Merge tag 'gpio-v3.13-3' of git://git.kernel.org/pub/scm/linux/kernel/git/linusw...
[linux-2.6.git] / mm / huge_memory.c
blobbccd5a628ea6765478d2fa45dc01390a83ee8a5b
1 /*
2 * Copyright (C) 2009 Red Hat, Inc.
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/highmem.h>
11 #include <linux/hugetlb.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/rmap.h>
14 #include <linux/swap.h>
15 #include <linux/shrinker.h>
16 #include <linux/mm_inline.h>
17 #include <linux/kthread.h>
18 #include <linux/khugepaged.h>
19 #include <linux/freezer.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/migrate.h>
23 #include <linux/hashtable.h>
25 #include <asm/tlb.h>
26 #include <asm/pgalloc.h>
27 #include "internal.h"
30 * By default transparent hugepage support is disabled in order that avoid
31 * to risk increase the memory footprint of applications without a guaranteed
32 * benefit. When transparent hugepage support is enabled, is for all mappings,
33 * and khugepaged scans all mappings.
34 * Defrag is invoked by khugepaged hugepage allocations and by page faults
35 * for all hugepage allocations.
37 unsigned long transparent_hugepage_flags __read_mostly =
38 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
39 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
40 #endif
41 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
42 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
43 #endif
44 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
45 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
46 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
48 /* default scan 8*512 pte (or vmas) every 30 second */
49 static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
50 static unsigned int khugepaged_pages_collapsed;
51 static unsigned int khugepaged_full_scans;
52 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
53 /* during fragmentation poll the hugepage allocator once every minute */
54 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
55 static struct task_struct *khugepaged_thread __read_mostly;
56 static DEFINE_MUTEX(khugepaged_mutex);
57 static DEFINE_SPINLOCK(khugepaged_mm_lock);
58 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
60 * default collapse hugepages if there is at least one pte mapped like
61 * it would have happened if the vma was large enough during page
62 * fault.
64 static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
66 static int khugepaged(void *none);
67 static int khugepaged_slab_init(void);
69 #define MM_SLOTS_HASH_BITS 10
70 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
72 static struct kmem_cache *mm_slot_cache __read_mostly;
74 /**
75 * struct mm_slot - hash lookup from mm to mm_slot
76 * @hash: hash collision list
77 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
78 * @mm: the mm that this information is valid for
80 struct mm_slot {
81 struct hlist_node hash;
82 struct list_head mm_node;
83 struct mm_struct *mm;
86 /**
87 * struct khugepaged_scan - cursor for scanning
88 * @mm_head: the head of the mm list to scan
89 * @mm_slot: the current mm_slot we are scanning
90 * @address: the next address inside that to be scanned
92 * There is only the one khugepaged_scan instance of this cursor structure.
94 struct khugepaged_scan {
95 struct list_head mm_head;
96 struct mm_slot *mm_slot;
97 unsigned long address;
99 static struct khugepaged_scan khugepaged_scan = {
100 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
104 static int set_recommended_min_free_kbytes(void)
106 struct zone *zone;
107 int nr_zones = 0;
108 unsigned long recommended_min;
110 if (!khugepaged_enabled())
111 return 0;
113 for_each_populated_zone(zone)
114 nr_zones++;
116 /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
117 recommended_min = pageblock_nr_pages * nr_zones * 2;
120 * Make sure that on average at least two pageblocks are almost free
121 * of another type, one for a migratetype to fall back to and a
122 * second to avoid subsequent fallbacks of other types There are 3
123 * MIGRATE_TYPES we care about.
125 recommended_min += pageblock_nr_pages * nr_zones *
126 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
128 /* don't ever allow to reserve more than 5% of the lowmem */
129 recommended_min = min(recommended_min,
130 (unsigned long) nr_free_buffer_pages() / 20);
131 recommended_min <<= (PAGE_SHIFT-10);
133 if (recommended_min > min_free_kbytes)
134 min_free_kbytes = recommended_min;
135 setup_per_zone_wmarks();
136 return 0;
138 late_initcall(set_recommended_min_free_kbytes);
140 static int start_khugepaged(void)
142 int err = 0;
143 if (khugepaged_enabled()) {
144 if (!khugepaged_thread)
145 khugepaged_thread = kthread_run(khugepaged, NULL,
146 "khugepaged");
147 if (unlikely(IS_ERR(khugepaged_thread))) {
148 printk(KERN_ERR
149 "khugepaged: kthread_run(khugepaged) failed\n");
150 err = PTR_ERR(khugepaged_thread);
151 khugepaged_thread = NULL;
154 if (!list_empty(&khugepaged_scan.mm_head))
155 wake_up_interruptible(&khugepaged_wait);
157 set_recommended_min_free_kbytes();
158 } else if (khugepaged_thread) {
159 kthread_stop(khugepaged_thread);
160 khugepaged_thread = NULL;
163 return err;
166 static atomic_t huge_zero_refcount;
167 static struct page *huge_zero_page __read_mostly;
169 static inline bool is_huge_zero_page(struct page *page)
171 return ACCESS_ONCE(huge_zero_page) == page;
174 static inline bool is_huge_zero_pmd(pmd_t pmd)
176 return is_huge_zero_page(pmd_page(pmd));
179 static struct page *get_huge_zero_page(void)
181 struct page *zero_page;
182 retry:
183 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
184 return ACCESS_ONCE(huge_zero_page);
186 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
187 HPAGE_PMD_ORDER);
188 if (!zero_page) {
189 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
190 return NULL;
192 count_vm_event(THP_ZERO_PAGE_ALLOC);
193 preempt_disable();
194 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
195 preempt_enable();
196 __free_page(zero_page);
197 goto retry;
200 /* We take additional reference here. It will be put back by shrinker */
201 atomic_set(&huge_zero_refcount, 2);
202 preempt_enable();
203 return ACCESS_ONCE(huge_zero_page);
206 static void put_huge_zero_page(void)
209 * Counter should never go to zero here. Only shrinker can put
210 * last reference.
212 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
215 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
216 struct shrink_control *sc)
218 /* we can free zero page only if last reference remains */
219 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
222 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
223 struct shrink_control *sc)
225 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
226 struct page *zero_page = xchg(&huge_zero_page, NULL);
227 BUG_ON(zero_page == NULL);
228 __free_page(zero_page);
229 return HPAGE_PMD_NR;
232 return 0;
235 static struct shrinker huge_zero_page_shrinker = {
236 .count_objects = shrink_huge_zero_page_count,
237 .scan_objects = shrink_huge_zero_page_scan,
238 .seeks = DEFAULT_SEEKS,
241 #ifdef CONFIG_SYSFS
243 static ssize_t double_flag_show(struct kobject *kobj,
244 struct kobj_attribute *attr, char *buf,
245 enum transparent_hugepage_flag enabled,
246 enum transparent_hugepage_flag req_madv)
248 if (test_bit(enabled, &transparent_hugepage_flags)) {
249 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
250 return sprintf(buf, "[always] madvise never\n");
251 } else if (test_bit(req_madv, &transparent_hugepage_flags))
252 return sprintf(buf, "always [madvise] never\n");
253 else
254 return sprintf(buf, "always madvise [never]\n");
256 static ssize_t double_flag_store(struct kobject *kobj,
257 struct kobj_attribute *attr,
258 const char *buf, size_t count,
259 enum transparent_hugepage_flag enabled,
260 enum transparent_hugepage_flag req_madv)
262 if (!memcmp("always", buf,
263 min(sizeof("always")-1, count))) {
264 set_bit(enabled, &transparent_hugepage_flags);
265 clear_bit(req_madv, &transparent_hugepage_flags);
266 } else if (!memcmp("madvise", buf,
267 min(sizeof("madvise")-1, count))) {
268 clear_bit(enabled, &transparent_hugepage_flags);
269 set_bit(req_madv, &transparent_hugepage_flags);
270 } else if (!memcmp("never", buf,
271 min(sizeof("never")-1, count))) {
272 clear_bit(enabled, &transparent_hugepage_flags);
273 clear_bit(req_madv, &transparent_hugepage_flags);
274 } else
275 return -EINVAL;
277 return count;
280 static ssize_t enabled_show(struct kobject *kobj,
281 struct kobj_attribute *attr, char *buf)
283 return double_flag_show(kobj, attr, buf,
284 TRANSPARENT_HUGEPAGE_FLAG,
285 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
287 static ssize_t enabled_store(struct kobject *kobj,
288 struct kobj_attribute *attr,
289 const char *buf, size_t count)
291 ssize_t ret;
293 ret = double_flag_store(kobj, attr, buf, count,
294 TRANSPARENT_HUGEPAGE_FLAG,
295 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
297 if (ret > 0) {
298 int err;
300 mutex_lock(&khugepaged_mutex);
301 err = start_khugepaged();
302 mutex_unlock(&khugepaged_mutex);
304 if (err)
305 ret = err;
308 return ret;
310 static struct kobj_attribute enabled_attr =
311 __ATTR(enabled, 0644, enabled_show, enabled_store);
313 static ssize_t single_flag_show(struct kobject *kobj,
314 struct kobj_attribute *attr, char *buf,
315 enum transparent_hugepage_flag flag)
317 return sprintf(buf, "%d\n",
318 !!test_bit(flag, &transparent_hugepage_flags));
321 static ssize_t single_flag_store(struct kobject *kobj,
322 struct kobj_attribute *attr,
323 const char *buf, size_t count,
324 enum transparent_hugepage_flag flag)
326 unsigned long value;
327 int ret;
329 ret = kstrtoul(buf, 10, &value);
330 if (ret < 0)
331 return ret;
332 if (value > 1)
333 return -EINVAL;
335 if (value)
336 set_bit(flag, &transparent_hugepage_flags);
337 else
338 clear_bit(flag, &transparent_hugepage_flags);
340 return count;
344 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
345 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
346 * memory just to allocate one more hugepage.
348 static ssize_t defrag_show(struct kobject *kobj,
349 struct kobj_attribute *attr, char *buf)
351 return double_flag_show(kobj, attr, buf,
352 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
353 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
355 static ssize_t defrag_store(struct kobject *kobj,
356 struct kobj_attribute *attr,
357 const char *buf, size_t count)
359 return double_flag_store(kobj, attr, buf, count,
360 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
361 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
363 static struct kobj_attribute defrag_attr =
364 __ATTR(defrag, 0644, defrag_show, defrag_store);
366 static ssize_t use_zero_page_show(struct kobject *kobj,
367 struct kobj_attribute *attr, char *buf)
369 return single_flag_show(kobj, attr, buf,
370 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
372 static ssize_t use_zero_page_store(struct kobject *kobj,
373 struct kobj_attribute *attr, const char *buf, size_t count)
375 return single_flag_store(kobj, attr, buf, count,
376 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
378 static struct kobj_attribute use_zero_page_attr =
379 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
380 #ifdef CONFIG_DEBUG_VM
381 static ssize_t debug_cow_show(struct kobject *kobj,
382 struct kobj_attribute *attr, char *buf)
384 return single_flag_show(kobj, attr, buf,
385 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
387 static ssize_t debug_cow_store(struct kobject *kobj,
388 struct kobj_attribute *attr,
389 const char *buf, size_t count)
391 return single_flag_store(kobj, attr, buf, count,
392 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
394 static struct kobj_attribute debug_cow_attr =
395 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
396 #endif /* CONFIG_DEBUG_VM */
398 static struct attribute *hugepage_attr[] = {
399 &enabled_attr.attr,
400 &defrag_attr.attr,
401 &use_zero_page_attr.attr,
402 #ifdef CONFIG_DEBUG_VM
403 &debug_cow_attr.attr,
404 #endif
405 NULL,
408 static struct attribute_group hugepage_attr_group = {
409 .attrs = hugepage_attr,
412 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
413 struct kobj_attribute *attr,
414 char *buf)
416 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
419 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
420 struct kobj_attribute *attr,
421 const char *buf, size_t count)
423 unsigned long msecs;
424 int err;
426 err = kstrtoul(buf, 10, &msecs);
427 if (err || msecs > UINT_MAX)
428 return -EINVAL;
430 khugepaged_scan_sleep_millisecs = msecs;
431 wake_up_interruptible(&khugepaged_wait);
433 return count;
435 static struct kobj_attribute scan_sleep_millisecs_attr =
436 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
437 scan_sleep_millisecs_store);
439 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
440 struct kobj_attribute *attr,
441 char *buf)
443 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
446 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
447 struct kobj_attribute *attr,
448 const char *buf, size_t count)
450 unsigned long msecs;
451 int err;
453 err = kstrtoul(buf, 10, &msecs);
454 if (err || msecs > UINT_MAX)
455 return -EINVAL;
457 khugepaged_alloc_sleep_millisecs = msecs;
458 wake_up_interruptible(&khugepaged_wait);
460 return count;
462 static struct kobj_attribute alloc_sleep_millisecs_attr =
463 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
464 alloc_sleep_millisecs_store);
466 static ssize_t pages_to_scan_show(struct kobject *kobj,
467 struct kobj_attribute *attr,
468 char *buf)
470 return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
472 static ssize_t pages_to_scan_store(struct kobject *kobj,
473 struct kobj_attribute *attr,
474 const char *buf, size_t count)
476 int err;
477 unsigned long pages;
479 err = kstrtoul(buf, 10, &pages);
480 if (err || !pages || pages > UINT_MAX)
481 return -EINVAL;
483 khugepaged_pages_to_scan = pages;
485 return count;
487 static struct kobj_attribute pages_to_scan_attr =
488 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
489 pages_to_scan_store);
491 static ssize_t pages_collapsed_show(struct kobject *kobj,
492 struct kobj_attribute *attr,
493 char *buf)
495 return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
497 static struct kobj_attribute pages_collapsed_attr =
498 __ATTR_RO(pages_collapsed);
500 static ssize_t full_scans_show(struct kobject *kobj,
501 struct kobj_attribute *attr,
502 char *buf)
504 return sprintf(buf, "%u\n", khugepaged_full_scans);
506 static struct kobj_attribute full_scans_attr =
507 __ATTR_RO(full_scans);
509 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
510 struct kobj_attribute *attr, char *buf)
512 return single_flag_show(kobj, attr, buf,
513 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
515 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
516 struct kobj_attribute *attr,
517 const char *buf, size_t count)
519 return single_flag_store(kobj, attr, buf, count,
520 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
522 static struct kobj_attribute khugepaged_defrag_attr =
523 __ATTR(defrag, 0644, khugepaged_defrag_show,
524 khugepaged_defrag_store);
527 * max_ptes_none controls if khugepaged should collapse hugepages over
528 * any unmapped ptes in turn potentially increasing the memory
529 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
530 * reduce the available free memory in the system as it
531 * runs. Increasing max_ptes_none will instead potentially reduce the
532 * free memory in the system during the khugepaged scan.
534 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
535 struct kobj_attribute *attr,
536 char *buf)
538 return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
540 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
541 struct kobj_attribute *attr,
542 const char *buf, size_t count)
544 int err;
545 unsigned long max_ptes_none;
547 err = kstrtoul(buf, 10, &max_ptes_none);
548 if (err || max_ptes_none > HPAGE_PMD_NR-1)
549 return -EINVAL;
551 khugepaged_max_ptes_none = max_ptes_none;
553 return count;
555 static struct kobj_attribute khugepaged_max_ptes_none_attr =
556 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
557 khugepaged_max_ptes_none_store);
559 static struct attribute *khugepaged_attr[] = {
560 &khugepaged_defrag_attr.attr,
561 &khugepaged_max_ptes_none_attr.attr,
562 &pages_to_scan_attr.attr,
563 &pages_collapsed_attr.attr,
564 &full_scans_attr.attr,
565 &scan_sleep_millisecs_attr.attr,
566 &alloc_sleep_millisecs_attr.attr,
567 NULL,
570 static struct attribute_group khugepaged_attr_group = {
571 .attrs = khugepaged_attr,
572 .name = "khugepaged",
575 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
577 int err;
579 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
580 if (unlikely(!*hugepage_kobj)) {
581 printk(KERN_ERR "hugepage: failed to create transparent hugepage kobject\n");
582 return -ENOMEM;
585 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
586 if (err) {
587 printk(KERN_ERR "hugepage: failed to register transparent hugepage group\n");
588 goto delete_obj;
591 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
592 if (err) {
593 printk(KERN_ERR "hugepage: failed to register transparent hugepage group\n");
594 goto remove_hp_group;
597 return 0;
599 remove_hp_group:
600 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
601 delete_obj:
602 kobject_put(*hugepage_kobj);
603 return err;
606 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
608 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
609 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
610 kobject_put(hugepage_kobj);
612 #else
613 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
615 return 0;
618 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
621 #endif /* CONFIG_SYSFS */
623 static int __init hugepage_init(void)
625 int err;
626 struct kobject *hugepage_kobj;
628 if (!has_transparent_hugepage()) {
629 transparent_hugepage_flags = 0;
630 return -EINVAL;
633 err = hugepage_init_sysfs(&hugepage_kobj);
634 if (err)
635 return err;
637 err = khugepaged_slab_init();
638 if (err)
639 goto out;
641 register_shrinker(&huge_zero_page_shrinker);
644 * By default disable transparent hugepages on smaller systems,
645 * where the extra memory used could hurt more than TLB overhead
646 * is likely to save. The admin can still enable it through /sys.
648 if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
649 transparent_hugepage_flags = 0;
651 start_khugepaged();
653 return 0;
654 out:
655 hugepage_exit_sysfs(hugepage_kobj);
656 return err;
658 module_init(hugepage_init)
660 static int __init setup_transparent_hugepage(char *str)
662 int ret = 0;
663 if (!str)
664 goto out;
665 if (!strcmp(str, "always")) {
666 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
667 &transparent_hugepage_flags);
668 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
669 &transparent_hugepage_flags);
670 ret = 1;
671 } else if (!strcmp(str, "madvise")) {
672 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
673 &transparent_hugepage_flags);
674 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
675 &transparent_hugepage_flags);
676 ret = 1;
677 } else if (!strcmp(str, "never")) {
678 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
679 &transparent_hugepage_flags);
680 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
681 &transparent_hugepage_flags);
682 ret = 1;
684 out:
685 if (!ret)
686 printk(KERN_WARNING
687 "transparent_hugepage= cannot parse, ignored\n");
688 return ret;
690 __setup("transparent_hugepage=", setup_transparent_hugepage);
692 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
694 if (likely(vma->vm_flags & VM_WRITE))
695 pmd = pmd_mkwrite(pmd);
696 return pmd;
699 static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
701 pmd_t entry;
702 entry = mk_pmd(page, prot);
703 entry = pmd_mkhuge(entry);
704 return entry;
707 static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
708 struct vm_area_struct *vma,
709 unsigned long haddr, pmd_t *pmd,
710 struct page *page)
712 pgtable_t pgtable;
713 spinlock_t *ptl;
715 VM_BUG_ON(!PageCompound(page));
716 pgtable = pte_alloc_one(mm, haddr);
717 if (unlikely(!pgtable))
718 return VM_FAULT_OOM;
720 clear_huge_page(page, haddr, HPAGE_PMD_NR);
722 * The memory barrier inside __SetPageUptodate makes sure that
723 * clear_huge_page writes become visible before the set_pmd_at()
724 * write.
726 __SetPageUptodate(page);
728 ptl = pmd_lock(mm, pmd);
729 if (unlikely(!pmd_none(*pmd))) {
730 spin_unlock(ptl);
731 mem_cgroup_uncharge_page(page);
732 put_page(page);
733 pte_free(mm, pgtable);
734 } else {
735 pmd_t entry;
736 entry = mk_huge_pmd(page, vma->vm_page_prot);
737 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
738 page_add_new_anon_rmap(page, vma, haddr);
739 pgtable_trans_huge_deposit(mm, pmd, pgtable);
740 set_pmd_at(mm, haddr, pmd, entry);
741 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
742 atomic_long_inc(&mm->nr_ptes);
743 spin_unlock(ptl);
746 return 0;
749 static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
751 return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
754 static inline struct page *alloc_hugepage_vma(int defrag,
755 struct vm_area_struct *vma,
756 unsigned long haddr, int nd,
757 gfp_t extra_gfp)
759 return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
760 HPAGE_PMD_ORDER, vma, haddr, nd);
763 /* Caller must hold page table lock. */
764 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
765 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
766 struct page *zero_page)
768 pmd_t entry;
769 if (!pmd_none(*pmd))
770 return false;
771 entry = mk_pmd(zero_page, vma->vm_page_prot);
772 entry = pmd_wrprotect(entry);
773 entry = pmd_mkhuge(entry);
774 pgtable_trans_huge_deposit(mm, pmd, pgtable);
775 set_pmd_at(mm, haddr, pmd, entry);
776 atomic_long_inc(&mm->nr_ptes);
777 return true;
780 int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
781 unsigned long address, pmd_t *pmd,
782 unsigned int flags)
784 struct page *page;
785 unsigned long haddr = address & HPAGE_PMD_MASK;
787 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
788 return VM_FAULT_FALLBACK;
789 if (unlikely(anon_vma_prepare(vma)))
790 return VM_FAULT_OOM;
791 if (unlikely(khugepaged_enter(vma)))
792 return VM_FAULT_OOM;
793 if (!(flags & FAULT_FLAG_WRITE) &&
794 transparent_hugepage_use_zero_page()) {
795 spinlock_t *ptl;
796 pgtable_t pgtable;
797 struct page *zero_page;
798 bool set;
799 pgtable = pte_alloc_one(mm, haddr);
800 if (unlikely(!pgtable))
801 return VM_FAULT_OOM;
802 zero_page = get_huge_zero_page();
803 if (unlikely(!zero_page)) {
804 pte_free(mm, pgtable);
805 count_vm_event(THP_FAULT_FALLBACK);
806 return VM_FAULT_FALLBACK;
808 ptl = pmd_lock(mm, pmd);
809 set = set_huge_zero_page(pgtable, mm, vma, haddr, pmd,
810 zero_page);
811 spin_unlock(ptl);
812 if (!set) {
813 pte_free(mm, pgtable);
814 put_huge_zero_page();
816 return 0;
818 page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
819 vma, haddr, numa_node_id(), 0);
820 if (unlikely(!page)) {
821 count_vm_event(THP_FAULT_FALLBACK);
822 return VM_FAULT_FALLBACK;
824 if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
825 put_page(page);
826 count_vm_event(THP_FAULT_FALLBACK);
827 return VM_FAULT_FALLBACK;
829 if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page))) {
830 mem_cgroup_uncharge_page(page);
831 put_page(page);
832 count_vm_event(THP_FAULT_FALLBACK);
833 return VM_FAULT_FALLBACK;
836 count_vm_event(THP_FAULT_ALLOC);
837 return 0;
840 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
841 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
842 struct vm_area_struct *vma)
844 spinlock_t *dst_ptl, *src_ptl;
845 struct page *src_page;
846 pmd_t pmd;
847 pgtable_t pgtable;
848 int ret;
850 ret = -ENOMEM;
851 pgtable = pte_alloc_one(dst_mm, addr);
852 if (unlikely(!pgtable))
853 goto out;
855 dst_ptl = pmd_lock(dst_mm, dst_pmd);
856 src_ptl = pmd_lockptr(src_mm, src_pmd);
857 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
859 ret = -EAGAIN;
860 pmd = *src_pmd;
861 if (unlikely(!pmd_trans_huge(pmd))) {
862 pte_free(dst_mm, pgtable);
863 goto out_unlock;
866 * When page table lock is held, the huge zero pmd should not be
867 * under splitting since we don't split the page itself, only pmd to
868 * a page table.
870 if (is_huge_zero_pmd(pmd)) {
871 struct page *zero_page;
872 bool set;
874 * get_huge_zero_page() will never allocate a new page here,
875 * since we already have a zero page to copy. It just takes a
876 * reference.
878 zero_page = get_huge_zero_page();
879 set = set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
880 zero_page);
881 BUG_ON(!set); /* unexpected !pmd_none(dst_pmd) */
882 ret = 0;
883 goto out_unlock;
885 if (unlikely(pmd_trans_splitting(pmd))) {
886 /* split huge page running from under us */
887 spin_unlock(src_ptl);
888 spin_unlock(dst_ptl);
889 pte_free(dst_mm, pgtable);
891 wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
892 goto out;
894 src_page = pmd_page(pmd);
895 VM_BUG_ON(!PageHead(src_page));
896 get_page(src_page);
897 page_dup_rmap(src_page);
898 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
900 pmdp_set_wrprotect(src_mm, addr, src_pmd);
901 pmd = pmd_mkold(pmd_wrprotect(pmd));
902 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
903 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
904 atomic_long_inc(&dst_mm->nr_ptes);
906 ret = 0;
907 out_unlock:
908 spin_unlock(src_ptl);
909 spin_unlock(dst_ptl);
910 out:
911 return ret;
914 void huge_pmd_set_accessed(struct mm_struct *mm,
915 struct vm_area_struct *vma,
916 unsigned long address,
917 pmd_t *pmd, pmd_t orig_pmd,
918 int dirty)
920 spinlock_t *ptl;
921 pmd_t entry;
922 unsigned long haddr;
924 ptl = pmd_lock(mm, pmd);
925 if (unlikely(!pmd_same(*pmd, orig_pmd)))
926 goto unlock;
928 entry = pmd_mkyoung(orig_pmd);
929 haddr = address & HPAGE_PMD_MASK;
930 if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
931 update_mmu_cache_pmd(vma, address, pmd);
933 unlock:
934 spin_unlock(ptl);
937 static int do_huge_pmd_wp_zero_page_fallback(struct mm_struct *mm,
938 struct vm_area_struct *vma, unsigned long address,
939 pmd_t *pmd, pmd_t orig_pmd, unsigned long haddr)
941 spinlock_t *ptl;
942 pgtable_t pgtable;
943 pmd_t _pmd;
944 struct page *page;
945 int i, ret = 0;
946 unsigned long mmun_start; /* For mmu_notifiers */
947 unsigned long mmun_end; /* For mmu_notifiers */
949 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
950 if (!page) {
951 ret |= VM_FAULT_OOM;
952 goto out;
955 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
956 put_page(page);
957 ret |= VM_FAULT_OOM;
958 goto out;
961 clear_user_highpage(page, address);
962 __SetPageUptodate(page);
964 mmun_start = haddr;
965 mmun_end = haddr + HPAGE_PMD_SIZE;
966 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
968 ptl = pmd_lock(mm, pmd);
969 if (unlikely(!pmd_same(*pmd, orig_pmd)))
970 goto out_free_page;
972 pmdp_clear_flush(vma, haddr, pmd);
973 /* leave pmd empty until pte is filled */
975 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
976 pmd_populate(mm, &_pmd, pgtable);
978 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
979 pte_t *pte, entry;
980 if (haddr == (address & PAGE_MASK)) {
981 entry = mk_pte(page, vma->vm_page_prot);
982 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
983 page_add_new_anon_rmap(page, vma, haddr);
984 } else {
985 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
986 entry = pte_mkspecial(entry);
988 pte = pte_offset_map(&_pmd, haddr);
989 VM_BUG_ON(!pte_none(*pte));
990 set_pte_at(mm, haddr, pte, entry);
991 pte_unmap(pte);
993 smp_wmb(); /* make pte visible before pmd */
994 pmd_populate(mm, pmd, pgtable);
995 spin_unlock(ptl);
996 put_huge_zero_page();
997 inc_mm_counter(mm, MM_ANONPAGES);
999 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1001 ret |= VM_FAULT_WRITE;
1002 out:
1003 return ret;
1004 out_free_page:
1005 spin_unlock(ptl);
1006 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1007 mem_cgroup_uncharge_page(page);
1008 put_page(page);
1009 goto out;
1012 static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
1013 struct vm_area_struct *vma,
1014 unsigned long address,
1015 pmd_t *pmd, pmd_t orig_pmd,
1016 struct page *page,
1017 unsigned long haddr)
1019 spinlock_t *ptl;
1020 pgtable_t pgtable;
1021 pmd_t _pmd;
1022 int ret = 0, i;
1023 struct page **pages;
1024 unsigned long mmun_start; /* For mmu_notifiers */
1025 unsigned long mmun_end; /* For mmu_notifiers */
1027 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1028 GFP_KERNEL);
1029 if (unlikely(!pages)) {
1030 ret |= VM_FAULT_OOM;
1031 goto out;
1034 for (i = 0; i < HPAGE_PMD_NR; i++) {
1035 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
1036 __GFP_OTHER_NODE,
1037 vma, address, page_to_nid(page));
1038 if (unlikely(!pages[i] ||
1039 mem_cgroup_newpage_charge(pages[i], mm,
1040 GFP_KERNEL))) {
1041 if (pages[i])
1042 put_page(pages[i]);
1043 mem_cgroup_uncharge_start();
1044 while (--i >= 0) {
1045 mem_cgroup_uncharge_page(pages[i]);
1046 put_page(pages[i]);
1048 mem_cgroup_uncharge_end();
1049 kfree(pages);
1050 ret |= VM_FAULT_OOM;
1051 goto out;
1055 for (i = 0; i < HPAGE_PMD_NR; i++) {
1056 copy_user_highpage(pages[i], page + i,
1057 haddr + PAGE_SIZE * i, vma);
1058 __SetPageUptodate(pages[i]);
1059 cond_resched();
1062 mmun_start = haddr;
1063 mmun_end = haddr + HPAGE_PMD_SIZE;
1064 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1066 ptl = pmd_lock(mm, pmd);
1067 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1068 goto out_free_pages;
1069 VM_BUG_ON(!PageHead(page));
1071 pmdp_clear_flush(vma, haddr, pmd);
1072 /* leave pmd empty until pte is filled */
1074 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1075 pmd_populate(mm, &_pmd, pgtable);
1077 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1078 pte_t *pte, entry;
1079 entry = mk_pte(pages[i], vma->vm_page_prot);
1080 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1081 page_add_new_anon_rmap(pages[i], vma, haddr);
1082 pte = pte_offset_map(&_pmd, haddr);
1083 VM_BUG_ON(!pte_none(*pte));
1084 set_pte_at(mm, haddr, pte, entry);
1085 pte_unmap(pte);
1087 kfree(pages);
1089 smp_wmb(); /* make pte visible before pmd */
1090 pmd_populate(mm, pmd, pgtable);
1091 page_remove_rmap(page);
1092 spin_unlock(ptl);
1094 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1096 ret |= VM_FAULT_WRITE;
1097 put_page(page);
1099 out:
1100 return ret;
1102 out_free_pages:
1103 spin_unlock(ptl);
1104 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1105 mem_cgroup_uncharge_start();
1106 for (i = 0; i < HPAGE_PMD_NR; i++) {
1107 mem_cgroup_uncharge_page(pages[i]);
1108 put_page(pages[i]);
1110 mem_cgroup_uncharge_end();
1111 kfree(pages);
1112 goto out;
1115 int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1116 unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
1118 spinlock_t *ptl;
1119 int ret = 0;
1120 struct page *page = NULL, *new_page;
1121 unsigned long haddr;
1122 unsigned long mmun_start; /* For mmu_notifiers */
1123 unsigned long mmun_end; /* For mmu_notifiers */
1125 ptl = pmd_lockptr(mm, pmd);
1126 VM_BUG_ON(!vma->anon_vma);
1127 haddr = address & HPAGE_PMD_MASK;
1128 if (is_huge_zero_pmd(orig_pmd))
1129 goto alloc;
1130 spin_lock(ptl);
1131 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1132 goto out_unlock;
1134 page = pmd_page(orig_pmd);
1135 VM_BUG_ON(!PageCompound(page) || !PageHead(page));
1136 if (page_mapcount(page) == 1) {
1137 pmd_t entry;
1138 entry = pmd_mkyoung(orig_pmd);
1139 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1140 if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
1141 update_mmu_cache_pmd(vma, address, pmd);
1142 ret |= VM_FAULT_WRITE;
1143 goto out_unlock;
1145 get_page(page);
1146 spin_unlock(ptl);
1147 alloc:
1148 if (transparent_hugepage_enabled(vma) &&
1149 !transparent_hugepage_debug_cow())
1150 new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
1151 vma, haddr, numa_node_id(), 0);
1152 else
1153 new_page = NULL;
1155 if (unlikely(!new_page)) {
1156 if (is_huge_zero_pmd(orig_pmd)) {
1157 ret = do_huge_pmd_wp_zero_page_fallback(mm, vma,
1158 address, pmd, orig_pmd, haddr);
1159 } else {
1160 ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
1161 pmd, orig_pmd, page, haddr);
1162 if (ret & VM_FAULT_OOM)
1163 split_huge_page(page);
1164 put_page(page);
1166 count_vm_event(THP_FAULT_FALLBACK);
1167 goto out;
1170 if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
1171 put_page(new_page);
1172 if (page) {
1173 split_huge_page(page);
1174 put_page(page);
1176 count_vm_event(THP_FAULT_FALLBACK);
1177 ret |= VM_FAULT_OOM;
1178 goto out;
1181 count_vm_event(THP_FAULT_ALLOC);
1183 if (is_huge_zero_pmd(orig_pmd))
1184 clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1185 else
1186 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1187 __SetPageUptodate(new_page);
1189 mmun_start = haddr;
1190 mmun_end = haddr + HPAGE_PMD_SIZE;
1191 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1193 spin_lock(ptl);
1194 if (page)
1195 put_page(page);
1196 if (unlikely(!pmd_same(*pmd, orig_pmd))) {
1197 spin_unlock(ptl);
1198 mem_cgroup_uncharge_page(new_page);
1199 put_page(new_page);
1200 goto out_mn;
1201 } else {
1202 pmd_t entry;
1203 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1204 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1205 pmdp_clear_flush(vma, haddr, pmd);
1206 page_add_new_anon_rmap(new_page, vma, haddr);
1207 set_pmd_at(mm, haddr, pmd, entry);
1208 update_mmu_cache_pmd(vma, address, pmd);
1209 if (is_huge_zero_pmd(orig_pmd)) {
1210 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
1211 put_huge_zero_page();
1212 } else {
1213 VM_BUG_ON(!PageHead(page));
1214 page_remove_rmap(page);
1215 put_page(page);
1217 ret |= VM_FAULT_WRITE;
1219 spin_unlock(ptl);
1220 out_mn:
1221 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1222 out:
1223 return ret;
1224 out_unlock:
1225 spin_unlock(ptl);
1226 return ret;
1229 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1230 unsigned long addr,
1231 pmd_t *pmd,
1232 unsigned int flags)
1234 struct mm_struct *mm = vma->vm_mm;
1235 struct page *page = NULL;
1237 assert_spin_locked(pmd_lockptr(mm, pmd));
1239 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1240 goto out;
1242 /* Avoid dumping huge zero page */
1243 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1244 return ERR_PTR(-EFAULT);
1246 page = pmd_page(*pmd);
1247 VM_BUG_ON(!PageHead(page));
1248 if (flags & FOLL_TOUCH) {
1249 pmd_t _pmd;
1251 * We should set the dirty bit only for FOLL_WRITE but
1252 * for now the dirty bit in the pmd is meaningless.
1253 * And if the dirty bit will become meaningful and
1254 * we'll only set it with FOLL_WRITE, an atomic
1255 * set_bit will be required on the pmd to set the
1256 * young bit, instead of the current set_pmd_at.
1258 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1259 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1260 pmd, _pmd, 1))
1261 update_mmu_cache_pmd(vma, addr, pmd);
1263 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1264 if (page->mapping && trylock_page(page)) {
1265 lru_add_drain();
1266 if (page->mapping)
1267 mlock_vma_page(page);
1268 unlock_page(page);
1271 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1272 VM_BUG_ON(!PageCompound(page));
1273 if (flags & FOLL_GET)
1274 get_page_foll(page);
1276 out:
1277 return page;
1280 /* NUMA hinting page fault entry point for trans huge pmds */
1281 int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
1282 unsigned long addr, pmd_t pmd, pmd_t *pmdp)
1284 spinlock_t *ptl;
1285 struct anon_vma *anon_vma = NULL;
1286 struct page *page;
1287 unsigned long haddr = addr & HPAGE_PMD_MASK;
1288 int page_nid = -1, this_nid = numa_node_id();
1289 int target_nid, last_cpupid = -1;
1290 bool page_locked;
1291 bool migrated = false;
1292 int flags = 0;
1294 ptl = pmd_lock(mm, pmdp);
1295 if (unlikely(!pmd_same(pmd, *pmdp)))
1296 goto out_unlock;
1298 page = pmd_page(pmd);
1299 BUG_ON(is_huge_zero_page(page));
1300 page_nid = page_to_nid(page);
1301 last_cpupid = page_cpupid_last(page);
1302 count_vm_numa_event(NUMA_HINT_FAULTS);
1303 if (page_nid == this_nid) {
1304 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1305 flags |= TNF_FAULT_LOCAL;
1309 * Avoid grouping on DSO/COW pages in specific and RO pages
1310 * in general, RO pages shouldn't hurt as much anyway since
1311 * they can be in shared cache state.
1313 if (!pmd_write(pmd))
1314 flags |= TNF_NO_GROUP;
1317 * Acquire the page lock to serialise THP migrations but avoid dropping
1318 * page_table_lock if at all possible
1320 page_locked = trylock_page(page);
1321 target_nid = mpol_misplaced(page, vma, haddr);
1322 if (target_nid == -1) {
1323 /* If the page was locked, there are no parallel migrations */
1324 if (page_locked)
1325 goto clear_pmdnuma;
1328 * Otherwise wait for potential migrations and retry. We do
1329 * relock and check_same as the page may no longer be mapped.
1330 * As the fault is being retried, do not account for it.
1332 spin_unlock(ptl);
1333 wait_on_page_locked(page);
1334 page_nid = -1;
1335 goto out;
1338 /* Page is misplaced, serialise migrations and parallel THP splits */
1339 get_page(page);
1340 spin_unlock(ptl);
1341 if (!page_locked)
1342 lock_page(page);
1343 anon_vma = page_lock_anon_vma_read(page);
1345 /* Confirm the PMD did not change while page_table_lock was released */
1346 spin_lock(ptl);
1347 if (unlikely(!pmd_same(pmd, *pmdp))) {
1348 unlock_page(page);
1349 put_page(page);
1350 page_nid = -1;
1351 goto out_unlock;
1355 * Migrate the THP to the requested node, returns with page unlocked
1356 * and pmd_numa cleared.
1358 spin_unlock(ptl);
1359 migrated = migrate_misplaced_transhuge_page(mm, vma,
1360 pmdp, pmd, addr, page, target_nid);
1361 if (migrated) {
1362 flags |= TNF_MIGRATED;
1363 page_nid = target_nid;
1366 goto out;
1367 clear_pmdnuma:
1368 BUG_ON(!PageLocked(page));
1369 pmd = pmd_mknonnuma(pmd);
1370 set_pmd_at(mm, haddr, pmdp, pmd);
1371 VM_BUG_ON(pmd_numa(*pmdp));
1372 update_mmu_cache_pmd(vma, addr, pmdp);
1373 unlock_page(page);
1374 out_unlock:
1375 spin_unlock(ptl);
1377 out:
1378 if (anon_vma)
1379 page_unlock_anon_vma_read(anon_vma);
1381 if (page_nid != -1)
1382 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags);
1384 return 0;
1387 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1388 pmd_t *pmd, unsigned long addr)
1390 spinlock_t *ptl;
1391 int ret = 0;
1393 if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1394 struct page *page;
1395 pgtable_t pgtable;
1396 pmd_t orig_pmd;
1398 * For architectures like ppc64 we look at deposited pgtable
1399 * when calling pmdp_get_and_clear. So do the
1400 * pgtable_trans_huge_withdraw after finishing pmdp related
1401 * operations.
1403 orig_pmd = pmdp_get_and_clear(tlb->mm, addr, pmd);
1404 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1405 pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
1406 if (is_huge_zero_pmd(orig_pmd)) {
1407 atomic_long_dec(&tlb->mm->nr_ptes);
1408 spin_unlock(ptl);
1409 put_huge_zero_page();
1410 } else {
1411 page = pmd_page(orig_pmd);
1412 page_remove_rmap(page);
1413 VM_BUG_ON(page_mapcount(page) < 0);
1414 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1415 VM_BUG_ON(!PageHead(page));
1416 atomic_long_dec(&tlb->mm->nr_ptes);
1417 spin_unlock(ptl);
1418 tlb_remove_page(tlb, page);
1420 pte_free(tlb->mm, pgtable);
1421 ret = 1;
1423 return ret;
1426 int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1427 unsigned long addr, unsigned long end,
1428 unsigned char *vec)
1430 spinlock_t *ptl;
1431 int ret = 0;
1433 if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1435 * All logical pages in the range are present
1436 * if backed by a huge page.
1438 spin_unlock(ptl);
1439 memset(vec, 1, (end - addr) >> PAGE_SHIFT);
1440 ret = 1;
1443 return ret;
1446 int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1447 unsigned long old_addr,
1448 unsigned long new_addr, unsigned long old_end,
1449 pmd_t *old_pmd, pmd_t *new_pmd)
1451 spinlock_t *old_ptl, *new_ptl;
1452 int ret = 0;
1453 pmd_t pmd;
1455 struct mm_struct *mm = vma->vm_mm;
1457 if ((old_addr & ~HPAGE_PMD_MASK) ||
1458 (new_addr & ~HPAGE_PMD_MASK) ||
1459 old_end - old_addr < HPAGE_PMD_SIZE ||
1460 (new_vma->vm_flags & VM_NOHUGEPAGE))
1461 goto out;
1464 * The destination pmd shouldn't be established, free_pgtables()
1465 * should have release it.
1467 if (WARN_ON(!pmd_none(*new_pmd))) {
1468 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1469 goto out;
1473 * We don't have to worry about the ordering of src and dst
1474 * ptlocks because exclusive mmap_sem prevents deadlock.
1476 ret = __pmd_trans_huge_lock(old_pmd, vma, &old_ptl);
1477 if (ret == 1) {
1478 new_ptl = pmd_lockptr(mm, new_pmd);
1479 if (new_ptl != old_ptl)
1480 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1481 pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
1482 VM_BUG_ON(!pmd_none(*new_pmd));
1483 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1484 if (new_ptl != old_ptl)
1485 spin_unlock(new_ptl);
1486 spin_unlock(old_ptl);
1488 out:
1489 return ret;
1493 * Returns
1494 * - 0 if PMD could not be locked
1495 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1496 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1498 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1499 unsigned long addr, pgprot_t newprot, int prot_numa)
1501 struct mm_struct *mm = vma->vm_mm;
1502 spinlock_t *ptl;
1503 int ret = 0;
1505 if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1506 pmd_t entry;
1507 ret = 1;
1508 if (!prot_numa) {
1509 entry = pmdp_get_and_clear(mm, addr, pmd);
1510 entry = pmd_modify(entry, newprot);
1511 ret = HPAGE_PMD_NR;
1512 BUG_ON(pmd_write(entry));
1513 } else {
1514 struct page *page = pmd_page(*pmd);
1517 * Do not trap faults against the zero page. The
1518 * read-only data is likely to be read-cached on the
1519 * local CPU cache and it is less useful to know about
1520 * local vs remote hits on the zero page.
1522 if (!is_huge_zero_page(page) &&
1523 !pmd_numa(*pmd)) {
1524 entry = pmdp_get_and_clear(mm, addr, pmd);
1525 entry = pmd_mknuma(entry);
1526 ret = HPAGE_PMD_NR;
1530 /* Set PMD if cleared earlier */
1531 if (ret == HPAGE_PMD_NR)
1532 set_pmd_at(mm, addr, pmd, entry);
1534 spin_unlock(ptl);
1537 return ret;
1541 * Returns 1 if a given pmd maps a stable (not under splitting) thp.
1542 * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
1544 * Note that if it returns 1, this routine returns without unlocking page
1545 * table locks. So callers must unlock them.
1547 int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma,
1548 spinlock_t **ptl)
1550 *ptl = pmd_lock(vma->vm_mm, pmd);
1551 if (likely(pmd_trans_huge(*pmd))) {
1552 if (unlikely(pmd_trans_splitting(*pmd))) {
1553 spin_unlock(*ptl);
1554 wait_split_huge_page(vma->anon_vma, pmd);
1555 return -1;
1556 } else {
1557 /* Thp mapped by 'pmd' is stable, so we can
1558 * handle it as it is. */
1559 return 1;
1562 spin_unlock(*ptl);
1563 return 0;
1567 * This function returns whether a given @page is mapped onto the @address
1568 * in the virtual space of @mm.
1570 * When it's true, this function returns *pmd with holding the page table lock
1571 * and passing it back to the caller via @ptl.
1572 * If it's false, returns NULL without holding the page table lock.
1574 pmd_t *page_check_address_pmd(struct page *page,
1575 struct mm_struct *mm,
1576 unsigned long address,
1577 enum page_check_address_pmd_flag flag,
1578 spinlock_t **ptl)
1580 pmd_t *pmd;
1582 if (address & ~HPAGE_PMD_MASK)
1583 return NULL;
1585 pmd = mm_find_pmd(mm, address);
1586 if (!pmd)
1587 return NULL;
1588 *ptl = pmd_lock(mm, pmd);
1589 if (pmd_none(*pmd))
1590 goto unlock;
1591 if (pmd_page(*pmd) != page)
1592 goto unlock;
1594 * split_vma() may create temporary aliased mappings. There is
1595 * no risk as long as all huge pmd are found and have their
1596 * splitting bit set before __split_huge_page_refcount
1597 * runs. Finding the same huge pmd more than once during the
1598 * same rmap walk is not a problem.
1600 if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1601 pmd_trans_splitting(*pmd))
1602 goto unlock;
1603 if (pmd_trans_huge(*pmd)) {
1604 VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1605 !pmd_trans_splitting(*pmd));
1606 return pmd;
1608 unlock:
1609 spin_unlock(*ptl);
1610 return NULL;
1613 static int __split_huge_page_splitting(struct page *page,
1614 struct vm_area_struct *vma,
1615 unsigned long address)
1617 struct mm_struct *mm = vma->vm_mm;
1618 spinlock_t *ptl;
1619 pmd_t *pmd;
1620 int ret = 0;
1621 /* For mmu_notifiers */
1622 const unsigned long mmun_start = address;
1623 const unsigned long mmun_end = address + HPAGE_PMD_SIZE;
1625 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1626 pmd = page_check_address_pmd(page, mm, address,
1627 PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG, &ptl);
1628 if (pmd) {
1630 * We can't temporarily set the pmd to null in order
1631 * to split it, the pmd must remain marked huge at all
1632 * times or the VM won't take the pmd_trans_huge paths
1633 * and it won't wait on the anon_vma->root->rwsem to
1634 * serialize against split_huge_page*.
1636 pmdp_splitting_flush(vma, address, pmd);
1637 ret = 1;
1638 spin_unlock(ptl);
1640 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1642 return ret;
1645 static void __split_huge_page_refcount(struct page *page,
1646 struct list_head *list)
1648 int i;
1649 struct zone *zone = page_zone(page);
1650 struct lruvec *lruvec;
1651 int tail_count = 0;
1653 /* prevent PageLRU to go away from under us, and freeze lru stats */
1654 spin_lock_irq(&zone->lru_lock);
1655 lruvec = mem_cgroup_page_lruvec(page, zone);
1657 compound_lock(page);
1658 /* complete memcg works before add pages to LRU */
1659 mem_cgroup_split_huge_fixup(page);
1661 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
1662 struct page *page_tail = page + i;
1664 /* tail_page->_mapcount cannot change */
1665 BUG_ON(page_mapcount(page_tail) < 0);
1666 tail_count += page_mapcount(page_tail);
1667 /* check for overflow */
1668 BUG_ON(tail_count < 0);
1669 BUG_ON(atomic_read(&page_tail->_count) != 0);
1671 * tail_page->_count is zero and not changing from
1672 * under us. But get_page_unless_zero() may be running
1673 * from under us on the tail_page. If we used
1674 * atomic_set() below instead of atomic_add(), we
1675 * would then run atomic_set() concurrently with
1676 * get_page_unless_zero(), and atomic_set() is
1677 * implemented in C not using locked ops. spin_unlock
1678 * on x86 sometime uses locked ops because of PPro
1679 * errata 66, 92, so unless somebody can guarantee
1680 * atomic_set() here would be safe on all archs (and
1681 * not only on x86), it's safer to use atomic_add().
1683 atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
1684 &page_tail->_count);
1686 /* after clearing PageTail the gup refcount can be released */
1687 smp_mb();
1690 * retain hwpoison flag of the poisoned tail page:
1691 * fix for the unsuitable process killed on Guest Machine(KVM)
1692 * by the memory-failure.
1694 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
1695 page_tail->flags |= (page->flags &
1696 ((1L << PG_referenced) |
1697 (1L << PG_swapbacked) |
1698 (1L << PG_mlocked) |
1699 (1L << PG_uptodate) |
1700 (1L << PG_active) |
1701 (1L << PG_unevictable)));
1702 page_tail->flags |= (1L << PG_dirty);
1704 /* clear PageTail before overwriting first_page */
1705 smp_wmb();
1708 * __split_huge_page_splitting() already set the
1709 * splitting bit in all pmd that could map this
1710 * hugepage, that will ensure no CPU can alter the
1711 * mapcount on the head page. The mapcount is only
1712 * accounted in the head page and it has to be
1713 * transferred to all tail pages in the below code. So
1714 * for this code to be safe, the split the mapcount
1715 * can't change. But that doesn't mean userland can't
1716 * keep changing and reading the page contents while
1717 * we transfer the mapcount, so the pmd splitting
1718 * status is achieved setting a reserved bit in the
1719 * pmd, not by clearing the present bit.
1721 page_tail->_mapcount = page->_mapcount;
1723 BUG_ON(page_tail->mapping);
1724 page_tail->mapping = page->mapping;
1726 page_tail->index = page->index + i;
1727 page_cpupid_xchg_last(page_tail, page_cpupid_last(page));
1729 BUG_ON(!PageAnon(page_tail));
1730 BUG_ON(!PageUptodate(page_tail));
1731 BUG_ON(!PageDirty(page_tail));
1732 BUG_ON(!PageSwapBacked(page_tail));
1734 lru_add_page_tail(page, page_tail, lruvec, list);
1736 atomic_sub(tail_count, &page->_count);
1737 BUG_ON(atomic_read(&page->_count) <= 0);
1739 __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
1741 ClearPageCompound(page);
1742 compound_unlock(page);
1743 spin_unlock_irq(&zone->lru_lock);
1745 for (i = 1; i < HPAGE_PMD_NR; i++) {
1746 struct page *page_tail = page + i;
1747 BUG_ON(page_count(page_tail) <= 0);
1749 * Tail pages may be freed if there wasn't any mapping
1750 * like if add_to_swap() is running on a lru page that
1751 * had its mapping zapped. And freeing these pages
1752 * requires taking the lru_lock so we do the put_page
1753 * of the tail pages after the split is complete.
1755 put_page(page_tail);
1759 * Only the head page (now become a regular page) is required
1760 * to be pinned by the caller.
1762 BUG_ON(page_count(page) <= 0);
1765 static int __split_huge_page_map(struct page *page,
1766 struct vm_area_struct *vma,
1767 unsigned long address)
1769 struct mm_struct *mm = vma->vm_mm;
1770 spinlock_t *ptl;
1771 pmd_t *pmd, _pmd;
1772 int ret = 0, i;
1773 pgtable_t pgtable;
1774 unsigned long haddr;
1776 pmd = page_check_address_pmd(page, mm, address,
1777 PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG, &ptl);
1778 if (pmd) {
1779 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1780 pmd_populate(mm, &_pmd, pgtable);
1782 haddr = address;
1783 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1784 pte_t *pte, entry;
1785 BUG_ON(PageCompound(page+i));
1786 entry = mk_pte(page + i, vma->vm_page_prot);
1787 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1788 if (!pmd_write(*pmd))
1789 entry = pte_wrprotect(entry);
1790 else
1791 BUG_ON(page_mapcount(page) != 1);
1792 if (!pmd_young(*pmd))
1793 entry = pte_mkold(entry);
1794 if (pmd_numa(*pmd))
1795 entry = pte_mknuma(entry);
1796 pte = pte_offset_map(&_pmd, haddr);
1797 BUG_ON(!pte_none(*pte));
1798 set_pte_at(mm, haddr, pte, entry);
1799 pte_unmap(pte);
1802 smp_wmb(); /* make pte visible before pmd */
1804 * Up to this point the pmd is present and huge and
1805 * userland has the whole access to the hugepage
1806 * during the split (which happens in place). If we
1807 * overwrite the pmd with the not-huge version
1808 * pointing to the pte here (which of course we could
1809 * if all CPUs were bug free), userland could trigger
1810 * a small page size TLB miss on the small sized TLB
1811 * while the hugepage TLB entry is still established
1812 * in the huge TLB. Some CPU doesn't like that. See
1813 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1814 * Erratum 383 on page 93. Intel should be safe but is
1815 * also warns that it's only safe if the permission
1816 * and cache attributes of the two entries loaded in
1817 * the two TLB is identical (which should be the case
1818 * here). But it is generally safer to never allow
1819 * small and huge TLB entries for the same virtual
1820 * address to be loaded simultaneously. So instead of
1821 * doing "pmd_populate(); flush_tlb_range();" we first
1822 * mark the current pmd notpresent (atomically because
1823 * here the pmd_trans_huge and pmd_trans_splitting
1824 * must remain set at all times on the pmd until the
1825 * split is complete for this pmd), then we flush the
1826 * SMP TLB and finally we write the non-huge version
1827 * of the pmd entry with pmd_populate.
1829 pmdp_invalidate(vma, address, pmd);
1830 pmd_populate(mm, pmd, pgtable);
1831 ret = 1;
1832 spin_unlock(ptl);
1835 return ret;
1838 /* must be called with anon_vma->root->rwsem held */
1839 static void __split_huge_page(struct page *page,
1840 struct anon_vma *anon_vma,
1841 struct list_head *list)
1843 int mapcount, mapcount2;
1844 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1845 struct anon_vma_chain *avc;
1847 BUG_ON(!PageHead(page));
1848 BUG_ON(PageTail(page));
1850 mapcount = 0;
1851 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1852 struct vm_area_struct *vma = avc->vma;
1853 unsigned long addr = vma_address(page, vma);
1854 BUG_ON(is_vma_temporary_stack(vma));
1855 mapcount += __split_huge_page_splitting(page, vma, addr);
1858 * It is critical that new vmas are added to the tail of the
1859 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1860 * and establishes a child pmd before
1861 * __split_huge_page_splitting() freezes the parent pmd (so if
1862 * we fail to prevent copy_huge_pmd() from running until the
1863 * whole __split_huge_page() is complete), we will still see
1864 * the newly established pmd of the child later during the
1865 * walk, to be able to set it as pmd_trans_splitting too.
1867 if (mapcount != page_mapcount(page))
1868 printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1869 mapcount, page_mapcount(page));
1870 BUG_ON(mapcount != page_mapcount(page));
1872 __split_huge_page_refcount(page, list);
1874 mapcount2 = 0;
1875 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1876 struct vm_area_struct *vma = avc->vma;
1877 unsigned long addr = vma_address(page, vma);
1878 BUG_ON(is_vma_temporary_stack(vma));
1879 mapcount2 += __split_huge_page_map(page, vma, addr);
1881 if (mapcount != mapcount2)
1882 printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
1883 mapcount, mapcount2, page_mapcount(page));
1884 BUG_ON(mapcount != mapcount2);
1888 * Split a hugepage into normal pages. This doesn't change the position of head
1889 * page. If @list is null, tail pages will be added to LRU list, otherwise, to
1890 * @list. Both head page and tail pages will inherit mapping, flags, and so on
1891 * from the hugepage.
1892 * Return 0 if the hugepage is split successfully otherwise return 1.
1894 int split_huge_page_to_list(struct page *page, struct list_head *list)
1896 struct anon_vma *anon_vma;
1897 int ret = 1;
1899 BUG_ON(is_huge_zero_page(page));
1900 BUG_ON(!PageAnon(page));
1903 * The caller does not necessarily hold an mmap_sem that would prevent
1904 * the anon_vma disappearing so we first we take a reference to it
1905 * and then lock the anon_vma for write. This is similar to
1906 * page_lock_anon_vma_read except the write lock is taken to serialise
1907 * against parallel split or collapse operations.
1909 anon_vma = page_get_anon_vma(page);
1910 if (!anon_vma)
1911 goto out;
1912 anon_vma_lock_write(anon_vma);
1914 ret = 0;
1915 if (!PageCompound(page))
1916 goto out_unlock;
1918 BUG_ON(!PageSwapBacked(page));
1919 __split_huge_page(page, anon_vma, list);
1920 count_vm_event(THP_SPLIT);
1922 BUG_ON(PageCompound(page));
1923 out_unlock:
1924 anon_vma_unlock_write(anon_vma);
1925 put_anon_vma(anon_vma);
1926 out:
1927 return ret;
1930 #define VM_NO_THP (VM_SPECIAL|VM_MIXEDMAP|VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
1932 int hugepage_madvise(struct vm_area_struct *vma,
1933 unsigned long *vm_flags, int advice)
1935 struct mm_struct *mm = vma->vm_mm;
1937 switch (advice) {
1938 case MADV_HUGEPAGE:
1940 * Be somewhat over-protective like KSM for now!
1942 if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
1943 return -EINVAL;
1944 if (mm->def_flags & VM_NOHUGEPAGE)
1945 return -EINVAL;
1946 *vm_flags &= ~VM_NOHUGEPAGE;
1947 *vm_flags |= VM_HUGEPAGE;
1949 * If the vma become good for khugepaged to scan,
1950 * register it here without waiting a page fault that
1951 * may not happen any time soon.
1953 if (unlikely(khugepaged_enter_vma_merge(vma)))
1954 return -ENOMEM;
1955 break;
1956 case MADV_NOHUGEPAGE:
1958 * Be somewhat over-protective like KSM for now!
1960 if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
1961 return -EINVAL;
1962 *vm_flags &= ~VM_HUGEPAGE;
1963 *vm_flags |= VM_NOHUGEPAGE;
1965 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1966 * this vma even if we leave the mm registered in khugepaged if
1967 * it got registered before VM_NOHUGEPAGE was set.
1969 break;
1972 return 0;
1975 static int __init khugepaged_slab_init(void)
1977 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1978 sizeof(struct mm_slot),
1979 __alignof__(struct mm_slot), 0, NULL);
1980 if (!mm_slot_cache)
1981 return -ENOMEM;
1983 return 0;
1986 static inline struct mm_slot *alloc_mm_slot(void)
1988 if (!mm_slot_cache) /* initialization failed */
1989 return NULL;
1990 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1993 static inline void free_mm_slot(struct mm_slot *mm_slot)
1995 kmem_cache_free(mm_slot_cache, mm_slot);
1998 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
2000 struct mm_slot *mm_slot;
2002 hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
2003 if (mm == mm_slot->mm)
2004 return mm_slot;
2006 return NULL;
2009 static void insert_to_mm_slots_hash(struct mm_struct *mm,
2010 struct mm_slot *mm_slot)
2012 mm_slot->mm = mm;
2013 hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
2016 static inline int khugepaged_test_exit(struct mm_struct *mm)
2018 return atomic_read(&mm->mm_users) == 0;
2021 int __khugepaged_enter(struct mm_struct *mm)
2023 struct mm_slot *mm_slot;
2024 int wakeup;
2026 mm_slot = alloc_mm_slot();
2027 if (!mm_slot)
2028 return -ENOMEM;
2030 /* __khugepaged_exit() must not run from under us */
2031 VM_BUG_ON(khugepaged_test_exit(mm));
2032 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
2033 free_mm_slot(mm_slot);
2034 return 0;
2037 spin_lock(&khugepaged_mm_lock);
2038 insert_to_mm_slots_hash(mm, mm_slot);
2040 * Insert just behind the scanning cursor, to let the area settle
2041 * down a little.
2043 wakeup = list_empty(&khugepaged_scan.mm_head);
2044 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
2045 spin_unlock(&khugepaged_mm_lock);
2047 atomic_inc(&mm->mm_count);
2048 if (wakeup)
2049 wake_up_interruptible(&khugepaged_wait);
2051 return 0;
2054 int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
2056 unsigned long hstart, hend;
2057 if (!vma->anon_vma)
2059 * Not yet faulted in so we will register later in the
2060 * page fault if needed.
2062 return 0;
2063 if (vma->vm_ops)
2064 /* khugepaged not yet working on file or special mappings */
2065 return 0;
2066 VM_BUG_ON(vma->vm_flags & VM_NO_THP);
2067 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2068 hend = vma->vm_end & HPAGE_PMD_MASK;
2069 if (hstart < hend)
2070 return khugepaged_enter(vma);
2071 return 0;
2074 void __khugepaged_exit(struct mm_struct *mm)
2076 struct mm_slot *mm_slot;
2077 int free = 0;
2079 spin_lock(&khugepaged_mm_lock);
2080 mm_slot = get_mm_slot(mm);
2081 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
2082 hash_del(&mm_slot->hash);
2083 list_del(&mm_slot->mm_node);
2084 free = 1;
2086 spin_unlock(&khugepaged_mm_lock);
2088 if (free) {
2089 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2090 free_mm_slot(mm_slot);
2091 mmdrop(mm);
2092 } else if (mm_slot) {
2094 * This is required to serialize against
2095 * khugepaged_test_exit() (which is guaranteed to run
2096 * under mmap sem read mode). Stop here (after we
2097 * return all pagetables will be destroyed) until
2098 * khugepaged has finished working on the pagetables
2099 * under the mmap_sem.
2101 down_write(&mm->mmap_sem);
2102 up_write(&mm->mmap_sem);
2106 static void release_pte_page(struct page *page)
2108 /* 0 stands for page_is_file_cache(page) == false */
2109 dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
2110 unlock_page(page);
2111 putback_lru_page(page);
2114 static void release_pte_pages(pte_t *pte, pte_t *_pte)
2116 while (--_pte >= pte) {
2117 pte_t pteval = *_pte;
2118 if (!pte_none(pteval))
2119 release_pte_page(pte_page(pteval));
2123 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
2124 unsigned long address,
2125 pte_t *pte)
2127 struct page *page;
2128 pte_t *_pte;
2129 int referenced = 0, none = 0;
2130 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
2131 _pte++, address += PAGE_SIZE) {
2132 pte_t pteval = *_pte;
2133 if (pte_none(pteval)) {
2134 if (++none <= khugepaged_max_ptes_none)
2135 continue;
2136 else
2137 goto out;
2139 if (!pte_present(pteval) || !pte_write(pteval))
2140 goto out;
2141 page = vm_normal_page(vma, address, pteval);
2142 if (unlikely(!page))
2143 goto out;
2145 VM_BUG_ON(PageCompound(page));
2146 BUG_ON(!PageAnon(page));
2147 VM_BUG_ON(!PageSwapBacked(page));
2149 /* cannot use mapcount: can't collapse if there's a gup pin */
2150 if (page_count(page) != 1)
2151 goto out;
2153 * We can do it before isolate_lru_page because the
2154 * page can't be freed from under us. NOTE: PG_lock
2155 * is needed to serialize against split_huge_page
2156 * when invoked from the VM.
2158 if (!trylock_page(page))
2159 goto out;
2161 * Isolate the page to avoid collapsing an hugepage
2162 * currently in use by the VM.
2164 if (isolate_lru_page(page)) {
2165 unlock_page(page);
2166 goto out;
2168 /* 0 stands for page_is_file_cache(page) == false */
2169 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
2170 VM_BUG_ON(!PageLocked(page));
2171 VM_BUG_ON(PageLRU(page));
2173 /* If there is no mapped pte young don't collapse the page */
2174 if (pte_young(pteval) || PageReferenced(page) ||
2175 mmu_notifier_test_young(vma->vm_mm, address))
2176 referenced = 1;
2178 if (likely(referenced))
2179 return 1;
2180 out:
2181 release_pte_pages(pte, _pte);
2182 return 0;
2185 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
2186 struct vm_area_struct *vma,
2187 unsigned long address,
2188 spinlock_t *ptl)
2190 pte_t *_pte;
2191 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
2192 pte_t pteval = *_pte;
2193 struct page *src_page;
2195 if (pte_none(pteval)) {
2196 clear_user_highpage(page, address);
2197 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
2198 } else {
2199 src_page = pte_page(pteval);
2200 copy_user_highpage(page, src_page, address, vma);
2201 VM_BUG_ON(page_mapcount(src_page) != 1);
2202 release_pte_page(src_page);
2204 * ptl mostly unnecessary, but preempt has to
2205 * be disabled to update the per-cpu stats
2206 * inside page_remove_rmap().
2208 spin_lock(ptl);
2210 * paravirt calls inside pte_clear here are
2211 * superfluous.
2213 pte_clear(vma->vm_mm, address, _pte);
2214 page_remove_rmap(src_page);
2215 spin_unlock(ptl);
2216 free_page_and_swap_cache(src_page);
2219 address += PAGE_SIZE;
2220 page++;
2224 static void khugepaged_alloc_sleep(void)
2226 wait_event_freezable_timeout(khugepaged_wait, false,
2227 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2230 static int khugepaged_node_load[MAX_NUMNODES];
2232 #ifdef CONFIG_NUMA
2233 static int khugepaged_find_target_node(void)
2235 static int last_khugepaged_target_node = NUMA_NO_NODE;
2236 int nid, target_node = 0, max_value = 0;
2238 /* find first node with max normal pages hit */
2239 for (nid = 0; nid < MAX_NUMNODES; nid++)
2240 if (khugepaged_node_load[nid] > max_value) {
2241 max_value = khugepaged_node_load[nid];
2242 target_node = nid;
2245 /* do some balance if several nodes have the same hit record */
2246 if (target_node <= last_khugepaged_target_node)
2247 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
2248 nid++)
2249 if (max_value == khugepaged_node_load[nid]) {
2250 target_node = nid;
2251 break;
2254 last_khugepaged_target_node = target_node;
2255 return target_node;
2258 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2260 if (IS_ERR(*hpage)) {
2261 if (!*wait)
2262 return false;
2264 *wait = false;
2265 *hpage = NULL;
2266 khugepaged_alloc_sleep();
2267 } else if (*hpage) {
2268 put_page(*hpage);
2269 *hpage = NULL;
2272 return true;
2275 static struct page
2276 *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2277 struct vm_area_struct *vma, unsigned long address,
2278 int node)
2280 VM_BUG_ON(*hpage);
2282 * Allocate the page while the vma is still valid and under
2283 * the mmap_sem read mode so there is no memory allocation
2284 * later when we take the mmap_sem in write mode. This is more
2285 * friendly behavior (OTOH it may actually hide bugs) to
2286 * filesystems in userland with daemons allocating memory in
2287 * the userland I/O paths. Allocating memory with the
2288 * mmap_sem in read mode is good idea also to allow greater
2289 * scalability.
2291 *hpage = alloc_pages_exact_node(node, alloc_hugepage_gfpmask(
2292 khugepaged_defrag(), __GFP_OTHER_NODE), HPAGE_PMD_ORDER);
2294 * After allocating the hugepage, release the mmap_sem read lock in
2295 * preparation for taking it in write mode.
2297 up_read(&mm->mmap_sem);
2298 if (unlikely(!*hpage)) {
2299 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2300 *hpage = ERR_PTR(-ENOMEM);
2301 return NULL;
2304 count_vm_event(THP_COLLAPSE_ALLOC);
2305 return *hpage;
2307 #else
2308 static int khugepaged_find_target_node(void)
2310 return 0;
2313 static inline struct page *alloc_hugepage(int defrag)
2315 return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
2316 HPAGE_PMD_ORDER);
2319 static struct page *khugepaged_alloc_hugepage(bool *wait)
2321 struct page *hpage;
2323 do {
2324 hpage = alloc_hugepage(khugepaged_defrag());
2325 if (!hpage) {
2326 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2327 if (!*wait)
2328 return NULL;
2330 *wait = false;
2331 khugepaged_alloc_sleep();
2332 } else
2333 count_vm_event(THP_COLLAPSE_ALLOC);
2334 } while (unlikely(!hpage) && likely(khugepaged_enabled()));
2336 return hpage;
2339 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2341 if (!*hpage)
2342 *hpage = khugepaged_alloc_hugepage(wait);
2344 if (unlikely(!*hpage))
2345 return false;
2347 return true;
2350 static struct page
2351 *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2352 struct vm_area_struct *vma, unsigned long address,
2353 int node)
2355 up_read(&mm->mmap_sem);
2356 VM_BUG_ON(!*hpage);
2357 return *hpage;
2359 #endif
2361 static bool hugepage_vma_check(struct vm_area_struct *vma)
2363 if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2364 (vma->vm_flags & VM_NOHUGEPAGE))
2365 return false;
2367 if (!vma->anon_vma || vma->vm_ops)
2368 return false;
2369 if (is_vma_temporary_stack(vma))
2370 return false;
2371 VM_BUG_ON(vma->vm_flags & VM_NO_THP);
2372 return true;
2375 static void collapse_huge_page(struct mm_struct *mm,
2376 unsigned long address,
2377 struct page **hpage,
2378 struct vm_area_struct *vma,
2379 int node)
2381 pmd_t *pmd, _pmd;
2382 pte_t *pte;
2383 pgtable_t pgtable;
2384 struct page *new_page;
2385 spinlock_t *pmd_ptl, *pte_ptl;
2386 int isolated;
2387 unsigned long hstart, hend;
2388 unsigned long mmun_start; /* For mmu_notifiers */
2389 unsigned long mmun_end; /* For mmu_notifiers */
2391 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2393 /* release the mmap_sem read lock. */
2394 new_page = khugepaged_alloc_page(hpage, mm, vma, address, node);
2395 if (!new_page)
2396 return;
2398 if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)))
2399 return;
2402 * Prevent all access to pagetables with the exception of
2403 * gup_fast later hanlded by the ptep_clear_flush and the VM
2404 * handled by the anon_vma lock + PG_lock.
2406 down_write(&mm->mmap_sem);
2407 if (unlikely(khugepaged_test_exit(mm)))
2408 goto out;
2410 vma = find_vma(mm, address);
2411 if (!vma)
2412 goto out;
2413 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2414 hend = vma->vm_end & HPAGE_PMD_MASK;
2415 if (address < hstart || address + HPAGE_PMD_SIZE > hend)
2416 goto out;
2417 if (!hugepage_vma_check(vma))
2418 goto out;
2419 pmd = mm_find_pmd(mm, address);
2420 if (!pmd)
2421 goto out;
2422 if (pmd_trans_huge(*pmd))
2423 goto out;
2425 anon_vma_lock_write(vma->anon_vma);
2427 pte = pte_offset_map(pmd, address);
2428 pte_ptl = pte_lockptr(mm, pmd);
2430 mmun_start = address;
2431 mmun_end = address + HPAGE_PMD_SIZE;
2432 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2433 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
2435 * After this gup_fast can't run anymore. This also removes
2436 * any huge TLB entry from the CPU so we won't allow
2437 * huge and small TLB entries for the same virtual address
2438 * to avoid the risk of CPU bugs in that area.
2440 _pmd = pmdp_clear_flush(vma, address, pmd);
2441 spin_unlock(pmd_ptl);
2442 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2444 spin_lock(pte_ptl);
2445 isolated = __collapse_huge_page_isolate(vma, address, pte);
2446 spin_unlock(pte_ptl);
2448 if (unlikely(!isolated)) {
2449 pte_unmap(pte);
2450 spin_lock(pmd_ptl);
2451 BUG_ON(!pmd_none(*pmd));
2453 * We can only use set_pmd_at when establishing
2454 * hugepmds and never for establishing regular pmds that
2455 * points to regular pagetables. Use pmd_populate for that
2457 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
2458 spin_unlock(pmd_ptl);
2459 anon_vma_unlock_write(vma->anon_vma);
2460 goto out;
2464 * All pages are isolated and locked so anon_vma rmap
2465 * can't run anymore.
2467 anon_vma_unlock_write(vma->anon_vma);
2469 __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
2470 pte_unmap(pte);
2471 __SetPageUptodate(new_page);
2472 pgtable = pmd_pgtable(_pmd);
2474 _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
2475 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
2478 * spin_lock() below is not the equivalent of smp_wmb(), so
2479 * this is needed to avoid the copy_huge_page writes to become
2480 * visible after the set_pmd_at() write.
2482 smp_wmb();
2484 spin_lock(pmd_ptl);
2485 BUG_ON(!pmd_none(*pmd));
2486 page_add_new_anon_rmap(new_page, vma, address);
2487 pgtable_trans_huge_deposit(mm, pmd, pgtable);
2488 set_pmd_at(mm, address, pmd, _pmd);
2489 update_mmu_cache_pmd(vma, address, pmd);
2490 spin_unlock(pmd_ptl);
2492 *hpage = NULL;
2494 khugepaged_pages_collapsed++;
2495 out_up_write:
2496 up_write(&mm->mmap_sem);
2497 return;
2499 out:
2500 mem_cgroup_uncharge_page(new_page);
2501 goto out_up_write;
2504 static int khugepaged_scan_pmd(struct mm_struct *mm,
2505 struct vm_area_struct *vma,
2506 unsigned long address,
2507 struct page **hpage)
2509 pmd_t *pmd;
2510 pte_t *pte, *_pte;
2511 int ret = 0, referenced = 0, none = 0;
2512 struct page *page;
2513 unsigned long _address;
2514 spinlock_t *ptl;
2515 int node = NUMA_NO_NODE;
2517 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2519 pmd = mm_find_pmd(mm, address);
2520 if (!pmd)
2521 goto out;
2522 if (pmd_trans_huge(*pmd))
2523 goto out;
2525 memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
2526 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2527 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2528 _pte++, _address += PAGE_SIZE) {
2529 pte_t pteval = *_pte;
2530 if (pte_none(pteval)) {
2531 if (++none <= khugepaged_max_ptes_none)
2532 continue;
2533 else
2534 goto out_unmap;
2536 if (!pte_present(pteval) || !pte_write(pteval))
2537 goto out_unmap;
2538 page = vm_normal_page(vma, _address, pteval);
2539 if (unlikely(!page))
2540 goto out_unmap;
2542 * Record which node the original page is from and save this
2543 * information to khugepaged_node_load[].
2544 * Khupaged will allocate hugepage from the node has the max
2545 * hit record.
2547 node = page_to_nid(page);
2548 khugepaged_node_load[node]++;
2549 VM_BUG_ON(PageCompound(page));
2550 if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
2551 goto out_unmap;
2552 /* cannot use mapcount: can't collapse if there's a gup pin */
2553 if (page_count(page) != 1)
2554 goto out_unmap;
2555 if (pte_young(pteval) || PageReferenced(page) ||
2556 mmu_notifier_test_young(vma->vm_mm, address))
2557 referenced = 1;
2559 if (referenced)
2560 ret = 1;
2561 out_unmap:
2562 pte_unmap_unlock(pte, ptl);
2563 if (ret) {
2564 node = khugepaged_find_target_node();
2565 /* collapse_huge_page will return with the mmap_sem released */
2566 collapse_huge_page(mm, address, hpage, vma, node);
2568 out:
2569 return ret;
2572 static void collect_mm_slot(struct mm_slot *mm_slot)
2574 struct mm_struct *mm = mm_slot->mm;
2576 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2578 if (khugepaged_test_exit(mm)) {
2579 /* free mm_slot */
2580 hash_del(&mm_slot->hash);
2581 list_del(&mm_slot->mm_node);
2584 * Not strictly needed because the mm exited already.
2586 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2589 /* khugepaged_mm_lock actually not necessary for the below */
2590 free_mm_slot(mm_slot);
2591 mmdrop(mm);
2595 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2596 struct page **hpage)
2597 __releases(&khugepaged_mm_lock)
2598 __acquires(&khugepaged_mm_lock)
2600 struct mm_slot *mm_slot;
2601 struct mm_struct *mm;
2602 struct vm_area_struct *vma;
2603 int progress = 0;
2605 VM_BUG_ON(!pages);
2606 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2608 if (khugepaged_scan.mm_slot)
2609 mm_slot = khugepaged_scan.mm_slot;
2610 else {
2611 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2612 struct mm_slot, mm_node);
2613 khugepaged_scan.address = 0;
2614 khugepaged_scan.mm_slot = mm_slot;
2616 spin_unlock(&khugepaged_mm_lock);
2618 mm = mm_slot->mm;
2619 down_read(&mm->mmap_sem);
2620 if (unlikely(khugepaged_test_exit(mm)))
2621 vma = NULL;
2622 else
2623 vma = find_vma(mm, khugepaged_scan.address);
2625 progress++;
2626 for (; vma; vma = vma->vm_next) {
2627 unsigned long hstart, hend;
2629 cond_resched();
2630 if (unlikely(khugepaged_test_exit(mm))) {
2631 progress++;
2632 break;
2634 if (!hugepage_vma_check(vma)) {
2635 skip:
2636 progress++;
2637 continue;
2639 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2640 hend = vma->vm_end & HPAGE_PMD_MASK;
2641 if (hstart >= hend)
2642 goto skip;
2643 if (khugepaged_scan.address > hend)
2644 goto skip;
2645 if (khugepaged_scan.address < hstart)
2646 khugepaged_scan.address = hstart;
2647 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2649 while (khugepaged_scan.address < hend) {
2650 int ret;
2651 cond_resched();
2652 if (unlikely(khugepaged_test_exit(mm)))
2653 goto breakouterloop;
2655 VM_BUG_ON(khugepaged_scan.address < hstart ||
2656 khugepaged_scan.address + HPAGE_PMD_SIZE >
2657 hend);
2658 ret = khugepaged_scan_pmd(mm, vma,
2659 khugepaged_scan.address,
2660 hpage);
2661 /* move to next address */
2662 khugepaged_scan.address += HPAGE_PMD_SIZE;
2663 progress += HPAGE_PMD_NR;
2664 if (ret)
2665 /* we released mmap_sem so break loop */
2666 goto breakouterloop_mmap_sem;
2667 if (progress >= pages)
2668 goto breakouterloop;
2671 breakouterloop:
2672 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2673 breakouterloop_mmap_sem:
2675 spin_lock(&khugepaged_mm_lock);
2676 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2678 * Release the current mm_slot if this mm is about to die, or
2679 * if we scanned all vmas of this mm.
2681 if (khugepaged_test_exit(mm) || !vma) {
2683 * Make sure that if mm_users is reaching zero while
2684 * khugepaged runs here, khugepaged_exit will find
2685 * mm_slot not pointing to the exiting mm.
2687 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2688 khugepaged_scan.mm_slot = list_entry(
2689 mm_slot->mm_node.next,
2690 struct mm_slot, mm_node);
2691 khugepaged_scan.address = 0;
2692 } else {
2693 khugepaged_scan.mm_slot = NULL;
2694 khugepaged_full_scans++;
2697 collect_mm_slot(mm_slot);
2700 return progress;
2703 static int khugepaged_has_work(void)
2705 return !list_empty(&khugepaged_scan.mm_head) &&
2706 khugepaged_enabled();
2709 static int khugepaged_wait_event(void)
2711 return !list_empty(&khugepaged_scan.mm_head) ||
2712 kthread_should_stop();
2715 static void khugepaged_do_scan(void)
2717 struct page *hpage = NULL;
2718 unsigned int progress = 0, pass_through_head = 0;
2719 unsigned int pages = khugepaged_pages_to_scan;
2720 bool wait = true;
2722 barrier(); /* write khugepaged_pages_to_scan to local stack */
2724 while (progress < pages) {
2725 if (!khugepaged_prealloc_page(&hpage, &wait))
2726 break;
2728 cond_resched();
2730 if (unlikely(kthread_should_stop() || freezing(current)))
2731 break;
2733 spin_lock(&khugepaged_mm_lock);
2734 if (!khugepaged_scan.mm_slot)
2735 pass_through_head++;
2736 if (khugepaged_has_work() &&
2737 pass_through_head < 2)
2738 progress += khugepaged_scan_mm_slot(pages - progress,
2739 &hpage);
2740 else
2741 progress = pages;
2742 spin_unlock(&khugepaged_mm_lock);
2745 if (!IS_ERR_OR_NULL(hpage))
2746 put_page(hpage);
2749 static void khugepaged_wait_work(void)
2751 try_to_freeze();
2753 if (khugepaged_has_work()) {
2754 if (!khugepaged_scan_sleep_millisecs)
2755 return;
2757 wait_event_freezable_timeout(khugepaged_wait,
2758 kthread_should_stop(),
2759 msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2760 return;
2763 if (khugepaged_enabled())
2764 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2767 static int khugepaged(void *none)
2769 struct mm_slot *mm_slot;
2771 set_freezable();
2772 set_user_nice(current, 19);
2774 while (!kthread_should_stop()) {
2775 khugepaged_do_scan();
2776 khugepaged_wait_work();
2779 spin_lock(&khugepaged_mm_lock);
2780 mm_slot = khugepaged_scan.mm_slot;
2781 khugepaged_scan.mm_slot = NULL;
2782 if (mm_slot)
2783 collect_mm_slot(mm_slot);
2784 spin_unlock(&khugepaged_mm_lock);
2785 return 0;
2788 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2789 unsigned long haddr, pmd_t *pmd)
2791 struct mm_struct *mm = vma->vm_mm;
2792 pgtable_t pgtable;
2793 pmd_t _pmd;
2794 int i;
2796 pmdp_clear_flush(vma, haddr, pmd);
2797 /* leave pmd empty until pte is filled */
2799 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2800 pmd_populate(mm, &_pmd, pgtable);
2802 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2803 pte_t *pte, entry;
2804 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2805 entry = pte_mkspecial(entry);
2806 pte = pte_offset_map(&_pmd, haddr);
2807 VM_BUG_ON(!pte_none(*pte));
2808 set_pte_at(mm, haddr, pte, entry);
2809 pte_unmap(pte);
2811 smp_wmb(); /* make pte visible before pmd */
2812 pmd_populate(mm, pmd, pgtable);
2813 put_huge_zero_page();
2816 void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address,
2817 pmd_t *pmd)
2819 spinlock_t *ptl;
2820 struct page *page;
2821 struct mm_struct *mm = vma->vm_mm;
2822 unsigned long haddr = address & HPAGE_PMD_MASK;
2823 unsigned long mmun_start; /* For mmu_notifiers */
2824 unsigned long mmun_end; /* For mmu_notifiers */
2826 BUG_ON(vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE);
2828 mmun_start = haddr;
2829 mmun_end = haddr + HPAGE_PMD_SIZE;
2830 again:
2831 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2832 ptl = pmd_lock(mm, pmd);
2833 if (unlikely(!pmd_trans_huge(*pmd))) {
2834 spin_unlock(ptl);
2835 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2836 return;
2838 if (is_huge_zero_pmd(*pmd)) {
2839 __split_huge_zero_page_pmd(vma, haddr, pmd);
2840 spin_unlock(ptl);
2841 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2842 return;
2844 page = pmd_page(*pmd);
2845 VM_BUG_ON(!page_count(page));
2846 get_page(page);
2847 spin_unlock(ptl);
2848 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2850 split_huge_page(page);
2852 put_page(page);
2855 * We don't always have down_write of mmap_sem here: a racing
2856 * do_huge_pmd_wp_page() might have copied-on-write to another
2857 * huge page before our split_huge_page() got the anon_vma lock.
2859 if (unlikely(pmd_trans_huge(*pmd)))
2860 goto again;
2863 void split_huge_page_pmd_mm(struct mm_struct *mm, unsigned long address,
2864 pmd_t *pmd)
2866 struct vm_area_struct *vma;
2868 vma = find_vma(mm, address);
2869 BUG_ON(vma == NULL);
2870 split_huge_page_pmd(vma, address, pmd);
2873 static void split_huge_page_address(struct mm_struct *mm,
2874 unsigned long address)
2876 pmd_t *pmd;
2878 VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2880 pmd = mm_find_pmd(mm, address);
2881 if (!pmd)
2882 return;
2884 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2885 * materialize from under us.
2887 split_huge_page_pmd_mm(mm, address, pmd);
2890 void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2891 unsigned long start,
2892 unsigned long end,
2893 long adjust_next)
2896 * If the new start address isn't hpage aligned and it could
2897 * previously contain an hugepage: check if we need to split
2898 * an huge pmd.
2900 if (start & ~HPAGE_PMD_MASK &&
2901 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2902 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2903 split_huge_page_address(vma->vm_mm, start);
2906 * If the new end address isn't hpage aligned and it could
2907 * previously contain an hugepage: check if we need to split
2908 * an huge pmd.
2910 if (end & ~HPAGE_PMD_MASK &&
2911 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2912 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2913 split_huge_page_address(vma->vm_mm, end);
2916 * If we're also updating the vma->vm_next->vm_start, if the new
2917 * vm_next->vm_start isn't page aligned and it could previously
2918 * contain an hugepage: check if we need to split an huge pmd.
2920 if (adjust_next > 0) {
2921 struct vm_area_struct *next = vma->vm_next;
2922 unsigned long nstart = next->vm_start;
2923 nstart += adjust_next << PAGE_SHIFT;
2924 if (nstart & ~HPAGE_PMD_MASK &&
2925 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2926 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2927 split_huge_page_address(next->vm_mm, nstart);