1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/export.h>
37 #include <linux/mutex.h>
38 #include <linux/rbtree.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/swapops.h>
42 #include <linux/spinlock.h>
43 #include <linux/eventfd.h>
44 #include <linux/sort.h>
46 #include <linux/seq_file.h>
47 #include <linux/vmalloc.h>
48 #include <linux/mm_inline.h>
49 #include <linux/page_cgroup.h>
50 #include <linux/cpu.h>
51 #include <linux/oom.h>
54 #include <net/tcp_memcontrol.h>
56 #include <asm/uaccess.h>
58 #include <trace/events/vmscan.h>
60 struct cgroup_subsys mem_cgroup_subsys __read_mostly
;
61 #define MEM_CGROUP_RECLAIM_RETRIES 5
62 static struct mem_cgroup
*root_mem_cgroup __read_mostly
;
64 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
65 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
66 int do_swap_account __read_mostly
;
68 /* for remember boot option*/
69 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
70 static int really_do_swap_account __initdata
= 1;
72 static int really_do_swap_account __initdata
= 0;
76 #define do_swap_account 0
81 * Statistics for memory cgroup.
83 enum mem_cgroup_stat_index
{
85 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
87 MEM_CGROUP_STAT_CACHE
, /* # of pages charged as cache */
88 MEM_CGROUP_STAT_RSS
, /* # of pages charged as anon rss */
89 MEM_CGROUP_STAT_FILE_MAPPED
, /* # of pages charged as file rss */
90 MEM_CGROUP_STAT_SWAPOUT
, /* # of pages, swapped out */
91 MEM_CGROUP_STAT_NSTATS
,
94 static const char * const mem_cgroup_stat_names
[] = {
101 enum mem_cgroup_events_index
{
102 MEM_CGROUP_EVENTS_PGPGIN
, /* # of pages paged in */
103 MEM_CGROUP_EVENTS_PGPGOUT
, /* # of pages paged out */
104 MEM_CGROUP_EVENTS_PGFAULT
, /* # of page-faults */
105 MEM_CGROUP_EVENTS_PGMAJFAULT
, /* # of major page-faults */
106 MEM_CGROUP_EVENTS_NSTATS
,
109 static const char * const mem_cgroup_events_names
[] = {
117 * Per memcg event counter is incremented at every pagein/pageout. With THP,
118 * it will be incremated by the number of pages. This counter is used for
119 * for trigger some periodic events. This is straightforward and better
120 * than using jiffies etc. to handle periodic memcg event.
122 enum mem_cgroup_events_target
{
123 MEM_CGROUP_TARGET_THRESH
,
124 MEM_CGROUP_TARGET_SOFTLIMIT
,
125 MEM_CGROUP_TARGET_NUMAINFO
,
128 #define THRESHOLDS_EVENTS_TARGET 128
129 #define SOFTLIMIT_EVENTS_TARGET 1024
130 #define NUMAINFO_EVENTS_TARGET 1024
132 struct mem_cgroup_stat_cpu
{
133 long count
[MEM_CGROUP_STAT_NSTATS
];
134 unsigned long events
[MEM_CGROUP_EVENTS_NSTATS
];
135 unsigned long nr_page_events
;
136 unsigned long targets
[MEM_CGROUP_NTARGETS
];
139 struct mem_cgroup_reclaim_iter
{
140 /* css_id of the last scanned hierarchy member */
142 /* scan generation, increased every round-trip */
143 unsigned int generation
;
147 * per-zone information in memory controller.
149 struct mem_cgroup_per_zone
{
150 struct lruvec lruvec
;
151 unsigned long lru_size
[NR_LRU_LISTS
];
153 struct mem_cgroup_reclaim_iter reclaim_iter
[DEF_PRIORITY
+ 1];
155 struct rb_node tree_node
; /* RB tree node */
156 unsigned long long usage_in_excess
;/* Set to the value by which */
157 /* the soft limit is exceeded*/
159 struct mem_cgroup
*memcg
; /* Back pointer, we cannot */
160 /* use container_of */
163 struct mem_cgroup_per_node
{
164 struct mem_cgroup_per_zone zoneinfo
[MAX_NR_ZONES
];
167 struct mem_cgroup_lru_info
{
168 struct mem_cgroup_per_node
*nodeinfo
[MAX_NUMNODES
];
172 * Cgroups above their limits are maintained in a RB-Tree, independent of
173 * their hierarchy representation
176 struct mem_cgroup_tree_per_zone
{
177 struct rb_root rb_root
;
181 struct mem_cgroup_tree_per_node
{
182 struct mem_cgroup_tree_per_zone rb_tree_per_zone
[MAX_NR_ZONES
];
185 struct mem_cgroup_tree
{
186 struct mem_cgroup_tree_per_node
*rb_tree_per_node
[MAX_NUMNODES
];
189 static struct mem_cgroup_tree soft_limit_tree __read_mostly
;
191 struct mem_cgroup_threshold
{
192 struct eventfd_ctx
*eventfd
;
197 struct mem_cgroup_threshold_ary
{
198 /* An array index points to threshold just below or equal to usage. */
199 int current_threshold
;
200 /* Size of entries[] */
202 /* Array of thresholds */
203 struct mem_cgroup_threshold entries
[0];
206 struct mem_cgroup_thresholds
{
207 /* Primary thresholds array */
208 struct mem_cgroup_threshold_ary
*primary
;
210 * Spare threshold array.
211 * This is needed to make mem_cgroup_unregister_event() "never fail".
212 * It must be able to store at least primary->size - 1 entries.
214 struct mem_cgroup_threshold_ary
*spare
;
218 struct mem_cgroup_eventfd_list
{
219 struct list_head list
;
220 struct eventfd_ctx
*eventfd
;
223 static void mem_cgroup_threshold(struct mem_cgroup
*memcg
);
224 static void mem_cgroup_oom_notify(struct mem_cgroup
*memcg
);
227 * The memory controller data structure. The memory controller controls both
228 * page cache and RSS per cgroup. We would eventually like to provide
229 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
230 * to help the administrator determine what knobs to tune.
232 * TODO: Add a water mark for the memory controller. Reclaim will begin when
233 * we hit the water mark. May be even add a low water mark, such that
234 * no reclaim occurs from a cgroup at it's low water mark, this is
235 * a feature that will be implemented much later in the future.
238 struct cgroup_subsys_state css
;
240 * the counter to account for memory usage
242 struct res_counter res
;
246 * the counter to account for mem+swap usage.
248 struct res_counter memsw
;
251 * rcu_freeing is used only when freeing struct mem_cgroup,
252 * so put it into a union to avoid wasting more memory.
253 * It must be disjoint from the css field. It could be
254 * in a union with the res field, but res plays a much
255 * larger part in mem_cgroup life than memsw, and might
256 * be of interest, even at time of free, when debugging.
257 * So share rcu_head with the less interesting memsw.
259 struct rcu_head rcu_freeing
;
261 * We also need some space for a worker in deferred freeing.
262 * By the time we call it, rcu_freeing is no longer in use.
264 struct work_struct work_freeing
;
268 * Per cgroup active and inactive list, similar to the
269 * per zone LRU lists.
271 struct mem_cgroup_lru_info info
;
272 int last_scanned_node
;
274 nodemask_t scan_nodes
;
275 atomic_t numainfo_events
;
276 atomic_t numainfo_updating
;
279 * Should the accounting and control be hierarchical, per subtree?
289 /* OOM-Killer disable */
290 int oom_kill_disable
;
292 /* set when res.limit == memsw.limit */
293 bool memsw_is_minimum
;
295 /* protect arrays of thresholds */
296 struct mutex thresholds_lock
;
298 /* thresholds for memory usage. RCU-protected */
299 struct mem_cgroup_thresholds thresholds
;
301 /* thresholds for mem+swap usage. RCU-protected */
302 struct mem_cgroup_thresholds memsw_thresholds
;
304 /* For oom notifier event fd */
305 struct list_head oom_notify
;
308 * Should we move charges of a task when a task is moved into this
309 * mem_cgroup ? And what type of charges should we move ?
311 unsigned long move_charge_at_immigrate
;
313 * set > 0 if pages under this cgroup are moving to other cgroup.
315 atomic_t moving_account
;
316 /* taken only while moving_account > 0 */
317 spinlock_t move_lock
;
321 struct mem_cgroup_stat_cpu __percpu
*stat
;
323 * used when a cpu is offlined or other synchronizations
324 * See mem_cgroup_read_stat().
326 struct mem_cgroup_stat_cpu nocpu_base
;
327 spinlock_t pcp_counter_lock
;
330 struct tcp_memcontrol tcp_mem
;
334 /* Stuffs for move charges at task migration. */
336 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
337 * left-shifted bitmap of these types.
340 MOVE_CHARGE_TYPE_ANON
, /* private anonymous page and swap of it */
341 MOVE_CHARGE_TYPE_FILE
, /* file page(including tmpfs) and swap of it */
345 /* "mc" and its members are protected by cgroup_mutex */
346 static struct move_charge_struct
{
347 spinlock_t lock
; /* for from, to */
348 struct mem_cgroup
*from
;
349 struct mem_cgroup
*to
;
350 unsigned long precharge
;
351 unsigned long moved_charge
;
352 unsigned long moved_swap
;
353 struct task_struct
*moving_task
; /* a task moving charges */
354 wait_queue_head_t waitq
; /* a waitq for other context */
356 .lock
= __SPIN_LOCK_UNLOCKED(mc
.lock
),
357 .waitq
= __WAIT_QUEUE_HEAD_INITIALIZER(mc
.waitq
),
360 static bool move_anon(void)
362 return test_bit(MOVE_CHARGE_TYPE_ANON
,
363 &mc
.to
->move_charge_at_immigrate
);
366 static bool move_file(void)
368 return test_bit(MOVE_CHARGE_TYPE_FILE
,
369 &mc
.to
->move_charge_at_immigrate
);
373 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
374 * limit reclaim to prevent infinite loops, if they ever occur.
376 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
377 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
380 MEM_CGROUP_CHARGE_TYPE_CACHE
= 0,
381 MEM_CGROUP_CHARGE_TYPE_MAPPED
,
382 MEM_CGROUP_CHARGE_TYPE_SHMEM
, /* used by page migration of shmem */
383 MEM_CGROUP_CHARGE_TYPE_FORCE
, /* used by force_empty */
384 MEM_CGROUP_CHARGE_TYPE_SWAPOUT
, /* for accounting swapcache */
385 MEM_CGROUP_CHARGE_TYPE_DROP
, /* a page was unused swap cache */
389 /* for encoding cft->private value on file */
392 #define _OOM_TYPE (2)
393 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
394 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
395 #define MEMFILE_ATTR(val) ((val) & 0xffff)
396 /* Used for OOM nofiier */
397 #define OOM_CONTROL (0)
400 * Reclaim flags for mem_cgroup_hierarchical_reclaim
402 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
403 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
404 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
405 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
407 static void mem_cgroup_get(struct mem_cgroup
*memcg
);
408 static void mem_cgroup_put(struct mem_cgroup
*memcg
);
410 /* Writing them here to avoid exposing memcg's inner layout */
411 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
412 #include <net/sock.h>
415 static bool mem_cgroup_is_root(struct mem_cgroup
*memcg
);
416 void sock_update_memcg(struct sock
*sk
)
418 if (mem_cgroup_sockets_enabled
) {
419 struct mem_cgroup
*memcg
;
420 struct cg_proto
*cg_proto
;
422 BUG_ON(!sk
->sk_prot
->proto_cgroup
);
424 /* Socket cloning can throw us here with sk_cgrp already
425 * filled. It won't however, necessarily happen from
426 * process context. So the test for root memcg given
427 * the current task's memcg won't help us in this case.
429 * Respecting the original socket's memcg is a better
430 * decision in this case.
433 BUG_ON(mem_cgroup_is_root(sk
->sk_cgrp
->memcg
));
434 mem_cgroup_get(sk
->sk_cgrp
->memcg
);
439 memcg
= mem_cgroup_from_task(current
);
440 cg_proto
= sk
->sk_prot
->proto_cgroup(memcg
);
441 if (!mem_cgroup_is_root(memcg
) && memcg_proto_active(cg_proto
)) {
442 mem_cgroup_get(memcg
);
443 sk
->sk_cgrp
= cg_proto
;
448 EXPORT_SYMBOL(sock_update_memcg
);
450 void sock_release_memcg(struct sock
*sk
)
452 if (mem_cgroup_sockets_enabled
&& sk
->sk_cgrp
) {
453 struct mem_cgroup
*memcg
;
454 WARN_ON(!sk
->sk_cgrp
->memcg
);
455 memcg
= sk
->sk_cgrp
->memcg
;
456 mem_cgroup_put(memcg
);
461 struct cg_proto
*tcp_proto_cgroup(struct mem_cgroup
*memcg
)
463 if (!memcg
|| mem_cgroup_is_root(memcg
))
466 return &memcg
->tcp_mem
.cg_proto
;
468 EXPORT_SYMBOL(tcp_proto_cgroup
);
469 #endif /* CONFIG_INET */
470 #endif /* CONFIG_CGROUP_MEM_RES_CTLR_KMEM */
472 #if defined(CONFIG_INET) && defined(CONFIG_CGROUP_MEM_RES_CTLR_KMEM)
473 static void disarm_sock_keys(struct mem_cgroup
*memcg
)
475 if (!memcg_proto_activated(&memcg
->tcp_mem
.cg_proto
))
477 static_key_slow_dec(&memcg_socket_limit_enabled
);
480 static void disarm_sock_keys(struct mem_cgroup
*memcg
)
485 static void drain_all_stock_async(struct mem_cgroup
*memcg
);
487 static struct mem_cgroup_per_zone
*
488 mem_cgroup_zoneinfo(struct mem_cgroup
*memcg
, int nid
, int zid
)
490 return &memcg
->info
.nodeinfo
[nid
]->zoneinfo
[zid
];
493 struct cgroup_subsys_state
*mem_cgroup_css(struct mem_cgroup
*memcg
)
498 static struct mem_cgroup_per_zone
*
499 page_cgroup_zoneinfo(struct mem_cgroup
*memcg
, struct page
*page
)
501 int nid
= page_to_nid(page
);
502 int zid
= page_zonenum(page
);
504 return mem_cgroup_zoneinfo(memcg
, nid
, zid
);
507 static struct mem_cgroup_tree_per_zone
*
508 soft_limit_tree_node_zone(int nid
, int zid
)
510 return &soft_limit_tree
.rb_tree_per_node
[nid
]->rb_tree_per_zone
[zid
];
513 static struct mem_cgroup_tree_per_zone
*
514 soft_limit_tree_from_page(struct page
*page
)
516 int nid
= page_to_nid(page
);
517 int zid
= page_zonenum(page
);
519 return &soft_limit_tree
.rb_tree_per_node
[nid
]->rb_tree_per_zone
[zid
];
523 __mem_cgroup_insert_exceeded(struct mem_cgroup
*memcg
,
524 struct mem_cgroup_per_zone
*mz
,
525 struct mem_cgroup_tree_per_zone
*mctz
,
526 unsigned long long new_usage_in_excess
)
528 struct rb_node
**p
= &mctz
->rb_root
.rb_node
;
529 struct rb_node
*parent
= NULL
;
530 struct mem_cgroup_per_zone
*mz_node
;
535 mz
->usage_in_excess
= new_usage_in_excess
;
536 if (!mz
->usage_in_excess
)
540 mz_node
= rb_entry(parent
, struct mem_cgroup_per_zone
,
542 if (mz
->usage_in_excess
< mz_node
->usage_in_excess
)
545 * We can't avoid mem cgroups that are over their soft
546 * limit by the same amount
548 else if (mz
->usage_in_excess
>= mz_node
->usage_in_excess
)
551 rb_link_node(&mz
->tree_node
, parent
, p
);
552 rb_insert_color(&mz
->tree_node
, &mctz
->rb_root
);
557 __mem_cgroup_remove_exceeded(struct mem_cgroup
*memcg
,
558 struct mem_cgroup_per_zone
*mz
,
559 struct mem_cgroup_tree_per_zone
*mctz
)
563 rb_erase(&mz
->tree_node
, &mctz
->rb_root
);
568 mem_cgroup_remove_exceeded(struct mem_cgroup
*memcg
,
569 struct mem_cgroup_per_zone
*mz
,
570 struct mem_cgroup_tree_per_zone
*mctz
)
572 spin_lock(&mctz
->lock
);
573 __mem_cgroup_remove_exceeded(memcg
, mz
, mctz
);
574 spin_unlock(&mctz
->lock
);
578 static void mem_cgroup_update_tree(struct mem_cgroup
*memcg
, struct page
*page
)
580 unsigned long long excess
;
581 struct mem_cgroup_per_zone
*mz
;
582 struct mem_cgroup_tree_per_zone
*mctz
;
583 int nid
= page_to_nid(page
);
584 int zid
= page_zonenum(page
);
585 mctz
= soft_limit_tree_from_page(page
);
588 * Necessary to update all ancestors when hierarchy is used.
589 * because their event counter is not touched.
591 for (; memcg
; memcg
= parent_mem_cgroup(memcg
)) {
592 mz
= mem_cgroup_zoneinfo(memcg
, nid
, zid
);
593 excess
= res_counter_soft_limit_excess(&memcg
->res
);
595 * We have to update the tree if mz is on RB-tree or
596 * mem is over its softlimit.
598 if (excess
|| mz
->on_tree
) {
599 spin_lock(&mctz
->lock
);
600 /* if on-tree, remove it */
602 __mem_cgroup_remove_exceeded(memcg
, mz
, mctz
);
604 * Insert again. mz->usage_in_excess will be updated.
605 * If excess is 0, no tree ops.
607 __mem_cgroup_insert_exceeded(memcg
, mz
, mctz
, excess
);
608 spin_unlock(&mctz
->lock
);
613 static void mem_cgroup_remove_from_trees(struct mem_cgroup
*memcg
)
616 struct mem_cgroup_per_zone
*mz
;
617 struct mem_cgroup_tree_per_zone
*mctz
;
619 for_each_node(node
) {
620 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
621 mz
= mem_cgroup_zoneinfo(memcg
, node
, zone
);
622 mctz
= soft_limit_tree_node_zone(node
, zone
);
623 mem_cgroup_remove_exceeded(memcg
, mz
, mctz
);
628 static struct mem_cgroup_per_zone
*
629 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone
*mctz
)
631 struct rb_node
*rightmost
= NULL
;
632 struct mem_cgroup_per_zone
*mz
;
636 rightmost
= rb_last(&mctz
->rb_root
);
638 goto done
; /* Nothing to reclaim from */
640 mz
= rb_entry(rightmost
, struct mem_cgroup_per_zone
, tree_node
);
642 * Remove the node now but someone else can add it back,
643 * we will to add it back at the end of reclaim to its correct
644 * position in the tree.
646 __mem_cgroup_remove_exceeded(mz
->memcg
, mz
, mctz
);
647 if (!res_counter_soft_limit_excess(&mz
->memcg
->res
) ||
648 !css_tryget(&mz
->memcg
->css
))
654 static struct mem_cgroup_per_zone
*
655 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone
*mctz
)
657 struct mem_cgroup_per_zone
*mz
;
659 spin_lock(&mctz
->lock
);
660 mz
= __mem_cgroup_largest_soft_limit_node(mctz
);
661 spin_unlock(&mctz
->lock
);
666 * Implementation Note: reading percpu statistics for memcg.
668 * Both of vmstat[] and percpu_counter has threshold and do periodic
669 * synchronization to implement "quick" read. There are trade-off between
670 * reading cost and precision of value. Then, we may have a chance to implement
671 * a periodic synchronizion of counter in memcg's counter.
673 * But this _read() function is used for user interface now. The user accounts
674 * memory usage by memory cgroup and he _always_ requires exact value because
675 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
676 * have to visit all online cpus and make sum. So, for now, unnecessary
677 * synchronization is not implemented. (just implemented for cpu hotplug)
679 * If there are kernel internal actions which can make use of some not-exact
680 * value, and reading all cpu value can be performance bottleneck in some
681 * common workload, threashold and synchonization as vmstat[] should be
684 static long mem_cgroup_read_stat(struct mem_cgroup
*memcg
,
685 enum mem_cgroup_stat_index idx
)
691 for_each_online_cpu(cpu
)
692 val
+= per_cpu(memcg
->stat
->count
[idx
], cpu
);
693 #ifdef CONFIG_HOTPLUG_CPU
694 spin_lock(&memcg
->pcp_counter_lock
);
695 val
+= memcg
->nocpu_base
.count
[idx
];
696 spin_unlock(&memcg
->pcp_counter_lock
);
702 static void mem_cgroup_swap_statistics(struct mem_cgroup
*memcg
,
705 int val
= (charge
) ? 1 : -1;
706 this_cpu_add(memcg
->stat
->count
[MEM_CGROUP_STAT_SWAPOUT
], val
);
709 static unsigned long mem_cgroup_read_events(struct mem_cgroup
*memcg
,
710 enum mem_cgroup_events_index idx
)
712 unsigned long val
= 0;
715 for_each_online_cpu(cpu
)
716 val
+= per_cpu(memcg
->stat
->events
[idx
], cpu
);
717 #ifdef CONFIG_HOTPLUG_CPU
718 spin_lock(&memcg
->pcp_counter_lock
);
719 val
+= memcg
->nocpu_base
.events
[idx
];
720 spin_unlock(&memcg
->pcp_counter_lock
);
725 static void mem_cgroup_charge_statistics(struct mem_cgroup
*memcg
,
726 bool anon
, int nr_pages
)
731 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
732 * counted as CACHE even if it's on ANON LRU.
735 __this_cpu_add(memcg
->stat
->count
[MEM_CGROUP_STAT_RSS
],
738 __this_cpu_add(memcg
->stat
->count
[MEM_CGROUP_STAT_CACHE
],
741 /* pagein of a big page is an event. So, ignore page size */
743 __this_cpu_inc(memcg
->stat
->events
[MEM_CGROUP_EVENTS_PGPGIN
]);
745 __this_cpu_inc(memcg
->stat
->events
[MEM_CGROUP_EVENTS_PGPGOUT
]);
746 nr_pages
= -nr_pages
; /* for event */
749 __this_cpu_add(memcg
->stat
->nr_page_events
, nr_pages
);
755 mem_cgroup_get_lru_size(struct lruvec
*lruvec
, enum lru_list lru
)
757 struct mem_cgroup_per_zone
*mz
;
759 mz
= container_of(lruvec
, struct mem_cgroup_per_zone
, lruvec
);
760 return mz
->lru_size
[lru
];
764 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup
*memcg
, int nid
, int zid
,
765 unsigned int lru_mask
)
767 struct mem_cgroup_per_zone
*mz
;
769 unsigned long ret
= 0;
771 mz
= mem_cgroup_zoneinfo(memcg
, nid
, zid
);
774 if (BIT(lru
) & lru_mask
)
775 ret
+= mz
->lru_size
[lru
];
781 mem_cgroup_node_nr_lru_pages(struct mem_cgroup
*memcg
,
782 int nid
, unsigned int lru_mask
)
787 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++)
788 total
+= mem_cgroup_zone_nr_lru_pages(memcg
,
794 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup
*memcg
,
795 unsigned int lru_mask
)
800 for_each_node_state(nid
, N_HIGH_MEMORY
)
801 total
+= mem_cgroup_node_nr_lru_pages(memcg
, nid
, lru_mask
);
805 static bool mem_cgroup_event_ratelimit(struct mem_cgroup
*memcg
,
806 enum mem_cgroup_events_target target
)
808 unsigned long val
, next
;
810 val
= __this_cpu_read(memcg
->stat
->nr_page_events
);
811 next
= __this_cpu_read(memcg
->stat
->targets
[target
]);
812 /* from time_after() in jiffies.h */
813 if ((long)next
- (long)val
< 0) {
815 case MEM_CGROUP_TARGET_THRESH
:
816 next
= val
+ THRESHOLDS_EVENTS_TARGET
;
818 case MEM_CGROUP_TARGET_SOFTLIMIT
:
819 next
= val
+ SOFTLIMIT_EVENTS_TARGET
;
821 case MEM_CGROUP_TARGET_NUMAINFO
:
822 next
= val
+ NUMAINFO_EVENTS_TARGET
;
827 __this_cpu_write(memcg
->stat
->targets
[target
], next
);
834 * Check events in order.
837 static void memcg_check_events(struct mem_cgroup
*memcg
, struct page
*page
)
840 /* threshold event is triggered in finer grain than soft limit */
841 if (unlikely(mem_cgroup_event_ratelimit(memcg
,
842 MEM_CGROUP_TARGET_THRESH
))) {
844 bool do_numainfo __maybe_unused
;
846 do_softlimit
= mem_cgroup_event_ratelimit(memcg
,
847 MEM_CGROUP_TARGET_SOFTLIMIT
);
849 do_numainfo
= mem_cgroup_event_ratelimit(memcg
,
850 MEM_CGROUP_TARGET_NUMAINFO
);
854 mem_cgroup_threshold(memcg
);
855 if (unlikely(do_softlimit
))
856 mem_cgroup_update_tree(memcg
, page
);
858 if (unlikely(do_numainfo
))
859 atomic_inc(&memcg
->numainfo_events
);
865 struct mem_cgroup
*mem_cgroup_from_cont(struct cgroup
*cont
)
867 return container_of(cgroup_subsys_state(cont
,
868 mem_cgroup_subsys_id
), struct mem_cgroup
,
872 struct mem_cgroup
*mem_cgroup_from_task(struct task_struct
*p
)
875 * mm_update_next_owner() may clear mm->owner to NULL
876 * if it races with swapoff, page migration, etc.
877 * So this can be called with p == NULL.
882 return container_of(task_subsys_state(p
, mem_cgroup_subsys_id
),
883 struct mem_cgroup
, css
);
886 struct mem_cgroup
*try_get_mem_cgroup_from_mm(struct mm_struct
*mm
)
888 struct mem_cgroup
*memcg
= NULL
;
893 * Because we have no locks, mm->owner's may be being moved to other
894 * cgroup. We use css_tryget() here even if this looks
895 * pessimistic (rather than adding locks here).
899 memcg
= mem_cgroup_from_task(rcu_dereference(mm
->owner
));
900 if (unlikely(!memcg
))
902 } while (!css_tryget(&memcg
->css
));
908 * mem_cgroup_iter - iterate over memory cgroup hierarchy
909 * @root: hierarchy root
910 * @prev: previously returned memcg, NULL on first invocation
911 * @reclaim: cookie for shared reclaim walks, NULL for full walks
913 * Returns references to children of the hierarchy below @root, or
914 * @root itself, or %NULL after a full round-trip.
916 * Caller must pass the return value in @prev on subsequent
917 * invocations for reference counting, or use mem_cgroup_iter_break()
918 * to cancel a hierarchy walk before the round-trip is complete.
920 * Reclaimers can specify a zone and a priority level in @reclaim to
921 * divide up the memcgs in the hierarchy among all concurrent
922 * reclaimers operating on the same zone and priority.
924 struct mem_cgroup
*mem_cgroup_iter(struct mem_cgroup
*root
,
925 struct mem_cgroup
*prev
,
926 struct mem_cgroup_reclaim_cookie
*reclaim
)
928 struct mem_cgroup
*memcg
= NULL
;
931 if (mem_cgroup_disabled())
935 root
= root_mem_cgroup
;
937 if (prev
&& !reclaim
)
938 id
= css_id(&prev
->css
);
940 if (prev
&& prev
!= root
)
943 if (!root
->use_hierarchy
&& root
!= root_mem_cgroup
) {
950 struct mem_cgroup_reclaim_iter
*uninitialized_var(iter
);
951 struct cgroup_subsys_state
*css
;
954 int nid
= zone_to_nid(reclaim
->zone
);
955 int zid
= zone_idx(reclaim
->zone
);
956 struct mem_cgroup_per_zone
*mz
;
958 mz
= mem_cgroup_zoneinfo(root
, nid
, zid
);
959 iter
= &mz
->reclaim_iter
[reclaim
->priority
];
960 if (prev
&& reclaim
->generation
!= iter
->generation
)
966 css
= css_get_next(&mem_cgroup_subsys
, id
+ 1, &root
->css
, &id
);
968 if (css
== &root
->css
|| css_tryget(css
))
969 memcg
= container_of(css
,
970 struct mem_cgroup
, css
);
979 else if (!prev
&& memcg
)
980 reclaim
->generation
= iter
->generation
;
990 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
991 * @root: hierarchy root
992 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
994 void mem_cgroup_iter_break(struct mem_cgroup
*root
,
995 struct mem_cgroup
*prev
)
998 root
= root_mem_cgroup
;
999 if (prev
&& prev
!= root
)
1000 css_put(&prev
->css
);
1004 * Iteration constructs for visiting all cgroups (under a tree). If
1005 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1006 * be used for reference counting.
1008 #define for_each_mem_cgroup_tree(iter, root) \
1009 for (iter = mem_cgroup_iter(root, NULL, NULL); \
1011 iter = mem_cgroup_iter(root, iter, NULL))
1013 #define for_each_mem_cgroup(iter) \
1014 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1016 iter = mem_cgroup_iter(NULL, iter, NULL))
1018 static inline bool mem_cgroup_is_root(struct mem_cgroup
*memcg
)
1020 return (memcg
== root_mem_cgroup
);
1023 void mem_cgroup_count_vm_event(struct mm_struct
*mm
, enum vm_event_item idx
)
1025 struct mem_cgroup
*memcg
;
1031 memcg
= mem_cgroup_from_task(rcu_dereference(mm
->owner
));
1032 if (unlikely(!memcg
))
1037 this_cpu_inc(memcg
->stat
->events
[MEM_CGROUP_EVENTS_PGFAULT
]);
1040 this_cpu_inc(memcg
->stat
->events
[MEM_CGROUP_EVENTS_PGMAJFAULT
]);
1048 EXPORT_SYMBOL(mem_cgroup_count_vm_event
);
1051 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1052 * @zone: zone of the wanted lruvec
1053 * @memcg: memcg of the wanted lruvec
1055 * Returns the lru list vector holding pages for the given @zone and
1056 * @mem. This can be the global zone lruvec, if the memory controller
1059 struct lruvec
*mem_cgroup_zone_lruvec(struct zone
*zone
,
1060 struct mem_cgroup
*memcg
)
1062 struct mem_cgroup_per_zone
*mz
;
1064 if (mem_cgroup_disabled())
1065 return &zone
->lruvec
;
1067 mz
= mem_cgroup_zoneinfo(memcg
, zone_to_nid(zone
), zone_idx(zone
));
1072 * Following LRU functions are allowed to be used without PCG_LOCK.
1073 * Operations are called by routine of global LRU independently from memcg.
1074 * What we have to take care of here is validness of pc->mem_cgroup.
1076 * Changes to pc->mem_cgroup happens when
1079 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1080 * It is added to LRU before charge.
1081 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1082 * When moving account, the page is not on LRU. It's isolated.
1086 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1088 * @zone: zone of the page
1090 struct lruvec
*mem_cgroup_page_lruvec(struct page
*page
, struct zone
*zone
)
1092 struct mem_cgroup_per_zone
*mz
;
1093 struct mem_cgroup
*memcg
;
1094 struct page_cgroup
*pc
;
1096 if (mem_cgroup_disabled())
1097 return &zone
->lruvec
;
1099 pc
= lookup_page_cgroup(page
);
1100 memcg
= pc
->mem_cgroup
;
1103 * Surreptitiously switch any uncharged offlist page to root:
1104 * an uncharged page off lru does nothing to secure
1105 * its former mem_cgroup from sudden removal.
1107 * Our caller holds lru_lock, and PageCgroupUsed is updated
1108 * under page_cgroup lock: between them, they make all uses
1109 * of pc->mem_cgroup safe.
1111 if (!PageLRU(page
) && !PageCgroupUsed(pc
) && memcg
!= root_mem_cgroup
)
1112 pc
->mem_cgroup
= memcg
= root_mem_cgroup
;
1114 mz
= page_cgroup_zoneinfo(memcg
, page
);
1119 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1120 * @lruvec: mem_cgroup per zone lru vector
1121 * @lru: index of lru list the page is sitting on
1122 * @nr_pages: positive when adding or negative when removing
1124 * This function must be called when a page is added to or removed from an
1127 void mem_cgroup_update_lru_size(struct lruvec
*lruvec
, enum lru_list lru
,
1130 struct mem_cgroup_per_zone
*mz
;
1131 unsigned long *lru_size
;
1133 if (mem_cgroup_disabled())
1136 mz
= container_of(lruvec
, struct mem_cgroup_per_zone
, lruvec
);
1137 lru_size
= mz
->lru_size
+ lru
;
1138 *lru_size
+= nr_pages
;
1139 VM_BUG_ON((long)(*lru_size
) < 0);
1143 * Checks whether given mem is same or in the root_mem_cgroup's
1146 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup
*root_memcg
,
1147 struct mem_cgroup
*memcg
)
1149 if (root_memcg
== memcg
)
1151 if (!root_memcg
->use_hierarchy
|| !memcg
)
1153 return css_is_ancestor(&memcg
->css
, &root_memcg
->css
);
1156 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup
*root_memcg
,
1157 struct mem_cgroup
*memcg
)
1162 ret
= __mem_cgroup_same_or_subtree(root_memcg
, memcg
);
1167 int task_in_mem_cgroup(struct task_struct
*task
, const struct mem_cgroup
*memcg
)
1170 struct mem_cgroup
*curr
= NULL
;
1171 struct task_struct
*p
;
1173 p
= find_lock_task_mm(task
);
1175 curr
= try_get_mem_cgroup_from_mm(p
->mm
);
1179 * All threads may have already detached their mm's, but the oom
1180 * killer still needs to detect if they have already been oom
1181 * killed to prevent needlessly killing additional tasks.
1184 curr
= mem_cgroup_from_task(task
);
1186 css_get(&curr
->css
);
1192 * We should check use_hierarchy of "memcg" not "curr". Because checking
1193 * use_hierarchy of "curr" here make this function true if hierarchy is
1194 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1195 * hierarchy(even if use_hierarchy is disabled in "memcg").
1197 ret
= mem_cgroup_same_or_subtree(memcg
, curr
);
1198 css_put(&curr
->css
);
1202 int mem_cgroup_inactive_anon_is_low(struct lruvec
*lruvec
)
1204 unsigned long inactive_ratio
;
1205 unsigned long inactive
;
1206 unsigned long active
;
1209 inactive
= mem_cgroup_get_lru_size(lruvec
, LRU_INACTIVE_ANON
);
1210 active
= mem_cgroup_get_lru_size(lruvec
, LRU_ACTIVE_ANON
);
1212 gb
= (inactive
+ active
) >> (30 - PAGE_SHIFT
);
1214 inactive_ratio
= int_sqrt(10 * gb
);
1218 return inactive
* inactive_ratio
< active
;
1221 int mem_cgroup_inactive_file_is_low(struct lruvec
*lruvec
)
1223 unsigned long active
;
1224 unsigned long inactive
;
1226 inactive
= mem_cgroup_get_lru_size(lruvec
, LRU_INACTIVE_FILE
);
1227 active
= mem_cgroup_get_lru_size(lruvec
, LRU_ACTIVE_FILE
);
1229 return (active
> inactive
);
1232 #define mem_cgroup_from_res_counter(counter, member) \
1233 container_of(counter, struct mem_cgroup, member)
1236 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1237 * @memcg: the memory cgroup
1239 * Returns the maximum amount of memory @mem can be charged with, in
1242 static unsigned long mem_cgroup_margin(struct mem_cgroup
*memcg
)
1244 unsigned long long margin
;
1246 margin
= res_counter_margin(&memcg
->res
);
1247 if (do_swap_account
)
1248 margin
= min(margin
, res_counter_margin(&memcg
->memsw
));
1249 return margin
>> PAGE_SHIFT
;
1252 int mem_cgroup_swappiness(struct mem_cgroup
*memcg
)
1254 struct cgroup
*cgrp
= memcg
->css
.cgroup
;
1257 if (cgrp
->parent
== NULL
)
1258 return vm_swappiness
;
1260 return memcg
->swappiness
;
1264 * memcg->moving_account is used for checking possibility that some thread is
1265 * calling move_account(). When a thread on CPU-A starts moving pages under
1266 * a memcg, other threads should check memcg->moving_account under
1267 * rcu_read_lock(), like this:
1271 * memcg->moving_account+1 if (memcg->mocing_account)
1273 * synchronize_rcu() update something.
1278 /* for quick checking without looking up memcg */
1279 atomic_t memcg_moving __read_mostly
;
1281 static void mem_cgroup_start_move(struct mem_cgroup
*memcg
)
1283 atomic_inc(&memcg_moving
);
1284 atomic_inc(&memcg
->moving_account
);
1288 static void mem_cgroup_end_move(struct mem_cgroup
*memcg
)
1291 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1292 * We check NULL in callee rather than caller.
1295 atomic_dec(&memcg_moving
);
1296 atomic_dec(&memcg
->moving_account
);
1301 * 2 routines for checking "mem" is under move_account() or not.
1303 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1304 * is used for avoiding races in accounting. If true,
1305 * pc->mem_cgroup may be overwritten.
1307 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1308 * under hierarchy of moving cgroups. This is for
1309 * waiting at hith-memory prressure caused by "move".
1312 static bool mem_cgroup_stolen(struct mem_cgroup
*memcg
)
1314 VM_BUG_ON(!rcu_read_lock_held());
1315 return atomic_read(&memcg
->moving_account
) > 0;
1318 static bool mem_cgroup_under_move(struct mem_cgroup
*memcg
)
1320 struct mem_cgroup
*from
;
1321 struct mem_cgroup
*to
;
1324 * Unlike task_move routines, we access mc.to, mc.from not under
1325 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1327 spin_lock(&mc
.lock
);
1333 ret
= mem_cgroup_same_or_subtree(memcg
, from
)
1334 || mem_cgroup_same_or_subtree(memcg
, to
);
1336 spin_unlock(&mc
.lock
);
1340 static bool mem_cgroup_wait_acct_move(struct mem_cgroup
*memcg
)
1342 if (mc
.moving_task
&& current
!= mc
.moving_task
) {
1343 if (mem_cgroup_under_move(memcg
)) {
1345 prepare_to_wait(&mc
.waitq
, &wait
, TASK_INTERRUPTIBLE
);
1346 /* moving charge context might have finished. */
1349 finish_wait(&mc
.waitq
, &wait
);
1357 * Take this lock when
1358 * - a code tries to modify page's memcg while it's USED.
1359 * - a code tries to modify page state accounting in a memcg.
1360 * see mem_cgroup_stolen(), too.
1362 static void move_lock_mem_cgroup(struct mem_cgroup
*memcg
,
1363 unsigned long *flags
)
1365 spin_lock_irqsave(&memcg
->move_lock
, *flags
);
1368 static void move_unlock_mem_cgroup(struct mem_cgroup
*memcg
,
1369 unsigned long *flags
)
1371 spin_unlock_irqrestore(&memcg
->move_lock
, *flags
);
1375 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1376 * @memcg: The memory cgroup that went over limit
1377 * @p: Task that is going to be killed
1379 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1382 void mem_cgroup_print_oom_info(struct mem_cgroup
*memcg
, struct task_struct
*p
)
1384 struct cgroup
*task_cgrp
;
1385 struct cgroup
*mem_cgrp
;
1387 * Need a buffer in BSS, can't rely on allocations. The code relies
1388 * on the assumption that OOM is serialized for memory controller.
1389 * If this assumption is broken, revisit this code.
1391 static char memcg_name
[PATH_MAX
];
1399 mem_cgrp
= memcg
->css
.cgroup
;
1400 task_cgrp
= task_cgroup(p
, mem_cgroup_subsys_id
);
1402 ret
= cgroup_path(task_cgrp
, memcg_name
, PATH_MAX
);
1405 * Unfortunately, we are unable to convert to a useful name
1406 * But we'll still print out the usage information
1413 printk(KERN_INFO
"Task in %s killed", memcg_name
);
1416 ret
= cgroup_path(mem_cgrp
, memcg_name
, PATH_MAX
);
1424 * Continues from above, so we don't need an KERN_ level
1426 printk(KERN_CONT
" as a result of limit of %s\n", memcg_name
);
1429 printk(KERN_INFO
"memory: usage %llukB, limit %llukB, failcnt %llu\n",
1430 res_counter_read_u64(&memcg
->res
, RES_USAGE
) >> 10,
1431 res_counter_read_u64(&memcg
->res
, RES_LIMIT
) >> 10,
1432 res_counter_read_u64(&memcg
->res
, RES_FAILCNT
));
1433 printk(KERN_INFO
"memory+swap: usage %llukB, limit %llukB, "
1435 res_counter_read_u64(&memcg
->memsw
, RES_USAGE
) >> 10,
1436 res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
) >> 10,
1437 res_counter_read_u64(&memcg
->memsw
, RES_FAILCNT
));
1441 * This function returns the number of memcg under hierarchy tree. Returns
1442 * 1(self count) if no children.
1444 static int mem_cgroup_count_children(struct mem_cgroup
*memcg
)
1447 struct mem_cgroup
*iter
;
1449 for_each_mem_cgroup_tree(iter
, memcg
)
1455 * Return the memory (and swap, if configured) limit for a memcg.
1457 u64
mem_cgroup_get_limit(struct mem_cgroup
*memcg
)
1462 limit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
1463 limit
+= total_swap_pages
<< PAGE_SHIFT
;
1465 memsw
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
1467 * If memsw is finite and limits the amount of swap space available
1468 * to this memcg, return that limit.
1470 return min(limit
, memsw
);
1473 static unsigned long mem_cgroup_reclaim(struct mem_cgroup
*memcg
,
1475 unsigned long flags
)
1477 unsigned long total
= 0;
1478 bool noswap
= false;
1481 if (flags
& MEM_CGROUP_RECLAIM_NOSWAP
)
1483 if (!(flags
& MEM_CGROUP_RECLAIM_SHRINK
) && memcg
->memsw_is_minimum
)
1486 for (loop
= 0; loop
< MEM_CGROUP_MAX_RECLAIM_LOOPS
; loop
++) {
1488 drain_all_stock_async(memcg
);
1489 total
+= try_to_free_mem_cgroup_pages(memcg
, gfp_mask
, noswap
);
1491 * Allow limit shrinkers, which are triggered directly
1492 * by userspace, to catch signals and stop reclaim
1493 * after minimal progress, regardless of the margin.
1495 if (total
&& (flags
& MEM_CGROUP_RECLAIM_SHRINK
))
1497 if (mem_cgroup_margin(memcg
))
1500 * If nothing was reclaimed after two attempts, there
1501 * may be no reclaimable pages in this hierarchy.
1510 * test_mem_cgroup_node_reclaimable
1511 * @memcg: the target memcg
1512 * @nid: the node ID to be checked.
1513 * @noswap : specify true here if the user wants flle only information.
1515 * This function returns whether the specified memcg contains any
1516 * reclaimable pages on a node. Returns true if there are any reclaimable
1517 * pages in the node.
1519 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup
*memcg
,
1520 int nid
, bool noswap
)
1522 if (mem_cgroup_node_nr_lru_pages(memcg
, nid
, LRU_ALL_FILE
))
1524 if (noswap
|| !total_swap_pages
)
1526 if (mem_cgroup_node_nr_lru_pages(memcg
, nid
, LRU_ALL_ANON
))
1531 #if MAX_NUMNODES > 1
1534 * Always updating the nodemask is not very good - even if we have an empty
1535 * list or the wrong list here, we can start from some node and traverse all
1536 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1539 static void mem_cgroup_may_update_nodemask(struct mem_cgroup
*memcg
)
1543 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1544 * pagein/pageout changes since the last update.
1546 if (!atomic_read(&memcg
->numainfo_events
))
1548 if (atomic_inc_return(&memcg
->numainfo_updating
) > 1)
1551 /* make a nodemask where this memcg uses memory from */
1552 memcg
->scan_nodes
= node_states
[N_HIGH_MEMORY
];
1554 for_each_node_mask(nid
, node_states
[N_HIGH_MEMORY
]) {
1556 if (!test_mem_cgroup_node_reclaimable(memcg
, nid
, false))
1557 node_clear(nid
, memcg
->scan_nodes
);
1560 atomic_set(&memcg
->numainfo_events
, 0);
1561 atomic_set(&memcg
->numainfo_updating
, 0);
1565 * Selecting a node where we start reclaim from. Because what we need is just
1566 * reducing usage counter, start from anywhere is O,K. Considering
1567 * memory reclaim from current node, there are pros. and cons.
1569 * Freeing memory from current node means freeing memory from a node which
1570 * we'll use or we've used. So, it may make LRU bad. And if several threads
1571 * hit limits, it will see a contention on a node. But freeing from remote
1572 * node means more costs for memory reclaim because of memory latency.
1574 * Now, we use round-robin. Better algorithm is welcomed.
1576 int mem_cgroup_select_victim_node(struct mem_cgroup
*memcg
)
1580 mem_cgroup_may_update_nodemask(memcg
);
1581 node
= memcg
->last_scanned_node
;
1583 node
= next_node(node
, memcg
->scan_nodes
);
1584 if (node
== MAX_NUMNODES
)
1585 node
= first_node(memcg
->scan_nodes
);
1587 * We call this when we hit limit, not when pages are added to LRU.
1588 * No LRU may hold pages because all pages are UNEVICTABLE or
1589 * memcg is too small and all pages are not on LRU. In that case,
1590 * we use curret node.
1592 if (unlikely(node
== MAX_NUMNODES
))
1593 node
= numa_node_id();
1595 memcg
->last_scanned_node
= node
;
1600 * Check all nodes whether it contains reclaimable pages or not.
1601 * For quick scan, we make use of scan_nodes. This will allow us to skip
1602 * unused nodes. But scan_nodes is lazily updated and may not cotain
1603 * enough new information. We need to do double check.
1605 static bool mem_cgroup_reclaimable(struct mem_cgroup
*memcg
, bool noswap
)
1610 * quick check...making use of scan_node.
1611 * We can skip unused nodes.
1613 if (!nodes_empty(memcg
->scan_nodes
)) {
1614 for (nid
= first_node(memcg
->scan_nodes
);
1616 nid
= next_node(nid
, memcg
->scan_nodes
)) {
1618 if (test_mem_cgroup_node_reclaimable(memcg
, nid
, noswap
))
1623 * Check rest of nodes.
1625 for_each_node_state(nid
, N_HIGH_MEMORY
) {
1626 if (node_isset(nid
, memcg
->scan_nodes
))
1628 if (test_mem_cgroup_node_reclaimable(memcg
, nid
, noswap
))
1635 int mem_cgroup_select_victim_node(struct mem_cgroup
*memcg
)
1640 static bool mem_cgroup_reclaimable(struct mem_cgroup
*memcg
, bool noswap
)
1642 return test_mem_cgroup_node_reclaimable(memcg
, 0, noswap
);
1646 static int mem_cgroup_soft_reclaim(struct mem_cgroup
*root_memcg
,
1649 unsigned long *total_scanned
)
1651 struct mem_cgroup
*victim
= NULL
;
1654 unsigned long excess
;
1655 unsigned long nr_scanned
;
1656 struct mem_cgroup_reclaim_cookie reclaim
= {
1661 excess
= res_counter_soft_limit_excess(&root_memcg
->res
) >> PAGE_SHIFT
;
1664 victim
= mem_cgroup_iter(root_memcg
, victim
, &reclaim
);
1669 * If we have not been able to reclaim
1670 * anything, it might because there are
1671 * no reclaimable pages under this hierarchy
1676 * We want to do more targeted reclaim.
1677 * excess >> 2 is not to excessive so as to
1678 * reclaim too much, nor too less that we keep
1679 * coming back to reclaim from this cgroup
1681 if (total
>= (excess
>> 2) ||
1682 (loop
> MEM_CGROUP_MAX_RECLAIM_LOOPS
))
1687 if (!mem_cgroup_reclaimable(victim
, false))
1689 total
+= mem_cgroup_shrink_node_zone(victim
, gfp_mask
, false,
1691 *total_scanned
+= nr_scanned
;
1692 if (!res_counter_soft_limit_excess(&root_memcg
->res
))
1695 mem_cgroup_iter_break(root_memcg
, victim
);
1700 * Check OOM-Killer is already running under our hierarchy.
1701 * If someone is running, return false.
1702 * Has to be called with memcg_oom_lock
1704 static bool mem_cgroup_oom_lock(struct mem_cgroup
*memcg
)
1706 struct mem_cgroup
*iter
, *failed
= NULL
;
1708 for_each_mem_cgroup_tree(iter
, memcg
) {
1709 if (iter
->oom_lock
) {
1711 * this subtree of our hierarchy is already locked
1712 * so we cannot give a lock.
1715 mem_cgroup_iter_break(memcg
, iter
);
1718 iter
->oom_lock
= true;
1725 * OK, we failed to lock the whole subtree so we have to clean up
1726 * what we set up to the failing subtree
1728 for_each_mem_cgroup_tree(iter
, memcg
) {
1729 if (iter
== failed
) {
1730 mem_cgroup_iter_break(memcg
, iter
);
1733 iter
->oom_lock
= false;
1739 * Has to be called with memcg_oom_lock
1741 static int mem_cgroup_oom_unlock(struct mem_cgroup
*memcg
)
1743 struct mem_cgroup
*iter
;
1745 for_each_mem_cgroup_tree(iter
, memcg
)
1746 iter
->oom_lock
= false;
1750 static void mem_cgroup_mark_under_oom(struct mem_cgroup
*memcg
)
1752 struct mem_cgroup
*iter
;
1754 for_each_mem_cgroup_tree(iter
, memcg
)
1755 atomic_inc(&iter
->under_oom
);
1758 static void mem_cgroup_unmark_under_oom(struct mem_cgroup
*memcg
)
1760 struct mem_cgroup
*iter
;
1763 * When a new child is created while the hierarchy is under oom,
1764 * mem_cgroup_oom_lock() may not be called. We have to use
1765 * atomic_add_unless() here.
1767 for_each_mem_cgroup_tree(iter
, memcg
)
1768 atomic_add_unless(&iter
->under_oom
, -1, 0);
1771 static DEFINE_SPINLOCK(memcg_oom_lock
);
1772 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq
);
1774 struct oom_wait_info
{
1775 struct mem_cgroup
*memcg
;
1779 static int memcg_oom_wake_function(wait_queue_t
*wait
,
1780 unsigned mode
, int sync
, void *arg
)
1782 struct mem_cgroup
*wake_memcg
= (struct mem_cgroup
*)arg
;
1783 struct mem_cgroup
*oom_wait_memcg
;
1784 struct oom_wait_info
*oom_wait_info
;
1786 oom_wait_info
= container_of(wait
, struct oom_wait_info
, wait
);
1787 oom_wait_memcg
= oom_wait_info
->memcg
;
1790 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
1791 * Then we can use css_is_ancestor without taking care of RCU.
1793 if (!mem_cgroup_same_or_subtree(oom_wait_memcg
, wake_memcg
)
1794 && !mem_cgroup_same_or_subtree(wake_memcg
, oom_wait_memcg
))
1796 return autoremove_wake_function(wait
, mode
, sync
, arg
);
1799 static void memcg_wakeup_oom(struct mem_cgroup
*memcg
)
1801 /* for filtering, pass "memcg" as argument. */
1802 __wake_up(&memcg_oom_waitq
, TASK_NORMAL
, 0, memcg
);
1805 static void memcg_oom_recover(struct mem_cgroup
*memcg
)
1807 if (memcg
&& atomic_read(&memcg
->under_oom
))
1808 memcg_wakeup_oom(memcg
);
1812 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1814 static bool mem_cgroup_handle_oom(struct mem_cgroup
*memcg
, gfp_t mask
,
1817 struct oom_wait_info owait
;
1818 bool locked
, need_to_kill
;
1820 owait
.memcg
= memcg
;
1821 owait
.wait
.flags
= 0;
1822 owait
.wait
.func
= memcg_oom_wake_function
;
1823 owait
.wait
.private = current
;
1824 INIT_LIST_HEAD(&owait
.wait
.task_list
);
1825 need_to_kill
= true;
1826 mem_cgroup_mark_under_oom(memcg
);
1828 /* At first, try to OOM lock hierarchy under memcg.*/
1829 spin_lock(&memcg_oom_lock
);
1830 locked
= mem_cgroup_oom_lock(memcg
);
1832 * Even if signal_pending(), we can't quit charge() loop without
1833 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1834 * under OOM is always welcomed, use TASK_KILLABLE here.
1836 prepare_to_wait(&memcg_oom_waitq
, &owait
.wait
, TASK_KILLABLE
);
1837 if (!locked
|| memcg
->oom_kill_disable
)
1838 need_to_kill
= false;
1840 mem_cgroup_oom_notify(memcg
);
1841 spin_unlock(&memcg_oom_lock
);
1844 finish_wait(&memcg_oom_waitq
, &owait
.wait
);
1845 mem_cgroup_out_of_memory(memcg
, mask
, order
);
1848 finish_wait(&memcg_oom_waitq
, &owait
.wait
);
1850 spin_lock(&memcg_oom_lock
);
1852 mem_cgroup_oom_unlock(memcg
);
1853 memcg_wakeup_oom(memcg
);
1854 spin_unlock(&memcg_oom_lock
);
1856 mem_cgroup_unmark_under_oom(memcg
);
1858 if (test_thread_flag(TIF_MEMDIE
) || fatal_signal_pending(current
))
1860 /* Give chance to dying process */
1861 schedule_timeout_uninterruptible(1);
1866 * Currently used to update mapped file statistics, but the routine can be
1867 * generalized to update other statistics as well.
1869 * Notes: Race condition
1871 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1872 * it tends to be costly. But considering some conditions, we doesn't need
1873 * to do so _always_.
1875 * Considering "charge", lock_page_cgroup() is not required because all
1876 * file-stat operations happen after a page is attached to radix-tree. There
1877 * are no race with "charge".
1879 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1880 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1881 * if there are race with "uncharge". Statistics itself is properly handled
1884 * Considering "move", this is an only case we see a race. To make the race
1885 * small, we check mm->moving_account and detect there are possibility of race
1886 * If there is, we take a lock.
1889 void __mem_cgroup_begin_update_page_stat(struct page
*page
,
1890 bool *locked
, unsigned long *flags
)
1892 struct mem_cgroup
*memcg
;
1893 struct page_cgroup
*pc
;
1895 pc
= lookup_page_cgroup(page
);
1897 memcg
= pc
->mem_cgroup
;
1898 if (unlikely(!memcg
|| !PageCgroupUsed(pc
)))
1901 * If this memory cgroup is not under account moving, we don't
1902 * need to take move_lock_page_cgroup(). Because we already hold
1903 * rcu_read_lock(), any calls to move_account will be delayed until
1904 * rcu_read_unlock() if mem_cgroup_stolen() == true.
1906 if (!mem_cgroup_stolen(memcg
))
1909 move_lock_mem_cgroup(memcg
, flags
);
1910 if (memcg
!= pc
->mem_cgroup
|| !PageCgroupUsed(pc
)) {
1911 move_unlock_mem_cgroup(memcg
, flags
);
1917 void __mem_cgroup_end_update_page_stat(struct page
*page
, unsigned long *flags
)
1919 struct page_cgroup
*pc
= lookup_page_cgroup(page
);
1922 * It's guaranteed that pc->mem_cgroup never changes while
1923 * lock is held because a routine modifies pc->mem_cgroup
1924 * should take move_lock_page_cgroup().
1926 move_unlock_mem_cgroup(pc
->mem_cgroup
, flags
);
1929 void mem_cgroup_update_page_stat(struct page
*page
,
1930 enum mem_cgroup_page_stat_item idx
, int val
)
1932 struct mem_cgroup
*memcg
;
1933 struct page_cgroup
*pc
= lookup_page_cgroup(page
);
1934 unsigned long uninitialized_var(flags
);
1936 if (mem_cgroup_disabled())
1939 memcg
= pc
->mem_cgroup
;
1940 if (unlikely(!memcg
|| !PageCgroupUsed(pc
)))
1944 case MEMCG_NR_FILE_MAPPED
:
1945 idx
= MEM_CGROUP_STAT_FILE_MAPPED
;
1951 this_cpu_add(memcg
->stat
->count
[idx
], val
);
1955 * size of first charge trial. "32" comes from vmscan.c's magic value.
1956 * TODO: maybe necessary to use big numbers in big irons.
1958 #define CHARGE_BATCH 32U
1959 struct memcg_stock_pcp
{
1960 struct mem_cgroup
*cached
; /* this never be root cgroup */
1961 unsigned int nr_pages
;
1962 struct work_struct work
;
1963 unsigned long flags
;
1964 #define FLUSHING_CACHED_CHARGE 0
1966 static DEFINE_PER_CPU(struct memcg_stock_pcp
, memcg_stock
);
1967 static DEFINE_MUTEX(percpu_charge_mutex
);
1970 * Try to consume stocked charge on this cpu. If success, one page is consumed
1971 * from local stock and true is returned. If the stock is 0 or charges from a
1972 * cgroup which is not current target, returns false. This stock will be
1975 static bool consume_stock(struct mem_cgroup
*memcg
)
1977 struct memcg_stock_pcp
*stock
;
1980 stock
= &get_cpu_var(memcg_stock
);
1981 if (memcg
== stock
->cached
&& stock
->nr_pages
)
1983 else /* need to call res_counter_charge */
1985 put_cpu_var(memcg_stock
);
1990 * Returns stocks cached in percpu to res_counter and reset cached information.
1992 static void drain_stock(struct memcg_stock_pcp
*stock
)
1994 struct mem_cgroup
*old
= stock
->cached
;
1996 if (stock
->nr_pages
) {
1997 unsigned long bytes
= stock
->nr_pages
* PAGE_SIZE
;
1999 res_counter_uncharge(&old
->res
, bytes
);
2000 if (do_swap_account
)
2001 res_counter_uncharge(&old
->memsw
, bytes
);
2002 stock
->nr_pages
= 0;
2004 stock
->cached
= NULL
;
2008 * This must be called under preempt disabled or must be called by
2009 * a thread which is pinned to local cpu.
2011 static void drain_local_stock(struct work_struct
*dummy
)
2013 struct memcg_stock_pcp
*stock
= &__get_cpu_var(memcg_stock
);
2015 clear_bit(FLUSHING_CACHED_CHARGE
, &stock
->flags
);
2019 * Cache charges(val) which is from res_counter, to local per_cpu area.
2020 * This will be consumed by consume_stock() function, later.
2022 static void refill_stock(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
2024 struct memcg_stock_pcp
*stock
= &get_cpu_var(memcg_stock
);
2026 if (stock
->cached
!= memcg
) { /* reset if necessary */
2028 stock
->cached
= memcg
;
2030 stock
->nr_pages
+= nr_pages
;
2031 put_cpu_var(memcg_stock
);
2035 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2036 * of the hierarchy under it. sync flag says whether we should block
2037 * until the work is done.
2039 static void drain_all_stock(struct mem_cgroup
*root_memcg
, bool sync
)
2043 /* Notify other cpus that system-wide "drain" is running */
2046 for_each_online_cpu(cpu
) {
2047 struct memcg_stock_pcp
*stock
= &per_cpu(memcg_stock
, cpu
);
2048 struct mem_cgroup
*memcg
;
2050 memcg
= stock
->cached
;
2051 if (!memcg
|| !stock
->nr_pages
)
2053 if (!mem_cgroup_same_or_subtree(root_memcg
, memcg
))
2055 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE
, &stock
->flags
)) {
2057 drain_local_stock(&stock
->work
);
2059 schedule_work_on(cpu
, &stock
->work
);
2067 for_each_online_cpu(cpu
) {
2068 struct memcg_stock_pcp
*stock
= &per_cpu(memcg_stock
, cpu
);
2069 if (test_bit(FLUSHING_CACHED_CHARGE
, &stock
->flags
))
2070 flush_work(&stock
->work
);
2077 * Tries to drain stocked charges in other cpus. This function is asynchronous
2078 * and just put a work per cpu for draining localy on each cpu. Caller can
2079 * expects some charges will be back to res_counter later but cannot wait for
2082 static void drain_all_stock_async(struct mem_cgroup
*root_memcg
)
2085 * If someone calls draining, avoid adding more kworker runs.
2087 if (!mutex_trylock(&percpu_charge_mutex
))
2089 drain_all_stock(root_memcg
, false);
2090 mutex_unlock(&percpu_charge_mutex
);
2093 /* This is a synchronous drain interface. */
2094 static void drain_all_stock_sync(struct mem_cgroup
*root_memcg
)
2096 /* called when force_empty is called */
2097 mutex_lock(&percpu_charge_mutex
);
2098 drain_all_stock(root_memcg
, true);
2099 mutex_unlock(&percpu_charge_mutex
);
2103 * This function drains percpu counter value from DEAD cpu and
2104 * move it to local cpu. Note that this function can be preempted.
2106 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup
*memcg
, int cpu
)
2110 spin_lock(&memcg
->pcp_counter_lock
);
2111 for (i
= 0; i
< MEM_CGROUP_STAT_NSTATS
; i
++) {
2112 long x
= per_cpu(memcg
->stat
->count
[i
], cpu
);
2114 per_cpu(memcg
->stat
->count
[i
], cpu
) = 0;
2115 memcg
->nocpu_base
.count
[i
] += x
;
2117 for (i
= 0; i
< MEM_CGROUP_EVENTS_NSTATS
; i
++) {
2118 unsigned long x
= per_cpu(memcg
->stat
->events
[i
], cpu
);
2120 per_cpu(memcg
->stat
->events
[i
], cpu
) = 0;
2121 memcg
->nocpu_base
.events
[i
] += x
;
2123 spin_unlock(&memcg
->pcp_counter_lock
);
2126 static int __cpuinit
memcg_cpu_hotplug_callback(struct notifier_block
*nb
,
2127 unsigned long action
,
2130 int cpu
= (unsigned long)hcpu
;
2131 struct memcg_stock_pcp
*stock
;
2132 struct mem_cgroup
*iter
;
2134 if (action
== CPU_ONLINE
)
2137 if (action
!= CPU_DEAD
&& action
!= CPU_DEAD_FROZEN
)
2140 for_each_mem_cgroup(iter
)
2141 mem_cgroup_drain_pcp_counter(iter
, cpu
);
2143 stock
= &per_cpu(memcg_stock
, cpu
);
2149 /* See __mem_cgroup_try_charge() for details */
2151 CHARGE_OK
, /* success */
2152 CHARGE_RETRY
, /* need to retry but retry is not bad */
2153 CHARGE_NOMEM
, /* we can't do more. return -ENOMEM */
2154 CHARGE_WOULDBLOCK
, /* GFP_WAIT wasn't set and no enough res. */
2155 CHARGE_OOM_DIE
, /* the current is killed because of OOM */
2158 static int mem_cgroup_do_charge(struct mem_cgroup
*memcg
, gfp_t gfp_mask
,
2159 unsigned int nr_pages
, bool oom_check
)
2161 unsigned long csize
= nr_pages
* PAGE_SIZE
;
2162 struct mem_cgroup
*mem_over_limit
;
2163 struct res_counter
*fail_res
;
2164 unsigned long flags
= 0;
2167 ret
= res_counter_charge(&memcg
->res
, csize
, &fail_res
);
2170 if (!do_swap_account
)
2172 ret
= res_counter_charge(&memcg
->memsw
, csize
, &fail_res
);
2176 res_counter_uncharge(&memcg
->res
, csize
);
2177 mem_over_limit
= mem_cgroup_from_res_counter(fail_res
, memsw
);
2178 flags
|= MEM_CGROUP_RECLAIM_NOSWAP
;
2180 mem_over_limit
= mem_cgroup_from_res_counter(fail_res
, res
);
2182 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2183 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2185 * Never reclaim on behalf of optional batching, retry with a
2186 * single page instead.
2188 if (nr_pages
== CHARGE_BATCH
)
2189 return CHARGE_RETRY
;
2191 if (!(gfp_mask
& __GFP_WAIT
))
2192 return CHARGE_WOULDBLOCK
;
2194 ret
= mem_cgroup_reclaim(mem_over_limit
, gfp_mask
, flags
);
2195 if (mem_cgroup_margin(mem_over_limit
) >= nr_pages
)
2196 return CHARGE_RETRY
;
2198 * Even though the limit is exceeded at this point, reclaim
2199 * may have been able to free some pages. Retry the charge
2200 * before killing the task.
2202 * Only for regular pages, though: huge pages are rather
2203 * unlikely to succeed so close to the limit, and we fall back
2204 * to regular pages anyway in case of failure.
2206 if (nr_pages
== 1 && ret
)
2207 return CHARGE_RETRY
;
2210 * At task move, charge accounts can be doubly counted. So, it's
2211 * better to wait until the end of task_move if something is going on.
2213 if (mem_cgroup_wait_acct_move(mem_over_limit
))
2214 return CHARGE_RETRY
;
2216 /* If we don't need to call oom-killer at el, return immediately */
2218 return CHARGE_NOMEM
;
2220 if (!mem_cgroup_handle_oom(mem_over_limit
, gfp_mask
, get_order(csize
)))
2221 return CHARGE_OOM_DIE
;
2223 return CHARGE_RETRY
;
2227 * __mem_cgroup_try_charge() does
2228 * 1. detect memcg to be charged against from passed *mm and *ptr,
2229 * 2. update res_counter
2230 * 3. call memory reclaim if necessary.
2232 * In some special case, if the task is fatal, fatal_signal_pending() or
2233 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2234 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2235 * as possible without any hazards. 2: all pages should have a valid
2236 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2237 * pointer, that is treated as a charge to root_mem_cgroup.
2239 * So __mem_cgroup_try_charge() will return
2240 * 0 ... on success, filling *ptr with a valid memcg pointer.
2241 * -ENOMEM ... charge failure because of resource limits.
2242 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2244 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2245 * the oom-killer can be invoked.
2247 static int __mem_cgroup_try_charge(struct mm_struct
*mm
,
2249 unsigned int nr_pages
,
2250 struct mem_cgroup
**ptr
,
2253 unsigned int batch
= max(CHARGE_BATCH
, nr_pages
);
2254 int nr_oom_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
2255 struct mem_cgroup
*memcg
= NULL
;
2259 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2260 * in system level. So, allow to go ahead dying process in addition to
2263 if (unlikely(test_thread_flag(TIF_MEMDIE
)
2264 || fatal_signal_pending(current
)))
2268 * We always charge the cgroup the mm_struct belongs to.
2269 * The mm_struct's mem_cgroup changes on task migration if the
2270 * thread group leader migrates. It's possible that mm is not
2271 * set, if so charge the init_mm (happens for pagecache usage).
2274 *ptr
= root_mem_cgroup
;
2276 if (*ptr
) { /* css should be a valid one */
2278 VM_BUG_ON(css_is_removed(&memcg
->css
));
2279 if (mem_cgroup_is_root(memcg
))
2281 if (nr_pages
== 1 && consume_stock(memcg
))
2283 css_get(&memcg
->css
);
2285 struct task_struct
*p
;
2288 p
= rcu_dereference(mm
->owner
);
2290 * Because we don't have task_lock(), "p" can exit.
2291 * In that case, "memcg" can point to root or p can be NULL with
2292 * race with swapoff. Then, we have small risk of mis-accouning.
2293 * But such kind of mis-account by race always happens because
2294 * we don't have cgroup_mutex(). It's overkill and we allo that
2296 * (*) swapoff at el will charge against mm-struct not against
2297 * task-struct. So, mm->owner can be NULL.
2299 memcg
= mem_cgroup_from_task(p
);
2301 memcg
= root_mem_cgroup
;
2302 if (mem_cgroup_is_root(memcg
)) {
2306 if (nr_pages
== 1 && consume_stock(memcg
)) {
2308 * It seems dagerous to access memcg without css_get().
2309 * But considering how consume_stok works, it's not
2310 * necessary. If consume_stock success, some charges
2311 * from this memcg are cached on this cpu. So, we
2312 * don't need to call css_get()/css_tryget() before
2313 * calling consume_stock().
2318 /* after here, we may be blocked. we need to get refcnt */
2319 if (!css_tryget(&memcg
->css
)) {
2329 /* If killed, bypass charge */
2330 if (fatal_signal_pending(current
)) {
2331 css_put(&memcg
->css
);
2336 if (oom
&& !nr_oom_retries
) {
2338 nr_oom_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
2341 ret
= mem_cgroup_do_charge(memcg
, gfp_mask
, batch
, oom_check
);
2345 case CHARGE_RETRY
: /* not in OOM situation but retry */
2347 css_put(&memcg
->css
);
2350 case CHARGE_WOULDBLOCK
: /* !__GFP_WAIT */
2351 css_put(&memcg
->css
);
2353 case CHARGE_NOMEM
: /* OOM routine works */
2355 css_put(&memcg
->css
);
2358 /* If oom, we never return -ENOMEM */
2361 case CHARGE_OOM_DIE
: /* Killed by OOM Killer */
2362 css_put(&memcg
->css
);
2365 } while (ret
!= CHARGE_OK
);
2367 if (batch
> nr_pages
)
2368 refill_stock(memcg
, batch
- nr_pages
);
2369 css_put(&memcg
->css
);
2377 *ptr
= root_mem_cgroup
;
2382 * Somemtimes we have to undo a charge we got by try_charge().
2383 * This function is for that and do uncharge, put css's refcnt.
2384 * gotten by try_charge().
2386 static void __mem_cgroup_cancel_charge(struct mem_cgroup
*memcg
,
2387 unsigned int nr_pages
)
2389 if (!mem_cgroup_is_root(memcg
)) {
2390 unsigned long bytes
= nr_pages
* PAGE_SIZE
;
2392 res_counter_uncharge(&memcg
->res
, bytes
);
2393 if (do_swap_account
)
2394 res_counter_uncharge(&memcg
->memsw
, bytes
);
2399 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2400 * This is useful when moving usage to parent cgroup.
2402 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup
*memcg
,
2403 unsigned int nr_pages
)
2405 unsigned long bytes
= nr_pages
* PAGE_SIZE
;
2407 if (mem_cgroup_is_root(memcg
))
2410 res_counter_uncharge_until(&memcg
->res
, memcg
->res
.parent
, bytes
);
2411 if (do_swap_account
)
2412 res_counter_uncharge_until(&memcg
->memsw
,
2413 memcg
->memsw
.parent
, bytes
);
2417 * A helper function to get mem_cgroup from ID. must be called under
2418 * rcu_read_lock(). The caller must check css_is_removed() or some if
2419 * it's concern. (dropping refcnt from swap can be called against removed
2422 static struct mem_cgroup
*mem_cgroup_lookup(unsigned short id
)
2424 struct cgroup_subsys_state
*css
;
2426 /* ID 0 is unused ID */
2429 css
= css_lookup(&mem_cgroup_subsys
, id
);
2432 return container_of(css
, struct mem_cgroup
, css
);
2435 struct mem_cgroup
*try_get_mem_cgroup_from_page(struct page
*page
)
2437 struct mem_cgroup
*memcg
= NULL
;
2438 struct page_cgroup
*pc
;
2442 VM_BUG_ON(!PageLocked(page
));
2444 pc
= lookup_page_cgroup(page
);
2445 lock_page_cgroup(pc
);
2446 if (PageCgroupUsed(pc
)) {
2447 memcg
= pc
->mem_cgroup
;
2448 if (memcg
&& !css_tryget(&memcg
->css
))
2450 } else if (PageSwapCache(page
)) {
2451 ent
.val
= page_private(page
);
2452 id
= lookup_swap_cgroup_id(ent
);
2454 memcg
= mem_cgroup_lookup(id
);
2455 if (memcg
&& !css_tryget(&memcg
->css
))
2459 unlock_page_cgroup(pc
);
2463 static void __mem_cgroup_commit_charge(struct mem_cgroup
*memcg
,
2465 unsigned int nr_pages
,
2466 enum charge_type ctype
,
2469 struct page_cgroup
*pc
= lookup_page_cgroup(page
);
2470 struct zone
*uninitialized_var(zone
);
2471 struct lruvec
*lruvec
;
2472 bool was_on_lru
= false;
2475 lock_page_cgroup(pc
);
2476 if (unlikely(PageCgroupUsed(pc
))) {
2477 unlock_page_cgroup(pc
);
2478 __mem_cgroup_cancel_charge(memcg
, nr_pages
);
2482 * we don't need page_cgroup_lock about tail pages, becase they are not
2483 * accessed by any other context at this point.
2487 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2488 * may already be on some other mem_cgroup's LRU. Take care of it.
2491 zone
= page_zone(page
);
2492 spin_lock_irq(&zone
->lru_lock
);
2493 if (PageLRU(page
)) {
2494 lruvec
= mem_cgroup_zone_lruvec(zone
, pc
->mem_cgroup
);
2496 del_page_from_lru_list(page
, lruvec
, page_lru(page
));
2501 pc
->mem_cgroup
= memcg
;
2503 * We access a page_cgroup asynchronously without lock_page_cgroup().
2504 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2505 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2506 * before USED bit, we need memory barrier here.
2507 * See mem_cgroup_add_lru_list(), etc.
2510 SetPageCgroupUsed(pc
);
2514 lruvec
= mem_cgroup_zone_lruvec(zone
, pc
->mem_cgroup
);
2515 VM_BUG_ON(PageLRU(page
));
2517 add_page_to_lru_list(page
, lruvec
, page_lru(page
));
2519 spin_unlock_irq(&zone
->lru_lock
);
2522 if (ctype
== MEM_CGROUP_CHARGE_TYPE_MAPPED
)
2527 mem_cgroup_charge_statistics(memcg
, anon
, nr_pages
);
2528 unlock_page_cgroup(pc
);
2531 * "charge_statistics" updated event counter. Then, check it.
2532 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2533 * if they exceeds softlimit.
2535 memcg_check_events(memcg
, page
);
2538 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2540 #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
2542 * Because tail pages are not marked as "used", set it. We're under
2543 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2544 * charge/uncharge will be never happen and move_account() is done under
2545 * compound_lock(), so we don't have to take care of races.
2547 void mem_cgroup_split_huge_fixup(struct page
*head
)
2549 struct page_cgroup
*head_pc
= lookup_page_cgroup(head
);
2550 struct page_cgroup
*pc
;
2553 if (mem_cgroup_disabled())
2555 for (i
= 1; i
< HPAGE_PMD_NR
; i
++) {
2557 pc
->mem_cgroup
= head_pc
->mem_cgroup
;
2558 smp_wmb();/* see __commit_charge() */
2559 pc
->flags
= head_pc
->flags
& ~PCGF_NOCOPY_AT_SPLIT
;
2562 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2565 * mem_cgroup_move_account - move account of the page
2567 * @nr_pages: number of regular pages (>1 for huge pages)
2568 * @pc: page_cgroup of the page.
2569 * @from: mem_cgroup which the page is moved from.
2570 * @to: mem_cgroup which the page is moved to. @from != @to.
2572 * The caller must confirm following.
2573 * - page is not on LRU (isolate_page() is useful.)
2574 * - compound_lock is held when nr_pages > 1
2576 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
2579 static int mem_cgroup_move_account(struct page
*page
,
2580 unsigned int nr_pages
,
2581 struct page_cgroup
*pc
,
2582 struct mem_cgroup
*from
,
2583 struct mem_cgroup
*to
)
2585 unsigned long flags
;
2587 bool anon
= PageAnon(page
);
2589 VM_BUG_ON(from
== to
);
2590 VM_BUG_ON(PageLRU(page
));
2592 * The page is isolated from LRU. So, collapse function
2593 * will not handle this page. But page splitting can happen.
2594 * Do this check under compound_page_lock(). The caller should
2598 if (nr_pages
> 1 && !PageTransHuge(page
))
2601 lock_page_cgroup(pc
);
2604 if (!PageCgroupUsed(pc
) || pc
->mem_cgroup
!= from
)
2607 move_lock_mem_cgroup(from
, &flags
);
2609 if (!anon
&& page_mapped(page
)) {
2610 /* Update mapped_file data for mem_cgroup */
2612 __this_cpu_dec(from
->stat
->count
[MEM_CGROUP_STAT_FILE_MAPPED
]);
2613 __this_cpu_inc(to
->stat
->count
[MEM_CGROUP_STAT_FILE_MAPPED
]);
2616 mem_cgroup_charge_statistics(from
, anon
, -nr_pages
);
2618 /* caller should have done css_get */
2619 pc
->mem_cgroup
= to
;
2620 mem_cgroup_charge_statistics(to
, anon
, nr_pages
);
2622 * We charges against "to" which may not have any tasks. Then, "to"
2623 * can be under rmdir(). But in current implementation, caller of
2624 * this function is just force_empty() and move charge, so it's
2625 * guaranteed that "to" is never removed. So, we don't check rmdir
2628 move_unlock_mem_cgroup(from
, &flags
);
2631 unlock_page_cgroup(pc
);
2635 memcg_check_events(to
, page
);
2636 memcg_check_events(from
, page
);
2642 * move charges to its parent.
2645 static int mem_cgroup_move_parent(struct page
*page
,
2646 struct page_cgroup
*pc
,
2647 struct mem_cgroup
*child
,
2650 struct mem_cgroup
*parent
;
2651 unsigned int nr_pages
;
2652 unsigned long uninitialized_var(flags
);
2656 if (mem_cgroup_is_root(child
))
2660 if (!get_page_unless_zero(page
))
2662 if (isolate_lru_page(page
))
2665 nr_pages
= hpage_nr_pages(page
);
2667 parent
= parent_mem_cgroup(child
);
2669 * If no parent, move charges to root cgroup.
2672 parent
= root_mem_cgroup
;
2675 flags
= compound_lock_irqsave(page
);
2677 ret
= mem_cgroup_move_account(page
, nr_pages
,
2680 __mem_cgroup_cancel_local_charge(child
, nr_pages
);
2683 compound_unlock_irqrestore(page
, flags
);
2684 putback_lru_page(page
);
2692 * Charge the memory controller for page usage.
2694 * 0 if the charge was successful
2695 * < 0 if the cgroup is over its limit
2697 static int mem_cgroup_charge_common(struct page
*page
, struct mm_struct
*mm
,
2698 gfp_t gfp_mask
, enum charge_type ctype
)
2700 struct mem_cgroup
*memcg
= NULL
;
2701 unsigned int nr_pages
= 1;
2705 if (PageTransHuge(page
)) {
2706 nr_pages
<<= compound_order(page
);
2707 VM_BUG_ON(!PageTransHuge(page
));
2709 * Never OOM-kill a process for a huge page. The
2710 * fault handler will fall back to regular pages.
2715 ret
= __mem_cgroup_try_charge(mm
, gfp_mask
, nr_pages
, &memcg
, oom
);
2718 __mem_cgroup_commit_charge(memcg
, page
, nr_pages
, ctype
, false);
2722 int mem_cgroup_newpage_charge(struct page
*page
,
2723 struct mm_struct
*mm
, gfp_t gfp_mask
)
2725 if (mem_cgroup_disabled())
2727 VM_BUG_ON(page_mapped(page
));
2728 VM_BUG_ON(page
->mapping
&& !PageAnon(page
));
2730 return mem_cgroup_charge_common(page
, mm
, gfp_mask
,
2731 MEM_CGROUP_CHARGE_TYPE_MAPPED
);
2735 __mem_cgroup_commit_charge_swapin(struct page
*page
, struct mem_cgroup
*ptr
,
2736 enum charge_type ctype
);
2738 int mem_cgroup_cache_charge(struct page
*page
, struct mm_struct
*mm
,
2741 struct mem_cgroup
*memcg
= NULL
;
2742 enum charge_type type
= MEM_CGROUP_CHARGE_TYPE_CACHE
;
2745 if (mem_cgroup_disabled())
2747 if (PageCompound(page
))
2752 if (!page_is_file_cache(page
))
2753 type
= MEM_CGROUP_CHARGE_TYPE_SHMEM
;
2755 if (!PageSwapCache(page
))
2756 ret
= mem_cgroup_charge_common(page
, mm
, gfp_mask
, type
);
2757 else { /* page is swapcache/shmem */
2758 ret
= mem_cgroup_try_charge_swapin(mm
, page
, gfp_mask
, &memcg
);
2760 __mem_cgroup_commit_charge_swapin(page
, memcg
, type
);
2766 * While swap-in, try_charge -> commit or cancel, the page is locked.
2767 * And when try_charge() successfully returns, one refcnt to memcg without
2768 * struct page_cgroup is acquired. This refcnt will be consumed by
2769 * "commit()" or removed by "cancel()"
2771 int mem_cgroup_try_charge_swapin(struct mm_struct
*mm
,
2773 gfp_t mask
, struct mem_cgroup
**memcgp
)
2775 struct mem_cgroup
*memcg
;
2780 if (mem_cgroup_disabled())
2783 if (!do_swap_account
)
2786 * A racing thread's fault, or swapoff, may have already updated
2787 * the pte, and even removed page from swap cache: in those cases
2788 * do_swap_page()'s pte_same() test will fail; but there's also a
2789 * KSM case which does need to charge the page.
2791 if (!PageSwapCache(page
))
2793 memcg
= try_get_mem_cgroup_from_page(page
);
2797 ret
= __mem_cgroup_try_charge(NULL
, mask
, 1, memcgp
, true);
2798 css_put(&memcg
->css
);
2805 ret
= __mem_cgroup_try_charge(mm
, mask
, 1, memcgp
, true);
2812 __mem_cgroup_commit_charge_swapin(struct page
*page
, struct mem_cgroup
*memcg
,
2813 enum charge_type ctype
)
2815 if (mem_cgroup_disabled())
2819 cgroup_exclude_rmdir(&memcg
->css
);
2821 __mem_cgroup_commit_charge(memcg
, page
, 1, ctype
, true);
2823 * Now swap is on-memory. This means this page may be
2824 * counted both as mem and swap....double count.
2825 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2826 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2827 * may call delete_from_swap_cache() before reach here.
2829 if (do_swap_account
&& PageSwapCache(page
)) {
2830 swp_entry_t ent
= {.val
= page_private(page
)};
2831 mem_cgroup_uncharge_swap(ent
);
2834 * At swapin, we may charge account against cgroup which has no tasks.
2835 * So, rmdir()->pre_destroy() can be called while we do this charge.
2836 * In that case, we need to call pre_destroy() again. check it here.
2838 cgroup_release_and_wakeup_rmdir(&memcg
->css
);
2841 void mem_cgroup_commit_charge_swapin(struct page
*page
,
2842 struct mem_cgroup
*memcg
)
2844 __mem_cgroup_commit_charge_swapin(page
, memcg
,
2845 MEM_CGROUP_CHARGE_TYPE_MAPPED
);
2848 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup
*memcg
)
2850 if (mem_cgroup_disabled())
2854 __mem_cgroup_cancel_charge(memcg
, 1);
2857 static void mem_cgroup_do_uncharge(struct mem_cgroup
*memcg
,
2858 unsigned int nr_pages
,
2859 const enum charge_type ctype
)
2861 struct memcg_batch_info
*batch
= NULL
;
2862 bool uncharge_memsw
= true;
2864 /* If swapout, usage of swap doesn't decrease */
2865 if (!do_swap_account
|| ctype
== MEM_CGROUP_CHARGE_TYPE_SWAPOUT
)
2866 uncharge_memsw
= false;
2868 batch
= ¤t
->memcg_batch
;
2870 * In usual, we do css_get() when we remember memcg pointer.
2871 * But in this case, we keep res->usage until end of a series of
2872 * uncharges. Then, it's ok to ignore memcg's refcnt.
2875 batch
->memcg
= memcg
;
2877 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2878 * In those cases, all pages freed continuously can be expected to be in
2879 * the same cgroup and we have chance to coalesce uncharges.
2880 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2881 * because we want to do uncharge as soon as possible.
2884 if (!batch
->do_batch
|| test_thread_flag(TIF_MEMDIE
))
2885 goto direct_uncharge
;
2888 goto direct_uncharge
;
2891 * In typical case, batch->memcg == mem. This means we can
2892 * merge a series of uncharges to an uncharge of res_counter.
2893 * If not, we uncharge res_counter ony by one.
2895 if (batch
->memcg
!= memcg
)
2896 goto direct_uncharge
;
2897 /* remember freed charge and uncharge it later */
2900 batch
->memsw_nr_pages
++;
2903 res_counter_uncharge(&memcg
->res
, nr_pages
* PAGE_SIZE
);
2905 res_counter_uncharge(&memcg
->memsw
, nr_pages
* PAGE_SIZE
);
2906 if (unlikely(batch
->memcg
!= memcg
))
2907 memcg_oom_recover(memcg
);
2911 * uncharge if !page_mapped(page)
2913 static struct mem_cgroup
*
2914 __mem_cgroup_uncharge_common(struct page
*page
, enum charge_type ctype
)
2916 struct mem_cgroup
*memcg
= NULL
;
2917 unsigned int nr_pages
= 1;
2918 struct page_cgroup
*pc
;
2921 if (mem_cgroup_disabled())
2924 if (PageSwapCache(page
))
2927 if (PageTransHuge(page
)) {
2928 nr_pages
<<= compound_order(page
);
2929 VM_BUG_ON(!PageTransHuge(page
));
2932 * Check if our page_cgroup is valid
2934 pc
= lookup_page_cgroup(page
);
2935 if (unlikely(!PageCgroupUsed(pc
)))
2938 lock_page_cgroup(pc
);
2940 memcg
= pc
->mem_cgroup
;
2942 if (!PageCgroupUsed(pc
))
2945 anon
= PageAnon(page
);
2948 case MEM_CGROUP_CHARGE_TYPE_MAPPED
:
2950 * Generally PageAnon tells if it's the anon statistics to be
2951 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
2952 * used before page reached the stage of being marked PageAnon.
2956 case MEM_CGROUP_CHARGE_TYPE_DROP
:
2957 /* See mem_cgroup_prepare_migration() */
2958 if (page_mapped(page
) || PageCgroupMigration(pc
))
2961 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT
:
2962 if (!PageAnon(page
)) { /* Shared memory */
2963 if (page
->mapping
&& !page_is_file_cache(page
))
2965 } else if (page_mapped(page
)) /* Anon */
2972 mem_cgroup_charge_statistics(memcg
, anon
, -nr_pages
);
2974 ClearPageCgroupUsed(pc
);
2976 * pc->mem_cgroup is not cleared here. It will be accessed when it's
2977 * freed from LRU. This is safe because uncharged page is expected not
2978 * to be reused (freed soon). Exception is SwapCache, it's handled by
2979 * special functions.
2982 unlock_page_cgroup(pc
);
2984 * even after unlock, we have memcg->res.usage here and this memcg
2985 * will never be freed.
2987 memcg_check_events(memcg
, page
);
2988 if (do_swap_account
&& ctype
== MEM_CGROUP_CHARGE_TYPE_SWAPOUT
) {
2989 mem_cgroup_swap_statistics(memcg
, true);
2990 mem_cgroup_get(memcg
);
2992 if (!mem_cgroup_is_root(memcg
))
2993 mem_cgroup_do_uncharge(memcg
, nr_pages
, ctype
);
2998 unlock_page_cgroup(pc
);
3002 void mem_cgroup_uncharge_page(struct page
*page
)
3005 if (page_mapped(page
))
3007 VM_BUG_ON(page
->mapping
&& !PageAnon(page
));
3008 __mem_cgroup_uncharge_common(page
, MEM_CGROUP_CHARGE_TYPE_MAPPED
);
3011 void mem_cgroup_uncharge_cache_page(struct page
*page
)
3013 VM_BUG_ON(page_mapped(page
));
3014 VM_BUG_ON(page
->mapping
);
3015 __mem_cgroup_uncharge_common(page
, MEM_CGROUP_CHARGE_TYPE_CACHE
);
3019 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3020 * In that cases, pages are freed continuously and we can expect pages
3021 * are in the same memcg. All these calls itself limits the number of
3022 * pages freed at once, then uncharge_start/end() is called properly.
3023 * This may be called prural(2) times in a context,
3026 void mem_cgroup_uncharge_start(void)
3028 current
->memcg_batch
.do_batch
++;
3029 /* We can do nest. */
3030 if (current
->memcg_batch
.do_batch
== 1) {
3031 current
->memcg_batch
.memcg
= NULL
;
3032 current
->memcg_batch
.nr_pages
= 0;
3033 current
->memcg_batch
.memsw_nr_pages
= 0;
3037 void mem_cgroup_uncharge_end(void)
3039 struct memcg_batch_info
*batch
= ¤t
->memcg_batch
;
3041 if (!batch
->do_batch
)
3045 if (batch
->do_batch
) /* If stacked, do nothing. */
3051 * This "batch->memcg" is valid without any css_get/put etc...
3052 * bacause we hide charges behind us.
3054 if (batch
->nr_pages
)
3055 res_counter_uncharge(&batch
->memcg
->res
,
3056 batch
->nr_pages
* PAGE_SIZE
);
3057 if (batch
->memsw_nr_pages
)
3058 res_counter_uncharge(&batch
->memcg
->memsw
,
3059 batch
->memsw_nr_pages
* PAGE_SIZE
);
3060 memcg_oom_recover(batch
->memcg
);
3061 /* forget this pointer (for sanity check) */
3062 batch
->memcg
= NULL
;
3067 * called after __delete_from_swap_cache() and drop "page" account.
3068 * memcg information is recorded to swap_cgroup of "ent"
3071 mem_cgroup_uncharge_swapcache(struct page
*page
, swp_entry_t ent
, bool swapout
)
3073 struct mem_cgroup
*memcg
;
3074 int ctype
= MEM_CGROUP_CHARGE_TYPE_SWAPOUT
;
3076 if (!swapout
) /* this was a swap cache but the swap is unused ! */
3077 ctype
= MEM_CGROUP_CHARGE_TYPE_DROP
;
3079 memcg
= __mem_cgroup_uncharge_common(page
, ctype
);
3082 * record memcg information, if swapout && memcg != NULL,
3083 * mem_cgroup_get() was called in uncharge().
3085 if (do_swap_account
&& swapout
&& memcg
)
3086 swap_cgroup_record(ent
, css_id(&memcg
->css
));
3090 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3092 * called from swap_entry_free(). remove record in swap_cgroup and
3093 * uncharge "memsw" account.
3095 void mem_cgroup_uncharge_swap(swp_entry_t ent
)
3097 struct mem_cgroup
*memcg
;
3100 if (!do_swap_account
)
3103 id
= swap_cgroup_record(ent
, 0);
3105 memcg
= mem_cgroup_lookup(id
);
3108 * We uncharge this because swap is freed.
3109 * This memcg can be obsolete one. We avoid calling css_tryget
3111 if (!mem_cgroup_is_root(memcg
))
3112 res_counter_uncharge(&memcg
->memsw
, PAGE_SIZE
);
3113 mem_cgroup_swap_statistics(memcg
, false);
3114 mem_cgroup_put(memcg
);
3120 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3121 * @entry: swap entry to be moved
3122 * @from: mem_cgroup which the entry is moved from
3123 * @to: mem_cgroup which the entry is moved to
3125 * It succeeds only when the swap_cgroup's record for this entry is the same
3126 * as the mem_cgroup's id of @from.
3128 * Returns 0 on success, -EINVAL on failure.
3130 * The caller must have charged to @to, IOW, called res_counter_charge() about
3131 * both res and memsw, and called css_get().
3133 static int mem_cgroup_move_swap_account(swp_entry_t entry
,
3134 struct mem_cgroup
*from
, struct mem_cgroup
*to
)
3136 unsigned short old_id
, new_id
;
3138 old_id
= css_id(&from
->css
);
3139 new_id
= css_id(&to
->css
);
3141 if (swap_cgroup_cmpxchg(entry
, old_id
, new_id
) == old_id
) {
3142 mem_cgroup_swap_statistics(from
, false);
3143 mem_cgroup_swap_statistics(to
, true);
3145 * This function is only called from task migration context now.
3146 * It postpones res_counter and refcount handling till the end
3147 * of task migration(mem_cgroup_clear_mc()) for performance
3148 * improvement. But we cannot postpone mem_cgroup_get(to)
3149 * because if the process that has been moved to @to does
3150 * swap-in, the refcount of @to might be decreased to 0.
3158 static inline int mem_cgroup_move_swap_account(swp_entry_t entry
,
3159 struct mem_cgroup
*from
, struct mem_cgroup
*to
)
3166 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3169 int mem_cgroup_prepare_migration(struct page
*page
,
3170 struct page
*newpage
, struct mem_cgroup
**memcgp
, gfp_t gfp_mask
)
3172 struct mem_cgroup
*memcg
= NULL
;
3173 struct page_cgroup
*pc
;
3174 enum charge_type ctype
;
3179 VM_BUG_ON(PageTransHuge(page
));
3180 if (mem_cgroup_disabled())
3183 pc
= lookup_page_cgroup(page
);
3184 lock_page_cgroup(pc
);
3185 if (PageCgroupUsed(pc
)) {
3186 memcg
= pc
->mem_cgroup
;
3187 css_get(&memcg
->css
);
3189 * At migrating an anonymous page, its mapcount goes down
3190 * to 0 and uncharge() will be called. But, even if it's fully
3191 * unmapped, migration may fail and this page has to be
3192 * charged again. We set MIGRATION flag here and delay uncharge
3193 * until end_migration() is called
3195 * Corner Case Thinking
3197 * When the old page was mapped as Anon and it's unmap-and-freed
3198 * while migration was ongoing.
3199 * If unmap finds the old page, uncharge() of it will be delayed
3200 * until end_migration(). If unmap finds a new page, it's
3201 * uncharged when it make mapcount to be 1->0. If unmap code
3202 * finds swap_migration_entry, the new page will not be mapped
3203 * and end_migration() will find it(mapcount==0).
3206 * When the old page was mapped but migraion fails, the kernel
3207 * remaps it. A charge for it is kept by MIGRATION flag even
3208 * if mapcount goes down to 0. We can do remap successfully
3209 * without charging it again.
3212 * The "old" page is under lock_page() until the end of
3213 * migration, so, the old page itself will not be swapped-out.
3214 * If the new page is swapped out before end_migraton, our
3215 * hook to usual swap-out path will catch the event.
3218 SetPageCgroupMigration(pc
);
3220 unlock_page_cgroup(pc
);
3222 * If the page is not charged at this point,
3229 ret
= __mem_cgroup_try_charge(NULL
, gfp_mask
, 1, memcgp
, false);
3230 css_put(&memcg
->css
);/* drop extra refcnt */
3232 if (PageAnon(page
)) {
3233 lock_page_cgroup(pc
);
3234 ClearPageCgroupMigration(pc
);
3235 unlock_page_cgroup(pc
);
3237 * The old page may be fully unmapped while we kept it.
3239 mem_cgroup_uncharge_page(page
);
3241 /* we'll need to revisit this error code (we have -EINTR) */
3245 * We charge new page before it's used/mapped. So, even if unlock_page()
3246 * is called before end_migration, we can catch all events on this new
3247 * page. In the case new page is migrated but not remapped, new page's
3248 * mapcount will be finally 0 and we call uncharge in end_migration().
3251 ctype
= MEM_CGROUP_CHARGE_TYPE_MAPPED
;
3252 else if (page_is_file_cache(page
))
3253 ctype
= MEM_CGROUP_CHARGE_TYPE_CACHE
;
3255 ctype
= MEM_CGROUP_CHARGE_TYPE_SHMEM
;
3256 __mem_cgroup_commit_charge(memcg
, newpage
, 1, ctype
, false);
3260 /* remove redundant charge if migration failed*/
3261 void mem_cgroup_end_migration(struct mem_cgroup
*memcg
,
3262 struct page
*oldpage
, struct page
*newpage
, bool migration_ok
)
3264 struct page
*used
, *unused
;
3265 struct page_cgroup
*pc
;
3270 /* blocks rmdir() */
3271 cgroup_exclude_rmdir(&memcg
->css
);
3272 if (!migration_ok
) {
3280 * We disallowed uncharge of pages under migration because mapcount
3281 * of the page goes down to zero, temporarly.
3282 * Clear the flag and check the page should be charged.
3284 pc
= lookup_page_cgroup(oldpage
);
3285 lock_page_cgroup(pc
);
3286 ClearPageCgroupMigration(pc
);
3287 unlock_page_cgroup(pc
);
3288 anon
= PageAnon(used
);
3289 __mem_cgroup_uncharge_common(unused
,
3290 anon
? MEM_CGROUP_CHARGE_TYPE_MAPPED
3291 : MEM_CGROUP_CHARGE_TYPE_CACHE
);
3294 * If a page is a file cache, radix-tree replacement is very atomic
3295 * and we can skip this check. When it was an Anon page, its mapcount
3296 * goes down to 0. But because we added MIGRATION flage, it's not
3297 * uncharged yet. There are several case but page->mapcount check
3298 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3299 * check. (see prepare_charge() also)
3302 mem_cgroup_uncharge_page(used
);
3304 * At migration, we may charge account against cgroup which has no
3306 * So, rmdir()->pre_destroy() can be called while we do this charge.
3307 * In that case, we need to call pre_destroy() again. check it here.
3309 cgroup_release_and_wakeup_rmdir(&memcg
->css
);
3313 * At replace page cache, newpage is not under any memcg but it's on
3314 * LRU. So, this function doesn't touch res_counter but handles LRU
3315 * in correct way. Both pages are locked so we cannot race with uncharge.
3317 void mem_cgroup_replace_page_cache(struct page
*oldpage
,
3318 struct page
*newpage
)
3320 struct mem_cgroup
*memcg
= NULL
;
3321 struct page_cgroup
*pc
;
3322 enum charge_type type
= MEM_CGROUP_CHARGE_TYPE_CACHE
;
3324 if (mem_cgroup_disabled())
3327 pc
= lookup_page_cgroup(oldpage
);
3328 /* fix accounting on old pages */
3329 lock_page_cgroup(pc
);
3330 if (PageCgroupUsed(pc
)) {
3331 memcg
= pc
->mem_cgroup
;
3332 mem_cgroup_charge_statistics(memcg
, false, -1);
3333 ClearPageCgroupUsed(pc
);
3335 unlock_page_cgroup(pc
);
3338 * When called from shmem_replace_page(), in some cases the
3339 * oldpage has already been charged, and in some cases not.
3344 if (PageSwapBacked(oldpage
))
3345 type
= MEM_CGROUP_CHARGE_TYPE_SHMEM
;
3348 * Even if newpage->mapping was NULL before starting replacement,
3349 * the newpage may be on LRU(or pagevec for LRU) already. We lock
3350 * LRU while we overwrite pc->mem_cgroup.
3352 __mem_cgroup_commit_charge(memcg
, newpage
, 1, type
, true);
3355 #ifdef CONFIG_DEBUG_VM
3356 static struct page_cgroup
*lookup_page_cgroup_used(struct page
*page
)
3358 struct page_cgroup
*pc
;
3360 pc
= lookup_page_cgroup(page
);
3362 * Can be NULL while feeding pages into the page allocator for
3363 * the first time, i.e. during boot or memory hotplug;
3364 * or when mem_cgroup_disabled().
3366 if (likely(pc
) && PageCgroupUsed(pc
))
3371 bool mem_cgroup_bad_page_check(struct page
*page
)
3373 if (mem_cgroup_disabled())
3376 return lookup_page_cgroup_used(page
) != NULL
;
3379 void mem_cgroup_print_bad_page(struct page
*page
)
3381 struct page_cgroup
*pc
;
3383 pc
= lookup_page_cgroup_used(page
);
3385 printk(KERN_ALERT
"pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
3386 pc
, pc
->flags
, pc
->mem_cgroup
);
3391 static DEFINE_MUTEX(set_limit_mutex
);
3393 static int mem_cgroup_resize_limit(struct mem_cgroup
*memcg
,
3394 unsigned long long val
)
3397 u64 memswlimit
, memlimit
;
3399 int children
= mem_cgroup_count_children(memcg
);
3400 u64 curusage
, oldusage
;
3404 * For keeping hierarchical_reclaim simple, how long we should retry
3405 * is depends on callers. We set our retry-count to be function
3406 * of # of children which we should visit in this loop.
3408 retry_count
= MEM_CGROUP_RECLAIM_RETRIES
* children
;
3410 oldusage
= res_counter_read_u64(&memcg
->res
, RES_USAGE
);
3413 while (retry_count
) {
3414 if (signal_pending(current
)) {
3419 * Rather than hide all in some function, I do this in
3420 * open coded manner. You see what this really does.
3421 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3423 mutex_lock(&set_limit_mutex
);
3424 memswlimit
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
3425 if (memswlimit
< val
) {
3427 mutex_unlock(&set_limit_mutex
);
3431 memlimit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
3435 ret
= res_counter_set_limit(&memcg
->res
, val
);
3437 if (memswlimit
== val
)
3438 memcg
->memsw_is_minimum
= true;
3440 memcg
->memsw_is_minimum
= false;
3442 mutex_unlock(&set_limit_mutex
);
3447 mem_cgroup_reclaim(memcg
, GFP_KERNEL
,
3448 MEM_CGROUP_RECLAIM_SHRINK
);
3449 curusage
= res_counter_read_u64(&memcg
->res
, RES_USAGE
);
3450 /* Usage is reduced ? */
3451 if (curusage
>= oldusage
)
3454 oldusage
= curusage
;
3456 if (!ret
&& enlarge
)
3457 memcg_oom_recover(memcg
);
3462 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup
*memcg
,
3463 unsigned long long val
)
3466 u64 memlimit
, memswlimit
, oldusage
, curusage
;
3467 int children
= mem_cgroup_count_children(memcg
);
3471 /* see mem_cgroup_resize_res_limit */
3472 retry_count
= children
* MEM_CGROUP_RECLAIM_RETRIES
;
3473 oldusage
= res_counter_read_u64(&memcg
->memsw
, RES_USAGE
);
3474 while (retry_count
) {
3475 if (signal_pending(current
)) {
3480 * Rather than hide all in some function, I do this in
3481 * open coded manner. You see what this really does.
3482 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3484 mutex_lock(&set_limit_mutex
);
3485 memlimit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
3486 if (memlimit
> val
) {
3488 mutex_unlock(&set_limit_mutex
);
3491 memswlimit
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
3492 if (memswlimit
< val
)
3494 ret
= res_counter_set_limit(&memcg
->memsw
, val
);
3496 if (memlimit
== val
)
3497 memcg
->memsw_is_minimum
= true;
3499 memcg
->memsw_is_minimum
= false;
3501 mutex_unlock(&set_limit_mutex
);
3506 mem_cgroup_reclaim(memcg
, GFP_KERNEL
,
3507 MEM_CGROUP_RECLAIM_NOSWAP
|
3508 MEM_CGROUP_RECLAIM_SHRINK
);
3509 curusage
= res_counter_read_u64(&memcg
->memsw
, RES_USAGE
);
3510 /* Usage is reduced ? */
3511 if (curusage
>= oldusage
)
3514 oldusage
= curusage
;
3516 if (!ret
&& enlarge
)
3517 memcg_oom_recover(memcg
);
3521 unsigned long mem_cgroup_soft_limit_reclaim(struct zone
*zone
, int order
,
3523 unsigned long *total_scanned
)
3525 unsigned long nr_reclaimed
= 0;
3526 struct mem_cgroup_per_zone
*mz
, *next_mz
= NULL
;
3527 unsigned long reclaimed
;
3529 struct mem_cgroup_tree_per_zone
*mctz
;
3530 unsigned long long excess
;
3531 unsigned long nr_scanned
;
3536 mctz
= soft_limit_tree_node_zone(zone_to_nid(zone
), zone_idx(zone
));
3538 * This loop can run a while, specially if mem_cgroup's continuously
3539 * keep exceeding their soft limit and putting the system under
3546 mz
= mem_cgroup_largest_soft_limit_node(mctz
);
3551 reclaimed
= mem_cgroup_soft_reclaim(mz
->memcg
, zone
,
3552 gfp_mask
, &nr_scanned
);
3553 nr_reclaimed
+= reclaimed
;
3554 *total_scanned
+= nr_scanned
;
3555 spin_lock(&mctz
->lock
);
3558 * If we failed to reclaim anything from this memory cgroup
3559 * it is time to move on to the next cgroup
3565 * Loop until we find yet another one.
3567 * By the time we get the soft_limit lock
3568 * again, someone might have aded the
3569 * group back on the RB tree. Iterate to
3570 * make sure we get a different mem.
3571 * mem_cgroup_largest_soft_limit_node returns
3572 * NULL if no other cgroup is present on
3576 __mem_cgroup_largest_soft_limit_node(mctz
);
3578 css_put(&next_mz
->memcg
->css
);
3579 else /* next_mz == NULL or other memcg */
3583 __mem_cgroup_remove_exceeded(mz
->memcg
, mz
, mctz
);
3584 excess
= res_counter_soft_limit_excess(&mz
->memcg
->res
);
3586 * One school of thought says that we should not add
3587 * back the node to the tree if reclaim returns 0.
3588 * But our reclaim could return 0, simply because due
3589 * to priority we are exposing a smaller subset of
3590 * memory to reclaim from. Consider this as a longer
3593 /* If excess == 0, no tree ops */
3594 __mem_cgroup_insert_exceeded(mz
->memcg
, mz
, mctz
, excess
);
3595 spin_unlock(&mctz
->lock
);
3596 css_put(&mz
->memcg
->css
);
3599 * Could not reclaim anything and there are no more
3600 * mem cgroups to try or we seem to be looping without
3601 * reclaiming anything.
3603 if (!nr_reclaimed
&&
3605 loop
> MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS
))
3607 } while (!nr_reclaimed
);
3609 css_put(&next_mz
->memcg
->css
);
3610 return nr_reclaimed
;
3614 * This routine traverse page_cgroup in given list and drop them all.
3615 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3617 static int mem_cgroup_force_empty_list(struct mem_cgroup
*memcg
,
3618 int node
, int zid
, enum lru_list lru
)
3620 struct mem_cgroup_per_zone
*mz
;
3621 unsigned long flags
, loop
;
3622 struct list_head
*list
;
3627 zone
= &NODE_DATA(node
)->node_zones
[zid
];
3628 mz
= mem_cgroup_zoneinfo(memcg
, node
, zid
);
3629 list
= &mz
->lruvec
.lists
[lru
];
3631 loop
= mz
->lru_size
[lru
];
3632 /* give some margin against EBUSY etc...*/
3636 struct page_cgroup
*pc
;
3640 spin_lock_irqsave(&zone
->lru_lock
, flags
);
3641 if (list_empty(list
)) {
3642 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
3645 page
= list_entry(list
->prev
, struct page
, lru
);
3647 list_move(&page
->lru
, list
);
3649 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
3652 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
3654 pc
= lookup_page_cgroup(page
);
3656 ret
= mem_cgroup_move_parent(page
, pc
, memcg
, GFP_KERNEL
);
3657 if (ret
== -ENOMEM
|| ret
== -EINTR
)
3660 if (ret
== -EBUSY
|| ret
== -EINVAL
) {
3661 /* found lock contention or "pc" is obsolete. */
3668 if (!ret
&& !list_empty(list
))
3674 * make mem_cgroup's charge to be 0 if there is no task.
3675 * This enables deleting this mem_cgroup.
3677 static int mem_cgroup_force_empty(struct mem_cgroup
*memcg
, bool free_all
)
3680 int node
, zid
, shrink
;
3681 int nr_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
3682 struct cgroup
*cgrp
= memcg
->css
.cgroup
;
3684 css_get(&memcg
->css
);
3687 /* should free all ? */
3693 if (cgroup_task_count(cgrp
) || !list_empty(&cgrp
->children
))
3696 if (signal_pending(current
))
3698 /* This is for making all *used* pages to be on LRU. */
3699 lru_add_drain_all();
3700 drain_all_stock_sync(memcg
);
3702 mem_cgroup_start_move(memcg
);
3703 for_each_node_state(node
, N_HIGH_MEMORY
) {
3704 for (zid
= 0; !ret
&& zid
< MAX_NR_ZONES
; zid
++) {
3707 ret
= mem_cgroup_force_empty_list(memcg
,
3716 mem_cgroup_end_move(memcg
);
3717 memcg_oom_recover(memcg
);
3718 /* it seems parent cgroup doesn't have enough mem */
3722 /* "ret" should also be checked to ensure all lists are empty. */
3723 } while (res_counter_read_u64(&memcg
->res
, RES_USAGE
) > 0 || ret
);
3725 css_put(&memcg
->css
);
3729 /* returns EBUSY if there is a task or if we come here twice. */
3730 if (cgroup_task_count(cgrp
) || !list_empty(&cgrp
->children
) || shrink
) {
3734 /* we call try-to-free pages for make this cgroup empty */
3735 lru_add_drain_all();
3736 /* try to free all pages in this cgroup */
3738 while (nr_retries
&& res_counter_read_u64(&memcg
->res
, RES_USAGE
) > 0) {
3741 if (signal_pending(current
)) {
3745 progress
= try_to_free_mem_cgroup_pages(memcg
, GFP_KERNEL
,
3749 /* maybe some writeback is necessary */
3750 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
3755 /* try move_account...there may be some *locked* pages. */
3759 static int mem_cgroup_force_empty_write(struct cgroup
*cont
, unsigned int event
)
3761 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont
), true);
3765 static u64
mem_cgroup_hierarchy_read(struct cgroup
*cont
, struct cftype
*cft
)
3767 return mem_cgroup_from_cont(cont
)->use_hierarchy
;
3770 static int mem_cgroup_hierarchy_write(struct cgroup
*cont
, struct cftype
*cft
,
3774 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cont
);
3775 struct cgroup
*parent
= cont
->parent
;
3776 struct mem_cgroup
*parent_memcg
= NULL
;
3779 parent_memcg
= mem_cgroup_from_cont(parent
);
3783 * If parent's use_hierarchy is set, we can't make any modifications
3784 * in the child subtrees. If it is unset, then the change can
3785 * occur, provided the current cgroup has no children.
3787 * For the root cgroup, parent_mem is NULL, we allow value to be
3788 * set if there are no children.
3790 if ((!parent_memcg
|| !parent_memcg
->use_hierarchy
) &&
3791 (val
== 1 || val
== 0)) {
3792 if (list_empty(&cont
->children
))
3793 memcg
->use_hierarchy
= val
;
3804 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup
*memcg
,
3805 enum mem_cgroup_stat_index idx
)
3807 struct mem_cgroup
*iter
;
3810 /* Per-cpu values can be negative, use a signed accumulator */
3811 for_each_mem_cgroup_tree(iter
, memcg
)
3812 val
+= mem_cgroup_read_stat(iter
, idx
);
3814 if (val
< 0) /* race ? */
3819 static inline u64
mem_cgroup_usage(struct mem_cgroup
*memcg
, bool swap
)
3823 if (!mem_cgroup_is_root(memcg
)) {
3825 return res_counter_read_u64(&memcg
->res
, RES_USAGE
);
3827 return res_counter_read_u64(&memcg
->memsw
, RES_USAGE
);
3830 val
= mem_cgroup_recursive_stat(memcg
, MEM_CGROUP_STAT_CACHE
);
3831 val
+= mem_cgroup_recursive_stat(memcg
, MEM_CGROUP_STAT_RSS
);
3834 val
+= mem_cgroup_recursive_stat(memcg
, MEM_CGROUP_STAT_SWAPOUT
);
3836 return val
<< PAGE_SHIFT
;
3839 static ssize_t
mem_cgroup_read(struct cgroup
*cont
, struct cftype
*cft
,
3840 struct file
*file
, char __user
*buf
,
3841 size_t nbytes
, loff_t
*ppos
)
3843 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cont
);
3846 int type
, name
, len
;
3848 type
= MEMFILE_TYPE(cft
->private);
3849 name
= MEMFILE_ATTR(cft
->private);
3851 if (!do_swap_account
&& type
== _MEMSWAP
)
3856 if (name
== RES_USAGE
)
3857 val
= mem_cgroup_usage(memcg
, false);
3859 val
= res_counter_read_u64(&memcg
->res
, name
);
3862 if (name
== RES_USAGE
)
3863 val
= mem_cgroup_usage(memcg
, true);
3865 val
= res_counter_read_u64(&memcg
->memsw
, name
);
3871 len
= scnprintf(str
, sizeof(str
), "%llu\n", (unsigned long long)val
);
3872 return simple_read_from_buffer(buf
, nbytes
, ppos
, str
, len
);
3875 * The user of this function is...
3878 static int mem_cgroup_write(struct cgroup
*cont
, struct cftype
*cft
,
3881 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cont
);
3883 unsigned long long val
;
3886 type
= MEMFILE_TYPE(cft
->private);
3887 name
= MEMFILE_ATTR(cft
->private);
3889 if (!do_swap_account
&& type
== _MEMSWAP
)
3894 if (mem_cgroup_is_root(memcg
)) { /* Can't set limit on root */
3898 /* This function does all necessary parse...reuse it */
3899 ret
= res_counter_memparse_write_strategy(buffer
, &val
);
3903 ret
= mem_cgroup_resize_limit(memcg
, val
);
3905 ret
= mem_cgroup_resize_memsw_limit(memcg
, val
);
3907 case RES_SOFT_LIMIT
:
3908 ret
= res_counter_memparse_write_strategy(buffer
, &val
);
3912 * For memsw, soft limits are hard to implement in terms
3913 * of semantics, for now, we support soft limits for
3914 * control without swap
3917 ret
= res_counter_set_soft_limit(&memcg
->res
, val
);
3922 ret
= -EINVAL
; /* should be BUG() ? */
3928 static void memcg_get_hierarchical_limit(struct mem_cgroup
*memcg
,
3929 unsigned long long *mem_limit
, unsigned long long *memsw_limit
)
3931 struct cgroup
*cgroup
;
3932 unsigned long long min_limit
, min_memsw_limit
, tmp
;
3934 min_limit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
3935 min_memsw_limit
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
3936 cgroup
= memcg
->css
.cgroup
;
3937 if (!memcg
->use_hierarchy
)
3940 while (cgroup
->parent
) {
3941 cgroup
= cgroup
->parent
;
3942 memcg
= mem_cgroup_from_cont(cgroup
);
3943 if (!memcg
->use_hierarchy
)
3945 tmp
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
3946 min_limit
= min(min_limit
, tmp
);
3947 tmp
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
3948 min_memsw_limit
= min(min_memsw_limit
, tmp
);
3951 *mem_limit
= min_limit
;
3952 *memsw_limit
= min_memsw_limit
;
3955 static int mem_cgroup_reset(struct cgroup
*cont
, unsigned int event
)
3957 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cont
);
3960 type
= MEMFILE_TYPE(event
);
3961 name
= MEMFILE_ATTR(event
);
3963 if (!do_swap_account
&& type
== _MEMSWAP
)
3969 res_counter_reset_max(&memcg
->res
);
3971 res_counter_reset_max(&memcg
->memsw
);
3975 res_counter_reset_failcnt(&memcg
->res
);
3977 res_counter_reset_failcnt(&memcg
->memsw
);
3984 static u64
mem_cgroup_move_charge_read(struct cgroup
*cgrp
,
3987 return mem_cgroup_from_cont(cgrp
)->move_charge_at_immigrate
;
3991 static int mem_cgroup_move_charge_write(struct cgroup
*cgrp
,
3992 struct cftype
*cft
, u64 val
)
3994 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
3996 if (val
>= (1 << NR_MOVE_TYPE
))
3999 * We check this value several times in both in can_attach() and
4000 * attach(), so we need cgroup lock to prevent this value from being
4004 memcg
->move_charge_at_immigrate
= val
;
4010 static int mem_cgroup_move_charge_write(struct cgroup
*cgrp
,
4011 struct cftype
*cft
, u64 val
)
4018 static int mem_control_numa_stat_show(struct cgroup
*cont
, struct cftype
*cft
,
4022 unsigned long total_nr
, file_nr
, anon_nr
, unevictable_nr
;
4023 unsigned long node_nr
;
4024 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cont
);
4026 total_nr
= mem_cgroup_nr_lru_pages(memcg
, LRU_ALL
);
4027 seq_printf(m
, "total=%lu", total_nr
);
4028 for_each_node_state(nid
, N_HIGH_MEMORY
) {
4029 node_nr
= mem_cgroup_node_nr_lru_pages(memcg
, nid
, LRU_ALL
);
4030 seq_printf(m
, " N%d=%lu", nid
, node_nr
);
4034 file_nr
= mem_cgroup_nr_lru_pages(memcg
, LRU_ALL_FILE
);
4035 seq_printf(m
, "file=%lu", file_nr
);
4036 for_each_node_state(nid
, N_HIGH_MEMORY
) {
4037 node_nr
= mem_cgroup_node_nr_lru_pages(memcg
, nid
,
4039 seq_printf(m
, " N%d=%lu", nid
, node_nr
);
4043 anon_nr
= mem_cgroup_nr_lru_pages(memcg
, LRU_ALL_ANON
);
4044 seq_printf(m
, "anon=%lu", anon_nr
);
4045 for_each_node_state(nid
, N_HIGH_MEMORY
) {
4046 node_nr
= mem_cgroup_node_nr_lru_pages(memcg
, nid
,
4048 seq_printf(m
, " N%d=%lu", nid
, node_nr
);
4052 unevictable_nr
= mem_cgroup_nr_lru_pages(memcg
, BIT(LRU_UNEVICTABLE
));
4053 seq_printf(m
, "unevictable=%lu", unevictable_nr
);
4054 for_each_node_state(nid
, N_HIGH_MEMORY
) {
4055 node_nr
= mem_cgroup_node_nr_lru_pages(memcg
, nid
,
4056 BIT(LRU_UNEVICTABLE
));
4057 seq_printf(m
, " N%d=%lu", nid
, node_nr
);
4062 #endif /* CONFIG_NUMA */
4064 static const char * const mem_cgroup_lru_names
[] = {
4072 static inline void mem_cgroup_lru_names_not_uptodate(void)
4074 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names
) != NR_LRU_LISTS
);
4077 static int mem_control_stat_show(struct cgroup
*cont
, struct cftype
*cft
,
4080 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cont
);
4081 struct mem_cgroup
*mi
;
4084 for (i
= 0; i
< MEM_CGROUP_STAT_NSTATS
; i
++) {
4085 if (i
== MEM_CGROUP_STAT_SWAPOUT
&& !do_swap_account
)
4087 seq_printf(m
, "%s %ld\n", mem_cgroup_stat_names
[i
],
4088 mem_cgroup_read_stat(memcg
, i
) * PAGE_SIZE
);
4091 for (i
= 0; i
< MEM_CGROUP_EVENTS_NSTATS
; i
++)
4092 seq_printf(m
, "%s %lu\n", mem_cgroup_events_names
[i
],
4093 mem_cgroup_read_events(memcg
, i
));
4095 for (i
= 0; i
< NR_LRU_LISTS
; i
++)
4096 seq_printf(m
, "%s %lu\n", mem_cgroup_lru_names
[i
],
4097 mem_cgroup_nr_lru_pages(memcg
, BIT(i
)) * PAGE_SIZE
);
4099 /* Hierarchical information */
4101 unsigned long long limit
, memsw_limit
;
4102 memcg_get_hierarchical_limit(memcg
, &limit
, &memsw_limit
);
4103 seq_printf(m
, "hierarchical_memory_limit %llu\n", limit
);
4104 if (do_swap_account
)
4105 seq_printf(m
, "hierarchical_memsw_limit %llu\n",
4109 for (i
= 0; i
< MEM_CGROUP_STAT_NSTATS
; i
++) {
4112 if (i
== MEM_CGROUP_STAT_SWAPOUT
&& !do_swap_account
)
4114 for_each_mem_cgroup_tree(mi
, memcg
)
4115 val
+= mem_cgroup_read_stat(mi
, i
) * PAGE_SIZE
;
4116 seq_printf(m
, "total_%s %lld\n", mem_cgroup_stat_names
[i
], val
);
4119 for (i
= 0; i
< MEM_CGROUP_EVENTS_NSTATS
; i
++) {
4120 unsigned long long val
= 0;
4122 for_each_mem_cgroup_tree(mi
, memcg
)
4123 val
+= mem_cgroup_read_events(mi
, i
);
4124 seq_printf(m
, "total_%s %llu\n",
4125 mem_cgroup_events_names
[i
], val
);
4128 for (i
= 0; i
< NR_LRU_LISTS
; i
++) {
4129 unsigned long long val
= 0;
4131 for_each_mem_cgroup_tree(mi
, memcg
)
4132 val
+= mem_cgroup_nr_lru_pages(mi
, BIT(i
)) * PAGE_SIZE
;
4133 seq_printf(m
, "total_%s %llu\n", mem_cgroup_lru_names
[i
], val
);
4136 #ifdef CONFIG_DEBUG_VM
4139 struct mem_cgroup_per_zone
*mz
;
4140 struct zone_reclaim_stat
*rstat
;
4141 unsigned long recent_rotated
[2] = {0, 0};
4142 unsigned long recent_scanned
[2] = {0, 0};
4144 for_each_online_node(nid
)
4145 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
4146 mz
= mem_cgroup_zoneinfo(memcg
, nid
, zid
);
4147 rstat
= &mz
->lruvec
.reclaim_stat
;
4149 recent_rotated
[0] += rstat
->recent_rotated
[0];
4150 recent_rotated
[1] += rstat
->recent_rotated
[1];
4151 recent_scanned
[0] += rstat
->recent_scanned
[0];
4152 recent_scanned
[1] += rstat
->recent_scanned
[1];
4154 seq_printf(m
, "recent_rotated_anon %lu\n", recent_rotated
[0]);
4155 seq_printf(m
, "recent_rotated_file %lu\n", recent_rotated
[1]);
4156 seq_printf(m
, "recent_scanned_anon %lu\n", recent_scanned
[0]);
4157 seq_printf(m
, "recent_scanned_file %lu\n", recent_scanned
[1]);
4164 static u64
mem_cgroup_swappiness_read(struct cgroup
*cgrp
, struct cftype
*cft
)
4166 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
4168 return mem_cgroup_swappiness(memcg
);
4171 static int mem_cgroup_swappiness_write(struct cgroup
*cgrp
, struct cftype
*cft
,
4174 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
4175 struct mem_cgroup
*parent
;
4180 if (cgrp
->parent
== NULL
)
4183 parent
= mem_cgroup_from_cont(cgrp
->parent
);
4187 /* If under hierarchy, only empty-root can set this value */
4188 if ((parent
->use_hierarchy
) ||
4189 (memcg
->use_hierarchy
&& !list_empty(&cgrp
->children
))) {
4194 memcg
->swappiness
= val
;
4201 static void __mem_cgroup_threshold(struct mem_cgroup
*memcg
, bool swap
)
4203 struct mem_cgroup_threshold_ary
*t
;
4209 t
= rcu_dereference(memcg
->thresholds
.primary
);
4211 t
= rcu_dereference(memcg
->memsw_thresholds
.primary
);
4216 usage
= mem_cgroup_usage(memcg
, swap
);
4219 * current_threshold points to threshold just below or equal to usage.
4220 * If it's not true, a threshold was crossed after last
4221 * call of __mem_cgroup_threshold().
4223 i
= t
->current_threshold
;
4226 * Iterate backward over array of thresholds starting from
4227 * current_threshold and check if a threshold is crossed.
4228 * If none of thresholds below usage is crossed, we read
4229 * only one element of the array here.
4231 for (; i
>= 0 && unlikely(t
->entries
[i
].threshold
> usage
); i
--)
4232 eventfd_signal(t
->entries
[i
].eventfd
, 1);
4234 /* i = current_threshold + 1 */
4238 * Iterate forward over array of thresholds starting from
4239 * current_threshold+1 and check if a threshold is crossed.
4240 * If none of thresholds above usage is crossed, we read
4241 * only one element of the array here.
4243 for (; i
< t
->size
&& unlikely(t
->entries
[i
].threshold
<= usage
); i
++)
4244 eventfd_signal(t
->entries
[i
].eventfd
, 1);
4246 /* Update current_threshold */
4247 t
->current_threshold
= i
- 1;
4252 static void mem_cgroup_threshold(struct mem_cgroup
*memcg
)
4255 __mem_cgroup_threshold(memcg
, false);
4256 if (do_swap_account
)
4257 __mem_cgroup_threshold(memcg
, true);
4259 memcg
= parent_mem_cgroup(memcg
);
4263 static int compare_thresholds(const void *a
, const void *b
)
4265 const struct mem_cgroup_threshold
*_a
= a
;
4266 const struct mem_cgroup_threshold
*_b
= b
;
4268 return _a
->threshold
- _b
->threshold
;
4271 static int mem_cgroup_oom_notify_cb(struct mem_cgroup
*memcg
)
4273 struct mem_cgroup_eventfd_list
*ev
;
4275 list_for_each_entry(ev
, &memcg
->oom_notify
, list
)
4276 eventfd_signal(ev
->eventfd
, 1);
4280 static void mem_cgroup_oom_notify(struct mem_cgroup
*memcg
)
4282 struct mem_cgroup
*iter
;
4284 for_each_mem_cgroup_tree(iter
, memcg
)
4285 mem_cgroup_oom_notify_cb(iter
);
4288 static int mem_cgroup_usage_register_event(struct cgroup
*cgrp
,
4289 struct cftype
*cft
, struct eventfd_ctx
*eventfd
, const char *args
)
4291 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
4292 struct mem_cgroup_thresholds
*thresholds
;
4293 struct mem_cgroup_threshold_ary
*new;
4294 int type
= MEMFILE_TYPE(cft
->private);
4295 u64 threshold
, usage
;
4298 ret
= res_counter_memparse_write_strategy(args
, &threshold
);
4302 mutex_lock(&memcg
->thresholds_lock
);
4305 thresholds
= &memcg
->thresholds
;
4306 else if (type
== _MEMSWAP
)
4307 thresholds
= &memcg
->memsw_thresholds
;
4311 usage
= mem_cgroup_usage(memcg
, type
== _MEMSWAP
);
4313 /* Check if a threshold crossed before adding a new one */
4314 if (thresholds
->primary
)
4315 __mem_cgroup_threshold(memcg
, type
== _MEMSWAP
);
4317 size
= thresholds
->primary
? thresholds
->primary
->size
+ 1 : 1;
4319 /* Allocate memory for new array of thresholds */
4320 new = kmalloc(sizeof(*new) + size
* sizeof(struct mem_cgroup_threshold
),
4328 /* Copy thresholds (if any) to new array */
4329 if (thresholds
->primary
) {
4330 memcpy(new->entries
, thresholds
->primary
->entries
, (size
- 1) *
4331 sizeof(struct mem_cgroup_threshold
));
4334 /* Add new threshold */
4335 new->entries
[size
- 1].eventfd
= eventfd
;
4336 new->entries
[size
- 1].threshold
= threshold
;
4338 /* Sort thresholds. Registering of new threshold isn't time-critical */
4339 sort(new->entries
, size
, sizeof(struct mem_cgroup_threshold
),
4340 compare_thresholds
, NULL
);
4342 /* Find current threshold */
4343 new->current_threshold
= -1;
4344 for (i
= 0; i
< size
; i
++) {
4345 if (new->entries
[i
].threshold
<= usage
) {
4347 * new->current_threshold will not be used until
4348 * rcu_assign_pointer(), so it's safe to increment
4351 ++new->current_threshold
;
4356 /* Free old spare buffer and save old primary buffer as spare */
4357 kfree(thresholds
->spare
);
4358 thresholds
->spare
= thresholds
->primary
;
4360 rcu_assign_pointer(thresholds
->primary
, new);
4362 /* To be sure that nobody uses thresholds */
4366 mutex_unlock(&memcg
->thresholds_lock
);
4371 static void mem_cgroup_usage_unregister_event(struct cgroup
*cgrp
,
4372 struct cftype
*cft
, struct eventfd_ctx
*eventfd
)
4374 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
4375 struct mem_cgroup_thresholds
*thresholds
;
4376 struct mem_cgroup_threshold_ary
*new;
4377 int type
= MEMFILE_TYPE(cft
->private);
4381 mutex_lock(&memcg
->thresholds_lock
);
4383 thresholds
= &memcg
->thresholds
;
4384 else if (type
== _MEMSWAP
)
4385 thresholds
= &memcg
->memsw_thresholds
;
4389 if (!thresholds
->primary
)
4392 usage
= mem_cgroup_usage(memcg
, type
== _MEMSWAP
);
4394 /* Check if a threshold crossed before removing */
4395 __mem_cgroup_threshold(memcg
, type
== _MEMSWAP
);
4397 /* Calculate new number of threshold */
4399 for (i
= 0; i
< thresholds
->primary
->size
; i
++) {
4400 if (thresholds
->primary
->entries
[i
].eventfd
!= eventfd
)
4404 new = thresholds
->spare
;
4406 /* Set thresholds array to NULL if we don't have thresholds */
4415 /* Copy thresholds and find current threshold */
4416 new->current_threshold
= -1;
4417 for (i
= 0, j
= 0; i
< thresholds
->primary
->size
; i
++) {
4418 if (thresholds
->primary
->entries
[i
].eventfd
== eventfd
)
4421 new->entries
[j
] = thresholds
->primary
->entries
[i
];
4422 if (new->entries
[j
].threshold
<= usage
) {
4424 * new->current_threshold will not be used
4425 * until rcu_assign_pointer(), so it's safe to increment
4428 ++new->current_threshold
;
4434 /* Swap primary and spare array */
4435 thresholds
->spare
= thresholds
->primary
;
4436 /* If all events are unregistered, free the spare array */
4438 kfree(thresholds
->spare
);
4439 thresholds
->spare
= NULL
;
4442 rcu_assign_pointer(thresholds
->primary
, new);
4444 /* To be sure that nobody uses thresholds */
4447 mutex_unlock(&memcg
->thresholds_lock
);
4450 static int mem_cgroup_oom_register_event(struct cgroup
*cgrp
,
4451 struct cftype
*cft
, struct eventfd_ctx
*eventfd
, const char *args
)
4453 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
4454 struct mem_cgroup_eventfd_list
*event
;
4455 int type
= MEMFILE_TYPE(cft
->private);
4457 BUG_ON(type
!= _OOM_TYPE
);
4458 event
= kmalloc(sizeof(*event
), GFP_KERNEL
);
4462 spin_lock(&memcg_oom_lock
);
4464 event
->eventfd
= eventfd
;
4465 list_add(&event
->list
, &memcg
->oom_notify
);
4467 /* already in OOM ? */
4468 if (atomic_read(&memcg
->under_oom
))
4469 eventfd_signal(eventfd
, 1);
4470 spin_unlock(&memcg_oom_lock
);
4475 static void mem_cgroup_oom_unregister_event(struct cgroup
*cgrp
,
4476 struct cftype
*cft
, struct eventfd_ctx
*eventfd
)
4478 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
4479 struct mem_cgroup_eventfd_list
*ev
, *tmp
;
4480 int type
= MEMFILE_TYPE(cft
->private);
4482 BUG_ON(type
!= _OOM_TYPE
);
4484 spin_lock(&memcg_oom_lock
);
4486 list_for_each_entry_safe(ev
, tmp
, &memcg
->oom_notify
, list
) {
4487 if (ev
->eventfd
== eventfd
) {
4488 list_del(&ev
->list
);
4493 spin_unlock(&memcg_oom_lock
);
4496 static int mem_cgroup_oom_control_read(struct cgroup
*cgrp
,
4497 struct cftype
*cft
, struct cgroup_map_cb
*cb
)
4499 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
4501 cb
->fill(cb
, "oom_kill_disable", memcg
->oom_kill_disable
);
4503 if (atomic_read(&memcg
->under_oom
))
4504 cb
->fill(cb
, "under_oom", 1);
4506 cb
->fill(cb
, "under_oom", 0);
4510 static int mem_cgroup_oom_control_write(struct cgroup
*cgrp
,
4511 struct cftype
*cft
, u64 val
)
4513 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
4514 struct mem_cgroup
*parent
;
4516 /* cannot set to root cgroup and only 0 and 1 are allowed */
4517 if (!cgrp
->parent
|| !((val
== 0) || (val
== 1)))
4520 parent
= mem_cgroup_from_cont(cgrp
->parent
);
4523 /* oom-kill-disable is a flag for subhierarchy. */
4524 if ((parent
->use_hierarchy
) ||
4525 (memcg
->use_hierarchy
&& !list_empty(&cgrp
->children
))) {
4529 memcg
->oom_kill_disable
= val
;
4531 memcg_oom_recover(memcg
);
4536 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
4537 static int memcg_init_kmem(struct mem_cgroup
*memcg
, struct cgroup_subsys
*ss
)
4539 return mem_cgroup_sockets_init(memcg
, ss
);
4542 static void kmem_cgroup_destroy(struct mem_cgroup
*memcg
)
4544 mem_cgroup_sockets_destroy(memcg
);
4547 static int memcg_init_kmem(struct mem_cgroup
*memcg
, struct cgroup_subsys
*ss
)
4552 static void kmem_cgroup_destroy(struct mem_cgroup
*memcg
)
4557 static struct cftype mem_cgroup_files
[] = {
4559 .name
= "usage_in_bytes",
4560 .private = MEMFILE_PRIVATE(_MEM
, RES_USAGE
),
4561 .read
= mem_cgroup_read
,
4562 .register_event
= mem_cgroup_usage_register_event
,
4563 .unregister_event
= mem_cgroup_usage_unregister_event
,
4566 .name
= "max_usage_in_bytes",
4567 .private = MEMFILE_PRIVATE(_MEM
, RES_MAX_USAGE
),
4568 .trigger
= mem_cgroup_reset
,
4569 .read
= mem_cgroup_read
,
4572 .name
= "limit_in_bytes",
4573 .private = MEMFILE_PRIVATE(_MEM
, RES_LIMIT
),
4574 .write_string
= mem_cgroup_write
,
4575 .read
= mem_cgroup_read
,
4578 .name
= "soft_limit_in_bytes",
4579 .private = MEMFILE_PRIVATE(_MEM
, RES_SOFT_LIMIT
),
4580 .write_string
= mem_cgroup_write
,
4581 .read
= mem_cgroup_read
,
4585 .private = MEMFILE_PRIVATE(_MEM
, RES_FAILCNT
),
4586 .trigger
= mem_cgroup_reset
,
4587 .read
= mem_cgroup_read
,
4591 .read_seq_string
= mem_control_stat_show
,
4594 .name
= "force_empty",
4595 .trigger
= mem_cgroup_force_empty_write
,
4598 .name
= "use_hierarchy",
4599 .write_u64
= mem_cgroup_hierarchy_write
,
4600 .read_u64
= mem_cgroup_hierarchy_read
,
4603 .name
= "swappiness",
4604 .read_u64
= mem_cgroup_swappiness_read
,
4605 .write_u64
= mem_cgroup_swappiness_write
,
4608 .name
= "move_charge_at_immigrate",
4609 .read_u64
= mem_cgroup_move_charge_read
,
4610 .write_u64
= mem_cgroup_move_charge_write
,
4613 .name
= "oom_control",
4614 .read_map
= mem_cgroup_oom_control_read
,
4615 .write_u64
= mem_cgroup_oom_control_write
,
4616 .register_event
= mem_cgroup_oom_register_event
,
4617 .unregister_event
= mem_cgroup_oom_unregister_event
,
4618 .private = MEMFILE_PRIVATE(_OOM_TYPE
, OOM_CONTROL
),
4622 .name
= "numa_stat",
4623 .read_seq_string
= mem_control_numa_stat_show
,
4626 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4628 .name
= "memsw.usage_in_bytes",
4629 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_USAGE
),
4630 .read
= mem_cgroup_read
,
4631 .register_event
= mem_cgroup_usage_register_event
,
4632 .unregister_event
= mem_cgroup_usage_unregister_event
,
4635 .name
= "memsw.max_usage_in_bytes",
4636 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_MAX_USAGE
),
4637 .trigger
= mem_cgroup_reset
,
4638 .read
= mem_cgroup_read
,
4641 .name
= "memsw.limit_in_bytes",
4642 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_LIMIT
),
4643 .write_string
= mem_cgroup_write
,
4644 .read
= mem_cgroup_read
,
4647 .name
= "memsw.failcnt",
4648 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_FAILCNT
),
4649 .trigger
= mem_cgroup_reset
,
4650 .read
= mem_cgroup_read
,
4653 { }, /* terminate */
4656 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup
*memcg
, int node
)
4658 struct mem_cgroup_per_node
*pn
;
4659 struct mem_cgroup_per_zone
*mz
;
4660 int zone
, tmp
= node
;
4662 * This routine is called against possible nodes.
4663 * But it's BUG to call kmalloc() against offline node.
4665 * TODO: this routine can waste much memory for nodes which will
4666 * never be onlined. It's better to use memory hotplug callback
4669 if (!node_state(node
, N_NORMAL_MEMORY
))
4671 pn
= kzalloc_node(sizeof(*pn
), GFP_KERNEL
, tmp
);
4675 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
4676 mz
= &pn
->zoneinfo
[zone
];
4677 lruvec_init(&mz
->lruvec
, &NODE_DATA(node
)->node_zones
[zone
]);
4678 mz
->usage_in_excess
= 0;
4679 mz
->on_tree
= false;
4682 memcg
->info
.nodeinfo
[node
] = pn
;
4686 static void free_mem_cgroup_per_zone_info(struct mem_cgroup
*memcg
, int node
)
4688 kfree(memcg
->info
.nodeinfo
[node
]);
4691 static struct mem_cgroup
*mem_cgroup_alloc(void)
4693 struct mem_cgroup
*memcg
;
4694 int size
= sizeof(struct mem_cgroup
);
4696 /* Can be very big if MAX_NUMNODES is very big */
4697 if (size
< PAGE_SIZE
)
4698 memcg
= kzalloc(size
, GFP_KERNEL
);
4700 memcg
= vzalloc(size
);
4705 memcg
->stat
= alloc_percpu(struct mem_cgroup_stat_cpu
);
4708 spin_lock_init(&memcg
->pcp_counter_lock
);
4712 if (size
< PAGE_SIZE
)
4720 * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU,
4721 * but in process context. The work_freeing structure is overlaid
4722 * on the rcu_freeing structure, which itself is overlaid on memsw.
4724 static void free_work(struct work_struct
*work
)
4726 struct mem_cgroup
*memcg
;
4727 int size
= sizeof(struct mem_cgroup
);
4729 memcg
= container_of(work
, struct mem_cgroup
, work_freeing
);
4731 * We need to make sure that (at least for now), the jump label
4732 * destruction code runs outside of the cgroup lock. This is because
4733 * get_online_cpus(), which is called from the static_branch update,
4734 * can't be called inside the cgroup_lock. cpusets are the ones
4735 * enforcing this dependency, so if they ever change, we might as well.
4737 * schedule_work() will guarantee this happens. Be careful if you need
4738 * to move this code around, and make sure it is outside
4741 disarm_sock_keys(memcg
);
4742 if (size
< PAGE_SIZE
)
4748 static void free_rcu(struct rcu_head
*rcu_head
)
4750 struct mem_cgroup
*memcg
;
4752 memcg
= container_of(rcu_head
, struct mem_cgroup
, rcu_freeing
);
4753 INIT_WORK(&memcg
->work_freeing
, free_work
);
4754 schedule_work(&memcg
->work_freeing
);
4758 * At destroying mem_cgroup, references from swap_cgroup can remain.
4759 * (scanning all at force_empty is too costly...)
4761 * Instead of clearing all references at force_empty, we remember
4762 * the number of reference from swap_cgroup and free mem_cgroup when
4763 * it goes down to 0.
4765 * Removal of cgroup itself succeeds regardless of refs from swap.
4768 static void __mem_cgroup_free(struct mem_cgroup
*memcg
)
4772 mem_cgroup_remove_from_trees(memcg
);
4773 free_css_id(&mem_cgroup_subsys
, &memcg
->css
);
4776 free_mem_cgroup_per_zone_info(memcg
, node
);
4778 free_percpu(memcg
->stat
);
4779 call_rcu(&memcg
->rcu_freeing
, free_rcu
);
4782 static void mem_cgroup_get(struct mem_cgroup
*memcg
)
4784 atomic_inc(&memcg
->refcnt
);
4787 static void __mem_cgroup_put(struct mem_cgroup
*memcg
, int count
)
4789 if (atomic_sub_and_test(count
, &memcg
->refcnt
)) {
4790 struct mem_cgroup
*parent
= parent_mem_cgroup(memcg
);
4791 __mem_cgroup_free(memcg
);
4793 mem_cgroup_put(parent
);
4797 static void mem_cgroup_put(struct mem_cgroup
*memcg
)
4799 __mem_cgroup_put(memcg
, 1);
4803 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4805 struct mem_cgroup
*parent_mem_cgroup(struct mem_cgroup
*memcg
)
4807 if (!memcg
->res
.parent
)
4809 return mem_cgroup_from_res_counter(memcg
->res
.parent
, res
);
4811 EXPORT_SYMBOL(parent_mem_cgroup
);
4813 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4814 static void __init
enable_swap_cgroup(void)
4816 if (!mem_cgroup_disabled() && really_do_swap_account
)
4817 do_swap_account
= 1;
4820 static void __init
enable_swap_cgroup(void)
4825 static int mem_cgroup_soft_limit_tree_init(void)
4827 struct mem_cgroup_tree_per_node
*rtpn
;
4828 struct mem_cgroup_tree_per_zone
*rtpz
;
4829 int tmp
, node
, zone
;
4831 for_each_node(node
) {
4833 if (!node_state(node
, N_NORMAL_MEMORY
))
4835 rtpn
= kzalloc_node(sizeof(*rtpn
), GFP_KERNEL
, tmp
);
4839 soft_limit_tree
.rb_tree_per_node
[node
] = rtpn
;
4841 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
4842 rtpz
= &rtpn
->rb_tree_per_zone
[zone
];
4843 rtpz
->rb_root
= RB_ROOT
;
4844 spin_lock_init(&rtpz
->lock
);
4850 for_each_node(node
) {
4851 if (!soft_limit_tree
.rb_tree_per_node
[node
])
4853 kfree(soft_limit_tree
.rb_tree_per_node
[node
]);
4854 soft_limit_tree
.rb_tree_per_node
[node
] = NULL
;
4860 static struct cgroup_subsys_state
* __ref
4861 mem_cgroup_create(struct cgroup
*cont
)
4863 struct mem_cgroup
*memcg
, *parent
;
4864 long error
= -ENOMEM
;
4867 memcg
= mem_cgroup_alloc();
4869 return ERR_PTR(error
);
4872 if (alloc_mem_cgroup_per_zone_info(memcg
, node
))
4876 if (cont
->parent
== NULL
) {
4878 enable_swap_cgroup();
4880 if (mem_cgroup_soft_limit_tree_init())
4882 root_mem_cgroup
= memcg
;
4883 for_each_possible_cpu(cpu
) {
4884 struct memcg_stock_pcp
*stock
=
4885 &per_cpu(memcg_stock
, cpu
);
4886 INIT_WORK(&stock
->work
, drain_local_stock
);
4888 hotcpu_notifier(memcg_cpu_hotplug_callback
, 0);
4890 parent
= mem_cgroup_from_cont(cont
->parent
);
4891 memcg
->use_hierarchy
= parent
->use_hierarchy
;
4892 memcg
->oom_kill_disable
= parent
->oom_kill_disable
;
4895 if (parent
&& parent
->use_hierarchy
) {
4896 res_counter_init(&memcg
->res
, &parent
->res
);
4897 res_counter_init(&memcg
->memsw
, &parent
->memsw
);
4899 * We increment refcnt of the parent to ensure that we can
4900 * safely access it on res_counter_charge/uncharge.
4901 * This refcnt will be decremented when freeing this
4902 * mem_cgroup(see mem_cgroup_put).
4904 mem_cgroup_get(parent
);
4906 res_counter_init(&memcg
->res
, NULL
);
4907 res_counter_init(&memcg
->memsw
, NULL
);
4909 memcg
->last_scanned_node
= MAX_NUMNODES
;
4910 INIT_LIST_HEAD(&memcg
->oom_notify
);
4913 memcg
->swappiness
= mem_cgroup_swappiness(parent
);
4914 atomic_set(&memcg
->refcnt
, 1);
4915 memcg
->move_charge_at_immigrate
= 0;
4916 mutex_init(&memcg
->thresholds_lock
);
4917 spin_lock_init(&memcg
->move_lock
);
4919 error
= memcg_init_kmem(memcg
, &mem_cgroup_subsys
);
4922 * We call put now because our (and parent's) refcnts
4923 * are already in place. mem_cgroup_put() will internally
4924 * call __mem_cgroup_free, so return directly
4926 mem_cgroup_put(memcg
);
4927 return ERR_PTR(error
);
4931 __mem_cgroup_free(memcg
);
4932 return ERR_PTR(error
);
4935 static int mem_cgroup_pre_destroy(struct cgroup
*cont
)
4937 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cont
);
4939 return mem_cgroup_force_empty(memcg
, false);
4942 static void mem_cgroup_destroy(struct cgroup
*cont
)
4944 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cont
);
4946 kmem_cgroup_destroy(memcg
);
4948 mem_cgroup_put(memcg
);
4952 /* Handlers for move charge at task migration. */
4953 #define PRECHARGE_COUNT_AT_ONCE 256
4954 static int mem_cgroup_do_precharge(unsigned long count
)
4957 int batch_count
= PRECHARGE_COUNT_AT_ONCE
;
4958 struct mem_cgroup
*memcg
= mc
.to
;
4960 if (mem_cgroup_is_root(memcg
)) {
4961 mc
.precharge
+= count
;
4962 /* we don't need css_get for root */
4965 /* try to charge at once */
4967 struct res_counter
*dummy
;
4969 * "memcg" cannot be under rmdir() because we've already checked
4970 * by cgroup_lock_live_cgroup() that it is not removed and we
4971 * are still under the same cgroup_mutex. So we can postpone
4974 if (res_counter_charge(&memcg
->res
, PAGE_SIZE
* count
, &dummy
))
4976 if (do_swap_account
&& res_counter_charge(&memcg
->memsw
,
4977 PAGE_SIZE
* count
, &dummy
)) {
4978 res_counter_uncharge(&memcg
->res
, PAGE_SIZE
* count
);
4981 mc
.precharge
+= count
;
4985 /* fall back to one by one charge */
4987 if (signal_pending(current
)) {
4991 if (!batch_count
--) {
4992 batch_count
= PRECHARGE_COUNT_AT_ONCE
;
4995 ret
= __mem_cgroup_try_charge(NULL
,
4996 GFP_KERNEL
, 1, &memcg
, false);
4998 /* mem_cgroup_clear_mc() will do uncharge later */
5006 * get_mctgt_type - get target type of moving charge
5007 * @vma: the vma the pte to be checked belongs
5008 * @addr: the address corresponding to the pte to be checked
5009 * @ptent: the pte to be checked
5010 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5013 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5014 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5015 * move charge. if @target is not NULL, the page is stored in target->page
5016 * with extra refcnt got(Callers should handle it).
5017 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5018 * target for charge migration. if @target is not NULL, the entry is stored
5021 * Called with pte lock held.
5028 enum mc_target_type
{
5034 static struct page
*mc_handle_present_pte(struct vm_area_struct
*vma
,
5035 unsigned long addr
, pte_t ptent
)
5037 struct page
*page
= vm_normal_page(vma
, addr
, ptent
);
5039 if (!page
|| !page_mapped(page
))
5041 if (PageAnon(page
)) {
5042 /* we don't move shared anon */
5045 } else if (!move_file())
5046 /* we ignore mapcount for file pages */
5048 if (!get_page_unless_zero(page
))
5055 static struct page
*mc_handle_swap_pte(struct vm_area_struct
*vma
,
5056 unsigned long addr
, pte_t ptent
, swp_entry_t
*entry
)
5058 struct page
*page
= NULL
;
5059 swp_entry_t ent
= pte_to_swp_entry(ptent
);
5061 if (!move_anon() || non_swap_entry(ent
))
5064 * Because lookup_swap_cache() updates some statistics counter,
5065 * we call find_get_page() with swapper_space directly.
5067 page
= find_get_page(&swapper_space
, ent
.val
);
5068 if (do_swap_account
)
5069 entry
->val
= ent
.val
;
5074 static struct page
*mc_handle_swap_pte(struct vm_area_struct
*vma
,
5075 unsigned long addr
, pte_t ptent
, swp_entry_t
*entry
)
5081 static struct page
*mc_handle_file_pte(struct vm_area_struct
*vma
,
5082 unsigned long addr
, pte_t ptent
, swp_entry_t
*entry
)
5084 struct page
*page
= NULL
;
5085 struct address_space
*mapping
;
5088 if (!vma
->vm_file
) /* anonymous vma */
5093 mapping
= vma
->vm_file
->f_mapping
;
5094 if (pte_none(ptent
))
5095 pgoff
= linear_page_index(vma
, addr
);
5096 else /* pte_file(ptent) is true */
5097 pgoff
= pte_to_pgoff(ptent
);
5099 /* page is moved even if it's not RSS of this task(page-faulted). */
5100 page
= find_get_page(mapping
, pgoff
);
5103 /* shmem/tmpfs may report page out on swap: account for that too. */
5104 if (radix_tree_exceptional_entry(page
)) {
5105 swp_entry_t swap
= radix_to_swp_entry(page
);
5106 if (do_swap_account
)
5108 page
= find_get_page(&swapper_space
, swap
.val
);
5114 static enum mc_target_type
get_mctgt_type(struct vm_area_struct
*vma
,
5115 unsigned long addr
, pte_t ptent
, union mc_target
*target
)
5117 struct page
*page
= NULL
;
5118 struct page_cgroup
*pc
;
5119 enum mc_target_type ret
= MC_TARGET_NONE
;
5120 swp_entry_t ent
= { .val
= 0 };
5122 if (pte_present(ptent
))
5123 page
= mc_handle_present_pte(vma
, addr
, ptent
);
5124 else if (is_swap_pte(ptent
))
5125 page
= mc_handle_swap_pte(vma
, addr
, ptent
, &ent
);
5126 else if (pte_none(ptent
) || pte_file(ptent
))
5127 page
= mc_handle_file_pte(vma
, addr
, ptent
, &ent
);
5129 if (!page
&& !ent
.val
)
5132 pc
= lookup_page_cgroup(page
);
5134 * Do only loose check w/o page_cgroup lock.
5135 * mem_cgroup_move_account() checks the pc is valid or not under
5138 if (PageCgroupUsed(pc
) && pc
->mem_cgroup
== mc
.from
) {
5139 ret
= MC_TARGET_PAGE
;
5141 target
->page
= page
;
5143 if (!ret
|| !target
)
5146 /* There is a swap entry and a page doesn't exist or isn't charged */
5147 if (ent
.val
&& !ret
&&
5148 css_id(&mc
.from
->css
) == lookup_swap_cgroup_id(ent
)) {
5149 ret
= MC_TARGET_SWAP
;
5156 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5158 * We don't consider swapping or file mapped pages because THP does not
5159 * support them for now.
5160 * Caller should make sure that pmd_trans_huge(pmd) is true.
5162 static enum mc_target_type
get_mctgt_type_thp(struct vm_area_struct
*vma
,
5163 unsigned long addr
, pmd_t pmd
, union mc_target
*target
)
5165 struct page
*page
= NULL
;
5166 struct page_cgroup
*pc
;
5167 enum mc_target_type ret
= MC_TARGET_NONE
;
5169 page
= pmd_page(pmd
);
5170 VM_BUG_ON(!page
|| !PageHead(page
));
5173 pc
= lookup_page_cgroup(page
);
5174 if (PageCgroupUsed(pc
) && pc
->mem_cgroup
== mc
.from
) {
5175 ret
= MC_TARGET_PAGE
;
5178 target
->page
= page
;
5184 static inline enum mc_target_type
get_mctgt_type_thp(struct vm_area_struct
*vma
,
5185 unsigned long addr
, pmd_t pmd
, union mc_target
*target
)
5187 return MC_TARGET_NONE
;
5191 static int mem_cgroup_count_precharge_pte_range(pmd_t
*pmd
,
5192 unsigned long addr
, unsigned long end
,
5193 struct mm_walk
*walk
)
5195 struct vm_area_struct
*vma
= walk
->private;
5199 if (pmd_trans_huge_lock(pmd
, vma
) == 1) {
5200 if (get_mctgt_type_thp(vma
, addr
, *pmd
, NULL
) == MC_TARGET_PAGE
)
5201 mc
.precharge
+= HPAGE_PMD_NR
;
5202 spin_unlock(&vma
->vm_mm
->page_table_lock
);
5206 if (pmd_trans_unstable(pmd
))
5208 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
5209 for (; addr
!= end
; pte
++, addr
+= PAGE_SIZE
)
5210 if (get_mctgt_type(vma
, addr
, *pte
, NULL
))
5211 mc
.precharge
++; /* increment precharge temporarily */
5212 pte_unmap_unlock(pte
- 1, ptl
);
5218 static unsigned long mem_cgroup_count_precharge(struct mm_struct
*mm
)
5220 unsigned long precharge
;
5221 struct vm_area_struct
*vma
;
5223 down_read(&mm
->mmap_sem
);
5224 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
5225 struct mm_walk mem_cgroup_count_precharge_walk
= {
5226 .pmd_entry
= mem_cgroup_count_precharge_pte_range
,
5230 if (is_vm_hugetlb_page(vma
))
5232 walk_page_range(vma
->vm_start
, vma
->vm_end
,
5233 &mem_cgroup_count_precharge_walk
);
5235 up_read(&mm
->mmap_sem
);
5237 precharge
= mc
.precharge
;
5243 static int mem_cgroup_precharge_mc(struct mm_struct
*mm
)
5245 unsigned long precharge
= mem_cgroup_count_precharge(mm
);
5247 VM_BUG_ON(mc
.moving_task
);
5248 mc
.moving_task
= current
;
5249 return mem_cgroup_do_precharge(precharge
);
5252 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5253 static void __mem_cgroup_clear_mc(void)
5255 struct mem_cgroup
*from
= mc
.from
;
5256 struct mem_cgroup
*to
= mc
.to
;
5258 /* we must uncharge all the leftover precharges from mc.to */
5260 __mem_cgroup_cancel_charge(mc
.to
, mc
.precharge
);
5264 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5265 * we must uncharge here.
5267 if (mc
.moved_charge
) {
5268 __mem_cgroup_cancel_charge(mc
.from
, mc
.moved_charge
);
5269 mc
.moved_charge
= 0;
5271 /* we must fixup refcnts and charges */
5272 if (mc
.moved_swap
) {
5273 /* uncharge swap account from the old cgroup */
5274 if (!mem_cgroup_is_root(mc
.from
))
5275 res_counter_uncharge(&mc
.from
->memsw
,
5276 PAGE_SIZE
* mc
.moved_swap
);
5277 __mem_cgroup_put(mc
.from
, mc
.moved_swap
);
5279 if (!mem_cgroup_is_root(mc
.to
)) {
5281 * we charged both to->res and to->memsw, so we should
5284 res_counter_uncharge(&mc
.to
->res
,
5285 PAGE_SIZE
* mc
.moved_swap
);
5287 /* we've already done mem_cgroup_get(mc.to) */
5290 memcg_oom_recover(from
);
5291 memcg_oom_recover(to
);
5292 wake_up_all(&mc
.waitq
);
5295 static void mem_cgroup_clear_mc(void)
5297 struct mem_cgroup
*from
= mc
.from
;
5300 * we must clear moving_task before waking up waiters at the end of
5303 mc
.moving_task
= NULL
;
5304 __mem_cgroup_clear_mc();
5305 spin_lock(&mc
.lock
);
5308 spin_unlock(&mc
.lock
);
5309 mem_cgroup_end_move(from
);
5312 static int mem_cgroup_can_attach(struct cgroup
*cgroup
,
5313 struct cgroup_taskset
*tset
)
5315 struct task_struct
*p
= cgroup_taskset_first(tset
);
5317 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgroup
);
5319 if (memcg
->move_charge_at_immigrate
) {
5320 struct mm_struct
*mm
;
5321 struct mem_cgroup
*from
= mem_cgroup_from_task(p
);
5323 VM_BUG_ON(from
== memcg
);
5325 mm
= get_task_mm(p
);
5328 /* We move charges only when we move a owner of the mm */
5329 if (mm
->owner
== p
) {
5332 VM_BUG_ON(mc
.precharge
);
5333 VM_BUG_ON(mc
.moved_charge
);
5334 VM_BUG_ON(mc
.moved_swap
);
5335 mem_cgroup_start_move(from
);
5336 spin_lock(&mc
.lock
);
5339 spin_unlock(&mc
.lock
);
5340 /* We set mc.moving_task later */
5342 ret
= mem_cgroup_precharge_mc(mm
);
5344 mem_cgroup_clear_mc();
5351 static void mem_cgroup_cancel_attach(struct cgroup
*cgroup
,
5352 struct cgroup_taskset
*tset
)
5354 mem_cgroup_clear_mc();
5357 static int mem_cgroup_move_charge_pte_range(pmd_t
*pmd
,
5358 unsigned long addr
, unsigned long end
,
5359 struct mm_walk
*walk
)
5362 struct vm_area_struct
*vma
= walk
->private;
5365 enum mc_target_type target_type
;
5366 union mc_target target
;
5368 struct page_cgroup
*pc
;
5371 * We don't take compound_lock() here but no race with splitting thp
5373 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5374 * under splitting, which means there's no concurrent thp split,
5375 * - if another thread runs into split_huge_page() just after we
5376 * entered this if-block, the thread must wait for page table lock
5377 * to be unlocked in __split_huge_page_splitting(), where the main
5378 * part of thp split is not executed yet.
5380 if (pmd_trans_huge_lock(pmd
, vma
) == 1) {
5381 if (mc
.precharge
< HPAGE_PMD_NR
) {
5382 spin_unlock(&vma
->vm_mm
->page_table_lock
);
5385 target_type
= get_mctgt_type_thp(vma
, addr
, *pmd
, &target
);
5386 if (target_type
== MC_TARGET_PAGE
) {
5388 if (!isolate_lru_page(page
)) {
5389 pc
= lookup_page_cgroup(page
);
5390 if (!mem_cgroup_move_account(page
, HPAGE_PMD_NR
,
5391 pc
, mc
.from
, mc
.to
)) {
5392 mc
.precharge
-= HPAGE_PMD_NR
;
5393 mc
.moved_charge
+= HPAGE_PMD_NR
;
5395 putback_lru_page(page
);
5399 spin_unlock(&vma
->vm_mm
->page_table_lock
);
5403 if (pmd_trans_unstable(pmd
))
5406 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
5407 for (; addr
!= end
; addr
+= PAGE_SIZE
) {
5408 pte_t ptent
= *(pte
++);
5414 switch (get_mctgt_type(vma
, addr
, ptent
, &target
)) {
5415 case MC_TARGET_PAGE
:
5417 if (isolate_lru_page(page
))
5419 pc
= lookup_page_cgroup(page
);
5420 if (!mem_cgroup_move_account(page
, 1, pc
,
5423 /* we uncharge from mc.from later. */
5426 putback_lru_page(page
);
5427 put
: /* get_mctgt_type() gets the page */
5430 case MC_TARGET_SWAP
:
5432 if (!mem_cgroup_move_swap_account(ent
, mc
.from
, mc
.to
)) {
5434 /* we fixup refcnts and charges later. */
5442 pte_unmap_unlock(pte
- 1, ptl
);
5447 * We have consumed all precharges we got in can_attach().
5448 * We try charge one by one, but don't do any additional
5449 * charges to mc.to if we have failed in charge once in attach()
5452 ret
= mem_cgroup_do_precharge(1);
5460 static void mem_cgroup_move_charge(struct mm_struct
*mm
)
5462 struct vm_area_struct
*vma
;
5464 lru_add_drain_all();
5466 if (unlikely(!down_read_trylock(&mm
->mmap_sem
))) {
5468 * Someone who are holding the mmap_sem might be waiting in
5469 * waitq. So we cancel all extra charges, wake up all waiters,
5470 * and retry. Because we cancel precharges, we might not be able
5471 * to move enough charges, but moving charge is a best-effort
5472 * feature anyway, so it wouldn't be a big problem.
5474 __mem_cgroup_clear_mc();
5478 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
5480 struct mm_walk mem_cgroup_move_charge_walk
= {
5481 .pmd_entry
= mem_cgroup_move_charge_pte_range
,
5485 if (is_vm_hugetlb_page(vma
))
5487 ret
= walk_page_range(vma
->vm_start
, vma
->vm_end
,
5488 &mem_cgroup_move_charge_walk
);
5491 * means we have consumed all precharges and failed in
5492 * doing additional charge. Just abandon here.
5496 up_read(&mm
->mmap_sem
);
5499 static void mem_cgroup_move_task(struct cgroup
*cont
,
5500 struct cgroup_taskset
*tset
)
5502 struct task_struct
*p
= cgroup_taskset_first(tset
);
5503 struct mm_struct
*mm
= get_task_mm(p
);
5507 mem_cgroup_move_charge(mm
);
5511 mem_cgroup_clear_mc();
5513 #else /* !CONFIG_MMU */
5514 static int mem_cgroup_can_attach(struct cgroup
*cgroup
,
5515 struct cgroup_taskset
*tset
)
5519 static void mem_cgroup_cancel_attach(struct cgroup
*cgroup
,
5520 struct cgroup_taskset
*tset
)
5523 static void mem_cgroup_move_task(struct cgroup
*cont
,
5524 struct cgroup_taskset
*tset
)
5529 struct cgroup_subsys mem_cgroup_subsys
= {
5531 .subsys_id
= mem_cgroup_subsys_id
,
5532 .create
= mem_cgroup_create
,
5533 .pre_destroy
= mem_cgroup_pre_destroy
,
5534 .destroy
= mem_cgroup_destroy
,
5535 .can_attach
= mem_cgroup_can_attach
,
5536 .cancel_attach
= mem_cgroup_cancel_attach
,
5537 .attach
= mem_cgroup_move_task
,
5538 .base_cftypes
= mem_cgroup_files
,
5541 .__DEPRECATED_clear_css_refs
= true,
5544 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5545 static int __init
enable_swap_account(char *s
)
5547 /* consider enabled if no parameter or 1 is given */
5548 if (!strcmp(s
, "1"))
5549 really_do_swap_account
= 1;
5550 else if (!strcmp(s
, "0"))
5551 really_do_swap_account
= 0;
5554 __setup("swapaccount=", enable_swap_account
);