2098 if (++none <= khugepaged_max_ptes_none)
2099 continue;
2100 else
2101 goto out;
2103 if (!pte_present(pteval) || !pte_write(pteval))
2104 goto out;
2105 page = vm_normal_page(vma, address, pteval);
2106 if (unlikely(!page))
2107 goto out;
2109 VM_BUG_ON(PageCompound(page));
2110 BUG_ON(!PageAnon(page));
2111 VM_BUG_ON(!PageSwapBacked(page));
2113 /* cannot use mapcount: can't collapse if there's a gup pin */
2114 if (page_count(page) != 1)
2115 goto out;
2117 * We can do it before isolate_lru_page because the
2118 * page can't be freed from under us. NOTE: PG_lock
2119 * is needed to serialize against split_huge_page
2120 * when invoked from the VM.
2122 if (!trylock_page(page))
2123 goto out;
2125 * Isolate the page to avoid collapsing an hugepage
2126 * currently in use by the VM.
2128 if (isolate_lru_page(page)) {
2129 unlock_page(page);
2130 goto out;
2132 /* 0 stands for page_is_file_cache(page) == false */
2133 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
2134 VM_BUG_ON(!PageLocked(page));
2135 VM_BUG_ON(PageLRU(page));
2137 /* If there is no mapped pte young don't collapse the page */
2138 if (pte_young(pteval) || PageReferenced(page) ||
2139 mmu_notifier_test_young(vma->vm_mm, address))
2140 referenced = 1;
2142 if (likely(referenced))
2143 return 1;
2144 out:
2145 release_pte_pages(pte, _pte);
2146 return 0;
2149 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
2150 struct vm_area_struct *vma,
2151 unsigned long address,
2152 spinlock_t *ptl)
2154 pte_t *_pte;
2155 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
2156 pte_t pteval = *_pte;
2157 struct page *src_page;
2159 if (pte_none(pteval)) {
2160 clear_user_highpage(page, address);
2161 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
2162 } else {
2163 src_page = pte_page(pteval);
2164 copy_user_highpage(page, src_page, address, vma);
2165 VM_BUG_ON(page_mapcount(src_page) != 1);
2166 release_pte_page(src_page);
2168 * ptl mostly unnecessary, but preempt has to
2169 * be disabled to update the per-cpu stats
2170 * inside page_remove_rmap().
2172 spin_lock(ptl);
2174 * paravirt calls inside pte_clear here are
2175 * superfluous.
2177 pte_clear(vma->vm_mm, address, _pte);
2178 page_remove_rmap(src_page);
2179 spin_unlock(ptl);
2180 free_page_and_swap_cache(src_page);
2183 address += PAGE_SIZE;
2184 page++;
2188 static void khugepaged_alloc_sleep(void)
2190 wait_event_freezable_timeout(khugepaged_wait, false,
2191 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2194 static int khugepaged_node_load[MAX_NUMNODES];
2196 #ifdef CONFIG_NUMA
2197 static int khugepaged_find_target_node(void)
2199 static int last_khugepaged_target_node = NUMA_NO_NODE;
2200 int nid, target_node = 0, max_value = 0;
2202 /* find first node with max normal pages hit */
2203 for (nid = 0; nid < MAX_NUMNODES; nid++)
2204 if (khugepaged_node_load[nid] > max_value) {
2205 max_value = khugepaged_node_load[nid];
2206 target_node = nid;
2209 /* do some balance if several nodes have the same hit record */
2210 if (target_node <= last_khugepaged_target_node)
2211 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
2212 nid++)
2213 if (max_value == khugepaged_node_load[nid]) {
2214 target_node = nid;
2215 break;
2218 last_khugepaged_target_node = target_node;
2219 return target_node;
2222 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2224 if (IS_ERR(*hpage)) {
2225 if (!*wait)
2226 return false;
2228 *wait = false;
2229 *hpage = NULL;
2230 khugepaged_alloc_sleep();
2231 } else if (*hpage) {
2232 put_page(*hpage);
2233 *hpage = NULL;
2236 return true;
2239 static struct page
2240 *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2241 struct vm_area_struct *vma, unsigned long address,
2242 int node)
2244 VM_BUG_ON(*hpage);
2246 * Allocate the page while the vma is still valid and under
2247 * the mmap_sem read mode so there is no memory allocation
2248 * later when we take the mmap_sem in write mode. This is more
2249 * friendly behavior (OTOH it may actually hide bugs) to
2250 * filesystems in userland with daemons allocating memory in
2251 * the userland I/O paths. Allocating memory with the
2252 * mmap_sem in read mode is good idea also to allow greater
2253 * scalability.
2255 *hpage = alloc_pages_exact_node(node, alloc_hugepage_gfpmask(
2256 khugepaged_defrag(), __GFP_OTHER_NODE), HPAGE_PMD_ORDER);
2258 * After allocating the hugepage, release the mmap_sem read lock in
2259 * preparation for taking it in write mode.
2261 up_read(&mm->mmap_sem);
2262 if (unlikely(!*hpage)) {
2263 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2264 *hpage = ERR_PTR(-ENOMEM);
2265 return NULL;
2268 count_vm_event(THP_COLLAPSE_ALLOC);
2269 return *hpage;
2271 #else
2272 static int khugepaged_find_target_node(void)
2274 return 0;
2277 static inline struct page *alloc_hugepage(int defrag)
2279 return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
2280 HPAGE_PMD_ORDER);
2283 static struct page *khugepaged_alloc_hugepage(bool *wait)
2285 struct page *hpage;
2287 do {
2288 hpage = alloc_hugepage(khugepaged_defrag());
2289 if (!hpage) {
2290 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2291 if (!*wait)
2292 return NULL;
2294 *wait = false;
2295 khugepaged_alloc_sleep();
2296 } else
2297 count_vm_event(THP_COLLAPSE_ALLOC);
2298 } while (unlikely(!hpage) && likely(khugepaged_enabled()));
2300 return hpage;
2303 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2305 if (!*hpage)
2306 *hpage = khugepaged_alloc_hugepage(wait);
2308 if (unlikely(!*hpage))
2309 return false;
2311 return true;
2314 static struct page
2315 *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2316 struct vm_area_struct *vma, unsigned long address,
2317 int node)
2319 up_read(&mm->mmap_sem);
2320 VM_BUG_ON(!*hpage);
2321 return *hpage;
2323 #endif
2325 static bool hugepage_vma_check(struct vm_area_struct *vma)
2327 if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2328 (vma->vm_flags & VM_NOHUGEPAGE))
2329 return false;
2331 if (!vma->anon_vma || vma->vm_ops)
2332 return false;
2333 if (is_vma_temporary_stack(vma))
2334 return false;
2335 VM_BUG_ON(vma->vm_flags & VM_NO_THP);
2336 return true;
2339 static void collapse_huge_page(struct mm_struct *mm,
2340 unsigned long address,
2341 struct page **hpage,
2342 struct vm_area_struct *vma,
2343 int node)
2345 pmd_t *pmd, _pmd;
2346 pte_t *pte;
2347 pgtable_t pgtable;
2348 struct page *new_page;
2349 spinlock_t *ptl;
2350 int isolated;
2351 unsigned long hstart, hend;
2352 unsigned long mmun_start; /* For mmu_notifiers */
2353 unsigned long mmun_end; /* For mmu_notifiers */
2355 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2357 /* release the mmap_sem read lock. */
2358 new_page = khugepaged_alloc_page(hpage, mm, vma, address, node);
2359 if (!new_page)
2360 return;
2362 if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)))
2363 return;
2366 * Prevent all access to pagetables with the exception of
2367 * gup_fast later hanlded by the ptep_clear_flush and the VM
2368 * handled by the anon_vma lock + PG_lock.
2370 down_write(&mm->mmap_sem);
2371 if (unlikely(khugepaged_test_exit(mm)))
2372 goto out;
2374 vma = find_vma(mm, address);
2375 if (!vma)
2376 goto out;
2377 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2378 hend = vma->vm_end & HPAGE_PMD_MASK;
2379 if (address < hstart || address + HPAGE_PMD_SIZE > hend)
2380 goto out;
2381 if (!hugepage_vma_check(vma))
2382 goto out;
2383 pmd = mm_find_pmd(mm, address);
2384 if (!pmd)
2385 goto out;
2386 if (pmd_trans_huge(*pmd))
2387 goto out;
2389 anon_vma_lock_write(vma->anon_vma);
2391 pte = pte_offset_map(pmd, address);
2392 ptl = pte_lockptr(mm, pmd);
2394 mmun_start = address;
2395 mmun_end = address + HPAGE_PMD_SIZE;
2396 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2397 spin_lock(&mm->page_table_lock); /* probably unnecessary */
2399 * After this gup_fast can't run anymore. This also removes
2400 * any huge TLB entry from the CPU so we won't allow
2401 * huge and small TLB entries for the same virtual address
2402 * to avoid the risk of CPU bugs in that area.
2404 _pmd = pmdp_clear_flush(vma, address, pmd);
2405 spin_unlock(&mm->page_table_lock);
2406 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2408 spin_lock(ptl);
2409 isolated = __collapse_huge_page_isolate(vma, address, pte);
2410 spin_unlock(ptl);
2412 if (unlikely(!isolated)) {
2413 pte_unmap(pte);
2414 spin_lock(&mm->page_table_lock);
2415 BUG_ON(!pmd_none(*pmd));
2417 * We can only use set_pmd_at when establishing
2418 * hugepmds and never for establishing regular pmds that
2419 * points to regular pagetables. Use pmd_populate for that
2421 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
2422 spin_unlock(&mm->page_table_lock);
2423 anon_vma_unlock_write(vma->anon_vma);
2424 goto out;
2428 * All pages are isolated and locked so anon_vma rmap
2429 * can't run anymore.
2431 anon_vma_unlock_write(vma->anon_vma);
2433 __collapse_huge_page_copy(pte, new_page, vma, address, ptl);
2434 pte_unmap(pte);
2435 __SetPageUptodate(new_page);
2436 pgtable = pmd_pgtable(_pmd);
2438 _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
2439 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
2442 * spin_lock() below is not the equivalent of smp_wmb(), so
2443 * this is needed to avoid the copy_huge_page writes to become
2444 * visible after the set_pmd_at() write.
2446 smp_wmb();
2448 spin_lock(&mm->page_table_lock);
2449 BUG_ON(!pmd_none(*pmd));
2450 page_add_new_anon_rmap(new_page, vma, address);
2451 pgtable_trans_huge_deposit(mm, pmd, pgtable);
2452 set_pmd_at(mm, address, pmd, _pmd);
2453 update_mmu_cache_pmd(vma, address, pmd);
2454 spin_unlock(&mm->page_table_lock);
2456 *hpage = NULL;
2458 khugepaged_pages_collapsed++;
2459 out_up_write:
2460 up_write(&mm->mmap_sem);
2461 return;
2463 out:
2464 mem_cgroup_uncharge_page(new_page);
2465 goto out_up_write;
2468 static int khugepaged_scan_pmd(struct mm_struct *mm,
2469 struct vm_area_struct *vma,
2470 unsigned long address,
2471 struct page **hpage)
2473 pmd_t *pmd;
2474 pte_t *pte, *_pte;
2475 int ret = 0, referenced = 0, none = 0;
2476 struct page *page;
2477 unsigned long _address;
2478 spinlock_t *ptl;
2479 int node = NUMA_NO_NODE;
2481 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2483 pmd = mm_find_pmd(mm, address);
2484 if (!pmd)
2485 goto out;
2486 if (pmd_trans_huge(*pmd))
2487 goto out;
2489 memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
2490 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2491 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2492 _pte++, _address += PAGE_SIZE) {
2493 pte_t pteval = *_pte;
2494 if (pte_none(pteval)) {
2495 if (++none <= khugepaged_max_ptes_none)
2496 continue;
2497 else
2498 goto out_unmap;
2500 if (!pte_present(pteval) || !pte_write(pteval))
2501 goto out_unmap;
2502 page = vm_normal_page(vma, _address, pteval);
2503 if (unlikely(!page))
2504 goto out_unmap;
2506 * Record which node the original page is from and save this
2507 * information to khugepaged_node_load[].
2508 * Khupaged will allocate hugepage from the node has the max
2509 * hit record.
2511 node = page_to_nid(page);
2512 khugepaged_node_load[node]++;
2513 VM_BUG_ON(PageCompound(page));
2514 if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
2515 goto out_unmap;
2516 /* cannot use mapcount: can't collapse if there's a gup pin */
2517 if (page_count(page) != 1)
2518 goto out_unmap;
2519 if (pte_young(pteval) || PageReferenced(page) ||
2520 mmu_notifier_test_young(vma->vm_mm, address))
2521 referenced = 1;
2523 if (referenced)
2524 ret = 1;
2525 out_unmap:
2526 pte_unmap_unlock(pte, ptl);
2527 if (ret) {
2528 node = khugepaged_find_target_node();
2529 /* collapse_huge_page will return with the mmap_sem released */
2530 collapse_huge_page(mm, address, hpage, vma, node);
2532 out:
2533 return ret;
2536 static void collect_mm_slot(struct mm_slot *mm_slot)
2538 struct mm_struct *mm = mm_slot->mm;
2540 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2542 if (khugepaged_test_exit(mm)) {
2543 /* free mm_slot */
2544 hash_del(&mm_slot->hash);
2545 list_del(&mm_slot->mm_node);
2548 * Not strictly needed because the mm exited already.
2550 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2553 /* khugepaged_mm_lock actually not necessary for the below */
2554 free_mm_slot(mm_slot);
2555 mmdrop(mm);
2559 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2560 struct page **hpage)
2561 __releases(&khugepaged_mm_lock)
2562 __acquires(&khugepaged_mm_lock)
2564 struct mm_slot *mm_slot;
2565 struct mm_struct *mm;
2566 struct vm_area_struct *vma;
2567 int progress = 0;
2569 VM_BUG_ON(!pages);
2570 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2572 if (khugepaged_scan.mm_slot)
2573 mm_slot = khugepaged_scan.mm_slot;
2574 else {
2575 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2576 struct mm_slot, mm_node);
2577 khugepaged_scan.address = 0;
2578 khugepaged_scan.mm_slot = mm_slot;
2580 spin_unlock(&khugepaged_mm_lock);
2582 mm = mm_slot->mm;
2583 down_read(&mm->mmap_sem);
2584 if (unlikely(khugepaged_test_exit(mm)))
2585 vma = NULL;
2586 else
2587 vma = find_vma(mm, khugepaged_scan.address);
2589 progress++;
2590 for (; vma; vma = vma->vm_next) {
2591 unsigned long hstart, hend;
2593 cond_resched();
2594 if (unlikely(khugepaged_test_exit(mm))) {
2595 progress++;
2596 break;
2598 if (!hugepage_vma_check(vma)) {
2599 skip:
2600 progress++;
2601 continue;
2603 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2604 hend = vma->vm_end & HPAGE_PMD_MASK;
2605 if (hstart >= hend)
2606 goto skip;
2607 if (khugepaged_scan.address > hend)
2608 goto skip;
2609 if (khugepaged_scan.address < hstart)
2610 khugepaged_scan.address = hstart;
2611 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2613 while (khugepaged_scan.address < hend) {
2614 int ret;
2615 cond_resched();
2616 if (unlikely(khugepaged_test_exit(mm)))
2617 goto breakouterloop;
2619 VM_BUG_ON(khugepaged_scan.address < hstart ||
2620 khugepaged_scan.address + HPAGE_PMD_SIZE >
2621 hend);
2622 ret = khugepaged_scan_pmd(mm, vma,
2623 khugepaged_scan.address,
2624 hpage);
2625 /* move to next address */
2626 khugepaged_scan.address += HPAGE_PMD_SIZE;
2627 progress += HPAGE_PMD_NR;
2628 if (ret)
2629 /* we released mmap_sem so break loop */
2630 goto breakouterloop_mmap_sem;
2631 if (progress >= pages)
2632 goto breakouterloop;
2635 breakouterloop:
2636 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2637 breakouterloop_mmap_sem:
2639 spin_lock(&khugepaged_mm_lock);
2640 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2642 * Release the current mm_slot if this mm is about to die, or
2643 * if we scanned all vmas of this mm.
2645 if (khugepaged_test_exit(mm) || !vma) {
2647 * Make sure that if mm_users is reaching zero while
2648 * khugepaged runs here, khugepaged_exit will find
2649 * mm_slot not pointing to the exiting mm.
2651 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2652 khugepaged_scan.mm_slot = list_entry(
2653 mm_slot->mm_node.next,
2654 struct mm_slot, mm_node);
2655 khugepaged_scan.address = 0;
2656 } else {
2657 khugepaged_scan.mm_slot = NULL;
2658 khugepaged_full_scans++;
2661 collect_mm_slot(mm_slot);
2664 return progress;
2667 static int khugepaged_has_work(void)
2669 return !list_empty(&khugepaged_scan.mm_head) &&
2670 khugepaged_enabled();
2673 static int khugepaged_wait_event(void)
2675 return !list_empty(&khugepaged_scan.mm_head) ||
2676 kthread_should_stop();
2679 static void khugepaged_do_scan(void)
2681 struct page *hpage = NULL;
2682 unsigned int progress = 0, pass_through_head = 0;
2683 unsigned int pages = khugepaged_pages_to_scan;
2684 bool wait = true;
2686 barrier(); /* write khugepaged_pages_to_scan to local stack */
2688 while (progress < pages) {
2689 if (!khugepaged_prealloc_page(&hpage, &wait))
2690 break;
2692 cond_resched();
2694 if (unlikely(kthread_should_stop() || freezing(current)))
2695 break;
2697 spin_lock(&khugepaged_mm_lock);
2698 if (!khugepaged_scan.mm_slot)
2699 pass_through_head++;
2700 if (khugepaged_has_work() &&
2701 pass_through_head < 2)
2702 progress += khugepaged_scan_mm_slot(pages - progress,
2703 &hpage);
2704 else
2705 progress = pages;
2706 spin_unlock(&khugepaged_mm_lock);
2709 if (!IS_ERR_OR_NULL(hpage))
2710 put_page(hpage);
2713 static void khugepaged_wait_work(void)
2715 try_to_freeze();
2717 if (khugepaged_has_work()) {
2718 if (!khugepaged_scan_sleep_millisecs)
2719 return;
2721 wait_event_freezable_timeout(khugepaged_wait,
2722 kthread_should_stop(),
2723 msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2724 return;
2727 if (khugepaged_enabled())
2728 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2731 static int khugepaged(void *none)
2733 struct mm_slot *mm_slot;
2735 set_freezable();
2736 set_user_nice(current, 19);
2738 while (!kthread_should_stop()) {
2739 khugepaged_do_scan();
2740 khugepaged_wait_work();
2743 spin_lock(&khugepaged_mm_lock);
2744 mm_slot = khugepaged_scan.mm_slot;
2745 khugepaged_scan.mm_slot = NULL;
2746 if (mm_slot)
2747 collect_mm_slot(mm_slot);
2748 spin_unlock(&khugepaged_mm_lock);
2749 return 0;
2752 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2753 unsigned long haddr, pmd_t *pmd)
2755 struct mm_struct *mm = vma->vm_mm;
2756 pgtable_t pgtable;
2757 pmd_t _pmd;
2758 int i;
2760 pmdp_clear_flush(vma, haddr, pmd);
2761 /* leave pmd empty until pte is filled */
2763 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2764 pmd_populate(mm, &_pmd, pgtable);
2766 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2767 pte_t *pte, entry;
2768 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2769 entry = pte_mkspecial(entry);
2770 pte = pte_offset_map(&_pmd, haddr);
2771 VM_BUG_ON(!pte_none(*pte));
2772 set_pte_at(mm, haddr, pte, entry);
2773 pte_unmap(pte);
2775 smp_wmb(); /* make pte visible before pmd */
2776 pmd_populate(mm, pmd, pgtable);
2777 put_huge_zero_page();
2780 void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address,
2781 pmd_t *pmd)
2783 struct page *page;
2784 struct mm_struct *mm = vma->vm_mm;
2785 unsigned long haddr = address & HPAGE_PMD_MASK;
2786 unsigned long mmun_start; /* For mmu_notifiers */
2787 unsigned long mmun_end; /* For mmu_notifiers */
2789 BUG_ON(vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE);
2791 mmun_start = haddr;
2792 mmun_end = haddr + HPAGE_PMD_SIZE;
2793 again:
2794 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2795 spin_lock(&mm->page_table_lock);
2796 if (unlikely(!pmd_trans_huge(*pmd))) {
2797 spin_unlock(&mm->page_table_lock);
2798 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2799 return;
2801 if (is_huge_zero_pmd(*pmd)) {
2802 __split_huge_zero_page_pmd(vma, haddr, pmd);
2803 spin_unlock(&mm->page_table_lock);
2804 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2805 return;
2807 page = pmd_page(*pmd);
2808 VM_BUG_ON(!page_count(page));
2809 get_page(page);
2810 spin_unlock(&mm->page_table_lock);
2811 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2813 split_huge_page(page);
2815 put_page(page);
2818 * We don't always have down_write of mmap_sem here: a racing
2819 * do_huge_pmd_wp_page() might have copied-on-write to another
2820 * huge page before our split_huge_page() got the anon_vma lock.
2822 if (unlikely(pmd_trans_huge(*pmd)))
2823 goto again;
2826 void split_huge_page_pmd_mm(struct mm_struct *mm, unsigned long address,
2827 pmd_t *pmd)
2829 struct vm_area_struct *vma;
2831 vma = find_vma(mm, address);
2832 BUG_ON(vma == NULL);
2833 split_huge_page_pmd(vma, address, pmd);
2836 static void split_huge_page_address(struct mm_struct *mm,
2837 unsigned long address)
2839 pmd_t *pmd;
2841 VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2843 pmd = mm_find_pmd(mm, address);
2844 if (!pmd)
2845 return;
2847 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2848 * materialize from under us.
2850 split_huge_page_pmd_mm(mm, address, pmd);
2853 void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2854 unsigned long start,
2855 unsigned long end,
2856 long adjust_next)
2859 * If the new start address isn't hpage aligned and it could
2860 * previously contain an hugepage: check if we need to split
2861 * an huge pmd.
2863 if (start & ~HPAGE_PMD_MASK &&
2864 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2865 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2866 split_huge_page_address(vma->vm_mm, start);
2869 * If the new end address isn't hpage aligned and it could
2870 * previously contain an hugepage: check if we need to split
2871 * an huge pmd.
2873 if (end & ~HPAGE_PMD_MASK &&
2874 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2875 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2876 split_huge_page_address(vma->vm_mm, end);
2879 * If we're also updating the vma->vm_next->vm_start, if the new
2880 * vm_next->vm_start isn't page aligned and it could previously
2881 * contain an hugepage: check if we need to split an huge pmd.
2883 if (adjust_next > 0) {
2884 struct vm_area_struct *next = vma->vm_next;
2885 unsigned long nstart = next->vm_start;
2886 nstart += adjust_next << PAGE_SHIFT;
2887 if (nstart & ~HPAGE_PMD_MASK &&
2888 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2889 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2890 split_huge_page_address(next->vm_mm, nstart);