cgroup: don't use subsys->can_attach_task() or ->attach_task()
[linux-2.6.git] / kernel / events / core.c
blob3b8e0edbe693f1bedc97f4f370aaa386c5c9be5d
1 /*
2 * Performance events core code:
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 * For licensing details see kernel-base/COPYING
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/rculist.h>
32 #include <linux/uaccess.h>
33 #include <linux/syscalls.h>
34 #include <linux/anon_inodes.h>
35 #include <linux/kernel_stat.h>
36 #include <linux/perf_event.h>
37 #include <linux/ftrace_event.h>
38 #include <linux/hw_breakpoint.h>
40 #include "internal.h"
42 #include <asm/irq_regs.h>
44 struct remote_function_call {
45 struct task_struct *p;
46 int (*func)(void *info);
47 void *info;
48 int ret;
51 static void remote_function(void *data)
53 struct remote_function_call *tfc = data;
54 struct task_struct *p = tfc->p;
56 if (p) {
57 tfc->ret = -EAGAIN;
58 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
59 return;
62 tfc->ret = tfc->func(tfc->info);
65 /**
66 * task_function_call - call a function on the cpu on which a task runs
67 * @p: the task to evaluate
68 * @func: the function to be called
69 * @info: the function call argument
71 * Calls the function @func when the task is currently running. This might
72 * be on the current CPU, which just calls the function directly
74 * returns: @func return value, or
75 * -ESRCH - when the process isn't running
76 * -EAGAIN - when the process moved away
78 static int
79 task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
81 struct remote_function_call data = {
82 .p = p,
83 .func = func,
84 .info = info,
85 .ret = -ESRCH, /* No such (running) process */
88 if (task_curr(p))
89 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
91 return data.ret;
94 /**
95 * cpu_function_call - call a function on the cpu
96 * @func: the function to be called
97 * @info: the function call argument
99 * Calls the function @func on the remote cpu.
101 * returns: @func return value or -ENXIO when the cpu is offline
103 static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
105 struct remote_function_call data = {
106 .p = NULL,
107 .func = func,
108 .info = info,
109 .ret = -ENXIO, /* No such CPU */
112 smp_call_function_single(cpu, remote_function, &data, 1);
114 return data.ret;
117 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
118 PERF_FLAG_FD_OUTPUT |\
119 PERF_FLAG_PID_CGROUP)
121 enum event_type_t {
122 EVENT_FLEXIBLE = 0x1,
123 EVENT_PINNED = 0x2,
124 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
128 * perf_sched_events : >0 events exist
129 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
131 struct jump_label_key perf_sched_events __read_mostly;
132 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
134 static atomic_t nr_mmap_events __read_mostly;
135 static atomic_t nr_comm_events __read_mostly;
136 static atomic_t nr_task_events __read_mostly;
138 static LIST_HEAD(pmus);
139 static DEFINE_MUTEX(pmus_lock);
140 static struct srcu_struct pmus_srcu;
143 * perf event paranoia level:
144 * -1 - not paranoid at all
145 * 0 - disallow raw tracepoint access for unpriv
146 * 1 - disallow cpu events for unpriv
147 * 2 - disallow kernel profiling for unpriv
149 int sysctl_perf_event_paranoid __read_mostly = 1;
151 /* Minimum for 512 kiB + 1 user control page */
152 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
155 * max perf event sample rate
157 #define DEFAULT_MAX_SAMPLE_RATE 100000
158 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
159 static int max_samples_per_tick __read_mostly =
160 DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
162 int perf_proc_update_handler(struct ctl_table *table, int write,
163 void __user *buffer, size_t *lenp,
164 loff_t *ppos)
166 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
168 if (ret || !write)
169 return ret;
171 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
173 return 0;
176 static atomic64_t perf_event_id;
178 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
179 enum event_type_t event_type);
181 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
182 enum event_type_t event_type,
183 struct task_struct *task);
185 static void update_context_time(struct perf_event_context *ctx);
186 static u64 perf_event_time(struct perf_event *event);
188 void __weak perf_event_print_debug(void) { }
190 extern __weak const char *perf_pmu_name(void)
192 return "pmu";
195 static inline u64 perf_clock(void)
197 return local_clock();
200 static inline struct perf_cpu_context *
201 __get_cpu_context(struct perf_event_context *ctx)
203 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
206 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
207 struct perf_event_context *ctx)
209 raw_spin_lock(&cpuctx->ctx.lock);
210 if (ctx)
211 raw_spin_lock(&ctx->lock);
214 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
215 struct perf_event_context *ctx)
217 if (ctx)
218 raw_spin_unlock(&ctx->lock);
219 raw_spin_unlock(&cpuctx->ctx.lock);
222 #ifdef CONFIG_CGROUP_PERF
225 * Must ensure cgroup is pinned (css_get) before calling
226 * this function. In other words, we cannot call this function
227 * if there is no cgroup event for the current CPU context.
229 static inline struct perf_cgroup *
230 perf_cgroup_from_task(struct task_struct *task)
232 return container_of(task_subsys_state(task, perf_subsys_id),
233 struct perf_cgroup, css);
236 static inline bool
237 perf_cgroup_match(struct perf_event *event)
239 struct perf_event_context *ctx = event->ctx;
240 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
242 return !event->cgrp || event->cgrp == cpuctx->cgrp;
245 static inline void perf_get_cgroup(struct perf_event *event)
247 css_get(&event->cgrp->css);
250 static inline void perf_put_cgroup(struct perf_event *event)
252 css_put(&event->cgrp->css);
255 static inline void perf_detach_cgroup(struct perf_event *event)
257 perf_put_cgroup(event);
258 event->cgrp = NULL;
261 static inline int is_cgroup_event(struct perf_event *event)
263 return event->cgrp != NULL;
266 static inline u64 perf_cgroup_event_time(struct perf_event *event)
268 struct perf_cgroup_info *t;
270 t = per_cpu_ptr(event->cgrp->info, event->cpu);
271 return t->time;
274 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
276 struct perf_cgroup_info *info;
277 u64 now;
279 now = perf_clock();
281 info = this_cpu_ptr(cgrp->info);
283 info->time += now - info->timestamp;
284 info->timestamp = now;
287 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
289 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
290 if (cgrp_out)
291 __update_cgrp_time(cgrp_out);
294 static inline void update_cgrp_time_from_event(struct perf_event *event)
296 struct perf_cgroup *cgrp;
299 * ensure we access cgroup data only when needed and
300 * when we know the cgroup is pinned (css_get)
302 if (!is_cgroup_event(event))
303 return;
305 cgrp = perf_cgroup_from_task(current);
307 * Do not update time when cgroup is not active
309 if (cgrp == event->cgrp)
310 __update_cgrp_time(event->cgrp);
313 static inline void
314 perf_cgroup_set_timestamp(struct task_struct *task,
315 struct perf_event_context *ctx)
317 struct perf_cgroup *cgrp;
318 struct perf_cgroup_info *info;
321 * ctx->lock held by caller
322 * ensure we do not access cgroup data
323 * unless we have the cgroup pinned (css_get)
325 if (!task || !ctx->nr_cgroups)
326 return;
328 cgrp = perf_cgroup_from_task(task);
329 info = this_cpu_ptr(cgrp->info);
330 info->timestamp = ctx->timestamp;
333 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
334 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
337 * reschedule events based on the cgroup constraint of task.
339 * mode SWOUT : schedule out everything
340 * mode SWIN : schedule in based on cgroup for next
342 void perf_cgroup_switch(struct task_struct *task, int mode)
344 struct perf_cpu_context *cpuctx;
345 struct pmu *pmu;
346 unsigned long flags;
349 * disable interrupts to avoid geting nr_cgroup
350 * changes via __perf_event_disable(). Also
351 * avoids preemption.
353 local_irq_save(flags);
356 * we reschedule only in the presence of cgroup
357 * constrained events.
359 rcu_read_lock();
361 list_for_each_entry_rcu(pmu, &pmus, entry) {
362 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
365 * perf_cgroup_events says at least one
366 * context on this CPU has cgroup events.
368 * ctx->nr_cgroups reports the number of cgroup
369 * events for a context.
371 if (cpuctx->ctx.nr_cgroups > 0) {
372 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
373 perf_pmu_disable(cpuctx->ctx.pmu);
375 if (mode & PERF_CGROUP_SWOUT) {
376 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
378 * must not be done before ctxswout due
379 * to event_filter_match() in event_sched_out()
381 cpuctx->cgrp = NULL;
384 if (mode & PERF_CGROUP_SWIN) {
385 WARN_ON_ONCE(cpuctx->cgrp);
386 /* set cgrp before ctxsw in to
387 * allow event_filter_match() to not
388 * have to pass task around
390 cpuctx->cgrp = perf_cgroup_from_task(task);
391 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
393 perf_pmu_enable(cpuctx->ctx.pmu);
394 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
398 rcu_read_unlock();
400 local_irq_restore(flags);
403 static inline void perf_cgroup_sched_out(struct task_struct *task,
404 struct task_struct *next)
406 struct perf_cgroup *cgrp1;
407 struct perf_cgroup *cgrp2 = NULL;
410 * we come here when we know perf_cgroup_events > 0
412 cgrp1 = perf_cgroup_from_task(task);
415 * next is NULL when called from perf_event_enable_on_exec()
416 * that will systematically cause a cgroup_switch()
418 if (next)
419 cgrp2 = perf_cgroup_from_task(next);
422 * only schedule out current cgroup events if we know
423 * that we are switching to a different cgroup. Otherwise,
424 * do no touch the cgroup events.
426 if (cgrp1 != cgrp2)
427 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
430 static inline void perf_cgroup_sched_in(struct task_struct *prev,
431 struct task_struct *task)
433 struct perf_cgroup *cgrp1;
434 struct perf_cgroup *cgrp2 = NULL;
437 * we come here when we know perf_cgroup_events > 0
439 cgrp1 = perf_cgroup_from_task(task);
441 /* prev can never be NULL */
442 cgrp2 = perf_cgroup_from_task(prev);
445 * only need to schedule in cgroup events if we are changing
446 * cgroup during ctxsw. Cgroup events were not scheduled
447 * out of ctxsw out if that was not the case.
449 if (cgrp1 != cgrp2)
450 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
453 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
454 struct perf_event_attr *attr,
455 struct perf_event *group_leader)
457 struct perf_cgroup *cgrp;
458 struct cgroup_subsys_state *css;
459 struct file *file;
460 int ret = 0, fput_needed;
462 file = fget_light(fd, &fput_needed);
463 if (!file)
464 return -EBADF;
466 css = cgroup_css_from_dir(file, perf_subsys_id);
467 if (IS_ERR(css)) {
468 ret = PTR_ERR(css);
469 goto out;
472 cgrp = container_of(css, struct perf_cgroup, css);
473 event->cgrp = cgrp;
475 /* must be done before we fput() the file */
476 perf_get_cgroup(event);
479 * all events in a group must monitor
480 * the same cgroup because a task belongs
481 * to only one perf cgroup at a time
483 if (group_leader && group_leader->cgrp != cgrp) {
484 perf_detach_cgroup(event);
485 ret = -EINVAL;
487 out:
488 fput_light(file, fput_needed);
489 return ret;
492 static inline void
493 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
495 struct perf_cgroup_info *t;
496 t = per_cpu_ptr(event->cgrp->info, event->cpu);
497 event->shadow_ctx_time = now - t->timestamp;
500 static inline void
501 perf_cgroup_defer_enabled(struct perf_event *event)
504 * when the current task's perf cgroup does not match
505 * the event's, we need to remember to call the
506 * perf_mark_enable() function the first time a task with
507 * a matching perf cgroup is scheduled in.
509 if (is_cgroup_event(event) && !perf_cgroup_match(event))
510 event->cgrp_defer_enabled = 1;
513 static inline void
514 perf_cgroup_mark_enabled(struct perf_event *event,
515 struct perf_event_context *ctx)
517 struct perf_event *sub;
518 u64 tstamp = perf_event_time(event);
520 if (!event->cgrp_defer_enabled)
521 return;
523 event->cgrp_defer_enabled = 0;
525 event->tstamp_enabled = tstamp - event->total_time_enabled;
526 list_for_each_entry(sub, &event->sibling_list, group_entry) {
527 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
528 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
529 sub->cgrp_defer_enabled = 0;
533 #else /* !CONFIG_CGROUP_PERF */
535 static inline bool
536 perf_cgroup_match(struct perf_event *event)
538 return true;
541 static inline void perf_detach_cgroup(struct perf_event *event)
544 static inline int is_cgroup_event(struct perf_event *event)
546 return 0;
549 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
551 return 0;
554 static inline void update_cgrp_time_from_event(struct perf_event *event)
558 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
562 static inline void perf_cgroup_sched_out(struct task_struct *task,
563 struct task_struct *next)
567 static inline void perf_cgroup_sched_in(struct task_struct *prev,
568 struct task_struct *task)
572 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
573 struct perf_event_attr *attr,
574 struct perf_event *group_leader)
576 return -EINVAL;
579 static inline void
580 perf_cgroup_set_timestamp(struct task_struct *task,
581 struct perf_event_context *ctx)
585 void
586 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
590 static inline void
591 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
595 static inline u64 perf_cgroup_event_time(struct perf_event *event)
597 return 0;
600 static inline void
601 perf_cgroup_defer_enabled(struct perf_event *event)
605 static inline void
606 perf_cgroup_mark_enabled(struct perf_event *event,
607 struct perf_event_context *ctx)
610 #endif
612 void perf_pmu_disable(struct pmu *pmu)
614 int *count = this_cpu_ptr(pmu->pmu_disable_count);
615 if (!(*count)++)
616 pmu->pmu_disable(pmu);
619 void perf_pmu_enable(struct pmu *pmu)
621 int *count = this_cpu_ptr(pmu->pmu_disable_count);
622 if (!--(*count))
623 pmu->pmu_enable(pmu);
626 static DEFINE_PER_CPU(struct list_head, rotation_list);
629 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
630 * because they're strictly cpu affine and rotate_start is called with IRQs
631 * disabled, while rotate_context is called from IRQ context.
633 static void perf_pmu_rotate_start(struct pmu *pmu)
635 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
636 struct list_head *head = &__get_cpu_var(rotation_list);
638 WARN_ON(!irqs_disabled());
640 if (list_empty(&cpuctx->rotation_list))
641 list_add(&cpuctx->rotation_list, head);
644 static void get_ctx(struct perf_event_context *ctx)
646 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
649 static void put_ctx(struct perf_event_context *ctx)
651 if (atomic_dec_and_test(&ctx->refcount)) {
652 if (ctx->parent_ctx)
653 put_ctx(ctx->parent_ctx);
654 if (ctx->task)
655 put_task_struct(ctx->task);
656 kfree_rcu(ctx, rcu_head);
660 static void unclone_ctx(struct perf_event_context *ctx)
662 if (ctx->parent_ctx) {
663 put_ctx(ctx->parent_ctx);
664 ctx->parent_ctx = NULL;
668 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
671 * only top level events have the pid namespace they were created in
673 if (event->parent)
674 event = event->parent;
676 return task_tgid_nr_ns(p, event->ns);
679 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
682 * only top level events have the pid namespace they were created in
684 if (event->parent)
685 event = event->parent;
687 return task_pid_nr_ns(p, event->ns);
691 * If we inherit events we want to return the parent event id
692 * to userspace.
694 static u64 primary_event_id(struct perf_event *event)
696 u64 id = event->id;
698 if (event->parent)
699 id = event->parent->id;
701 return id;
705 * Get the perf_event_context for a task and lock it.
706 * This has to cope with with the fact that until it is locked,
707 * the context could get moved to another task.
709 static struct perf_event_context *
710 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
712 struct perf_event_context *ctx;
714 rcu_read_lock();
715 retry:
716 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
717 if (ctx) {
719 * If this context is a clone of another, it might
720 * get swapped for another underneath us by
721 * perf_event_task_sched_out, though the
722 * rcu_read_lock() protects us from any context
723 * getting freed. Lock the context and check if it
724 * got swapped before we could get the lock, and retry
725 * if so. If we locked the right context, then it
726 * can't get swapped on us any more.
728 raw_spin_lock_irqsave(&ctx->lock, *flags);
729 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
730 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
731 goto retry;
734 if (!atomic_inc_not_zero(&ctx->refcount)) {
735 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
736 ctx = NULL;
739 rcu_read_unlock();
740 return ctx;
744 * Get the context for a task and increment its pin_count so it
745 * can't get swapped to another task. This also increments its
746 * reference count so that the context can't get freed.
748 static struct perf_event_context *
749 perf_pin_task_context(struct task_struct *task, int ctxn)
751 struct perf_event_context *ctx;
752 unsigned long flags;
754 ctx = perf_lock_task_context(task, ctxn, &flags);
755 if (ctx) {
756 ++ctx->pin_count;
757 raw_spin_unlock_irqrestore(&ctx->lock, flags);
759 return ctx;
762 static void perf_unpin_context(struct perf_event_context *ctx)
764 unsigned long flags;
766 raw_spin_lock_irqsave(&ctx->lock, flags);
767 --ctx->pin_count;
768 raw_spin_unlock_irqrestore(&ctx->lock, flags);
772 * Update the record of the current time in a context.
774 static void update_context_time(struct perf_event_context *ctx)
776 u64 now = perf_clock();
778 ctx->time += now - ctx->timestamp;
779 ctx->timestamp = now;
782 static u64 perf_event_time(struct perf_event *event)
784 struct perf_event_context *ctx = event->ctx;
786 if (is_cgroup_event(event))
787 return perf_cgroup_event_time(event);
789 return ctx ? ctx->time : 0;
793 * Update the total_time_enabled and total_time_running fields for a event.
794 * The caller of this function needs to hold the ctx->lock.
796 static void update_event_times(struct perf_event *event)
798 struct perf_event_context *ctx = event->ctx;
799 u64 run_end;
801 if (event->state < PERF_EVENT_STATE_INACTIVE ||
802 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
803 return;
805 * in cgroup mode, time_enabled represents
806 * the time the event was enabled AND active
807 * tasks were in the monitored cgroup. This is
808 * independent of the activity of the context as
809 * there may be a mix of cgroup and non-cgroup events.
811 * That is why we treat cgroup events differently
812 * here.
814 if (is_cgroup_event(event))
815 run_end = perf_event_time(event);
816 else if (ctx->is_active)
817 run_end = ctx->time;
818 else
819 run_end = event->tstamp_stopped;
821 event->total_time_enabled = run_end - event->tstamp_enabled;
823 if (event->state == PERF_EVENT_STATE_INACTIVE)
824 run_end = event->tstamp_stopped;
825 else
826 run_end = perf_event_time(event);
828 event->total_time_running = run_end - event->tstamp_running;
833 * Update total_time_enabled and total_time_running for all events in a group.
835 static void update_group_times(struct perf_event *leader)
837 struct perf_event *event;
839 update_event_times(leader);
840 list_for_each_entry(event, &leader->sibling_list, group_entry)
841 update_event_times(event);
844 static struct list_head *
845 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
847 if (event->attr.pinned)
848 return &ctx->pinned_groups;
849 else
850 return &ctx->flexible_groups;
854 * Add a event from the lists for its context.
855 * Must be called with ctx->mutex and ctx->lock held.
857 static void
858 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
860 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
861 event->attach_state |= PERF_ATTACH_CONTEXT;
864 * If we're a stand alone event or group leader, we go to the context
865 * list, group events are kept attached to the group so that
866 * perf_group_detach can, at all times, locate all siblings.
868 if (event->group_leader == event) {
869 struct list_head *list;
871 if (is_software_event(event))
872 event->group_flags |= PERF_GROUP_SOFTWARE;
874 list = ctx_group_list(event, ctx);
875 list_add_tail(&event->group_entry, list);
878 if (is_cgroup_event(event))
879 ctx->nr_cgroups++;
881 list_add_rcu(&event->event_entry, &ctx->event_list);
882 if (!ctx->nr_events)
883 perf_pmu_rotate_start(ctx->pmu);
884 ctx->nr_events++;
885 if (event->attr.inherit_stat)
886 ctx->nr_stat++;
890 * Called at perf_event creation and when events are attached/detached from a
891 * group.
893 static void perf_event__read_size(struct perf_event *event)
895 int entry = sizeof(u64); /* value */
896 int size = 0;
897 int nr = 1;
899 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
900 size += sizeof(u64);
902 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
903 size += sizeof(u64);
905 if (event->attr.read_format & PERF_FORMAT_ID)
906 entry += sizeof(u64);
908 if (event->attr.read_format & PERF_FORMAT_GROUP) {
909 nr += event->group_leader->nr_siblings;
910 size += sizeof(u64);
913 size += entry * nr;
914 event->read_size = size;
917 static void perf_event__header_size(struct perf_event *event)
919 struct perf_sample_data *data;
920 u64 sample_type = event->attr.sample_type;
921 u16 size = 0;
923 perf_event__read_size(event);
925 if (sample_type & PERF_SAMPLE_IP)
926 size += sizeof(data->ip);
928 if (sample_type & PERF_SAMPLE_ADDR)
929 size += sizeof(data->addr);
931 if (sample_type & PERF_SAMPLE_PERIOD)
932 size += sizeof(data->period);
934 if (sample_type & PERF_SAMPLE_READ)
935 size += event->read_size;
937 event->header_size = size;
940 static void perf_event__id_header_size(struct perf_event *event)
942 struct perf_sample_data *data;
943 u64 sample_type = event->attr.sample_type;
944 u16 size = 0;
946 if (sample_type & PERF_SAMPLE_TID)
947 size += sizeof(data->tid_entry);
949 if (sample_type & PERF_SAMPLE_TIME)
950 size += sizeof(data->time);
952 if (sample_type & PERF_SAMPLE_ID)
953 size += sizeof(data->id);
955 if (sample_type & PERF_SAMPLE_STREAM_ID)
956 size += sizeof(data->stream_id);
958 if (sample_type & PERF_SAMPLE_CPU)
959 size += sizeof(data->cpu_entry);
961 event->id_header_size = size;
964 static void perf_group_attach(struct perf_event *event)
966 struct perf_event *group_leader = event->group_leader, *pos;
969 * We can have double attach due to group movement in perf_event_open.
971 if (event->attach_state & PERF_ATTACH_GROUP)
972 return;
974 event->attach_state |= PERF_ATTACH_GROUP;
976 if (group_leader == event)
977 return;
979 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
980 !is_software_event(event))
981 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
983 list_add_tail(&event->group_entry, &group_leader->sibling_list);
984 group_leader->nr_siblings++;
986 perf_event__header_size(group_leader);
988 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
989 perf_event__header_size(pos);
993 * Remove a event from the lists for its context.
994 * Must be called with ctx->mutex and ctx->lock held.
996 static void
997 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
999 struct perf_cpu_context *cpuctx;
1001 * We can have double detach due to exit/hot-unplug + close.
1003 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1004 return;
1006 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1008 if (is_cgroup_event(event)) {
1009 ctx->nr_cgroups--;
1010 cpuctx = __get_cpu_context(ctx);
1012 * if there are no more cgroup events
1013 * then cler cgrp to avoid stale pointer
1014 * in update_cgrp_time_from_cpuctx()
1016 if (!ctx->nr_cgroups)
1017 cpuctx->cgrp = NULL;
1020 ctx->nr_events--;
1021 if (event->attr.inherit_stat)
1022 ctx->nr_stat--;
1024 list_del_rcu(&event->event_entry);
1026 if (event->group_leader == event)
1027 list_del_init(&event->group_entry);
1029 update_group_times(event);
1032 * If event was in error state, then keep it
1033 * that way, otherwise bogus counts will be
1034 * returned on read(). The only way to get out
1035 * of error state is by explicit re-enabling
1036 * of the event
1038 if (event->state > PERF_EVENT_STATE_OFF)
1039 event->state = PERF_EVENT_STATE_OFF;
1042 static void perf_group_detach(struct perf_event *event)
1044 struct perf_event *sibling, *tmp;
1045 struct list_head *list = NULL;
1048 * We can have double detach due to exit/hot-unplug + close.
1050 if (!(event->attach_state & PERF_ATTACH_GROUP))
1051 return;
1053 event->attach_state &= ~PERF_ATTACH_GROUP;
1056 * If this is a sibling, remove it from its group.
1058 if (event->group_leader != event) {
1059 list_del_init(&event->group_entry);
1060 event->group_leader->nr_siblings--;
1061 goto out;
1064 if (!list_empty(&event->group_entry))
1065 list = &event->group_entry;
1068 * If this was a group event with sibling events then
1069 * upgrade the siblings to singleton events by adding them
1070 * to whatever list we are on.
1072 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1073 if (list)
1074 list_move_tail(&sibling->group_entry, list);
1075 sibling->group_leader = sibling;
1077 /* Inherit group flags from the previous leader */
1078 sibling->group_flags = event->group_flags;
1081 out:
1082 perf_event__header_size(event->group_leader);
1084 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1085 perf_event__header_size(tmp);
1088 static inline int
1089 event_filter_match(struct perf_event *event)
1091 return (event->cpu == -1 || event->cpu == smp_processor_id())
1092 && perf_cgroup_match(event);
1095 static void
1096 event_sched_out(struct perf_event *event,
1097 struct perf_cpu_context *cpuctx,
1098 struct perf_event_context *ctx)
1100 u64 tstamp = perf_event_time(event);
1101 u64 delta;
1103 * An event which could not be activated because of
1104 * filter mismatch still needs to have its timings
1105 * maintained, otherwise bogus information is return
1106 * via read() for time_enabled, time_running:
1108 if (event->state == PERF_EVENT_STATE_INACTIVE
1109 && !event_filter_match(event)) {
1110 delta = tstamp - event->tstamp_stopped;
1111 event->tstamp_running += delta;
1112 event->tstamp_stopped = tstamp;
1115 if (event->state != PERF_EVENT_STATE_ACTIVE)
1116 return;
1118 event->state = PERF_EVENT_STATE_INACTIVE;
1119 if (event->pending_disable) {
1120 event->pending_disable = 0;
1121 event->state = PERF_EVENT_STATE_OFF;
1123 event->tstamp_stopped = tstamp;
1124 event->pmu->del(event, 0);
1125 event->oncpu = -1;
1127 if (!is_software_event(event))
1128 cpuctx->active_oncpu--;
1129 ctx->nr_active--;
1130 if (event->attr.exclusive || !cpuctx->active_oncpu)
1131 cpuctx->exclusive = 0;
1134 static void
1135 group_sched_out(struct perf_event *group_event,
1136 struct perf_cpu_context *cpuctx,
1137 struct perf_event_context *ctx)
1139 struct perf_event *event;
1140 int state = group_event->state;
1142 event_sched_out(group_event, cpuctx, ctx);
1145 * Schedule out siblings (if any):
1147 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1148 event_sched_out(event, cpuctx, ctx);
1150 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1151 cpuctx->exclusive = 0;
1155 * Cross CPU call to remove a performance event
1157 * We disable the event on the hardware level first. After that we
1158 * remove it from the context list.
1160 static int __perf_remove_from_context(void *info)
1162 struct perf_event *event = info;
1163 struct perf_event_context *ctx = event->ctx;
1164 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1166 raw_spin_lock(&ctx->lock);
1167 event_sched_out(event, cpuctx, ctx);
1168 list_del_event(event, ctx);
1169 if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1170 ctx->is_active = 0;
1171 cpuctx->task_ctx = NULL;
1173 raw_spin_unlock(&ctx->lock);
1175 return 0;
1180 * Remove the event from a task's (or a CPU's) list of events.
1182 * CPU events are removed with a smp call. For task events we only
1183 * call when the task is on a CPU.
1185 * If event->ctx is a cloned context, callers must make sure that
1186 * every task struct that event->ctx->task could possibly point to
1187 * remains valid. This is OK when called from perf_release since
1188 * that only calls us on the top-level context, which can't be a clone.
1189 * When called from perf_event_exit_task, it's OK because the
1190 * context has been detached from its task.
1192 static void perf_remove_from_context(struct perf_event *event)
1194 struct perf_event_context *ctx = event->ctx;
1195 struct task_struct *task = ctx->task;
1197 lockdep_assert_held(&ctx->mutex);
1199 if (!task) {
1201 * Per cpu events are removed via an smp call and
1202 * the removal is always successful.
1204 cpu_function_call(event->cpu, __perf_remove_from_context, event);
1205 return;
1208 retry:
1209 if (!task_function_call(task, __perf_remove_from_context, event))
1210 return;
1212 raw_spin_lock_irq(&ctx->lock);
1214 * If we failed to find a running task, but find the context active now
1215 * that we've acquired the ctx->lock, retry.
1217 if (ctx->is_active) {
1218 raw_spin_unlock_irq(&ctx->lock);
1219 goto retry;
1223 * Since the task isn't running, its safe to remove the event, us
1224 * holding the ctx->lock ensures the task won't get scheduled in.
1226 list_del_event(event, ctx);
1227 raw_spin_unlock_irq(&ctx->lock);
1231 * Cross CPU call to disable a performance event
1233 static int __perf_event_disable(void *info)
1235 struct perf_event *event = info;
1236 struct perf_event_context *ctx = event->ctx;
1237 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1240 * If this is a per-task event, need to check whether this
1241 * event's task is the current task on this cpu.
1243 * Can trigger due to concurrent perf_event_context_sched_out()
1244 * flipping contexts around.
1246 if (ctx->task && cpuctx->task_ctx != ctx)
1247 return -EINVAL;
1249 raw_spin_lock(&ctx->lock);
1252 * If the event is on, turn it off.
1253 * If it is in error state, leave it in error state.
1255 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1256 update_context_time(ctx);
1257 update_cgrp_time_from_event(event);
1258 update_group_times(event);
1259 if (event == event->group_leader)
1260 group_sched_out(event, cpuctx, ctx);
1261 else
1262 event_sched_out(event, cpuctx, ctx);
1263 event->state = PERF_EVENT_STATE_OFF;
1266 raw_spin_unlock(&ctx->lock);
1268 return 0;
1272 * Disable a event.
1274 * If event->ctx is a cloned context, callers must make sure that
1275 * every task struct that event->ctx->task could possibly point to
1276 * remains valid. This condition is satisifed when called through
1277 * perf_event_for_each_child or perf_event_for_each because they
1278 * hold the top-level event's child_mutex, so any descendant that
1279 * goes to exit will block in sync_child_event.
1280 * When called from perf_pending_event it's OK because event->ctx
1281 * is the current context on this CPU and preemption is disabled,
1282 * hence we can't get into perf_event_task_sched_out for this context.
1284 void perf_event_disable(struct perf_event *event)
1286 struct perf_event_context *ctx = event->ctx;
1287 struct task_struct *task = ctx->task;
1289 if (!task) {
1291 * Disable the event on the cpu that it's on
1293 cpu_function_call(event->cpu, __perf_event_disable, event);
1294 return;
1297 retry:
1298 if (!task_function_call(task, __perf_event_disable, event))
1299 return;
1301 raw_spin_lock_irq(&ctx->lock);
1303 * If the event is still active, we need to retry the cross-call.
1305 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1306 raw_spin_unlock_irq(&ctx->lock);
1308 * Reload the task pointer, it might have been changed by
1309 * a concurrent perf_event_context_sched_out().
1311 task = ctx->task;
1312 goto retry;
1316 * Since we have the lock this context can't be scheduled
1317 * in, so we can change the state safely.
1319 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1320 update_group_times(event);
1321 event->state = PERF_EVENT_STATE_OFF;
1323 raw_spin_unlock_irq(&ctx->lock);
1326 static void perf_set_shadow_time(struct perf_event *event,
1327 struct perf_event_context *ctx,
1328 u64 tstamp)
1331 * use the correct time source for the time snapshot
1333 * We could get by without this by leveraging the
1334 * fact that to get to this function, the caller
1335 * has most likely already called update_context_time()
1336 * and update_cgrp_time_xx() and thus both timestamp
1337 * are identical (or very close). Given that tstamp is,
1338 * already adjusted for cgroup, we could say that:
1339 * tstamp - ctx->timestamp
1340 * is equivalent to
1341 * tstamp - cgrp->timestamp.
1343 * Then, in perf_output_read(), the calculation would
1344 * work with no changes because:
1345 * - event is guaranteed scheduled in
1346 * - no scheduled out in between
1347 * - thus the timestamp would be the same
1349 * But this is a bit hairy.
1351 * So instead, we have an explicit cgroup call to remain
1352 * within the time time source all along. We believe it
1353 * is cleaner and simpler to understand.
1355 if (is_cgroup_event(event))
1356 perf_cgroup_set_shadow_time(event, tstamp);
1357 else
1358 event->shadow_ctx_time = tstamp - ctx->timestamp;
1361 #define MAX_INTERRUPTS (~0ULL)
1363 static void perf_log_throttle(struct perf_event *event, int enable);
1365 static int
1366 event_sched_in(struct perf_event *event,
1367 struct perf_cpu_context *cpuctx,
1368 struct perf_event_context *ctx)
1370 u64 tstamp = perf_event_time(event);
1372 if (event->state <= PERF_EVENT_STATE_OFF)
1373 return 0;
1375 event->state = PERF_EVENT_STATE_ACTIVE;
1376 event->oncpu = smp_processor_id();
1379 * Unthrottle events, since we scheduled we might have missed several
1380 * ticks already, also for a heavily scheduling task there is little
1381 * guarantee it'll get a tick in a timely manner.
1383 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1384 perf_log_throttle(event, 1);
1385 event->hw.interrupts = 0;
1389 * The new state must be visible before we turn it on in the hardware:
1391 smp_wmb();
1393 if (event->pmu->add(event, PERF_EF_START)) {
1394 event->state = PERF_EVENT_STATE_INACTIVE;
1395 event->oncpu = -1;
1396 return -EAGAIN;
1399 event->tstamp_running += tstamp - event->tstamp_stopped;
1401 perf_set_shadow_time(event, ctx, tstamp);
1403 if (!is_software_event(event))
1404 cpuctx->active_oncpu++;
1405 ctx->nr_active++;
1407 if (event->attr.exclusive)
1408 cpuctx->exclusive = 1;
1410 return 0;
1413 static int
1414 group_sched_in(struct perf_event *group_event,
1415 struct perf_cpu_context *cpuctx,
1416 struct perf_event_context *ctx)
1418 struct perf_event *event, *partial_group = NULL;
1419 struct pmu *pmu = group_event->pmu;
1420 u64 now = ctx->time;
1421 bool simulate = false;
1423 if (group_event->state == PERF_EVENT_STATE_OFF)
1424 return 0;
1426 pmu->start_txn(pmu);
1428 if (event_sched_in(group_event, cpuctx, ctx)) {
1429 pmu->cancel_txn(pmu);
1430 return -EAGAIN;
1434 * Schedule in siblings as one group (if any):
1436 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1437 if (event_sched_in(event, cpuctx, ctx)) {
1438 partial_group = event;
1439 goto group_error;
1443 if (!pmu->commit_txn(pmu))
1444 return 0;
1446 group_error:
1448 * Groups can be scheduled in as one unit only, so undo any
1449 * partial group before returning:
1450 * The events up to the failed event are scheduled out normally,
1451 * tstamp_stopped will be updated.
1453 * The failed events and the remaining siblings need to have
1454 * their timings updated as if they had gone thru event_sched_in()
1455 * and event_sched_out(). This is required to get consistent timings
1456 * across the group. This also takes care of the case where the group
1457 * could never be scheduled by ensuring tstamp_stopped is set to mark
1458 * the time the event was actually stopped, such that time delta
1459 * calculation in update_event_times() is correct.
1461 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1462 if (event == partial_group)
1463 simulate = true;
1465 if (simulate) {
1466 event->tstamp_running += now - event->tstamp_stopped;
1467 event->tstamp_stopped = now;
1468 } else {
1469 event_sched_out(event, cpuctx, ctx);
1472 event_sched_out(group_event, cpuctx, ctx);
1474 pmu->cancel_txn(pmu);
1476 return -EAGAIN;
1480 * Work out whether we can put this event group on the CPU now.
1482 static int group_can_go_on(struct perf_event *event,
1483 struct perf_cpu_context *cpuctx,
1484 int can_add_hw)
1487 * Groups consisting entirely of software events can always go on.
1489 if (event->group_flags & PERF_GROUP_SOFTWARE)
1490 return 1;
1492 * If an exclusive group is already on, no other hardware
1493 * events can go on.
1495 if (cpuctx->exclusive)
1496 return 0;
1498 * If this group is exclusive and there are already
1499 * events on the CPU, it can't go on.
1501 if (event->attr.exclusive && cpuctx->active_oncpu)
1502 return 0;
1504 * Otherwise, try to add it if all previous groups were able
1505 * to go on.
1507 return can_add_hw;
1510 static void add_event_to_ctx(struct perf_event *event,
1511 struct perf_event_context *ctx)
1513 u64 tstamp = perf_event_time(event);
1515 list_add_event(event, ctx);
1516 perf_group_attach(event);
1517 event->tstamp_enabled = tstamp;
1518 event->tstamp_running = tstamp;
1519 event->tstamp_stopped = tstamp;
1522 static void task_ctx_sched_out(struct perf_event_context *ctx);
1523 static void
1524 ctx_sched_in(struct perf_event_context *ctx,
1525 struct perf_cpu_context *cpuctx,
1526 enum event_type_t event_type,
1527 struct task_struct *task);
1529 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
1530 struct perf_event_context *ctx,
1531 struct task_struct *task)
1533 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
1534 if (ctx)
1535 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
1536 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
1537 if (ctx)
1538 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
1542 * Cross CPU call to install and enable a performance event
1544 * Must be called with ctx->mutex held
1546 static int __perf_install_in_context(void *info)
1548 struct perf_event *event = info;
1549 struct perf_event_context *ctx = event->ctx;
1550 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1551 struct perf_event_context *task_ctx = cpuctx->task_ctx;
1552 struct task_struct *task = current;
1554 perf_ctx_lock(cpuctx, task_ctx);
1555 perf_pmu_disable(cpuctx->ctx.pmu);
1558 * If there was an active task_ctx schedule it out.
1560 if (task_ctx)
1561 task_ctx_sched_out(task_ctx);
1564 * If the context we're installing events in is not the
1565 * active task_ctx, flip them.
1567 if (ctx->task && task_ctx != ctx) {
1568 if (task_ctx)
1569 raw_spin_unlock(&task_ctx->lock);
1570 raw_spin_lock(&ctx->lock);
1571 task_ctx = ctx;
1574 if (task_ctx) {
1575 cpuctx->task_ctx = task_ctx;
1576 task = task_ctx->task;
1579 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
1581 update_context_time(ctx);
1583 * update cgrp time only if current cgrp
1584 * matches event->cgrp. Must be done before
1585 * calling add_event_to_ctx()
1587 update_cgrp_time_from_event(event);
1589 add_event_to_ctx(event, ctx);
1592 * Schedule everything back in
1594 perf_event_sched_in(cpuctx, task_ctx, task);
1596 perf_pmu_enable(cpuctx->ctx.pmu);
1597 perf_ctx_unlock(cpuctx, task_ctx);
1599 return 0;
1603 * Attach a performance event to a context
1605 * First we add the event to the list with the hardware enable bit
1606 * in event->hw_config cleared.
1608 * If the event is attached to a task which is on a CPU we use a smp
1609 * call to enable it in the task context. The task might have been
1610 * scheduled away, but we check this in the smp call again.
1612 static void
1613 perf_install_in_context(struct perf_event_context *ctx,
1614 struct perf_event *event,
1615 int cpu)
1617 struct task_struct *task = ctx->task;
1619 lockdep_assert_held(&ctx->mutex);
1621 event->ctx = ctx;
1623 if (!task) {
1625 * Per cpu events are installed via an smp call and
1626 * the install is always successful.
1628 cpu_function_call(cpu, __perf_install_in_context, event);
1629 return;
1632 retry:
1633 if (!task_function_call(task, __perf_install_in_context, event))
1634 return;
1636 raw_spin_lock_irq(&ctx->lock);
1638 * If we failed to find a running task, but find the context active now
1639 * that we've acquired the ctx->lock, retry.
1641 if (ctx->is_active) {
1642 raw_spin_unlock_irq(&ctx->lock);
1643 goto retry;
1647 * Since the task isn't running, its safe to add the event, us holding
1648 * the ctx->lock ensures the task won't get scheduled in.
1650 add_event_to_ctx(event, ctx);
1651 raw_spin_unlock_irq(&ctx->lock);
1655 * Put a event into inactive state and update time fields.
1656 * Enabling the leader of a group effectively enables all
1657 * the group members that aren't explicitly disabled, so we
1658 * have to update their ->tstamp_enabled also.
1659 * Note: this works for group members as well as group leaders
1660 * since the non-leader members' sibling_lists will be empty.
1662 static void __perf_event_mark_enabled(struct perf_event *event,
1663 struct perf_event_context *ctx)
1665 struct perf_event *sub;
1666 u64 tstamp = perf_event_time(event);
1668 event->state = PERF_EVENT_STATE_INACTIVE;
1669 event->tstamp_enabled = tstamp - event->total_time_enabled;
1670 list_for_each_entry(sub, &event->sibling_list, group_entry) {
1671 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
1672 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
1677 * Cross CPU call to enable a performance event
1679 static int __perf_event_enable(void *info)
1681 struct perf_event *event = info;
1682 struct perf_event_context *ctx = event->ctx;
1683 struct perf_event *leader = event->group_leader;
1684 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1685 int err;
1687 if (WARN_ON_ONCE(!ctx->is_active))
1688 return -EINVAL;
1690 raw_spin_lock(&ctx->lock);
1691 update_context_time(ctx);
1693 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1694 goto unlock;
1697 * set current task's cgroup time reference point
1699 perf_cgroup_set_timestamp(current, ctx);
1701 __perf_event_mark_enabled(event, ctx);
1703 if (!event_filter_match(event)) {
1704 if (is_cgroup_event(event))
1705 perf_cgroup_defer_enabled(event);
1706 goto unlock;
1710 * If the event is in a group and isn't the group leader,
1711 * then don't put it on unless the group is on.
1713 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
1714 goto unlock;
1716 if (!group_can_go_on(event, cpuctx, 1)) {
1717 err = -EEXIST;
1718 } else {
1719 if (event == leader)
1720 err = group_sched_in(event, cpuctx, ctx);
1721 else
1722 err = event_sched_in(event, cpuctx, ctx);
1725 if (err) {
1727 * If this event can't go on and it's part of a
1728 * group, then the whole group has to come off.
1730 if (leader != event)
1731 group_sched_out(leader, cpuctx, ctx);
1732 if (leader->attr.pinned) {
1733 update_group_times(leader);
1734 leader->state = PERF_EVENT_STATE_ERROR;
1738 unlock:
1739 raw_spin_unlock(&ctx->lock);
1741 return 0;
1745 * Enable a event.
1747 * If event->ctx is a cloned context, callers must make sure that
1748 * every task struct that event->ctx->task could possibly point to
1749 * remains valid. This condition is satisfied when called through
1750 * perf_event_for_each_child or perf_event_for_each as described
1751 * for perf_event_disable.
1753 void perf_event_enable(struct perf_event *event)
1755 struct perf_event_context *ctx = event->ctx;
1756 struct task_struct *task = ctx->task;
1758 if (!task) {
1760 * Enable the event on the cpu that it's on
1762 cpu_function_call(event->cpu, __perf_event_enable, event);
1763 return;
1766 raw_spin_lock_irq(&ctx->lock);
1767 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1768 goto out;
1771 * If the event is in error state, clear that first.
1772 * That way, if we see the event in error state below, we
1773 * know that it has gone back into error state, as distinct
1774 * from the task having been scheduled away before the
1775 * cross-call arrived.
1777 if (event->state == PERF_EVENT_STATE_ERROR)
1778 event->state = PERF_EVENT_STATE_OFF;
1780 retry:
1781 if (!ctx->is_active) {
1782 __perf_event_mark_enabled(event, ctx);
1783 goto out;
1786 raw_spin_unlock_irq(&ctx->lock);
1788 if (!task_function_call(task, __perf_event_enable, event))
1789 return;
1791 raw_spin_lock_irq(&ctx->lock);
1794 * If the context is active and the event is still off,
1795 * we need to retry the cross-call.
1797 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
1799 * task could have been flipped by a concurrent
1800 * perf_event_context_sched_out()
1802 task = ctx->task;
1803 goto retry;
1806 out:
1807 raw_spin_unlock_irq(&ctx->lock);
1810 int perf_event_refresh(struct perf_event *event, int refresh)
1813 * not supported on inherited events
1815 if (event->attr.inherit || !is_sampling_event(event))
1816 return -EINVAL;
1818 atomic_add(refresh, &event->event_limit);
1819 perf_event_enable(event);
1821 return 0;
1823 EXPORT_SYMBOL_GPL(perf_event_refresh);
1825 static void ctx_sched_out(struct perf_event_context *ctx,
1826 struct perf_cpu_context *cpuctx,
1827 enum event_type_t event_type)
1829 struct perf_event *event;
1830 int is_active = ctx->is_active;
1832 ctx->is_active &= ~event_type;
1833 if (likely(!ctx->nr_events))
1834 return;
1836 update_context_time(ctx);
1837 update_cgrp_time_from_cpuctx(cpuctx);
1838 if (!ctx->nr_active)
1839 return;
1841 perf_pmu_disable(ctx->pmu);
1842 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
1843 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1844 group_sched_out(event, cpuctx, ctx);
1847 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
1848 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1849 group_sched_out(event, cpuctx, ctx);
1851 perf_pmu_enable(ctx->pmu);
1855 * Test whether two contexts are equivalent, i.e. whether they
1856 * have both been cloned from the same version of the same context
1857 * and they both have the same number of enabled events.
1858 * If the number of enabled events is the same, then the set
1859 * of enabled events should be the same, because these are both
1860 * inherited contexts, therefore we can't access individual events
1861 * in them directly with an fd; we can only enable/disable all
1862 * events via prctl, or enable/disable all events in a family
1863 * via ioctl, which will have the same effect on both contexts.
1865 static int context_equiv(struct perf_event_context *ctx1,
1866 struct perf_event_context *ctx2)
1868 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1869 && ctx1->parent_gen == ctx2->parent_gen
1870 && !ctx1->pin_count && !ctx2->pin_count;
1873 static void __perf_event_sync_stat(struct perf_event *event,
1874 struct perf_event *next_event)
1876 u64 value;
1878 if (!event->attr.inherit_stat)
1879 return;
1882 * Update the event value, we cannot use perf_event_read()
1883 * because we're in the middle of a context switch and have IRQs
1884 * disabled, which upsets smp_call_function_single(), however
1885 * we know the event must be on the current CPU, therefore we
1886 * don't need to use it.
1888 switch (event->state) {
1889 case PERF_EVENT_STATE_ACTIVE:
1890 event->pmu->read(event);
1891 /* fall-through */
1893 case PERF_EVENT_STATE_INACTIVE:
1894 update_event_times(event);
1895 break;
1897 default:
1898 break;
1902 * In order to keep per-task stats reliable we need to flip the event
1903 * values when we flip the contexts.
1905 value = local64_read(&next_event->count);
1906 value = local64_xchg(&event->count, value);
1907 local64_set(&next_event->count, value);
1909 swap(event->total_time_enabled, next_event->total_time_enabled);
1910 swap(event->total_time_running, next_event->total_time_running);
1913 * Since we swizzled the values, update the user visible data too.
1915 perf_event_update_userpage(event);
1916 perf_event_update_userpage(next_event);
1919 #define list_next_entry(pos, member) \
1920 list_entry(pos->member.next, typeof(*pos), member)
1922 static void perf_event_sync_stat(struct perf_event_context *ctx,
1923 struct perf_event_context *next_ctx)
1925 struct perf_event *event, *next_event;
1927 if (!ctx->nr_stat)
1928 return;
1930 update_context_time(ctx);
1932 event = list_first_entry(&ctx->event_list,
1933 struct perf_event, event_entry);
1935 next_event = list_first_entry(&next_ctx->event_list,
1936 struct perf_event, event_entry);
1938 while (&event->event_entry != &ctx->event_list &&
1939 &next_event->event_entry != &next_ctx->event_list) {
1941 __perf_event_sync_stat(event, next_event);
1943 event = list_next_entry(event, event_entry);
1944 next_event = list_next_entry(next_event, event_entry);
1948 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
1949 struct task_struct *next)
1951 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1952 struct perf_event_context *next_ctx;
1953 struct perf_event_context *parent;
1954 struct perf_cpu_context *cpuctx;
1955 int do_switch = 1;
1957 if (likely(!ctx))
1958 return;
1960 cpuctx = __get_cpu_context(ctx);
1961 if (!cpuctx->task_ctx)
1962 return;
1964 rcu_read_lock();
1965 parent = rcu_dereference(ctx->parent_ctx);
1966 next_ctx = next->perf_event_ctxp[ctxn];
1967 if (parent && next_ctx &&
1968 rcu_dereference(next_ctx->parent_ctx) == parent) {
1970 * Looks like the two contexts are clones, so we might be
1971 * able to optimize the context switch. We lock both
1972 * contexts and check that they are clones under the
1973 * lock (including re-checking that neither has been
1974 * uncloned in the meantime). It doesn't matter which
1975 * order we take the locks because no other cpu could
1976 * be trying to lock both of these tasks.
1978 raw_spin_lock(&ctx->lock);
1979 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1980 if (context_equiv(ctx, next_ctx)) {
1982 * XXX do we need a memory barrier of sorts
1983 * wrt to rcu_dereference() of perf_event_ctxp
1985 task->perf_event_ctxp[ctxn] = next_ctx;
1986 next->perf_event_ctxp[ctxn] = ctx;
1987 ctx->task = next;
1988 next_ctx->task = task;
1989 do_switch = 0;
1991 perf_event_sync_stat(ctx, next_ctx);
1993 raw_spin_unlock(&next_ctx->lock);
1994 raw_spin_unlock(&ctx->lock);
1996 rcu_read_unlock();
1998 if (do_switch) {
1999 raw_spin_lock(&ctx->lock);
2000 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2001 cpuctx->task_ctx = NULL;
2002 raw_spin_unlock(&ctx->lock);
2006 #define for_each_task_context_nr(ctxn) \
2007 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2010 * Called from scheduler to remove the events of the current task,
2011 * with interrupts disabled.
2013 * We stop each event and update the event value in event->count.
2015 * This does not protect us against NMI, but disable()
2016 * sets the disabled bit in the control field of event _before_
2017 * accessing the event control register. If a NMI hits, then it will
2018 * not restart the event.
2020 void __perf_event_task_sched_out(struct task_struct *task,
2021 struct task_struct *next)
2023 int ctxn;
2025 for_each_task_context_nr(ctxn)
2026 perf_event_context_sched_out(task, ctxn, next);
2029 * if cgroup events exist on this CPU, then we need
2030 * to check if we have to switch out PMU state.
2031 * cgroup event are system-wide mode only
2033 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2034 perf_cgroup_sched_out(task, next);
2037 static void task_ctx_sched_out(struct perf_event_context *ctx)
2039 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2041 if (!cpuctx->task_ctx)
2042 return;
2044 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2045 return;
2047 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2048 cpuctx->task_ctx = NULL;
2052 * Called with IRQs disabled
2054 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2055 enum event_type_t event_type)
2057 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2060 static void
2061 ctx_pinned_sched_in(struct perf_event_context *ctx,
2062 struct perf_cpu_context *cpuctx)
2064 struct perf_event *event;
2066 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2067 if (event->state <= PERF_EVENT_STATE_OFF)
2068 continue;
2069 if (!event_filter_match(event))
2070 continue;
2072 /* may need to reset tstamp_enabled */
2073 if (is_cgroup_event(event))
2074 perf_cgroup_mark_enabled(event, ctx);
2076 if (group_can_go_on(event, cpuctx, 1))
2077 group_sched_in(event, cpuctx, ctx);
2080 * If this pinned group hasn't been scheduled,
2081 * put it in error state.
2083 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2084 update_group_times(event);
2085 event->state = PERF_EVENT_STATE_ERROR;
2090 static void
2091 ctx_flexible_sched_in(struct perf_event_context *ctx,
2092 struct perf_cpu_context *cpuctx)
2094 struct perf_event *event;
2095 int can_add_hw = 1;
2097 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2098 /* Ignore events in OFF or ERROR state */
2099 if (event->state <= PERF_EVENT_STATE_OFF)
2100 continue;
2102 * Listen to the 'cpu' scheduling filter constraint
2103 * of events:
2105 if (!event_filter_match(event))
2106 continue;
2108 /* may need to reset tstamp_enabled */
2109 if (is_cgroup_event(event))
2110 perf_cgroup_mark_enabled(event, ctx);
2112 if (group_can_go_on(event, cpuctx, can_add_hw)) {
2113 if (group_sched_in(event, cpuctx, ctx))
2114 can_add_hw = 0;
2119 static void
2120 ctx_sched_in(struct perf_event_context *ctx,
2121 struct perf_cpu_context *cpuctx,
2122 enum event_type_t event_type,
2123 struct task_struct *task)
2125 u64 now;
2126 int is_active = ctx->is_active;
2128 ctx->is_active |= event_type;
2129 if (likely(!ctx->nr_events))
2130 return;
2132 now = perf_clock();
2133 ctx->timestamp = now;
2134 perf_cgroup_set_timestamp(task, ctx);
2136 * First go through the list and put on any pinned groups
2137 * in order to give them the best chance of going on.
2139 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2140 ctx_pinned_sched_in(ctx, cpuctx);
2142 /* Then walk through the lower prio flexible groups */
2143 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2144 ctx_flexible_sched_in(ctx, cpuctx);
2147 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2148 enum event_type_t event_type,
2149 struct task_struct *task)
2151 struct perf_event_context *ctx = &cpuctx->ctx;
2153 ctx_sched_in(ctx, cpuctx, event_type, task);
2156 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2157 struct task_struct *task)
2159 struct perf_cpu_context *cpuctx;
2161 cpuctx = __get_cpu_context(ctx);
2162 if (cpuctx->task_ctx == ctx)
2163 return;
2165 perf_ctx_lock(cpuctx, ctx);
2166 perf_pmu_disable(ctx->pmu);
2168 * We want to keep the following priority order:
2169 * cpu pinned (that don't need to move), task pinned,
2170 * cpu flexible, task flexible.
2172 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2174 perf_event_sched_in(cpuctx, ctx, task);
2176 cpuctx->task_ctx = ctx;
2178 perf_pmu_enable(ctx->pmu);
2179 perf_ctx_unlock(cpuctx, ctx);
2182 * Since these rotations are per-cpu, we need to ensure the
2183 * cpu-context we got scheduled on is actually rotating.
2185 perf_pmu_rotate_start(ctx->pmu);
2189 * Called from scheduler to add the events of the current task
2190 * with interrupts disabled.
2192 * We restore the event value and then enable it.
2194 * This does not protect us against NMI, but enable()
2195 * sets the enabled bit in the control field of event _before_
2196 * accessing the event control register. If a NMI hits, then it will
2197 * keep the event running.
2199 void __perf_event_task_sched_in(struct task_struct *prev,
2200 struct task_struct *task)
2202 struct perf_event_context *ctx;
2203 int ctxn;
2205 for_each_task_context_nr(ctxn) {
2206 ctx = task->perf_event_ctxp[ctxn];
2207 if (likely(!ctx))
2208 continue;
2210 perf_event_context_sched_in(ctx, task);
2213 * if cgroup events exist on this CPU, then we need
2214 * to check if we have to switch in PMU state.
2215 * cgroup event are system-wide mode only
2217 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2218 perf_cgroup_sched_in(prev, task);
2221 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2223 u64 frequency = event->attr.sample_freq;
2224 u64 sec = NSEC_PER_SEC;
2225 u64 divisor, dividend;
2227 int count_fls, nsec_fls, frequency_fls, sec_fls;
2229 count_fls = fls64(count);
2230 nsec_fls = fls64(nsec);
2231 frequency_fls = fls64(frequency);
2232 sec_fls = 30;
2235 * We got @count in @nsec, with a target of sample_freq HZ
2236 * the target period becomes:
2238 * @count * 10^9
2239 * period = -------------------
2240 * @nsec * sample_freq
2245 * Reduce accuracy by one bit such that @a and @b converge
2246 * to a similar magnitude.
2248 #define REDUCE_FLS(a, b) \
2249 do { \
2250 if (a##_fls > b##_fls) { \
2251 a >>= 1; \
2252 a##_fls--; \
2253 } else { \
2254 b >>= 1; \
2255 b##_fls--; \
2257 } while (0)
2260 * Reduce accuracy until either term fits in a u64, then proceed with
2261 * the other, so that finally we can do a u64/u64 division.
2263 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2264 REDUCE_FLS(nsec, frequency);
2265 REDUCE_FLS(sec, count);
2268 if (count_fls + sec_fls > 64) {
2269 divisor = nsec * frequency;
2271 while (count_fls + sec_fls > 64) {
2272 REDUCE_FLS(count, sec);
2273 divisor >>= 1;
2276 dividend = count * sec;
2277 } else {
2278 dividend = count * sec;
2280 while (nsec_fls + frequency_fls > 64) {
2281 REDUCE_FLS(nsec, frequency);
2282 dividend >>= 1;
2285 divisor = nsec * frequency;
2288 if (!divisor)
2289 return dividend;
2291 return div64_u64(dividend, divisor);
2294 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
2296 struct hw_perf_event *hwc = &event->hw;
2297 s64 period, sample_period;
2298 s64 delta;
2300 period = perf_calculate_period(event, nsec, count);
2302 delta = (s64)(period - hwc->sample_period);
2303 delta = (delta + 7) / 8; /* low pass filter */
2305 sample_period = hwc->sample_period + delta;
2307 if (!sample_period)
2308 sample_period = 1;
2310 hwc->sample_period = sample_period;
2312 if (local64_read(&hwc->period_left) > 8*sample_period) {
2313 event->pmu->stop(event, PERF_EF_UPDATE);
2314 local64_set(&hwc->period_left, 0);
2315 event->pmu->start(event, PERF_EF_RELOAD);
2319 static void perf_ctx_adjust_freq(struct perf_event_context *ctx, u64 period)
2321 struct perf_event *event;
2322 struct hw_perf_event *hwc;
2323 u64 interrupts, now;
2324 s64 delta;
2326 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2327 if (event->state != PERF_EVENT_STATE_ACTIVE)
2328 continue;
2330 if (!event_filter_match(event))
2331 continue;
2333 hwc = &event->hw;
2335 interrupts = hwc->interrupts;
2336 hwc->interrupts = 0;
2339 * unthrottle events on the tick
2341 if (interrupts == MAX_INTERRUPTS) {
2342 perf_log_throttle(event, 1);
2343 event->pmu->start(event, 0);
2346 if (!event->attr.freq || !event->attr.sample_freq)
2347 continue;
2349 event->pmu->read(event);
2350 now = local64_read(&event->count);
2351 delta = now - hwc->freq_count_stamp;
2352 hwc->freq_count_stamp = now;
2354 if (delta > 0)
2355 perf_adjust_period(event, period, delta);
2360 * Round-robin a context's events:
2362 static void rotate_ctx(struct perf_event_context *ctx)
2365 * Rotate the first entry last of non-pinned groups. Rotation might be
2366 * disabled by the inheritance code.
2368 if (!ctx->rotate_disable)
2369 list_rotate_left(&ctx->flexible_groups);
2373 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2374 * because they're strictly cpu affine and rotate_start is called with IRQs
2375 * disabled, while rotate_context is called from IRQ context.
2377 static void perf_rotate_context(struct perf_cpu_context *cpuctx)
2379 u64 interval = (u64)cpuctx->jiffies_interval * TICK_NSEC;
2380 struct perf_event_context *ctx = NULL;
2381 int rotate = 0, remove = 1;
2383 if (cpuctx->ctx.nr_events) {
2384 remove = 0;
2385 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2386 rotate = 1;
2389 ctx = cpuctx->task_ctx;
2390 if (ctx && ctx->nr_events) {
2391 remove = 0;
2392 if (ctx->nr_events != ctx->nr_active)
2393 rotate = 1;
2396 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2397 perf_pmu_disable(cpuctx->ctx.pmu);
2398 perf_ctx_adjust_freq(&cpuctx->ctx, interval);
2399 if (ctx)
2400 perf_ctx_adjust_freq(ctx, interval);
2402 if (!rotate)
2403 goto done;
2405 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2406 if (ctx)
2407 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
2409 rotate_ctx(&cpuctx->ctx);
2410 if (ctx)
2411 rotate_ctx(ctx);
2413 perf_event_sched_in(cpuctx, ctx, current);
2415 done:
2416 if (remove)
2417 list_del_init(&cpuctx->rotation_list);
2419 perf_pmu_enable(cpuctx->ctx.pmu);
2420 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2423 void perf_event_task_tick(void)
2425 struct list_head *head = &__get_cpu_var(rotation_list);
2426 struct perf_cpu_context *cpuctx, *tmp;
2428 WARN_ON(!irqs_disabled());
2430 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2431 if (cpuctx->jiffies_interval == 1 ||
2432 !(jiffies % cpuctx->jiffies_interval))
2433 perf_rotate_context(cpuctx);
2437 static int event_enable_on_exec(struct perf_event *event,
2438 struct perf_event_context *ctx)
2440 if (!event->attr.enable_on_exec)
2441 return 0;
2443 event->attr.enable_on_exec = 0;
2444 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2445 return 0;
2447 __perf_event_mark_enabled(event, ctx);
2449 return 1;
2453 * Enable all of a task's events that have been marked enable-on-exec.
2454 * This expects task == current.
2456 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2458 struct perf_event *event;
2459 unsigned long flags;
2460 int enabled = 0;
2461 int ret;
2463 local_irq_save(flags);
2464 if (!ctx || !ctx->nr_events)
2465 goto out;
2468 * We must ctxsw out cgroup events to avoid conflict
2469 * when invoking perf_task_event_sched_in() later on
2470 * in this function. Otherwise we end up trying to
2471 * ctxswin cgroup events which are already scheduled
2472 * in.
2474 perf_cgroup_sched_out(current, NULL);
2476 raw_spin_lock(&ctx->lock);
2477 task_ctx_sched_out(ctx);
2479 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2480 ret = event_enable_on_exec(event, ctx);
2481 if (ret)
2482 enabled = 1;
2485 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2486 ret = event_enable_on_exec(event, ctx);
2487 if (ret)
2488 enabled = 1;
2492 * Unclone this context if we enabled any event.
2494 if (enabled)
2495 unclone_ctx(ctx);
2497 raw_spin_unlock(&ctx->lock);
2500 * Also calls ctxswin for cgroup events, if any:
2502 perf_event_context_sched_in(ctx, ctx->task);
2503 out:
2504 local_irq_restore(flags);
2508 * Cross CPU call to read the hardware event
2510 static void __perf_event_read(void *info)
2512 struct perf_event *event = info;
2513 struct perf_event_context *ctx = event->ctx;
2514 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2517 * If this is a task context, we need to check whether it is
2518 * the current task context of this cpu. If not it has been
2519 * scheduled out before the smp call arrived. In that case
2520 * event->count would have been updated to a recent sample
2521 * when the event was scheduled out.
2523 if (ctx->task && cpuctx->task_ctx != ctx)
2524 return;
2526 raw_spin_lock(&ctx->lock);
2527 if (ctx->is_active) {
2528 update_context_time(ctx);
2529 update_cgrp_time_from_event(event);
2531 update_event_times(event);
2532 if (event->state == PERF_EVENT_STATE_ACTIVE)
2533 event->pmu->read(event);
2534 raw_spin_unlock(&ctx->lock);
2537 static inline u64 perf_event_count(struct perf_event *event)
2539 return local64_read(&event->count) + atomic64_read(&event->child_count);
2542 static u64 perf_event_read(struct perf_event *event)
2545 * If event is enabled and currently active on a CPU, update the
2546 * value in the event structure:
2548 if (event->state == PERF_EVENT_STATE_ACTIVE) {
2549 smp_call_function_single(event->oncpu,
2550 __perf_event_read, event, 1);
2551 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2552 struct perf_event_context *ctx = event->ctx;
2553 unsigned long flags;
2555 raw_spin_lock_irqsave(&ctx->lock, flags);
2557 * may read while context is not active
2558 * (e.g., thread is blocked), in that case
2559 * we cannot update context time
2561 if (ctx->is_active) {
2562 update_context_time(ctx);
2563 update_cgrp_time_from_event(event);
2565 update_event_times(event);
2566 raw_spin_unlock_irqrestore(&ctx->lock, flags);
2569 return perf_event_count(event);
2573 * Callchain support
2576 struct callchain_cpus_entries {
2577 struct rcu_head rcu_head;
2578 struct perf_callchain_entry *cpu_entries[0];
2581 static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]);
2582 static atomic_t nr_callchain_events;
2583 static DEFINE_MUTEX(callchain_mutex);
2584 struct callchain_cpus_entries *callchain_cpus_entries;
2587 __weak void perf_callchain_kernel(struct perf_callchain_entry *entry,
2588 struct pt_regs *regs)
2592 __weak void perf_callchain_user(struct perf_callchain_entry *entry,
2593 struct pt_regs *regs)
2597 static void release_callchain_buffers_rcu(struct rcu_head *head)
2599 struct callchain_cpus_entries *entries;
2600 int cpu;
2602 entries = container_of(head, struct callchain_cpus_entries, rcu_head);
2604 for_each_possible_cpu(cpu)
2605 kfree(entries->cpu_entries[cpu]);
2607 kfree(entries);
2610 static void release_callchain_buffers(void)
2612 struct callchain_cpus_entries *entries;
2614 entries = callchain_cpus_entries;
2615 rcu_assign_pointer(callchain_cpus_entries, NULL);
2616 call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
2619 static int alloc_callchain_buffers(void)
2621 int cpu;
2622 int size;
2623 struct callchain_cpus_entries *entries;
2626 * We can't use the percpu allocation API for data that can be
2627 * accessed from NMI. Use a temporary manual per cpu allocation
2628 * until that gets sorted out.
2630 size = offsetof(struct callchain_cpus_entries, cpu_entries[nr_cpu_ids]);
2632 entries = kzalloc(size, GFP_KERNEL);
2633 if (!entries)
2634 return -ENOMEM;
2636 size = sizeof(struct perf_callchain_entry) * PERF_NR_CONTEXTS;
2638 for_each_possible_cpu(cpu) {
2639 entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
2640 cpu_to_node(cpu));
2641 if (!entries->cpu_entries[cpu])
2642 goto fail;
2645 rcu_assign_pointer(callchain_cpus_entries, entries);
2647 return 0;
2649 fail:
2650 for_each_possible_cpu(cpu)
2651 kfree(entries->cpu_entries[cpu]);
2652 kfree(entries);
2654 return -ENOMEM;
2657 static int get_callchain_buffers(void)
2659 int err = 0;
2660 int count;
2662 mutex_lock(&callchain_mutex);
2664 count = atomic_inc_return(&nr_callchain_events);
2665 if (WARN_ON_ONCE(count < 1)) {
2666 err = -EINVAL;
2667 goto exit;
2670 if (count > 1) {
2671 /* If the allocation failed, give up */
2672 if (!callchain_cpus_entries)
2673 err = -ENOMEM;
2674 goto exit;
2677 err = alloc_callchain_buffers();
2678 if (err)
2679 release_callchain_buffers();
2680 exit:
2681 mutex_unlock(&callchain_mutex);
2683 return err;
2686 static void put_callchain_buffers(void)
2688 if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
2689 release_callchain_buffers();
2690 mutex_unlock(&callchain_mutex);
2694 static int get_recursion_context(int *recursion)
2696 int rctx;
2698 if (in_nmi())
2699 rctx = 3;
2700 else if (in_irq())
2701 rctx = 2;
2702 else if (in_softirq())
2703 rctx = 1;
2704 else
2705 rctx = 0;
2707 if (recursion[rctx])
2708 return -1;
2710 recursion[rctx]++;
2711 barrier();
2713 return rctx;
2716 static inline void put_recursion_context(int *recursion, int rctx)
2718 barrier();
2719 recursion[rctx]--;
2722 static struct perf_callchain_entry *get_callchain_entry(int *rctx)
2724 int cpu;
2725 struct callchain_cpus_entries *entries;
2727 *rctx = get_recursion_context(__get_cpu_var(callchain_recursion));
2728 if (*rctx == -1)
2729 return NULL;
2731 entries = rcu_dereference(callchain_cpus_entries);
2732 if (!entries)
2733 return NULL;
2735 cpu = smp_processor_id();
2737 return &entries->cpu_entries[cpu][*rctx];
2740 static void
2741 put_callchain_entry(int rctx)
2743 put_recursion_context(__get_cpu_var(callchain_recursion), rctx);
2746 static struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2748 int rctx;
2749 struct perf_callchain_entry *entry;
2752 entry = get_callchain_entry(&rctx);
2753 if (rctx == -1)
2754 return NULL;
2756 if (!entry)
2757 goto exit_put;
2759 entry->nr = 0;
2761 if (!user_mode(regs)) {
2762 perf_callchain_store(entry, PERF_CONTEXT_KERNEL);
2763 perf_callchain_kernel(entry, regs);
2764 if (current->mm)
2765 regs = task_pt_regs(current);
2766 else
2767 regs = NULL;
2770 if (regs) {
2771 perf_callchain_store(entry, PERF_CONTEXT_USER);
2772 perf_callchain_user(entry, regs);
2775 exit_put:
2776 put_callchain_entry(rctx);
2778 return entry;
2782 * Initialize the perf_event context in a task_struct:
2784 static void __perf_event_init_context(struct perf_event_context *ctx)
2786 raw_spin_lock_init(&ctx->lock);
2787 mutex_init(&ctx->mutex);
2788 INIT_LIST_HEAD(&ctx->pinned_groups);
2789 INIT_LIST_HEAD(&ctx->flexible_groups);
2790 INIT_LIST_HEAD(&ctx->event_list);
2791 atomic_set(&ctx->refcount, 1);
2794 static struct perf_event_context *
2795 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2797 struct perf_event_context *ctx;
2799 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2800 if (!ctx)
2801 return NULL;
2803 __perf_event_init_context(ctx);
2804 if (task) {
2805 ctx->task = task;
2806 get_task_struct(task);
2808 ctx->pmu = pmu;
2810 return ctx;
2813 static struct task_struct *
2814 find_lively_task_by_vpid(pid_t vpid)
2816 struct task_struct *task;
2817 int err;
2819 rcu_read_lock();
2820 if (!vpid)
2821 task = current;
2822 else
2823 task = find_task_by_vpid(vpid);
2824 if (task)
2825 get_task_struct(task);
2826 rcu_read_unlock();
2828 if (!task)
2829 return ERR_PTR(-ESRCH);
2831 /* Reuse ptrace permission checks for now. */
2832 err = -EACCES;
2833 if (!ptrace_may_access(task, PTRACE_MODE_READ))
2834 goto errout;
2836 return task;
2837 errout:
2838 put_task_struct(task);
2839 return ERR_PTR(err);
2844 * Returns a matching context with refcount and pincount.
2846 static struct perf_event_context *
2847 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
2849 struct perf_event_context *ctx;
2850 struct perf_cpu_context *cpuctx;
2851 unsigned long flags;
2852 int ctxn, err;
2854 if (!task) {
2855 /* Must be root to operate on a CPU event: */
2856 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2857 return ERR_PTR(-EACCES);
2860 * We could be clever and allow to attach a event to an
2861 * offline CPU and activate it when the CPU comes up, but
2862 * that's for later.
2864 if (!cpu_online(cpu))
2865 return ERR_PTR(-ENODEV);
2867 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
2868 ctx = &cpuctx->ctx;
2869 get_ctx(ctx);
2870 ++ctx->pin_count;
2872 return ctx;
2875 err = -EINVAL;
2876 ctxn = pmu->task_ctx_nr;
2877 if (ctxn < 0)
2878 goto errout;
2880 retry:
2881 ctx = perf_lock_task_context(task, ctxn, &flags);
2882 if (ctx) {
2883 unclone_ctx(ctx);
2884 ++ctx->pin_count;
2885 raw_spin_unlock_irqrestore(&ctx->lock, flags);
2886 } else {
2887 ctx = alloc_perf_context(pmu, task);
2888 err = -ENOMEM;
2889 if (!ctx)
2890 goto errout;
2892 err = 0;
2893 mutex_lock(&task->perf_event_mutex);
2895 * If it has already passed perf_event_exit_task().
2896 * we must see PF_EXITING, it takes this mutex too.
2898 if (task->flags & PF_EXITING)
2899 err = -ESRCH;
2900 else if (task->perf_event_ctxp[ctxn])
2901 err = -EAGAIN;
2902 else {
2903 get_ctx(ctx);
2904 ++ctx->pin_count;
2905 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
2907 mutex_unlock(&task->perf_event_mutex);
2909 if (unlikely(err)) {
2910 put_ctx(ctx);
2912 if (err == -EAGAIN)
2913 goto retry;
2914 goto errout;
2918 return ctx;
2920 errout:
2921 return ERR_PTR(err);
2924 static void perf_event_free_filter(struct perf_event *event);
2926 static void free_event_rcu(struct rcu_head *head)
2928 struct perf_event *event;
2930 event = container_of(head, struct perf_event, rcu_head);
2931 if (event->ns)
2932 put_pid_ns(event->ns);
2933 perf_event_free_filter(event);
2934 kfree(event);
2937 static void ring_buffer_put(struct ring_buffer *rb);
2939 static void free_event(struct perf_event *event)
2941 irq_work_sync(&event->pending);
2943 if (!event->parent) {
2944 if (event->attach_state & PERF_ATTACH_TASK)
2945 jump_label_dec(&perf_sched_events);
2946 if (event->attr.mmap || event->attr.mmap_data)
2947 atomic_dec(&nr_mmap_events);
2948 if (event->attr.comm)
2949 atomic_dec(&nr_comm_events);
2950 if (event->attr.task)
2951 atomic_dec(&nr_task_events);
2952 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
2953 put_callchain_buffers();
2954 if (is_cgroup_event(event)) {
2955 atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
2956 jump_label_dec(&perf_sched_events);
2960 if (event->rb) {
2961 ring_buffer_put(event->rb);
2962 event->rb = NULL;
2965 if (is_cgroup_event(event))
2966 perf_detach_cgroup(event);
2968 if (event->destroy)
2969 event->destroy(event);
2971 if (event->ctx)
2972 put_ctx(event->ctx);
2974 call_rcu(&event->rcu_head, free_event_rcu);
2977 int perf_event_release_kernel(struct perf_event *event)
2979 struct perf_event_context *ctx = event->ctx;
2981 WARN_ON_ONCE(ctx->parent_ctx);
2983 * There are two ways this annotation is useful:
2985 * 1) there is a lock recursion from perf_event_exit_task
2986 * see the comment there.
2988 * 2) there is a lock-inversion with mmap_sem through
2989 * perf_event_read_group(), which takes faults while
2990 * holding ctx->mutex, however this is called after
2991 * the last filedesc died, so there is no possibility
2992 * to trigger the AB-BA case.
2994 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2995 raw_spin_lock_irq(&ctx->lock);
2996 perf_group_detach(event);
2997 raw_spin_unlock_irq(&ctx->lock);
2998 perf_remove_from_context(event);
2999 mutex_unlock(&ctx->mutex);
3001 free_event(event);
3003 return 0;
3005 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3008 * Called when the last reference to the file is gone.
3010 static int perf_release(struct inode *inode, struct file *file)
3012 struct perf_event *event = file->private_data;
3013 struct task_struct *owner;
3015 file->private_data = NULL;
3017 rcu_read_lock();
3018 owner = ACCESS_ONCE(event->owner);
3020 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3021 * !owner it means the list deletion is complete and we can indeed
3022 * free this event, otherwise we need to serialize on
3023 * owner->perf_event_mutex.
3025 smp_read_barrier_depends();
3026 if (owner) {
3028 * Since delayed_put_task_struct() also drops the last
3029 * task reference we can safely take a new reference
3030 * while holding the rcu_read_lock().
3032 get_task_struct(owner);
3034 rcu_read_unlock();
3036 if (owner) {
3037 mutex_lock(&owner->perf_event_mutex);
3039 * We have to re-check the event->owner field, if it is cleared
3040 * we raced with perf_event_exit_task(), acquiring the mutex
3041 * ensured they're done, and we can proceed with freeing the
3042 * event.
3044 if (event->owner)
3045 list_del_init(&event->owner_entry);
3046 mutex_unlock(&owner->perf_event_mutex);
3047 put_task_struct(owner);
3050 return perf_event_release_kernel(event);
3053 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3055 struct perf_event *child;
3056 u64 total = 0;
3058 *enabled = 0;
3059 *running = 0;
3061 mutex_lock(&event->child_mutex);
3062 total += perf_event_read(event);
3063 *enabled += event->total_time_enabled +
3064 atomic64_read(&event->child_total_time_enabled);
3065 *running += event->total_time_running +
3066 atomic64_read(&event->child_total_time_running);
3068 list_for_each_entry(child, &event->child_list, child_list) {
3069 total += perf_event_read(child);
3070 *enabled += child->total_time_enabled;
3071 *running += child->total_time_running;
3073 mutex_unlock(&event->child_mutex);
3075 return total;
3077 EXPORT_SYMBOL_GPL(perf_event_read_value);
3079 static int perf_event_read_group(struct perf_event *event,
3080 u64 read_format, char __user *buf)
3082 struct perf_event *leader = event->group_leader, *sub;
3083 int n = 0, size = 0, ret = -EFAULT;
3084 struct perf_event_context *ctx = leader->ctx;
3085 u64 values[5];
3086 u64 count, enabled, running;
3088 mutex_lock(&ctx->mutex);
3089 count = perf_event_read_value(leader, &enabled, &running);
3091 values[n++] = 1 + leader->nr_siblings;
3092 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3093 values[n++] = enabled;
3094 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3095 values[n++] = running;
3096 values[n++] = count;
3097 if (read_format & PERF_FORMAT_ID)
3098 values[n++] = primary_event_id(leader);
3100 size = n * sizeof(u64);
3102 if (copy_to_user(buf, values, size))
3103 goto unlock;
3105 ret = size;
3107 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3108 n = 0;
3110 values[n++] = perf_event_read_value(sub, &enabled, &running);
3111 if (read_format & PERF_FORMAT_ID)
3112 values[n++] = primary_event_id(sub);
3114 size = n * sizeof(u64);
3116 if (copy_to_user(buf + ret, values, size)) {
3117 ret = -EFAULT;
3118 goto unlock;
3121 ret += size;
3123 unlock:
3124 mutex_unlock(&ctx->mutex);
3126 return ret;
3129 static int perf_event_read_one(struct perf_event *event,
3130 u64 read_format, char __user *buf)
3132 u64 enabled, running;
3133 u64 values[4];
3134 int n = 0;
3136 values[n++] = perf_event_read_value(event, &enabled, &running);
3137 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3138 values[n++] = enabled;
3139 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3140 values[n++] = running;
3141 if (read_format & PERF_FORMAT_ID)
3142 values[n++] = primary_event_id(event);
3144 if (copy_to_user(buf, values, n * sizeof(u64)))
3145 return -EFAULT;
3147 return n * sizeof(u64);
3151 * Read the performance event - simple non blocking version for now
3153 static ssize_t
3154 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
3156 u64 read_format = event->attr.read_format;
3157 int ret;
3160 * Return end-of-file for a read on a event that is in
3161 * error state (i.e. because it was pinned but it couldn't be
3162 * scheduled on to the CPU at some point).
3164 if (event->state == PERF_EVENT_STATE_ERROR)
3165 return 0;
3167 if (count < event->read_size)
3168 return -ENOSPC;
3170 WARN_ON_ONCE(event->ctx->parent_ctx);
3171 if (read_format & PERF_FORMAT_GROUP)
3172 ret = perf_event_read_group(event, read_format, buf);
3173 else
3174 ret = perf_event_read_one(event, read_format, buf);
3176 return ret;
3179 static ssize_t
3180 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3182 struct perf_event *event = file->private_data;
3184 return perf_read_hw(event, buf, count);
3187 static unsigned int perf_poll(struct file *file, poll_table *wait)
3189 struct perf_event *event = file->private_data;
3190 struct ring_buffer *rb;
3191 unsigned int events = POLL_HUP;
3193 rcu_read_lock();
3194 rb = rcu_dereference(event->rb);
3195 if (rb)
3196 events = atomic_xchg(&rb->poll, 0);
3197 rcu_read_unlock();
3199 poll_wait(file, &event->waitq, wait);
3201 return events;
3204 static void perf_event_reset(struct perf_event *event)
3206 (void)perf_event_read(event);
3207 local64_set(&event->count, 0);
3208 perf_event_update_userpage(event);
3212 * Holding the top-level event's child_mutex means that any
3213 * descendant process that has inherited this event will block
3214 * in sync_child_event if it goes to exit, thus satisfying the
3215 * task existence requirements of perf_event_enable/disable.
3217 static void perf_event_for_each_child(struct perf_event *event,
3218 void (*func)(struct perf_event *))
3220 struct perf_event *child;
3222 WARN_ON_ONCE(event->ctx->parent_ctx);
3223 mutex_lock(&event->child_mutex);
3224 func(event);
3225 list_for_each_entry(child, &event->child_list, child_list)
3226 func(child);
3227 mutex_unlock(&event->child_mutex);
3230 static void perf_event_for_each(struct perf_event *event,
3231 void (*func)(struct perf_event *))
3233 struct perf_event_context *ctx = event->ctx;
3234 struct perf_event *sibling;
3236 WARN_ON_ONCE(ctx->parent_ctx);
3237 mutex_lock(&ctx->mutex);
3238 event = event->group_leader;
3240 perf_event_for_each_child(event, func);
3241 func(event);
3242 list_for_each_entry(sibling, &event->sibling_list, group_entry)
3243 perf_event_for_each_child(event, func);
3244 mutex_unlock(&ctx->mutex);
3247 static int perf_event_period(struct perf_event *event, u64 __user *arg)
3249 struct perf_event_context *ctx = event->ctx;
3250 int ret = 0;
3251 u64 value;
3253 if (!is_sampling_event(event))
3254 return -EINVAL;
3256 if (copy_from_user(&value, arg, sizeof(value)))
3257 return -EFAULT;
3259 if (!value)
3260 return -EINVAL;
3262 raw_spin_lock_irq(&ctx->lock);
3263 if (event->attr.freq) {
3264 if (value > sysctl_perf_event_sample_rate) {
3265 ret = -EINVAL;
3266 goto unlock;
3269 event->attr.sample_freq = value;
3270 } else {
3271 event->attr.sample_period = value;
3272 event->hw.sample_period = value;
3274 unlock:
3275 raw_spin_unlock_irq(&ctx->lock);
3277 return ret;
3280 static const struct file_operations perf_fops;
3282 static struct perf_event *perf_fget_light(int fd, int *fput_needed)
3284 struct file *file;
3286 file = fget_light(fd, fput_needed);
3287 if (!file)
3288 return ERR_PTR(-EBADF);
3290 if (file->f_op != &perf_fops) {
3291 fput_light(file, *fput_needed);
3292 *fput_needed = 0;
3293 return ERR_PTR(-EBADF);
3296 return file->private_data;
3299 static int perf_event_set_output(struct perf_event *event,
3300 struct perf_event *output_event);
3301 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3303 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3305 struct perf_event *event = file->private_data;
3306 void (*func)(struct perf_event *);
3307 u32 flags = arg;
3309 switch (cmd) {
3310 case PERF_EVENT_IOC_ENABLE:
3311 func = perf_event_enable;
3312 break;
3313 case PERF_EVENT_IOC_DISABLE:
3314 func = perf_event_disable;
3315 break;
3316 case PERF_EVENT_IOC_RESET:
3317 func = perf_event_reset;
3318 break;
3320 case PERF_EVENT_IOC_REFRESH:
3321 return perf_event_refresh(event, arg);
3323 case PERF_EVENT_IOC_PERIOD:
3324 return perf_event_period(event, (u64 __user *)arg);
3326 case PERF_EVENT_IOC_SET_OUTPUT:
3328 struct perf_event *output_event = NULL;
3329 int fput_needed = 0;
3330 int ret;
3332 if (arg != -1) {
3333 output_event = perf_fget_light(arg, &fput_needed);
3334 if (IS_ERR(output_event))
3335 return PTR_ERR(output_event);
3338 ret = perf_event_set_output(event, output_event);
3339 if (output_event)
3340 fput_light(output_event->filp, fput_needed);
3342 return ret;
3345 case PERF_EVENT_IOC_SET_FILTER:
3346 return perf_event_set_filter(event, (void __user *)arg);
3348 default:
3349 return -ENOTTY;
3352 if (flags & PERF_IOC_FLAG_GROUP)
3353 perf_event_for_each(event, func);
3354 else
3355 perf_event_for_each_child(event, func);
3357 return 0;
3360 int perf_event_task_enable(void)
3362 struct perf_event *event;
3364 mutex_lock(&current->perf_event_mutex);
3365 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3366 perf_event_for_each_child(event, perf_event_enable);
3367 mutex_unlock(&current->perf_event_mutex);
3369 return 0;
3372 int perf_event_task_disable(void)
3374 struct perf_event *event;
3376 mutex_lock(&current->perf_event_mutex);
3377 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3378 perf_event_for_each_child(event, perf_event_disable);
3379 mutex_unlock(&current->perf_event_mutex);
3381 return 0;
3384 #ifndef PERF_EVENT_INDEX_OFFSET
3385 # define PERF_EVENT_INDEX_OFFSET 0
3386 #endif
3388 static int perf_event_index(struct perf_event *event)
3390 if (event->hw.state & PERF_HES_STOPPED)
3391 return 0;
3393 if (event->state != PERF_EVENT_STATE_ACTIVE)
3394 return 0;
3396 return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
3399 static void calc_timer_values(struct perf_event *event,
3400 u64 *enabled,
3401 u64 *running)
3403 u64 now, ctx_time;
3405 now = perf_clock();
3406 ctx_time = event->shadow_ctx_time + now;
3407 *enabled = ctx_time - event->tstamp_enabled;
3408 *running = ctx_time - event->tstamp_running;
3412 * Callers need to ensure there can be no nesting of this function, otherwise
3413 * the seqlock logic goes bad. We can not serialize this because the arch
3414 * code calls this from NMI context.
3416 void perf_event_update_userpage(struct perf_event *event)
3418 struct perf_event_mmap_page *userpg;
3419 struct ring_buffer *rb;
3420 u64 enabled, running;
3422 rcu_read_lock();
3424 * compute total_time_enabled, total_time_running
3425 * based on snapshot values taken when the event
3426 * was last scheduled in.
3428 * we cannot simply called update_context_time()
3429 * because of locking issue as we can be called in
3430 * NMI context
3432 calc_timer_values(event, &enabled, &running);
3433 rb = rcu_dereference(event->rb);
3434 if (!rb)
3435 goto unlock;
3437 userpg = rb->user_page;
3440 * Disable preemption so as to not let the corresponding user-space
3441 * spin too long if we get preempted.
3443 preempt_disable();
3444 ++userpg->lock;
3445 barrier();
3446 userpg->index = perf_event_index(event);
3447 userpg->offset = perf_event_count(event);
3448 if (event->state == PERF_EVENT_STATE_ACTIVE)
3449 userpg->offset -= local64_read(&event->hw.prev_count);
3451 userpg->time_enabled = enabled +
3452 atomic64_read(&event->child_total_time_enabled);
3454 userpg->time_running = running +
3455 atomic64_read(&event->child_total_time_running);
3457 barrier();
3458 ++userpg->lock;
3459 preempt_enable();
3460 unlock:
3461 rcu_read_unlock();
3464 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3466 struct perf_event *event = vma->vm_file->private_data;
3467 struct ring_buffer *rb;
3468 int ret = VM_FAULT_SIGBUS;
3470 if (vmf->flags & FAULT_FLAG_MKWRITE) {
3471 if (vmf->pgoff == 0)
3472 ret = 0;
3473 return ret;
3476 rcu_read_lock();
3477 rb = rcu_dereference(event->rb);
3478 if (!rb)
3479 goto unlock;
3481 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3482 goto unlock;
3484 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3485 if (!vmf->page)
3486 goto unlock;
3488 get_page(vmf->page);
3489 vmf->page->mapping = vma->vm_file->f_mapping;
3490 vmf->page->index = vmf->pgoff;
3492 ret = 0;
3493 unlock:
3494 rcu_read_unlock();
3496 return ret;
3499 static void rb_free_rcu(struct rcu_head *rcu_head)
3501 struct ring_buffer *rb;
3503 rb = container_of(rcu_head, struct ring_buffer, rcu_head);
3504 rb_free(rb);
3507 static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3509 struct ring_buffer *rb;
3511 rcu_read_lock();
3512 rb = rcu_dereference(event->rb);
3513 if (rb) {
3514 if (!atomic_inc_not_zero(&rb->refcount))
3515 rb = NULL;
3517 rcu_read_unlock();
3519 return rb;
3522 static void ring_buffer_put(struct ring_buffer *rb)
3524 if (!atomic_dec_and_test(&rb->refcount))
3525 return;
3527 call_rcu(&rb->rcu_head, rb_free_rcu);
3530 static void perf_mmap_open(struct vm_area_struct *vma)
3532 struct perf_event *event = vma->vm_file->private_data;
3534 atomic_inc(&event->mmap_count);
3537 static void perf_mmap_close(struct vm_area_struct *vma)
3539 struct perf_event *event = vma->vm_file->private_data;
3541 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
3542 unsigned long size = perf_data_size(event->rb);
3543 struct user_struct *user = event->mmap_user;
3544 struct ring_buffer *rb = event->rb;
3546 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
3547 vma->vm_mm->pinned_vm -= event->mmap_locked;
3548 rcu_assign_pointer(event->rb, NULL);
3549 mutex_unlock(&event->mmap_mutex);
3551 ring_buffer_put(rb);
3552 free_uid(user);
3556 static const struct vm_operations_struct perf_mmap_vmops = {
3557 .open = perf_mmap_open,
3558 .close = perf_mmap_close,
3559 .fault = perf_mmap_fault,
3560 .page_mkwrite = perf_mmap_fault,
3563 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
3565 struct perf_event *event = file->private_data;
3566 unsigned long user_locked, user_lock_limit;
3567 struct user_struct *user = current_user();
3568 unsigned long locked, lock_limit;
3569 struct ring_buffer *rb;
3570 unsigned long vma_size;
3571 unsigned long nr_pages;
3572 long user_extra, extra;
3573 int ret = 0, flags = 0;
3576 * Don't allow mmap() of inherited per-task counters. This would
3577 * create a performance issue due to all children writing to the
3578 * same rb.
3580 if (event->cpu == -1 && event->attr.inherit)
3581 return -EINVAL;
3583 if (!(vma->vm_flags & VM_SHARED))
3584 return -EINVAL;
3586 vma_size = vma->vm_end - vma->vm_start;
3587 nr_pages = (vma_size / PAGE_SIZE) - 1;
3590 * If we have rb pages ensure they're a power-of-two number, so we
3591 * can do bitmasks instead of modulo.
3593 if (nr_pages != 0 && !is_power_of_2(nr_pages))
3594 return -EINVAL;
3596 if (vma_size != PAGE_SIZE * (1 + nr_pages))
3597 return -EINVAL;
3599 if (vma->vm_pgoff != 0)
3600 return -EINVAL;
3602 WARN_ON_ONCE(event->ctx->parent_ctx);
3603 mutex_lock(&event->mmap_mutex);
3604 if (event->rb) {
3605 if (event->rb->nr_pages == nr_pages)
3606 atomic_inc(&event->rb->refcount);
3607 else
3608 ret = -EINVAL;
3609 goto unlock;
3612 user_extra = nr_pages + 1;
3613 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
3616 * Increase the limit linearly with more CPUs:
3618 user_lock_limit *= num_online_cpus();
3620 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3622 extra = 0;
3623 if (user_locked > user_lock_limit)
3624 extra = user_locked - user_lock_limit;
3626 lock_limit = rlimit(RLIMIT_MEMLOCK);
3627 lock_limit >>= PAGE_SHIFT;
3628 locked = vma->vm_mm->pinned_vm + extra;
3630 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
3631 !capable(CAP_IPC_LOCK)) {
3632 ret = -EPERM;
3633 goto unlock;
3636 WARN_ON(event->rb);
3638 if (vma->vm_flags & VM_WRITE)
3639 flags |= RING_BUFFER_WRITABLE;
3641 rb = rb_alloc(nr_pages,
3642 event->attr.watermark ? event->attr.wakeup_watermark : 0,
3643 event->cpu, flags);
3645 if (!rb) {
3646 ret = -ENOMEM;
3647 goto unlock;
3649 rcu_assign_pointer(event->rb, rb);
3651 atomic_long_add(user_extra, &user->locked_vm);
3652 event->mmap_locked = extra;
3653 event->mmap_user = get_current_user();
3654 vma->vm_mm->pinned_vm += event->mmap_locked;
3656 unlock:
3657 if (!ret)
3658 atomic_inc(&event->mmap_count);
3659 mutex_unlock(&event->mmap_mutex);
3661 vma->vm_flags |= VM_RESERVED;
3662 vma->vm_ops = &perf_mmap_vmops;
3664 return ret;
3667 static int perf_fasync(int fd, struct file *filp, int on)
3669 struct inode *inode = filp->f_path.dentry->d_inode;
3670 struct perf_event *event = filp->private_data;
3671 int retval;
3673 mutex_lock(&inode->i_mutex);
3674 retval = fasync_helper(fd, filp, on, &event->fasync);
3675 mutex_unlock(&inode->i_mutex);
3677 if (retval < 0)
3678 return retval;
3680 return 0;
3683 static const struct file_operations perf_fops = {
3684 .llseek = no_llseek,
3685 .release = perf_release,
3686 .read = perf_read,
3687 .poll = perf_poll,
3688 .unlocked_ioctl = perf_ioctl,
3689 .compat_ioctl = perf_ioctl,
3690 .mmap = perf_mmap,
3691 .fasync = perf_fasync,
3695 * Perf event wakeup
3697 * If there's data, ensure we set the poll() state and publish everything
3698 * to user-space before waking everybody up.
3701 void perf_event_wakeup(struct perf_event *event)
3703 wake_up_all(&event->waitq);
3705 if (event->pending_kill) {
3706 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
3707 event->pending_kill = 0;
3711 static void perf_pending_event(struct irq_work *entry)
3713 struct perf_event *event = container_of(entry,
3714 struct perf_event, pending);
3716 if (event->pending_disable) {
3717 event->pending_disable = 0;
3718 __perf_event_disable(event);
3721 if (event->pending_wakeup) {
3722 event->pending_wakeup = 0;
3723 perf_event_wakeup(event);
3728 * We assume there is only KVM supporting the callbacks.
3729 * Later on, we might change it to a list if there is
3730 * another virtualization implementation supporting the callbacks.
3732 struct perf_guest_info_callbacks *perf_guest_cbs;
3734 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3736 perf_guest_cbs = cbs;
3737 return 0;
3739 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
3741 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3743 perf_guest_cbs = NULL;
3744 return 0;
3746 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
3748 static void __perf_event_header__init_id(struct perf_event_header *header,
3749 struct perf_sample_data *data,
3750 struct perf_event *event)
3752 u64 sample_type = event->attr.sample_type;
3754 data->type = sample_type;
3755 header->size += event->id_header_size;
3757 if (sample_type & PERF_SAMPLE_TID) {
3758 /* namespace issues */
3759 data->tid_entry.pid = perf_event_pid(event, current);
3760 data->tid_entry.tid = perf_event_tid(event, current);
3763 if (sample_type & PERF_SAMPLE_TIME)
3764 data->time = perf_clock();
3766 if (sample_type & PERF_SAMPLE_ID)
3767 data->id = primary_event_id(event);
3769 if (sample_type & PERF_SAMPLE_STREAM_ID)
3770 data->stream_id = event->id;
3772 if (sample_type & PERF_SAMPLE_CPU) {
3773 data->cpu_entry.cpu = raw_smp_processor_id();
3774 data->cpu_entry.reserved = 0;
3778 void perf_event_header__init_id(struct perf_event_header *header,
3779 struct perf_sample_data *data,
3780 struct perf_event *event)
3782 if (event->attr.sample_id_all)
3783 __perf_event_header__init_id(header, data, event);
3786 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
3787 struct perf_sample_data *data)
3789 u64 sample_type = data->type;
3791 if (sample_type & PERF_SAMPLE_TID)
3792 perf_output_put(handle, data->tid_entry);
3794 if (sample_type & PERF_SAMPLE_TIME)
3795 perf_output_put(handle, data->time);
3797 if (sample_type & PERF_SAMPLE_ID)
3798 perf_output_put(handle, data->id);
3800 if (sample_type & PERF_SAMPLE_STREAM_ID)
3801 perf_output_put(handle, data->stream_id);
3803 if (sample_type & PERF_SAMPLE_CPU)
3804 perf_output_put(handle, data->cpu_entry);
3807 void perf_event__output_id_sample(struct perf_event *event,
3808 struct perf_output_handle *handle,
3809 struct perf_sample_data *sample)
3811 if (event->attr.sample_id_all)
3812 __perf_event__output_id_sample(handle, sample);
3815 static void perf_output_read_one(struct perf_output_handle *handle,
3816 struct perf_event *event,
3817 u64 enabled, u64 running)
3819 u64 read_format = event->attr.read_format;
3820 u64 values[4];
3821 int n = 0;
3823 values[n++] = perf_event_count(event);
3824 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3825 values[n++] = enabled +
3826 atomic64_read(&event->child_total_time_enabled);
3828 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3829 values[n++] = running +
3830 atomic64_read(&event->child_total_time_running);
3832 if (read_format & PERF_FORMAT_ID)
3833 values[n++] = primary_event_id(event);
3835 __output_copy(handle, values, n * sizeof(u64));
3839 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3841 static void perf_output_read_group(struct perf_output_handle *handle,
3842 struct perf_event *event,
3843 u64 enabled, u64 running)
3845 struct perf_event *leader = event->group_leader, *sub;
3846 u64 read_format = event->attr.read_format;
3847 u64 values[5];
3848 int n = 0;
3850 values[n++] = 1 + leader->nr_siblings;
3852 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3853 values[n++] = enabled;
3855 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3856 values[n++] = running;
3858 if (leader != event)
3859 leader->pmu->read(leader);
3861 values[n++] = perf_event_count(leader);
3862 if (read_format & PERF_FORMAT_ID)
3863 values[n++] = primary_event_id(leader);
3865 __output_copy(handle, values, n * sizeof(u64));
3867 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3868 n = 0;
3870 if (sub != event)
3871 sub->pmu->read(sub);
3873 values[n++] = perf_event_count(sub);
3874 if (read_format & PERF_FORMAT_ID)
3875 values[n++] = primary_event_id(sub);
3877 __output_copy(handle, values, n * sizeof(u64));
3881 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
3882 PERF_FORMAT_TOTAL_TIME_RUNNING)
3884 static void perf_output_read(struct perf_output_handle *handle,
3885 struct perf_event *event)
3887 u64 enabled = 0, running = 0;
3888 u64 read_format = event->attr.read_format;
3891 * compute total_time_enabled, total_time_running
3892 * based on snapshot values taken when the event
3893 * was last scheduled in.
3895 * we cannot simply called update_context_time()
3896 * because of locking issue as we are called in
3897 * NMI context
3899 if (read_format & PERF_FORMAT_TOTAL_TIMES)
3900 calc_timer_values(event, &enabled, &running);
3902 if (event->attr.read_format & PERF_FORMAT_GROUP)
3903 perf_output_read_group(handle, event, enabled, running);
3904 else
3905 perf_output_read_one(handle, event, enabled, running);
3908 void perf_output_sample(struct perf_output_handle *handle,
3909 struct perf_event_header *header,
3910 struct perf_sample_data *data,
3911 struct perf_event *event)
3913 u64 sample_type = data->type;
3915 perf_output_put(handle, *header);
3917 if (sample_type & PERF_SAMPLE_IP)
3918 perf_output_put(handle, data->ip);
3920 if (sample_type & PERF_SAMPLE_TID)
3921 perf_output_put(handle, data->tid_entry);
3923 if (sample_type & PERF_SAMPLE_TIME)
3924 perf_output_put(handle, data->time);
3926 if (sample_type & PERF_SAMPLE_ADDR)
3927 perf_output_put(handle, data->addr);
3929 if (sample_type & PERF_SAMPLE_ID)
3930 perf_output_put(handle, data->id);
3932 if (sample_type & PERF_SAMPLE_STREAM_ID)
3933 perf_output_put(handle, data->stream_id);
3935 if (sample_type & PERF_SAMPLE_CPU)
3936 perf_output_put(handle, data->cpu_entry);
3938 if (sample_type & PERF_SAMPLE_PERIOD)
3939 perf_output_put(handle, data->period);
3941 if (sample_type & PERF_SAMPLE_READ)
3942 perf_output_read(handle, event);
3944 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3945 if (data->callchain) {
3946 int size = 1;
3948 if (data->callchain)
3949 size += data->callchain->nr;
3951 size *= sizeof(u64);
3953 __output_copy(handle, data->callchain, size);
3954 } else {
3955 u64 nr = 0;
3956 perf_output_put(handle, nr);
3960 if (sample_type & PERF_SAMPLE_RAW) {
3961 if (data->raw) {
3962 perf_output_put(handle, data->raw->size);
3963 __output_copy(handle, data->raw->data,
3964 data->raw->size);
3965 } else {
3966 struct {
3967 u32 size;
3968 u32 data;
3969 } raw = {
3970 .size = sizeof(u32),
3971 .data = 0,
3973 perf_output_put(handle, raw);
3977 if (!event->attr.watermark) {
3978 int wakeup_events = event->attr.wakeup_events;
3980 if (wakeup_events) {
3981 struct ring_buffer *rb = handle->rb;
3982 int events = local_inc_return(&rb->events);
3984 if (events >= wakeup_events) {
3985 local_sub(wakeup_events, &rb->events);
3986 local_inc(&rb->wakeup);
3992 void perf_prepare_sample(struct perf_event_header *header,
3993 struct perf_sample_data *data,
3994 struct perf_event *event,
3995 struct pt_regs *regs)
3997 u64 sample_type = event->attr.sample_type;
3999 header->type = PERF_RECORD_SAMPLE;
4000 header->size = sizeof(*header) + event->header_size;
4002 header->misc = 0;
4003 header->misc |= perf_misc_flags(regs);
4005 __perf_event_header__init_id(header, data, event);
4007 if (sample_type & PERF_SAMPLE_IP)
4008 data->ip = perf_instruction_pointer(regs);
4010 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4011 int size = 1;
4013 data->callchain = perf_callchain(regs);
4015 if (data->callchain)
4016 size += data->callchain->nr;
4018 header->size += size * sizeof(u64);
4021 if (sample_type & PERF_SAMPLE_RAW) {
4022 int size = sizeof(u32);
4024 if (data->raw)
4025 size += data->raw->size;
4026 else
4027 size += sizeof(u32);
4029 WARN_ON_ONCE(size & (sizeof(u64)-1));
4030 header->size += size;
4034 static void perf_event_output(struct perf_event *event,
4035 struct perf_sample_data *data,
4036 struct pt_regs *regs)
4038 struct perf_output_handle handle;
4039 struct perf_event_header header;
4041 /* protect the callchain buffers */
4042 rcu_read_lock();
4044 perf_prepare_sample(&header, data, event, regs);
4046 if (perf_output_begin(&handle, event, header.size))
4047 goto exit;
4049 perf_output_sample(&handle, &header, data, event);
4051 perf_output_end(&handle);
4053 exit:
4054 rcu_read_unlock();
4058 * read event_id
4061 struct perf_read_event {
4062 struct perf_event_header header;
4064 u32 pid;
4065 u32 tid;
4068 static void
4069 perf_event_read_event(struct perf_event *event,
4070 struct task_struct *task)
4072 struct perf_output_handle handle;
4073 struct perf_sample_data sample;
4074 struct perf_read_event read_event = {
4075 .header = {
4076 .type = PERF_RECORD_READ,
4077 .misc = 0,
4078 .size = sizeof(read_event) + event->read_size,
4080 .pid = perf_event_pid(event, task),
4081 .tid = perf_event_tid(event, task),
4083 int ret;
4085 perf_event_header__init_id(&read_event.header, &sample, event);
4086 ret = perf_output_begin(&handle, event, read_event.header.size);
4087 if (ret)
4088 return;
4090 perf_output_put(&handle, read_event);
4091 perf_output_read(&handle, event);
4092 perf_event__output_id_sample(event, &handle, &sample);
4094 perf_output_end(&handle);
4098 * task tracking -- fork/exit
4100 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
4103 struct perf_task_event {
4104 struct task_struct *task;
4105 struct perf_event_context *task_ctx;
4107 struct {
4108 struct perf_event_header header;
4110 u32 pid;
4111 u32 ppid;
4112 u32 tid;
4113 u32 ptid;
4114 u64 time;
4115 } event_id;
4118 static void perf_event_task_output(struct perf_event *event,
4119 struct perf_task_event *task_event)
4121 struct perf_output_handle handle;
4122 struct perf_sample_data sample;
4123 struct task_struct *task = task_event->task;
4124 int ret, size = task_event->event_id.header.size;
4126 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
4128 ret = perf_output_begin(&handle, event,
4129 task_event->event_id.header.size);
4130 if (ret)
4131 goto out;
4133 task_event->event_id.pid = perf_event_pid(event, task);
4134 task_event->event_id.ppid = perf_event_pid(event, current);
4136 task_event->event_id.tid = perf_event_tid(event, task);
4137 task_event->event_id.ptid = perf_event_tid(event, current);
4139 perf_output_put(&handle, task_event->event_id);
4141 perf_event__output_id_sample(event, &handle, &sample);
4143 perf_output_end(&handle);
4144 out:
4145 task_event->event_id.header.size = size;
4148 static int perf_event_task_match(struct perf_event *event)
4150 if (event->state < PERF_EVENT_STATE_INACTIVE)
4151 return 0;
4153 if (!event_filter_match(event))
4154 return 0;
4156 if (event->attr.comm || event->attr.mmap ||
4157 event->attr.mmap_data || event->attr.task)
4158 return 1;
4160 return 0;
4163 static void perf_event_task_ctx(struct perf_event_context *ctx,
4164 struct perf_task_event *task_event)
4166 struct perf_event *event;
4168 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4169 if (perf_event_task_match(event))
4170 perf_event_task_output(event, task_event);
4174 static void perf_event_task_event(struct perf_task_event *task_event)
4176 struct perf_cpu_context *cpuctx;
4177 struct perf_event_context *ctx;
4178 struct pmu *pmu;
4179 int ctxn;
4181 rcu_read_lock();
4182 list_for_each_entry_rcu(pmu, &pmus, entry) {
4183 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4184 if (cpuctx->active_pmu != pmu)
4185 goto next;
4186 perf_event_task_ctx(&cpuctx->ctx, task_event);
4188 ctx = task_event->task_ctx;
4189 if (!ctx) {
4190 ctxn = pmu->task_ctx_nr;
4191 if (ctxn < 0)
4192 goto next;
4193 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4195 if (ctx)
4196 perf_event_task_ctx(ctx, task_event);
4197 next:
4198 put_cpu_ptr(pmu->pmu_cpu_context);
4200 rcu_read_unlock();
4203 static void perf_event_task(struct task_struct *task,
4204 struct perf_event_context *task_ctx,
4205 int new)
4207 struct perf_task_event task_event;
4209 if (!atomic_read(&nr_comm_events) &&
4210 !atomic_read(&nr_mmap_events) &&
4211 !atomic_read(&nr_task_events))
4212 return;
4214 task_event = (struct perf_task_event){
4215 .task = task,
4216 .task_ctx = task_ctx,
4217 .event_id = {
4218 .header = {
4219 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4220 .misc = 0,
4221 .size = sizeof(task_event.event_id),
4223 /* .pid */
4224 /* .ppid */
4225 /* .tid */
4226 /* .ptid */
4227 .time = perf_clock(),
4231 perf_event_task_event(&task_event);
4234 void perf_event_fork(struct task_struct *task)
4236 perf_event_task(task, NULL, 1);
4240 * comm tracking
4243 struct perf_comm_event {
4244 struct task_struct *task;
4245 char *comm;
4246 int comm_size;
4248 struct {
4249 struct perf_event_header header;
4251 u32 pid;
4252 u32 tid;
4253 } event_id;
4256 static void perf_event_comm_output(struct perf_event *event,
4257 struct perf_comm_event *comm_event)
4259 struct perf_output_handle handle;
4260 struct perf_sample_data sample;
4261 int size = comm_event->event_id.header.size;
4262 int ret;
4264 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
4265 ret = perf_output_begin(&handle, event,
4266 comm_event->event_id.header.size);
4268 if (ret)
4269 goto out;
4271 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
4272 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4274 perf_output_put(&handle, comm_event->event_id);
4275 __output_copy(&handle, comm_event->comm,
4276 comm_event->comm_size);
4278 perf_event__output_id_sample(event, &handle, &sample);
4280 perf_output_end(&handle);
4281 out:
4282 comm_event->event_id.header.size = size;
4285 static int perf_event_comm_match(struct perf_event *event)
4287 if (event->state < PERF_EVENT_STATE_INACTIVE)
4288 return 0;
4290 if (!event_filter_match(event))
4291 return 0;
4293 if (event->attr.comm)
4294 return 1;
4296 return 0;
4299 static void perf_event_comm_ctx(struct perf_event_context *ctx,
4300 struct perf_comm_event *comm_event)
4302 struct perf_event *event;
4304 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4305 if (perf_event_comm_match(event))
4306 perf_event_comm_output(event, comm_event);
4310 static void perf_event_comm_event(struct perf_comm_event *comm_event)
4312 struct perf_cpu_context *cpuctx;
4313 struct perf_event_context *ctx;
4314 char comm[TASK_COMM_LEN];
4315 unsigned int size;
4316 struct pmu *pmu;
4317 int ctxn;
4319 memset(comm, 0, sizeof(comm));
4320 strlcpy(comm, comm_event->task->comm, sizeof(comm));
4321 size = ALIGN(strlen(comm)+1, sizeof(u64));
4323 comm_event->comm = comm;
4324 comm_event->comm_size = size;
4326 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
4327 rcu_read_lock();
4328 list_for_each_entry_rcu(pmu, &pmus, entry) {
4329 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4330 if (cpuctx->active_pmu != pmu)
4331 goto next;
4332 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
4334 ctxn = pmu->task_ctx_nr;
4335 if (ctxn < 0)
4336 goto next;
4338 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4339 if (ctx)
4340 perf_event_comm_ctx(ctx, comm_event);
4341 next:
4342 put_cpu_ptr(pmu->pmu_cpu_context);
4344 rcu_read_unlock();
4347 void perf_event_comm(struct task_struct *task)
4349 struct perf_comm_event comm_event;
4350 struct perf_event_context *ctx;
4351 int ctxn;
4353 for_each_task_context_nr(ctxn) {
4354 ctx = task->perf_event_ctxp[ctxn];
4355 if (!ctx)
4356 continue;
4358 perf_event_enable_on_exec(ctx);
4361 if (!atomic_read(&nr_comm_events))
4362 return;
4364 comm_event = (struct perf_comm_event){
4365 .task = task,
4366 /* .comm */
4367 /* .comm_size */
4368 .event_id = {
4369 .header = {
4370 .type = PERF_RECORD_COMM,
4371 .misc = 0,
4372 /* .size */
4374 /* .pid */
4375 /* .tid */
4379 perf_event_comm_event(&comm_event);
4383 * mmap tracking
4386 struct perf_mmap_event {
4387 struct vm_area_struct *vma;
4389 const char *file_name;
4390 int file_size;
4392 struct {
4393 struct perf_event_header header;
4395 u32 pid;
4396 u32 tid;
4397 u64 start;
4398 u64 len;
4399 u64 pgoff;
4400 } event_id;
4403 static void perf_event_mmap_output(struct perf_event *event,
4404 struct perf_mmap_event *mmap_event)
4406 struct perf_output_handle handle;
4407 struct perf_sample_data sample;
4408 int size = mmap_event->event_id.header.size;
4409 int ret;
4411 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
4412 ret = perf_output_begin(&handle, event,
4413 mmap_event->event_id.header.size);
4414 if (ret)
4415 goto out;
4417 mmap_event->event_id.pid = perf_event_pid(event, current);
4418 mmap_event->event_id.tid = perf_event_tid(event, current);
4420 perf_output_put(&handle, mmap_event->event_id);
4421 __output_copy(&handle, mmap_event->file_name,
4422 mmap_event->file_size);
4424 perf_event__output_id_sample(event, &handle, &sample);
4426 perf_output_end(&handle);
4427 out:
4428 mmap_event->event_id.header.size = size;
4431 static int perf_event_mmap_match(struct perf_event *event,
4432 struct perf_mmap_event *mmap_event,
4433 int executable)
4435 if (event->state < PERF_EVENT_STATE_INACTIVE)
4436 return 0;
4438 if (!event_filter_match(event))
4439 return 0;
4441 if ((!executable && event->attr.mmap_data) ||
4442 (executable && event->attr.mmap))
4443 return 1;
4445 return 0;
4448 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4449 struct perf_mmap_event *mmap_event,
4450 int executable)
4452 struct perf_event *event;
4454 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4455 if (perf_event_mmap_match(event, mmap_event, executable))
4456 perf_event_mmap_output(event, mmap_event);
4460 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4462 struct perf_cpu_context *cpuctx;
4463 struct perf_event_context *ctx;
4464 struct vm_area_struct *vma = mmap_event->vma;
4465 struct file *file = vma->vm_file;
4466 unsigned int size;
4467 char tmp[16];
4468 char *buf = NULL;
4469 const char *name;
4470 struct pmu *pmu;
4471 int ctxn;
4473 memset(tmp, 0, sizeof(tmp));
4475 if (file) {
4477 * d_path works from the end of the rb backwards, so we
4478 * need to add enough zero bytes after the string to handle
4479 * the 64bit alignment we do later.
4481 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4482 if (!buf) {
4483 name = strncpy(tmp, "//enomem", sizeof(tmp));
4484 goto got_name;
4486 name = d_path(&file->f_path, buf, PATH_MAX);
4487 if (IS_ERR(name)) {
4488 name = strncpy(tmp, "//toolong", sizeof(tmp));
4489 goto got_name;
4491 } else {
4492 if (arch_vma_name(mmap_event->vma)) {
4493 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
4494 sizeof(tmp));
4495 goto got_name;
4498 if (!vma->vm_mm) {
4499 name = strncpy(tmp, "[vdso]", sizeof(tmp));
4500 goto got_name;
4501 } else if (vma->vm_start <= vma->vm_mm->start_brk &&
4502 vma->vm_end >= vma->vm_mm->brk) {
4503 name = strncpy(tmp, "[heap]", sizeof(tmp));
4504 goto got_name;
4505 } else if (vma->vm_start <= vma->vm_mm->start_stack &&
4506 vma->vm_end >= vma->vm_mm->start_stack) {
4507 name = strncpy(tmp, "[stack]", sizeof(tmp));
4508 goto got_name;
4511 name = strncpy(tmp, "//anon", sizeof(tmp));
4512 goto got_name;
4515 got_name:
4516 size = ALIGN(strlen(name)+1, sizeof(u64));
4518 mmap_event->file_name = name;
4519 mmap_event->file_size = size;
4521 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4523 rcu_read_lock();
4524 list_for_each_entry_rcu(pmu, &pmus, entry) {
4525 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4526 if (cpuctx->active_pmu != pmu)
4527 goto next;
4528 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
4529 vma->vm_flags & VM_EXEC);
4531 ctxn = pmu->task_ctx_nr;
4532 if (ctxn < 0)
4533 goto next;
4535 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4536 if (ctx) {
4537 perf_event_mmap_ctx(ctx, mmap_event,
4538 vma->vm_flags & VM_EXEC);
4540 next:
4541 put_cpu_ptr(pmu->pmu_cpu_context);
4543 rcu_read_unlock();
4545 kfree(buf);
4548 void perf_event_mmap(struct vm_area_struct *vma)
4550 struct perf_mmap_event mmap_event;
4552 if (!atomic_read(&nr_mmap_events))
4553 return;
4555 mmap_event = (struct perf_mmap_event){
4556 .vma = vma,
4557 /* .file_name */
4558 /* .file_size */
4559 .event_id = {
4560 .header = {
4561 .type = PERF_RECORD_MMAP,
4562 .misc = PERF_RECORD_MISC_USER,
4563 /* .size */
4565 /* .pid */
4566 /* .tid */
4567 .start = vma->vm_start,
4568 .len = vma->vm_end - vma->vm_start,
4569 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
4573 perf_event_mmap_event(&mmap_event);
4577 * IRQ throttle logging
4580 static void perf_log_throttle(struct perf_event *event, int enable)
4582 struct perf_output_handle handle;
4583 struct perf_sample_data sample;
4584 int ret;
4586 struct {
4587 struct perf_event_header header;
4588 u64 time;
4589 u64 id;
4590 u64 stream_id;
4591 } throttle_event = {
4592 .header = {
4593 .type = PERF_RECORD_THROTTLE,
4594 .misc = 0,
4595 .size = sizeof(throttle_event),
4597 .time = perf_clock(),
4598 .id = primary_event_id(event),
4599 .stream_id = event->id,
4602 if (enable)
4603 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4605 perf_event_header__init_id(&throttle_event.header, &sample, event);
4607 ret = perf_output_begin(&handle, event,
4608 throttle_event.header.size);
4609 if (ret)
4610 return;
4612 perf_output_put(&handle, throttle_event);
4613 perf_event__output_id_sample(event, &handle, &sample);
4614 perf_output_end(&handle);
4618 * Generic event overflow handling, sampling.
4621 static int __perf_event_overflow(struct perf_event *event,
4622 int throttle, struct perf_sample_data *data,
4623 struct pt_regs *regs)
4625 int events = atomic_read(&event->event_limit);
4626 struct hw_perf_event *hwc = &event->hw;
4627 int ret = 0;
4630 * Non-sampling counters might still use the PMI to fold short
4631 * hardware counters, ignore those.
4633 if (unlikely(!is_sampling_event(event)))
4634 return 0;
4636 if (unlikely(hwc->interrupts >= max_samples_per_tick)) {
4637 if (throttle) {
4638 hwc->interrupts = MAX_INTERRUPTS;
4639 perf_log_throttle(event, 0);
4640 ret = 1;
4642 } else
4643 hwc->interrupts++;
4645 if (event->attr.freq) {
4646 u64 now = perf_clock();
4647 s64 delta = now - hwc->freq_time_stamp;
4649 hwc->freq_time_stamp = now;
4651 if (delta > 0 && delta < 2*TICK_NSEC)
4652 perf_adjust_period(event, delta, hwc->last_period);
4656 * XXX event_limit might not quite work as expected on inherited
4657 * events
4660 event->pending_kill = POLL_IN;
4661 if (events && atomic_dec_and_test(&event->event_limit)) {
4662 ret = 1;
4663 event->pending_kill = POLL_HUP;
4664 event->pending_disable = 1;
4665 irq_work_queue(&event->pending);
4668 if (event->overflow_handler)
4669 event->overflow_handler(event, data, regs);
4670 else
4671 perf_event_output(event, data, regs);
4673 if (event->fasync && event->pending_kill) {
4674 event->pending_wakeup = 1;
4675 irq_work_queue(&event->pending);
4678 return ret;
4681 int perf_event_overflow(struct perf_event *event,
4682 struct perf_sample_data *data,
4683 struct pt_regs *regs)
4685 return __perf_event_overflow(event, 1, data, regs);
4689 * Generic software event infrastructure
4692 struct swevent_htable {
4693 struct swevent_hlist *swevent_hlist;
4694 struct mutex hlist_mutex;
4695 int hlist_refcount;
4697 /* Recursion avoidance in each contexts */
4698 int recursion[PERF_NR_CONTEXTS];
4701 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
4704 * We directly increment event->count and keep a second value in
4705 * event->hw.period_left to count intervals. This period event
4706 * is kept in the range [-sample_period, 0] so that we can use the
4707 * sign as trigger.
4710 static u64 perf_swevent_set_period(struct perf_event *event)
4712 struct hw_perf_event *hwc = &event->hw;
4713 u64 period = hwc->last_period;
4714 u64 nr, offset;
4715 s64 old, val;
4717 hwc->last_period = hwc->sample_period;
4719 again:
4720 old = val = local64_read(&hwc->period_left);
4721 if (val < 0)
4722 return 0;
4724 nr = div64_u64(period + val, period);
4725 offset = nr * period;
4726 val -= offset;
4727 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4728 goto again;
4730 return nr;
4733 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4734 struct perf_sample_data *data,
4735 struct pt_regs *regs)
4737 struct hw_perf_event *hwc = &event->hw;
4738 int throttle = 0;
4740 data->period = event->hw.last_period;
4741 if (!overflow)
4742 overflow = perf_swevent_set_period(event);
4744 if (hwc->interrupts == MAX_INTERRUPTS)
4745 return;
4747 for (; overflow; overflow--) {
4748 if (__perf_event_overflow(event, throttle,
4749 data, regs)) {
4751 * We inhibit the overflow from happening when
4752 * hwc->interrupts == MAX_INTERRUPTS.
4754 break;
4756 throttle = 1;
4760 static void perf_swevent_event(struct perf_event *event, u64 nr,
4761 struct perf_sample_data *data,
4762 struct pt_regs *regs)
4764 struct hw_perf_event *hwc = &event->hw;
4766 local64_add(nr, &event->count);
4768 if (!regs)
4769 return;
4771 if (!is_sampling_event(event))
4772 return;
4774 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
4775 return perf_swevent_overflow(event, 1, data, regs);
4777 if (local64_add_negative(nr, &hwc->period_left))
4778 return;
4780 perf_swevent_overflow(event, 0, data, regs);
4783 static int perf_exclude_event(struct perf_event *event,
4784 struct pt_regs *regs)
4786 if (event->hw.state & PERF_HES_STOPPED)
4787 return 1;
4789 if (regs) {
4790 if (event->attr.exclude_user && user_mode(regs))
4791 return 1;
4793 if (event->attr.exclude_kernel && !user_mode(regs))
4794 return 1;
4797 return 0;
4800 static int perf_swevent_match(struct perf_event *event,
4801 enum perf_type_id type,
4802 u32 event_id,
4803 struct perf_sample_data *data,
4804 struct pt_regs *regs)
4806 if (event->attr.type != type)
4807 return 0;
4809 if (event->attr.config != event_id)
4810 return 0;
4812 if (perf_exclude_event(event, regs))
4813 return 0;
4815 return 1;
4818 static inline u64 swevent_hash(u64 type, u32 event_id)
4820 u64 val = event_id | (type << 32);
4822 return hash_64(val, SWEVENT_HLIST_BITS);
4825 static inline struct hlist_head *
4826 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4828 u64 hash = swevent_hash(type, event_id);
4830 return &hlist->heads[hash];
4833 /* For the read side: events when they trigger */
4834 static inline struct hlist_head *
4835 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
4837 struct swevent_hlist *hlist;
4839 hlist = rcu_dereference(swhash->swevent_hlist);
4840 if (!hlist)
4841 return NULL;
4843 return __find_swevent_head(hlist, type, event_id);
4846 /* For the event head insertion and removal in the hlist */
4847 static inline struct hlist_head *
4848 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
4850 struct swevent_hlist *hlist;
4851 u32 event_id = event->attr.config;
4852 u64 type = event->attr.type;
4855 * Event scheduling is always serialized against hlist allocation
4856 * and release. Which makes the protected version suitable here.
4857 * The context lock guarantees that.
4859 hlist = rcu_dereference_protected(swhash->swevent_hlist,
4860 lockdep_is_held(&event->ctx->lock));
4861 if (!hlist)
4862 return NULL;
4864 return __find_swevent_head(hlist, type, event_id);
4867 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4868 u64 nr,
4869 struct perf_sample_data *data,
4870 struct pt_regs *regs)
4872 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4873 struct perf_event *event;
4874 struct hlist_node *node;
4875 struct hlist_head *head;
4877 rcu_read_lock();
4878 head = find_swevent_head_rcu(swhash, type, event_id);
4879 if (!head)
4880 goto end;
4882 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4883 if (perf_swevent_match(event, type, event_id, data, regs))
4884 perf_swevent_event(event, nr, data, regs);
4886 end:
4887 rcu_read_unlock();
4890 int perf_swevent_get_recursion_context(void)
4892 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4894 return get_recursion_context(swhash->recursion);
4896 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
4898 inline void perf_swevent_put_recursion_context(int rctx)
4900 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4902 put_recursion_context(swhash->recursion, rctx);
4905 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
4907 struct perf_sample_data data;
4908 int rctx;
4910 preempt_disable_notrace();
4911 rctx = perf_swevent_get_recursion_context();
4912 if (rctx < 0)
4913 return;
4915 perf_sample_data_init(&data, addr);
4917 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
4919 perf_swevent_put_recursion_context(rctx);
4920 preempt_enable_notrace();
4923 static void perf_swevent_read(struct perf_event *event)
4927 static int perf_swevent_add(struct perf_event *event, int flags)
4929 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4930 struct hw_perf_event *hwc = &event->hw;
4931 struct hlist_head *head;
4933 if (is_sampling_event(event)) {
4934 hwc->last_period = hwc->sample_period;
4935 perf_swevent_set_period(event);
4938 hwc->state = !(flags & PERF_EF_START);
4940 head = find_swevent_head(swhash, event);
4941 if (WARN_ON_ONCE(!head))
4942 return -EINVAL;
4944 hlist_add_head_rcu(&event->hlist_entry, head);
4946 return 0;
4949 static void perf_swevent_del(struct perf_event *event, int flags)
4951 hlist_del_rcu(&event->hlist_entry);
4954 static void perf_swevent_start(struct perf_event *event, int flags)
4956 event->hw.state = 0;
4959 static void perf_swevent_stop(struct perf_event *event, int flags)
4961 event->hw.state = PERF_HES_STOPPED;
4964 /* Deref the hlist from the update side */
4965 static inline struct swevent_hlist *
4966 swevent_hlist_deref(struct swevent_htable *swhash)
4968 return rcu_dereference_protected(swhash->swevent_hlist,
4969 lockdep_is_held(&swhash->hlist_mutex));
4972 static void swevent_hlist_release(struct swevent_htable *swhash)
4974 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
4976 if (!hlist)
4977 return;
4979 rcu_assign_pointer(swhash->swevent_hlist, NULL);
4980 kfree_rcu(hlist, rcu_head);
4983 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
4985 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4987 mutex_lock(&swhash->hlist_mutex);
4989 if (!--swhash->hlist_refcount)
4990 swevent_hlist_release(swhash);
4992 mutex_unlock(&swhash->hlist_mutex);
4995 static void swevent_hlist_put(struct perf_event *event)
4997 int cpu;
4999 if (event->cpu != -1) {
5000 swevent_hlist_put_cpu(event, event->cpu);
5001 return;
5004 for_each_possible_cpu(cpu)
5005 swevent_hlist_put_cpu(event, cpu);
5008 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
5010 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5011 int err = 0;
5013 mutex_lock(&swhash->hlist_mutex);
5015 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5016 struct swevent_hlist *hlist;
5018 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5019 if (!hlist) {
5020 err = -ENOMEM;
5021 goto exit;
5023 rcu_assign_pointer(swhash->swevent_hlist, hlist);
5025 swhash->hlist_refcount++;
5026 exit:
5027 mutex_unlock(&swhash->hlist_mutex);
5029 return err;
5032 static int swevent_hlist_get(struct perf_event *event)
5034 int err;
5035 int cpu, failed_cpu;
5037 if (event->cpu != -1)
5038 return swevent_hlist_get_cpu(event, event->cpu);
5040 get_online_cpus();
5041 for_each_possible_cpu(cpu) {
5042 err = swevent_hlist_get_cpu(event, cpu);
5043 if (err) {
5044 failed_cpu = cpu;
5045 goto fail;
5048 put_online_cpus();
5050 return 0;
5051 fail:
5052 for_each_possible_cpu(cpu) {
5053 if (cpu == failed_cpu)
5054 break;
5055 swevent_hlist_put_cpu(event, cpu);
5058 put_online_cpus();
5059 return err;
5062 struct jump_label_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
5064 static void sw_perf_event_destroy(struct perf_event *event)
5066 u64 event_id = event->attr.config;
5068 WARN_ON(event->parent);
5070 jump_label_dec(&perf_swevent_enabled[event_id]);
5071 swevent_hlist_put(event);
5074 static int perf_swevent_init(struct perf_event *event)
5076 int event_id = event->attr.config;
5078 if (event->attr.type != PERF_TYPE_SOFTWARE)
5079 return -ENOENT;
5081 switch (event_id) {
5082 case PERF_COUNT_SW_CPU_CLOCK:
5083 case PERF_COUNT_SW_TASK_CLOCK:
5084 return -ENOENT;
5086 default:
5087 break;
5090 if (event_id >= PERF_COUNT_SW_MAX)
5091 return -ENOENT;
5093 if (!event->parent) {
5094 int err;
5096 err = swevent_hlist_get(event);
5097 if (err)
5098 return err;
5100 jump_label_inc(&perf_swevent_enabled[event_id]);
5101 event->destroy = sw_perf_event_destroy;
5104 return 0;
5107 static struct pmu perf_swevent = {
5108 .task_ctx_nr = perf_sw_context,
5110 .event_init = perf_swevent_init,
5111 .add = perf_swevent_add,
5112 .del = perf_swevent_del,
5113 .start = perf_swevent_start,
5114 .stop = perf_swevent_stop,
5115 .read = perf_swevent_read,
5118 #ifdef CONFIG_EVENT_TRACING
5120 static int perf_tp_filter_match(struct perf_event *event,
5121 struct perf_sample_data *data)
5123 void *record = data->raw->data;
5125 if (likely(!event->filter) || filter_match_preds(event->filter, record))
5126 return 1;
5127 return 0;
5130 static int perf_tp_event_match(struct perf_event *event,
5131 struct perf_sample_data *data,
5132 struct pt_regs *regs)
5134 if (event->hw.state & PERF_HES_STOPPED)
5135 return 0;
5137 * All tracepoints are from kernel-space.
5139 if (event->attr.exclude_kernel)
5140 return 0;
5142 if (!perf_tp_filter_match(event, data))
5143 return 0;
5145 return 1;
5148 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5149 struct pt_regs *regs, struct hlist_head *head, int rctx)
5151 struct perf_sample_data data;
5152 struct perf_event *event;
5153 struct hlist_node *node;
5155 struct perf_raw_record raw = {
5156 .size = entry_size,
5157 .data = record,
5160 perf_sample_data_init(&data, addr);
5161 data.raw = &raw;
5163 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
5164 if (perf_tp_event_match(event, &data, regs))
5165 perf_swevent_event(event, count, &data, regs);
5168 perf_swevent_put_recursion_context(rctx);
5170 EXPORT_SYMBOL_GPL(perf_tp_event);
5172 static void tp_perf_event_destroy(struct perf_event *event)
5174 perf_trace_destroy(event);
5177 static int perf_tp_event_init(struct perf_event *event)
5179 int err;
5181 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5182 return -ENOENT;
5184 err = perf_trace_init(event);
5185 if (err)
5186 return err;
5188 event->destroy = tp_perf_event_destroy;
5190 return 0;
5193 static struct pmu perf_tracepoint = {
5194 .task_ctx_nr = perf_sw_context,
5196 .event_init = perf_tp_event_init,
5197 .add = perf_trace_add,
5198 .del = perf_trace_del,
5199 .start = perf_swevent_start,
5200 .stop = perf_swevent_stop,
5201 .read = perf_swevent_read,
5204 static inline void perf_tp_register(void)
5206 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5209 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5211 char *filter_str;
5212 int ret;
5214 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5215 return -EINVAL;
5217 filter_str = strndup_user(arg, PAGE_SIZE);
5218 if (IS_ERR(filter_str))
5219 return PTR_ERR(filter_str);
5221 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
5223 kfree(filter_str);
5224 return ret;
5227 static void perf_event_free_filter(struct perf_event *event)
5229 ftrace_profile_free_filter(event);
5232 #else
5234 static inline void perf_tp_register(void)
5238 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5240 return -ENOENT;
5243 static void perf_event_free_filter(struct perf_event *event)
5247 #endif /* CONFIG_EVENT_TRACING */
5249 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5250 void perf_bp_event(struct perf_event *bp, void *data)
5252 struct perf_sample_data sample;
5253 struct pt_regs *regs = data;
5255 perf_sample_data_init(&sample, bp->attr.bp_addr);
5257 if (!bp->hw.state && !perf_exclude_event(bp, regs))
5258 perf_swevent_event(bp, 1, &sample, regs);
5260 #endif
5263 * hrtimer based swevent callback
5266 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5268 enum hrtimer_restart ret = HRTIMER_RESTART;
5269 struct perf_sample_data data;
5270 struct pt_regs *regs;
5271 struct perf_event *event;
5272 u64 period;
5274 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
5276 if (event->state != PERF_EVENT_STATE_ACTIVE)
5277 return HRTIMER_NORESTART;
5279 event->pmu->read(event);
5281 perf_sample_data_init(&data, 0);
5282 data.period = event->hw.last_period;
5283 regs = get_irq_regs();
5285 if (regs && !perf_exclude_event(event, regs)) {
5286 if (!(event->attr.exclude_idle && current->pid == 0))
5287 if (perf_event_overflow(event, &data, regs))
5288 ret = HRTIMER_NORESTART;
5291 period = max_t(u64, 10000, event->hw.sample_period);
5292 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
5294 return ret;
5297 static void perf_swevent_start_hrtimer(struct perf_event *event)
5299 struct hw_perf_event *hwc = &event->hw;
5300 s64 period;
5302 if (!is_sampling_event(event))
5303 return;
5305 period = local64_read(&hwc->period_left);
5306 if (period) {
5307 if (period < 0)
5308 period = 10000;
5310 local64_set(&hwc->period_left, 0);
5311 } else {
5312 period = max_t(u64, 10000, hwc->sample_period);
5314 __hrtimer_start_range_ns(&hwc->hrtimer,
5315 ns_to_ktime(period), 0,
5316 HRTIMER_MODE_REL_PINNED, 0);
5319 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
5321 struct hw_perf_event *hwc = &event->hw;
5323 if (is_sampling_event(event)) {
5324 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
5325 local64_set(&hwc->period_left, ktime_to_ns(remaining));
5327 hrtimer_cancel(&hwc->hrtimer);
5331 static void perf_swevent_init_hrtimer(struct perf_event *event)
5333 struct hw_perf_event *hwc = &event->hw;
5335 if (!is_sampling_event(event))
5336 return;
5338 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5339 hwc->hrtimer.function = perf_swevent_hrtimer;
5342 * Since hrtimers have a fixed rate, we can do a static freq->period
5343 * mapping and avoid the whole period adjust feedback stuff.
5345 if (event->attr.freq) {
5346 long freq = event->attr.sample_freq;
5348 event->attr.sample_period = NSEC_PER_SEC / freq;
5349 hwc->sample_period = event->attr.sample_period;
5350 local64_set(&hwc->period_left, hwc->sample_period);
5351 event->attr.freq = 0;
5356 * Software event: cpu wall time clock
5359 static void cpu_clock_event_update(struct perf_event *event)
5361 s64 prev;
5362 u64 now;
5364 now = local_clock();
5365 prev = local64_xchg(&event->hw.prev_count, now);
5366 local64_add(now - prev, &event->count);
5369 static void cpu_clock_event_start(struct perf_event *event, int flags)
5371 local64_set(&event->hw.prev_count, local_clock());
5372 perf_swevent_start_hrtimer(event);
5375 static void cpu_clock_event_stop(struct perf_event *event, int flags)
5377 perf_swevent_cancel_hrtimer(event);
5378 cpu_clock_event_update(event);
5381 static int cpu_clock_event_add(struct perf_event *event, int flags)
5383 if (flags & PERF_EF_START)
5384 cpu_clock_event_start(event, flags);
5386 return 0;
5389 static void cpu_clock_event_del(struct perf_event *event, int flags)
5391 cpu_clock_event_stop(event, flags);
5394 static void cpu_clock_event_read(struct perf_event *event)
5396 cpu_clock_event_update(event);
5399 static int cpu_clock_event_init(struct perf_event *event)
5401 if (event->attr.type != PERF_TYPE_SOFTWARE)
5402 return -ENOENT;
5404 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
5405 return -ENOENT;
5407 perf_swevent_init_hrtimer(event);
5409 return 0;
5412 static struct pmu perf_cpu_clock = {
5413 .task_ctx_nr = perf_sw_context,
5415 .event_init = cpu_clock_event_init,
5416 .add = cpu_clock_event_add,
5417 .del = cpu_clock_event_del,
5418 .start = cpu_clock_event_start,
5419 .stop = cpu_clock_event_stop,
5420 .read = cpu_clock_event_read,
5424 * Software event: task time clock
5427 static void task_clock_event_update(struct perf_event *event, u64 now)
5429 u64 prev;
5430 s64 delta;
5432 prev = local64_xchg(&event->hw.prev_count, now);
5433 delta = now - prev;
5434 local64_add(delta, &event->count);
5437 static void task_clock_event_start(struct perf_event *event, int flags)
5439 local64_set(&event->hw.prev_count, event->ctx->time);
5440 perf_swevent_start_hrtimer(event);
5443 static void task_clock_event_stop(struct perf_event *event, int flags)
5445 perf_swevent_cancel_hrtimer(event);
5446 task_clock_event_update(event, event->ctx->time);
5449 static int task_clock_event_add(struct perf_event *event, int flags)
5451 if (flags & PERF_EF_START)
5452 task_clock_event_start(event, flags);
5454 return 0;
5457 static void task_clock_event_del(struct perf_event *event, int flags)
5459 task_clock_event_stop(event, PERF_EF_UPDATE);
5462 static void task_clock_event_read(struct perf_event *event)
5464 u64 now = perf_clock();
5465 u64 delta = now - event->ctx->timestamp;
5466 u64 time = event->ctx->time + delta;
5468 task_clock_event_update(event, time);
5471 static int task_clock_event_init(struct perf_event *event)
5473 if (event->attr.type != PERF_TYPE_SOFTWARE)
5474 return -ENOENT;
5476 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
5477 return -ENOENT;
5479 perf_swevent_init_hrtimer(event);
5481 return 0;
5484 static struct pmu perf_task_clock = {
5485 .task_ctx_nr = perf_sw_context,
5487 .event_init = task_clock_event_init,
5488 .add = task_clock_event_add,
5489 .del = task_clock_event_del,
5490 .start = task_clock_event_start,
5491 .stop = task_clock_event_stop,
5492 .read = task_clock_event_read,
5495 static void perf_pmu_nop_void(struct pmu *pmu)
5499 static int perf_pmu_nop_int(struct pmu *pmu)
5501 return 0;
5504 static void perf_pmu_start_txn(struct pmu *pmu)
5506 perf_pmu_disable(pmu);
5509 static int perf_pmu_commit_txn(struct pmu *pmu)
5511 perf_pmu_enable(pmu);
5512 return 0;
5515 static void perf_pmu_cancel_txn(struct pmu *pmu)
5517 perf_pmu_enable(pmu);
5521 * Ensures all contexts with the same task_ctx_nr have the same
5522 * pmu_cpu_context too.
5524 static void *find_pmu_context(int ctxn)
5526 struct pmu *pmu;
5528 if (ctxn < 0)
5529 return NULL;
5531 list_for_each_entry(pmu, &pmus, entry) {
5532 if (pmu->task_ctx_nr == ctxn)
5533 return pmu->pmu_cpu_context;
5536 return NULL;
5539 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
5541 int cpu;
5543 for_each_possible_cpu(cpu) {
5544 struct perf_cpu_context *cpuctx;
5546 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5548 if (cpuctx->active_pmu == old_pmu)
5549 cpuctx->active_pmu = pmu;
5553 static void free_pmu_context(struct pmu *pmu)
5555 struct pmu *i;
5557 mutex_lock(&pmus_lock);
5559 * Like a real lame refcount.
5561 list_for_each_entry(i, &pmus, entry) {
5562 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
5563 update_pmu_context(i, pmu);
5564 goto out;
5568 free_percpu(pmu->pmu_cpu_context);
5569 out:
5570 mutex_unlock(&pmus_lock);
5572 static struct idr pmu_idr;
5574 static ssize_t
5575 type_show(struct device *dev, struct device_attribute *attr, char *page)
5577 struct pmu *pmu = dev_get_drvdata(dev);
5579 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
5582 static struct device_attribute pmu_dev_attrs[] = {
5583 __ATTR_RO(type),
5584 __ATTR_NULL,
5587 static int pmu_bus_running;
5588 static struct bus_type pmu_bus = {
5589 .name = "event_source",
5590 .dev_attrs = pmu_dev_attrs,
5593 static void pmu_dev_release(struct device *dev)
5595 kfree(dev);
5598 static int pmu_dev_alloc(struct pmu *pmu)
5600 int ret = -ENOMEM;
5602 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
5603 if (!pmu->dev)
5604 goto out;
5606 device_initialize(pmu->dev);
5607 ret = dev_set_name(pmu->dev, "%s", pmu->name);
5608 if (ret)
5609 goto free_dev;
5611 dev_set_drvdata(pmu->dev, pmu);
5612 pmu->dev->bus = &pmu_bus;
5613 pmu->dev->release = pmu_dev_release;
5614 ret = device_add(pmu->dev);
5615 if (ret)
5616 goto free_dev;
5618 out:
5619 return ret;
5621 free_dev:
5622 put_device(pmu->dev);
5623 goto out;
5626 static struct lock_class_key cpuctx_mutex;
5627 static struct lock_class_key cpuctx_lock;
5629 int perf_pmu_register(struct pmu *pmu, char *name, int type)
5631 int cpu, ret;
5633 mutex_lock(&pmus_lock);
5634 ret = -ENOMEM;
5635 pmu->pmu_disable_count = alloc_percpu(int);
5636 if (!pmu->pmu_disable_count)
5637 goto unlock;
5639 pmu->type = -1;
5640 if (!name)
5641 goto skip_type;
5642 pmu->name = name;
5644 if (type < 0) {
5645 int err = idr_pre_get(&pmu_idr, GFP_KERNEL);
5646 if (!err)
5647 goto free_pdc;
5649 err = idr_get_new_above(&pmu_idr, pmu, PERF_TYPE_MAX, &type);
5650 if (err) {
5651 ret = err;
5652 goto free_pdc;
5655 pmu->type = type;
5657 if (pmu_bus_running) {
5658 ret = pmu_dev_alloc(pmu);
5659 if (ret)
5660 goto free_idr;
5663 skip_type:
5664 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
5665 if (pmu->pmu_cpu_context)
5666 goto got_cpu_context;
5668 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
5669 if (!pmu->pmu_cpu_context)
5670 goto free_dev;
5672 for_each_possible_cpu(cpu) {
5673 struct perf_cpu_context *cpuctx;
5675 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5676 __perf_event_init_context(&cpuctx->ctx);
5677 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
5678 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
5679 cpuctx->ctx.type = cpu_context;
5680 cpuctx->ctx.pmu = pmu;
5681 cpuctx->jiffies_interval = 1;
5682 INIT_LIST_HEAD(&cpuctx->rotation_list);
5683 cpuctx->active_pmu = pmu;
5686 got_cpu_context:
5687 if (!pmu->start_txn) {
5688 if (pmu->pmu_enable) {
5690 * If we have pmu_enable/pmu_disable calls, install
5691 * transaction stubs that use that to try and batch
5692 * hardware accesses.
5694 pmu->start_txn = perf_pmu_start_txn;
5695 pmu->commit_txn = perf_pmu_commit_txn;
5696 pmu->cancel_txn = perf_pmu_cancel_txn;
5697 } else {
5698 pmu->start_txn = perf_pmu_nop_void;
5699 pmu->commit_txn = perf_pmu_nop_int;
5700 pmu->cancel_txn = perf_pmu_nop_void;
5704 if (!pmu->pmu_enable) {
5705 pmu->pmu_enable = perf_pmu_nop_void;
5706 pmu->pmu_disable = perf_pmu_nop_void;
5709 list_add_rcu(&pmu->entry, &pmus);
5710 ret = 0;
5711 unlock:
5712 mutex_unlock(&pmus_lock);
5714 return ret;
5716 free_dev:
5717 device_del(pmu->dev);
5718 put_device(pmu->dev);
5720 free_idr:
5721 if (pmu->type >= PERF_TYPE_MAX)
5722 idr_remove(&pmu_idr, pmu->type);
5724 free_pdc:
5725 free_percpu(pmu->pmu_disable_count);
5726 goto unlock;
5729 void perf_pmu_unregister(struct pmu *pmu)
5731 mutex_lock(&pmus_lock);
5732 list_del_rcu(&pmu->entry);
5733 mutex_unlock(&pmus_lock);
5736 * We dereference the pmu list under both SRCU and regular RCU, so
5737 * synchronize against both of those.
5739 synchronize_srcu(&pmus_srcu);
5740 synchronize_rcu();
5742 free_percpu(pmu->pmu_disable_count);
5743 if (pmu->type >= PERF_TYPE_MAX)
5744 idr_remove(&pmu_idr, pmu->type);
5745 device_del(pmu->dev);
5746 put_device(pmu->dev);
5747 free_pmu_context(pmu);
5750 struct pmu *perf_init_event(struct perf_event *event)
5752 struct pmu *pmu = NULL;
5753 int idx;
5754 int ret;
5756 idx = srcu_read_lock(&pmus_srcu);
5758 rcu_read_lock();
5759 pmu = idr_find(&pmu_idr, event->attr.type);
5760 rcu_read_unlock();
5761 if (pmu) {
5762 event->pmu = pmu;
5763 ret = pmu->event_init(event);
5764 if (ret)
5765 pmu = ERR_PTR(ret);
5766 goto unlock;
5769 list_for_each_entry_rcu(pmu, &pmus, entry) {
5770 event->pmu = pmu;
5771 ret = pmu->event_init(event);
5772 if (!ret)
5773 goto unlock;
5775 if (ret != -ENOENT) {
5776 pmu = ERR_PTR(ret);
5777 goto unlock;
5780 pmu = ERR_PTR(-ENOENT);
5781 unlock:
5782 srcu_read_unlock(&pmus_srcu, idx);
5784 return pmu;
5788 * Allocate and initialize a event structure
5790 static struct perf_event *
5791 perf_event_alloc(struct perf_event_attr *attr, int cpu,
5792 struct task_struct *task,
5793 struct perf_event *group_leader,
5794 struct perf_event *parent_event,
5795 perf_overflow_handler_t overflow_handler,
5796 void *context)
5798 struct pmu *pmu;
5799 struct perf_event *event;
5800 struct hw_perf_event *hwc;
5801 long err;
5803 if ((unsigned)cpu >= nr_cpu_ids) {
5804 if (!task || cpu != -1)
5805 return ERR_PTR(-EINVAL);
5808 event = kzalloc(sizeof(*event), GFP_KERNEL);
5809 if (!event)
5810 return ERR_PTR(-ENOMEM);
5813 * Single events are their own group leaders, with an
5814 * empty sibling list:
5816 if (!group_leader)
5817 group_leader = event;
5819 mutex_init(&event->child_mutex);
5820 INIT_LIST_HEAD(&event->child_list);
5822 INIT_LIST_HEAD(&event->group_entry);
5823 INIT_LIST_HEAD(&event->event_entry);
5824 INIT_LIST_HEAD(&event->sibling_list);
5825 init_waitqueue_head(&event->waitq);
5826 init_irq_work(&event->pending, perf_pending_event);
5828 mutex_init(&event->mmap_mutex);
5830 event->cpu = cpu;
5831 event->attr = *attr;
5832 event->group_leader = group_leader;
5833 event->pmu = NULL;
5834 event->oncpu = -1;
5836 event->parent = parent_event;
5838 event->ns = get_pid_ns(current->nsproxy->pid_ns);
5839 event->id = atomic64_inc_return(&perf_event_id);
5841 event->state = PERF_EVENT_STATE_INACTIVE;
5843 if (task) {
5844 event->attach_state = PERF_ATTACH_TASK;
5845 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5847 * hw_breakpoint is a bit difficult here..
5849 if (attr->type == PERF_TYPE_BREAKPOINT)
5850 event->hw.bp_target = task;
5851 #endif
5854 if (!overflow_handler && parent_event) {
5855 overflow_handler = parent_event->overflow_handler;
5856 context = parent_event->overflow_handler_context;
5859 event->overflow_handler = overflow_handler;
5860 event->overflow_handler_context = context;
5862 if (attr->disabled)
5863 event->state = PERF_EVENT_STATE_OFF;
5865 pmu = NULL;
5867 hwc = &event->hw;
5868 hwc->sample_period = attr->sample_period;
5869 if (attr->freq && attr->sample_freq)
5870 hwc->sample_period = 1;
5871 hwc->last_period = hwc->sample_period;
5873 local64_set(&hwc->period_left, hwc->sample_period);
5876 * we currently do not support PERF_FORMAT_GROUP on inherited events
5878 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
5879 goto done;
5881 pmu = perf_init_event(event);
5883 done:
5884 err = 0;
5885 if (!pmu)
5886 err = -EINVAL;
5887 else if (IS_ERR(pmu))
5888 err = PTR_ERR(pmu);
5890 if (err) {
5891 if (event->ns)
5892 put_pid_ns(event->ns);
5893 kfree(event);
5894 return ERR_PTR(err);
5897 if (!event->parent) {
5898 if (event->attach_state & PERF_ATTACH_TASK)
5899 jump_label_inc(&perf_sched_events);
5900 if (event->attr.mmap || event->attr.mmap_data)
5901 atomic_inc(&nr_mmap_events);
5902 if (event->attr.comm)
5903 atomic_inc(&nr_comm_events);
5904 if (event->attr.task)
5905 atomic_inc(&nr_task_events);
5906 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
5907 err = get_callchain_buffers();
5908 if (err) {
5909 free_event(event);
5910 return ERR_PTR(err);
5915 return event;
5918 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5919 struct perf_event_attr *attr)
5921 u32 size;
5922 int ret;
5924 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
5925 return -EFAULT;
5928 * zero the full structure, so that a short copy will be nice.
5930 memset(attr, 0, sizeof(*attr));
5932 ret = get_user(size, &uattr->size);
5933 if (ret)
5934 return ret;
5936 if (size > PAGE_SIZE) /* silly large */
5937 goto err_size;
5939 if (!size) /* abi compat */
5940 size = PERF_ATTR_SIZE_VER0;
5942 if (size < PERF_ATTR_SIZE_VER0)
5943 goto err_size;
5946 * If we're handed a bigger struct than we know of,
5947 * ensure all the unknown bits are 0 - i.e. new
5948 * user-space does not rely on any kernel feature
5949 * extensions we dont know about yet.
5951 if (size > sizeof(*attr)) {
5952 unsigned char __user *addr;
5953 unsigned char __user *end;
5954 unsigned char val;
5956 addr = (void __user *)uattr + sizeof(*attr);
5957 end = (void __user *)uattr + size;
5959 for (; addr < end; addr++) {
5960 ret = get_user(val, addr);
5961 if (ret)
5962 return ret;
5963 if (val)
5964 goto err_size;
5966 size = sizeof(*attr);
5969 ret = copy_from_user(attr, uattr, size);
5970 if (ret)
5971 return -EFAULT;
5973 if (attr->__reserved_1)
5974 return -EINVAL;
5976 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
5977 return -EINVAL;
5979 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
5980 return -EINVAL;
5982 out:
5983 return ret;
5985 err_size:
5986 put_user(sizeof(*attr), &uattr->size);
5987 ret = -E2BIG;
5988 goto out;
5991 static int
5992 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
5994 struct ring_buffer *rb = NULL, *old_rb = NULL;
5995 int ret = -EINVAL;
5997 if (!output_event)
5998 goto set;
6000 /* don't allow circular references */
6001 if (event == output_event)
6002 goto out;
6005 * Don't allow cross-cpu buffers
6007 if (output_event->cpu != event->cpu)
6008 goto out;
6011 * If its not a per-cpu rb, it must be the same task.
6013 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
6014 goto out;
6016 set:
6017 mutex_lock(&event->mmap_mutex);
6018 /* Can't redirect output if we've got an active mmap() */
6019 if (atomic_read(&event->mmap_count))
6020 goto unlock;
6022 if (output_event) {
6023 /* get the rb we want to redirect to */
6024 rb = ring_buffer_get(output_event);
6025 if (!rb)
6026 goto unlock;
6029 old_rb = event->rb;
6030 rcu_assign_pointer(event->rb, rb);
6031 ret = 0;
6032 unlock:
6033 mutex_unlock(&event->mmap_mutex);
6035 if (old_rb)
6036 ring_buffer_put(old_rb);
6037 out:
6038 return ret;
6042 * sys_perf_event_open - open a performance event, associate it to a task/cpu
6044 * @attr_uptr: event_id type attributes for monitoring/sampling
6045 * @pid: target pid
6046 * @cpu: target cpu
6047 * @group_fd: group leader event fd
6049 SYSCALL_DEFINE5(perf_event_open,
6050 struct perf_event_attr __user *, attr_uptr,
6051 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
6053 struct perf_event *group_leader = NULL, *output_event = NULL;
6054 struct perf_event *event, *sibling;
6055 struct perf_event_attr attr;
6056 struct perf_event_context *ctx;
6057 struct file *event_file = NULL;
6058 struct file *group_file = NULL;
6059 struct task_struct *task = NULL;
6060 struct pmu *pmu;
6061 int event_fd;
6062 int move_group = 0;
6063 int fput_needed = 0;
6064 int err;
6066 /* for future expandability... */
6067 if (flags & ~PERF_FLAG_ALL)
6068 return -EINVAL;
6070 err = perf_copy_attr(attr_uptr, &attr);
6071 if (err)
6072 return err;
6074 if (!attr.exclude_kernel) {
6075 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6076 return -EACCES;
6079 if (attr.freq) {
6080 if (attr.sample_freq > sysctl_perf_event_sample_rate)
6081 return -EINVAL;
6085 * In cgroup mode, the pid argument is used to pass the fd
6086 * opened to the cgroup directory in cgroupfs. The cpu argument
6087 * designates the cpu on which to monitor threads from that
6088 * cgroup.
6090 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
6091 return -EINVAL;
6093 event_fd = get_unused_fd_flags(O_RDWR);
6094 if (event_fd < 0)
6095 return event_fd;
6097 if (group_fd != -1) {
6098 group_leader = perf_fget_light(group_fd, &fput_needed);
6099 if (IS_ERR(group_leader)) {
6100 err = PTR_ERR(group_leader);
6101 goto err_fd;
6103 group_file = group_leader->filp;
6104 if (flags & PERF_FLAG_FD_OUTPUT)
6105 output_event = group_leader;
6106 if (flags & PERF_FLAG_FD_NO_GROUP)
6107 group_leader = NULL;
6110 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
6111 task = find_lively_task_by_vpid(pid);
6112 if (IS_ERR(task)) {
6113 err = PTR_ERR(task);
6114 goto err_group_fd;
6118 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
6119 NULL, NULL);
6120 if (IS_ERR(event)) {
6121 err = PTR_ERR(event);
6122 goto err_task;
6125 if (flags & PERF_FLAG_PID_CGROUP) {
6126 err = perf_cgroup_connect(pid, event, &attr, group_leader);
6127 if (err)
6128 goto err_alloc;
6130 * one more event:
6131 * - that has cgroup constraint on event->cpu
6132 * - that may need work on context switch
6134 atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
6135 jump_label_inc(&perf_sched_events);
6139 * Special case software events and allow them to be part of
6140 * any hardware group.
6142 pmu = event->pmu;
6144 if (group_leader &&
6145 (is_software_event(event) != is_software_event(group_leader))) {
6146 if (is_software_event(event)) {
6148 * If event and group_leader are not both a software
6149 * event, and event is, then group leader is not.
6151 * Allow the addition of software events to !software
6152 * groups, this is safe because software events never
6153 * fail to schedule.
6155 pmu = group_leader->pmu;
6156 } else if (is_software_event(group_leader) &&
6157 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
6159 * In case the group is a pure software group, and we
6160 * try to add a hardware event, move the whole group to
6161 * the hardware context.
6163 move_group = 1;
6168 * Get the target context (task or percpu):
6170 ctx = find_get_context(pmu, task, cpu);
6171 if (IS_ERR(ctx)) {
6172 err = PTR_ERR(ctx);
6173 goto err_alloc;
6176 if (task) {
6177 put_task_struct(task);
6178 task = NULL;
6182 * Look up the group leader (we will attach this event to it):
6184 if (group_leader) {
6185 err = -EINVAL;
6188 * Do not allow a recursive hierarchy (this new sibling
6189 * becoming part of another group-sibling):
6191 if (group_leader->group_leader != group_leader)
6192 goto err_context;
6194 * Do not allow to attach to a group in a different
6195 * task or CPU context:
6197 if (move_group) {
6198 if (group_leader->ctx->type != ctx->type)
6199 goto err_context;
6200 } else {
6201 if (group_leader->ctx != ctx)
6202 goto err_context;
6206 * Only a group leader can be exclusive or pinned
6208 if (attr.exclusive || attr.pinned)
6209 goto err_context;
6212 if (output_event) {
6213 err = perf_event_set_output(event, output_event);
6214 if (err)
6215 goto err_context;
6218 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
6219 if (IS_ERR(event_file)) {
6220 err = PTR_ERR(event_file);
6221 goto err_context;
6224 if (move_group) {
6225 struct perf_event_context *gctx = group_leader->ctx;
6227 mutex_lock(&gctx->mutex);
6228 perf_remove_from_context(group_leader);
6229 list_for_each_entry(sibling, &group_leader->sibling_list,
6230 group_entry) {
6231 perf_remove_from_context(sibling);
6232 put_ctx(gctx);
6234 mutex_unlock(&gctx->mutex);
6235 put_ctx(gctx);
6238 event->filp = event_file;
6239 WARN_ON_ONCE(ctx->parent_ctx);
6240 mutex_lock(&ctx->mutex);
6242 if (move_group) {
6243 perf_install_in_context(ctx, group_leader, cpu);
6244 get_ctx(ctx);
6245 list_for_each_entry(sibling, &group_leader->sibling_list,
6246 group_entry) {
6247 perf_install_in_context(ctx, sibling, cpu);
6248 get_ctx(ctx);
6252 perf_install_in_context(ctx, event, cpu);
6253 ++ctx->generation;
6254 perf_unpin_context(ctx);
6255 mutex_unlock(&ctx->mutex);
6257 event->owner = current;
6259 mutex_lock(&current->perf_event_mutex);
6260 list_add_tail(&event->owner_entry, &current->perf_event_list);
6261 mutex_unlock(&current->perf_event_mutex);
6264 * Precalculate sample_data sizes
6266 perf_event__header_size(event);
6267 perf_event__id_header_size(event);
6270 * Drop the reference on the group_event after placing the
6271 * new event on the sibling_list. This ensures destruction
6272 * of the group leader will find the pointer to itself in
6273 * perf_group_detach().
6275 fput_light(group_file, fput_needed);
6276 fd_install(event_fd, event_file);
6277 return event_fd;
6279 err_context:
6280 perf_unpin_context(ctx);
6281 put_ctx(ctx);
6282 err_alloc:
6283 free_event(event);
6284 err_task:
6285 if (task)
6286 put_task_struct(task);
6287 err_group_fd:
6288 fput_light(group_file, fput_needed);
6289 err_fd:
6290 put_unused_fd(event_fd);
6291 return err;
6295 * perf_event_create_kernel_counter
6297 * @attr: attributes of the counter to create
6298 * @cpu: cpu in which the counter is bound
6299 * @task: task to profile (NULL for percpu)
6301 struct perf_event *
6302 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
6303 struct task_struct *task,
6304 perf_overflow_handler_t overflow_handler,
6305 void *context)
6307 struct perf_event_context *ctx;
6308 struct perf_event *event;
6309 int err;
6312 * Get the target context (task or percpu):
6315 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
6316 overflow_handler, context);
6317 if (IS_ERR(event)) {
6318 err = PTR_ERR(event);
6319 goto err;
6322 ctx = find_get_context(event->pmu, task, cpu);
6323 if (IS_ERR(ctx)) {
6324 err = PTR_ERR(ctx);
6325 goto err_free;
6328 event->filp = NULL;
6329 WARN_ON_ONCE(ctx->parent_ctx);
6330 mutex_lock(&ctx->mutex);
6331 perf_install_in_context(ctx, event, cpu);
6332 ++ctx->generation;
6333 perf_unpin_context(ctx);
6334 mutex_unlock(&ctx->mutex);
6336 return event;
6338 err_free:
6339 free_event(event);
6340 err:
6341 return ERR_PTR(err);
6343 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
6345 static void sync_child_event(struct perf_event *child_event,
6346 struct task_struct *child)
6348 struct perf_event *parent_event = child_event->parent;
6349 u64 child_val;
6351 if (child_event->attr.inherit_stat)
6352 perf_event_read_event(child_event, child);
6354 child_val = perf_event_count(child_event);
6357 * Add back the child's count to the parent's count:
6359 atomic64_add(child_val, &parent_event->child_count);
6360 atomic64_add(child_event->total_time_enabled,
6361 &parent_event->child_total_time_enabled);
6362 atomic64_add(child_event->total_time_running,
6363 &parent_event->child_total_time_running);
6366 * Remove this event from the parent's list
6368 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6369 mutex_lock(&parent_event->child_mutex);
6370 list_del_init(&child_event->child_list);
6371 mutex_unlock(&parent_event->child_mutex);
6374 * Release the parent event, if this was the last
6375 * reference to it.
6377 fput(parent_event->filp);
6380 static void
6381 __perf_event_exit_task(struct perf_event *child_event,
6382 struct perf_event_context *child_ctx,
6383 struct task_struct *child)
6385 if (child_event->parent) {
6386 raw_spin_lock_irq(&child_ctx->lock);
6387 perf_group_detach(child_event);
6388 raw_spin_unlock_irq(&child_ctx->lock);
6391 perf_remove_from_context(child_event);
6394 * It can happen that the parent exits first, and has events
6395 * that are still around due to the child reference. These
6396 * events need to be zapped.
6398 if (child_event->parent) {
6399 sync_child_event(child_event, child);
6400 free_event(child_event);
6404 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
6406 struct perf_event *child_event, *tmp;
6407 struct perf_event_context *child_ctx;
6408 unsigned long flags;
6410 if (likely(!child->perf_event_ctxp[ctxn])) {
6411 perf_event_task(child, NULL, 0);
6412 return;
6415 local_irq_save(flags);
6417 * We can't reschedule here because interrupts are disabled,
6418 * and either child is current or it is a task that can't be
6419 * scheduled, so we are now safe from rescheduling changing
6420 * our context.
6422 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
6425 * Take the context lock here so that if find_get_context is
6426 * reading child->perf_event_ctxp, we wait until it has
6427 * incremented the context's refcount before we do put_ctx below.
6429 raw_spin_lock(&child_ctx->lock);
6430 task_ctx_sched_out(child_ctx);
6431 child->perf_event_ctxp[ctxn] = NULL;
6433 * If this context is a clone; unclone it so it can't get
6434 * swapped to another process while we're removing all
6435 * the events from it.
6437 unclone_ctx(child_ctx);
6438 update_context_time(child_ctx);
6439 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6442 * Report the task dead after unscheduling the events so that we
6443 * won't get any samples after PERF_RECORD_EXIT. We can however still
6444 * get a few PERF_RECORD_READ events.
6446 perf_event_task(child, child_ctx, 0);
6449 * We can recurse on the same lock type through:
6451 * __perf_event_exit_task()
6452 * sync_child_event()
6453 * fput(parent_event->filp)
6454 * perf_release()
6455 * mutex_lock(&ctx->mutex)
6457 * But since its the parent context it won't be the same instance.
6459 mutex_lock(&child_ctx->mutex);
6461 again:
6462 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
6463 group_entry)
6464 __perf_event_exit_task(child_event, child_ctx, child);
6466 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
6467 group_entry)
6468 __perf_event_exit_task(child_event, child_ctx, child);
6471 * If the last event was a group event, it will have appended all
6472 * its siblings to the list, but we obtained 'tmp' before that which
6473 * will still point to the list head terminating the iteration.
6475 if (!list_empty(&child_ctx->pinned_groups) ||
6476 !list_empty(&child_ctx->flexible_groups))
6477 goto again;
6479 mutex_unlock(&child_ctx->mutex);
6481 put_ctx(child_ctx);
6485 * When a child task exits, feed back event values to parent events.
6487 void perf_event_exit_task(struct task_struct *child)
6489 struct perf_event *event, *tmp;
6490 int ctxn;
6492 mutex_lock(&child->perf_event_mutex);
6493 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
6494 owner_entry) {
6495 list_del_init(&event->owner_entry);
6498 * Ensure the list deletion is visible before we clear
6499 * the owner, closes a race against perf_release() where
6500 * we need to serialize on the owner->perf_event_mutex.
6502 smp_wmb();
6503 event->owner = NULL;
6505 mutex_unlock(&child->perf_event_mutex);
6507 for_each_task_context_nr(ctxn)
6508 perf_event_exit_task_context(child, ctxn);
6511 static void perf_free_event(struct perf_event *event,
6512 struct perf_event_context *ctx)
6514 struct perf_event *parent = event->parent;
6516 if (WARN_ON_ONCE(!parent))
6517 return;
6519 mutex_lock(&parent->child_mutex);
6520 list_del_init(&event->child_list);
6521 mutex_unlock(&parent->child_mutex);
6523 fput(parent->filp);
6525 perf_group_detach(event);
6526 list_del_event(event, ctx);
6527 free_event(event);
6531 * free an unexposed, unused context as created by inheritance by
6532 * perf_event_init_task below, used by fork() in case of fail.
6534 void perf_event_free_task(struct task_struct *task)
6536 struct perf_event_context *ctx;
6537 struct perf_event *event, *tmp;
6538 int ctxn;
6540 for_each_task_context_nr(ctxn) {
6541 ctx = task->perf_event_ctxp[ctxn];
6542 if (!ctx)
6543 continue;
6545 mutex_lock(&ctx->mutex);
6546 again:
6547 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
6548 group_entry)
6549 perf_free_event(event, ctx);
6551 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
6552 group_entry)
6553 perf_free_event(event, ctx);
6555 if (!list_empty(&ctx->pinned_groups) ||
6556 !list_empty(&ctx->flexible_groups))
6557 goto again;
6559 mutex_unlock(&ctx->mutex);
6561 put_ctx(ctx);
6565 void perf_event_delayed_put(struct task_struct *task)
6567 int ctxn;
6569 for_each_task_context_nr(ctxn)
6570 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
6574 * inherit a event from parent task to child task:
6576 static struct perf_event *
6577 inherit_event(struct perf_event *parent_event,
6578 struct task_struct *parent,
6579 struct perf_event_context *parent_ctx,
6580 struct task_struct *child,
6581 struct perf_event *group_leader,
6582 struct perf_event_context *child_ctx)
6584 struct perf_event *child_event;
6585 unsigned long flags;
6588 * Instead of creating recursive hierarchies of events,
6589 * we link inherited events back to the original parent,
6590 * which has a filp for sure, which we use as the reference
6591 * count:
6593 if (parent_event->parent)
6594 parent_event = parent_event->parent;
6596 child_event = perf_event_alloc(&parent_event->attr,
6597 parent_event->cpu,
6598 child,
6599 group_leader, parent_event,
6600 NULL, NULL);
6601 if (IS_ERR(child_event))
6602 return child_event;
6603 get_ctx(child_ctx);
6606 * Make the child state follow the state of the parent event,
6607 * not its attr.disabled bit. We hold the parent's mutex,
6608 * so we won't race with perf_event_{en, dis}able_family.
6610 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
6611 child_event->state = PERF_EVENT_STATE_INACTIVE;
6612 else
6613 child_event->state = PERF_EVENT_STATE_OFF;
6615 if (parent_event->attr.freq) {
6616 u64 sample_period = parent_event->hw.sample_period;
6617 struct hw_perf_event *hwc = &child_event->hw;
6619 hwc->sample_period = sample_period;
6620 hwc->last_period = sample_period;
6622 local64_set(&hwc->period_left, sample_period);
6625 child_event->ctx = child_ctx;
6626 child_event->overflow_handler = parent_event->overflow_handler;
6627 child_event->overflow_handler_context
6628 = parent_event->overflow_handler_context;
6631 * Precalculate sample_data sizes
6633 perf_event__header_size(child_event);
6634 perf_event__id_header_size(child_event);
6637 * Link it up in the child's context:
6639 raw_spin_lock_irqsave(&child_ctx->lock, flags);
6640 add_event_to_ctx(child_event, child_ctx);
6641 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6644 * Get a reference to the parent filp - we will fput it
6645 * when the child event exits. This is safe to do because
6646 * we are in the parent and we know that the filp still
6647 * exists and has a nonzero count:
6649 atomic_long_inc(&parent_event->filp->f_count);
6652 * Link this into the parent event's child list
6654 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6655 mutex_lock(&parent_event->child_mutex);
6656 list_add_tail(&child_event->child_list, &parent_event->child_list);
6657 mutex_unlock(&parent_event->child_mutex);
6659 return child_event;
6662 static int inherit_group(struct perf_event *parent_event,
6663 struct task_struct *parent,
6664 struct perf_event_context *parent_ctx,
6665 struct task_struct *child,
6666 struct perf_event_context *child_ctx)
6668 struct perf_event *leader;
6669 struct perf_event *sub;
6670 struct perf_event *child_ctr;
6672 leader = inherit_event(parent_event, parent, parent_ctx,
6673 child, NULL, child_ctx);
6674 if (IS_ERR(leader))
6675 return PTR_ERR(leader);
6676 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
6677 child_ctr = inherit_event(sub, parent, parent_ctx,
6678 child, leader, child_ctx);
6679 if (IS_ERR(child_ctr))
6680 return PTR_ERR(child_ctr);
6682 return 0;
6685 static int
6686 inherit_task_group(struct perf_event *event, struct task_struct *parent,
6687 struct perf_event_context *parent_ctx,
6688 struct task_struct *child, int ctxn,
6689 int *inherited_all)
6691 int ret;
6692 struct perf_event_context *child_ctx;
6694 if (!event->attr.inherit) {
6695 *inherited_all = 0;
6696 return 0;
6699 child_ctx = child->perf_event_ctxp[ctxn];
6700 if (!child_ctx) {
6702 * This is executed from the parent task context, so
6703 * inherit events that have been marked for cloning.
6704 * First allocate and initialize a context for the
6705 * child.
6708 child_ctx = alloc_perf_context(event->pmu, child);
6709 if (!child_ctx)
6710 return -ENOMEM;
6712 child->perf_event_ctxp[ctxn] = child_ctx;
6715 ret = inherit_group(event, parent, parent_ctx,
6716 child, child_ctx);
6718 if (ret)
6719 *inherited_all = 0;
6721 return ret;
6725 * Initialize the perf_event context in task_struct
6727 int perf_event_init_context(struct task_struct *child, int ctxn)
6729 struct perf_event_context *child_ctx, *parent_ctx;
6730 struct perf_event_context *cloned_ctx;
6731 struct perf_event *event;
6732 struct task_struct *parent = current;
6733 int inherited_all = 1;
6734 unsigned long flags;
6735 int ret = 0;
6737 if (likely(!parent->perf_event_ctxp[ctxn]))
6738 return 0;
6741 * If the parent's context is a clone, pin it so it won't get
6742 * swapped under us.
6744 parent_ctx = perf_pin_task_context(parent, ctxn);
6747 * No need to check if parent_ctx != NULL here; since we saw
6748 * it non-NULL earlier, the only reason for it to become NULL
6749 * is if we exit, and since we're currently in the middle of
6750 * a fork we can't be exiting at the same time.
6754 * Lock the parent list. No need to lock the child - not PID
6755 * hashed yet and not running, so nobody can access it.
6757 mutex_lock(&parent_ctx->mutex);
6760 * We dont have to disable NMIs - we are only looking at
6761 * the list, not manipulating it:
6763 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
6764 ret = inherit_task_group(event, parent, parent_ctx,
6765 child, ctxn, &inherited_all);
6766 if (ret)
6767 break;
6771 * We can't hold ctx->lock when iterating the ->flexible_group list due
6772 * to allocations, but we need to prevent rotation because
6773 * rotate_ctx() will change the list from interrupt context.
6775 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
6776 parent_ctx->rotate_disable = 1;
6777 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
6779 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
6780 ret = inherit_task_group(event, parent, parent_ctx,
6781 child, ctxn, &inherited_all);
6782 if (ret)
6783 break;
6786 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
6787 parent_ctx->rotate_disable = 0;
6789 child_ctx = child->perf_event_ctxp[ctxn];
6791 if (child_ctx && inherited_all) {
6793 * Mark the child context as a clone of the parent
6794 * context, or of whatever the parent is a clone of.
6796 * Note that if the parent is a clone, the holding of
6797 * parent_ctx->lock avoids it from being uncloned.
6799 cloned_ctx = parent_ctx->parent_ctx;
6800 if (cloned_ctx) {
6801 child_ctx->parent_ctx = cloned_ctx;
6802 child_ctx->parent_gen = parent_ctx->parent_gen;
6803 } else {
6804 child_ctx->parent_ctx = parent_ctx;
6805 child_ctx->parent_gen = parent_ctx->generation;
6807 get_ctx(child_ctx->parent_ctx);
6810 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
6811 mutex_unlock(&parent_ctx->mutex);
6813 perf_unpin_context(parent_ctx);
6814 put_ctx(parent_ctx);
6816 return ret;
6820 * Initialize the perf_event context in task_struct
6822 int perf_event_init_task(struct task_struct *child)
6824 int ctxn, ret;
6826 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
6827 mutex_init(&child->perf_event_mutex);
6828 INIT_LIST_HEAD(&child->perf_event_list);
6830 for_each_task_context_nr(ctxn) {
6831 ret = perf_event_init_context(child, ctxn);
6832 if (ret)
6833 return ret;
6836 return 0;
6839 static void __init perf_event_init_all_cpus(void)
6841 struct swevent_htable *swhash;
6842 int cpu;
6844 for_each_possible_cpu(cpu) {
6845 swhash = &per_cpu(swevent_htable, cpu);
6846 mutex_init(&swhash->hlist_mutex);
6847 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
6851 static void __cpuinit perf_event_init_cpu(int cpu)
6853 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6855 mutex_lock(&swhash->hlist_mutex);
6856 if (swhash->hlist_refcount > 0) {
6857 struct swevent_hlist *hlist;
6859 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
6860 WARN_ON(!hlist);
6861 rcu_assign_pointer(swhash->swevent_hlist, hlist);
6863 mutex_unlock(&swhash->hlist_mutex);
6866 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
6867 static void perf_pmu_rotate_stop(struct pmu *pmu)
6869 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6871 WARN_ON(!irqs_disabled());
6873 list_del_init(&cpuctx->rotation_list);
6876 static void __perf_event_exit_context(void *__info)
6878 struct perf_event_context *ctx = __info;
6879 struct perf_event *event, *tmp;
6881 perf_pmu_rotate_stop(ctx->pmu);
6883 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
6884 __perf_remove_from_context(event);
6885 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
6886 __perf_remove_from_context(event);
6889 static void perf_event_exit_cpu_context(int cpu)
6891 struct perf_event_context *ctx;
6892 struct pmu *pmu;
6893 int idx;
6895 idx = srcu_read_lock(&pmus_srcu);
6896 list_for_each_entry_rcu(pmu, &pmus, entry) {
6897 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
6899 mutex_lock(&ctx->mutex);
6900 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
6901 mutex_unlock(&ctx->mutex);
6903 srcu_read_unlock(&pmus_srcu, idx);
6906 static void perf_event_exit_cpu(int cpu)
6908 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6910 mutex_lock(&swhash->hlist_mutex);
6911 swevent_hlist_release(swhash);
6912 mutex_unlock(&swhash->hlist_mutex);
6914 perf_event_exit_cpu_context(cpu);
6916 #else
6917 static inline void perf_event_exit_cpu(int cpu) { }
6918 #endif
6920 static int
6921 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
6923 int cpu;
6925 for_each_online_cpu(cpu)
6926 perf_event_exit_cpu(cpu);
6928 return NOTIFY_OK;
6932 * Run the perf reboot notifier at the very last possible moment so that
6933 * the generic watchdog code runs as long as possible.
6935 static struct notifier_block perf_reboot_notifier = {
6936 .notifier_call = perf_reboot,
6937 .priority = INT_MIN,
6940 static int __cpuinit
6941 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
6943 unsigned int cpu = (long)hcpu;
6945 switch (action & ~CPU_TASKS_FROZEN) {
6947 case CPU_UP_PREPARE:
6948 case CPU_DOWN_FAILED:
6949 perf_event_init_cpu(cpu);
6950 break;
6952 case CPU_UP_CANCELED:
6953 case CPU_DOWN_PREPARE:
6954 perf_event_exit_cpu(cpu);
6955 break;
6957 default:
6958 break;
6961 return NOTIFY_OK;
6964 void __init perf_event_init(void)
6966 int ret;
6968 idr_init(&pmu_idr);
6970 perf_event_init_all_cpus();
6971 init_srcu_struct(&pmus_srcu);
6972 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
6973 perf_pmu_register(&perf_cpu_clock, NULL, -1);
6974 perf_pmu_register(&perf_task_clock, NULL, -1);
6975 perf_tp_register();
6976 perf_cpu_notifier(perf_cpu_notify);
6977 register_reboot_notifier(&perf_reboot_notifier);
6979 ret = init_hw_breakpoint();
6980 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
6983 static int __init perf_event_sysfs_init(void)
6985 struct pmu *pmu;
6986 int ret;
6988 mutex_lock(&pmus_lock);
6990 ret = bus_register(&pmu_bus);
6991 if (ret)
6992 goto unlock;
6994 list_for_each_entry(pmu, &pmus, entry) {
6995 if (!pmu->name || pmu->type < 0)
6996 continue;
6998 ret = pmu_dev_alloc(pmu);
6999 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
7001 pmu_bus_running = 1;
7002 ret = 0;
7004 unlock:
7005 mutex_unlock(&pmus_lock);
7007 return ret;
7009 device_initcall(perf_event_sysfs_init);
7011 #ifdef CONFIG_CGROUP_PERF
7012 static struct cgroup_subsys_state *perf_cgroup_create(
7013 struct cgroup_subsys *ss, struct cgroup *cont)
7015 struct perf_cgroup *jc;
7017 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
7018 if (!jc)
7019 return ERR_PTR(-ENOMEM);
7021 jc->info = alloc_percpu(struct perf_cgroup_info);
7022 if (!jc->info) {
7023 kfree(jc);
7024 return ERR_PTR(-ENOMEM);
7027 return &jc->css;
7030 static void perf_cgroup_destroy(struct cgroup_subsys *ss,
7031 struct cgroup *cont)
7033 struct perf_cgroup *jc;
7034 jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
7035 struct perf_cgroup, css);
7036 free_percpu(jc->info);
7037 kfree(jc);
7040 static int __perf_cgroup_move(void *info)
7042 struct task_struct *task = info;
7043 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
7044 return 0;
7047 static void perf_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7048 struct cgroup_taskset *tset)
7050 struct task_struct *task;
7052 cgroup_taskset_for_each(task, cgrp, tset)
7053 task_function_call(task, __perf_cgroup_move, task);
7056 static void perf_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
7057 struct cgroup *old_cgrp, struct task_struct *task)
7060 * cgroup_exit() is called in the copy_process() failure path.
7061 * Ignore this case since the task hasn't ran yet, this avoids
7062 * trying to poke a half freed task state from generic code.
7064 if (!(task->flags & PF_EXITING))
7065 return;
7067 task_function_call(task, __perf_cgroup_move, task);
7070 struct cgroup_subsys perf_subsys = {
7071 .name = "perf_event",
7072 .subsys_id = perf_subsys_id,
7073 .create = perf_cgroup_create,
7074 .destroy = perf_cgroup_destroy,
7075 .exit = perf_cgroup_exit,
7076 .attach = perf_cgroup_attach,
7078 #endif /* CONFIG_CGROUP_PERF */