Merge tag 'gpio-v3.13-3' of git://git.kernel.org/pub/scm/linux/kernel/git/linusw...
[linux-2.6.git] / kernel / events / core.c
blob72348dc192c11e7a85560b67bc792415d969e22f
1 /*
2 * Performance events core code:
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 * For licensing details see kernel-base/COPYING
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/perf_event.h>
38 #include <linux/ftrace_event.h>
39 #include <linux/hw_breakpoint.h>
40 #include <linux/mm_types.h>
41 #include <linux/cgroup.h>
43 #include "internal.h"
45 #include <asm/irq_regs.h>
47 struct remote_function_call {
48 struct task_struct *p;
49 int (*func)(void *info);
50 void *info;
51 int ret;
54 static void remote_function(void *data)
56 struct remote_function_call *tfc = data;
57 struct task_struct *p = tfc->p;
59 if (p) {
60 tfc->ret = -EAGAIN;
61 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
62 return;
65 tfc->ret = tfc->func(tfc->info);
68 /**
69 * task_function_call - call a function on the cpu on which a task runs
70 * @p: the task to evaluate
71 * @func: the function to be called
72 * @info: the function call argument
74 * Calls the function @func when the task is currently running. This might
75 * be on the current CPU, which just calls the function directly
77 * returns: @func return value, or
78 * -ESRCH - when the process isn't running
79 * -EAGAIN - when the process moved away
81 static int
82 task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
84 struct remote_function_call data = {
85 .p = p,
86 .func = func,
87 .info = info,
88 .ret = -ESRCH, /* No such (running) process */
91 if (task_curr(p))
92 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
94 return data.ret;
97 /**
98 * cpu_function_call - call a function on the cpu
99 * @func: the function to be called
100 * @info: the function call argument
102 * Calls the function @func on the remote cpu.
104 * returns: @func return value or -ENXIO when the cpu is offline
106 static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
108 struct remote_function_call data = {
109 .p = NULL,
110 .func = func,
111 .info = info,
112 .ret = -ENXIO, /* No such CPU */
115 smp_call_function_single(cpu, remote_function, &data, 1);
117 return data.ret;
120 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
121 PERF_FLAG_FD_OUTPUT |\
122 PERF_FLAG_PID_CGROUP)
125 * branch priv levels that need permission checks
127 #define PERF_SAMPLE_BRANCH_PERM_PLM \
128 (PERF_SAMPLE_BRANCH_KERNEL |\
129 PERF_SAMPLE_BRANCH_HV)
131 enum event_type_t {
132 EVENT_FLEXIBLE = 0x1,
133 EVENT_PINNED = 0x2,
134 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
138 * perf_sched_events : >0 events exist
139 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
141 struct static_key_deferred perf_sched_events __read_mostly;
142 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
143 static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
145 static atomic_t nr_mmap_events __read_mostly;
146 static atomic_t nr_comm_events __read_mostly;
147 static atomic_t nr_task_events __read_mostly;
148 static atomic_t nr_freq_events __read_mostly;
150 static LIST_HEAD(pmus);
151 static DEFINE_MUTEX(pmus_lock);
152 static struct srcu_struct pmus_srcu;
155 * perf event paranoia level:
156 * -1 - not paranoid at all
157 * 0 - disallow raw tracepoint access for unpriv
158 * 1 - disallow cpu events for unpriv
159 * 2 - disallow kernel profiling for unpriv
161 int sysctl_perf_event_paranoid __read_mostly = 1;
163 /* Minimum for 512 kiB + 1 user control page */
164 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
167 * max perf event sample rate
169 #define DEFAULT_MAX_SAMPLE_RATE 100000
170 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
171 #define DEFAULT_CPU_TIME_MAX_PERCENT 25
173 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
175 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
176 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
178 static int perf_sample_allowed_ns __read_mostly =
179 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
181 void update_perf_cpu_limits(void)
183 u64 tmp = perf_sample_period_ns;
185 tmp *= sysctl_perf_cpu_time_max_percent;
186 do_div(tmp, 100);
187 ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
190 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
192 int perf_proc_update_handler(struct ctl_table *table, int write,
193 void __user *buffer, size_t *lenp,
194 loff_t *ppos)
196 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
198 if (ret || !write)
199 return ret;
201 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
202 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
203 update_perf_cpu_limits();
205 return 0;
208 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
210 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
211 void __user *buffer, size_t *lenp,
212 loff_t *ppos)
214 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
216 if (ret || !write)
217 return ret;
219 update_perf_cpu_limits();
221 return 0;
225 * perf samples are done in some very critical code paths (NMIs).
226 * If they take too much CPU time, the system can lock up and not
227 * get any real work done. This will drop the sample rate when
228 * we detect that events are taking too long.
230 #define NR_ACCUMULATED_SAMPLES 128
231 static DEFINE_PER_CPU(u64, running_sample_length);
233 void perf_sample_event_took(u64 sample_len_ns)
235 u64 avg_local_sample_len;
236 u64 local_samples_len;
237 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
239 if (allowed_ns == 0)
240 return;
242 /* decay the counter by 1 average sample */
243 local_samples_len = __get_cpu_var(running_sample_length);
244 local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
245 local_samples_len += sample_len_ns;
246 __get_cpu_var(running_sample_length) = local_samples_len;
249 * note: this will be biased artifically low until we have
250 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
251 * from having to maintain a count.
253 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
255 if (avg_local_sample_len <= allowed_ns)
256 return;
258 if (max_samples_per_tick <= 1)
259 return;
261 max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
262 sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
263 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
265 printk_ratelimited(KERN_WARNING
266 "perf samples too long (%lld > %lld), lowering "
267 "kernel.perf_event_max_sample_rate to %d\n",
268 avg_local_sample_len, allowed_ns,
269 sysctl_perf_event_sample_rate);
271 update_perf_cpu_limits();
274 static atomic64_t perf_event_id;
276 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
277 enum event_type_t event_type);
279 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
280 enum event_type_t event_type,
281 struct task_struct *task);
283 static void update_context_time(struct perf_event_context *ctx);
284 static u64 perf_event_time(struct perf_event *event);
286 void __weak perf_event_print_debug(void) { }
288 extern __weak const char *perf_pmu_name(void)
290 return "pmu";
293 static inline u64 perf_clock(void)
295 return local_clock();
298 static inline struct perf_cpu_context *
299 __get_cpu_context(struct perf_event_context *ctx)
301 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
304 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
305 struct perf_event_context *ctx)
307 raw_spin_lock(&cpuctx->ctx.lock);
308 if (ctx)
309 raw_spin_lock(&ctx->lock);
312 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
313 struct perf_event_context *ctx)
315 if (ctx)
316 raw_spin_unlock(&ctx->lock);
317 raw_spin_unlock(&cpuctx->ctx.lock);
320 #ifdef CONFIG_CGROUP_PERF
323 * perf_cgroup_info keeps track of time_enabled for a cgroup.
324 * This is a per-cpu dynamically allocated data structure.
326 struct perf_cgroup_info {
327 u64 time;
328 u64 timestamp;
331 struct perf_cgroup {
332 struct cgroup_subsys_state css;
333 struct perf_cgroup_info __percpu *info;
337 * Must ensure cgroup is pinned (css_get) before calling
338 * this function. In other words, we cannot call this function
339 * if there is no cgroup event for the current CPU context.
341 static inline struct perf_cgroup *
342 perf_cgroup_from_task(struct task_struct *task)
344 return container_of(task_css(task, perf_subsys_id),
345 struct perf_cgroup, css);
348 static inline bool
349 perf_cgroup_match(struct perf_event *event)
351 struct perf_event_context *ctx = event->ctx;
352 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
354 /* @event doesn't care about cgroup */
355 if (!event->cgrp)
356 return true;
358 /* wants specific cgroup scope but @cpuctx isn't associated with any */
359 if (!cpuctx->cgrp)
360 return false;
363 * Cgroup scoping is recursive. An event enabled for a cgroup is
364 * also enabled for all its descendant cgroups. If @cpuctx's
365 * cgroup is a descendant of @event's (the test covers identity
366 * case), it's a match.
368 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
369 event->cgrp->css.cgroup);
372 static inline bool perf_tryget_cgroup(struct perf_event *event)
374 return css_tryget(&event->cgrp->css);
377 static inline void perf_put_cgroup(struct perf_event *event)
379 css_put(&event->cgrp->css);
382 static inline void perf_detach_cgroup(struct perf_event *event)
384 perf_put_cgroup(event);
385 event->cgrp = NULL;
388 static inline int is_cgroup_event(struct perf_event *event)
390 return event->cgrp != NULL;
393 static inline u64 perf_cgroup_event_time(struct perf_event *event)
395 struct perf_cgroup_info *t;
397 t = per_cpu_ptr(event->cgrp->info, event->cpu);
398 return t->time;
401 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
403 struct perf_cgroup_info *info;
404 u64 now;
406 now = perf_clock();
408 info = this_cpu_ptr(cgrp->info);
410 info->time += now - info->timestamp;
411 info->timestamp = now;
414 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
416 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
417 if (cgrp_out)
418 __update_cgrp_time(cgrp_out);
421 static inline void update_cgrp_time_from_event(struct perf_event *event)
423 struct perf_cgroup *cgrp;
426 * ensure we access cgroup data only when needed and
427 * when we know the cgroup is pinned (css_get)
429 if (!is_cgroup_event(event))
430 return;
432 cgrp = perf_cgroup_from_task(current);
434 * Do not update time when cgroup is not active
436 if (cgrp == event->cgrp)
437 __update_cgrp_time(event->cgrp);
440 static inline void
441 perf_cgroup_set_timestamp(struct task_struct *task,
442 struct perf_event_context *ctx)
444 struct perf_cgroup *cgrp;
445 struct perf_cgroup_info *info;
448 * ctx->lock held by caller
449 * ensure we do not access cgroup data
450 * unless we have the cgroup pinned (css_get)
452 if (!task || !ctx->nr_cgroups)
453 return;
455 cgrp = perf_cgroup_from_task(task);
456 info = this_cpu_ptr(cgrp->info);
457 info->timestamp = ctx->timestamp;
460 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
461 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
464 * reschedule events based on the cgroup constraint of task.
466 * mode SWOUT : schedule out everything
467 * mode SWIN : schedule in based on cgroup for next
469 void perf_cgroup_switch(struct task_struct *task, int mode)
471 struct perf_cpu_context *cpuctx;
472 struct pmu *pmu;
473 unsigned long flags;
476 * disable interrupts to avoid geting nr_cgroup
477 * changes via __perf_event_disable(). Also
478 * avoids preemption.
480 local_irq_save(flags);
483 * we reschedule only in the presence of cgroup
484 * constrained events.
486 rcu_read_lock();
488 list_for_each_entry_rcu(pmu, &pmus, entry) {
489 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
490 if (cpuctx->unique_pmu != pmu)
491 continue; /* ensure we process each cpuctx once */
494 * perf_cgroup_events says at least one
495 * context on this CPU has cgroup events.
497 * ctx->nr_cgroups reports the number of cgroup
498 * events for a context.
500 if (cpuctx->ctx.nr_cgroups > 0) {
501 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
502 perf_pmu_disable(cpuctx->ctx.pmu);
504 if (mode & PERF_CGROUP_SWOUT) {
505 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
507 * must not be done before ctxswout due
508 * to event_filter_match() in event_sched_out()
510 cpuctx->cgrp = NULL;
513 if (mode & PERF_CGROUP_SWIN) {
514 WARN_ON_ONCE(cpuctx->cgrp);
516 * set cgrp before ctxsw in to allow
517 * event_filter_match() to not have to pass
518 * task around
520 cpuctx->cgrp = perf_cgroup_from_task(task);
521 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
523 perf_pmu_enable(cpuctx->ctx.pmu);
524 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
528 rcu_read_unlock();
530 local_irq_restore(flags);
533 static inline void perf_cgroup_sched_out(struct task_struct *task,
534 struct task_struct *next)
536 struct perf_cgroup *cgrp1;
537 struct perf_cgroup *cgrp2 = NULL;
540 * we come here when we know perf_cgroup_events > 0
542 cgrp1 = perf_cgroup_from_task(task);
545 * next is NULL when called from perf_event_enable_on_exec()
546 * that will systematically cause a cgroup_switch()
548 if (next)
549 cgrp2 = perf_cgroup_from_task(next);
552 * only schedule out current cgroup events if we know
553 * that we are switching to a different cgroup. Otherwise,
554 * do no touch the cgroup events.
556 if (cgrp1 != cgrp2)
557 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
560 static inline void perf_cgroup_sched_in(struct task_struct *prev,
561 struct task_struct *task)
563 struct perf_cgroup *cgrp1;
564 struct perf_cgroup *cgrp2 = NULL;
567 * we come here when we know perf_cgroup_events > 0
569 cgrp1 = perf_cgroup_from_task(task);
571 /* prev can never be NULL */
572 cgrp2 = perf_cgroup_from_task(prev);
575 * only need to schedule in cgroup events if we are changing
576 * cgroup during ctxsw. Cgroup events were not scheduled
577 * out of ctxsw out if that was not the case.
579 if (cgrp1 != cgrp2)
580 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
583 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
584 struct perf_event_attr *attr,
585 struct perf_event *group_leader)
587 struct perf_cgroup *cgrp;
588 struct cgroup_subsys_state *css;
589 struct fd f = fdget(fd);
590 int ret = 0;
592 if (!f.file)
593 return -EBADF;
595 rcu_read_lock();
597 css = css_from_dir(f.file->f_dentry, &perf_subsys);
598 if (IS_ERR(css)) {
599 ret = PTR_ERR(css);
600 goto out;
603 cgrp = container_of(css, struct perf_cgroup, css);
604 event->cgrp = cgrp;
606 /* must be done before we fput() the file */
607 if (!perf_tryget_cgroup(event)) {
608 event->cgrp = NULL;
609 ret = -ENOENT;
610 goto out;
614 * all events in a group must monitor
615 * the same cgroup because a task belongs
616 * to only one perf cgroup at a time
618 if (group_leader && group_leader->cgrp != cgrp) {
619 perf_detach_cgroup(event);
620 ret = -EINVAL;
622 out:
623 rcu_read_unlock();
624 fdput(f);
625 return ret;
628 static inline void
629 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
631 struct perf_cgroup_info *t;
632 t = per_cpu_ptr(event->cgrp->info, event->cpu);
633 event->shadow_ctx_time = now - t->timestamp;
636 static inline void
637 perf_cgroup_defer_enabled(struct perf_event *event)
640 * when the current task's perf cgroup does not match
641 * the event's, we need to remember to call the
642 * perf_mark_enable() function the first time a task with
643 * a matching perf cgroup is scheduled in.
645 if (is_cgroup_event(event) && !perf_cgroup_match(event))
646 event->cgrp_defer_enabled = 1;
649 static inline void
650 perf_cgroup_mark_enabled(struct perf_event *event,
651 struct perf_event_context *ctx)
653 struct perf_event *sub;
654 u64 tstamp = perf_event_time(event);
656 if (!event->cgrp_defer_enabled)
657 return;
659 event->cgrp_defer_enabled = 0;
661 event->tstamp_enabled = tstamp - event->total_time_enabled;
662 list_for_each_entry(sub, &event->sibling_list, group_entry) {
663 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
664 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
665 sub->cgrp_defer_enabled = 0;
669 #else /* !CONFIG_CGROUP_PERF */
671 static inline bool
672 perf_cgroup_match(struct perf_event *event)
674 return true;
677 static inline void perf_detach_cgroup(struct perf_event *event)
680 static inline int is_cgroup_event(struct perf_event *event)
682 return 0;
685 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
687 return 0;
690 static inline void update_cgrp_time_from_event(struct perf_event *event)
694 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
698 static inline void perf_cgroup_sched_out(struct task_struct *task,
699 struct task_struct *next)
703 static inline void perf_cgroup_sched_in(struct task_struct *prev,
704 struct task_struct *task)
708 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
709 struct perf_event_attr *attr,
710 struct perf_event *group_leader)
712 return -EINVAL;
715 static inline void
716 perf_cgroup_set_timestamp(struct task_struct *task,
717 struct perf_event_context *ctx)
721 void
722 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
726 static inline void
727 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
731 static inline u64 perf_cgroup_event_time(struct perf_event *event)
733 return 0;
736 static inline void
737 perf_cgroup_defer_enabled(struct perf_event *event)
741 static inline void
742 perf_cgroup_mark_enabled(struct perf_event *event,
743 struct perf_event_context *ctx)
746 #endif
749 * set default to be dependent on timer tick just
750 * like original code
752 #define PERF_CPU_HRTIMER (1000 / HZ)
754 * function must be called with interrupts disbled
756 static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr)
758 struct perf_cpu_context *cpuctx;
759 enum hrtimer_restart ret = HRTIMER_NORESTART;
760 int rotations = 0;
762 WARN_ON(!irqs_disabled());
764 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
766 rotations = perf_rotate_context(cpuctx);
769 * arm timer if needed
771 if (rotations) {
772 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
773 ret = HRTIMER_RESTART;
776 return ret;
779 /* CPU is going down */
780 void perf_cpu_hrtimer_cancel(int cpu)
782 struct perf_cpu_context *cpuctx;
783 struct pmu *pmu;
784 unsigned long flags;
786 if (WARN_ON(cpu != smp_processor_id()))
787 return;
789 local_irq_save(flags);
791 rcu_read_lock();
793 list_for_each_entry_rcu(pmu, &pmus, entry) {
794 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
796 if (pmu->task_ctx_nr == perf_sw_context)
797 continue;
799 hrtimer_cancel(&cpuctx->hrtimer);
802 rcu_read_unlock();
804 local_irq_restore(flags);
807 static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
809 struct hrtimer *hr = &cpuctx->hrtimer;
810 struct pmu *pmu = cpuctx->ctx.pmu;
811 int timer;
813 /* no multiplexing needed for SW PMU */
814 if (pmu->task_ctx_nr == perf_sw_context)
815 return;
818 * check default is sane, if not set then force to
819 * default interval (1/tick)
821 timer = pmu->hrtimer_interval_ms;
822 if (timer < 1)
823 timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
825 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
827 hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
828 hr->function = perf_cpu_hrtimer_handler;
831 static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx)
833 struct hrtimer *hr = &cpuctx->hrtimer;
834 struct pmu *pmu = cpuctx->ctx.pmu;
836 /* not for SW PMU */
837 if (pmu->task_ctx_nr == perf_sw_context)
838 return;
840 if (hrtimer_active(hr))
841 return;
843 if (!hrtimer_callback_running(hr))
844 __hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval,
845 0, HRTIMER_MODE_REL_PINNED, 0);
848 void perf_pmu_disable(struct pmu *pmu)
850 int *count = this_cpu_ptr(pmu->pmu_disable_count);
851 if (!(*count)++)
852 pmu->pmu_disable(pmu);
855 void perf_pmu_enable(struct pmu *pmu)
857 int *count = this_cpu_ptr(pmu->pmu_disable_count);
858 if (!--(*count))
859 pmu->pmu_enable(pmu);
862 static DEFINE_PER_CPU(struct list_head, rotation_list);
865 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
866 * because they're strictly cpu affine and rotate_start is called with IRQs
867 * disabled, while rotate_context is called from IRQ context.
869 static void perf_pmu_rotate_start(struct pmu *pmu)
871 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
872 struct list_head *head = &__get_cpu_var(rotation_list);
874 WARN_ON(!irqs_disabled());
876 if (list_empty(&cpuctx->rotation_list))
877 list_add(&cpuctx->rotation_list, head);
880 static void get_ctx(struct perf_event_context *ctx)
882 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
885 static void put_ctx(struct perf_event_context *ctx)
887 if (atomic_dec_and_test(&ctx->refcount)) {
888 if (ctx->parent_ctx)
889 put_ctx(ctx->parent_ctx);
890 if (ctx->task)
891 put_task_struct(ctx->task);
892 kfree_rcu(ctx, rcu_head);
896 static void unclone_ctx(struct perf_event_context *ctx)
898 if (ctx->parent_ctx) {
899 put_ctx(ctx->parent_ctx);
900 ctx->parent_ctx = NULL;
902 ctx->generation++;
905 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
908 * only top level events have the pid namespace they were created in
910 if (event->parent)
911 event = event->parent;
913 return task_tgid_nr_ns(p, event->ns);
916 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
919 * only top level events have the pid namespace they were created in
921 if (event->parent)
922 event = event->parent;
924 return task_pid_nr_ns(p, event->ns);
928 * If we inherit events we want to return the parent event id
929 * to userspace.
931 static u64 primary_event_id(struct perf_event *event)
933 u64 id = event->id;
935 if (event->parent)
936 id = event->parent->id;
938 return id;
942 * Get the perf_event_context for a task and lock it.
943 * This has to cope with with the fact that until it is locked,
944 * the context could get moved to another task.
946 static struct perf_event_context *
947 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
949 struct perf_event_context *ctx;
951 retry:
953 * One of the few rules of preemptible RCU is that one cannot do
954 * rcu_read_unlock() while holding a scheduler (or nested) lock when
955 * part of the read side critical section was preemptible -- see
956 * rcu_read_unlock_special().
958 * Since ctx->lock nests under rq->lock we must ensure the entire read
959 * side critical section is non-preemptible.
961 preempt_disable();
962 rcu_read_lock();
963 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
964 if (ctx) {
966 * If this context is a clone of another, it might
967 * get swapped for another underneath us by
968 * perf_event_task_sched_out, though the
969 * rcu_read_lock() protects us from any context
970 * getting freed. Lock the context and check if it
971 * got swapped before we could get the lock, and retry
972 * if so. If we locked the right context, then it
973 * can't get swapped on us any more.
975 raw_spin_lock_irqsave(&ctx->lock, *flags);
976 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
977 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
978 rcu_read_unlock();
979 preempt_enable();
980 goto retry;
983 if (!atomic_inc_not_zero(&ctx->refcount)) {
984 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
985 ctx = NULL;
988 rcu_read_unlock();
989 preempt_enable();
990 return ctx;
994 * Get the context for a task and increment its pin_count so it
995 * can't get swapped to another task. This also increments its
996 * reference count so that the context can't get freed.
998 static struct perf_event_context *
999 perf_pin_task_context(struct task_struct *task, int ctxn)
1001 struct perf_event_context *ctx;
1002 unsigned long flags;
1004 ctx = perf_lock_task_context(task, ctxn, &flags);
1005 if (ctx) {
1006 ++ctx->pin_count;
1007 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1009 return ctx;
1012 static void perf_unpin_context(struct perf_event_context *ctx)
1014 unsigned long flags;
1016 raw_spin_lock_irqsave(&ctx->lock, flags);
1017 --ctx->pin_count;
1018 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1022 * Update the record of the current time in a context.
1024 static void update_context_time(struct perf_event_context *ctx)
1026 u64 now = perf_clock();
1028 ctx->time += now - ctx->timestamp;
1029 ctx->timestamp = now;
1032 static u64 perf_event_time(struct perf_event *event)
1034 struct perf_event_context *ctx = event->ctx;
1036 if (is_cgroup_event(event))
1037 return perf_cgroup_event_time(event);
1039 return ctx ? ctx->time : 0;
1043 * Update the total_time_enabled and total_time_running fields for a event.
1044 * The caller of this function needs to hold the ctx->lock.
1046 static void update_event_times(struct perf_event *event)
1048 struct perf_event_context *ctx = event->ctx;
1049 u64 run_end;
1051 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1052 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1053 return;
1055 * in cgroup mode, time_enabled represents
1056 * the time the event was enabled AND active
1057 * tasks were in the monitored cgroup. This is
1058 * independent of the activity of the context as
1059 * there may be a mix of cgroup and non-cgroup events.
1061 * That is why we treat cgroup events differently
1062 * here.
1064 if (is_cgroup_event(event))
1065 run_end = perf_cgroup_event_time(event);
1066 else if (ctx->is_active)
1067 run_end = ctx->time;
1068 else
1069 run_end = event->tstamp_stopped;
1071 event->total_time_enabled = run_end - event->tstamp_enabled;
1073 if (event->state == PERF_EVENT_STATE_INACTIVE)
1074 run_end = event->tstamp_stopped;
1075 else
1076 run_end = perf_event_time(event);
1078 event->total_time_running = run_end - event->tstamp_running;
1083 * Update total_time_enabled and total_time_running for all events in a group.
1085 static void update_group_times(struct perf_event *leader)
1087 struct perf_event *event;
1089 update_event_times(leader);
1090 list_for_each_entry(event, &leader->sibling_list, group_entry)
1091 update_event_times(event);
1094 static struct list_head *
1095 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1097 if (event->attr.pinned)
1098 return &ctx->pinned_groups;
1099 else
1100 return &ctx->flexible_groups;
1104 * Add a event from the lists for its context.
1105 * Must be called with ctx->mutex and ctx->lock held.
1107 static void
1108 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1110 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1111 event->attach_state |= PERF_ATTACH_CONTEXT;
1114 * If we're a stand alone event or group leader, we go to the context
1115 * list, group events are kept attached to the group so that
1116 * perf_group_detach can, at all times, locate all siblings.
1118 if (event->group_leader == event) {
1119 struct list_head *list;
1121 if (is_software_event(event))
1122 event->group_flags |= PERF_GROUP_SOFTWARE;
1124 list = ctx_group_list(event, ctx);
1125 list_add_tail(&event->group_entry, list);
1128 if (is_cgroup_event(event))
1129 ctx->nr_cgroups++;
1131 if (has_branch_stack(event))
1132 ctx->nr_branch_stack++;
1134 list_add_rcu(&event->event_entry, &ctx->event_list);
1135 if (!ctx->nr_events)
1136 perf_pmu_rotate_start(ctx->pmu);
1137 ctx->nr_events++;
1138 if (event->attr.inherit_stat)
1139 ctx->nr_stat++;
1141 ctx->generation++;
1145 * Initialize event state based on the perf_event_attr::disabled.
1147 static inline void perf_event__state_init(struct perf_event *event)
1149 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1150 PERF_EVENT_STATE_INACTIVE;
1154 * Called at perf_event creation and when events are attached/detached from a
1155 * group.
1157 static void perf_event__read_size(struct perf_event *event)
1159 int entry = sizeof(u64); /* value */
1160 int size = 0;
1161 int nr = 1;
1163 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1164 size += sizeof(u64);
1166 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1167 size += sizeof(u64);
1169 if (event->attr.read_format & PERF_FORMAT_ID)
1170 entry += sizeof(u64);
1172 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1173 nr += event->group_leader->nr_siblings;
1174 size += sizeof(u64);
1177 size += entry * nr;
1178 event->read_size = size;
1181 static void perf_event__header_size(struct perf_event *event)
1183 struct perf_sample_data *data;
1184 u64 sample_type = event->attr.sample_type;
1185 u16 size = 0;
1187 perf_event__read_size(event);
1189 if (sample_type & PERF_SAMPLE_IP)
1190 size += sizeof(data->ip);
1192 if (sample_type & PERF_SAMPLE_ADDR)
1193 size += sizeof(data->addr);
1195 if (sample_type & PERF_SAMPLE_PERIOD)
1196 size += sizeof(data->period);
1198 if (sample_type & PERF_SAMPLE_WEIGHT)
1199 size += sizeof(data->weight);
1201 if (sample_type & PERF_SAMPLE_READ)
1202 size += event->read_size;
1204 if (sample_type & PERF_SAMPLE_DATA_SRC)
1205 size += sizeof(data->data_src.val);
1207 if (sample_type & PERF_SAMPLE_TRANSACTION)
1208 size += sizeof(data->txn);
1210 event->header_size = size;
1213 static void perf_event__id_header_size(struct perf_event *event)
1215 struct perf_sample_data *data;
1216 u64 sample_type = event->attr.sample_type;
1217 u16 size = 0;
1219 if (sample_type & PERF_SAMPLE_TID)
1220 size += sizeof(data->tid_entry);
1222 if (sample_type & PERF_SAMPLE_TIME)
1223 size += sizeof(data->time);
1225 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1226 size += sizeof(data->id);
1228 if (sample_type & PERF_SAMPLE_ID)
1229 size += sizeof(data->id);
1231 if (sample_type & PERF_SAMPLE_STREAM_ID)
1232 size += sizeof(data->stream_id);
1234 if (sample_type & PERF_SAMPLE_CPU)
1235 size += sizeof(data->cpu_entry);
1237 event->id_header_size = size;
1240 static void perf_group_attach(struct perf_event *event)
1242 struct perf_event *group_leader = event->group_leader, *pos;
1245 * We can have double attach due to group movement in perf_event_open.
1247 if (event->attach_state & PERF_ATTACH_GROUP)
1248 return;
1250 event->attach_state |= PERF_ATTACH_GROUP;
1252 if (group_leader == event)
1253 return;
1255 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1256 !is_software_event(event))
1257 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1259 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1260 group_leader->nr_siblings++;
1262 perf_event__header_size(group_leader);
1264 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1265 perf_event__header_size(pos);
1269 * Remove a event from the lists for its context.
1270 * Must be called with ctx->mutex and ctx->lock held.
1272 static void
1273 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1275 struct perf_cpu_context *cpuctx;
1277 * We can have double detach due to exit/hot-unplug + close.
1279 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1280 return;
1282 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1284 if (is_cgroup_event(event)) {
1285 ctx->nr_cgroups--;
1286 cpuctx = __get_cpu_context(ctx);
1288 * if there are no more cgroup events
1289 * then cler cgrp to avoid stale pointer
1290 * in update_cgrp_time_from_cpuctx()
1292 if (!ctx->nr_cgroups)
1293 cpuctx->cgrp = NULL;
1296 if (has_branch_stack(event))
1297 ctx->nr_branch_stack--;
1299 ctx->nr_events--;
1300 if (event->attr.inherit_stat)
1301 ctx->nr_stat--;
1303 list_del_rcu(&event->event_entry);
1305 if (event->group_leader == event)
1306 list_del_init(&event->group_entry);
1308 update_group_times(event);
1311 * If event was in error state, then keep it
1312 * that way, otherwise bogus counts will be
1313 * returned on read(). The only way to get out
1314 * of error state is by explicit re-enabling
1315 * of the event
1317 if (event->state > PERF_EVENT_STATE_OFF)
1318 event->state = PERF_EVENT_STATE_OFF;
1320 ctx->generation++;
1323 static void perf_group_detach(struct perf_event *event)
1325 struct perf_event *sibling, *tmp;
1326 struct list_head *list = NULL;
1329 * We can have double detach due to exit/hot-unplug + close.
1331 if (!(event->attach_state & PERF_ATTACH_GROUP))
1332 return;
1334 event->attach_state &= ~PERF_ATTACH_GROUP;
1337 * If this is a sibling, remove it from its group.
1339 if (event->group_leader != event) {
1340 list_del_init(&event->group_entry);
1341 event->group_leader->nr_siblings--;
1342 goto out;
1345 if (!list_empty(&event->group_entry))
1346 list = &event->group_entry;
1349 * If this was a group event with sibling events then
1350 * upgrade the siblings to singleton events by adding them
1351 * to whatever list we are on.
1353 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1354 if (list)
1355 list_move_tail(&sibling->group_entry, list);
1356 sibling->group_leader = sibling;
1358 /* Inherit group flags from the previous leader */
1359 sibling->group_flags = event->group_flags;
1362 out:
1363 perf_event__header_size(event->group_leader);
1365 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1366 perf_event__header_size(tmp);
1369 static inline int
1370 event_filter_match(struct perf_event *event)
1372 return (event->cpu == -1 || event->cpu == smp_processor_id())
1373 && perf_cgroup_match(event);
1376 static void
1377 event_sched_out(struct perf_event *event,
1378 struct perf_cpu_context *cpuctx,
1379 struct perf_event_context *ctx)
1381 u64 tstamp = perf_event_time(event);
1382 u64 delta;
1384 * An event which could not be activated because of
1385 * filter mismatch still needs to have its timings
1386 * maintained, otherwise bogus information is return
1387 * via read() for time_enabled, time_running:
1389 if (event->state == PERF_EVENT_STATE_INACTIVE
1390 && !event_filter_match(event)) {
1391 delta = tstamp - event->tstamp_stopped;
1392 event->tstamp_running += delta;
1393 event->tstamp_stopped = tstamp;
1396 if (event->state != PERF_EVENT_STATE_ACTIVE)
1397 return;
1399 event->state = PERF_EVENT_STATE_INACTIVE;
1400 if (event->pending_disable) {
1401 event->pending_disable = 0;
1402 event->state = PERF_EVENT_STATE_OFF;
1404 event->tstamp_stopped = tstamp;
1405 event->pmu->del(event, 0);
1406 event->oncpu = -1;
1408 if (!is_software_event(event))
1409 cpuctx->active_oncpu--;
1410 ctx->nr_active--;
1411 if (event->attr.freq && event->attr.sample_freq)
1412 ctx->nr_freq--;
1413 if (event->attr.exclusive || !cpuctx->active_oncpu)
1414 cpuctx->exclusive = 0;
1417 static void
1418 group_sched_out(struct perf_event *group_event,
1419 struct perf_cpu_context *cpuctx,
1420 struct perf_event_context *ctx)
1422 struct perf_event *event;
1423 int state = group_event->state;
1425 event_sched_out(group_event, cpuctx, ctx);
1428 * Schedule out siblings (if any):
1430 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1431 event_sched_out(event, cpuctx, ctx);
1433 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1434 cpuctx->exclusive = 0;
1438 * Cross CPU call to remove a performance event
1440 * We disable the event on the hardware level first. After that we
1441 * remove it from the context list.
1443 static int __perf_remove_from_context(void *info)
1445 struct perf_event *event = info;
1446 struct perf_event_context *ctx = event->ctx;
1447 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1449 raw_spin_lock(&ctx->lock);
1450 event_sched_out(event, cpuctx, ctx);
1451 list_del_event(event, ctx);
1452 if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1453 ctx->is_active = 0;
1454 cpuctx->task_ctx = NULL;
1456 raw_spin_unlock(&ctx->lock);
1458 return 0;
1463 * Remove the event from a task's (or a CPU's) list of events.
1465 * CPU events are removed with a smp call. For task events we only
1466 * call when the task is on a CPU.
1468 * If event->ctx is a cloned context, callers must make sure that
1469 * every task struct that event->ctx->task could possibly point to
1470 * remains valid. This is OK when called from perf_release since
1471 * that only calls us on the top-level context, which can't be a clone.
1472 * When called from perf_event_exit_task, it's OK because the
1473 * context has been detached from its task.
1475 static void perf_remove_from_context(struct perf_event *event)
1477 struct perf_event_context *ctx = event->ctx;
1478 struct task_struct *task = ctx->task;
1480 lockdep_assert_held(&ctx->mutex);
1482 if (!task) {
1484 * Per cpu events are removed via an smp call and
1485 * the removal is always successful.
1487 cpu_function_call(event->cpu, __perf_remove_from_context, event);
1488 return;
1491 retry:
1492 if (!task_function_call(task, __perf_remove_from_context, event))
1493 return;
1495 raw_spin_lock_irq(&ctx->lock);
1497 * If we failed to find a running task, but find the context active now
1498 * that we've acquired the ctx->lock, retry.
1500 if (ctx->is_active) {
1501 raw_spin_unlock_irq(&ctx->lock);
1502 goto retry;
1506 * Since the task isn't running, its safe to remove the event, us
1507 * holding the ctx->lock ensures the task won't get scheduled in.
1509 list_del_event(event, ctx);
1510 raw_spin_unlock_irq(&ctx->lock);
1514 * Cross CPU call to disable a performance event
1516 int __perf_event_disable(void *info)
1518 struct perf_event *event = info;
1519 struct perf_event_context *ctx = event->ctx;
1520 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1523 * If this is a per-task event, need to check whether this
1524 * event's task is the current task on this cpu.
1526 * Can trigger due to concurrent perf_event_context_sched_out()
1527 * flipping contexts around.
1529 if (ctx->task && cpuctx->task_ctx != ctx)
1530 return -EINVAL;
1532 raw_spin_lock(&ctx->lock);
1535 * If the event is on, turn it off.
1536 * If it is in error state, leave it in error state.
1538 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1539 update_context_time(ctx);
1540 update_cgrp_time_from_event(event);
1541 update_group_times(event);
1542 if (event == event->group_leader)
1543 group_sched_out(event, cpuctx, ctx);
1544 else
1545 event_sched_out(event, cpuctx, ctx);
1546 event->state = PERF_EVENT_STATE_OFF;
1549 raw_spin_unlock(&ctx->lock);
1551 return 0;
1555 * Disable a event.
1557 * If event->ctx is a cloned context, callers must make sure that
1558 * every task struct that event->ctx->task could possibly point to
1559 * remains valid. This condition is satisifed when called through
1560 * perf_event_for_each_child or perf_event_for_each because they
1561 * hold the top-level event's child_mutex, so any descendant that
1562 * goes to exit will block in sync_child_event.
1563 * When called from perf_pending_event it's OK because event->ctx
1564 * is the current context on this CPU and preemption is disabled,
1565 * hence we can't get into perf_event_task_sched_out for this context.
1567 void perf_event_disable(struct perf_event *event)
1569 struct perf_event_context *ctx = event->ctx;
1570 struct task_struct *task = ctx->task;
1572 if (!task) {
1574 * Disable the event on the cpu that it's on
1576 cpu_function_call(event->cpu, __perf_event_disable, event);
1577 return;
1580 retry:
1581 if (!task_function_call(task, __perf_event_disable, event))
1582 return;
1584 raw_spin_lock_irq(&ctx->lock);
1586 * If the event is still active, we need to retry the cross-call.
1588 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1589 raw_spin_unlock_irq(&ctx->lock);
1591 * Reload the task pointer, it might have been changed by
1592 * a concurrent perf_event_context_sched_out().
1594 task = ctx->task;
1595 goto retry;
1599 * Since we have the lock this context can't be scheduled
1600 * in, so we can change the state safely.
1602 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1603 update_group_times(event);
1604 event->state = PERF_EVENT_STATE_OFF;
1606 raw_spin_unlock_irq(&ctx->lock);
1608 EXPORT_SYMBOL_GPL(perf_event_disable);
1610 static void perf_set_shadow_time(struct perf_event *event,
1611 struct perf_event_context *ctx,
1612 u64 tstamp)
1615 * use the correct time source for the time snapshot
1617 * We could get by without this by leveraging the
1618 * fact that to get to this function, the caller
1619 * has most likely already called update_context_time()
1620 * and update_cgrp_time_xx() and thus both timestamp
1621 * are identical (or very close). Given that tstamp is,
1622 * already adjusted for cgroup, we could say that:
1623 * tstamp - ctx->timestamp
1624 * is equivalent to
1625 * tstamp - cgrp->timestamp.
1627 * Then, in perf_output_read(), the calculation would
1628 * work with no changes because:
1629 * - event is guaranteed scheduled in
1630 * - no scheduled out in between
1631 * - thus the timestamp would be the same
1633 * But this is a bit hairy.
1635 * So instead, we have an explicit cgroup call to remain
1636 * within the time time source all along. We believe it
1637 * is cleaner and simpler to understand.
1639 if (is_cgroup_event(event))
1640 perf_cgroup_set_shadow_time(event, tstamp);
1641 else
1642 event->shadow_ctx_time = tstamp - ctx->timestamp;
1645 #define MAX_INTERRUPTS (~0ULL)
1647 static void perf_log_throttle(struct perf_event *event, int enable);
1649 static int
1650 event_sched_in(struct perf_event *event,
1651 struct perf_cpu_context *cpuctx,
1652 struct perf_event_context *ctx)
1654 u64 tstamp = perf_event_time(event);
1656 if (event->state <= PERF_EVENT_STATE_OFF)
1657 return 0;
1659 event->state = PERF_EVENT_STATE_ACTIVE;
1660 event->oncpu = smp_processor_id();
1663 * Unthrottle events, since we scheduled we might have missed several
1664 * ticks already, also for a heavily scheduling task there is little
1665 * guarantee it'll get a tick in a timely manner.
1667 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1668 perf_log_throttle(event, 1);
1669 event->hw.interrupts = 0;
1673 * The new state must be visible before we turn it on in the hardware:
1675 smp_wmb();
1677 if (event->pmu->add(event, PERF_EF_START)) {
1678 event->state = PERF_EVENT_STATE_INACTIVE;
1679 event->oncpu = -1;
1680 return -EAGAIN;
1683 event->tstamp_running += tstamp - event->tstamp_stopped;
1685 perf_set_shadow_time(event, ctx, tstamp);
1687 if (!is_software_event(event))
1688 cpuctx->active_oncpu++;
1689 ctx->nr_active++;
1690 if (event->attr.freq && event->attr.sample_freq)
1691 ctx->nr_freq++;
1693 if (event->attr.exclusive)
1694 cpuctx->exclusive = 1;
1696 return 0;
1699 static int
1700 group_sched_in(struct perf_event *group_event,
1701 struct perf_cpu_context *cpuctx,
1702 struct perf_event_context *ctx)
1704 struct perf_event *event, *partial_group = NULL;
1705 struct pmu *pmu = group_event->pmu;
1706 u64 now = ctx->time;
1707 bool simulate = false;
1709 if (group_event->state == PERF_EVENT_STATE_OFF)
1710 return 0;
1712 pmu->start_txn(pmu);
1714 if (event_sched_in(group_event, cpuctx, ctx)) {
1715 pmu->cancel_txn(pmu);
1716 perf_cpu_hrtimer_restart(cpuctx);
1717 return -EAGAIN;
1721 * Schedule in siblings as one group (if any):
1723 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1724 if (event_sched_in(event, cpuctx, ctx)) {
1725 partial_group = event;
1726 goto group_error;
1730 if (!pmu->commit_txn(pmu))
1731 return 0;
1733 group_error:
1735 * Groups can be scheduled in as one unit only, so undo any
1736 * partial group before returning:
1737 * The events up to the failed event are scheduled out normally,
1738 * tstamp_stopped will be updated.
1740 * The failed events and the remaining siblings need to have
1741 * their timings updated as if they had gone thru event_sched_in()
1742 * and event_sched_out(). This is required to get consistent timings
1743 * across the group. This also takes care of the case where the group
1744 * could never be scheduled by ensuring tstamp_stopped is set to mark
1745 * the time the event was actually stopped, such that time delta
1746 * calculation in update_event_times() is correct.
1748 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1749 if (event == partial_group)
1750 simulate = true;
1752 if (simulate) {
1753 event->tstamp_running += now - event->tstamp_stopped;
1754 event->tstamp_stopped = now;
1755 } else {
1756 event_sched_out(event, cpuctx, ctx);
1759 event_sched_out(group_event, cpuctx, ctx);
1761 pmu->cancel_txn(pmu);
1763 perf_cpu_hrtimer_restart(cpuctx);
1765 return -EAGAIN;
1769 * Work out whether we can put this event group on the CPU now.
1771 static int group_can_go_on(struct perf_event *event,
1772 struct perf_cpu_context *cpuctx,
1773 int can_add_hw)
1776 * Groups consisting entirely of software events can always go on.
1778 if (event->group_flags & PERF_GROUP_SOFTWARE)
1779 return 1;
1781 * If an exclusive group is already on, no other hardware
1782 * events can go on.
1784 if (cpuctx->exclusive)
1785 return 0;
1787 * If this group is exclusive and there are already
1788 * events on the CPU, it can't go on.
1790 if (event->attr.exclusive && cpuctx->active_oncpu)
1791 return 0;
1793 * Otherwise, try to add it if all previous groups were able
1794 * to go on.
1796 return can_add_hw;
1799 static void add_event_to_ctx(struct perf_event *event,
1800 struct perf_event_context *ctx)
1802 u64 tstamp = perf_event_time(event);
1804 list_add_event(event, ctx);
1805 perf_group_attach(event);
1806 event->tstamp_enabled = tstamp;
1807 event->tstamp_running = tstamp;
1808 event->tstamp_stopped = tstamp;
1811 static void task_ctx_sched_out(struct perf_event_context *ctx);
1812 static void
1813 ctx_sched_in(struct perf_event_context *ctx,
1814 struct perf_cpu_context *cpuctx,
1815 enum event_type_t event_type,
1816 struct task_struct *task);
1818 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
1819 struct perf_event_context *ctx,
1820 struct task_struct *task)
1822 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
1823 if (ctx)
1824 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
1825 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
1826 if (ctx)
1827 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
1831 * Cross CPU call to install and enable a performance event
1833 * Must be called with ctx->mutex held
1835 static int __perf_install_in_context(void *info)
1837 struct perf_event *event = info;
1838 struct perf_event_context *ctx = event->ctx;
1839 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1840 struct perf_event_context *task_ctx = cpuctx->task_ctx;
1841 struct task_struct *task = current;
1843 perf_ctx_lock(cpuctx, task_ctx);
1844 perf_pmu_disable(cpuctx->ctx.pmu);
1847 * If there was an active task_ctx schedule it out.
1849 if (task_ctx)
1850 task_ctx_sched_out(task_ctx);
1853 * If the context we're installing events in is not the
1854 * active task_ctx, flip them.
1856 if (ctx->task && task_ctx != ctx) {
1857 if (task_ctx)
1858 raw_spin_unlock(&task_ctx->lock);
1859 raw_spin_lock(&ctx->lock);
1860 task_ctx = ctx;
1863 if (task_ctx) {
1864 cpuctx->task_ctx = task_ctx;
1865 task = task_ctx->task;
1868 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
1870 update_context_time(ctx);
1872 * update cgrp time only if current cgrp
1873 * matches event->cgrp. Must be done before
1874 * calling add_event_to_ctx()
1876 update_cgrp_time_from_event(event);
1878 add_event_to_ctx(event, ctx);
1881 * Schedule everything back in
1883 perf_event_sched_in(cpuctx, task_ctx, task);
1885 perf_pmu_enable(cpuctx->ctx.pmu);
1886 perf_ctx_unlock(cpuctx, task_ctx);
1888 return 0;
1892 * Attach a performance event to a context
1894 * First we add the event to the list with the hardware enable bit
1895 * in event->hw_config cleared.
1897 * If the event is attached to a task which is on a CPU we use a smp
1898 * call to enable it in the task context. The task might have been
1899 * scheduled away, but we check this in the smp call again.
1901 static void
1902 perf_install_in_context(struct perf_event_context *ctx,
1903 struct perf_event *event,
1904 int cpu)
1906 struct task_struct *task = ctx->task;
1908 lockdep_assert_held(&ctx->mutex);
1910 event->ctx = ctx;
1911 if (event->cpu != -1)
1912 event->cpu = cpu;
1914 if (!task) {
1916 * Per cpu events are installed via an smp call and
1917 * the install is always successful.
1919 cpu_function_call(cpu, __perf_install_in_context, event);
1920 return;
1923 retry:
1924 if (!task_function_call(task, __perf_install_in_context, event))
1925 return;
1927 raw_spin_lock_irq(&ctx->lock);
1929 * If we failed to find a running task, but find the context active now
1930 * that we've acquired the ctx->lock, retry.
1932 if (ctx->is_active) {
1933 raw_spin_unlock_irq(&ctx->lock);
1934 goto retry;
1938 * Since the task isn't running, its safe to add the event, us holding
1939 * the ctx->lock ensures the task won't get scheduled in.
1941 add_event_to_ctx(event, ctx);
1942 raw_spin_unlock_irq(&ctx->lock);
1946 * Put a event into inactive state and update time fields.
1947 * Enabling the leader of a group effectively enables all
1948 * the group members that aren't explicitly disabled, so we
1949 * have to update their ->tstamp_enabled also.
1950 * Note: this works for group members as well as group leaders
1951 * since the non-leader members' sibling_lists will be empty.
1953 static void __perf_event_mark_enabled(struct perf_event *event)
1955 struct perf_event *sub;
1956 u64 tstamp = perf_event_time(event);
1958 event->state = PERF_EVENT_STATE_INACTIVE;
1959 event->tstamp_enabled = tstamp - event->total_time_enabled;
1960 list_for_each_entry(sub, &event->sibling_list, group_entry) {
1961 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
1962 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
1967 * Cross CPU call to enable a performance event
1969 static int __perf_event_enable(void *info)
1971 struct perf_event *event = info;
1972 struct perf_event_context *ctx = event->ctx;
1973 struct perf_event *leader = event->group_leader;
1974 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1975 int err;
1978 * There's a time window between 'ctx->is_active' check
1979 * in perf_event_enable function and this place having:
1980 * - IRQs on
1981 * - ctx->lock unlocked
1983 * where the task could be killed and 'ctx' deactivated
1984 * by perf_event_exit_task.
1986 if (!ctx->is_active)
1987 return -EINVAL;
1989 raw_spin_lock(&ctx->lock);
1990 update_context_time(ctx);
1992 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1993 goto unlock;
1996 * set current task's cgroup time reference point
1998 perf_cgroup_set_timestamp(current, ctx);
2000 __perf_event_mark_enabled(event);
2002 if (!event_filter_match(event)) {
2003 if (is_cgroup_event(event))
2004 perf_cgroup_defer_enabled(event);
2005 goto unlock;
2009 * If the event is in a group and isn't the group leader,
2010 * then don't put it on unless the group is on.
2012 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2013 goto unlock;
2015 if (!group_can_go_on(event, cpuctx, 1)) {
2016 err = -EEXIST;
2017 } else {
2018 if (event == leader)
2019 err = group_sched_in(event, cpuctx, ctx);
2020 else
2021 err = event_sched_in(event, cpuctx, ctx);
2024 if (err) {
2026 * If this event can't go on and it's part of a
2027 * group, then the whole group has to come off.
2029 if (leader != event) {
2030 group_sched_out(leader, cpuctx, ctx);
2031 perf_cpu_hrtimer_restart(cpuctx);
2033 if (leader->attr.pinned) {
2034 update_group_times(leader);
2035 leader->state = PERF_EVENT_STATE_ERROR;
2039 unlock:
2040 raw_spin_unlock(&ctx->lock);
2042 return 0;
2046 * Enable a event.
2048 * If event->ctx is a cloned context, callers must make sure that
2049 * every task struct that event->ctx->task could possibly point to
2050 * remains valid. This condition is satisfied when called through
2051 * perf_event_for_each_child or perf_event_for_each as described
2052 * for perf_event_disable.
2054 void perf_event_enable(struct perf_event *event)
2056 struct perf_event_context *ctx = event->ctx;
2057 struct task_struct *task = ctx->task;
2059 if (!task) {
2061 * Enable the event on the cpu that it's on
2063 cpu_function_call(event->cpu, __perf_event_enable, event);
2064 return;
2067 raw_spin_lock_irq(&ctx->lock);
2068 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2069 goto out;
2072 * If the event is in error state, clear that first.
2073 * That way, if we see the event in error state below, we
2074 * know that it has gone back into error state, as distinct
2075 * from the task having been scheduled away before the
2076 * cross-call arrived.
2078 if (event->state == PERF_EVENT_STATE_ERROR)
2079 event->state = PERF_EVENT_STATE_OFF;
2081 retry:
2082 if (!ctx->is_active) {
2083 __perf_event_mark_enabled(event);
2084 goto out;
2087 raw_spin_unlock_irq(&ctx->lock);
2089 if (!task_function_call(task, __perf_event_enable, event))
2090 return;
2092 raw_spin_lock_irq(&ctx->lock);
2095 * If the context is active and the event is still off,
2096 * we need to retry the cross-call.
2098 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
2100 * task could have been flipped by a concurrent
2101 * perf_event_context_sched_out()
2103 task = ctx->task;
2104 goto retry;
2107 out:
2108 raw_spin_unlock_irq(&ctx->lock);
2110 EXPORT_SYMBOL_GPL(perf_event_enable);
2112 int perf_event_refresh(struct perf_event *event, int refresh)
2115 * not supported on inherited events
2117 if (event->attr.inherit || !is_sampling_event(event))
2118 return -EINVAL;
2120 atomic_add(refresh, &event->event_limit);
2121 perf_event_enable(event);
2123 return 0;
2125 EXPORT_SYMBOL_GPL(perf_event_refresh);
2127 static void ctx_sched_out(struct perf_event_context *ctx,
2128 struct perf_cpu_context *cpuctx,
2129 enum event_type_t event_type)
2131 struct perf_event *event;
2132 int is_active = ctx->is_active;
2134 ctx->is_active &= ~event_type;
2135 if (likely(!ctx->nr_events))
2136 return;
2138 update_context_time(ctx);
2139 update_cgrp_time_from_cpuctx(cpuctx);
2140 if (!ctx->nr_active)
2141 return;
2143 perf_pmu_disable(ctx->pmu);
2144 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2145 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2146 group_sched_out(event, cpuctx, ctx);
2149 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2150 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2151 group_sched_out(event, cpuctx, ctx);
2153 perf_pmu_enable(ctx->pmu);
2157 * Test whether two contexts are equivalent, i.e. whether they have both been
2158 * cloned from the same version of the same context.
2160 * Equivalence is measured using a generation number in the context that is
2161 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2162 * and list_del_event().
2164 static int context_equiv(struct perf_event_context *ctx1,
2165 struct perf_event_context *ctx2)
2167 /* Pinning disables the swap optimization */
2168 if (ctx1->pin_count || ctx2->pin_count)
2169 return 0;
2171 /* If ctx1 is the parent of ctx2 */
2172 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2173 return 1;
2175 /* If ctx2 is the parent of ctx1 */
2176 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2177 return 1;
2180 * If ctx1 and ctx2 have the same parent; we flatten the parent
2181 * hierarchy, see perf_event_init_context().
2183 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2184 ctx1->parent_gen == ctx2->parent_gen)
2185 return 1;
2187 /* Unmatched */
2188 return 0;
2191 static void __perf_event_sync_stat(struct perf_event *event,
2192 struct perf_event *next_event)
2194 u64 value;
2196 if (!event->attr.inherit_stat)
2197 return;
2200 * Update the event value, we cannot use perf_event_read()
2201 * because we're in the middle of a context switch and have IRQs
2202 * disabled, which upsets smp_call_function_single(), however
2203 * we know the event must be on the current CPU, therefore we
2204 * don't need to use it.
2206 switch (event->state) {
2207 case PERF_EVENT_STATE_ACTIVE:
2208 event->pmu->read(event);
2209 /* fall-through */
2211 case PERF_EVENT_STATE_INACTIVE:
2212 update_event_times(event);
2213 break;
2215 default:
2216 break;
2220 * In order to keep per-task stats reliable we need to flip the event
2221 * values when we flip the contexts.
2223 value = local64_read(&next_event->count);
2224 value = local64_xchg(&event->count, value);
2225 local64_set(&next_event->count, value);
2227 swap(event->total_time_enabled, next_event->total_time_enabled);
2228 swap(event->total_time_running, next_event->total_time_running);
2231 * Since we swizzled the values, update the user visible data too.
2233 perf_event_update_userpage(event);
2234 perf_event_update_userpage(next_event);
2237 static void perf_event_sync_stat(struct perf_event_context *ctx,
2238 struct perf_event_context *next_ctx)
2240 struct perf_event *event, *next_event;
2242 if (!ctx->nr_stat)
2243 return;
2245 update_context_time(ctx);
2247 event = list_first_entry(&ctx->event_list,
2248 struct perf_event, event_entry);
2250 next_event = list_first_entry(&next_ctx->event_list,
2251 struct perf_event, event_entry);
2253 while (&event->event_entry != &ctx->event_list &&
2254 &next_event->event_entry != &next_ctx->event_list) {
2256 __perf_event_sync_stat(event, next_event);
2258 event = list_next_entry(event, event_entry);
2259 next_event = list_next_entry(next_event, event_entry);
2263 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2264 struct task_struct *next)
2266 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2267 struct perf_event_context *next_ctx;
2268 struct perf_event_context *parent, *next_parent;
2269 struct perf_cpu_context *cpuctx;
2270 int do_switch = 1;
2272 if (likely(!ctx))
2273 return;
2275 cpuctx = __get_cpu_context(ctx);
2276 if (!cpuctx->task_ctx)
2277 return;
2279 rcu_read_lock();
2280 next_ctx = next->perf_event_ctxp[ctxn];
2281 if (!next_ctx)
2282 goto unlock;
2284 parent = rcu_dereference(ctx->parent_ctx);
2285 next_parent = rcu_dereference(next_ctx->parent_ctx);
2287 /* If neither context have a parent context; they cannot be clones. */
2288 if (!parent && !next_parent)
2289 goto unlock;
2291 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2293 * Looks like the two contexts are clones, so we might be
2294 * able to optimize the context switch. We lock both
2295 * contexts and check that they are clones under the
2296 * lock (including re-checking that neither has been
2297 * uncloned in the meantime). It doesn't matter which
2298 * order we take the locks because no other cpu could
2299 * be trying to lock both of these tasks.
2301 raw_spin_lock(&ctx->lock);
2302 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2303 if (context_equiv(ctx, next_ctx)) {
2305 * XXX do we need a memory barrier of sorts
2306 * wrt to rcu_dereference() of perf_event_ctxp
2308 task->perf_event_ctxp[ctxn] = next_ctx;
2309 next->perf_event_ctxp[ctxn] = ctx;
2310 ctx->task = next;
2311 next_ctx->task = task;
2312 do_switch = 0;
2314 perf_event_sync_stat(ctx, next_ctx);
2316 raw_spin_unlock(&next_ctx->lock);
2317 raw_spin_unlock(&ctx->lock);
2319 unlock:
2320 rcu_read_unlock();
2322 if (do_switch) {
2323 raw_spin_lock(&ctx->lock);
2324 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2325 cpuctx->task_ctx = NULL;
2326 raw_spin_unlock(&ctx->lock);
2330 #define for_each_task_context_nr(ctxn) \
2331 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2334 * Called from scheduler to remove the events of the current task,
2335 * with interrupts disabled.
2337 * We stop each event and update the event value in event->count.
2339 * This does not protect us against NMI, but disable()
2340 * sets the disabled bit in the control field of event _before_
2341 * accessing the event control register. If a NMI hits, then it will
2342 * not restart the event.
2344 void __perf_event_task_sched_out(struct task_struct *task,
2345 struct task_struct *next)
2347 int ctxn;
2349 for_each_task_context_nr(ctxn)
2350 perf_event_context_sched_out(task, ctxn, next);
2353 * if cgroup events exist on this CPU, then we need
2354 * to check if we have to switch out PMU state.
2355 * cgroup event are system-wide mode only
2357 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2358 perf_cgroup_sched_out(task, next);
2361 static void task_ctx_sched_out(struct perf_event_context *ctx)
2363 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2365 if (!cpuctx->task_ctx)
2366 return;
2368 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2369 return;
2371 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2372 cpuctx->task_ctx = NULL;
2376 * Called with IRQs disabled
2378 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2379 enum event_type_t event_type)
2381 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2384 static void
2385 ctx_pinned_sched_in(struct perf_event_context *ctx,
2386 struct perf_cpu_context *cpuctx)
2388 struct perf_event *event;
2390 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2391 if (event->state <= PERF_EVENT_STATE_OFF)
2392 continue;
2393 if (!event_filter_match(event))
2394 continue;
2396 /* may need to reset tstamp_enabled */
2397 if (is_cgroup_event(event))
2398 perf_cgroup_mark_enabled(event, ctx);
2400 if (group_can_go_on(event, cpuctx, 1))
2401 group_sched_in(event, cpuctx, ctx);
2404 * If this pinned group hasn't been scheduled,
2405 * put it in error state.
2407 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2408 update_group_times(event);
2409 event->state = PERF_EVENT_STATE_ERROR;
2414 static void
2415 ctx_flexible_sched_in(struct perf_event_context *ctx,
2416 struct perf_cpu_context *cpuctx)
2418 struct perf_event *event;
2419 int can_add_hw = 1;
2421 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2422 /* Ignore events in OFF or ERROR state */
2423 if (event->state <= PERF_EVENT_STATE_OFF)
2424 continue;
2426 * Listen to the 'cpu' scheduling filter constraint
2427 * of events:
2429 if (!event_filter_match(event))
2430 continue;
2432 /* may need to reset tstamp_enabled */
2433 if (is_cgroup_event(event))
2434 perf_cgroup_mark_enabled(event, ctx);
2436 if (group_can_go_on(event, cpuctx, can_add_hw)) {
2437 if (group_sched_in(event, cpuctx, ctx))
2438 can_add_hw = 0;
2443 static void
2444 ctx_sched_in(struct perf_event_context *ctx,
2445 struct perf_cpu_context *cpuctx,
2446 enum event_type_t event_type,
2447 struct task_struct *task)
2449 u64 now;
2450 int is_active = ctx->is_active;
2452 ctx->is_active |= event_type;
2453 if (likely(!ctx->nr_events))
2454 return;
2456 now = perf_clock();
2457 ctx->timestamp = now;
2458 perf_cgroup_set_timestamp(task, ctx);
2460 * First go through the list and put on any pinned groups
2461 * in order to give them the best chance of going on.
2463 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2464 ctx_pinned_sched_in(ctx, cpuctx);
2466 /* Then walk through the lower prio flexible groups */
2467 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2468 ctx_flexible_sched_in(ctx, cpuctx);
2471 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2472 enum event_type_t event_type,
2473 struct task_struct *task)
2475 struct perf_event_context *ctx = &cpuctx->ctx;
2477 ctx_sched_in(ctx, cpuctx, event_type, task);
2480 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2481 struct task_struct *task)
2483 struct perf_cpu_context *cpuctx;
2485 cpuctx = __get_cpu_context(ctx);
2486 if (cpuctx->task_ctx == ctx)
2487 return;
2489 perf_ctx_lock(cpuctx, ctx);
2490 perf_pmu_disable(ctx->pmu);
2492 * We want to keep the following priority order:
2493 * cpu pinned (that don't need to move), task pinned,
2494 * cpu flexible, task flexible.
2496 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2498 if (ctx->nr_events)
2499 cpuctx->task_ctx = ctx;
2501 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2503 perf_pmu_enable(ctx->pmu);
2504 perf_ctx_unlock(cpuctx, ctx);
2507 * Since these rotations are per-cpu, we need to ensure the
2508 * cpu-context we got scheduled on is actually rotating.
2510 perf_pmu_rotate_start(ctx->pmu);
2514 * When sampling the branck stack in system-wide, it may be necessary
2515 * to flush the stack on context switch. This happens when the branch
2516 * stack does not tag its entries with the pid of the current task.
2517 * Otherwise it becomes impossible to associate a branch entry with a
2518 * task. This ambiguity is more likely to appear when the branch stack
2519 * supports priv level filtering and the user sets it to monitor only
2520 * at the user level (which could be a useful measurement in system-wide
2521 * mode). In that case, the risk is high of having a branch stack with
2522 * branch from multiple tasks. Flushing may mean dropping the existing
2523 * entries or stashing them somewhere in the PMU specific code layer.
2525 * This function provides the context switch callback to the lower code
2526 * layer. It is invoked ONLY when there is at least one system-wide context
2527 * with at least one active event using taken branch sampling.
2529 static void perf_branch_stack_sched_in(struct task_struct *prev,
2530 struct task_struct *task)
2532 struct perf_cpu_context *cpuctx;
2533 struct pmu *pmu;
2534 unsigned long flags;
2536 /* no need to flush branch stack if not changing task */
2537 if (prev == task)
2538 return;
2540 local_irq_save(flags);
2542 rcu_read_lock();
2544 list_for_each_entry_rcu(pmu, &pmus, entry) {
2545 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2548 * check if the context has at least one
2549 * event using PERF_SAMPLE_BRANCH_STACK
2551 if (cpuctx->ctx.nr_branch_stack > 0
2552 && pmu->flush_branch_stack) {
2554 pmu = cpuctx->ctx.pmu;
2556 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2558 perf_pmu_disable(pmu);
2560 pmu->flush_branch_stack();
2562 perf_pmu_enable(pmu);
2564 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2568 rcu_read_unlock();
2570 local_irq_restore(flags);
2574 * Called from scheduler to add the events of the current task
2575 * with interrupts disabled.
2577 * We restore the event value and then enable it.
2579 * This does not protect us against NMI, but enable()
2580 * sets the enabled bit in the control field of event _before_
2581 * accessing the event control register. If a NMI hits, then it will
2582 * keep the event running.
2584 void __perf_event_task_sched_in(struct task_struct *prev,
2585 struct task_struct *task)
2587 struct perf_event_context *ctx;
2588 int ctxn;
2590 for_each_task_context_nr(ctxn) {
2591 ctx = task->perf_event_ctxp[ctxn];
2592 if (likely(!ctx))
2593 continue;
2595 perf_event_context_sched_in(ctx, task);
2598 * if cgroup events exist on this CPU, then we need
2599 * to check if we have to switch in PMU state.
2600 * cgroup event are system-wide mode only
2602 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2603 perf_cgroup_sched_in(prev, task);
2605 /* check for system-wide branch_stack events */
2606 if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
2607 perf_branch_stack_sched_in(prev, task);
2610 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2612 u64 frequency = event->attr.sample_freq;
2613 u64 sec = NSEC_PER_SEC;
2614 u64 divisor, dividend;
2616 int count_fls, nsec_fls, frequency_fls, sec_fls;
2618 count_fls = fls64(count);
2619 nsec_fls = fls64(nsec);
2620 frequency_fls = fls64(frequency);
2621 sec_fls = 30;
2624 * We got @count in @nsec, with a target of sample_freq HZ
2625 * the target period becomes:
2627 * @count * 10^9
2628 * period = -------------------
2629 * @nsec * sample_freq
2634 * Reduce accuracy by one bit such that @a and @b converge
2635 * to a similar magnitude.
2637 #define REDUCE_FLS(a, b) \
2638 do { \
2639 if (a##_fls > b##_fls) { \
2640 a >>= 1; \
2641 a##_fls--; \
2642 } else { \
2643 b >>= 1; \
2644 b##_fls--; \
2646 } while (0)
2649 * Reduce accuracy until either term fits in a u64, then proceed with
2650 * the other, so that finally we can do a u64/u64 division.
2652 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2653 REDUCE_FLS(nsec, frequency);
2654 REDUCE_FLS(sec, count);
2657 if (count_fls + sec_fls > 64) {
2658 divisor = nsec * frequency;
2660 while (count_fls + sec_fls > 64) {
2661 REDUCE_FLS(count, sec);
2662 divisor >>= 1;
2665 dividend = count * sec;
2666 } else {
2667 dividend = count * sec;
2669 while (nsec_fls + frequency_fls > 64) {
2670 REDUCE_FLS(nsec, frequency);
2671 dividend >>= 1;
2674 divisor = nsec * frequency;
2677 if (!divisor)
2678 return dividend;
2680 return div64_u64(dividend, divisor);
2683 static DEFINE_PER_CPU(int, perf_throttled_count);
2684 static DEFINE_PER_CPU(u64, perf_throttled_seq);
2686 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2688 struct hw_perf_event *hwc = &event->hw;
2689 s64 period, sample_period;
2690 s64 delta;
2692 period = perf_calculate_period(event, nsec, count);
2694 delta = (s64)(period - hwc->sample_period);
2695 delta = (delta + 7) / 8; /* low pass filter */
2697 sample_period = hwc->sample_period + delta;
2699 if (!sample_period)
2700 sample_period = 1;
2702 hwc->sample_period = sample_period;
2704 if (local64_read(&hwc->period_left) > 8*sample_period) {
2705 if (disable)
2706 event->pmu->stop(event, PERF_EF_UPDATE);
2708 local64_set(&hwc->period_left, 0);
2710 if (disable)
2711 event->pmu->start(event, PERF_EF_RELOAD);
2716 * combine freq adjustment with unthrottling to avoid two passes over the
2717 * events. At the same time, make sure, having freq events does not change
2718 * the rate of unthrottling as that would introduce bias.
2720 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2721 int needs_unthr)
2723 struct perf_event *event;
2724 struct hw_perf_event *hwc;
2725 u64 now, period = TICK_NSEC;
2726 s64 delta;
2729 * only need to iterate over all events iff:
2730 * - context have events in frequency mode (needs freq adjust)
2731 * - there are events to unthrottle on this cpu
2733 if (!(ctx->nr_freq || needs_unthr))
2734 return;
2736 raw_spin_lock(&ctx->lock);
2737 perf_pmu_disable(ctx->pmu);
2739 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2740 if (event->state != PERF_EVENT_STATE_ACTIVE)
2741 continue;
2743 if (!event_filter_match(event))
2744 continue;
2746 hwc = &event->hw;
2748 if (hwc->interrupts == MAX_INTERRUPTS) {
2749 hwc->interrupts = 0;
2750 perf_log_throttle(event, 1);
2751 event->pmu->start(event, 0);
2754 if (!event->attr.freq || !event->attr.sample_freq)
2755 continue;
2758 * stop the event and update event->count
2760 event->pmu->stop(event, PERF_EF_UPDATE);
2762 now = local64_read(&event->count);
2763 delta = now - hwc->freq_count_stamp;
2764 hwc->freq_count_stamp = now;
2767 * restart the event
2768 * reload only if value has changed
2769 * we have stopped the event so tell that
2770 * to perf_adjust_period() to avoid stopping it
2771 * twice.
2773 if (delta > 0)
2774 perf_adjust_period(event, period, delta, false);
2776 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
2779 perf_pmu_enable(ctx->pmu);
2780 raw_spin_unlock(&ctx->lock);
2784 * Round-robin a context's events:
2786 static void rotate_ctx(struct perf_event_context *ctx)
2789 * Rotate the first entry last of non-pinned groups. Rotation might be
2790 * disabled by the inheritance code.
2792 if (!ctx->rotate_disable)
2793 list_rotate_left(&ctx->flexible_groups);
2797 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2798 * because they're strictly cpu affine and rotate_start is called with IRQs
2799 * disabled, while rotate_context is called from IRQ context.
2801 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
2803 struct perf_event_context *ctx = NULL;
2804 int rotate = 0, remove = 1;
2806 if (cpuctx->ctx.nr_events) {
2807 remove = 0;
2808 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2809 rotate = 1;
2812 ctx = cpuctx->task_ctx;
2813 if (ctx && ctx->nr_events) {
2814 remove = 0;
2815 if (ctx->nr_events != ctx->nr_active)
2816 rotate = 1;
2819 if (!rotate)
2820 goto done;
2822 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2823 perf_pmu_disable(cpuctx->ctx.pmu);
2825 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2826 if (ctx)
2827 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
2829 rotate_ctx(&cpuctx->ctx);
2830 if (ctx)
2831 rotate_ctx(ctx);
2833 perf_event_sched_in(cpuctx, ctx, current);
2835 perf_pmu_enable(cpuctx->ctx.pmu);
2836 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2837 done:
2838 if (remove)
2839 list_del_init(&cpuctx->rotation_list);
2841 return rotate;
2844 #ifdef CONFIG_NO_HZ_FULL
2845 bool perf_event_can_stop_tick(void)
2847 if (atomic_read(&nr_freq_events) ||
2848 __this_cpu_read(perf_throttled_count))
2849 return false;
2850 else
2851 return true;
2853 #endif
2855 void perf_event_task_tick(void)
2857 struct list_head *head = &__get_cpu_var(rotation_list);
2858 struct perf_cpu_context *cpuctx, *tmp;
2859 struct perf_event_context *ctx;
2860 int throttled;
2862 WARN_ON(!irqs_disabled());
2864 __this_cpu_inc(perf_throttled_seq);
2865 throttled = __this_cpu_xchg(perf_throttled_count, 0);
2867 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2868 ctx = &cpuctx->ctx;
2869 perf_adjust_freq_unthr_context(ctx, throttled);
2871 ctx = cpuctx->task_ctx;
2872 if (ctx)
2873 perf_adjust_freq_unthr_context(ctx, throttled);
2877 static int event_enable_on_exec(struct perf_event *event,
2878 struct perf_event_context *ctx)
2880 if (!event->attr.enable_on_exec)
2881 return 0;
2883 event->attr.enable_on_exec = 0;
2884 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2885 return 0;
2887 __perf_event_mark_enabled(event);
2889 return 1;
2893 * Enable all of a task's events that have been marked enable-on-exec.
2894 * This expects task == current.
2896 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2898 struct perf_event *event;
2899 unsigned long flags;
2900 int enabled = 0;
2901 int ret;
2903 local_irq_save(flags);
2904 if (!ctx || !ctx->nr_events)
2905 goto out;
2908 * We must ctxsw out cgroup events to avoid conflict
2909 * when invoking perf_task_event_sched_in() later on
2910 * in this function. Otherwise we end up trying to
2911 * ctxswin cgroup events which are already scheduled
2912 * in.
2914 perf_cgroup_sched_out(current, NULL);
2916 raw_spin_lock(&ctx->lock);
2917 task_ctx_sched_out(ctx);
2919 list_for_each_entry(event, &ctx->event_list, event_entry) {
2920 ret = event_enable_on_exec(event, ctx);
2921 if (ret)
2922 enabled = 1;
2926 * Unclone this context if we enabled any event.
2928 if (enabled)
2929 unclone_ctx(ctx);
2931 raw_spin_unlock(&ctx->lock);
2934 * Also calls ctxswin for cgroup events, if any:
2936 perf_event_context_sched_in(ctx, ctx->task);
2937 out:
2938 local_irq_restore(flags);
2942 * Cross CPU call to read the hardware event
2944 static void __perf_event_read(void *info)
2946 struct perf_event *event = info;
2947 struct perf_event_context *ctx = event->ctx;
2948 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2951 * If this is a task context, we need to check whether it is
2952 * the current task context of this cpu. If not it has been
2953 * scheduled out before the smp call arrived. In that case
2954 * event->count would have been updated to a recent sample
2955 * when the event was scheduled out.
2957 if (ctx->task && cpuctx->task_ctx != ctx)
2958 return;
2960 raw_spin_lock(&ctx->lock);
2961 if (ctx->is_active) {
2962 update_context_time(ctx);
2963 update_cgrp_time_from_event(event);
2965 update_event_times(event);
2966 if (event->state == PERF_EVENT_STATE_ACTIVE)
2967 event->pmu->read(event);
2968 raw_spin_unlock(&ctx->lock);
2971 static inline u64 perf_event_count(struct perf_event *event)
2973 return local64_read(&event->count) + atomic64_read(&event->child_count);
2976 static u64 perf_event_read(struct perf_event *event)
2979 * If event is enabled and currently active on a CPU, update the
2980 * value in the event structure:
2982 if (event->state == PERF_EVENT_STATE_ACTIVE) {
2983 smp_call_function_single(event->oncpu,
2984 __perf_event_read, event, 1);
2985 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2986 struct perf_event_context *ctx = event->ctx;
2987 unsigned long flags;
2989 raw_spin_lock_irqsave(&ctx->lock, flags);
2991 * may read while context is not active
2992 * (e.g., thread is blocked), in that case
2993 * we cannot update context time
2995 if (ctx->is_active) {
2996 update_context_time(ctx);
2997 update_cgrp_time_from_event(event);
2999 update_event_times(event);
3000 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3003 return perf_event_count(event);
3007 * Initialize the perf_event context in a task_struct:
3009 static void __perf_event_init_context(struct perf_event_context *ctx)
3011 raw_spin_lock_init(&ctx->lock);
3012 mutex_init(&ctx->mutex);
3013 INIT_LIST_HEAD(&ctx->pinned_groups);
3014 INIT_LIST_HEAD(&ctx->flexible_groups);
3015 INIT_LIST_HEAD(&ctx->event_list);
3016 atomic_set(&ctx->refcount, 1);
3019 static struct perf_event_context *
3020 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3022 struct perf_event_context *ctx;
3024 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3025 if (!ctx)
3026 return NULL;
3028 __perf_event_init_context(ctx);
3029 if (task) {
3030 ctx->task = task;
3031 get_task_struct(task);
3033 ctx->pmu = pmu;
3035 return ctx;
3038 static struct task_struct *
3039 find_lively_task_by_vpid(pid_t vpid)
3041 struct task_struct *task;
3042 int err;
3044 rcu_read_lock();
3045 if (!vpid)
3046 task = current;
3047 else
3048 task = find_task_by_vpid(vpid);
3049 if (task)
3050 get_task_struct(task);
3051 rcu_read_unlock();
3053 if (!task)
3054 return ERR_PTR(-ESRCH);
3056 /* Reuse ptrace permission checks for now. */
3057 err = -EACCES;
3058 if (!ptrace_may_access(task, PTRACE_MODE_READ))
3059 goto errout;
3061 return task;
3062 errout:
3063 put_task_struct(task);
3064 return ERR_PTR(err);
3069 * Returns a matching context with refcount and pincount.
3071 static struct perf_event_context *
3072 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
3074 struct perf_event_context *ctx;
3075 struct perf_cpu_context *cpuctx;
3076 unsigned long flags;
3077 int ctxn, err;
3079 if (!task) {
3080 /* Must be root to operate on a CPU event: */
3081 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3082 return ERR_PTR(-EACCES);
3085 * We could be clever and allow to attach a event to an
3086 * offline CPU and activate it when the CPU comes up, but
3087 * that's for later.
3089 if (!cpu_online(cpu))
3090 return ERR_PTR(-ENODEV);
3092 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3093 ctx = &cpuctx->ctx;
3094 get_ctx(ctx);
3095 ++ctx->pin_count;
3097 return ctx;
3100 err = -EINVAL;
3101 ctxn = pmu->task_ctx_nr;
3102 if (ctxn < 0)
3103 goto errout;
3105 retry:
3106 ctx = perf_lock_task_context(task, ctxn, &flags);
3107 if (ctx) {
3108 unclone_ctx(ctx);
3109 ++ctx->pin_count;
3110 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3111 } else {
3112 ctx = alloc_perf_context(pmu, task);
3113 err = -ENOMEM;
3114 if (!ctx)
3115 goto errout;
3117 err = 0;
3118 mutex_lock(&task->perf_event_mutex);
3120 * If it has already passed perf_event_exit_task().
3121 * we must see PF_EXITING, it takes this mutex too.
3123 if (task->flags & PF_EXITING)
3124 err = -ESRCH;
3125 else if (task->perf_event_ctxp[ctxn])
3126 err = -EAGAIN;
3127 else {
3128 get_ctx(ctx);
3129 ++ctx->pin_count;
3130 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3132 mutex_unlock(&task->perf_event_mutex);
3134 if (unlikely(err)) {
3135 put_ctx(ctx);
3137 if (err == -EAGAIN)
3138 goto retry;
3139 goto errout;
3143 return ctx;
3145 errout:
3146 return ERR_PTR(err);
3149 static void perf_event_free_filter(struct perf_event *event);
3151 static void free_event_rcu(struct rcu_head *head)
3153 struct perf_event *event;
3155 event = container_of(head, struct perf_event, rcu_head);
3156 if (event->ns)
3157 put_pid_ns(event->ns);
3158 perf_event_free_filter(event);
3159 kfree(event);
3162 static void ring_buffer_put(struct ring_buffer *rb);
3163 static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb);
3165 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3167 if (event->parent)
3168 return;
3170 if (has_branch_stack(event)) {
3171 if (!(event->attach_state & PERF_ATTACH_TASK))
3172 atomic_dec(&per_cpu(perf_branch_stack_events, cpu));
3174 if (is_cgroup_event(event))
3175 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3178 static void unaccount_event(struct perf_event *event)
3180 if (event->parent)
3181 return;
3183 if (event->attach_state & PERF_ATTACH_TASK)
3184 static_key_slow_dec_deferred(&perf_sched_events);
3185 if (event->attr.mmap || event->attr.mmap_data)
3186 atomic_dec(&nr_mmap_events);
3187 if (event->attr.comm)
3188 atomic_dec(&nr_comm_events);
3189 if (event->attr.task)
3190 atomic_dec(&nr_task_events);
3191 if (event->attr.freq)
3192 atomic_dec(&nr_freq_events);
3193 if (is_cgroup_event(event))
3194 static_key_slow_dec_deferred(&perf_sched_events);
3195 if (has_branch_stack(event))
3196 static_key_slow_dec_deferred(&perf_sched_events);
3198 unaccount_event_cpu(event, event->cpu);
3201 static void __free_event(struct perf_event *event)
3203 if (!event->parent) {
3204 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3205 put_callchain_buffers();
3208 if (event->destroy)
3209 event->destroy(event);
3211 if (event->ctx)
3212 put_ctx(event->ctx);
3214 call_rcu(&event->rcu_head, free_event_rcu);
3216 static void free_event(struct perf_event *event)
3218 irq_work_sync(&event->pending);
3220 unaccount_event(event);
3222 if (event->rb) {
3223 struct ring_buffer *rb;
3226 * Can happen when we close an event with re-directed output.
3228 * Since we have a 0 refcount, perf_mmap_close() will skip
3229 * over us; possibly making our ring_buffer_put() the last.
3231 mutex_lock(&event->mmap_mutex);
3232 rb = event->rb;
3233 if (rb) {
3234 rcu_assign_pointer(event->rb, NULL);
3235 ring_buffer_detach(event, rb);
3236 ring_buffer_put(rb); /* could be last */
3238 mutex_unlock(&event->mmap_mutex);
3241 if (is_cgroup_event(event))
3242 perf_detach_cgroup(event);
3245 __free_event(event);
3248 int perf_event_release_kernel(struct perf_event *event)
3250 struct perf_event_context *ctx = event->ctx;
3252 WARN_ON_ONCE(ctx->parent_ctx);
3254 * There are two ways this annotation is useful:
3256 * 1) there is a lock recursion from perf_event_exit_task
3257 * see the comment there.
3259 * 2) there is a lock-inversion with mmap_sem through
3260 * perf_event_read_group(), which takes faults while
3261 * holding ctx->mutex, however this is called after
3262 * the last filedesc died, so there is no possibility
3263 * to trigger the AB-BA case.
3265 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
3266 raw_spin_lock_irq(&ctx->lock);
3267 perf_group_detach(event);
3268 raw_spin_unlock_irq(&ctx->lock);
3269 perf_remove_from_context(event);
3270 mutex_unlock(&ctx->mutex);
3272 free_event(event);
3274 return 0;
3276 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3279 * Called when the last reference to the file is gone.
3281 static void put_event(struct perf_event *event)
3283 struct task_struct *owner;
3285 if (!atomic_long_dec_and_test(&event->refcount))
3286 return;
3288 rcu_read_lock();
3289 owner = ACCESS_ONCE(event->owner);
3291 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3292 * !owner it means the list deletion is complete and we can indeed
3293 * free this event, otherwise we need to serialize on
3294 * owner->perf_event_mutex.
3296 smp_read_barrier_depends();
3297 if (owner) {
3299 * Since delayed_put_task_struct() also drops the last
3300 * task reference we can safely take a new reference
3301 * while holding the rcu_read_lock().
3303 get_task_struct(owner);
3305 rcu_read_unlock();
3307 if (owner) {
3308 mutex_lock(&owner->perf_event_mutex);
3310 * We have to re-check the event->owner field, if it is cleared
3311 * we raced with perf_event_exit_task(), acquiring the mutex
3312 * ensured they're done, and we can proceed with freeing the
3313 * event.
3315 if (event->owner)
3316 list_del_init(&event->owner_entry);
3317 mutex_unlock(&owner->perf_event_mutex);
3318 put_task_struct(owner);
3321 perf_event_release_kernel(event);
3324 static int perf_release(struct inode *inode, struct file *file)
3326 put_event(file->private_data);
3327 return 0;
3330 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3332 struct perf_event *child;
3333 u64 total = 0;
3335 *enabled = 0;
3336 *running = 0;
3338 mutex_lock(&event->child_mutex);
3339 total += perf_event_read(event);
3340 *enabled += event->total_time_enabled +
3341 atomic64_read(&event->child_total_time_enabled);
3342 *running += event->total_time_running +
3343 atomic64_read(&event->child_total_time_running);
3345 list_for_each_entry(child, &event->child_list, child_list) {
3346 total += perf_event_read(child);
3347 *enabled += child->total_time_enabled;
3348 *running += child->total_time_running;
3350 mutex_unlock(&event->child_mutex);
3352 return total;
3354 EXPORT_SYMBOL_GPL(perf_event_read_value);
3356 static int perf_event_read_group(struct perf_event *event,
3357 u64 read_format, char __user *buf)
3359 struct perf_event *leader = event->group_leader, *sub;
3360 int n = 0, size = 0, ret = -EFAULT;
3361 struct perf_event_context *ctx = leader->ctx;
3362 u64 values[5];
3363 u64 count, enabled, running;
3365 mutex_lock(&ctx->mutex);
3366 count = perf_event_read_value(leader, &enabled, &running);
3368 values[n++] = 1 + leader->nr_siblings;
3369 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3370 values[n++] = enabled;
3371 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3372 values[n++] = running;
3373 values[n++] = count;
3374 if (read_format & PERF_FORMAT_ID)
3375 values[n++] = primary_event_id(leader);
3377 size = n * sizeof(u64);
3379 if (copy_to_user(buf, values, size))
3380 goto unlock;
3382 ret = size;
3384 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3385 n = 0;
3387 values[n++] = perf_event_read_value(sub, &enabled, &running);
3388 if (read_format & PERF_FORMAT_ID)
3389 values[n++] = primary_event_id(sub);
3391 size = n * sizeof(u64);
3393 if (copy_to_user(buf + ret, values, size)) {
3394 ret = -EFAULT;
3395 goto unlock;
3398 ret += size;
3400 unlock:
3401 mutex_unlock(&ctx->mutex);
3403 return ret;
3406 static int perf_event_read_one(struct perf_event *event,
3407 u64 read_format, char __user *buf)
3409 u64 enabled, running;
3410 u64 values[4];
3411 int n = 0;
3413 values[n++] = perf_event_read_value(event, &enabled, &running);
3414 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3415 values[n++] = enabled;
3416 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3417 values[n++] = running;
3418 if (read_format & PERF_FORMAT_ID)
3419 values[n++] = primary_event_id(event);
3421 if (copy_to_user(buf, values, n * sizeof(u64)))
3422 return -EFAULT;
3424 return n * sizeof(u64);
3428 * Read the performance event - simple non blocking version for now
3430 static ssize_t
3431 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
3433 u64 read_format = event->attr.read_format;
3434 int ret;
3437 * Return end-of-file for a read on a event that is in
3438 * error state (i.e. because it was pinned but it couldn't be
3439 * scheduled on to the CPU at some point).
3441 if (event->state == PERF_EVENT_STATE_ERROR)
3442 return 0;
3444 if (count < event->read_size)
3445 return -ENOSPC;
3447 WARN_ON_ONCE(event->ctx->parent_ctx);
3448 if (read_format & PERF_FORMAT_GROUP)
3449 ret = perf_event_read_group(event, read_format, buf);
3450 else
3451 ret = perf_event_read_one(event, read_format, buf);
3453 return ret;
3456 static ssize_t
3457 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3459 struct perf_event *event = file->private_data;
3461 return perf_read_hw(event, buf, count);
3464 static unsigned int perf_poll(struct file *file, poll_table *wait)
3466 struct perf_event *event = file->private_data;
3467 struct ring_buffer *rb;
3468 unsigned int events = POLL_HUP;
3471 * Pin the event->rb by taking event->mmap_mutex; otherwise
3472 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
3474 mutex_lock(&event->mmap_mutex);
3475 rb = event->rb;
3476 if (rb)
3477 events = atomic_xchg(&rb->poll, 0);
3478 mutex_unlock(&event->mmap_mutex);
3480 poll_wait(file, &event->waitq, wait);
3482 return events;
3485 static void perf_event_reset(struct perf_event *event)
3487 (void)perf_event_read(event);
3488 local64_set(&event->count, 0);
3489 perf_event_update_userpage(event);
3493 * Holding the top-level event's child_mutex means that any
3494 * descendant process that has inherited this event will block
3495 * in sync_child_event if it goes to exit, thus satisfying the
3496 * task existence requirements of perf_event_enable/disable.
3498 static void perf_event_for_each_child(struct perf_event *event,
3499 void (*func)(struct perf_event *))
3501 struct perf_event *child;
3503 WARN_ON_ONCE(event->ctx->parent_ctx);
3504 mutex_lock(&event->child_mutex);
3505 func(event);
3506 list_for_each_entry(child, &event->child_list, child_list)
3507 func(child);
3508 mutex_unlock(&event->child_mutex);
3511 static void perf_event_for_each(struct perf_event *event,
3512 void (*func)(struct perf_event *))
3514 struct perf_event_context *ctx = event->ctx;
3515 struct perf_event *sibling;
3517 WARN_ON_ONCE(ctx->parent_ctx);
3518 mutex_lock(&ctx->mutex);
3519 event = event->group_leader;
3521 perf_event_for_each_child(event, func);
3522 list_for_each_entry(sibling, &event->sibling_list, group_entry)
3523 perf_event_for_each_child(sibling, func);
3524 mutex_unlock(&ctx->mutex);
3527 static int perf_event_period(struct perf_event *event, u64 __user *arg)
3529 struct perf_event_context *ctx = event->ctx;
3530 int ret = 0;
3531 u64 value;
3533 if (!is_sampling_event(event))
3534 return -EINVAL;
3536 if (copy_from_user(&value, arg, sizeof(value)))
3537 return -EFAULT;
3539 if (!value)
3540 return -EINVAL;
3542 raw_spin_lock_irq(&ctx->lock);
3543 if (event->attr.freq) {
3544 if (value > sysctl_perf_event_sample_rate) {
3545 ret = -EINVAL;
3546 goto unlock;
3549 event->attr.sample_freq = value;
3550 } else {
3551 event->attr.sample_period = value;
3552 event->hw.sample_period = value;
3554 unlock:
3555 raw_spin_unlock_irq(&ctx->lock);
3557 return ret;
3560 static const struct file_operations perf_fops;
3562 static inline int perf_fget_light(int fd, struct fd *p)
3564 struct fd f = fdget(fd);
3565 if (!f.file)
3566 return -EBADF;
3568 if (f.file->f_op != &perf_fops) {
3569 fdput(f);
3570 return -EBADF;
3572 *p = f;
3573 return 0;
3576 static int perf_event_set_output(struct perf_event *event,
3577 struct perf_event *output_event);
3578 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3580 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3582 struct perf_event *event = file->private_data;
3583 void (*func)(struct perf_event *);
3584 u32 flags = arg;
3586 switch (cmd) {
3587 case PERF_EVENT_IOC_ENABLE:
3588 func = perf_event_enable;
3589 break;
3590 case PERF_EVENT_IOC_DISABLE:
3591 func = perf_event_disable;
3592 break;
3593 case PERF_EVENT_IOC_RESET:
3594 func = perf_event_reset;
3595 break;
3597 case PERF_EVENT_IOC_REFRESH:
3598 return perf_event_refresh(event, arg);
3600 case PERF_EVENT_IOC_PERIOD:
3601 return perf_event_period(event, (u64 __user *)arg);
3603 case PERF_EVENT_IOC_ID:
3605 u64 id = primary_event_id(event);
3607 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
3608 return -EFAULT;
3609 return 0;
3612 case PERF_EVENT_IOC_SET_OUTPUT:
3614 int ret;
3615 if (arg != -1) {
3616 struct perf_event *output_event;
3617 struct fd output;
3618 ret = perf_fget_light(arg, &output);
3619 if (ret)
3620 return ret;
3621 output_event = output.file->private_data;
3622 ret = perf_event_set_output(event, output_event);
3623 fdput(output);
3624 } else {
3625 ret = perf_event_set_output(event, NULL);
3627 return ret;
3630 case PERF_EVENT_IOC_SET_FILTER:
3631 return perf_event_set_filter(event, (void __user *)arg);
3633 default:
3634 return -ENOTTY;
3637 if (flags & PERF_IOC_FLAG_GROUP)
3638 perf_event_for_each(event, func);
3639 else
3640 perf_event_for_each_child(event, func);
3642 return 0;
3645 int perf_event_task_enable(void)
3647 struct perf_event *event;
3649 mutex_lock(&current->perf_event_mutex);
3650 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3651 perf_event_for_each_child(event, perf_event_enable);
3652 mutex_unlock(&current->perf_event_mutex);
3654 return 0;
3657 int perf_event_task_disable(void)
3659 struct perf_event *event;
3661 mutex_lock(&current->perf_event_mutex);
3662 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3663 perf_event_for_each_child(event, perf_event_disable);
3664 mutex_unlock(&current->perf_event_mutex);
3666 return 0;
3669 static int perf_event_index(struct perf_event *event)
3671 if (event->hw.state & PERF_HES_STOPPED)
3672 return 0;
3674 if (event->state != PERF_EVENT_STATE_ACTIVE)
3675 return 0;
3677 return event->pmu->event_idx(event);
3680 static void calc_timer_values(struct perf_event *event,
3681 u64 *now,
3682 u64 *enabled,
3683 u64 *running)
3685 u64 ctx_time;
3687 *now = perf_clock();
3688 ctx_time = event->shadow_ctx_time + *now;
3689 *enabled = ctx_time - event->tstamp_enabled;
3690 *running = ctx_time - event->tstamp_running;
3693 static void perf_event_init_userpage(struct perf_event *event)
3695 struct perf_event_mmap_page *userpg;
3696 struct ring_buffer *rb;
3698 rcu_read_lock();
3699 rb = rcu_dereference(event->rb);
3700 if (!rb)
3701 goto unlock;
3703 userpg = rb->user_page;
3705 /* Allow new userspace to detect that bit 0 is deprecated */
3706 userpg->cap_bit0_is_deprecated = 1;
3707 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
3709 unlock:
3710 rcu_read_unlock();
3713 void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
3718 * Callers need to ensure there can be no nesting of this function, otherwise
3719 * the seqlock logic goes bad. We can not serialize this because the arch
3720 * code calls this from NMI context.
3722 void perf_event_update_userpage(struct perf_event *event)
3724 struct perf_event_mmap_page *userpg;
3725 struct ring_buffer *rb;
3726 u64 enabled, running, now;
3728 rcu_read_lock();
3729 rb = rcu_dereference(event->rb);
3730 if (!rb)
3731 goto unlock;
3734 * compute total_time_enabled, total_time_running
3735 * based on snapshot values taken when the event
3736 * was last scheduled in.
3738 * we cannot simply called update_context_time()
3739 * because of locking issue as we can be called in
3740 * NMI context
3742 calc_timer_values(event, &now, &enabled, &running);
3744 userpg = rb->user_page;
3746 * Disable preemption so as to not let the corresponding user-space
3747 * spin too long if we get preempted.
3749 preempt_disable();
3750 ++userpg->lock;
3751 barrier();
3752 userpg->index = perf_event_index(event);
3753 userpg->offset = perf_event_count(event);
3754 if (userpg->index)
3755 userpg->offset -= local64_read(&event->hw.prev_count);
3757 userpg->time_enabled = enabled +
3758 atomic64_read(&event->child_total_time_enabled);
3760 userpg->time_running = running +
3761 atomic64_read(&event->child_total_time_running);
3763 arch_perf_update_userpage(userpg, now);
3765 barrier();
3766 ++userpg->lock;
3767 preempt_enable();
3768 unlock:
3769 rcu_read_unlock();
3772 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3774 struct perf_event *event = vma->vm_file->private_data;
3775 struct ring_buffer *rb;
3776 int ret = VM_FAULT_SIGBUS;
3778 if (vmf->flags & FAULT_FLAG_MKWRITE) {
3779 if (vmf->pgoff == 0)
3780 ret = 0;
3781 return ret;
3784 rcu_read_lock();
3785 rb = rcu_dereference(event->rb);
3786 if (!rb)
3787 goto unlock;
3789 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3790 goto unlock;
3792 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3793 if (!vmf->page)
3794 goto unlock;
3796 get_page(vmf->page);
3797 vmf->page->mapping = vma->vm_file->f_mapping;
3798 vmf->page->index = vmf->pgoff;
3800 ret = 0;
3801 unlock:
3802 rcu_read_unlock();
3804 return ret;
3807 static void ring_buffer_attach(struct perf_event *event,
3808 struct ring_buffer *rb)
3810 unsigned long flags;
3812 if (!list_empty(&event->rb_entry))
3813 return;
3815 spin_lock_irqsave(&rb->event_lock, flags);
3816 if (list_empty(&event->rb_entry))
3817 list_add(&event->rb_entry, &rb->event_list);
3818 spin_unlock_irqrestore(&rb->event_lock, flags);
3821 static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb)
3823 unsigned long flags;
3825 if (list_empty(&event->rb_entry))
3826 return;
3828 spin_lock_irqsave(&rb->event_lock, flags);
3829 list_del_init(&event->rb_entry);
3830 wake_up_all(&event->waitq);
3831 spin_unlock_irqrestore(&rb->event_lock, flags);
3834 static void ring_buffer_wakeup(struct perf_event *event)
3836 struct ring_buffer *rb;
3838 rcu_read_lock();
3839 rb = rcu_dereference(event->rb);
3840 if (rb) {
3841 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
3842 wake_up_all(&event->waitq);
3844 rcu_read_unlock();
3847 static void rb_free_rcu(struct rcu_head *rcu_head)
3849 struct ring_buffer *rb;
3851 rb = container_of(rcu_head, struct ring_buffer, rcu_head);
3852 rb_free(rb);
3855 static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3857 struct ring_buffer *rb;
3859 rcu_read_lock();
3860 rb = rcu_dereference(event->rb);
3861 if (rb) {
3862 if (!atomic_inc_not_zero(&rb->refcount))
3863 rb = NULL;
3865 rcu_read_unlock();
3867 return rb;
3870 static void ring_buffer_put(struct ring_buffer *rb)
3872 if (!atomic_dec_and_test(&rb->refcount))
3873 return;
3875 WARN_ON_ONCE(!list_empty(&rb->event_list));
3877 call_rcu(&rb->rcu_head, rb_free_rcu);
3880 static void perf_mmap_open(struct vm_area_struct *vma)
3882 struct perf_event *event = vma->vm_file->private_data;
3884 atomic_inc(&event->mmap_count);
3885 atomic_inc(&event->rb->mmap_count);
3889 * A buffer can be mmap()ed multiple times; either directly through the same
3890 * event, or through other events by use of perf_event_set_output().
3892 * In order to undo the VM accounting done by perf_mmap() we need to destroy
3893 * the buffer here, where we still have a VM context. This means we need
3894 * to detach all events redirecting to us.
3896 static void perf_mmap_close(struct vm_area_struct *vma)
3898 struct perf_event *event = vma->vm_file->private_data;
3900 struct ring_buffer *rb = event->rb;
3901 struct user_struct *mmap_user = rb->mmap_user;
3902 int mmap_locked = rb->mmap_locked;
3903 unsigned long size = perf_data_size(rb);
3905 atomic_dec(&rb->mmap_count);
3907 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
3908 return;
3910 /* Detach current event from the buffer. */
3911 rcu_assign_pointer(event->rb, NULL);
3912 ring_buffer_detach(event, rb);
3913 mutex_unlock(&event->mmap_mutex);
3915 /* If there's still other mmap()s of this buffer, we're done. */
3916 if (atomic_read(&rb->mmap_count)) {
3917 ring_buffer_put(rb); /* can't be last */
3918 return;
3922 * No other mmap()s, detach from all other events that might redirect
3923 * into the now unreachable buffer. Somewhat complicated by the
3924 * fact that rb::event_lock otherwise nests inside mmap_mutex.
3926 again:
3927 rcu_read_lock();
3928 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
3929 if (!atomic_long_inc_not_zero(&event->refcount)) {
3931 * This event is en-route to free_event() which will
3932 * detach it and remove it from the list.
3934 continue;
3936 rcu_read_unlock();
3938 mutex_lock(&event->mmap_mutex);
3940 * Check we didn't race with perf_event_set_output() which can
3941 * swizzle the rb from under us while we were waiting to
3942 * acquire mmap_mutex.
3944 * If we find a different rb; ignore this event, a next
3945 * iteration will no longer find it on the list. We have to
3946 * still restart the iteration to make sure we're not now
3947 * iterating the wrong list.
3949 if (event->rb == rb) {
3950 rcu_assign_pointer(event->rb, NULL);
3951 ring_buffer_detach(event, rb);
3952 ring_buffer_put(rb); /* can't be last, we still have one */
3954 mutex_unlock(&event->mmap_mutex);
3955 put_event(event);
3958 * Restart the iteration; either we're on the wrong list or
3959 * destroyed its integrity by doing a deletion.
3961 goto again;
3963 rcu_read_unlock();
3966 * It could be there's still a few 0-ref events on the list; they'll
3967 * get cleaned up by free_event() -- they'll also still have their
3968 * ref on the rb and will free it whenever they are done with it.
3970 * Aside from that, this buffer is 'fully' detached and unmapped,
3971 * undo the VM accounting.
3974 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
3975 vma->vm_mm->pinned_vm -= mmap_locked;
3976 free_uid(mmap_user);
3978 ring_buffer_put(rb); /* could be last */
3981 static const struct vm_operations_struct perf_mmap_vmops = {
3982 .open = perf_mmap_open,
3983 .close = perf_mmap_close,
3984 .fault = perf_mmap_fault,
3985 .page_mkwrite = perf_mmap_fault,
3988 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
3990 struct perf_event *event = file->private_data;
3991 unsigned long user_locked, user_lock_limit;
3992 struct user_struct *user = current_user();
3993 unsigned long locked, lock_limit;
3994 struct ring_buffer *rb;
3995 unsigned long vma_size;
3996 unsigned long nr_pages;
3997 long user_extra, extra;
3998 int ret = 0, flags = 0;
4001 * Don't allow mmap() of inherited per-task counters. This would
4002 * create a performance issue due to all children writing to the
4003 * same rb.
4005 if (event->cpu == -1 && event->attr.inherit)
4006 return -EINVAL;
4008 if (!(vma->vm_flags & VM_SHARED))
4009 return -EINVAL;
4011 vma_size = vma->vm_end - vma->vm_start;
4012 nr_pages = (vma_size / PAGE_SIZE) - 1;
4015 * If we have rb pages ensure they're a power-of-two number, so we
4016 * can do bitmasks instead of modulo.
4018 if (nr_pages != 0 && !is_power_of_2(nr_pages))
4019 return -EINVAL;
4021 if (vma_size != PAGE_SIZE * (1 + nr_pages))
4022 return -EINVAL;
4024 if (vma->vm_pgoff != 0)
4025 return -EINVAL;
4027 WARN_ON_ONCE(event->ctx->parent_ctx);
4028 again:
4029 mutex_lock(&event->mmap_mutex);
4030 if (event->rb) {
4031 if (event->rb->nr_pages != nr_pages) {
4032 ret = -EINVAL;
4033 goto unlock;
4036 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4038 * Raced against perf_mmap_close() through
4039 * perf_event_set_output(). Try again, hope for better
4040 * luck.
4042 mutex_unlock(&event->mmap_mutex);
4043 goto again;
4046 goto unlock;
4049 user_extra = nr_pages + 1;
4050 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
4053 * Increase the limit linearly with more CPUs:
4055 user_lock_limit *= num_online_cpus();
4057 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4059 extra = 0;
4060 if (user_locked > user_lock_limit)
4061 extra = user_locked - user_lock_limit;
4063 lock_limit = rlimit(RLIMIT_MEMLOCK);
4064 lock_limit >>= PAGE_SHIFT;
4065 locked = vma->vm_mm->pinned_vm + extra;
4067 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4068 !capable(CAP_IPC_LOCK)) {
4069 ret = -EPERM;
4070 goto unlock;
4073 WARN_ON(event->rb);
4075 if (vma->vm_flags & VM_WRITE)
4076 flags |= RING_BUFFER_WRITABLE;
4078 rb = rb_alloc(nr_pages,
4079 event->attr.watermark ? event->attr.wakeup_watermark : 0,
4080 event->cpu, flags);
4082 if (!rb) {
4083 ret = -ENOMEM;
4084 goto unlock;
4087 atomic_set(&rb->mmap_count, 1);
4088 rb->mmap_locked = extra;
4089 rb->mmap_user = get_current_user();
4091 atomic_long_add(user_extra, &user->locked_vm);
4092 vma->vm_mm->pinned_vm += extra;
4094 ring_buffer_attach(event, rb);
4095 rcu_assign_pointer(event->rb, rb);
4097 perf_event_init_userpage(event);
4098 perf_event_update_userpage(event);
4100 unlock:
4101 if (!ret)
4102 atomic_inc(&event->mmap_count);
4103 mutex_unlock(&event->mmap_mutex);
4106 * Since pinned accounting is per vm we cannot allow fork() to copy our
4107 * vma.
4109 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4110 vma->vm_ops = &perf_mmap_vmops;
4112 return ret;
4115 static int perf_fasync(int fd, struct file *filp, int on)
4117 struct inode *inode = file_inode(filp);
4118 struct perf_event *event = filp->private_data;
4119 int retval;
4121 mutex_lock(&inode->i_mutex);
4122 retval = fasync_helper(fd, filp, on, &event->fasync);
4123 mutex_unlock(&inode->i_mutex);
4125 if (retval < 0)
4126 return retval;
4128 return 0;
4131 static const struct file_operations perf_fops = {
4132 .llseek = no_llseek,
4133 .release = perf_release,
4134 .read = perf_read,
4135 .poll = perf_poll,
4136 .unlocked_ioctl = perf_ioctl,
4137 .compat_ioctl = perf_ioctl,
4138 .mmap = perf_mmap,
4139 .fasync = perf_fasync,
4143 * Perf event wakeup
4145 * If there's data, ensure we set the poll() state and publish everything
4146 * to user-space before waking everybody up.
4149 void perf_event_wakeup(struct perf_event *event)
4151 ring_buffer_wakeup(event);
4153 if (event->pending_kill) {
4154 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
4155 event->pending_kill = 0;
4159 static void perf_pending_event(struct irq_work *entry)
4161 struct perf_event *event = container_of(entry,
4162 struct perf_event, pending);
4164 if (event->pending_disable) {
4165 event->pending_disable = 0;
4166 __perf_event_disable(event);
4169 if (event->pending_wakeup) {
4170 event->pending_wakeup = 0;
4171 perf_event_wakeup(event);
4176 * We assume there is only KVM supporting the callbacks.
4177 * Later on, we might change it to a list if there is
4178 * another virtualization implementation supporting the callbacks.
4180 struct perf_guest_info_callbacks *perf_guest_cbs;
4182 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4184 perf_guest_cbs = cbs;
4185 return 0;
4187 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
4189 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4191 perf_guest_cbs = NULL;
4192 return 0;
4194 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
4196 static void
4197 perf_output_sample_regs(struct perf_output_handle *handle,
4198 struct pt_regs *regs, u64 mask)
4200 int bit;
4202 for_each_set_bit(bit, (const unsigned long *) &mask,
4203 sizeof(mask) * BITS_PER_BYTE) {
4204 u64 val;
4206 val = perf_reg_value(regs, bit);
4207 perf_output_put(handle, val);
4211 static void perf_sample_regs_user(struct perf_regs_user *regs_user,
4212 struct pt_regs *regs)
4214 if (!user_mode(regs)) {
4215 if (current->mm)
4216 regs = task_pt_regs(current);
4217 else
4218 regs = NULL;
4221 if (regs) {
4222 regs_user->regs = regs;
4223 regs_user->abi = perf_reg_abi(current);
4228 * Get remaining task size from user stack pointer.
4230 * It'd be better to take stack vma map and limit this more
4231 * precisly, but there's no way to get it safely under interrupt,
4232 * so using TASK_SIZE as limit.
4234 static u64 perf_ustack_task_size(struct pt_regs *regs)
4236 unsigned long addr = perf_user_stack_pointer(regs);
4238 if (!addr || addr >= TASK_SIZE)
4239 return 0;
4241 return TASK_SIZE - addr;
4244 static u16
4245 perf_sample_ustack_size(u16 stack_size, u16 header_size,
4246 struct pt_regs *regs)
4248 u64 task_size;
4250 /* No regs, no stack pointer, no dump. */
4251 if (!regs)
4252 return 0;
4255 * Check if we fit in with the requested stack size into the:
4256 * - TASK_SIZE
4257 * If we don't, we limit the size to the TASK_SIZE.
4259 * - remaining sample size
4260 * If we don't, we customize the stack size to
4261 * fit in to the remaining sample size.
4264 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
4265 stack_size = min(stack_size, (u16) task_size);
4267 /* Current header size plus static size and dynamic size. */
4268 header_size += 2 * sizeof(u64);
4270 /* Do we fit in with the current stack dump size? */
4271 if ((u16) (header_size + stack_size) < header_size) {
4273 * If we overflow the maximum size for the sample,
4274 * we customize the stack dump size to fit in.
4276 stack_size = USHRT_MAX - header_size - sizeof(u64);
4277 stack_size = round_up(stack_size, sizeof(u64));
4280 return stack_size;
4283 static void
4284 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
4285 struct pt_regs *regs)
4287 /* Case of a kernel thread, nothing to dump */
4288 if (!regs) {
4289 u64 size = 0;
4290 perf_output_put(handle, size);
4291 } else {
4292 unsigned long sp;
4293 unsigned int rem;
4294 u64 dyn_size;
4297 * We dump:
4298 * static size
4299 * - the size requested by user or the best one we can fit
4300 * in to the sample max size
4301 * data
4302 * - user stack dump data
4303 * dynamic size
4304 * - the actual dumped size
4307 /* Static size. */
4308 perf_output_put(handle, dump_size);
4310 /* Data. */
4311 sp = perf_user_stack_pointer(regs);
4312 rem = __output_copy_user(handle, (void *) sp, dump_size);
4313 dyn_size = dump_size - rem;
4315 perf_output_skip(handle, rem);
4317 /* Dynamic size. */
4318 perf_output_put(handle, dyn_size);
4322 static void __perf_event_header__init_id(struct perf_event_header *header,
4323 struct perf_sample_data *data,
4324 struct perf_event *event)
4326 u64 sample_type = event->attr.sample_type;
4328 data->type = sample_type;
4329 header->size += event->id_header_size;
4331 if (sample_type & PERF_SAMPLE_TID) {
4332 /* namespace issues */
4333 data->tid_entry.pid = perf_event_pid(event, current);
4334 data->tid_entry.tid = perf_event_tid(event, current);
4337 if (sample_type & PERF_SAMPLE_TIME)
4338 data->time = perf_clock();
4340 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
4341 data->id = primary_event_id(event);
4343 if (sample_type & PERF_SAMPLE_STREAM_ID)
4344 data->stream_id = event->id;
4346 if (sample_type & PERF_SAMPLE_CPU) {
4347 data->cpu_entry.cpu = raw_smp_processor_id();
4348 data->cpu_entry.reserved = 0;
4352 void perf_event_header__init_id(struct perf_event_header *header,
4353 struct perf_sample_data *data,
4354 struct perf_event *event)
4356 if (event->attr.sample_id_all)
4357 __perf_event_header__init_id(header, data, event);
4360 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
4361 struct perf_sample_data *data)
4363 u64 sample_type = data->type;
4365 if (sample_type & PERF_SAMPLE_TID)
4366 perf_output_put(handle, data->tid_entry);
4368 if (sample_type & PERF_SAMPLE_TIME)
4369 perf_output_put(handle, data->time);
4371 if (sample_type & PERF_SAMPLE_ID)
4372 perf_output_put(handle, data->id);
4374 if (sample_type & PERF_SAMPLE_STREAM_ID)
4375 perf_output_put(handle, data->stream_id);
4377 if (sample_type & PERF_SAMPLE_CPU)
4378 perf_output_put(handle, data->cpu_entry);
4380 if (sample_type & PERF_SAMPLE_IDENTIFIER)
4381 perf_output_put(handle, data->id);
4384 void perf_event__output_id_sample(struct perf_event *event,
4385 struct perf_output_handle *handle,
4386 struct perf_sample_data *sample)
4388 if (event->attr.sample_id_all)
4389 __perf_event__output_id_sample(handle, sample);
4392 static void perf_output_read_one(struct perf_output_handle *handle,
4393 struct perf_event *event,
4394 u64 enabled, u64 running)
4396 u64 read_format = event->attr.read_format;
4397 u64 values[4];
4398 int n = 0;
4400 values[n++] = perf_event_count(event);
4401 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4402 values[n++] = enabled +
4403 atomic64_read(&event->child_total_time_enabled);
4405 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4406 values[n++] = running +
4407 atomic64_read(&event->child_total_time_running);
4409 if (read_format & PERF_FORMAT_ID)
4410 values[n++] = primary_event_id(event);
4412 __output_copy(handle, values, n * sizeof(u64));
4416 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
4418 static void perf_output_read_group(struct perf_output_handle *handle,
4419 struct perf_event *event,
4420 u64 enabled, u64 running)
4422 struct perf_event *leader = event->group_leader, *sub;
4423 u64 read_format = event->attr.read_format;
4424 u64 values[5];
4425 int n = 0;
4427 values[n++] = 1 + leader->nr_siblings;
4429 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4430 values[n++] = enabled;
4432 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4433 values[n++] = running;
4435 if (leader != event)
4436 leader->pmu->read(leader);
4438 values[n++] = perf_event_count(leader);
4439 if (read_format & PERF_FORMAT_ID)
4440 values[n++] = primary_event_id(leader);
4442 __output_copy(handle, values, n * sizeof(u64));
4444 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4445 n = 0;
4447 if ((sub != event) &&
4448 (sub->state == PERF_EVENT_STATE_ACTIVE))
4449 sub->pmu->read(sub);
4451 values[n++] = perf_event_count(sub);
4452 if (read_format & PERF_FORMAT_ID)
4453 values[n++] = primary_event_id(sub);
4455 __output_copy(handle, values, n * sizeof(u64));
4459 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
4460 PERF_FORMAT_TOTAL_TIME_RUNNING)
4462 static void perf_output_read(struct perf_output_handle *handle,
4463 struct perf_event *event)
4465 u64 enabled = 0, running = 0, now;
4466 u64 read_format = event->attr.read_format;
4469 * compute total_time_enabled, total_time_running
4470 * based on snapshot values taken when the event
4471 * was last scheduled in.
4473 * we cannot simply called update_context_time()
4474 * because of locking issue as we are called in
4475 * NMI context
4477 if (read_format & PERF_FORMAT_TOTAL_TIMES)
4478 calc_timer_values(event, &now, &enabled, &running);
4480 if (event->attr.read_format & PERF_FORMAT_GROUP)
4481 perf_output_read_group(handle, event, enabled, running);
4482 else
4483 perf_output_read_one(handle, event, enabled, running);
4486 void perf_output_sample(struct perf_output_handle *handle,
4487 struct perf_event_header *header,
4488 struct perf_sample_data *data,
4489 struct perf_event *event)
4491 u64 sample_type = data->type;
4493 perf_output_put(handle, *header);
4495 if (sample_type & PERF_SAMPLE_IDENTIFIER)
4496 perf_output_put(handle, data->id);
4498 if (sample_type & PERF_SAMPLE_IP)
4499 perf_output_put(handle, data->ip);
4501 if (sample_type & PERF_SAMPLE_TID)
4502 perf_output_put(handle, data->tid_entry);
4504 if (sample_type & PERF_SAMPLE_TIME)
4505 perf_output_put(handle, data->time);
4507 if (sample_type & PERF_SAMPLE_ADDR)
4508 perf_output_put(handle, data->addr);
4510 if (sample_type & PERF_SAMPLE_ID)
4511 perf_output_put(handle, data->id);
4513 if (sample_type & PERF_SAMPLE_STREAM_ID)
4514 perf_output_put(handle, data->stream_id);
4516 if (sample_type & PERF_SAMPLE_CPU)
4517 perf_output_put(handle, data->cpu_entry);
4519 if (sample_type & PERF_SAMPLE_PERIOD)
4520 perf_output_put(handle, data->period);
4522 if (sample_type & PERF_SAMPLE_READ)
4523 perf_output_read(handle, event);
4525 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4526 if (data->callchain) {
4527 int size = 1;
4529 if (data->callchain)
4530 size += data->callchain->nr;
4532 size *= sizeof(u64);
4534 __output_copy(handle, data->callchain, size);
4535 } else {
4536 u64 nr = 0;
4537 perf_output_put(handle, nr);
4541 if (sample_type & PERF_SAMPLE_RAW) {
4542 if (data->raw) {
4543 perf_output_put(handle, data->raw->size);
4544 __output_copy(handle, data->raw->data,
4545 data->raw->size);
4546 } else {
4547 struct {
4548 u32 size;
4549 u32 data;
4550 } raw = {
4551 .size = sizeof(u32),
4552 .data = 0,
4554 perf_output_put(handle, raw);
4558 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4559 if (data->br_stack) {
4560 size_t size;
4562 size = data->br_stack->nr
4563 * sizeof(struct perf_branch_entry);
4565 perf_output_put(handle, data->br_stack->nr);
4566 perf_output_copy(handle, data->br_stack->entries, size);
4567 } else {
4569 * we always store at least the value of nr
4571 u64 nr = 0;
4572 perf_output_put(handle, nr);
4576 if (sample_type & PERF_SAMPLE_REGS_USER) {
4577 u64 abi = data->regs_user.abi;
4580 * If there are no regs to dump, notice it through
4581 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
4583 perf_output_put(handle, abi);
4585 if (abi) {
4586 u64 mask = event->attr.sample_regs_user;
4587 perf_output_sample_regs(handle,
4588 data->regs_user.regs,
4589 mask);
4593 if (sample_type & PERF_SAMPLE_STACK_USER) {
4594 perf_output_sample_ustack(handle,
4595 data->stack_user_size,
4596 data->regs_user.regs);
4599 if (sample_type & PERF_SAMPLE_WEIGHT)
4600 perf_output_put(handle, data->weight);
4602 if (sample_type & PERF_SAMPLE_DATA_SRC)
4603 perf_output_put(handle, data->data_src.val);
4605 if (sample_type & PERF_SAMPLE_TRANSACTION)
4606 perf_output_put(handle, data->txn);
4608 if (!event->attr.watermark) {
4609 int wakeup_events = event->attr.wakeup_events;
4611 if (wakeup_events) {
4612 struct ring_buffer *rb = handle->rb;
4613 int events = local_inc_return(&rb->events);
4615 if (events >= wakeup_events) {
4616 local_sub(wakeup_events, &rb->events);
4617 local_inc(&rb->wakeup);
4623 void perf_prepare_sample(struct perf_event_header *header,
4624 struct perf_sample_data *data,
4625 struct perf_event *event,
4626 struct pt_regs *regs)
4628 u64 sample_type = event->attr.sample_type;
4630 header->type = PERF_RECORD_SAMPLE;
4631 header->size = sizeof(*header) + event->header_size;
4633 header->misc = 0;
4634 header->misc |= perf_misc_flags(regs);
4636 __perf_event_header__init_id(header, data, event);
4638 if (sample_type & PERF_SAMPLE_IP)
4639 data->ip = perf_instruction_pointer(regs);
4641 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4642 int size = 1;
4644 data->callchain = perf_callchain(event, regs);
4646 if (data->callchain)
4647 size += data->callchain->nr;
4649 header->size += size * sizeof(u64);
4652 if (sample_type & PERF_SAMPLE_RAW) {
4653 int size = sizeof(u32);
4655 if (data->raw)
4656 size += data->raw->size;
4657 else
4658 size += sizeof(u32);
4660 WARN_ON_ONCE(size & (sizeof(u64)-1));
4661 header->size += size;
4664 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4665 int size = sizeof(u64); /* nr */
4666 if (data->br_stack) {
4667 size += data->br_stack->nr
4668 * sizeof(struct perf_branch_entry);
4670 header->size += size;
4673 if (sample_type & PERF_SAMPLE_REGS_USER) {
4674 /* regs dump ABI info */
4675 int size = sizeof(u64);
4677 perf_sample_regs_user(&data->regs_user, regs);
4679 if (data->regs_user.regs) {
4680 u64 mask = event->attr.sample_regs_user;
4681 size += hweight64(mask) * sizeof(u64);
4684 header->size += size;
4687 if (sample_type & PERF_SAMPLE_STACK_USER) {
4689 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
4690 * processed as the last one or have additional check added
4691 * in case new sample type is added, because we could eat
4692 * up the rest of the sample size.
4694 struct perf_regs_user *uregs = &data->regs_user;
4695 u16 stack_size = event->attr.sample_stack_user;
4696 u16 size = sizeof(u64);
4698 if (!uregs->abi)
4699 perf_sample_regs_user(uregs, regs);
4701 stack_size = perf_sample_ustack_size(stack_size, header->size,
4702 uregs->regs);
4705 * If there is something to dump, add space for the dump
4706 * itself and for the field that tells the dynamic size,
4707 * which is how many have been actually dumped.
4709 if (stack_size)
4710 size += sizeof(u64) + stack_size;
4712 data->stack_user_size = stack_size;
4713 header->size += size;
4717 static void perf_event_output(struct perf_event *event,
4718 struct perf_sample_data *data,
4719 struct pt_regs *regs)
4721 struct perf_output_handle handle;
4722 struct perf_event_header header;
4724 /* protect the callchain buffers */
4725 rcu_read_lock();
4727 perf_prepare_sample(&header, data, event, regs);
4729 if (perf_output_begin(&handle, event, header.size))
4730 goto exit;
4732 perf_output_sample(&handle, &header, data, event);
4734 perf_output_end(&handle);
4736 exit:
4737 rcu_read_unlock();
4741 * read event_id
4744 struct perf_read_event {
4745 struct perf_event_header header;
4747 u32 pid;
4748 u32 tid;
4751 static void
4752 perf_event_read_event(struct perf_event *event,
4753 struct task_struct *task)
4755 struct perf_output_handle handle;
4756 struct perf_sample_data sample;
4757 struct perf_read_event read_event = {
4758 .header = {
4759 .type = PERF_RECORD_READ,
4760 .misc = 0,
4761 .size = sizeof(read_event) + event->read_size,
4763 .pid = perf_event_pid(event, task),
4764 .tid = perf_event_tid(event, task),
4766 int ret;
4768 perf_event_header__init_id(&read_event.header, &sample, event);
4769 ret = perf_output_begin(&handle, event, read_event.header.size);
4770 if (ret)
4771 return;
4773 perf_output_put(&handle, read_event);
4774 perf_output_read(&handle, event);
4775 perf_event__output_id_sample(event, &handle, &sample);
4777 perf_output_end(&handle);
4780 typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
4782 static void
4783 perf_event_aux_ctx(struct perf_event_context *ctx,
4784 perf_event_aux_output_cb output,
4785 void *data)
4787 struct perf_event *event;
4789 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4790 if (event->state < PERF_EVENT_STATE_INACTIVE)
4791 continue;
4792 if (!event_filter_match(event))
4793 continue;
4794 output(event, data);
4798 static void
4799 perf_event_aux(perf_event_aux_output_cb output, void *data,
4800 struct perf_event_context *task_ctx)
4802 struct perf_cpu_context *cpuctx;
4803 struct perf_event_context *ctx;
4804 struct pmu *pmu;
4805 int ctxn;
4807 rcu_read_lock();
4808 list_for_each_entry_rcu(pmu, &pmus, entry) {
4809 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4810 if (cpuctx->unique_pmu != pmu)
4811 goto next;
4812 perf_event_aux_ctx(&cpuctx->ctx, output, data);
4813 if (task_ctx)
4814 goto next;
4815 ctxn = pmu->task_ctx_nr;
4816 if (ctxn < 0)
4817 goto next;
4818 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4819 if (ctx)
4820 perf_event_aux_ctx(ctx, output, data);
4821 next:
4822 put_cpu_ptr(pmu->pmu_cpu_context);
4825 if (task_ctx) {
4826 preempt_disable();
4827 perf_event_aux_ctx(task_ctx, output, data);
4828 preempt_enable();
4830 rcu_read_unlock();
4834 * task tracking -- fork/exit
4836 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
4839 struct perf_task_event {
4840 struct task_struct *task;
4841 struct perf_event_context *task_ctx;
4843 struct {
4844 struct perf_event_header header;
4846 u32 pid;
4847 u32 ppid;
4848 u32 tid;
4849 u32 ptid;
4850 u64 time;
4851 } event_id;
4854 static int perf_event_task_match(struct perf_event *event)
4856 return event->attr.comm || event->attr.mmap ||
4857 event->attr.mmap2 || event->attr.mmap_data ||
4858 event->attr.task;
4861 static void perf_event_task_output(struct perf_event *event,
4862 void *data)
4864 struct perf_task_event *task_event = data;
4865 struct perf_output_handle handle;
4866 struct perf_sample_data sample;
4867 struct task_struct *task = task_event->task;
4868 int ret, size = task_event->event_id.header.size;
4870 if (!perf_event_task_match(event))
4871 return;
4873 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
4875 ret = perf_output_begin(&handle, event,
4876 task_event->event_id.header.size);
4877 if (ret)
4878 goto out;
4880 task_event->event_id.pid = perf_event_pid(event, task);
4881 task_event->event_id.ppid = perf_event_pid(event, current);
4883 task_event->event_id.tid = perf_event_tid(event, task);
4884 task_event->event_id.ptid = perf_event_tid(event, current);
4886 perf_output_put(&handle, task_event->event_id);
4888 perf_event__output_id_sample(event, &handle, &sample);
4890 perf_output_end(&handle);
4891 out:
4892 task_event->event_id.header.size = size;
4895 static void perf_event_task(struct task_struct *task,
4896 struct perf_event_context *task_ctx,
4897 int new)
4899 struct perf_task_event task_event;
4901 if (!atomic_read(&nr_comm_events) &&
4902 !atomic_read(&nr_mmap_events) &&
4903 !atomic_read(&nr_task_events))
4904 return;
4906 task_event = (struct perf_task_event){
4907 .task = task,
4908 .task_ctx = task_ctx,
4909 .event_id = {
4910 .header = {
4911 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4912 .misc = 0,
4913 .size = sizeof(task_event.event_id),
4915 /* .pid */
4916 /* .ppid */
4917 /* .tid */
4918 /* .ptid */
4919 .time = perf_clock(),
4923 perf_event_aux(perf_event_task_output,
4924 &task_event,
4925 task_ctx);
4928 void perf_event_fork(struct task_struct *task)
4930 perf_event_task(task, NULL, 1);
4934 * comm tracking
4937 struct perf_comm_event {
4938 struct task_struct *task;
4939 char *comm;
4940 int comm_size;
4942 struct {
4943 struct perf_event_header header;
4945 u32 pid;
4946 u32 tid;
4947 } event_id;
4950 static int perf_event_comm_match(struct perf_event *event)
4952 return event->attr.comm;
4955 static void perf_event_comm_output(struct perf_event *event,
4956 void *data)
4958 struct perf_comm_event *comm_event = data;
4959 struct perf_output_handle handle;
4960 struct perf_sample_data sample;
4961 int size = comm_event->event_id.header.size;
4962 int ret;
4964 if (!perf_event_comm_match(event))
4965 return;
4967 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
4968 ret = perf_output_begin(&handle, event,
4969 comm_event->event_id.header.size);
4971 if (ret)
4972 goto out;
4974 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
4975 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4977 perf_output_put(&handle, comm_event->event_id);
4978 __output_copy(&handle, comm_event->comm,
4979 comm_event->comm_size);
4981 perf_event__output_id_sample(event, &handle, &sample);
4983 perf_output_end(&handle);
4984 out:
4985 comm_event->event_id.header.size = size;
4988 static void perf_event_comm_event(struct perf_comm_event *comm_event)
4990 char comm[TASK_COMM_LEN];
4991 unsigned int size;
4993 memset(comm, 0, sizeof(comm));
4994 strlcpy(comm, comm_event->task->comm, sizeof(comm));
4995 size = ALIGN(strlen(comm)+1, sizeof(u64));
4997 comm_event->comm = comm;
4998 comm_event->comm_size = size;
5000 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
5002 perf_event_aux(perf_event_comm_output,
5003 comm_event,
5004 NULL);
5007 void perf_event_comm(struct task_struct *task)
5009 struct perf_comm_event comm_event;
5010 struct perf_event_context *ctx;
5011 int ctxn;
5013 rcu_read_lock();
5014 for_each_task_context_nr(ctxn) {
5015 ctx = task->perf_event_ctxp[ctxn];
5016 if (!ctx)
5017 continue;
5019 perf_event_enable_on_exec(ctx);
5021 rcu_read_unlock();
5023 if (!atomic_read(&nr_comm_events))
5024 return;
5026 comm_event = (struct perf_comm_event){
5027 .task = task,
5028 /* .comm */
5029 /* .comm_size */
5030 .event_id = {
5031 .header = {
5032 .type = PERF_RECORD_COMM,
5033 .misc = 0,
5034 /* .size */
5036 /* .pid */
5037 /* .tid */
5041 perf_event_comm_event(&comm_event);
5045 * mmap tracking
5048 struct perf_mmap_event {
5049 struct vm_area_struct *vma;
5051 const char *file_name;
5052 int file_size;
5053 int maj, min;
5054 u64 ino;
5055 u64 ino_generation;
5057 struct {
5058 struct perf_event_header header;
5060 u32 pid;
5061 u32 tid;
5062 u64 start;
5063 u64 len;
5064 u64 pgoff;
5065 } event_id;
5068 static int perf_event_mmap_match(struct perf_event *event,
5069 void *data)
5071 struct perf_mmap_event *mmap_event = data;
5072 struct vm_area_struct *vma = mmap_event->vma;
5073 int executable = vma->vm_flags & VM_EXEC;
5075 return (!executable && event->attr.mmap_data) ||
5076 (executable && (event->attr.mmap || event->attr.mmap2));
5079 static void perf_event_mmap_output(struct perf_event *event,
5080 void *data)
5082 struct perf_mmap_event *mmap_event = data;
5083 struct perf_output_handle handle;
5084 struct perf_sample_data sample;
5085 int size = mmap_event->event_id.header.size;
5086 int ret;
5088 if (!perf_event_mmap_match(event, data))
5089 return;
5091 if (event->attr.mmap2) {
5092 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
5093 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
5094 mmap_event->event_id.header.size += sizeof(mmap_event->min);
5095 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5096 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5099 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5100 ret = perf_output_begin(&handle, event,
5101 mmap_event->event_id.header.size);
5102 if (ret)
5103 goto out;
5105 mmap_event->event_id.pid = perf_event_pid(event, current);
5106 mmap_event->event_id.tid = perf_event_tid(event, current);
5108 perf_output_put(&handle, mmap_event->event_id);
5110 if (event->attr.mmap2) {
5111 perf_output_put(&handle, mmap_event->maj);
5112 perf_output_put(&handle, mmap_event->min);
5113 perf_output_put(&handle, mmap_event->ino);
5114 perf_output_put(&handle, mmap_event->ino_generation);
5117 __output_copy(&handle, mmap_event->file_name,
5118 mmap_event->file_size);
5120 perf_event__output_id_sample(event, &handle, &sample);
5122 perf_output_end(&handle);
5123 out:
5124 mmap_event->event_id.header.size = size;
5127 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5129 struct vm_area_struct *vma = mmap_event->vma;
5130 struct file *file = vma->vm_file;
5131 int maj = 0, min = 0;
5132 u64 ino = 0, gen = 0;
5133 unsigned int size;
5134 char tmp[16];
5135 char *buf = NULL;
5136 char *name;
5138 if (file) {
5139 struct inode *inode;
5140 dev_t dev;
5142 buf = kmalloc(PATH_MAX, GFP_KERNEL);
5143 if (!buf) {
5144 name = "//enomem";
5145 goto cpy_name;
5148 * d_path() works from the end of the rb backwards, so we
5149 * need to add enough zero bytes after the string to handle
5150 * the 64bit alignment we do later.
5152 name = d_path(&file->f_path, buf, PATH_MAX - sizeof(u64));
5153 if (IS_ERR(name)) {
5154 name = "//toolong";
5155 goto cpy_name;
5157 inode = file_inode(vma->vm_file);
5158 dev = inode->i_sb->s_dev;
5159 ino = inode->i_ino;
5160 gen = inode->i_generation;
5161 maj = MAJOR(dev);
5162 min = MINOR(dev);
5163 goto got_name;
5164 } else {
5165 name = (char *)arch_vma_name(vma);
5166 if (name)
5167 goto cpy_name;
5169 if (vma->vm_start <= vma->vm_mm->start_brk &&
5170 vma->vm_end >= vma->vm_mm->brk) {
5171 name = "[heap]";
5172 goto cpy_name;
5174 if (vma->vm_start <= vma->vm_mm->start_stack &&
5175 vma->vm_end >= vma->vm_mm->start_stack) {
5176 name = "[stack]";
5177 goto cpy_name;
5180 name = "//anon";
5181 goto cpy_name;
5184 cpy_name:
5185 strlcpy(tmp, name, sizeof(tmp));
5186 name = tmp;
5187 got_name:
5189 * Since our buffer works in 8 byte units we need to align our string
5190 * size to a multiple of 8. However, we must guarantee the tail end is
5191 * zero'd out to avoid leaking random bits to userspace.
5193 size = strlen(name)+1;
5194 while (!IS_ALIGNED(size, sizeof(u64)))
5195 name[size++] = '\0';
5197 mmap_event->file_name = name;
5198 mmap_event->file_size = size;
5199 mmap_event->maj = maj;
5200 mmap_event->min = min;
5201 mmap_event->ino = ino;
5202 mmap_event->ino_generation = gen;
5204 if (!(vma->vm_flags & VM_EXEC))
5205 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
5207 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
5209 perf_event_aux(perf_event_mmap_output,
5210 mmap_event,
5211 NULL);
5213 kfree(buf);
5216 void perf_event_mmap(struct vm_area_struct *vma)
5218 struct perf_mmap_event mmap_event;
5220 if (!atomic_read(&nr_mmap_events))
5221 return;
5223 mmap_event = (struct perf_mmap_event){
5224 .vma = vma,
5225 /* .file_name */
5226 /* .file_size */
5227 .event_id = {
5228 .header = {
5229 .type = PERF_RECORD_MMAP,
5230 .misc = PERF_RECORD_MISC_USER,
5231 /* .size */
5233 /* .pid */
5234 /* .tid */
5235 .start = vma->vm_start,
5236 .len = vma->vm_end - vma->vm_start,
5237 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
5239 /* .maj (attr_mmap2 only) */
5240 /* .min (attr_mmap2 only) */
5241 /* .ino (attr_mmap2 only) */
5242 /* .ino_generation (attr_mmap2 only) */
5245 perf_event_mmap_event(&mmap_event);
5249 * IRQ throttle logging
5252 static void perf_log_throttle(struct perf_event *event, int enable)
5254 struct perf_output_handle handle;
5255 struct perf_sample_data sample;
5256 int ret;
5258 struct {
5259 struct perf_event_header header;
5260 u64 time;
5261 u64 id;
5262 u64 stream_id;
5263 } throttle_event = {
5264 .header = {
5265 .type = PERF_RECORD_THROTTLE,
5266 .misc = 0,
5267 .size = sizeof(throttle_event),
5269 .time = perf_clock(),
5270 .id = primary_event_id(event),
5271 .stream_id = event->id,
5274 if (enable)
5275 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
5277 perf_event_header__init_id(&throttle_event.header, &sample, event);
5279 ret = perf_output_begin(&handle, event,
5280 throttle_event.header.size);
5281 if (ret)
5282 return;
5284 perf_output_put(&handle, throttle_event);
5285 perf_event__output_id_sample(event, &handle, &sample);
5286 perf_output_end(&handle);
5290 * Generic event overflow handling, sampling.
5293 static int __perf_event_overflow(struct perf_event *event,
5294 int throttle, struct perf_sample_data *data,
5295 struct pt_regs *regs)
5297 int events = atomic_read(&event->event_limit);
5298 struct hw_perf_event *hwc = &event->hw;
5299 u64 seq;
5300 int ret = 0;
5303 * Non-sampling counters might still use the PMI to fold short
5304 * hardware counters, ignore those.
5306 if (unlikely(!is_sampling_event(event)))
5307 return 0;
5309 seq = __this_cpu_read(perf_throttled_seq);
5310 if (seq != hwc->interrupts_seq) {
5311 hwc->interrupts_seq = seq;
5312 hwc->interrupts = 1;
5313 } else {
5314 hwc->interrupts++;
5315 if (unlikely(throttle
5316 && hwc->interrupts >= max_samples_per_tick)) {
5317 __this_cpu_inc(perf_throttled_count);
5318 hwc->interrupts = MAX_INTERRUPTS;
5319 perf_log_throttle(event, 0);
5320 tick_nohz_full_kick();
5321 ret = 1;
5325 if (event->attr.freq) {
5326 u64 now = perf_clock();
5327 s64 delta = now - hwc->freq_time_stamp;
5329 hwc->freq_time_stamp = now;
5331 if (delta > 0 && delta < 2*TICK_NSEC)
5332 perf_adjust_period(event, delta, hwc->last_period, true);
5336 * XXX event_limit might not quite work as expected on inherited
5337 * events
5340 event->pending_kill = POLL_IN;
5341 if (events && atomic_dec_and_test(&event->event_limit)) {
5342 ret = 1;
5343 event->pending_kill = POLL_HUP;
5344 event->pending_disable = 1;
5345 irq_work_queue(&event->pending);
5348 if (event->overflow_handler)
5349 event->overflow_handler(event, data, regs);
5350 else
5351 perf_event_output(event, data, regs);
5353 if (event->fasync && event->pending_kill) {
5354 event->pending_wakeup = 1;
5355 irq_work_queue(&event->pending);
5358 return ret;
5361 int perf_event_overflow(struct perf_event *event,
5362 struct perf_sample_data *data,
5363 struct pt_regs *regs)
5365 return __perf_event_overflow(event, 1, data, regs);
5369 * Generic software event infrastructure
5372 struct swevent_htable {
5373 struct swevent_hlist *swevent_hlist;
5374 struct mutex hlist_mutex;
5375 int hlist_refcount;
5377 /* Recursion avoidance in each contexts */
5378 int recursion[PERF_NR_CONTEXTS];
5381 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
5384 * We directly increment event->count and keep a second value in
5385 * event->hw.period_left to count intervals. This period event
5386 * is kept in the range [-sample_period, 0] so that we can use the
5387 * sign as trigger.
5390 u64 perf_swevent_set_period(struct perf_event *event)
5392 struct hw_perf_event *hwc = &event->hw;
5393 u64 period = hwc->last_period;
5394 u64 nr, offset;
5395 s64 old, val;
5397 hwc->last_period = hwc->sample_period;
5399 again:
5400 old = val = local64_read(&hwc->period_left);
5401 if (val < 0)
5402 return 0;
5404 nr = div64_u64(period + val, period);
5405 offset = nr * period;
5406 val -= offset;
5407 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
5408 goto again;
5410 return nr;
5413 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
5414 struct perf_sample_data *data,
5415 struct pt_regs *regs)
5417 struct hw_perf_event *hwc = &event->hw;
5418 int throttle = 0;
5420 if (!overflow)
5421 overflow = perf_swevent_set_period(event);
5423 if (hwc->interrupts == MAX_INTERRUPTS)
5424 return;
5426 for (; overflow; overflow--) {
5427 if (__perf_event_overflow(event, throttle,
5428 data, regs)) {
5430 * We inhibit the overflow from happening when
5431 * hwc->interrupts == MAX_INTERRUPTS.
5433 break;
5435 throttle = 1;
5439 static void perf_swevent_event(struct perf_event *event, u64 nr,
5440 struct perf_sample_data *data,
5441 struct pt_regs *regs)
5443 struct hw_perf_event *hwc = &event->hw;
5445 local64_add(nr, &event->count);
5447 if (!regs)
5448 return;
5450 if (!is_sampling_event(event))
5451 return;
5453 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
5454 data->period = nr;
5455 return perf_swevent_overflow(event, 1, data, regs);
5456 } else
5457 data->period = event->hw.last_period;
5459 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
5460 return perf_swevent_overflow(event, 1, data, regs);
5462 if (local64_add_negative(nr, &hwc->period_left))
5463 return;
5465 perf_swevent_overflow(event, 0, data, regs);
5468 static int perf_exclude_event(struct perf_event *event,
5469 struct pt_regs *regs)
5471 if (event->hw.state & PERF_HES_STOPPED)
5472 return 1;
5474 if (regs) {
5475 if (event->attr.exclude_user && user_mode(regs))
5476 return 1;
5478 if (event->attr.exclude_kernel && !user_mode(regs))
5479 return 1;
5482 return 0;
5485 static int perf_swevent_match(struct perf_event *event,
5486 enum perf_type_id type,
5487 u32 event_id,
5488 struct perf_sample_data *data,
5489 struct pt_regs *regs)
5491 if (event->attr.type != type)
5492 return 0;
5494 if (event->attr.config != event_id)
5495 return 0;
5497 if (perf_exclude_event(event, regs))
5498 return 0;
5500 return 1;
5503 static inline u64 swevent_hash(u64 type, u32 event_id)
5505 u64 val = event_id | (type << 32);
5507 return hash_64(val, SWEVENT_HLIST_BITS);
5510 static inline struct hlist_head *
5511 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
5513 u64 hash = swevent_hash(type, event_id);
5515 return &hlist->heads[hash];
5518 /* For the read side: events when they trigger */
5519 static inline struct hlist_head *
5520 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
5522 struct swevent_hlist *hlist;
5524 hlist = rcu_dereference(swhash->swevent_hlist);
5525 if (!hlist)
5526 return NULL;
5528 return __find_swevent_head(hlist, type, event_id);
5531 /* For the event head insertion and removal in the hlist */
5532 static inline struct hlist_head *
5533 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
5535 struct swevent_hlist *hlist;
5536 u32 event_id = event->attr.config;
5537 u64 type = event->attr.type;
5540 * Event scheduling is always serialized against hlist allocation
5541 * and release. Which makes the protected version suitable here.
5542 * The context lock guarantees that.
5544 hlist = rcu_dereference_protected(swhash->swevent_hlist,
5545 lockdep_is_held(&event->ctx->lock));
5546 if (!hlist)
5547 return NULL;
5549 return __find_swevent_head(hlist, type, event_id);
5552 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
5553 u64 nr,
5554 struct perf_sample_data *data,
5555 struct pt_regs *regs)
5557 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5558 struct perf_event *event;
5559 struct hlist_head *head;
5561 rcu_read_lock();
5562 head = find_swevent_head_rcu(swhash, type, event_id);
5563 if (!head)
5564 goto end;
5566 hlist_for_each_entry_rcu(event, head, hlist_entry) {
5567 if (perf_swevent_match(event, type, event_id, data, regs))
5568 perf_swevent_event(event, nr, data, regs);
5570 end:
5571 rcu_read_unlock();
5574 int perf_swevent_get_recursion_context(void)
5576 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5578 return get_recursion_context(swhash->recursion);
5580 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
5582 inline void perf_swevent_put_recursion_context(int rctx)
5584 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5586 put_recursion_context(swhash->recursion, rctx);
5589 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
5591 struct perf_sample_data data;
5592 int rctx;
5594 preempt_disable_notrace();
5595 rctx = perf_swevent_get_recursion_context();
5596 if (rctx < 0)
5597 return;
5599 perf_sample_data_init(&data, addr, 0);
5601 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
5603 perf_swevent_put_recursion_context(rctx);
5604 preempt_enable_notrace();
5607 static void perf_swevent_read(struct perf_event *event)
5611 static int perf_swevent_add(struct perf_event *event, int flags)
5613 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5614 struct hw_perf_event *hwc = &event->hw;
5615 struct hlist_head *head;
5617 if (is_sampling_event(event)) {
5618 hwc->last_period = hwc->sample_period;
5619 perf_swevent_set_period(event);
5622 hwc->state = !(flags & PERF_EF_START);
5624 head = find_swevent_head(swhash, event);
5625 if (WARN_ON_ONCE(!head))
5626 return -EINVAL;
5628 hlist_add_head_rcu(&event->hlist_entry, head);
5630 return 0;
5633 static void perf_swevent_del(struct perf_event *event, int flags)
5635 hlist_del_rcu(&event->hlist_entry);
5638 static void perf_swevent_start(struct perf_event *event, int flags)
5640 event->hw.state = 0;
5643 static void perf_swevent_stop(struct perf_event *event, int flags)
5645 event->hw.state = PERF_HES_STOPPED;
5648 /* Deref the hlist from the update side */
5649 static inline struct swevent_hlist *
5650 swevent_hlist_deref(struct swevent_htable *swhash)
5652 return rcu_dereference_protected(swhash->swevent_hlist,
5653 lockdep_is_held(&swhash->hlist_mutex));
5656 static void swevent_hlist_release(struct swevent_htable *swhash)
5658 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
5660 if (!hlist)
5661 return;
5663 rcu_assign_pointer(swhash->swevent_hlist, NULL);
5664 kfree_rcu(hlist, rcu_head);
5667 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
5669 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5671 mutex_lock(&swhash->hlist_mutex);
5673 if (!--swhash->hlist_refcount)
5674 swevent_hlist_release(swhash);
5676 mutex_unlock(&swhash->hlist_mutex);
5679 static void swevent_hlist_put(struct perf_event *event)
5681 int cpu;
5683 for_each_possible_cpu(cpu)
5684 swevent_hlist_put_cpu(event, cpu);
5687 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
5689 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5690 int err = 0;
5692 mutex_lock(&swhash->hlist_mutex);
5694 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5695 struct swevent_hlist *hlist;
5697 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5698 if (!hlist) {
5699 err = -ENOMEM;
5700 goto exit;
5702 rcu_assign_pointer(swhash->swevent_hlist, hlist);
5704 swhash->hlist_refcount++;
5705 exit:
5706 mutex_unlock(&swhash->hlist_mutex);
5708 return err;
5711 static int swevent_hlist_get(struct perf_event *event)
5713 int err;
5714 int cpu, failed_cpu;
5716 get_online_cpus();
5717 for_each_possible_cpu(cpu) {
5718 err = swevent_hlist_get_cpu(event, cpu);
5719 if (err) {
5720 failed_cpu = cpu;
5721 goto fail;
5724 put_online_cpus();
5726 return 0;
5727 fail:
5728 for_each_possible_cpu(cpu) {
5729 if (cpu == failed_cpu)
5730 break;
5731 swevent_hlist_put_cpu(event, cpu);
5734 put_online_cpus();
5735 return err;
5738 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
5740 static void sw_perf_event_destroy(struct perf_event *event)
5742 u64 event_id = event->attr.config;
5744 WARN_ON(event->parent);
5746 static_key_slow_dec(&perf_swevent_enabled[event_id]);
5747 swevent_hlist_put(event);
5750 static int perf_swevent_init(struct perf_event *event)
5752 u64 event_id = event->attr.config;
5754 if (event->attr.type != PERF_TYPE_SOFTWARE)
5755 return -ENOENT;
5758 * no branch sampling for software events
5760 if (has_branch_stack(event))
5761 return -EOPNOTSUPP;
5763 switch (event_id) {
5764 case PERF_COUNT_SW_CPU_CLOCK:
5765 case PERF_COUNT_SW_TASK_CLOCK:
5766 return -ENOENT;
5768 default:
5769 break;
5772 if (event_id >= PERF_COUNT_SW_MAX)
5773 return -ENOENT;
5775 if (!event->parent) {
5776 int err;
5778 err = swevent_hlist_get(event);
5779 if (err)
5780 return err;
5782 static_key_slow_inc(&perf_swevent_enabled[event_id]);
5783 event->destroy = sw_perf_event_destroy;
5786 return 0;
5789 static int perf_swevent_event_idx(struct perf_event *event)
5791 return 0;
5794 static struct pmu perf_swevent = {
5795 .task_ctx_nr = perf_sw_context,
5797 .event_init = perf_swevent_init,
5798 .add = perf_swevent_add,
5799 .del = perf_swevent_del,
5800 .start = perf_swevent_start,
5801 .stop = perf_swevent_stop,
5802 .read = perf_swevent_read,
5804 .event_idx = perf_swevent_event_idx,
5807 #ifdef CONFIG_EVENT_TRACING
5809 static int perf_tp_filter_match(struct perf_event *event,
5810 struct perf_sample_data *data)
5812 void *record = data->raw->data;
5814 if (likely(!event->filter) || filter_match_preds(event->filter, record))
5815 return 1;
5816 return 0;
5819 static int perf_tp_event_match(struct perf_event *event,
5820 struct perf_sample_data *data,
5821 struct pt_regs *regs)
5823 if (event->hw.state & PERF_HES_STOPPED)
5824 return 0;
5826 * All tracepoints are from kernel-space.
5828 if (event->attr.exclude_kernel)
5829 return 0;
5831 if (!perf_tp_filter_match(event, data))
5832 return 0;
5834 return 1;
5837 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5838 struct pt_regs *regs, struct hlist_head *head, int rctx,
5839 struct task_struct *task)
5841 struct perf_sample_data data;
5842 struct perf_event *event;
5844 struct perf_raw_record raw = {
5845 .size = entry_size,
5846 .data = record,
5849 perf_sample_data_init(&data, addr, 0);
5850 data.raw = &raw;
5852 hlist_for_each_entry_rcu(event, head, hlist_entry) {
5853 if (perf_tp_event_match(event, &data, regs))
5854 perf_swevent_event(event, count, &data, regs);
5858 * If we got specified a target task, also iterate its context and
5859 * deliver this event there too.
5861 if (task && task != current) {
5862 struct perf_event_context *ctx;
5863 struct trace_entry *entry = record;
5865 rcu_read_lock();
5866 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
5867 if (!ctx)
5868 goto unlock;
5870 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5871 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5872 continue;
5873 if (event->attr.config != entry->type)
5874 continue;
5875 if (perf_tp_event_match(event, &data, regs))
5876 perf_swevent_event(event, count, &data, regs);
5878 unlock:
5879 rcu_read_unlock();
5882 perf_swevent_put_recursion_context(rctx);
5884 EXPORT_SYMBOL_GPL(perf_tp_event);
5886 static void tp_perf_event_destroy(struct perf_event *event)
5888 perf_trace_destroy(event);
5891 static int perf_tp_event_init(struct perf_event *event)
5893 int err;
5895 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5896 return -ENOENT;
5899 * no branch sampling for tracepoint events
5901 if (has_branch_stack(event))
5902 return -EOPNOTSUPP;
5904 err = perf_trace_init(event);
5905 if (err)
5906 return err;
5908 event->destroy = tp_perf_event_destroy;
5910 return 0;
5913 static struct pmu perf_tracepoint = {
5914 .task_ctx_nr = perf_sw_context,
5916 .event_init = perf_tp_event_init,
5917 .add = perf_trace_add,
5918 .del = perf_trace_del,
5919 .start = perf_swevent_start,
5920 .stop = perf_swevent_stop,
5921 .read = perf_swevent_read,
5923 .event_idx = perf_swevent_event_idx,
5926 static inline void perf_tp_register(void)
5928 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5931 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5933 char *filter_str;
5934 int ret;
5936 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5937 return -EINVAL;
5939 filter_str = strndup_user(arg, PAGE_SIZE);
5940 if (IS_ERR(filter_str))
5941 return PTR_ERR(filter_str);
5943 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
5945 kfree(filter_str);
5946 return ret;
5949 static void perf_event_free_filter(struct perf_event *event)
5951 ftrace_profile_free_filter(event);
5954 #else
5956 static inline void perf_tp_register(void)
5960 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5962 return -ENOENT;
5965 static void perf_event_free_filter(struct perf_event *event)
5969 #endif /* CONFIG_EVENT_TRACING */
5971 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5972 void perf_bp_event(struct perf_event *bp, void *data)
5974 struct perf_sample_data sample;
5975 struct pt_regs *regs = data;
5977 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
5979 if (!bp->hw.state && !perf_exclude_event(bp, regs))
5980 perf_swevent_event(bp, 1, &sample, regs);
5982 #endif
5985 * hrtimer based swevent callback
5988 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5990 enum hrtimer_restart ret = HRTIMER_RESTART;
5991 struct perf_sample_data data;
5992 struct pt_regs *regs;
5993 struct perf_event *event;
5994 u64 period;
5996 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
5998 if (event->state != PERF_EVENT_STATE_ACTIVE)
5999 return HRTIMER_NORESTART;
6001 event->pmu->read(event);
6003 perf_sample_data_init(&data, 0, event->hw.last_period);
6004 regs = get_irq_regs();
6006 if (regs && !perf_exclude_event(event, regs)) {
6007 if (!(event->attr.exclude_idle && is_idle_task(current)))
6008 if (__perf_event_overflow(event, 1, &data, regs))
6009 ret = HRTIMER_NORESTART;
6012 period = max_t(u64, 10000, event->hw.sample_period);
6013 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
6015 return ret;
6018 static void perf_swevent_start_hrtimer(struct perf_event *event)
6020 struct hw_perf_event *hwc = &event->hw;
6021 s64 period;
6023 if (!is_sampling_event(event))
6024 return;
6026 period = local64_read(&hwc->period_left);
6027 if (period) {
6028 if (period < 0)
6029 period = 10000;
6031 local64_set(&hwc->period_left, 0);
6032 } else {
6033 period = max_t(u64, 10000, hwc->sample_period);
6035 __hrtimer_start_range_ns(&hwc->hrtimer,
6036 ns_to_ktime(period), 0,
6037 HRTIMER_MODE_REL_PINNED, 0);
6040 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
6042 struct hw_perf_event *hwc = &event->hw;
6044 if (is_sampling_event(event)) {
6045 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
6046 local64_set(&hwc->period_left, ktime_to_ns(remaining));
6048 hrtimer_cancel(&hwc->hrtimer);
6052 static void perf_swevent_init_hrtimer(struct perf_event *event)
6054 struct hw_perf_event *hwc = &event->hw;
6056 if (!is_sampling_event(event))
6057 return;
6059 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6060 hwc->hrtimer.function = perf_swevent_hrtimer;
6063 * Since hrtimers have a fixed rate, we can do a static freq->period
6064 * mapping and avoid the whole period adjust feedback stuff.
6066 if (event->attr.freq) {
6067 long freq = event->attr.sample_freq;
6069 event->attr.sample_period = NSEC_PER_SEC / freq;
6070 hwc->sample_period = event->attr.sample_period;
6071 local64_set(&hwc->period_left, hwc->sample_period);
6072 hwc->last_period = hwc->sample_period;
6073 event->attr.freq = 0;
6078 * Software event: cpu wall time clock
6081 static void cpu_clock_event_update(struct perf_event *event)
6083 s64 prev;
6084 u64 now;
6086 now = local_clock();
6087 prev = local64_xchg(&event->hw.prev_count, now);
6088 local64_add(now - prev, &event->count);
6091 static void cpu_clock_event_start(struct perf_event *event, int flags)
6093 local64_set(&event->hw.prev_count, local_clock());
6094 perf_swevent_start_hrtimer(event);
6097 static void cpu_clock_event_stop(struct perf_event *event, int flags)
6099 perf_swevent_cancel_hrtimer(event);
6100 cpu_clock_event_update(event);
6103 static int cpu_clock_event_add(struct perf_event *event, int flags)
6105 if (flags & PERF_EF_START)
6106 cpu_clock_event_start(event, flags);
6108 return 0;
6111 static void cpu_clock_event_del(struct perf_event *event, int flags)
6113 cpu_clock_event_stop(event, flags);
6116 static void cpu_clock_event_read(struct perf_event *event)
6118 cpu_clock_event_update(event);
6121 static int cpu_clock_event_init(struct perf_event *event)
6123 if (event->attr.type != PERF_TYPE_SOFTWARE)
6124 return -ENOENT;
6126 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
6127 return -ENOENT;
6130 * no branch sampling for software events
6132 if (has_branch_stack(event))
6133 return -EOPNOTSUPP;
6135 perf_swevent_init_hrtimer(event);
6137 return 0;
6140 static struct pmu perf_cpu_clock = {
6141 .task_ctx_nr = perf_sw_context,
6143 .event_init = cpu_clock_event_init,
6144 .add = cpu_clock_event_add,
6145 .del = cpu_clock_event_del,
6146 .start = cpu_clock_event_start,
6147 .stop = cpu_clock_event_stop,
6148 .read = cpu_clock_event_read,
6150 .event_idx = perf_swevent_event_idx,
6154 * Software event: task time clock
6157 static void task_clock_event_update(struct perf_event *event, u64 now)
6159 u64 prev;
6160 s64 delta;
6162 prev = local64_xchg(&event->hw.prev_count, now);
6163 delta = now - prev;
6164 local64_add(delta, &event->count);
6167 static void task_clock_event_start(struct perf_event *event, int flags)
6169 local64_set(&event->hw.prev_count, event->ctx->time);
6170 perf_swevent_start_hrtimer(event);
6173 static void task_clock_event_stop(struct perf_event *event, int flags)
6175 perf_swevent_cancel_hrtimer(event);
6176 task_clock_event_update(event, event->ctx->time);
6179 static int task_clock_event_add(struct perf_event *event, int flags)
6181 if (flags & PERF_EF_START)
6182 task_clock_event_start(event, flags);
6184 return 0;
6187 static void task_clock_event_del(struct perf_event *event, int flags)
6189 task_clock_event_stop(event, PERF_EF_UPDATE);
6192 static void task_clock_event_read(struct perf_event *event)
6194 u64 now = perf_clock();
6195 u64 delta = now - event->ctx->timestamp;
6196 u64 time = event->ctx->time + delta;
6198 task_clock_event_update(event, time);
6201 static int task_clock_event_init(struct perf_event *event)
6203 if (event->attr.type != PERF_TYPE_SOFTWARE)
6204 return -ENOENT;
6206 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
6207 return -ENOENT;
6210 * no branch sampling for software events
6212 if (has_branch_stack(event))
6213 return -EOPNOTSUPP;
6215 perf_swevent_init_hrtimer(event);
6217 return 0;
6220 static struct pmu perf_task_clock = {
6221 .task_ctx_nr = perf_sw_context,
6223 .event_init = task_clock_event_init,
6224 .add = task_clock_event_add,
6225 .del = task_clock_event_del,
6226 .start = task_clock_event_start,
6227 .stop = task_clock_event_stop,
6228 .read = task_clock_event_read,
6230 .event_idx = perf_swevent_event_idx,
6233 static void perf_pmu_nop_void(struct pmu *pmu)
6237 static int perf_pmu_nop_int(struct pmu *pmu)
6239 return 0;
6242 static void perf_pmu_start_txn(struct pmu *pmu)
6244 perf_pmu_disable(pmu);
6247 static int perf_pmu_commit_txn(struct pmu *pmu)
6249 perf_pmu_enable(pmu);
6250 return 0;
6253 static void perf_pmu_cancel_txn(struct pmu *pmu)
6255 perf_pmu_enable(pmu);
6258 static int perf_event_idx_default(struct perf_event *event)
6260 return event->hw.idx + 1;
6264 * Ensures all contexts with the same task_ctx_nr have the same
6265 * pmu_cpu_context too.
6267 static void *find_pmu_context(int ctxn)
6269 struct pmu *pmu;
6271 if (ctxn < 0)
6272 return NULL;
6274 list_for_each_entry(pmu, &pmus, entry) {
6275 if (pmu->task_ctx_nr == ctxn)
6276 return pmu->pmu_cpu_context;
6279 return NULL;
6282 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
6284 int cpu;
6286 for_each_possible_cpu(cpu) {
6287 struct perf_cpu_context *cpuctx;
6289 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6291 if (cpuctx->unique_pmu == old_pmu)
6292 cpuctx->unique_pmu = pmu;
6296 static void free_pmu_context(struct pmu *pmu)
6298 struct pmu *i;
6300 mutex_lock(&pmus_lock);
6302 * Like a real lame refcount.
6304 list_for_each_entry(i, &pmus, entry) {
6305 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
6306 update_pmu_context(i, pmu);
6307 goto out;
6311 free_percpu(pmu->pmu_cpu_context);
6312 out:
6313 mutex_unlock(&pmus_lock);
6315 static struct idr pmu_idr;
6317 static ssize_t
6318 type_show(struct device *dev, struct device_attribute *attr, char *page)
6320 struct pmu *pmu = dev_get_drvdata(dev);
6322 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
6324 static DEVICE_ATTR_RO(type);
6326 static ssize_t
6327 perf_event_mux_interval_ms_show(struct device *dev,
6328 struct device_attribute *attr,
6329 char *page)
6331 struct pmu *pmu = dev_get_drvdata(dev);
6333 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
6336 static ssize_t
6337 perf_event_mux_interval_ms_store(struct device *dev,
6338 struct device_attribute *attr,
6339 const char *buf, size_t count)
6341 struct pmu *pmu = dev_get_drvdata(dev);
6342 int timer, cpu, ret;
6344 ret = kstrtoint(buf, 0, &timer);
6345 if (ret)
6346 return ret;
6348 if (timer < 1)
6349 return -EINVAL;
6351 /* same value, noting to do */
6352 if (timer == pmu->hrtimer_interval_ms)
6353 return count;
6355 pmu->hrtimer_interval_ms = timer;
6357 /* update all cpuctx for this PMU */
6358 for_each_possible_cpu(cpu) {
6359 struct perf_cpu_context *cpuctx;
6360 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6361 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
6363 if (hrtimer_active(&cpuctx->hrtimer))
6364 hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval);
6367 return count;
6369 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
6371 static struct attribute *pmu_dev_attrs[] = {
6372 &dev_attr_type.attr,
6373 &dev_attr_perf_event_mux_interval_ms.attr,
6374 NULL,
6376 ATTRIBUTE_GROUPS(pmu_dev);
6378 static int pmu_bus_running;
6379 static struct bus_type pmu_bus = {
6380 .name = "event_source",
6381 .dev_groups = pmu_dev_groups,
6384 static void pmu_dev_release(struct device *dev)
6386 kfree(dev);
6389 static int pmu_dev_alloc(struct pmu *pmu)
6391 int ret = -ENOMEM;
6393 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
6394 if (!pmu->dev)
6395 goto out;
6397 pmu->dev->groups = pmu->attr_groups;
6398 device_initialize(pmu->dev);
6399 ret = dev_set_name(pmu->dev, "%s", pmu->name);
6400 if (ret)
6401 goto free_dev;
6403 dev_set_drvdata(pmu->dev, pmu);
6404 pmu->dev->bus = &pmu_bus;
6405 pmu->dev->release = pmu_dev_release;
6406 ret = device_add(pmu->dev);
6407 if (ret)
6408 goto free_dev;
6410 out:
6411 return ret;
6413 free_dev:
6414 put_device(pmu->dev);
6415 goto out;
6418 static struct lock_class_key cpuctx_mutex;
6419 static struct lock_class_key cpuctx_lock;
6421 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
6423 int cpu, ret;
6425 mutex_lock(&pmus_lock);
6426 ret = -ENOMEM;
6427 pmu->pmu_disable_count = alloc_percpu(int);
6428 if (!pmu->pmu_disable_count)
6429 goto unlock;
6431 pmu->type = -1;
6432 if (!name)
6433 goto skip_type;
6434 pmu->name = name;
6436 if (type < 0) {
6437 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
6438 if (type < 0) {
6439 ret = type;
6440 goto free_pdc;
6443 pmu->type = type;
6445 if (pmu_bus_running) {
6446 ret = pmu_dev_alloc(pmu);
6447 if (ret)
6448 goto free_idr;
6451 skip_type:
6452 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
6453 if (pmu->pmu_cpu_context)
6454 goto got_cpu_context;
6456 ret = -ENOMEM;
6457 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
6458 if (!pmu->pmu_cpu_context)
6459 goto free_dev;
6461 for_each_possible_cpu(cpu) {
6462 struct perf_cpu_context *cpuctx;
6464 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6465 __perf_event_init_context(&cpuctx->ctx);
6466 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
6467 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
6468 cpuctx->ctx.type = cpu_context;
6469 cpuctx->ctx.pmu = pmu;
6471 __perf_cpu_hrtimer_init(cpuctx, cpu);
6473 INIT_LIST_HEAD(&cpuctx->rotation_list);
6474 cpuctx->unique_pmu = pmu;
6477 got_cpu_context:
6478 if (!pmu->start_txn) {
6479 if (pmu->pmu_enable) {
6481 * If we have pmu_enable/pmu_disable calls, install
6482 * transaction stubs that use that to try and batch
6483 * hardware accesses.
6485 pmu->start_txn = perf_pmu_start_txn;
6486 pmu->commit_txn = perf_pmu_commit_txn;
6487 pmu->cancel_txn = perf_pmu_cancel_txn;
6488 } else {
6489 pmu->start_txn = perf_pmu_nop_void;
6490 pmu->commit_txn = perf_pmu_nop_int;
6491 pmu->cancel_txn = perf_pmu_nop_void;
6495 if (!pmu->pmu_enable) {
6496 pmu->pmu_enable = perf_pmu_nop_void;
6497 pmu->pmu_disable = perf_pmu_nop_void;
6500 if (!pmu->event_idx)
6501 pmu->event_idx = perf_event_idx_default;
6503 list_add_rcu(&pmu->entry, &pmus);
6504 ret = 0;
6505 unlock:
6506 mutex_unlock(&pmus_lock);
6508 return ret;
6510 free_dev:
6511 device_del(pmu->dev);
6512 put_device(pmu->dev);
6514 free_idr:
6515 if (pmu->type >= PERF_TYPE_MAX)
6516 idr_remove(&pmu_idr, pmu->type);
6518 free_pdc:
6519 free_percpu(pmu->pmu_disable_count);
6520 goto unlock;
6523 void perf_pmu_unregister(struct pmu *pmu)
6525 mutex_lock(&pmus_lock);
6526 list_del_rcu(&pmu->entry);
6527 mutex_unlock(&pmus_lock);
6530 * We dereference the pmu list under both SRCU and regular RCU, so
6531 * synchronize against both of those.
6533 synchronize_srcu(&pmus_srcu);
6534 synchronize_rcu();
6536 free_percpu(pmu->pmu_disable_count);
6537 if (pmu->type >= PERF_TYPE_MAX)
6538 idr_remove(&pmu_idr, pmu->type);
6539 device_del(pmu->dev);
6540 put_device(pmu->dev);
6541 free_pmu_context(pmu);
6544 struct pmu *perf_init_event(struct perf_event *event)
6546 struct pmu *pmu = NULL;
6547 int idx;
6548 int ret;
6550 idx = srcu_read_lock(&pmus_srcu);
6552 rcu_read_lock();
6553 pmu = idr_find(&pmu_idr, event->attr.type);
6554 rcu_read_unlock();
6555 if (pmu) {
6556 event->pmu = pmu;
6557 ret = pmu->event_init(event);
6558 if (ret)
6559 pmu = ERR_PTR(ret);
6560 goto unlock;
6563 list_for_each_entry_rcu(pmu, &pmus, entry) {
6564 event->pmu = pmu;
6565 ret = pmu->event_init(event);
6566 if (!ret)
6567 goto unlock;
6569 if (ret != -ENOENT) {
6570 pmu = ERR_PTR(ret);
6571 goto unlock;
6574 pmu = ERR_PTR(-ENOENT);
6575 unlock:
6576 srcu_read_unlock(&pmus_srcu, idx);
6578 return pmu;
6581 static void account_event_cpu(struct perf_event *event, int cpu)
6583 if (event->parent)
6584 return;
6586 if (has_branch_stack(event)) {
6587 if (!(event->attach_state & PERF_ATTACH_TASK))
6588 atomic_inc(&per_cpu(perf_branch_stack_events, cpu));
6590 if (is_cgroup_event(event))
6591 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
6594 static void account_event(struct perf_event *event)
6596 if (event->parent)
6597 return;
6599 if (event->attach_state & PERF_ATTACH_TASK)
6600 static_key_slow_inc(&perf_sched_events.key);
6601 if (event->attr.mmap || event->attr.mmap_data)
6602 atomic_inc(&nr_mmap_events);
6603 if (event->attr.comm)
6604 atomic_inc(&nr_comm_events);
6605 if (event->attr.task)
6606 atomic_inc(&nr_task_events);
6607 if (event->attr.freq) {
6608 if (atomic_inc_return(&nr_freq_events) == 1)
6609 tick_nohz_full_kick_all();
6611 if (has_branch_stack(event))
6612 static_key_slow_inc(&perf_sched_events.key);
6613 if (is_cgroup_event(event))
6614 static_key_slow_inc(&perf_sched_events.key);
6616 account_event_cpu(event, event->cpu);
6620 * Allocate and initialize a event structure
6622 static struct perf_event *
6623 perf_event_alloc(struct perf_event_attr *attr, int cpu,
6624 struct task_struct *task,
6625 struct perf_event *group_leader,
6626 struct perf_event *parent_event,
6627 perf_overflow_handler_t overflow_handler,
6628 void *context)
6630 struct pmu *pmu;
6631 struct perf_event *event;
6632 struct hw_perf_event *hwc;
6633 long err = -EINVAL;
6635 if ((unsigned)cpu >= nr_cpu_ids) {
6636 if (!task || cpu != -1)
6637 return ERR_PTR(-EINVAL);
6640 event = kzalloc(sizeof(*event), GFP_KERNEL);
6641 if (!event)
6642 return ERR_PTR(-ENOMEM);
6645 * Single events are their own group leaders, with an
6646 * empty sibling list:
6648 if (!group_leader)
6649 group_leader = event;
6651 mutex_init(&event->child_mutex);
6652 INIT_LIST_HEAD(&event->child_list);
6654 INIT_LIST_HEAD(&event->group_entry);
6655 INIT_LIST_HEAD(&event->event_entry);
6656 INIT_LIST_HEAD(&event->sibling_list);
6657 INIT_LIST_HEAD(&event->rb_entry);
6659 init_waitqueue_head(&event->waitq);
6660 init_irq_work(&event->pending, perf_pending_event);
6662 mutex_init(&event->mmap_mutex);
6664 atomic_long_set(&event->refcount, 1);
6665 event->cpu = cpu;
6666 event->attr = *attr;
6667 event->group_leader = group_leader;
6668 event->pmu = NULL;
6669 event->oncpu = -1;
6671 event->parent = parent_event;
6673 event->ns = get_pid_ns(task_active_pid_ns(current));
6674 event->id = atomic64_inc_return(&perf_event_id);
6676 event->state = PERF_EVENT_STATE_INACTIVE;
6678 if (task) {
6679 event->attach_state = PERF_ATTACH_TASK;
6681 if (attr->type == PERF_TYPE_TRACEPOINT)
6682 event->hw.tp_target = task;
6683 #ifdef CONFIG_HAVE_HW_BREAKPOINT
6685 * hw_breakpoint is a bit difficult here..
6687 else if (attr->type == PERF_TYPE_BREAKPOINT)
6688 event->hw.bp_target = task;
6689 #endif
6692 if (!overflow_handler && parent_event) {
6693 overflow_handler = parent_event->overflow_handler;
6694 context = parent_event->overflow_handler_context;
6697 event->overflow_handler = overflow_handler;
6698 event->overflow_handler_context = context;
6700 perf_event__state_init(event);
6702 pmu = NULL;
6704 hwc = &event->hw;
6705 hwc->sample_period = attr->sample_period;
6706 if (attr->freq && attr->sample_freq)
6707 hwc->sample_period = 1;
6708 hwc->last_period = hwc->sample_period;
6710 local64_set(&hwc->period_left, hwc->sample_period);
6713 * we currently do not support PERF_FORMAT_GROUP on inherited events
6715 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
6716 goto err_ns;
6718 pmu = perf_init_event(event);
6719 if (!pmu)
6720 goto err_ns;
6721 else if (IS_ERR(pmu)) {
6722 err = PTR_ERR(pmu);
6723 goto err_ns;
6726 if (!event->parent) {
6727 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
6728 err = get_callchain_buffers();
6729 if (err)
6730 goto err_pmu;
6734 return event;
6736 err_pmu:
6737 if (event->destroy)
6738 event->destroy(event);
6739 err_ns:
6740 if (event->ns)
6741 put_pid_ns(event->ns);
6742 kfree(event);
6744 return ERR_PTR(err);
6747 static int perf_copy_attr(struct perf_event_attr __user *uattr,
6748 struct perf_event_attr *attr)
6750 u32 size;
6751 int ret;
6753 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
6754 return -EFAULT;
6757 * zero the full structure, so that a short copy will be nice.
6759 memset(attr, 0, sizeof(*attr));
6761 ret = get_user(size, &uattr->size);
6762 if (ret)
6763 return ret;
6765 if (size > PAGE_SIZE) /* silly large */
6766 goto err_size;
6768 if (!size) /* abi compat */
6769 size = PERF_ATTR_SIZE_VER0;
6771 if (size < PERF_ATTR_SIZE_VER0)
6772 goto err_size;
6775 * If we're handed a bigger struct than we know of,
6776 * ensure all the unknown bits are 0 - i.e. new
6777 * user-space does not rely on any kernel feature
6778 * extensions we dont know about yet.
6780 if (size > sizeof(*attr)) {
6781 unsigned char __user *addr;
6782 unsigned char __user *end;
6783 unsigned char val;
6785 addr = (void __user *)uattr + sizeof(*attr);
6786 end = (void __user *)uattr + size;
6788 for (; addr < end; addr++) {
6789 ret = get_user(val, addr);
6790 if (ret)
6791 return ret;
6792 if (val)
6793 goto err_size;
6795 size = sizeof(*attr);
6798 ret = copy_from_user(attr, uattr, size);
6799 if (ret)
6800 return -EFAULT;
6802 /* disabled for now */
6803 if (attr->mmap2)
6804 return -EINVAL;
6806 if (attr->__reserved_1)
6807 return -EINVAL;
6809 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
6810 return -EINVAL;
6812 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
6813 return -EINVAL;
6815 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
6816 u64 mask = attr->branch_sample_type;
6818 /* only using defined bits */
6819 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
6820 return -EINVAL;
6822 /* at least one branch bit must be set */
6823 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
6824 return -EINVAL;
6826 /* propagate priv level, when not set for branch */
6827 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
6829 /* exclude_kernel checked on syscall entry */
6830 if (!attr->exclude_kernel)
6831 mask |= PERF_SAMPLE_BRANCH_KERNEL;
6833 if (!attr->exclude_user)
6834 mask |= PERF_SAMPLE_BRANCH_USER;
6836 if (!attr->exclude_hv)
6837 mask |= PERF_SAMPLE_BRANCH_HV;
6839 * adjust user setting (for HW filter setup)
6841 attr->branch_sample_type = mask;
6843 /* privileged levels capture (kernel, hv): check permissions */
6844 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
6845 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6846 return -EACCES;
6849 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
6850 ret = perf_reg_validate(attr->sample_regs_user);
6851 if (ret)
6852 return ret;
6855 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
6856 if (!arch_perf_have_user_stack_dump())
6857 return -ENOSYS;
6860 * We have __u32 type for the size, but so far
6861 * we can only use __u16 as maximum due to the
6862 * __u16 sample size limit.
6864 if (attr->sample_stack_user >= USHRT_MAX)
6865 ret = -EINVAL;
6866 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
6867 ret = -EINVAL;
6870 out:
6871 return ret;
6873 err_size:
6874 put_user(sizeof(*attr), &uattr->size);
6875 ret = -E2BIG;
6876 goto out;
6879 static int
6880 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
6882 struct ring_buffer *rb = NULL, *old_rb = NULL;
6883 int ret = -EINVAL;
6885 if (!output_event)
6886 goto set;
6888 /* don't allow circular references */
6889 if (event == output_event)
6890 goto out;
6893 * Don't allow cross-cpu buffers
6895 if (output_event->cpu != event->cpu)
6896 goto out;
6899 * If its not a per-cpu rb, it must be the same task.
6901 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
6902 goto out;
6904 set:
6905 mutex_lock(&event->mmap_mutex);
6906 /* Can't redirect output if we've got an active mmap() */
6907 if (atomic_read(&event->mmap_count))
6908 goto unlock;
6910 old_rb = event->rb;
6912 if (output_event) {
6913 /* get the rb we want to redirect to */
6914 rb = ring_buffer_get(output_event);
6915 if (!rb)
6916 goto unlock;
6919 if (old_rb)
6920 ring_buffer_detach(event, old_rb);
6922 if (rb)
6923 ring_buffer_attach(event, rb);
6925 rcu_assign_pointer(event->rb, rb);
6927 if (old_rb) {
6928 ring_buffer_put(old_rb);
6930 * Since we detached before setting the new rb, so that we
6931 * could attach the new rb, we could have missed a wakeup.
6932 * Provide it now.
6934 wake_up_all(&event->waitq);
6937 ret = 0;
6938 unlock:
6939 mutex_unlock(&event->mmap_mutex);
6941 out:
6942 return ret;
6946 * sys_perf_event_open - open a performance event, associate it to a task/cpu
6948 * @attr_uptr: event_id type attributes for monitoring/sampling
6949 * @pid: target pid
6950 * @cpu: target cpu
6951 * @group_fd: group leader event fd
6953 SYSCALL_DEFINE5(perf_event_open,
6954 struct perf_event_attr __user *, attr_uptr,
6955 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
6957 struct perf_event *group_leader = NULL, *output_event = NULL;
6958 struct perf_event *event, *sibling;
6959 struct perf_event_attr attr;
6960 struct perf_event_context *ctx;
6961 struct file *event_file = NULL;
6962 struct fd group = {NULL, 0};
6963 struct task_struct *task = NULL;
6964 struct pmu *pmu;
6965 int event_fd;
6966 int move_group = 0;
6967 int err;
6969 /* for future expandability... */
6970 if (flags & ~PERF_FLAG_ALL)
6971 return -EINVAL;
6973 err = perf_copy_attr(attr_uptr, &attr);
6974 if (err)
6975 return err;
6977 if (!attr.exclude_kernel) {
6978 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6979 return -EACCES;
6982 if (attr.freq) {
6983 if (attr.sample_freq > sysctl_perf_event_sample_rate)
6984 return -EINVAL;
6988 * In cgroup mode, the pid argument is used to pass the fd
6989 * opened to the cgroup directory in cgroupfs. The cpu argument
6990 * designates the cpu on which to monitor threads from that
6991 * cgroup.
6993 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
6994 return -EINVAL;
6996 event_fd = get_unused_fd();
6997 if (event_fd < 0)
6998 return event_fd;
7000 if (group_fd != -1) {
7001 err = perf_fget_light(group_fd, &group);
7002 if (err)
7003 goto err_fd;
7004 group_leader = group.file->private_data;
7005 if (flags & PERF_FLAG_FD_OUTPUT)
7006 output_event = group_leader;
7007 if (flags & PERF_FLAG_FD_NO_GROUP)
7008 group_leader = NULL;
7011 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
7012 task = find_lively_task_by_vpid(pid);
7013 if (IS_ERR(task)) {
7014 err = PTR_ERR(task);
7015 goto err_group_fd;
7019 get_online_cpus();
7021 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
7022 NULL, NULL);
7023 if (IS_ERR(event)) {
7024 err = PTR_ERR(event);
7025 goto err_task;
7028 if (flags & PERF_FLAG_PID_CGROUP) {
7029 err = perf_cgroup_connect(pid, event, &attr, group_leader);
7030 if (err) {
7031 __free_event(event);
7032 goto err_task;
7036 account_event(event);
7039 * Special case software events and allow them to be part of
7040 * any hardware group.
7042 pmu = event->pmu;
7044 if (group_leader &&
7045 (is_software_event(event) != is_software_event(group_leader))) {
7046 if (is_software_event(event)) {
7048 * If event and group_leader are not both a software
7049 * event, and event is, then group leader is not.
7051 * Allow the addition of software events to !software
7052 * groups, this is safe because software events never
7053 * fail to schedule.
7055 pmu = group_leader->pmu;
7056 } else if (is_software_event(group_leader) &&
7057 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
7059 * In case the group is a pure software group, and we
7060 * try to add a hardware event, move the whole group to
7061 * the hardware context.
7063 move_group = 1;
7068 * Get the target context (task or percpu):
7070 ctx = find_get_context(pmu, task, event->cpu);
7071 if (IS_ERR(ctx)) {
7072 err = PTR_ERR(ctx);
7073 goto err_alloc;
7076 if (task) {
7077 put_task_struct(task);
7078 task = NULL;
7082 * Look up the group leader (we will attach this event to it):
7084 if (group_leader) {
7085 err = -EINVAL;
7088 * Do not allow a recursive hierarchy (this new sibling
7089 * becoming part of another group-sibling):
7091 if (group_leader->group_leader != group_leader)
7092 goto err_context;
7094 * Do not allow to attach to a group in a different
7095 * task or CPU context:
7097 if (move_group) {
7098 if (group_leader->ctx->type != ctx->type)
7099 goto err_context;
7100 } else {
7101 if (group_leader->ctx != ctx)
7102 goto err_context;
7106 * Only a group leader can be exclusive or pinned
7108 if (attr.exclusive || attr.pinned)
7109 goto err_context;
7112 if (output_event) {
7113 err = perf_event_set_output(event, output_event);
7114 if (err)
7115 goto err_context;
7118 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
7119 if (IS_ERR(event_file)) {
7120 err = PTR_ERR(event_file);
7121 goto err_context;
7124 if (move_group) {
7125 struct perf_event_context *gctx = group_leader->ctx;
7127 mutex_lock(&gctx->mutex);
7128 perf_remove_from_context(group_leader);
7131 * Removing from the context ends up with disabled
7132 * event. What we want here is event in the initial
7133 * startup state, ready to be add into new context.
7135 perf_event__state_init(group_leader);
7136 list_for_each_entry(sibling, &group_leader->sibling_list,
7137 group_entry) {
7138 perf_remove_from_context(sibling);
7139 perf_event__state_init(sibling);
7140 put_ctx(gctx);
7142 mutex_unlock(&gctx->mutex);
7143 put_ctx(gctx);
7146 WARN_ON_ONCE(ctx->parent_ctx);
7147 mutex_lock(&ctx->mutex);
7149 if (move_group) {
7150 synchronize_rcu();
7151 perf_install_in_context(ctx, group_leader, event->cpu);
7152 get_ctx(ctx);
7153 list_for_each_entry(sibling, &group_leader->sibling_list,
7154 group_entry) {
7155 perf_install_in_context(ctx, sibling, event->cpu);
7156 get_ctx(ctx);
7160 perf_install_in_context(ctx, event, event->cpu);
7161 perf_unpin_context(ctx);
7162 mutex_unlock(&ctx->mutex);
7164 put_online_cpus();
7166 event->owner = current;
7168 mutex_lock(&current->perf_event_mutex);
7169 list_add_tail(&event->owner_entry, &current->perf_event_list);
7170 mutex_unlock(&current->perf_event_mutex);
7173 * Precalculate sample_data sizes
7175 perf_event__header_size(event);
7176 perf_event__id_header_size(event);
7179 * Drop the reference on the group_event after placing the
7180 * new event on the sibling_list. This ensures destruction
7181 * of the group leader will find the pointer to itself in
7182 * perf_group_detach().
7184 fdput(group);
7185 fd_install(event_fd, event_file);
7186 return event_fd;
7188 err_context:
7189 perf_unpin_context(ctx);
7190 put_ctx(ctx);
7191 err_alloc:
7192 free_event(event);
7193 err_task:
7194 put_online_cpus();
7195 if (task)
7196 put_task_struct(task);
7197 err_group_fd:
7198 fdput(group);
7199 err_fd:
7200 put_unused_fd(event_fd);
7201 return err;
7205 * perf_event_create_kernel_counter
7207 * @attr: attributes of the counter to create
7208 * @cpu: cpu in which the counter is bound
7209 * @task: task to profile (NULL for percpu)
7211 struct perf_event *
7212 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
7213 struct task_struct *task,
7214 perf_overflow_handler_t overflow_handler,
7215 void *context)
7217 struct perf_event_context *ctx;
7218 struct perf_event *event;
7219 int err;
7222 * Get the target context (task or percpu):
7225 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
7226 overflow_handler, context);
7227 if (IS_ERR(event)) {
7228 err = PTR_ERR(event);
7229 goto err;
7232 account_event(event);
7234 ctx = find_get_context(event->pmu, task, cpu);
7235 if (IS_ERR(ctx)) {
7236 err = PTR_ERR(ctx);
7237 goto err_free;
7240 WARN_ON_ONCE(ctx->parent_ctx);
7241 mutex_lock(&ctx->mutex);
7242 perf_install_in_context(ctx, event, cpu);
7243 perf_unpin_context(ctx);
7244 mutex_unlock(&ctx->mutex);
7246 return event;
7248 err_free:
7249 free_event(event);
7250 err:
7251 return ERR_PTR(err);
7253 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
7255 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
7257 struct perf_event_context *src_ctx;
7258 struct perf_event_context *dst_ctx;
7259 struct perf_event *event, *tmp;
7260 LIST_HEAD(events);
7262 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
7263 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
7265 mutex_lock(&src_ctx->mutex);
7266 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
7267 event_entry) {
7268 perf_remove_from_context(event);
7269 unaccount_event_cpu(event, src_cpu);
7270 put_ctx(src_ctx);
7271 list_add(&event->migrate_entry, &events);
7273 mutex_unlock(&src_ctx->mutex);
7275 synchronize_rcu();
7277 mutex_lock(&dst_ctx->mutex);
7278 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
7279 list_del(&event->migrate_entry);
7280 if (event->state >= PERF_EVENT_STATE_OFF)
7281 event->state = PERF_EVENT_STATE_INACTIVE;
7282 account_event_cpu(event, dst_cpu);
7283 perf_install_in_context(dst_ctx, event, dst_cpu);
7284 get_ctx(dst_ctx);
7286 mutex_unlock(&dst_ctx->mutex);
7288 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
7290 static void sync_child_event(struct perf_event *child_event,
7291 struct task_struct *child)
7293 struct perf_event *parent_event = child_event->parent;
7294 u64 child_val;
7296 if (child_event->attr.inherit_stat)
7297 perf_event_read_event(child_event, child);
7299 child_val = perf_event_count(child_event);
7302 * Add back the child's count to the parent's count:
7304 atomic64_add(child_val, &parent_event->child_count);
7305 atomic64_add(child_event->total_time_enabled,
7306 &parent_event->child_total_time_enabled);
7307 atomic64_add(child_event->total_time_running,
7308 &parent_event->child_total_time_running);
7311 * Remove this event from the parent's list
7313 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7314 mutex_lock(&parent_event->child_mutex);
7315 list_del_init(&child_event->child_list);
7316 mutex_unlock(&parent_event->child_mutex);
7319 * Release the parent event, if this was the last
7320 * reference to it.
7322 put_event(parent_event);
7325 static void
7326 __perf_event_exit_task(struct perf_event *child_event,
7327 struct perf_event_context *child_ctx,
7328 struct task_struct *child)
7330 if (child_event->parent) {
7331 raw_spin_lock_irq(&child_ctx->lock);
7332 perf_group_detach(child_event);
7333 raw_spin_unlock_irq(&child_ctx->lock);
7336 perf_remove_from_context(child_event);
7339 * It can happen that the parent exits first, and has events
7340 * that are still around due to the child reference. These
7341 * events need to be zapped.
7343 if (child_event->parent) {
7344 sync_child_event(child_event, child);
7345 free_event(child_event);
7349 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
7351 struct perf_event *child_event, *tmp;
7352 struct perf_event_context *child_ctx;
7353 unsigned long flags;
7355 if (likely(!child->perf_event_ctxp[ctxn])) {
7356 perf_event_task(child, NULL, 0);
7357 return;
7360 local_irq_save(flags);
7362 * We can't reschedule here because interrupts are disabled,
7363 * and either child is current or it is a task that can't be
7364 * scheduled, so we are now safe from rescheduling changing
7365 * our context.
7367 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
7370 * Take the context lock here so that if find_get_context is
7371 * reading child->perf_event_ctxp, we wait until it has
7372 * incremented the context's refcount before we do put_ctx below.
7374 raw_spin_lock(&child_ctx->lock);
7375 task_ctx_sched_out(child_ctx);
7376 child->perf_event_ctxp[ctxn] = NULL;
7378 * If this context is a clone; unclone it so it can't get
7379 * swapped to another process while we're removing all
7380 * the events from it.
7382 unclone_ctx(child_ctx);
7383 update_context_time(child_ctx);
7384 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
7387 * Report the task dead after unscheduling the events so that we
7388 * won't get any samples after PERF_RECORD_EXIT. We can however still
7389 * get a few PERF_RECORD_READ events.
7391 perf_event_task(child, child_ctx, 0);
7394 * We can recurse on the same lock type through:
7396 * __perf_event_exit_task()
7397 * sync_child_event()
7398 * put_event()
7399 * mutex_lock(&ctx->mutex)
7401 * But since its the parent context it won't be the same instance.
7403 mutex_lock(&child_ctx->mutex);
7405 again:
7406 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
7407 group_entry)
7408 __perf_event_exit_task(child_event, child_ctx, child);
7410 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
7411 group_entry)
7412 __perf_event_exit_task(child_event, child_ctx, child);
7415 * If the last event was a group event, it will have appended all
7416 * its siblings to the list, but we obtained 'tmp' before that which
7417 * will still point to the list head terminating the iteration.
7419 if (!list_empty(&child_ctx->pinned_groups) ||
7420 !list_empty(&child_ctx->flexible_groups))
7421 goto again;
7423 mutex_unlock(&child_ctx->mutex);
7425 put_ctx(child_ctx);
7429 * When a child task exits, feed back event values to parent events.
7431 void perf_event_exit_task(struct task_struct *child)
7433 struct perf_event *event, *tmp;
7434 int ctxn;
7436 mutex_lock(&child->perf_event_mutex);
7437 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
7438 owner_entry) {
7439 list_del_init(&event->owner_entry);
7442 * Ensure the list deletion is visible before we clear
7443 * the owner, closes a race against perf_release() where
7444 * we need to serialize on the owner->perf_event_mutex.
7446 smp_wmb();
7447 event->owner = NULL;
7449 mutex_unlock(&child->perf_event_mutex);
7451 for_each_task_context_nr(ctxn)
7452 perf_event_exit_task_context(child, ctxn);
7455 static void perf_free_event(struct perf_event *event,
7456 struct perf_event_context *ctx)
7458 struct perf_event *parent = event->parent;
7460 if (WARN_ON_ONCE(!parent))
7461 return;
7463 mutex_lock(&parent->child_mutex);
7464 list_del_init(&event->child_list);
7465 mutex_unlock(&parent->child_mutex);
7467 put_event(parent);
7469 perf_group_detach(event);
7470 list_del_event(event, ctx);
7471 free_event(event);
7475 * free an unexposed, unused context as created by inheritance by
7476 * perf_event_init_task below, used by fork() in case of fail.
7478 void perf_event_free_task(struct task_struct *task)
7480 struct perf_event_context *ctx;
7481 struct perf_event *event, *tmp;
7482 int ctxn;
7484 for_each_task_context_nr(ctxn) {
7485 ctx = task->perf_event_ctxp[ctxn];
7486 if (!ctx)
7487 continue;
7489 mutex_lock(&ctx->mutex);
7490 again:
7491 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
7492 group_entry)
7493 perf_free_event(event, ctx);
7495 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
7496 group_entry)
7497 perf_free_event(event, ctx);
7499 if (!list_empty(&ctx->pinned_groups) ||
7500 !list_empty(&ctx->flexible_groups))
7501 goto again;
7503 mutex_unlock(&ctx->mutex);
7505 put_ctx(ctx);
7509 void perf_event_delayed_put(struct task_struct *task)
7511 int ctxn;
7513 for_each_task_context_nr(ctxn)
7514 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
7518 * inherit a event from parent task to child task:
7520 static struct perf_event *
7521 inherit_event(struct perf_event *parent_event,
7522 struct task_struct *parent,
7523 struct perf_event_context *parent_ctx,
7524 struct task_struct *child,
7525 struct perf_event *group_leader,
7526 struct perf_event_context *child_ctx)
7528 struct perf_event *child_event;
7529 unsigned long flags;
7532 * Instead of creating recursive hierarchies of events,
7533 * we link inherited events back to the original parent,
7534 * which has a filp for sure, which we use as the reference
7535 * count:
7537 if (parent_event->parent)
7538 parent_event = parent_event->parent;
7540 child_event = perf_event_alloc(&parent_event->attr,
7541 parent_event->cpu,
7542 child,
7543 group_leader, parent_event,
7544 NULL, NULL);
7545 if (IS_ERR(child_event))
7546 return child_event;
7548 if (!atomic_long_inc_not_zero(&parent_event->refcount)) {
7549 free_event(child_event);
7550 return NULL;
7553 get_ctx(child_ctx);
7556 * Make the child state follow the state of the parent event,
7557 * not its attr.disabled bit. We hold the parent's mutex,
7558 * so we won't race with perf_event_{en, dis}able_family.
7560 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
7561 child_event->state = PERF_EVENT_STATE_INACTIVE;
7562 else
7563 child_event->state = PERF_EVENT_STATE_OFF;
7565 if (parent_event->attr.freq) {
7566 u64 sample_period = parent_event->hw.sample_period;
7567 struct hw_perf_event *hwc = &child_event->hw;
7569 hwc->sample_period = sample_period;
7570 hwc->last_period = sample_period;
7572 local64_set(&hwc->period_left, sample_period);
7575 child_event->ctx = child_ctx;
7576 child_event->overflow_handler = parent_event->overflow_handler;
7577 child_event->overflow_handler_context
7578 = parent_event->overflow_handler_context;
7581 * Precalculate sample_data sizes
7583 perf_event__header_size(child_event);
7584 perf_event__id_header_size(child_event);
7587 * Link it up in the child's context:
7589 raw_spin_lock_irqsave(&child_ctx->lock, flags);
7590 add_event_to_ctx(child_event, child_ctx);
7591 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
7594 * Link this into the parent event's child list
7596 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7597 mutex_lock(&parent_event->child_mutex);
7598 list_add_tail(&child_event->child_list, &parent_event->child_list);
7599 mutex_unlock(&parent_event->child_mutex);
7601 return child_event;
7604 static int inherit_group(struct perf_event *parent_event,
7605 struct task_struct *parent,
7606 struct perf_event_context *parent_ctx,
7607 struct task_struct *child,
7608 struct perf_event_context *child_ctx)
7610 struct perf_event *leader;
7611 struct perf_event *sub;
7612 struct perf_event *child_ctr;
7614 leader = inherit_event(parent_event, parent, parent_ctx,
7615 child, NULL, child_ctx);
7616 if (IS_ERR(leader))
7617 return PTR_ERR(leader);
7618 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
7619 child_ctr = inherit_event(sub, parent, parent_ctx,
7620 child, leader, child_ctx);
7621 if (IS_ERR(child_ctr))
7622 return PTR_ERR(child_ctr);
7624 return 0;
7627 static int
7628 inherit_task_group(struct perf_event *event, struct task_struct *parent,
7629 struct perf_event_context *parent_ctx,
7630 struct task_struct *child, int ctxn,
7631 int *inherited_all)
7633 int ret;
7634 struct perf_event_context *child_ctx;
7636 if (!event->attr.inherit) {
7637 *inherited_all = 0;
7638 return 0;
7641 child_ctx = child->perf_event_ctxp[ctxn];
7642 if (!child_ctx) {
7644 * This is executed from the parent task context, so
7645 * inherit events that have been marked for cloning.
7646 * First allocate and initialize a context for the
7647 * child.
7650 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
7651 if (!child_ctx)
7652 return -ENOMEM;
7654 child->perf_event_ctxp[ctxn] = child_ctx;
7657 ret = inherit_group(event, parent, parent_ctx,
7658 child, child_ctx);
7660 if (ret)
7661 *inherited_all = 0;
7663 return ret;
7667 * Initialize the perf_event context in task_struct
7669 int perf_event_init_context(struct task_struct *child, int ctxn)
7671 struct perf_event_context *child_ctx, *parent_ctx;
7672 struct perf_event_context *cloned_ctx;
7673 struct perf_event *event;
7674 struct task_struct *parent = current;
7675 int inherited_all = 1;
7676 unsigned long flags;
7677 int ret = 0;
7679 if (likely(!parent->perf_event_ctxp[ctxn]))
7680 return 0;
7683 * If the parent's context is a clone, pin it so it won't get
7684 * swapped under us.
7686 parent_ctx = perf_pin_task_context(parent, ctxn);
7689 * No need to check if parent_ctx != NULL here; since we saw
7690 * it non-NULL earlier, the only reason for it to become NULL
7691 * is if we exit, and since we're currently in the middle of
7692 * a fork we can't be exiting at the same time.
7696 * Lock the parent list. No need to lock the child - not PID
7697 * hashed yet and not running, so nobody can access it.
7699 mutex_lock(&parent_ctx->mutex);
7702 * We dont have to disable NMIs - we are only looking at
7703 * the list, not manipulating it:
7705 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
7706 ret = inherit_task_group(event, parent, parent_ctx,
7707 child, ctxn, &inherited_all);
7708 if (ret)
7709 break;
7713 * We can't hold ctx->lock when iterating the ->flexible_group list due
7714 * to allocations, but we need to prevent rotation because
7715 * rotate_ctx() will change the list from interrupt context.
7717 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7718 parent_ctx->rotate_disable = 1;
7719 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7721 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
7722 ret = inherit_task_group(event, parent, parent_ctx,
7723 child, ctxn, &inherited_all);
7724 if (ret)
7725 break;
7728 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7729 parent_ctx->rotate_disable = 0;
7731 child_ctx = child->perf_event_ctxp[ctxn];
7733 if (child_ctx && inherited_all) {
7735 * Mark the child context as a clone of the parent
7736 * context, or of whatever the parent is a clone of.
7738 * Note that if the parent is a clone, the holding of
7739 * parent_ctx->lock avoids it from being uncloned.
7741 cloned_ctx = parent_ctx->parent_ctx;
7742 if (cloned_ctx) {
7743 child_ctx->parent_ctx = cloned_ctx;
7744 child_ctx->parent_gen = parent_ctx->parent_gen;
7745 } else {
7746 child_ctx->parent_ctx = parent_ctx;
7747 child_ctx->parent_gen = parent_ctx->generation;
7749 get_ctx(child_ctx->parent_ctx);
7752 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7753 mutex_unlock(&parent_ctx->mutex);
7755 perf_unpin_context(parent_ctx);
7756 put_ctx(parent_ctx);
7758 return ret;
7762 * Initialize the perf_event context in task_struct
7764 int perf_event_init_task(struct task_struct *child)
7766 int ctxn, ret;
7768 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
7769 mutex_init(&child->perf_event_mutex);
7770 INIT_LIST_HEAD(&child->perf_event_list);
7772 for_each_task_context_nr(ctxn) {
7773 ret = perf_event_init_context(child, ctxn);
7774 if (ret)
7775 return ret;
7778 return 0;
7781 static void __init perf_event_init_all_cpus(void)
7783 struct swevent_htable *swhash;
7784 int cpu;
7786 for_each_possible_cpu(cpu) {
7787 swhash = &per_cpu(swevent_htable, cpu);
7788 mutex_init(&swhash->hlist_mutex);
7789 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
7793 static void perf_event_init_cpu(int cpu)
7795 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7797 mutex_lock(&swhash->hlist_mutex);
7798 if (swhash->hlist_refcount > 0) {
7799 struct swevent_hlist *hlist;
7801 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
7802 WARN_ON(!hlist);
7803 rcu_assign_pointer(swhash->swevent_hlist, hlist);
7805 mutex_unlock(&swhash->hlist_mutex);
7808 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
7809 static void perf_pmu_rotate_stop(struct pmu *pmu)
7811 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7813 WARN_ON(!irqs_disabled());
7815 list_del_init(&cpuctx->rotation_list);
7818 static void __perf_event_exit_context(void *__info)
7820 struct perf_event_context *ctx = __info;
7821 struct perf_event *event, *tmp;
7823 perf_pmu_rotate_stop(ctx->pmu);
7825 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
7826 __perf_remove_from_context(event);
7827 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
7828 __perf_remove_from_context(event);
7831 static void perf_event_exit_cpu_context(int cpu)
7833 struct perf_event_context *ctx;
7834 struct pmu *pmu;
7835 int idx;
7837 idx = srcu_read_lock(&pmus_srcu);
7838 list_for_each_entry_rcu(pmu, &pmus, entry) {
7839 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
7841 mutex_lock(&ctx->mutex);
7842 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
7843 mutex_unlock(&ctx->mutex);
7845 srcu_read_unlock(&pmus_srcu, idx);
7848 static void perf_event_exit_cpu(int cpu)
7850 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7852 mutex_lock(&swhash->hlist_mutex);
7853 swevent_hlist_release(swhash);
7854 mutex_unlock(&swhash->hlist_mutex);
7856 perf_event_exit_cpu_context(cpu);
7858 #else
7859 static inline void perf_event_exit_cpu(int cpu) { }
7860 #endif
7862 static int
7863 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
7865 int cpu;
7867 for_each_online_cpu(cpu)
7868 perf_event_exit_cpu(cpu);
7870 return NOTIFY_OK;
7874 * Run the perf reboot notifier at the very last possible moment so that
7875 * the generic watchdog code runs as long as possible.
7877 static struct notifier_block perf_reboot_notifier = {
7878 .notifier_call = perf_reboot,
7879 .priority = INT_MIN,
7882 static int
7883 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
7885 unsigned int cpu = (long)hcpu;
7887 switch (action & ~CPU_TASKS_FROZEN) {
7889 case CPU_UP_PREPARE:
7890 case CPU_DOWN_FAILED:
7891 perf_event_init_cpu(cpu);
7892 break;
7894 case CPU_UP_CANCELED:
7895 case CPU_DOWN_PREPARE:
7896 perf_event_exit_cpu(cpu);
7897 break;
7898 default:
7899 break;
7902 return NOTIFY_OK;
7905 void __init perf_event_init(void)
7907 int ret;
7909 idr_init(&pmu_idr);
7911 perf_event_init_all_cpus();
7912 init_srcu_struct(&pmus_srcu);
7913 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
7914 perf_pmu_register(&perf_cpu_clock, NULL, -1);
7915 perf_pmu_register(&perf_task_clock, NULL, -1);
7916 perf_tp_register();
7917 perf_cpu_notifier(perf_cpu_notify);
7918 register_reboot_notifier(&perf_reboot_notifier);
7920 ret = init_hw_breakpoint();
7921 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
7923 /* do not patch jump label more than once per second */
7924 jump_label_rate_limit(&perf_sched_events, HZ);
7927 * Build time assertion that we keep the data_head at the intended
7928 * location. IOW, validation we got the __reserved[] size right.
7930 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
7931 != 1024);
7934 static int __init perf_event_sysfs_init(void)
7936 struct pmu *pmu;
7937 int ret;
7939 mutex_lock(&pmus_lock);
7941 ret = bus_register(&pmu_bus);
7942 if (ret)
7943 goto unlock;
7945 list_for_each_entry(pmu, &pmus, entry) {
7946 if (!pmu->name || pmu->type < 0)
7947 continue;
7949 ret = pmu_dev_alloc(pmu);
7950 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
7952 pmu_bus_running = 1;
7953 ret = 0;
7955 unlock:
7956 mutex_unlock(&pmus_lock);
7958 return ret;
7960 device_initcall(perf_event_sysfs_init);
7962 #ifdef CONFIG_CGROUP_PERF
7963 static struct cgroup_subsys_state *
7964 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7966 struct perf_cgroup *jc;
7968 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
7969 if (!jc)
7970 return ERR_PTR(-ENOMEM);
7972 jc->info = alloc_percpu(struct perf_cgroup_info);
7973 if (!jc->info) {
7974 kfree(jc);
7975 return ERR_PTR(-ENOMEM);
7978 return &jc->css;
7981 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
7983 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
7985 free_percpu(jc->info);
7986 kfree(jc);
7989 static int __perf_cgroup_move(void *info)
7991 struct task_struct *task = info;
7992 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
7993 return 0;
7996 static void perf_cgroup_attach(struct cgroup_subsys_state *css,
7997 struct cgroup_taskset *tset)
7999 struct task_struct *task;
8001 cgroup_taskset_for_each(task, css, tset)
8002 task_function_call(task, __perf_cgroup_move, task);
8005 static void perf_cgroup_exit(struct cgroup_subsys_state *css,
8006 struct cgroup_subsys_state *old_css,
8007 struct task_struct *task)
8010 * cgroup_exit() is called in the copy_process() failure path.
8011 * Ignore this case since the task hasn't ran yet, this avoids
8012 * trying to poke a half freed task state from generic code.
8014 if (!(task->flags & PF_EXITING))
8015 return;
8017 task_function_call(task, __perf_cgroup_move, task);
8020 struct cgroup_subsys perf_subsys = {
8021 .name = "perf_event",
8022 .subsys_id = perf_subsys_id,
8023 .css_alloc = perf_cgroup_css_alloc,
8024 .css_free = perf_cgroup_css_free,
8025 .exit = perf_cgroup_exit,
8026 .attach = perf_cgroup_attach,
8028 #endif /* CONFIG_CGROUP_PERF */