1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/mutex.h>
37 #include <linux/rbtree.h>
38 #include <linux/slab.h>
39 #include <linux/swap.h>
40 #include <linux/swapops.h>
41 #include <linux/spinlock.h>
42 #include <linux/eventfd.h>
43 #include <linux/sort.h>
45 #include <linux/seq_file.h>
46 #include <linux/vmalloc.h>
47 #include <linux/mm_inline.h>
48 #include <linux/page_cgroup.h>
49 #include <linux/cpu.h>
50 #include <linux/oom.h>
53 #include <asm/uaccess.h>
55 #include <trace/events/vmscan.h>
57 struct cgroup_subsys mem_cgroup_subsys __read_mostly
;
58 #define MEM_CGROUP_RECLAIM_RETRIES 5
59 struct mem_cgroup
*root_mem_cgroup __read_mostly
;
61 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
62 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
63 int do_swap_account __read_mostly
;
65 /* for remember boot option*/
66 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
67 static int really_do_swap_account __initdata
= 1;
69 static int really_do_swap_account __initdata
= 0;
73 #define do_swap_account (0)
78 * Statistics for memory cgroup.
80 enum mem_cgroup_stat_index
{
82 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
84 MEM_CGROUP_STAT_CACHE
, /* # of pages charged as cache */
85 MEM_CGROUP_STAT_RSS
, /* # of pages charged as anon rss */
86 MEM_CGROUP_STAT_FILE_MAPPED
, /* # of pages charged as file rss */
87 MEM_CGROUP_STAT_SWAPOUT
, /* # of pages, swapped out */
88 MEM_CGROUP_STAT_DATA
, /* end of data requires synchronization */
89 MEM_CGROUP_ON_MOVE
, /* someone is moving account between groups */
90 MEM_CGROUP_STAT_NSTATS
,
93 enum mem_cgroup_events_index
{
94 MEM_CGROUP_EVENTS_PGPGIN
, /* # of pages paged in */
95 MEM_CGROUP_EVENTS_PGPGOUT
, /* # of pages paged out */
96 MEM_CGROUP_EVENTS_COUNT
, /* # of pages paged in/out */
97 MEM_CGROUP_EVENTS_PGFAULT
, /* # of page-faults */
98 MEM_CGROUP_EVENTS_PGMAJFAULT
, /* # of major page-faults */
99 MEM_CGROUP_EVENTS_NSTATS
,
102 * Per memcg event counter is incremented at every pagein/pageout. With THP,
103 * it will be incremated by the number of pages. This counter is used for
104 * for trigger some periodic events. This is straightforward and better
105 * than using jiffies etc. to handle periodic memcg event.
107 enum mem_cgroup_events_target
{
108 MEM_CGROUP_TARGET_THRESH
,
109 MEM_CGROUP_TARGET_SOFTLIMIT
,
110 MEM_CGROUP_TARGET_NUMAINFO
,
113 #define THRESHOLDS_EVENTS_TARGET (128)
114 #define SOFTLIMIT_EVENTS_TARGET (1024)
115 #define NUMAINFO_EVENTS_TARGET (1024)
117 struct mem_cgroup_stat_cpu
{
118 long count
[MEM_CGROUP_STAT_NSTATS
];
119 unsigned long events
[MEM_CGROUP_EVENTS_NSTATS
];
120 unsigned long targets
[MEM_CGROUP_NTARGETS
];
124 * per-zone information in memory controller.
126 struct mem_cgroup_per_zone
{
128 * spin_lock to protect the per cgroup LRU
130 struct list_head lists
[NR_LRU_LISTS
];
131 unsigned long count
[NR_LRU_LISTS
];
133 struct zone_reclaim_stat reclaim_stat
;
134 struct rb_node tree_node
; /* RB tree node */
135 unsigned long long usage_in_excess
;/* Set to the value by which */
136 /* the soft limit is exceeded*/
138 struct mem_cgroup
*mem
; /* Back pointer, we cannot */
139 /* use container_of */
141 /* Macro for accessing counter */
142 #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
144 struct mem_cgroup_per_node
{
145 struct mem_cgroup_per_zone zoneinfo
[MAX_NR_ZONES
];
148 struct mem_cgroup_lru_info
{
149 struct mem_cgroup_per_node
*nodeinfo
[MAX_NUMNODES
];
153 * Cgroups above their limits are maintained in a RB-Tree, independent of
154 * their hierarchy representation
157 struct mem_cgroup_tree_per_zone
{
158 struct rb_root rb_root
;
162 struct mem_cgroup_tree_per_node
{
163 struct mem_cgroup_tree_per_zone rb_tree_per_zone
[MAX_NR_ZONES
];
166 struct mem_cgroup_tree
{
167 struct mem_cgroup_tree_per_node
*rb_tree_per_node
[MAX_NUMNODES
];
170 static struct mem_cgroup_tree soft_limit_tree __read_mostly
;
172 struct mem_cgroup_threshold
{
173 struct eventfd_ctx
*eventfd
;
178 struct mem_cgroup_threshold_ary
{
179 /* An array index points to threshold just below usage. */
180 int current_threshold
;
181 /* Size of entries[] */
183 /* Array of thresholds */
184 struct mem_cgroup_threshold entries
[0];
187 struct mem_cgroup_thresholds
{
188 /* Primary thresholds array */
189 struct mem_cgroup_threshold_ary
*primary
;
191 * Spare threshold array.
192 * This is needed to make mem_cgroup_unregister_event() "never fail".
193 * It must be able to store at least primary->size - 1 entries.
195 struct mem_cgroup_threshold_ary
*spare
;
199 struct mem_cgroup_eventfd_list
{
200 struct list_head list
;
201 struct eventfd_ctx
*eventfd
;
204 static void mem_cgroup_threshold(struct mem_cgroup
*memcg
);
205 static void mem_cgroup_oom_notify(struct mem_cgroup
*memcg
);
208 * The memory controller data structure. The memory controller controls both
209 * page cache and RSS per cgroup. We would eventually like to provide
210 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
211 * to help the administrator determine what knobs to tune.
213 * TODO: Add a water mark for the memory controller. Reclaim will begin when
214 * we hit the water mark. May be even add a low water mark, such that
215 * no reclaim occurs from a cgroup at it's low water mark, this is
216 * a feature that will be implemented much later in the future.
219 struct cgroup_subsys_state css
;
221 * the counter to account for memory usage
223 struct res_counter res
;
225 * the counter to account for mem+swap usage.
227 struct res_counter memsw
;
229 * Per cgroup active and inactive list, similar to the
230 * per zone LRU lists.
232 struct mem_cgroup_lru_info info
;
234 * While reclaiming in a hierarchy, we cache the last child we
237 int last_scanned_child
;
238 int last_scanned_node
;
240 nodemask_t scan_nodes
;
241 atomic_t numainfo_events
;
242 atomic_t numainfo_updating
;
245 * Should the accounting and control be hierarchical, per subtree?
255 /* OOM-Killer disable */
256 int oom_kill_disable
;
258 /* set when res.limit == memsw.limit */
259 bool memsw_is_minimum
;
261 /* protect arrays of thresholds */
262 struct mutex thresholds_lock
;
264 /* thresholds for memory usage. RCU-protected */
265 struct mem_cgroup_thresholds thresholds
;
267 /* thresholds for mem+swap usage. RCU-protected */
268 struct mem_cgroup_thresholds memsw_thresholds
;
270 /* For oom notifier event fd */
271 struct list_head oom_notify
;
274 * Should we move charges of a task when a task is moved into this
275 * mem_cgroup ? And what type of charges should we move ?
277 unsigned long move_charge_at_immigrate
;
281 struct mem_cgroup_stat_cpu
*stat
;
283 * used when a cpu is offlined or other synchronizations
284 * See mem_cgroup_read_stat().
286 struct mem_cgroup_stat_cpu nocpu_base
;
287 spinlock_t pcp_counter_lock
;
290 /* Stuffs for move charges at task migration. */
292 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
293 * left-shifted bitmap of these types.
296 MOVE_CHARGE_TYPE_ANON
, /* private anonymous page and swap of it */
297 MOVE_CHARGE_TYPE_FILE
, /* file page(including tmpfs) and swap of it */
301 /* "mc" and its members are protected by cgroup_mutex */
302 static struct move_charge_struct
{
303 spinlock_t lock
; /* for from, to */
304 struct mem_cgroup
*from
;
305 struct mem_cgroup
*to
;
306 unsigned long precharge
;
307 unsigned long moved_charge
;
308 unsigned long moved_swap
;
309 struct task_struct
*moving_task
; /* a task moving charges */
310 wait_queue_head_t waitq
; /* a waitq for other context */
312 .lock
= __SPIN_LOCK_UNLOCKED(mc
.lock
),
313 .waitq
= __WAIT_QUEUE_HEAD_INITIALIZER(mc
.waitq
),
316 static bool move_anon(void)
318 return test_bit(MOVE_CHARGE_TYPE_ANON
,
319 &mc
.to
->move_charge_at_immigrate
);
322 static bool move_file(void)
324 return test_bit(MOVE_CHARGE_TYPE_FILE
,
325 &mc
.to
->move_charge_at_immigrate
);
329 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
330 * limit reclaim to prevent infinite loops, if they ever occur.
332 #define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
333 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
336 MEM_CGROUP_CHARGE_TYPE_CACHE
= 0,
337 MEM_CGROUP_CHARGE_TYPE_MAPPED
,
338 MEM_CGROUP_CHARGE_TYPE_SHMEM
, /* used by page migration of shmem */
339 MEM_CGROUP_CHARGE_TYPE_FORCE
, /* used by force_empty */
340 MEM_CGROUP_CHARGE_TYPE_SWAPOUT
, /* for accounting swapcache */
341 MEM_CGROUP_CHARGE_TYPE_DROP
, /* a page was unused swap cache */
345 /* for encoding cft->private value on file */
348 #define _OOM_TYPE (2)
349 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
350 #define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
351 #define MEMFILE_ATTR(val) ((val) & 0xffff)
352 /* Used for OOM nofiier */
353 #define OOM_CONTROL (0)
356 * Reclaim flags for mem_cgroup_hierarchical_reclaim
358 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
359 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
360 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
361 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
362 #define MEM_CGROUP_RECLAIM_SOFT_BIT 0x2
363 #define MEM_CGROUP_RECLAIM_SOFT (1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
365 static void mem_cgroup_get(struct mem_cgroup
*memcg
);
366 static void mem_cgroup_put(struct mem_cgroup
*memcg
);
367 static struct mem_cgroup
*parent_mem_cgroup(struct mem_cgroup
*memcg
);
368 static void drain_all_stock_async(struct mem_cgroup
*memcg
);
370 static struct mem_cgroup_per_zone
*
371 mem_cgroup_zoneinfo(struct mem_cgroup
*memcg
, int nid
, int zid
)
373 return &memcg
->info
.nodeinfo
[nid
]->zoneinfo
[zid
];
376 struct cgroup_subsys_state
*mem_cgroup_css(struct mem_cgroup
*memcg
)
381 static struct mem_cgroup_per_zone
*
382 page_cgroup_zoneinfo(struct mem_cgroup
*memcg
, struct page
*page
)
384 int nid
= page_to_nid(page
);
385 int zid
= page_zonenum(page
);
387 return mem_cgroup_zoneinfo(memcg
, nid
, zid
);
390 static struct mem_cgroup_tree_per_zone
*
391 soft_limit_tree_node_zone(int nid
, int zid
)
393 return &soft_limit_tree
.rb_tree_per_node
[nid
]->rb_tree_per_zone
[zid
];
396 static struct mem_cgroup_tree_per_zone
*
397 soft_limit_tree_from_page(struct page
*page
)
399 int nid
= page_to_nid(page
);
400 int zid
= page_zonenum(page
);
402 return &soft_limit_tree
.rb_tree_per_node
[nid
]->rb_tree_per_zone
[zid
];
406 __mem_cgroup_insert_exceeded(struct mem_cgroup
*memcg
,
407 struct mem_cgroup_per_zone
*mz
,
408 struct mem_cgroup_tree_per_zone
*mctz
,
409 unsigned long long new_usage_in_excess
)
411 struct rb_node
**p
= &mctz
->rb_root
.rb_node
;
412 struct rb_node
*parent
= NULL
;
413 struct mem_cgroup_per_zone
*mz_node
;
418 mz
->usage_in_excess
= new_usage_in_excess
;
419 if (!mz
->usage_in_excess
)
423 mz_node
= rb_entry(parent
, struct mem_cgroup_per_zone
,
425 if (mz
->usage_in_excess
< mz_node
->usage_in_excess
)
428 * We can't avoid mem cgroups that are over their soft
429 * limit by the same amount
431 else if (mz
->usage_in_excess
>= mz_node
->usage_in_excess
)
434 rb_link_node(&mz
->tree_node
, parent
, p
);
435 rb_insert_color(&mz
->tree_node
, &mctz
->rb_root
);
440 __mem_cgroup_remove_exceeded(struct mem_cgroup
*memcg
,
441 struct mem_cgroup_per_zone
*mz
,
442 struct mem_cgroup_tree_per_zone
*mctz
)
446 rb_erase(&mz
->tree_node
, &mctz
->rb_root
);
451 mem_cgroup_remove_exceeded(struct mem_cgroup
*memcg
,
452 struct mem_cgroup_per_zone
*mz
,
453 struct mem_cgroup_tree_per_zone
*mctz
)
455 spin_lock(&mctz
->lock
);
456 __mem_cgroup_remove_exceeded(memcg
, mz
, mctz
);
457 spin_unlock(&mctz
->lock
);
461 static void mem_cgroup_update_tree(struct mem_cgroup
*memcg
, struct page
*page
)
463 unsigned long long excess
;
464 struct mem_cgroup_per_zone
*mz
;
465 struct mem_cgroup_tree_per_zone
*mctz
;
466 int nid
= page_to_nid(page
);
467 int zid
= page_zonenum(page
);
468 mctz
= soft_limit_tree_from_page(page
);
471 * Necessary to update all ancestors when hierarchy is used.
472 * because their event counter is not touched.
474 for (; memcg
; memcg
= parent_mem_cgroup(memcg
)) {
475 mz
= mem_cgroup_zoneinfo(memcg
, nid
, zid
);
476 excess
= res_counter_soft_limit_excess(&memcg
->res
);
478 * We have to update the tree if mz is on RB-tree or
479 * mem is over its softlimit.
481 if (excess
|| mz
->on_tree
) {
482 spin_lock(&mctz
->lock
);
483 /* if on-tree, remove it */
485 __mem_cgroup_remove_exceeded(memcg
, mz
, mctz
);
487 * Insert again. mz->usage_in_excess will be updated.
488 * If excess is 0, no tree ops.
490 __mem_cgroup_insert_exceeded(memcg
, mz
, mctz
, excess
);
491 spin_unlock(&mctz
->lock
);
496 static void mem_cgroup_remove_from_trees(struct mem_cgroup
*memcg
)
499 struct mem_cgroup_per_zone
*mz
;
500 struct mem_cgroup_tree_per_zone
*mctz
;
502 for_each_node_state(node
, N_POSSIBLE
) {
503 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
504 mz
= mem_cgroup_zoneinfo(memcg
, node
, zone
);
505 mctz
= soft_limit_tree_node_zone(node
, zone
);
506 mem_cgroup_remove_exceeded(memcg
, mz
, mctz
);
511 static struct mem_cgroup_per_zone
*
512 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone
*mctz
)
514 struct rb_node
*rightmost
= NULL
;
515 struct mem_cgroup_per_zone
*mz
;
519 rightmost
= rb_last(&mctz
->rb_root
);
521 goto done
; /* Nothing to reclaim from */
523 mz
= rb_entry(rightmost
, struct mem_cgroup_per_zone
, tree_node
);
525 * Remove the node now but someone else can add it back,
526 * we will to add it back at the end of reclaim to its correct
527 * position in the tree.
529 __mem_cgroup_remove_exceeded(mz
->mem
, mz
, mctz
);
530 if (!res_counter_soft_limit_excess(&mz
->mem
->res
) ||
531 !css_tryget(&mz
->mem
->css
))
537 static struct mem_cgroup_per_zone
*
538 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone
*mctz
)
540 struct mem_cgroup_per_zone
*mz
;
542 spin_lock(&mctz
->lock
);
543 mz
= __mem_cgroup_largest_soft_limit_node(mctz
);
544 spin_unlock(&mctz
->lock
);
549 * Implementation Note: reading percpu statistics for memcg.
551 * Both of vmstat[] and percpu_counter has threshold and do periodic
552 * synchronization to implement "quick" read. There are trade-off between
553 * reading cost and precision of value. Then, we may have a chance to implement
554 * a periodic synchronizion of counter in memcg's counter.
556 * But this _read() function is used for user interface now. The user accounts
557 * memory usage by memory cgroup and he _always_ requires exact value because
558 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
559 * have to visit all online cpus and make sum. So, for now, unnecessary
560 * synchronization is not implemented. (just implemented for cpu hotplug)
562 * If there are kernel internal actions which can make use of some not-exact
563 * value, and reading all cpu value can be performance bottleneck in some
564 * common workload, threashold and synchonization as vmstat[] should be
567 static long mem_cgroup_read_stat(struct mem_cgroup
*memcg
,
568 enum mem_cgroup_stat_index idx
)
574 for_each_online_cpu(cpu
)
575 val
+= per_cpu(memcg
->stat
->count
[idx
], cpu
);
576 #ifdef CONFIG_HOTPLUG_CPU
577 spin_lock(&memcg
->pcp_counter_lock
);
578 val
+= memcg
->nocpu_base
.count
[idx
];
579 spin_unlock(&memcg
->pcp_counter_lock
);
585 static void mem_cgroup_swap_statistics(struct mem_cgroup
*memcg
,
588 int val
= (charge
) ? 1 : -1;
589 this_cpu_add(memcg
->stat
->count
[MEM_CGROUP_STAT_SWAPOUT
], val
);
592 void mem_cgroup_pgfault(struct mem_cgroup
*memcg
, int val
)
594 this_cpu_add(memcg
->stat
->events
[MEM_CGROUP_EVENTS_PGFAULT
], val
);
597 void mem_cgroup_pgmajfault(struct mem_cgroup
*memcg
, int val
)
599 this_cpu_add(memcg
->stat
->events
[MEM_CGROUP_EVENTS_PGMAJFAULT
], val
);
602 static unsigned long mem_cgroup_read_events(struct mem_cgroup
*memcg
,
603 enum mem_cgroup_events_index idx
)
605 unsigned long val
= 0;
608 for_each_online_cpu(cpu
)
609 val
+= per_cpu(memcg
->stat
->events
[idx
], cpu
);
610 #ifdef CONFIG_HOTPLUG_CPU
611 spin_lock(&memcg
->pcp_counter_lock
);
612 val
+= memcg
->nocpu_base
.events
[idx
];
613 spin_unlock(&memcg
->pcp_counter_lock
);
618 static void mem_cgroup_charge_statistics(struct mem_cgroup
*memcg
,
619 bool file
, int nr_pages
)
624 __this_cpu_add(memcg
->stat
->count
[MEM_CGROUP_STAT_CACHE
],
627 __this_cpu_add(memcg
->stat
->count
[MEM_CGROUP_STAT_RSS
],
630 /* pagein of a big page is an event. So, ignore page size */
632 __this_cpu_inc(memcg
->stat
->events
[MEM_CGROUP_EVENTS_PGPGIN
]);
634 __this_cpu_inc(memcg
->stat
->events
[MEM_CGROUP_EVENTS_PGPGOUT
]);
635 nr_pages
= -nr_pages
; /* for event */
638 __this_cpu_add(memcg
->stat
->events
[MEM_CGROUP_EVENTS_COUNT
], nr_pages
);
644 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup
*memcg
, int nid
, int zid
,
645 unsigned int lru_mask
)
647 struct mem_cgroup_per_zone
*mz
;
649 unsigned long ret
= 0;
651 mz
= mem_cgroup_zoneinfo(memcg
, nid
, zid
);
654 if (BIT(l
) & lru_mask
)
655 ret
+= MEM_CGROUP_ZSTAT(mz
, l
);
661 mem_cgroup_node_nr_lru_pages(struct mem_cgroup
*memcg
,
662 int nid
, unsigned int lru_mask
)
667 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++)
668 total
+= mem_cgroup_zone_nr_lru_pages(memcg
,
674 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup
*memcg
,
675 unsigned int lru_mask
)
680 for_each_node_state(nid
, N_HIGH_MEMORY
)
681 total
+= mem_cgroup_node_nr_lru_pages(memcg
, nid
, lru_mask
);
685 static bool __memcg_event_check(struct mem_cgroup
*memcg
, int target
)
687 unsigned long val
, next
;
689 val
= __this_cpu_read(memcg
->stat
->events
[MEM_CGROUP_EVENTS_COUNT
]);
690 next
= __this_cpu_read(memcg
->stat
->targets
[target
]);
691 /* from time_after() in jiffies.h */
692 return ((long)next
- (long)val
< 0);
695 static void __mem_cgroup_target_update(struct mem_cgroup
*memcg
, int target
)
697 unsigned long val
, next
;
699 val
= __this_cpu_read(memcg
->stat
->events
[MEM_CGROUP_EVENTS_COUNT
]);
702 case MEM_CGROUP_TARGET_THRESH
:
703 next
= val
+ THRESHOLDS_EVENTS_TARGET
;
705 case MEM_CGROUP_TARGET_SOFTLIMIT
:
706 next
= val
+ SOFTLIMIT_EVENTS_TARGET
;
708 case MEM_CGROUP_TARGET_NUMAINFO
:
709 next
= val
+ NUMAINFO_EVENTS_TARGET
;
715 __this_cpu_write(memcg
->stat
->targets
[target
], next
);
719 * Check events in order.
722 static void memcg_check_events(struct mem_cgroup
*memcg
, struct page
*page
)
725 /* threshold event is triggered in finer grain than soft limit */
726 if (unlikely(__memcg_event_check(memcg
, MEM_CGROUP_TARGET_THRESH
))) {
727 mem_cgroup_threshold(memcg
);
728 __mem_cgroup_target_update(memcg
, MEM_CGROUP_TARGET_THRESH
);
729 if (unlikely(__memcg_event_check(memcg
,
730 MEM_CGROUP_TARGET_SOFTLIMIT
))) {
731 mem_cgroup_update_tree(memcg
, page
);
732 __mem_cgroup_target_update(memcg
,
733 MEM_CGROUP_TARGET_SOFTLIMIT
);
736 if (unlikely(__memcg_event_check(memcg
,
737 MEM_CGROUP_TARGET_NUMAINFO
))) {
738 atomic_inc(&memcg
->numainfo_events
);
739 __mem_cgroup_target_update(memcg
,
740 MEM_CGROUP_TARGET_NUMAINFO
);
747 static struct mem_cgroup
*mem_cgroup_from_cont(struct cgroup
*cont
)
749 return container_of(cgroup_subsys_state(cont
,
750 mem_cgroup_subsys_id
), struct mem_cgroup
,
754 struct mem_cgroup
*mem_cgroup_from_task(struct task_struct
*p
)
757 * mm_update_next_owner() may clear mm->owner to NULL
758 * if it races with swapoff, page migration, etc.
759 * So this can be called with p == NULL.
764 return container_of(task_subsys_state(p
, mem_cgroup_subsys_id
),
765 struct mem_cgroup
, css
);
768 struct mem_cgroup
*try_get_mem_cgroup_from_mm(struct mm_struct
*mm
)
770 struct mem_cgroup
*memcg
= NULL
;
775 * Because we have no locks, mm->owner's may be being moved to other
776 * cgroup. We use css_tryget() here even if this looks
777 * pessimistic (rather than adding locks here).
781 memcg
= mem_cgroup_from_task(rcu_dereference(mm
->owner
));
782 if (unlikely(!memcg
))
784 } while (!css_tryget(&memcg
->css
));
789 /* The caller has to guarantee "mem" exists before calling this */
790 static struct mem_cgroup
*mem_cgroup_start_loop(struct mem_cgroup
*memcg
)
792 struct cgroup_subsys_state
*css
;
795 if (!memcg
) /* ROOT cgroup has the smallest ID */
796 return root_mem_cgroup
; /*css_put/get against root is ignored*/
797 if (!memcg
->use_hierarchy
) {
798 if (css_tryget(&memcg
->css
))
804 * searching a memory cgroup which has the smallest ID under given
805 * ROOT cgroup. (ID >= 1)
807 css
= css_get_next(&mem_cgroup_subsys
, 1, &memcg
->css
, &found
);
808 if (css
&& css_tryget(css
))
809 memcg
= container_of(css
, struct mem_cgroup
, css
);
816 static struct mem_cgroup
*mem_cgroup_get_next(struct mem_cgroup
*iter
,
817 struct mem_cgroup
*root
,
820 int nextid
= css_id(&iter
->css
) + 1;
823 struct cgroup_subsys_state
*css
;
825 hierarchy_used
= iter
->use_hierarchy
;
828 /* If no ROOT, walk all, ignore hierarchy */
829 if (!cond
|| (root
&& !hierarchy_used
))
833 root
= root_mem_cgroup
;
839 css
= css_get_next(&mem_cgroup_subsys
, nextid
,
841 if (css
&& css_tryget(css
))
842 iter
= container_of(css
, struct mem_cgroup
, css
);
844 /* If css is NULL, no more cgroups will be found */
846 } while (css
&& !iter
);
851 * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
852 * be careful that "break" loop is not allowed. We have reference count.
853 * Instead of that modify "cond" to be false and "continue" to exit the loop.
855 #define for_each_mem_cgroup_tree_cond(iter, root, cond) \
856 for (iter = mem_cgroup_start_loop(root);\
858 iter = mem_cgroup_get_next(iter, root, cond))
860 #define for_each_mem_cgroup_tree(iter, root) \
861 for_each_mem_cgroup_tree_cond(iter, root, true)
863 #define for_each_mem_cgroup_all(iter) \
864 for_each_mem_cgroup_tree_cond(iter, NULL, true)
867 static inline bool mem_cgroup_is_root(struct mem_cgroup
*memcg
)
869 return (memcg
== root_mem_cgroup
);
872 void mem_cgroup_count_vm_event(struct mm_struct
*mm
, enum vm_event_item idx
)
874 struct mem_cgroup
*memcg
;
880 memcg
= mem_cgroup_from_task(rcu_dereference(mm
->owner
));
881 if (unlikely(!memcg
))
886 mem_cgroup_pgmajfault(memcg
, 1);
889 mem_cgroup_pgfault(memcg
, 1);
897 EXPORT_SYMBOL(mem_cgroup_count_vm_event
);
900 * Following LRU functions are allowed to be used without PCG_LOCK.
901 * Operations are called by routine of global LRU independently from memcg.
902 * What we have to take care of here is validness of pc->mem_cgroup.
904 * Changes to pc->mem_cgroup happens when
907 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
908 * It is added to LRU before charge.
909 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
910 * When moving account, the page is not on LRU. It's isolated.
913 void mem_cgroup_del_lru_list(struct page
*page
, enum lru_list lru
)
915 struct page_cgroup
*pc
;
916 struct mem_cgroup_per_zone
*mz
;
918 if (mem_cgroup_disabled())
920 pc
= lookup_page_cgroup(page
);
921 /* can happen while we handle swapcache. */
922 if (!TestClearPageCgroupAcctLRU(pc
))
924 VM_BUG_ON(!pc
->mem_cgroup
);
926 * We don't check PCG_USED bit. It's cleared when the "page" is finally
927 * removed from global LRU.
929 mz
= page_cgroup_zoneinfo(pc
->mem_cgroup
, page
);
930 /* huge page split is done under lru_lock. so, we have no races. */
931 MEM_CGROUP_ZSTAT(mz
, lru
) -= 1 << compound_order(page
);
932 if (mem_cgroup_is_root(pc
->mem_cgroup
))
934 VM_BUG_ON(list_empty(&pc
->lru
));
935 list_del_init(&pc
->lru
);
938 void mem_cgroup_del_lru(struct page
*page
)
940 mem_cgroup_del_lru_list(page
, page_lru(page
));
944 * Writeback is about to end against a page which has been marked for immediate
945 * reclaim. If it still appears to be reclaimable, move it to the tail of the
948 void mem_cgroup_rotate_reclaimable_page(struct page
*page
)
950 struct mem_cgroup_per_zone
*mz
;
951 struct page_cgroup
*pc
;
952 enum lru_list lru
= page_lru(page
);
954 if (mem_cgroup_disabled())
957 pc
= lookup_page_cgroup(page
);
958 /* unused or root page is not rotated. */
959 if (!PageCgroupUsed(pc
))
961 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
963 if (mem_cgroup_is_root(pc
->mem_cgroup
))
965 mz
= page_cgroup_zoneinfo(pc
->mem_cgroup
, page
);
966 list_move_tail(&pc
->lru
, &mz
->lists
[lru
]);
969 void mem_cgroup_rotate_lru_list(struct page
*page
, enum lru_list lru
)
971 struct mem_cgroup_per_zone
*mz
;
972 struct page_cgroup
*pc
;
974 if (mem_cgroup_disabled())
977 pc
= lookup_page_cgroup(page
);
978 /* unused or root page is not rotated. */
979 if (!PageCgroupUsed(pc
))
981 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
983 if (mem_cgroup_is_root(pc
->mem_cgroup
))
985 mz
= page_cgroup_zoneinfo(pc
->mem_cgroup
, page
);
986 list_move(&pc
->lru
, &mz
->lists
[lru
]);
989 void mem_cgroup_add_lru_list(struct page
*page
, enum lru_list lru
)
991 struct page_cgroup
*pc
;
992 struct mem_cgroup_per_zone
*mz
;
994 if (mem_cgroup_disabled())
996 pc
= lookup_page_cgroup(page
);
997 VM_BUG_ON(PageCgroupAcctLRU(pc
));
1000 * SetPageLRU SetPageCgroupUsed
1002 * PageCgroupUsed && add to memcg LRU PageLRU && add to memcg LRU
1004 * Ensure that one of the two sides adds the page to the memcg
1005 * LRU during a race.
1008 if (!PageCgroupUsed(pc
))
1010 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1012 mz
= page_cgroup_zoneinfo(pc
->mem_cgroup
, page
);
1013 /* huge page split is done under lru_lock. so, we have no races. */
1014 MEM_CGROUP_ZSTAT(mz
, lru
) += 1 << compound_order(page
);
1015 SetPageCgroupAcctLRU(pc
);
1016 if (mem_cgroup_is_root(pc
->mem_cgroup
))
1018 list_add(&pc
->lru
, &mz
->lists
[lru
]);
1022 * At handling SwapCache and other FUSE stuff, pc->mem_cgroup may be changed
1023 * while it's linked to lru because the page may be reused after it's fully
1024 * uncharged. To handle that, unlink page_cgroup from LRU when charge it again.
1025 * It's done under lock_page and expected that zone->lru_lock isnever held.
1027 static void mem_cgroup_lru_del_before_commit(struct page
*page
)
1029 unsigned long flags
;
1030 struct zone
*zone
= page_zone(page
);
1031 struct page_cgroup
*pc
= lookup_page_cgroup(page
);
1034 * Doing this check without taking ->lru_lock seems wrong but this
1035 * is safe. Because if page_cgroup's USED bit is unset, the page
1036 * will not be added to any memcg's LRU. If page_cgroup's USED bit is
1037 * set, the commit after this will fail, anyway.
1038 * This all charge/uncharge is done under some mutual execustion.
1039 * So, we don't need to taking care of changes in USED bit.
1041 if (likely(!PageLRU(page
)))
1044 spin_lock_irqsave(&zone
->lru_lock
, flags
);
1046 * Forget old LRU when this page_cgroup is *not* used. This Used bit
1047 * is guarded by lock_page() because the page is SwapCache.
1049 if (!PageCgroupUsed(pc
))
1050 mem_cgroup_del_lru_list(page
, page_lru(page
));
1051 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
1054 static void mem_cgroup_lru_add_after_commit(struct page
*page
)
1056 unsigned long flags
;
1057 struct zone
*zone
= page_zone(page
);
1058 struct page_cgroup
*pc
= lookup_page_cgroup(page
);
1061 * SetPageLRU SetPageCgroupUsed
1063 * PageCgroupUsed && add to memcg LRU PageLRU && add to memcg LRU
1065 * Ensure that one of the two sides adds the page to the memcg
1066 * LRU during a race.
1069 /* taking care of that the page is added to LRU while we commit it */
1070 if (likely(!PageLRU(page
)))
1072 spin_lock_irqsave(&zone
->lru_lock
, flags
);
1073 /* link when the page is linked to LRU but page_cgroup isn't */
1074 if (PageLRU(page
) && !PageCgroupAcctLRU(pc
))
1075 mem_cgroup_add_lru_list(page
, page_lru(page
));
1076 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
1080 void mem_cgroup_move_lists(struct page
*page
,
1081 enum lru_list from
, enum lru_list to
)
1083 if (mem_cgroup_disabled())
1085 mem_cgroup_del_lru_list(page
, from
);
1086 mem_cgroup_add_lru_list(page
, to
);
1090 * Checks whether given mem is same or in the root_mem_cgroup's
1093 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup
*root_memcg
,
1094 struct mem_cgroup
*memcg
)
1096 if (root_memcg
!= memcg
) {
1097 return (root_memcg
->use_hierarchy
&&
1098 css_is_ancestor(&memcg
->css
, &root_memcg
->css
));
1104 int task_in_mem_cgroup(struct task_struct
*task
, const struct mem_cgroup
*memcg
)
1107 struct mem_cgroup
*curr
= NULL
;
1108 struct task_struct
*p
;
1110 p
= find_lock_task_mm(task
);
1113 curr
= try_get_mem_cgroup_from_mm(p
->mm
);
1118 * We should check use_hierarchy of "memcg" not "curr". Because checking
1119 * use_hierarchy of "curr" here make this function true if hierarchy is
1120 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1121 * hierarchy(even if use_hierarchy is disabled in "memcg").
1123 ret
= mem_cgroup_same_or_subtree(memcg
, curr
);
1124 css_put(&curr
->css
);
1128 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup
*memcg
, struct zone
*zone
)
1130 unsigned long inactive_ratio
;
1131 int nid
= zone_to_nid(zone
);
1132 int zid
= zone_idx(zone
);
1133 unsigned long inactive
;
1134 unsigned long active
;
1137 inactive
= mem_cgroup_zone_nr_lru_pages(memcg
, nid
, zid
,
1138 BIT(LRU_INACTIVE_ANON
));
1139 active
= mem_cgroup_zone_nr_lru_pages(memcg
, nid
, zid
,
1140 BIT(LRU_ACTIVE_ANON
));
1142 gb
= (inactive
+ active
) >> (30 - PAGE_SHIFT
);
1144 inactive_ratio
= int_sqrt(10 * gb
);
1148 return inactive
* inactive_ratio
< active
;
1151 int mem_cgroup_inactive_file_is_low(struct mem_cgroup
*memcg
, struct zone
*zone
)
1153 unsigned long active
;
1154 unsigned long inactive
;
1155 int zid
= zone_idx(zone
);
1156 int nid
= zone_to_nid(zone
);
1158 inactive
= mem_cgroup_zone_nr_lru_pages(memcg
, nid
, zid
,
1159 BIT(LRU_INACTIVE_FILE
));
1160 active
= mem_cgroup_zone_nr_lru_pages(memcg
, nid
, zid
,
1161 BIT(LRU_ACTIVE_FILE
));
1163 return (active
> inactive
);
1166 struct zone_reclaim_stat
*mem_cgroup_get_reclaim_stat(struct mem_cgroup
*memcg
,
1169 int nid
= zone_to_nid(zone
);
1170 int zid
= zone_idx(zone
);
1171 struct mem_cgroup_per_zone
*mz
= mem_cgroup_zoneinfo(memcg
, nid
, zid
);
1173 return &mz
->reclaim_stat
;
1176 struct zone_reclaim_stat
*
1177 mem_cgroup_get_reclaim_stat_from_page(struct page
*page
)
1179 struct page_cgroup
*pc
;
1180 struct mem_cgroup_per_zone
*mz
;
1182 if (mem_cgroup_disabled())
1185 pc
= lookup_page_cgroup(page
);
1186 if (!PageCgroupUsed(pc
))
1188 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1190 mz
= page_cgroup_zoneinfo(pc
->mem_cgroup
, page
);
1191 return &mz
->reclaim_stat
;
1194 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan
,
1195 struct list_head
*dst
,
1196 unsigned long *scanned
, int order
,
1197 isolate_mode_t mode
,
1199 struct mem_cgroup
*mem_cont
,
1200 int active
, int file
)
1202 unsigned long nr_taken
= 0;
1206 struct list_head
*src
;
1207 struct page_cgroup
*pc
, *tmp
;
1208 int nid
= zone_to_nid(z
);
1209 int zid
= zone_idx(z
);
1210 struct mem_cgroup_per_zone
*mz
;
1211 int lru
= LRU_FILE
* file
+ active
;
1215 mz
= mem_cgroup_zoneinfo(mem_cont
, nid
, zid
);
1216 src
= &mz
->lists
[lru
];
1219 list_for_each_entry_safe_reverse(pc
, tmp
, src
, lru
) {
1220 if (scan
>= nr_to_scan
)
1223 if (unlikely(!PageCgroupUsed(pc
)))
1226 page
= lookup_cgroup_page(pc
);
1228 if (unlikely(!PageLRU(page
)))
1232 ret
= __isolate_lru_page(page
, mode
, file
);
1235 list_move(&page
->lru
, dst
);
1236 mem_cgroup_del_lru(page
);
1237 nr_taken
+= hpage_nr_pages(page
);
1240 /* we don't affect global LRU but rotate in our LRU */
1241 mem_cgroup_rotate_lru_list(page
, page_lru(page
));
1250 trace_mm_vmscan_memcg_isolate(0, nr_to_scan
, scan
, nr_taken
,
1256 #define mem_cgroup_from_res_counter(counter, member) \
1257 container_of(counter, struct mem_cgroup, member)
1260 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1261 * @mem: the memory cgroup
1263 * Returns the maximum amount of memory @mem can be charged with, in
1266 static unsigned long mem_cgroup_margin(struct mem_cgroup
*memcg
)
1268 unsigned long long margin
;
1270 margin
= res_counter_margin(&memcg
->res
);
1271 if (do_swap_account
)
1272 margin
= min(margin
, res_counter_margin(&memcg
->memsw
));
1273 return margin
>> PAGE_SHIFT
;
1276 int mem_cgroup_swappiness(struct mem_cgroup
*memcg
)
1278 struct cgroup
*cgrp
= memcg
->css
.cgroup
;
1281 if (cgrp
->parent
== NULL
)
1282 return vm_swappiness
;
1284 return memcg
->swappiness
;
1287 static void mem_cgroup_start_move(struct mem_cgroup
*memcg
)
1292 spin_lock(&memcg
->pcp_counter_lock
);
1293 for_each_online_cpu(cpu
)
1294 per_cpu(memcg
->stat
->count
[MEM_CGROUP_ON_MOVE
], cpu
) += 1;
1295 memcg
->nocpu_base
.count
[MEM_CGROUP_ON_MOVE
] += 1;
1296 spin_unlock(&memcg
->pcp_counter_lock
);
1302 static void mem_cgroup_end_move(struct mem_cgroup
*memcg
)
1309 spin_lock(&memcg
->pcp_counter_lock
);
1310 for_each_online_cpu(cpu
)
1311 per_cpu(memcg
->stat
->count
[MEM_CGROUP_ON_MOVE
], cpu
) -= 1;
1312 memcg
->nocpu_base
.count
[MEM_CGROUP_ON_MOVE
] -= 1;
1313 spin_unlock(&memcg
->pcp_counter_lock
);
1317 * 2 routines for checking "mem" is under move_account() or not.
1319 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1320 * for avoiding race in accounting. If true,
1321 * pc->mem_cgroup may be overwritten.
1323 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1324 * under hierarchy of moving cgroups. This is for
1325 * waiting at hith-memory prressure caused by "move".
1328 static bool mem_cgroup_stealed(struct mem_cgroup
*memcg
)
1330 VM_BUG_ON(!rcu_read_lock_held());
1331 return this_cpu_read(memcg
->stat
->count
[MEM_CGROUP_ON_MOVE
]) > 0;
1334 static bool mem_cgroup_under_move(struct mem_cgroup
*memcg
)
1336 struct mem_cgroup
*from
;
1337 struct mem_cgroup
*to
;
1340 * Unlike task_move routines, we access mc.to, mc.from not under
1341 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1343 spin_lock(&mc
.lock
);
1349 ret
= mem_cgroup_same_or_subtree(memcg
, from
)
1350 || mem_cgroup_same_or_subtree(memcg
, to
);
1352 spin_unlock(&mc
.lock
);
1356 static bool mem_cgroup_wait_acct_move(struct mem_cgroup
*memcg
)
1358 if (mc
.moving_task
&& current
!= mc
.moving_task
) {
1359 if (mem_cgroup_under_move(memcg
)) {
1361 prepare_to_wait(&mc
.waitq
, &wait
, TASK_INTERRUPTIBLE
);
1362 /* moving charge context might have finished. */
1365 finish_wait(&mc
.waitq
, &wait
);
1373 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1374 * @memcg: The memory cgroup that went over limit
1375 * @p: Task that is going to be killed
1377 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1380 void mem_cgroup_print_oom_info(struct mem_cgroup
*memcg
, struct task_struct
*p
)
1382 struct cgroup
*task_cgrp
;
1383 struct cgroup
*mem_cgrp
;
1385 * Need a buffer in BSS, can't rely on allocations. The code relies
1386 * on the assumption that OOM is serialized for memory controller.
1387 * If this assumption is broken, revisit this code.
1389 static char memcg_name
[PATH_MAX
];
1398 mem_cgrp
= memcg
->css
.cgroup
;
1399 task_cgrp
= task_cgroup(p
, mem_cgroup_subsys_id
);
1401 ret
= cgroup_path(task_cgrp
, memcg_name
, PATH_MAX
);
1404 * Unfortunately, we are unable to convert to a useful name
1405 * But we'll still print out the usage information
1412 printk(KERN_INFO
"Task in %s killed", memcg_name
);
1415 ret
= cgroup_path(mem_cgrp
, memcg_name
, PATH_MAX
);
1423 * Continues from above, so we don't need an KERN_ level
1425 printk(KERN_CONT
" as a result of limit of %s\n", memcg_name
);
1428 printk(KERN_INFO
"memory: usage %llukB, limit %llukB, failcnt %llu\n",
1429 res_counter_read_u64(&memcg
->res
, RES_USAGE
) >> 10,
1430 res_counter_read_u64(&memcg
->res
, RES_LIMIT
) >> 10,
1431 res_counter_read_u64(&memcg
->res
, RES_FAILCNT
));
1432 printk(KERN_INFO
"memory+swap: usage %llukB, limit %llukB, "
1434 res_counter_read_u64(&memcg
->memsw
, RES_USAGE
) >> 10,
1435 res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
) >> 10,
1436 res_counter_read_u64(&memcg
->memsw
, RES_FAILCNT
));
1440 * This function returns the number of memcg under hierarchy tree. Returns
1441 * 1(self count) if no children.
1443 static int mem_cgroup_count_children(struct mem_cgroup
*memcg
)
1446 struct mem_cgroup
*iter
;
1448 for_each_mem_cgroup_tree(iter
, memcg
)
1454 * Return the memory (and swap, if configured) limit for a memcg.
1456 u64
mem_cgroup_get_limit(struct mem_cgroup
*memcg
)
1461 limit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
1462 limit
+= total_swap_pages
<< PAGE_SHIFT
;
1464 memsw
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
1466 * If memsw is finite and limits the amount of swap space available
1467 * to this memcg, return that limit.
1469 return min(limit
, memsw
);
1473 * Visit the first child (need not be the first child as per the ordering
1474 * of the cgroup list, since we track last_scanned_child) of @mem and use
1475 * that to reclaim free pages from.
1477 static struct mem_cgroup
*
1478 mem_cgroup_select_victim(struct mem_cgroup
*root_memcg
)
1480 struct mem_cgroup
*ret
= NULL
;
1481 struct cgroup_subsys_state
*css
;
1484 if (!root_memcg
->use_hierarchy
) {
1485 css_get(&root_memcg
->css
);
1491 nextid
= root_memcg
->last_scanned_child
+ 1;
1492 css
= css_get_next(&mem_cgroup_subsys
, nextid
, &root_memcg
->css
,
1494 if (css
&& css_tryget(css
))
1495 ret
= container_of(css
, struct mem_cgroup
, css
);
1498 /* Updates scanning parameter */
1500 /* this means start scan from ID:1 */
1501 root_memcg
->last_scanned_child
= 0;
1503 root_memcg
->last_scanned_child
= found
;
1510 * test_mem_cgroup_node_reclaimable
1511 * @mem: the target memcg
1512 * @nid: the node ID to be checked.
1513 * @noswap : specify true here if the user wants flle only information.
1515 * This function returns whether the specified memcg contains any
1516 * reclaimable pages on a node. Returns true if there are any reclaimable
1517 * pages in the node.
1519 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup
*memcg
,
1520 int nid
, bool noswap
)
1522 if (mem_cgroup_node_nr_lru_pages(memcg
, nid
, LRU_ALL_FILE
))
1524 if (noswap
|| !total_swap_pages
)
1526 if (mem_cgroup_node_nr_lru_pages(memcg
, nid
, LRU_ALL_ANON
))
1531 #if MAX_NUMNODES > 1
1534 * Always updating the nodemask is not very good - even if we have an empty
1535 * list or the wrong list here, we can start from some node and traverse all
1536 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1539 static void mem_cgroup_may_update_nodemask(struct mem_cgroup
*memcg
)
1543 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1544 * pagein/pageout changes since the last update.
1546 if (!atomic_read(&memcg
->numainfo_events
))
1548 if (atomic_inc_return(&memcg
->numainfo_updating
) > 1)
1551 /* make a nodemask where this memcg uses memory from */
1552 memcg
->scan_nodes
= node_states
[N_HIGH_MEMORY
];
1554 for_each_node_mask(nid
, node_states
[N_HIGH_MEMORY
]) {
1556 if (!test_mem_cgroup_node_reclaimable(memcg
, nid
, false))
1557 node_clear(nid
, memcg
->scan_nodes
);
1560 atomic_set(&memcg
->numainfo_events
, 0);
1561 atomic_set(&memcg
->numainfo_updating
, 0);
1565 * Selecting a node where we start reclaim from. Because what we need is just
1566 * reducing usage counter, start from anywhere is O,K. Considering
1567 * memory reclaim from current node, there are pros. and cons.
1569 * Freeing memory from current node means freeing memory from a node which
1570 * we'll use or we've used. So, it may make LRU bad. And if several threads
1571 * hit limits, it will see a contention on a node. But freeing from remote
1572 * node means more costs for memory reclaim because of memory latency.
1574 * Now, we use round-robin. Better algorithm is welcomed.
1576 int mem_cgroup_select_victim_node(struct mem_cgroup
*memcg
)
1580 mem_cgroup_may_update_nodemask(memcg
);
1581 node
= memcg
->last_scanned_node
;
1583 node
= next_node(node
, memcg
->scan_nodes
);
1584 if (node
== MAX_NUMNODES
)
1585 node
= first_node(memcg
->scan_nodes
);
1587 * We call this when we hit limit, not when pages are added to LRU.
1588 * No LRU may hold pages because all pages are UNEVICTABLE or
1589 * memcg is too small and all pages are not on LRU. In that case,
1590 * we use curret node.
1592 if (unlikely(node
== MAX_NUMNODES
))
1593 node
= numa_node_id();
1595 memcg
->last_scanned_node
= node
;
1600 * Check all nodes whether it contains reclaimable pages or not.
1601 * For quick scan, we make use of scan_nodes. This will allow us to skip
1602 * unused nodes. But scan_nodes is lazily updated and may not cotain
1603 * enough new information. We need to do double check.
1605 bool mem_cgroup_reclaimable(struct mem_cgroup
*memcg
, bool noswap
)
1610 * quick check...making use of scan_node.
1611 * We can skip unused nodes.
1613 if (!nodes_empty(memcg
->scan_nodes
)) {
1614 for (nid
= first_node(memcg
->scan_nodes
);
1616 nid
= next_node(nid
, memcg
->scan_nodes
)) {
1618 if (test_mem_cgroup_node_reclaimable(memcg
, nid
, noswap
))
1623 * Check rest of nodes.
1625 for_each_node_state(nid
, N_HIGH_MEMORY
) {
1626 if (node_isset(nid
, memcg
->scan_nodes
))
1628 if (test_mem_cgroup_node_reclaimable(memcg
, nid
, noswap
))
1635 int mem_cgroup_select_victim_node(struct mem_cgroup
*memcg
)
1640 bool mem_cgroup_reclaimable(struct mem_cgroup
*memcg
, bool noswap
)
1642 return test_mem_cgroup_node_reclaimable(memcg
, 0, noswap
);
1647 * Scan the hierarchy if needed to reclaim memory. We remember the last child
1648 * we reclaimed from, so that we don't end up penalizing one child extensively
1649 * based on its position in the children list.
1651 * root_memcg is the original ancestor that we've been reclaim from.
1653 * We give up and return to the caller when we visit root_memcg twice.
1654 * (other groups can be removed while we're walking....)
1656 * If shrink==true, for avoiding to free too much, this returns immedieately.
1658 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup
*root_memcg
,
1661 unsigned long reclaim_options
,
1662 unsigned long *total_scanned
)
1664 struct mem_cgroup
*victim
;
1667 bool noswap
= reclaim_options
& MEM_CGROUP_RECLAIM_NOSWAP
;
1668 bool shrink
= reclaim_options
& MEM_CGROUP_RECLAIM_SHRINK
;
1669 bool check_soft
= reclaim_options
& MEM_CGROUP_RECLAIM_SOFT
;
1670 unsigned long excess
;
1671 unsigned long nr_scanned
;
1673 excess
= res_counter_soft_limit_excess(&root_memcg
->res
) >> PAGE_SHIFT
;
1675 /* If memsw_is_minimum==1, swap-out is of-no-use. */
1676 if (!check_soft
&& !shrink
&& root_memcg
->memsw_is_minimum
)
1680 victim
= mem_cgroup_select_victim(root_memcg
);
1681 if (victim
== root_memcg
) {
1684 * We are not draining per cpu cached charges during
1685 * soft limit reclaim because global reclaim doesn't
1686 * care about charges. It tries to free some memory and
1687 * charges will not give any.
1689 if (!check_soft
&& loop
>= 1)
1690 drain_all_stock_async(root_memcg
);
1693 * If we have not been able to reclaim
1694 * anything, it might because there are
1695 * no reclaimable pages under this hierarchy
1697 if (!check_soft
|| !total
) {
1698 css_put(&victim
->css
);
1702 * We want to do more targeted reclaim.
1703 * excess >> 2 is not to excessive so as to
1704 * reclaim too much, nor too less that we keep
1705 * coming back to reclaim from this cgroup
1707 if (total
>= (excess
>> 2) ||
1708 (loop
> MEM_CGROUP_MAX_RECLAIM_LOOPS
)) {
1709 css_put(&victim
->css
);
1714 if (!mem_cgroup_reclaimable(victim
, noswap
)) {
1715 /* this cgroup's local usage == 0 */
1716 css_put(&victim
->css
);
1719 /* we use swappiness of local cgroup */
1721 ret
= mem_cgroup_shrink_node_zone(victim
, gfp_mask
,
1722 noswap
, zone
, &nr_scanned
);
1723 *total_scanned
+= nr_scanned
;
1725 ret
= try_to_free_mem_cgroup_pages(victim
, gfp_mask
,
1727 css_put(&victim
->css
);
1729 * At shrinking usage, we can't check we should stop here or
1730 * reclaim more. It's depends on callers. last_scanned_child
1731 * will work enough for keeping fairness under tree.
1737 if (!res_counter_soft_limit_excess(&root_memcg
->res
))
1739 } else if (mem_cgroup_margin(root_memcg
))
1746 * Check OOM-Killer is already running under our hierarchy.
1747 * If someone is running, return false.
1748 * Has to be called with memcg_oom_lock
1750 static bool mem_cgroup_oom_lock(struct mem_cgroup
*memcg
)
1752 struct mem_cgroup
*iter
, *failed
= NULL
;
1755 for_each_mem_cgroup_tree_cond(iter
, memcg
, cond
) {
1756 if (iter
->oom_lock
) {
1758 * this subtree of our hierarchy is already locked
1759 * so we cannot give a lock.
1764 iter
->oom_lock
= true;
1771 * OK, we failed to lock the whole subtree so we have to clean up
1772 * what we set up to the failing subtree
1775 for_each_mem_cgroup_tree_cond(iter
, memcg
, cond
) {
1776 if (iter
== failed
) {
1780 iter
->oom_lock
= false;
1786 * Has to be called with memcg_oom_lock
1788 static int mem_cgroup_oom_unlock(struct mem_cgroup
*memcg
)
1790 struct mem_cgroup
*iter
;
1792 for_each_mem_cgroup_tree(iter
, memcg
)
1793 iter
->oom_lock
= false;
1797 static void mem_cgroup_mark_under_oom(struct mem_cgroup
*memcg
)
1799 struct mem_cgroup
*iter
;
1801 for_each_mem_cgroup_tree(iter
, memcg
)
1802 atomic_inc(&iter
->under_oom
);
1805 static void mem_cgroup_unmark_under_oom(struct mem_cgroup
*memcg
)
1807 struct mem_cgroup
*iter
;
1810 * When a new child is created while the hierarchy is under oom,
1811 * mem_cgroup_oom_lock() may not be called. We have to use
1812 * atomic_add_unless() here.
1814 for_each_mem_cgroup_tree(iter
, memcg
)
1815 atomic_add_unless(&iter
->under_oom
, -1, 0);
1818 static DEFINE_SPINLOCK(memcg_oom_lock
);
1819 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq
);
1821 struct oom_wait_info
{
1822 struct mem_cgroup
*mem
;
1826 static int memcg_oom_wake_function(wait_queue_t
*wait
,
1827 unsigned mode
, int sync
, void *arg
)
1829 struct mem_cgroup
*wake_memcg
= (struct mem_cgroup
*)arg
,
1831 struct oom_wait_info
*oom_wait_info
;
1833 oom_wait_info
= container_of(wait
, struct oom_wait_info
, wait
);
1834 oom_wait_memcg
= oom_wait_info
->mem
;
1837 * Both of oom_wait_info->mem and wake_mem are stable under us.
1838 * Then we can use css_is_ancestor without taking care of RCU.
1840 if (!mem_cgroup_same_or_subtree(oom_wait_memcg
, wake_memcg
)
1841 && !mem_cgroup_same_or_subtree(wake_memcg
, oom_wait_memcg
))
1843 return autoremove_wake_function(wait
, mode
, sync
, arg
);
1846 static void memcg_wakeup_oom(struct mem_cgroup
*memcg
)
1848 /* for filtering, pass "memcg" as argument. */
1849 __wake_up(&memcg_oom_waitq
, TASK_NORMAL
, 0, memcg
);
1852 static void memcg_oom_recover(struct mem_cgroup
*memcg
)
1854 if (memcg
&& atomic_read(&memcg
->under_oom
))
1855 memcg_wakeup_oom(memcg
);
1859 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1861 bool mem_cgroup_handle_oom(struct mem_cgroup
*memcg
, gfp_t mask
)
1863 struct oom_wait_info owait
;
1864 bool locked
, need_to_kill
;
1867 owait
.wait
.flags
= 0;
1868 owait
.wait
.func
= memcg_oom_wake_function
;
1869 owait
.wait
.private = current
;
1870 INIT_LIST_HEAD(&owait
.wait
.task_list
);
1871 need_to_kill
= true;
1872 mem_cgroup_mark_under_oom(memcg
);
1874 /* At first, try to OOM lock hierarchy under memcg.*/
1875 spin_lock(&memcg_oom_lock
);
1876 locked
= mem_cgroup_oom_lock(memcg
);
1878 * Even if signal_pending(), we can't quit charge() loop without
1879 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1880 * under OOM is always welcomed, use TASK_KILLABLE here.
1882 prepare_to_wait(&memcg_oom_waitq
, &owait
.wait
, TASK_KILLABLE
);
1883 if (!locked
|| memcg
->oom_kill_disable
)
1884 need_to_kill
= false;
1886 mem_cgroup_oom_notify(memcg
);
1887 spin_unlock(&memcg_oom_lock
);
1890 finish_wait(&memcg_oom_waitq
, &owait
.wait
);
1891 mem_cgroup_out_of_memory(memcg
, mask
);
1894 finish_wait(&memcg_oom_waitq
, &owait
.wait
);
1896 spin_lock(&memcg_oom_lock
);
1898 mem_cgroup_oom_unlock(memcg
);
1899 memcg_wakeup_oom(memcg
);
1900 spin_unlock(&memcg_oom_lock
);
1902 mem_cgroup_unmark_under_oom(memcg
);
1904 if (test_thread_flag(TIF_MEMDIE
) || fatal_signal_pending(current
))
1906 /* Give chance to dying process */
1907 schedule_timeout_uninterruptible(1);
1912 * Currently used to update mapped file statistics, but the routine can be
1913 * generalized to update other statistics as well.
1915 * Notes: Race condition
1917 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1918 * it tends to be costly. But considering some conditions, we doesn't need
1919 * to do so _always_.
1921 * Considering "charge", lock_page_cgroup() is not required because all
1922 * file-stat operations happen after a page is attached to radix-tree. There
1923 * are no race with "charge".
1925 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1926 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1927 * if there are race with "uncharge". Statistics itself is properly handled
1930 * Considering "move", this is an only case we see a race. To make the race
1931 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1932 * possibility of race condition. If there is, we take a lock.
1935 void mem_cgroup_update_page_stat(struct page
*page
,
1936 enum mem_cgroup_page_stat_item idx
, int val
)
1938 struct mem_cgroup
*memcg
;
1939 struct page_cgroup
*pc
= lookup_page_cgroup(page
);
1940 bool need_unlock
= false;
1941 unsigned long uninitialized_var(flags
);
1947 memcg
= pc
->mem_cgroup
;
1948 if (unlikely(!memcg
|| !PageCgroupUsed(pc
)))
1950 /* pc->mem_cgroup is unstable ? */
1951 if (unlikely(mem_cgroup_stealed(memcg
)) || PageTransHuge(page
)) {
1952 /* take a lock against to access pc->mem_cgroup */
1953 move_lock_page_cgroup(pc
, &flags
);
1955 memcg
= pc
->mem_cgroup
;
1956 if (!memcg
|| !PageCgroupUsed(pc
))
1961 case MEMCG_NR_FILE_MAPPED
:
1963 SetPageCgroupFileMapped(pc
);
1964 else if (!page_mapped(page
))
1965 ClearPageCgroupFileMapped(pc
);
1966 idx
= MEM_CGROUP_STAT_FILE_MAPPED
;
1972 this_cpu_add(memcg
->stat
->count
[idx
], val
);
1975 if (unlikely(need_unlock
))
1976 move_unlock_page_cgroup(pc
, &flags
);
1980 EXPORT_SYMBOL(mem_cgroup_update_page_stat
);
1983 * size of first charge trial. "32" comes from vmscan.c's magic value.
1984 * TODO: maybe necessary to use big numbers in big irons.
1986 #define CHARGE_BATCH 32U
1987 struct memcg_stock_pcp
{
1988 struct mem_cgroup
*cached
; /* this never be root cgroup */
1989 unsigned int nr_pages
;
1990 struct work_struct work
;
1991 unsigned long flags
;
1992 #define FLUSHING_CACHED_CHARGE (0)
1994 static DEFINE_PER_CPU(struct memcg_stock_pcp
, memcg_stock
);
1995 static DEFINE_MUTEX(percpu_charge_mutex
);
1998 * Try to consume stocked charge on this cpu. If success, one page is consumed
1999 * from local stock and true is returned. If the stock is 0 or charges from a
2000 * cgroup which is not current target, returns false. This stock will be
2003 static bool consume_stock(struct mem_cgroup
*memcg
)
2005 struct memcg_stock_pcp
*stock
;
2008 stock
= &get_cpu_var(memcg_stock
);
2009 if (memcg
== stock
->cached
&& stock
->nr_pages
)
2011 else /* need to call res_counter_charge */
2013 put_cpu_var(memcg_stock
);
2018 * Returns stocks cached in percpu to res_counter and reset cached information.
2020 static void drain_stock(struct memcg_stock_pcp
*stock
)
2022 struct mem_cgroup
*old
= stock
->cached
;
2024 if (stock
->nr_pages
) {
2025 unsigned long bytes
= stock
->nr_pages
* PAGE_SIZE
;
2027 res_counter_uncharge(&old
->res
, bytes
);
2028 if (do_swap_account
)
2029 res_counter_uncharge(&old
->memsw
, bytes
);
2030 stock
->nr_pages
= 0;
2032 stock
->cached
= NULL
;
2036 * This must be called under preempt disabled or must be called by
2037 * a thread which is pinned to local cpu.
2039 static void drain_local_stock(struct work_struct
*dummy
)
2041 struct memcg_stock_pcp
*stock
= &__get_cpu_var(memcg_stock
);
2043 clear_bit(FLUSHING_CACHED_CHARGE
, &stock
->flags
);
2047 * Cache charges(val) which is from res_counter, to local per_cpu area.
2048 * This will be consumed by consume_stock() function, later.
2050 static void refill_stock(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
2052 struct memcg_stock_pcp
*stock
= &get_cpu_var(memcg_stock
);
2054 if (stock
->cached
!= memcg
) { /* reset if necessary */
2056 stock
->cached
= memcg
;
2058 stock
->nr_pages
+= nr_pages
;
2059 put_cpu_var(memcg_stock
);
2063 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2064 * of the hierarchy under it. sync flag says whether we should block
2065 * until the work is done.
2067 static void drain_all_stock(struct mem_cgroup
*root_memcg
, bool sync
)
2071 /* Notify other cpus that system-wide "drain" is running */
2074 for_each_online_cpu(cpu
) {
2075 struct memcg_stock_pcp
*stock
= &per_cpu(memcg_stock
, cpu
);
2076 struct mem_cgroup
*memcg
;
2078 memcg
= stock
->cached
;
2079 if (!memcg
|| !stock
->nr_pages
)
2081 if (!mem_cgroup_same_or_subtree(root_memcg
, memcg
))
2083 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE
, &stock
->flags
)) {
2085 drain_local_stock(&stock
->work
);
2087 schedule_work_on(cpu
, &stock
->work
);
2095 for_each_online_cpu(cpu
) {
2096 struct memcg_stock_pcp
*stock
= &per_cpu(memcg_stock
, cpu
);
2097 if (test_bit(FLUSHING_CACHED_CHARGE
, &stock
->flags
))
2098 flush_work(&stock
->work
);
2105 * Tries to drain stocked charges in other cpus. This function is asynchronous
2106 * and just put a work per cpu for draining localy on each cpu. Caller can
2107 * expects some charges will be back to res_counter later but cannot wait for
2110 static void drain_all_stock_async(struct mem_cgroup
*root_memcg
)
2113 * If someone calls draining, avoid adding more kworker runs.
2115 if (!mutex_trylock(&percpu_charge_mutex
))
2117 drain_all_stock(root_memcg
, false);
2118 mutex_unlock(&percpu_charge_mutex
);
2121 /* This is a synchronous drain interface. */
2122 static void drain_all_stock_sync(struct mem_cgroup
*root_memcg
)
2124 /* called when force_empty is called */
2125 mutex_lock(&percpu_charge_mutex
);
2126 drain_all_stock(root_memcg
, true);
2127 mutex_unlock(&percpu_charge_mutex
);
2131 * This function drains percpu counter value from DEAD cpu and
2132 * move it to local cpu. Note that this function can be preempted.
2134 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup
*memcg
, int cpu
)
2138 spin_lock(&memcg
->pcp_counter_lock
);
2139 for (i
= 0; i
< MEM_CGROUP_STAT_DATA
; i
++) {
2140 long x
= per_cpu(memcg
->stat
->count
[i
], cpu
);
2142 per_cpu(memcg
->stat
->count
[i
], cpu
) = 0;
2143 memcg
->nocpu_base
.count
[i
] += x
;
2145 for (i
= 0; i
< MEM_CGROUP_EVENTS_NSTATS
; i
++) {
2146 unsigned long x
= per_cpu(memcg
->stat
->events
[i
], cpu
);
2148 per_cpu(memcg
->stat
->events
[i
], cpu
) = 0;
2149 memcg
->nocpu_base
.events
[i
] += x
;
2151 /* need to clear ON_MOVE value, works as a kind of lock. */
2152 per_cpu(memcg
->stat
->count
[MEM_CGROUP_ON_MOVE
], cpu
) = 0;
2153 spin_unlock(&memcg
->pcp_counter_lock
);
2156 static void synchronize_mem_cgroup_on_move(struct mem_cgroup
*memcg
, int cpu
)
2158 int idx
= MEM_CGROUP_ON_MOVE
;
2160 spin_lock(&memcg
->pcp_counter_lock
);
2161 per_cpu(memcg
->stat
->count
[idx
], cpu
) = memcg
->nocpu_base
.count
[idx
];
2162 spin_unlock(&memcg
->pcp_counter_lock
);
2165 static int __cpuinit
memcg_cpu_hotplug_callback(struct notifier_block
*nb
,
2166 unsigned long action
,
2169 int cpu
= (unsigned long)hcpu
;
2170 struct memcg_stock_pcp
*stock
;
2171 struct mem_cgroup
*iter
;
2173 if ((action
== CPU_ONLINE
)) {
2174 for_each_mem_cgroup_all(iter
)
2175 synchronize_mem_cgroup_on_move(iter
, cpu
);
2179 if ((action
!= CPU_DEAD
) || action
!= CPU_DEAD_FROZEN
)
2182 for_each_mem_cgroup_all(iter
)
2183 mem_cgroup_drain_pcp_counter(iter
, cpu
);
2185 stock
= &per_cpu(memcg_stock
, cpu
);
2191 /* See __mem_cgroup_try_charge() for details */
2193 CHARGE_OK
, /* success */
2194 CHARGE_RETRY
, /* need to retry but retry is not bad */
2195 CHARGE_NOMEM
, /* we can't do more. return -ENOMEM */
2196 CHARGE_WOULDBLOCK
, /* GFP_WAIT wasn't set and no enough res. */
2197 CHARGE_OOM_DIE
, /* the current is killed because of OOM */
2200 static int mem_cgroup_do_charge(struct mem_cgroup
*memcg
, gfp_t gfp_mask
,
2201 unsigned int nr_pages
, bool oom_check
)
2203 unsigned long csize
= nr_pages
* PAGE_SIZE
;
2204 struct mem_cgroup
*mem_over_limit
;
2205 struct res_counter
*fail_res
;
2206 unsigned long flags
= 0;
2209 ret
= res_counter_charge(&memcg
->res
, csize
, &fail_res
);
2212 if (!do_swap_account
)
2214 ret
= res_counter_charge(&memcg
->memsw
, csize
, &fail_res
);
2218 res_counter_uncharge(&memcg
->res
, csize
);
2219 mem_over_limit
= mem_cgroup_from_res_counter(fail_res
, memsw
);
2220 flags
|= MEM_CGROUP_RECLAIM_NOSWAP
;
2222 mem_over_limit
= mem_cgroup_from_res_counter(fail_res
, res
);
2224 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2225 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2227 * Never reclaim on behalf of optional batching, retry with a
2228 * single page instead.
2230 if (nr_pages
== CHARGE_BATCH
)
2231 return CHARGE_RETRY
;
2233 if (!(gfp_mask
& __GFP_WAIT
))
2234 return CHARGE_WOULDBLOCK
;
2236 ret
= mem_cgroup_hierarchical_reclaim(mem_over_limit
, NULL
,
2237 gfp_mask
, flags
, NULL
);
2238 if (mem_cgroup_margin(mem_over_limit
) >= nr_pages
)
2239 return CHARGE_RETRY
;
2241 * Even though the limit is exceeded at this point, reclaim
2242 * may have been able to free some pages. Retry the charge
2243 * before killing the task.
2245 * Only for regular pages, though: huge pages are rather
2246 * unlikely to succeed so close to the limit, and we fall back
2247 * to regular pages anyway in case of failure.
2249 if (nr_pages
== 1 && ret
)
2250 return CHARGE_RETRY
;
2253 * At task move, charge accounts can be doubly counted. So, it's
2254 * better to wait until the end of task_move if something is going on.
2256 if (mem_cgroup_wait_acct_move(mem_over_limit
))
2257 return CHARGE_RETRY
;
2259 /* If we don't need to call oom-killer at el, return immediately */
2261 return CHARGE_NOMEM
;
2263 if (!mem_cgroup_handle_oom(mem_over_limit
, gfp_mask
))
2264 return CHARGE_OOM_DIE
;
2266 return CHARGE_RETRY
;
2270 * Unlike exported interface, "oom" parameter is added. if oom==true,
2271 * oom-killer can be invoked.
2273 static int __mem_cgroup_try_charge(struct mm_struct
*mm
,
2275 unsigned int nr_pages
,
2276 struct mem_cgroup
**ptr
,
2279 unsigned int batch
= max(CHARGE_BATCH
, nr_pages
);
2280 int nr_oom_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
2281 struct mem_cgroup
*memcg
= NULL
;
2285 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2286 * in system level. So, allow to go ahead dying process in addition to
2289 if (unlikely(test_thread_flag(TIF_MEMDIE
)
2290 || fatal_signal_pending(current
)))
2294 * We always charge the cgroup the mm_struct belongs to.
2295 * The mm_struct's mem_cgroup changes on task migration if the
2296 * thread group leader migrates. It's possible that mm is not
2297 * set, if so charge the init_mm (happens for pagecache usage).
2302 if (*ptr
) { /* css should be a valid one */
2304 VM_BUG_ON(css_is_removed(&memcg
->css
));
2305 if (mem_cgroup_is_root(memcg
))
2307 if (nr_pages
== 1 && consume_stock(memcg
))
2309 css_get(&memcg
->css
);
2311 struct task_struct
*p
;
2314 p
= rcu_dereference(mm
->owner
);
2316 * Because we don't have task_lock(), "p" can exit.
2317 * In that case, "memcg" can point to root or p can be NULL with
2318 * race with swapoff. Then, we have small risk of mis-accouning.
2319 * But such kind of mis-account by race always happens because
2320 * we don't have cgroup_mutex(). It's overkill and we allo that
2322 * (*) swapoff at el will charge against mm-struct not against
2323 * task-struct. So, mm->owner can be NULL.
2325 memcg
= mem_cgroup_from_task(p
);
2326 if (!memcg
|| mem_cgroup_is_root(memcg
)) {
2330 if (nr_pages
== 1 && consume_stock(memcg
)) {
2332 * It seems dagerous to access memcg without css_get().
2333 * But considering how consume_stok works, it's not
2334 * necessary. If consume_stock success, some charges
2335 * from this memcg are cached on this cpu. So, we
2336 * don't need to call css_get()/css_tryget() before
2337 * calling consume_stock().
2342 /* after here, we may be blocked. we need to get refcnt */
2343 if (!css_tryget(&memcg
->css
)) {
2353 /* If killed, bypass charge */
2354 if (fatal_signal_pending(current
)) {
2355 css_put(&memcg
->css
);
2360 if (oom
&& !nr_oom_retries
) {
2362 nr_oom_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
2365 ret
= mem_cgroup_do_charge(memcg
, gfp_mask
, batch
, oom_check
);
2369 case CHARGE_RETRY
: /* not in OOM situation but retry */
2371 css_put(&memcg
->css
);
2374 case CHARGE_WOULDBLOCK
: /* !__GFP_WAIT */
2375 css_put(&memcg
->css
);
2377 case CHARGE_NOMEM
: /* OOM routine works */
2379 css_put(&memcg
->css
);
2382 /* If oom, we never return -ENOMEM */
2385 case CHARGE_OOM_DIE
: /* Killed by OOM Killer */
2386 css_put(&memcg
->css
);
2389 } while (ret
!= CHARGE_OK
);
2391 if (batch
> nr_pages
)
2392 refill_stock(memcg
, batch
- nr_pages
);
2393 css_put(&memcg
->css
);
2406 * Somemtimes we have to undo a charge we got by try_charge().
2407 * This function is for that and do uncharge, put css's refcnt.
2408 * gotten by try_charge().
2410 static void __mem_cgroup_cancel_charge(struct mem_cgroup
*memcg
,
2411 unsigned int nr_pages
)
2413 if (!mem_cgroup_is_root(memcg
)) {
2414 unsigned long bytes
= nr_pages
* PAGE_SIZE
;
2416 res_counter_uncharge(&memcg
->res
, bytes
);
2417 if (do_swap_account
)
2418 res_counter_uncharge(&memcg
->memsw
, bytes
);
2423 * A helper function to get mem_cgroup from ID. must be called under
2424 * rcu_read_lock(). The caller must check css_is_removed() or some if
2425 * it's concern. (dropping refcnt from swap can be called against removed
2428 static struct mem_cgroup
*mem_cgroup_lookup(unsigned short id
)
2430 struct cgroup_subsys_state
*css
;
2432 /* ID 0 is unused ID */
2435 css
= css_lookup(&mem_cgroup_subsys
, id
);
2438 return container_of(css
, struct mem_cgroup
, css
);
2441 struct mem_cgroup
*try_get_mem_cgroup_from_page(struct page
*page
)
2443 struct mem_cgroup
*memcg
= NULL
;
2444 struct page_cgroup
*pc
;
2448 VM_BUG_ON(!PageLocked(page
));
2450 pc
= lookup_page_cgroup(page
);
2451 lock_page_cgroup(pc
);
2452 if (PageCgroupUsed(pc
)) {
2453 memcg
= pc
->mem_cgroup
;
2454 if (memcg
&& !css_tryget(&memcg
->css
))
2456 } else if (PageSwapCache(page
)) {
2457 ent
.val
= page_private(page
);
2458 id
= lookup_swap_cgroup(ent
);
2460 memcg
= mem_cgroup_lookup(id
);
2461 if (memcg
&& !css_tryget(&memcg
->css
))
2465 unlock_page_cgroup(pc
);
2469 static void __mem_cgroup_commit_charge(struct mem_cgroup
*memcg
,
2471 unsigned int nr_pages
,
2472 struct page_cgroup
*pc
,
2473 enum charge_type ctype
)
2475 lock_page_cgroup(pc
);
2476 if (unlikely(PageCgroupUsed(pc
))) {
2477 unlock_page_cgroup(pc
);
2478 __mem_cgroup_cancel_charge(memcg
, nr_pages
);
2482 * we don't need page_cgroup_lock about tail pages, becase they are not
2483 * accessed by any other context at this point.
2485 pc
->mem_cgroup
= memcg
;
2487 * We access a page_cgroup asynchronously without lock_page_cgroup().
2488 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2489 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2490 * before USED bit, we need memory barrier here.
2491 * See mem_cgroup_add_lru_list(), etc.
2495 case MEM_CGROUP_CHARGE_TYPE_CACHE
:
2496 case MEM_CGROUP_CHARGE_TYPE_SHMEM
:
2497 SetPageCgroupCache(pc
);
2498 SetPageCgroupUsed(pc
);
2500 case MEM_CGROUP_CHARGE_TYPE_MAPPED
:
2501 ClearPageCgroupCache(pc
);
2502 SetPageCgroupUsed(pc
);
2508 mem_cgroup_charge_statistics(memcg
, PageCgroupCache(pc
), nr_pages
);
2509 unlock_page_cgroup(pc
);
2511 * "charge_statistics" updated event counter. Then, check it.
2512 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2513 * if they exceeds softlimit.
2515 memcg_check_events(memcg
, page
);
2518 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2520 #define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2521 (1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
2523 * Because tail pages are not marked as "used", set it. We're under
2524 * zone->lru_lock, 'splitting on pmd' and compund_lock.
2526 void mem_cgroup_split_huge_fixup(struct page
*head
, struct page
*tail
)
2528 struct page_cgroup
*head_pc
= lookup_page_cgroup(head
);
2529 struct page_cgroup
*tail_pc
= lookup_page_cgroup(tail
);
2530 unsigned long flags
;
2532 if (mem_cgroup_disabled())
2535 * We have no races with charge/uncharge but will have races with
2536 * page state accounting.
2538 move_lock_page_cgroup(head_pc
, &flags
);
2540 tail_pc
->mem_cgroup
= head_pc
->mem_cgroup
;
2541 smp_wmb(); /* see __commit_charge() */
2542 if (PageCgroupAcctLRU(head_pc
)) {
2544 struct mem_cgroup_per_zone
*mz
;
2547 * LRU flags cannot be copied because we need to add tail
2548 *.page to LRU by generic call and our hook will be called.
2549 * We hold lru_lock, then, reduce counter directly.
2551 lru
= page_lru(head
);
2552 mz
= page_cgroup_zoneinfo(head_pc
->mem_cgroup
, head
);
2553 MEM_CGROUP_ZSTAT(mz
, lru
) -= 1;
2555 tail_pc
->flags
= head_pc
->flags
& ~PCGF_NOCOPY_AT_SPLIT
;
2556 move_unlock_page_cgroup(head_pc
, &flags
);
2561 * mem_cgroup_move_account - move account of the page
2563 * @nr_pages: number of regular pages (>1 for huge pages)
2564 * @pc: page_cgroup of the page.
2565 * @from: mem_cgroup which the page is moved from.
2566 * @to: mem_cgroup which the page is moved to. @from != @to.
2567 * @uncharge: whether we should call uncharge and css_put against @from.
2569 * The caller must confirm following.
2570 * - page is not on LRU (isolate_page() is useful.)
2571 * - compound_lock is held when nr_pages > 1
2573 * This function doesn't do "charge" nor css_get to new cgroup. It should be
2574 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
2575 * true, this function does "uncharge" from old cgroup, but it doesn't if
2576 * @uncharge is false, so a caller should do "uncharge".
2578 static int mem_cgroup_move_account(struct page
*page
,
2579 unsigned int nr_pages
,
2580 struct page_cgroup
*pc
,
2581 struct mem_cgroup
*from
,
2582 struct mem_cgroup
*to
,
2585 unsigned long flags
;
2588 VM_BUG_ON(from
== to
);
2589 VM_BUG_ON(PageLRU(page
));
2591 * The page is isolated from LRU. So, collapse function
2592 * will not handle this page. But page splitting can happen.
2593 * Do this check under compound_page_lock(). The caller should
2597 if (nr_pages
> 1 && !PageTransHuge(page
))
2600 lock_page_cgroup(pc
);
2603 if (!PageCgroupUsed(pc
) || pc
->mem_cgroup
!= from
)
2606 move_lock_page_cgroup(pc
, &flags
);
2608 if (PageCgroupFileMapped(pc
)) {
2609 /* Update mapped_file data for mem_cgroup */
2611 __this_cpu_dec(from
->stat
->count
[MEM_CGROUP_STAT_FILE_MAPPED
]);
2612 __this_cpu_inc(to
->stat
->count
[MEM_CGROUP_STAT_FILE_MAPPED
]);
2615 mem_cgroup_charge_statistics(from
, PageCgroupCache(pc
), -nr_pages
);
2617 /* This is not "cancel", but cancel_charge does all we need. */
2618 __mem_cgroup_cancel_charge(from
, nr_pages
);
2620 /* caller should have done css_get */
2621 pc
->mem_cgroup
= to
;
2622 mem_cgroup_charge_statistics(to
, PageCgroupCache(pc
), nr_pages
);
2624 * We charges against "to" which may not have any tasks. Then, "to"
2625 * can be under rmdir(). But in current implementation, caller of
2626 * this function is just force_empty() and move charge, so it's
2627 * guaranteed that "to" is never removed. So, we don't check rmdir
2630 move_unlock_page_cgroup(pc
, &flags
);
2633 unlock_page_cgroup(pc
);
2637 memcg_check_events(to
, page
);
2638 memcg_check_events(from
, page
);
2644 * move charges to its parent.
2647 static int mem_cgroup_move_parent(struct page
*page
,
2648 struct page_cgroup
*pc
,
2649 struct mem_cgroup
*child
,
2652 struct cgroup
*cg
= child
->css
.cgroup
;
2653 struct cgroup
*pcg
= cg
->parent
;
2654 struct mem_cgroup
*parent
;
2655 unsigned int nr_pages
;
2656 unsigned long uninitialized_var(flags
);
2664 if (!get_page_unless_zero(page
))
2666 if (isolate_lru_page(page
))
2669 nr_pages
= hpage_nr_pages(page
);
2671 parent
= mem_cgroup_from_cont(pcg
);
2672 ret
= __mem_cgroup_try_charge(NULL
, gfp_mask
, nr_pages
, &parent
, false);
2677 flags
= compound_lock_irqsave(page
);
2679 ret
= mem_cgroup_move_account(page
, nr_pages
, pc
, child
, parent
, true);
2681 __mem_cgroup_cancel_charge(parent
, nr_pages
);
2684 compound_unlock_irqrestore(page
, flags
);
2686 putback_lru_page(page
);
2694 * Charge the memory controller for page usage.
2696 * 0 if the charge was successful
2697 * < 0 if the cgroup is over its limit
2699 static int mem_cgroup_charge_common(struct page
*page
, struct mm_struct
*mm
,
2700 gfp_t gfp_mask
, enum charge_type ctype
)
2702 struct mem_cgroup
*memcg
= NULL
;
2703 unsigned int nr_pages
= 1;
2704 struct page_cgroup
*pc
;
2708 if (PageTransHuge(page
)) {
2709 nr_pages
<<= compound_order(page
);
2710 VM_BUG_ON(!PageTransHuge(page
));
2712 * Never OOM-kill a process for a huge page. The
2713 * fault handler will fall back to regular pages.
2718 pc
= lookup_page_cgroup(page
);
2719 BUG_ON(!pc
); /* XXX: remove this and move pc lookup into commit */
2721 ret
= __mem_cgroup_try_charge(mm
, gfp_mask
, nr_pages
, &memcg
, oom
);
2725 __mem_cgroup_commit_charge(memcg
, page
, nr_pages
, pc
, ctype
);
2729 int mem_cgroup_newpage_charge(struct page
*page
,
2730 struct mm_struct
*mm
, gfp_t gfp_mask
)
2732 if (mem_cgroup_disabled())
2735 * If already mapped, we don't have to account.
2736 * If page cache, page->mapping has address_space.
2737 * But page->mapping may have out-of-use anon_vma pointer,
2738 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2741 if (page_mapped(page
) || (page
->mapping
&& !PageAnon(page
)))
2745 return mem_cgroup_charge_common(page
, mm
, gfp_mask
,
2746 MEM_CGROUP_CHARGE_TYPE_MAPPED
);
2750 __mem_cgroup_commit_charge_swapin(struct page
*page
, struct mem_cgroup
*ptr
,
2751 enum charge_type ctype
);
2754 __mem_cgroup_commit_charge_lrucare(struct page
*page
, struct mem_cgroup
*memcg
,
2755 enum charge_type ctype
)
2757 struct page_cgroup
*pc
= lookup_page_cgroup(page
);
2759 * In some case, SwapCache, FUSE(splice_buf->radixtree), the page
2760 * is already on LRU. It means the page may on some other page_cgroup's
2761 * LRU. Take care of it.
2763 mem_cgroup_lru_del_before_commit(page
);
2764 __mem_cgroup_commit_charge(memcg
, page
, 1, pc
, ctype
);
2765 mem_cgroup_lru_add_after_commit(page
);
2769 int mem_cgroup_cache_charge(struct page
*page
, struct mm_struct
*mm
,
2772 struct mem_cgroup
*memcg
= NULL
;
2775 if (mem_cgroup_disabled())
2777 if (PageCompound(page
))
2783 if (page_is_file_cache(page
)) {
2784 ret
= __mem_cgroup_try_charge(mm
, gfp_mask
, 1, &memcg
, true);
2789 * FUSE reuses pages without going through the final
2790 * put that would remove them from the LRU list, make
2791 * sure that they get relinked properly.
2793 __mem_cgroup_commit_charge_lrucare(page
, memcg
,
2794 MEM_CGROUP_CHARGE_TYPE_CACHE
);
2798 if (PageSwapCache(page
)) {
2799 ret
= mem_cgroup_try_charge_swapin(mm
, page
, gfp_mask
, &memcg
);
2801 __mem_cgroup_commit_charge_swapin(page
, memcg
,
2802 MEM_CGROUP_CHARGE_TYPE_SHMEM
);
2804 ret
= mem_cgroup_charge_common(page
, mm
, gfp_mask
,
2805 MEM_CGROUP_CHARGE_TYPE_SHMEM
);
2811 * While swap-in, try_charge -> commit or cancel, the page is locked.
2812 * And when try_charge() successfully returns, one refcnt to memcg without
2813 * struct page_cgroup is acquired. This refcnt will be consumed by
2814 * "commit()" or removed by "cancel()"
2816 int mem_cgroup_try_charge_swapin(struct mm_struct
*mm
,
2818 gfp_t mask
, struct mem_cgroup
**ptr
)
2820 struct mem_cgroup
*memcg
;
2825 if (mem_cgroup_disabled())
2828 if (!do_swap_account
)
2831 * A racing thread's fault, or swapoff, may have already updated
2832 * the pte, and even removed page from swap cache: in those cases
2833 * do_swap_page()'s pte_same() test will fail; but there's also a
2834 * KSM case which does need to charge the page.
2836 if (!PageSwapCache(page
))
2838 memcg
= try_get_mem_cgroup_from_page(page
);
2842 ret
= __mem_cgroup_try_charge(NULL
, mask
, 1, ptr
, true);
2843 css_put(&memcg
->css
);
2848 return __mem_cgroup_try_charge(mm
, mask
, 1, ptr
, true);
2852 __mem_cgroup_commit_charge_swapin(struct page
*page
, struct mem_cgroup
*ptr
,
2853 enum charge_type ctype
)
2855 if (mem_cgroup_disabled())
2859 cgroup_exclude_rmdir(&ptr
->css
);
2861 __mem_cgroup_commit_charge_lrucare(page
, ptr
, ctype
);
2863 * Now swap is on-memory. This means this page may be
2864 * counted both as mem and swap....double count.
2865 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2866 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2867 * may call delete_from_swap_cache() before reach here.
2869 if (do_swap_account
&& PageSwapCache(page
)) {
2870 swp_entry_t ent
= {.val
= page_private(page
)};
2872 struct mem_cgroup
*memcg
;
2874 id
= swap_cgroup_record(ent
, 0);
2876 memcg
= mem_cgroup_lookup(id
);
2879 * This recorded memcg can be obsolete one. So, avoid
2880 * calling css_tryget
2882 if (!mem_cgroup_is_root(memcg
))
2883 res_counter_uncharge(&memcg
->memsw
, PAGE_SIZE
);
2884 mem_cgroup_swap_statistics(memcg
, false);
2885 mem_cgroup_put(memcg
);
2890 * At swapin, we may charge account against cgroup which has no tasks.
2891 * So, rmdir()->pre_destroy() can be called while we do this charge.
2892 * In that case, we need to call pre_destroy() again. check it here.
2894 cgroup_release_and_wakeup_rmdir(&ptr
->css
);
2897 void mem_cgroup_commit_charge_swapin(struct page
*page
, struct mem_cgroup
*ptr
)
2899 __mem_cgroup_commit_charge_swapin(page
, ptr
,
2900 MEM_CGROUP_CHARGE_TYPE_MAPPED
);
2903 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup
*memcg
)
2905 if (mem_cgroup_disabled())
2909 __mem_cgroup_cancel_charge(memcg
, 1);
2912 static void mem_cgroup_do_uncharge(struct mem_cgroup
*memcg
,
2913 unsigned int nr_pages
,
2914 const enum charge_type ctype
)
2916 struct memcg_batch_info
*batch
= NULL
;
2917 bool uncharge_memsw
= true;
2919 /* If swapout, usage of swap doesn't decrease */
2920 if (!do_swap_account
|| ctype
== MEM_CGROUP_CHARGE_TYPE_SWAPOUT
)
2921 uncharge_memsw
= false;
2923 batch
= ¤t
->memcg_batch
;
2925 * In usual, we do css_get() when we remember memcg pointer.
2926 * But in this case, we keep res->usage until end of a series of
2927 * uncharges. Then, it's ok to ignore memcg's refcnt.
2930 batch
->memcg
= memcg
;
2932 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2933 * In those cases, all pages freed continuously can be expected to be in
2934 * the same cgroup and we have chance to coalesce uncharges.
2935 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2936 * because we want to do uncharge as soon as possible.
2939 if (!batch
->do_batch
|| test_thread_flag(TIF_MEMDIE
))
2940 goto direct_uncharge
;
2943 goto direct_uncharge
;
2946 * In typical case, batch->memcg == mem. This means we can
2947 * merge a series of uncharges to an uncharge of res_counter.
2948 * If not, we uncharge res_counter ony by one.
2950 if (batch
->memcg
!= memcg
)
2951 goto direct_uncharge
;
2952 /* remember freed charge and uncharge it later */
2955 batch
->memsw_nr_pages
++;
2958 res_counter_uncharge(&memcg
->res
, nr_pages
* PAGE_SIZE
);
2960 res_counter_uncharge(&memcg
->memsw
, nr_pages
* PAGE_SIZE
);
2961 if (unlikely(batch
->memcg
!= memcg
))
2962 memcg_oom_recover(memcg
);
2967 * uncharge if !page_mapped(page)
2969 static struct mem_cgroup
*
2970 __mem_cgroup_uncharge_common(struct page
*page
, enum charge_type ctype
)
2972 struct mem_cgroup
*memcg
= NULL
;
2973 unsigned int nr_pages
= 1;
2974 struct page_cgroup
*pc
;
2976 if (mem_cgroup_disabled())
2979 if (PageSwapCache(page
))
2982 if (PageTransHuge(page
)) {
2983 nr_pages
<<= compound_order(page
);
2984 VM_BUG_ON(!PageTransHuge(page
));
2987 * Check if our page_cgroup is valid
2989 pc
= lookup_page_cgroup(page
);
2990 if (unlikely(!pc
|| !PageCgroupUsed(pc
)))
2993 lock_page_cgroup(pc
);
2995 memcg
= pc
->mem_cgroup
;
2997 if (!PageCgroupUsed(pc
))
3001 case MEM_CGROUP_CHARGE_TYPE_MAPPED
:
3002 case MEM_CGROUP_CHARGE_TYPE_DROP
:
3003 /* See mem_cgroup_prepare_migration() */
3004 if (page_mapped(page
) || PageCgroupMigration(pc
))
3007 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT
:
3008 if (!PageAnon(page
)) { /* Shared memory */
3009 if (page
->mapping
&& !page_is_file_cache(page
))
3011 } else if (page_mapped(page
)) /* Anon */
3018 mem_cgroup_charge_statistics(memcg
, PageCgroupCache(pc
), -nr_pages
);
3020 ClearPageCgroupUsed(pc
);
3022 * pc->mem_cgroup is not cleared here. It will be accessed when it's
3023 * freed from LRU. This is safe because uncharged page is expected not
3024 * to be reused (freed soon). Exception is SwapCache, it's handled by
3025 * special functions.
3028 unlock_page_cgroup(pc
);
3030 * even after unlock, we have memcg->res.usage here and this memcg
3031 * will never be freed.
3033 memcg_check_events(memcg
, page
);
3034 if (do_swap_account
&& ctype
== MEM_CGROUP_CHARGE_TYPE_SWAPOUT
) {
3035 mem_cgroup_swap_statistics(memcg
, true);
3036 mem_cgroup_get(memcg
);
3038 if (!mem_cgroup_is_root(memcg
))
3039 mem_cgroup_do_uncharge(memcg
, nr_pages
, ctype
);
3044 unlock_page_cgroup(pc
);
3048 void mem_cgroup_uncharge_page(struct page
*page
)
3051 if (page_mapped(page
))
3053 if (page
->mapping
&& !PageAnon(page
))
3055 __mem_cgroup_uncharge_common(page
, MEM_CGROUP_CHARGE_TYPE_MAPPED
);
3058 void mem_cgroup_uncharge_cache_page(struct page
*page
)
3060 VM_BUG_ON(page_mapped(page
));
3061 VM_BUG_ON(page
->mapping
);
3062 __mem_cgroup_uncharge_common(page
, MEM_CGROUP_CHARGE_TYPE_CACHE
);
3066 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3067 * In that cases, pages are freed continuously and we can expect pages
3068 * are in the same memcg. All these calls itself limits the number of
3069 * pages freed at once, then uncharge_start/end() is called properly.
3070 * This may be called prural(2) times in a context,
3073 void mem_cgroup_uncharge_start(void)
3075 current
->memcg_batch
.do_batch
++;
3076 /* We can do nest. */
3077 if (current
->memcg_batch
.do_batch
== 1) {
3078 current
->memcg_batch
.memcg
= NULL
;
3079 current
->memcg_batch
.nr_pages
= 0;
3080 current
->memcg_batch
.memsw_nr_pages
= 0;
3084 void mem_cgroup_uncharge_end(void)
3086 struct memcg_batch_info
*batch
= ¤t
->memcg_batch
;
3088 if (!batch
->do_batch
)
3092 if (batch
->do_batch
) /* If stacked, do nothing. */
3098 * This "batch->memcg" is valid without any css_get/put etc...
3099 * bacause we hide charges behind us.
3101 if (batch
->nr_pages
)
3102 res_counter_uncharge(&batch
->memcg
->res
,
3103 batch
->nr_pages
* PAGE_SIZE
);
3104 if (batch
->memsw_nr_pages
)
3105 res_counter_uncharge(&batch
->memcg
->memsw
,
3106 batch
->memsw_nr_pages
* PAGE_SIZE
);
3107 memcg_oom_recover(batch
->memcg
);
3108 /* forget this pointer (for sanity check) */
3109 batch
->memcg
= NULL
;
3114 * called after __delete_from_swap_cache() and drop "page" account.
3115 * memcg information is recorded to swap_cgroup of "ent"
3118 mem_cgroup_uncharge_swapcache(struct page
*page
, swp_entry_t ent
, bool swapout
)
3120 struct mem_cgroup
*memcg
;
3121 int ctype
= MEM_CGROUP_CHARGE_TYPE_SWAPOUT
;
3123 if (!swapout
) /* this was a swap cache but the swap is unused ! */
3124 ctype
= MEM_CGROUP_CHARGE_TYPE_DROP
;
3126 memcg
= __mem_cgroup_uncharge_common(page
, ctype
);
3129 * record memcg information, if swapout && memcg != NULL,
3130 * mem_cgroup_get() was called in uncharge().
3132 if (do_swap_account
&& swapout
&& memcg
)
3133 swap_cgroup_record(ent
, css_id(&memcg
->css
));
3137 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3139 * called from swap_entry_free(). remove record in swap_cgroup and
3140 * uncharge "memsw" account.
3142 void mem_cgroup_uncharge_swap(swp_entry_t ent
)
3144 struct mem_cgroup
*memcg
;
3147 if (!do_swap_account
)
3150 id
= swap_cgroup_record(ent
, 0);
3152 memcg
= mem_cgroup_lookup(id
);
3155 * We uncharge this because swap is freed.
3156 * This memcg can be obsolete one. We avoid calling css_tryget
3158 if (!mem_cgroup_is_root(memcg
))
3159 res_counter_uncharge(&memcg
->memsw
, PAGE_SIZE
);
3160 mem_cgroup_swap_statistics(memcg
, false);
3161 mem_cgroup_put(memcg
);
3167 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3168 * @entry: swap entry to be moved
3169 * @from: mem_cgroup which the entry is moved from
3170 * @to: mem_cgroup which the entry is moved to
3171 * @need_fixup: whether we should fixup res_counters and refcounts.
3173 * It succeeds only when the swap_cgroup's record for this entry is the same
3174 * as the mem_cgroup's id of @from.
3176 * Returns 0 on success, -EINVAL on failure.
3178 * The caller must have charged to @to, IOW, called res_counter_charge() about
3179 * both res and memsw, and called css_get().
3181 static int mem_cgroup_move_swap_account(swp_entry_t entry
,
3182 struct mem_cgroup
*from
, struct mem_cgroup
*to
, bool need_fixup
)
3184 unsigned short old_id
, new_id
;
3186 old_id
= css_id(&from
->css
);
3187 new_id
= css_id(&to
->css
);
3189 if (swap_cgroup_cmpxchg(entry
, old_id
, new_id
) == old_id
) {
3190 mem_cgroup_swap_statistics(from
, false);
3191 mem_cgroup_swap_statistics(to
, true);
3193 * This function is only called from task migration context now.
3194 * It postpones res_counter and refcount handling till the end
3195 * of task migration(mem_cgroup_clear_mc()) for performance
3196 * improvement. But we cannot postpone mem_cgroup_get(to)
3197 * because if the process that has been moved to @to does
3198 * swap-in, the refcount of @to might be decreased to 0.
3202 if (!mem_cgroup_is_root(from
))
3203 res_counter_uncharge(&from
->memsw
, PAGE_SIZE
);
3204 mem_cgroup_put(from
);
3206 * we charged both to->res and to->memsw, so we should
3209 if (!mem_cgroup_is_root(to
))
3210 res_counter_uncharge(&to
->res
, PAGE_SIZE
);
3217 static inline int mem_cgroup_move_swap_account(swp_entry_t entry
,
3218 struct mem_cgroup
*from
, struct mem_cgroup
*to
, bool need_fixup
)
3225 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3228 int mem_cgroup_prepare_migration(struct page
*page
,
3229 struct page
*newpage
, struct mem_cgroup
**ptr
, gfp_t gfp_mask
)
3231 struct mem_cgroup
*memcg
= NULL
;
3232 struct page_cgroup
*pc
;
3233 enum charge_type ctype
;
3238 VM_BUG_ON(PageTransHuge(page
));
3239 if (mem_cgroup_disabled())
3242 pc
= lookup_page_cgroup(page
);
3243 lock_page_cgroup(pc
);
3244 if (PageCgroupUsed(pc
)) {
3245 memcg
= pc
->mem_cgroup
;
3246 css_get(&memcg
->css
);
3248 * At migrating an anonymous page, its mapcount goes down
3249 * to 0 and uncharge() will be called. But, even if it's fully
3250 * unmapped, migration may fail and this page has to be
3251 * charged again. We set MIGRATION flag here and delay uncharge
3252 * until end_migration() is called
3254 * Corner Case Thinking
3256 * When the old page was mapped as Anon and it's unmap-and-freed
3257 * while migration was ongoing.
3258 * If unmap finds the old page, uncharge() of it will be delayed
3259 * until end_migration(). If unmap finds a new page, it's
3260 * uncharged when it make mapcount to be 1->0. If unmap code
3261 * finds swap_migration_entry, the new page will not be mapped
3262 * and end_migration() will find it(mapcount==0).
3265 * When the old page was mapped but migraion fails, the kernel
3266 * remaps it. A charge for it is kept by MIGRATION flag even
3267 * if mapcount goes down to 0. We can do remap successfully
3268 * without charging it again.
3271 * The "old" page is under lock_page() until the end of
3272 * migration, so, the old page itself will not be swapped-out.
3273 * If the new page is swapped out before end_migraton, our
3274 * hook to usual swap-out path will catch the event.
3277 SetPageCgroupMigration(pc
);
3279 unlock_page_cgroup(pc
);
3281 * If the page is not charged at this point,
3288 ret
= __mem_cgroup_try_charge(NULL
, gfp_mask
, 1, ptr
, false);
3289 css_put(&memcg
->css
);/* drop extra refcnt */
3290 if (ret
|| *ptr
== NULL
) {
3291 if (PageAnon(page
)) {
3292 lock_page_cgroup(pc
);
3293 ClearPageCgroupMigration(pc
);
3294 unlock_page_cgroup(pc
);
3296 * The old page may be fully unmapped while we kept it.
3298 mem_cgroup_uncharge_page(page
);
3303 * We charge new page before it's used/mapped. So, even if unlock_page()
3304 * is called before end_migration, we can catch all events on this new
3305 * page. In the case new page is migrated but not remapped, new page's
3306 * mapcount will be finally 0 and we call uncharge in end_migration().
3308 pc
= lookup_page_cgroup(newpage
);
3310 ctype
= MEM_CGROUP_CHARGE_TYPE_MAPPED
;
3311 else if (page_is_file_cache(page
))
3312 ctype
= MEM_CGROUP_CHARGE_TYPE_CACHE
;
3314 ctype
= MEM_CGROUP_CHARGE_TYPE_SHMEM
;
3315 __mem_cgroup_commit_charge(memcg
, page
, 1, pc
, ctype
);
3319 /* remove redundant charge if migration failed*/
3320 void mem_cgroup_end_migration(struct mem_cgroup
*memcg
,
3321 struct page
*oldpage
, struct page
*newpage
, bool migration_ok
)
3323 struct page
*used
, *unused
;
3324 struct page_cgroup
*pc
;
3328 /* blocks rmdir() */
3329 cgroup_exclude_rmdir(&memcg
->css
);
3330 if (!migration_ok
) {
3338 * We disallowed uncharge of pages under migration because mapcount
3339 * of the page goes down to zero, temporarly.
3340 * Clear the flag and check the page should be charged.
3342 pc
= lookup_page_cgroup(oldpage
);
3343 lock_page_cgroup(pc
);
3344 ClearPageCgroupMigration(pc
);
3345 unlock_page_cgroup(pc
);
3347 __mem_cgroup_uncharge_common(unused
, MEM_CGROUP_CHARGE_TYPE_FORCE
);
3350 * If a page is a file cache, radix-tree replacement is very atomic
3351 * and we can skip this check. When it was an Anon page, its mapcount
3352 * goes down to 0. But because we added MIGRATION flage, it's not
3353 * uncharged yet. There are several case but page->mapcount check
3354 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3355 * check. (see prepare_charge() also)
3358 mem_cgroup_uncharge_page(used
);
3360 * At migration, we may charge account against cgroup which has no
3362 * So, rmdir()->pre_destroy() can be called while we do this charge.
3363 * In that case, we need to call pre_destroy() again. check it here.
3365 cgroup_release_and_wakeup_rmdir(&memcg
->css
);
3368 #ifdef CONFIG_DEBUG_VM
3369 static struct page_cgroup
*lookup_page_cgroup_used(struct page
*page
)
3371 struct page_cgroup
*pc
;
3373 pc
= lookup_page_cgroup(page
);
3374 if (likely(pc
) && PageCgroupUsed(pc
))
3379 bool mem_cgroup_bad_page_check(struct page
*page
)
3381 if (mem_cgroup_disabled())
3384 return lookup_page_cgroup_used(page
) != NULL
;
3387 void mem_cgroup_print_bad_page(struct page
*page
)
3389 struct page_cgroup
*pc
;
3391 pc
= lookup_page_cgroup_used(page
);
3396 printk(KERN_ALERT
"pc:%p pc->flags:%lx pc->mem_cgroup:%p",
3397 pc
, pc
->flags
, pc
->mem_cgroup
);
3399 path
= kmalloc(PATH_MAX
, GFP_KERNEL
);
3402 ret
= cgroup_path(pc
->mem_cgroup
->css
.cgroup
,
3407 printk(KERN_CONT
"(%s)\n",
3408 (ret
< 0) ? "cannot get the path" : path
);
3414 static DEFINE_MUTEX(set_limit_mutex
);
3416 static int mem_cgroup_resize_limit(struct mem_cgroup
*memcg
,
3417 unsigned long long val
)
3420 u64 memswlimit
, memlimit
;
3422 int children
= mem_cgroup_count_children(memcg
);
3423 u64 curusage
, oldusage
;
3427 * For keeping hierarchical_reclaim simple, how long we should retry
3428 * is depends on callers. We set our retry-count to be function
3429 * of # of children which we should visit in this loop.
3431 retry_count
= MEM_CGROUP_RECLAIM_RETRIES
* children
;
3433 oldusage
= res_counter_read_u64(&memcg
->res
, RES_USAGE
);
3436 while (retry_count
) {
3437 if (signal_pending(current
)) {
3442 * Rather than hide all in some function, I do this in
3443 * open coded manner. You see what this really does.
3444 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3446 mutex_lock(&set_limit_mutex
);
3447 memswlimit
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
3448 if (memswlimit
< val
) {
3450 mutex_unlock(&set_limit_mutex
);
3454 memlimit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
3458 ret
= res_counter_set_limit(&memcg
->res
, val
);
3460 if (memswlimit
== val
)
3461 memcg
->memsw_is_minimum
= true;
3463 memcg
->memsw_is_minimum
= false;
3465 mutex_unlock(&set_limit_mutex
);
3470 mem_cgroup_hierarchical_reclaim(memcg
, NULL
, GFP_KERNEL
,
3471 MEM_CGROUP_RECLAIM_SHRINK
,
3473 curusage
= res_counter_read_u64(&memcg
->res
, RES_USAGE
);
3474 /* Usage is reduced ? */
3475 if (curusage
>= oldusage
)
3478 oldusage
= curusage
;
3480 if (!ret
&& enlarge
)
3481 memcg_oom_recover(memcg
);
3486 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup
*memcg
,
3487 unsigned long long val
)
3490 u64 memlimit
, memswlimit
, oldusage
, curusage
;
3491 int children
= mem_cgroup_count_children(memcg
);
3495 /* see mem_cgroup_resize_res_limit */
3496 retry_count
= children
* MEM_CGROUP_RECLAIM_RETRIES
;
3497 oldusage
= res_counter_read_u64(&memcg
->memsw
, RES_USAGE
);
3498 while (retry_count
) {
3499 if (signal_pending(current
)) {
3504 * Rather than hide all in some function, I do this in
3505 * open coded manner. You see what this really does.
3506 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3508 mutex_lock(&set_limit_mutex
);
3509 memlimit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
3510 if (memlimit
> val
) {
3512 mutex_unlock(&set_limit_mutex
);
3515 memswlimit
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
3516 if (memswlimit
< val
)
3518 ret
= res_counter_set_limit(&memcg
->memsw
, val
);
3520 if (memlimit
== val
)
3521 memcg
->memsw_is_minimum
= true;
3523 memcg
->memsw_is_minimum
= false;
3525 mutex_unlock(&set_limit_mutex
);
3530 mem_cgroup_hierarchical_reclaim(memcg
, NULL
, GFP_KERNEL
,
3531 MEM_CGROUP_RECLAIM_NOSWAP
|
3532 MEM_CGROUP_RECLAIM_SHRINK
,
3534 curusage
= res_counter_read_u64(&memcg
->memsw
, RES_USAGE
);
3535 /* Usage is reduced ? */
3536 if (curusage
>= oldusage
)
3539 oldusage
= curusage
;
3541 if (!ret
&& enlarge
)
3542 memcg_oom_recover(memcg
);
3546 unsigned long mem_cgroup_soft_limit_reclaim(struct zone
*zone
, int order
,
3548 unsigned long *total_scanned
)
3550 unsigned long nr_reclaimed
= 0;
3551 struct mem_cgroup_per_zone
*mz
, *next_mz
= NULL
;
3552 unsigned long reclaimed
;
3554 struct mem_cgroup_tree_per_zone
*mctz
;
3555 unsigned long long excess
;
3556 unsigned long nr_scanned
;
3561 mctz
= soft_limit_tree_node_zone(zone_to_nid(zone
), zone_idx(zone
));
3563 * This loop can run a while, specially if mem_cgroup's continuously
3564 * keep exceeding their soft limit and putting the system under
3571 mz
= mem_cgroup_largest_soft_limit_node(mctz
);
3576 reclaimed
= mem_cgroup_hierarchical_reclaim(mz
->mem
, zone
,
3578 MEM_CGROUP_RECLAIM_SOFT
,
3580 nr_reclaimed
+= reclaimed
;
3581 *total_scanned
+= nr_scanned
;
3582 spin_lock(&mctz
->lock
);
3585 * If we failed to reclaim anything from this memory cgroup
3586 * it is time to move on to the next cgroup
3592 * Loop until we find yet another one.
3594 * By the time we get the soft_limit lock
3595 * again, someone might have aded the
3596 * group back on the RB tree. Iterate to
3597 * make sure we get a different mem.
3598 * mem_cgroup_largest_soft_limit_node returns
3599 * NULL if no other cgroup is present on
3603 __mem_cgroup_largest_soft_limit_node(mctz
);
3605 css_put(&next_mz
->mem
->css
);
3606 else /* next_mz == NULL or other memcg */
3610 __mem_cgroup_remove_exceeded(mz
->mem
, mz
, mctz
);
3611 excess
= res_counter_soft_limit_excess(&mz
->mem
->res
);
3613 * One school of thought says that we should not add
3614 * back the node to the tree if reclaim returns 0.
3615 * But our reclaim could return 0, simply because due
3616 * to priority we are exposing a smaller subset of
3617 * memory to reclaim from. Consider this as a longer
3620 /* If excess == 0, no tree ops */
3621 __mem_cgroup_insert_exceeded(mz
->mem
, mz
, mctz
, excess
);
3622 spin_unlock(&mctz
->lock
);
3623 css_put(&mz
->mem
->css
);
3626 * Could not reclaim anything and there are no more
3627 * mem cgroups to try or we seem to be looping without
3628 * reclaiming anything.
3630 if (!nr_reclaimed
&&
3632 loop
> MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS
))
3634 } while (!nr_reclaimed
);
3636 css_put(&next_mz
->mem
->css
);
3637 return nr_reclaimed
;
3641 * This routine traverse page_cgroup in given list and drop them all.
3642 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3644 static int mem_cgroup_force_empty_list(struct mem_cgroup
*memcg
,
3645 int node
, int zid
, enum lru_list lru
)
3648 struct mem_cgroup_per_zone
*mz
;
3649 struct page_cgroup
*pc
, *busy
;
3650 unsigned long flags
, loop
;
3651 struct list_head
*list
;
3654 zone
= &NODE_DATA(node
)->node_zones
[zid
];
3655 mz
= mem_cgroup_zoneinfo(memcg
, node
, zid
);
3656 list
= &mz
->lists
[lru
];
3658 loop
= MEM_CGROUP_ZSTAT(mz
, lru
);
3659 /* give some margin against EBUSY etc...*/
3666 spin_lock_irqsave(&zone
->lru_lock
, flags
);
3667 if (list_empty(list
)) {
3668 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
3671 pc
= list_entry(list
->prev
, struct page_cgroup
, lru
);
3673 list_move(&pc
->lru
, list
);
3675 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
3678 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
3680 page
= lookup_cgroup_page(pc
);
3682 ret
= mem_cgroup_move_parent(page
, pc
, memcg
, GFP_KERNEL
);
3686 if (ret
== -EBUSY
|| ret
== -EINVAL
) {
3687 /* found lock contention or "pc" is obsolete. */
3694 if (!ret
&& !list_empty(list
))
3700 * make mem_cgroup's charge to be 0 if there is no task.
3701 * This enables deleting this mem_cgroup.
3703 static int mem_cgroup_force_empty(struct mem_cgroup
*memcg
, bool free_all
)
3706 int node
, zid
, shrink
;
3707 int nr_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
3708 struct cgroup
*cgrp
= memcg
->css
.cgroup
;
3710 css_get(&memcg
->css
);
3713 /* should free all ? */
3719 if (cgroup_task_count(cgrp
) || !list_empty(&cgrp
->children
))
3722 if (signal_pending(current
))
3724 /* This is for making all *used* pages to be on LRU. */
3725 lru_add_drain_all();
3726 drain_all_stock_sync(memcg
);
3728 mem_cgroup_start_move(memcg
);
3729 for_each_node_state(node
, N_HIGH_MEMORY
) {
3730 for (zid
= 0; !ret
&& zid
< MAX_NR_ZONES
; zid
++) {
3733 ret
= mem_cgroup_force_empty_list(memcg
,
3742 mem_cgroup_end_move(memcg
);
3743 memcg_oom_recover(memcg
);
3744 /* it seems parent cgroup doesn't have enough mem */
3748 /* "ret" should also be checked to ensure all lists are empty. */
3749 } while (memcg
->res
.usage
> 0 || ret
);
3751 css_put(&memcg
->css
);
3755 /* returns EBUSY if there is a task or if we come here twice. */
3756 if (cgroup_task_count(cgrp
) || !list_empty(&cgrp
->children
) || shrink
) {
3760 /* we call try-to-free pages for make this cgroup empty */
3761 lru_add_drain_all();
3762 /* try to free all pages in this cgroup */
3764 while (nr_retries
&& memcg
->res
.usage
> 0) {
3767 if (signal_pending(current
)) {
3771 progress
= try_to_free_mem_cgroup_pages(memcg
, GFP_KERNEL
,
3775 /* maybe some writeback is necessary */
3776 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
3781 /* try move_account...there may be some *locked* pages. */
3785 int mem_cgroup_force_empty_write(struct cgroup
*cont
, unsigned int event
)
3787 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont
), true);
3791 static u64
mem_cgroup_hierarchy_read(struct cgroup
*cont
, struct cftype
*cft
)
3793 return mem_cgroup_from_cont(cont
)->use_hierarchy
;
3796 static int mem_cgroup_hierarchy_write(struct cgroup
*cont
, struct cftype
*cft
,
3800 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cont
);
3801 struct cgroup
*parent
= cont
->parent
;
3802 struct mem_cgroup
*parent_memcg
= NULL
;
3805 parent_memcg
= mem_cgroup_from_cont(parent
);
3809 * If parent's use_hierarchy is set, we can't make any modifications
3810 * in the child subtrees. If it is unset, then the change can
3811 * occur, provided the current cgroup has no children.
3813 * For the root cgroup, parent_mem is NULL, we allow value to be
3814 * set if there are no children.
3816 if ((!parent_memcg
|| !parent_memcg
->use_hierarchy
) &&
3817 (val
== 1 || val
== 0)) {
3818 if (list_empty(&cont
->children
))
3819 memcg
->use_hierarchy
= val
;
3830 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup
*memcg
,
3831 enum mem_cgroup_stat_index idx
)
3833 struct mem_cgroup
*iter
;
3836 /* Per-cpu values can be negative, use a signed accumulator */
3837 for_each_mem_cgroup_tree(iter
, memcg
)
3838 val
+= mem_cgroup_read_stat(iter
, idx
);
3840 if (val
< 0) /* race ? */
3845 static inline u64
mem_cgroup_usage(struct mem_cgroup
*memcg
, bool swap
)
3849 if (!mem_cgroup_is_root(memcg
)) {
3851 return res_counter_read_u64(&memcg
->res
, RES_USAGE
);
3853 return res_counter_read_u64(&memcg
->memsw
, RES_USAGE
);
3856 val
= mem_cgroup_recursive_stat(memcg
, MEM_CGROUP_STAT_CACHE
);
3857 val
+= mem_cgroup_recursive_stat(memcg
, MEM_CGROUP_STAT_RSS
);
3860 val
+= mem_cgroup_recursive_stat(memcg
, MEM_CGROUP_STAT_SWAPOUT
);
3862 return val
<< PAGE_SHIFT
;
3865 static u64
mem_cgroup_read(struct cgroup
*cont
, struct cftype
*cft
)
3867 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cont
);
3871 type
= MEMFILE_TYPE(cft
->private);
3872 name
= MEMFILE_ATTR(cft
->private);
3875 if (name
== RES_USAGE
)
3876 val
= mem_cgroup_usage(memcg
, false);
3878 val
= res_counter_read_u64(&memcg
->res
, name
);
3881 if (name
== RES_USAGE
)
3882 val
= mem_cgroup_usage(memcg
, true);
3884 val
= res_counter_read_u64(&memcg
->memsw
, name
);
3893 * The user of this function is...
3896 static int mem_cgroup_write(struct cgroup
*cont
, struct cftype
*cft
,
3899 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cont
);
3901 unsigned long long val
;
3904 type
= MEMFILE_TYPE(cft
->private);
3905 name
= MEMFILE_ATTR(cft
->private);
3908 if (mem_cgroup_is_root(memcg
)) { /* Can't set limit on root */
3912 /* This function does all necessary parse...reuse it */
3913 ret
= res_counter_memparse_write_strategy(buffer
, &val
);
3917 ret
= mem_cgroup_resize_limit(memcg
, val
);
3919 ret
= mem_cgroup_resize_memsw_limit(memcg
, val
);
3921 case RES_SOFT_LIMIT
:
3922 ret
= res_counter_memparse_write_strategy(buffer
, &val
);
3926 * For memsw, soft limits are hard to implement in terms
3927 * of semantics, for now, we support soft limits for
3928 * control without swap
3931 ret
= res_counter_set_soft_limit(&memcg
->res
, val
);
3936 ret
= -EINVAL
; /* should be BUG() ? */
3942 static void memcg_get_hierarchical_limit(struct mem_cgroup
*memcg
,
3943 unsigned long long *mem_limit
, unsigned long long *memsw_limit
)
3945 struct cgroup
*cgroup
;
3946 unsigned long long min_limit
, min_memsw_limit
, tmp
;
3948 min_limit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
3949 min_memsw_limit
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
3950 cgroup
= memcg
->css
.cgroup
;
3951 if (!memcg
->use_hierarchy
)
3954 while (cgroup
->parent
) {
3955 cgroup
= cgroup
->parent
;
3956 memcg
= mem_cgroup_from_cont(cgroup
);
3957 if (!memcg
->use_hierarchy
)
3959 tmp
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
3960 min_limit
= min(min_limit
, tmp
);
3961 tmp
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
3962 min_memsw_limit
= min(min_memsw_limit
, tmp
);
3965 *mem_limit
= min_limit
;
3966 *memsw_limit
= min_memsw_limit
;
3970 static int mem_cgroup_reset(struct cgroup
*cont
, unsigned int event
)
3972 struct mem_cgroup
*memcg
;
3975 memcg
= mem_cgroup_from_cont(cont
);
3976 type
= MEMFILE_TYPE(event
);
3977 name
= MEMFILE_ATTR(event
);
3981 res_counter_reset_max(&memcg
->res
);
3983 res_counter_reset_max(&memcg
->memsw
);
3987 res_counter_reset_failcnt(&memcg
->res
);
3989 res_counter_reset_failcnt(&memcg
->memsw
);
3996 static u64
mem_cgroup_move_charge_read(struct cgroup
*cgrp
,
3999 return mem_cgroup_from_cont(cgrp
)->move_charge_at_immigrate
;
4003 static int mem_cgroup_move_charge_write(struct cgroup
*cgrp
,
4004 struct cftype
*cft
, u64 val
)
4006 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
4008 if (val
>= (1 << NR_MOVE_TYPE
))
4011 * We check this value several times in both in can_attach() and
4012 * attach(), so we need cgroup lock to prevent this value from being
4016 memcg
->move_charge_at_immigrate
= val
;
4022 static int mem_cgroup_move_charge_write(struct cgroup
*cgrp
,
4023 struct cftype
*cft
, u64 val
)
4030 /* For read statistics */
4048 struct mcs_total_stat
{
4049 s64 stat
[NR_MCS_STAT
];
4055 } memcg_stat_strings
[NR_MCS_STAT
] = {
4056 {"cache", "total_cache"},
4057 {"rss", "total_rss"},
4058 {"mapped_file", "total_mapped_file"},
4059 {"pgpgin", "total_pgpgin"},
4060 {"pgpgout", "total_pgpgout"},
4061 {"swap", "total_swap"},
4062 {"pgfault", "total_pgfault"},
4063 {"pgmajfault", "total_pgmajfault"},
4064 {"inactive_anon", "total_inactive_anon"},
4065 {"active_anon", "total_active_anon"},
4066 {"inactive_file", "total_inactive_file"},
4067 {"active_file", "total_active_file"},
4068 {"unevictable", "total_unevictable"}
4073 mem_cgroup_get_local_stat(struct mem_cgroup
*memcg
, struct mcs_total_stat
*s
)
4078 val
= mem_cgroup_read_stat(memcg
, MEM_CGROUP_STAT_CACHE
);
4079 s
->stat
[MCS_CACHE
] += val
* PAGE_SIZE
;
4080 val
= mem_cgroup_read_stat(memcg
, MEM_CGROUP_STAT_RSS
);
4081 s
->stat
[MCS_RSS
] += val
* PAGE_SIZE
;
4082 val
= mem_cgroup_read_stat(memcg
, MEM_CGROUP_STAT_FILE_MAPPED
);
4083 s
->stat
[MCS_FILE_MAPPED
] += val
* PAGE_SIZE
;
4084 val
= mem_cgroup_read_events(memcg
, MEM_CGROUP_EVENTS_PGPGIN
);
4085 s
->stat
[MCS_PGPGIN
] += val
;
4086 val
= mem_cgroup_read_events(memcg
, MEM_CGROUP_EVENTS_PGPGOUT
);
4087 s
->stat
[MCS_PGPGOUT
] += val
;
4088 if (do_swap_account
) {
4089 val
= mem_cgroup_read_stat(memcg
, MEM_CGROUP_STAT_SWAPOUT
);
4090 s
->stat
[MCS_SWAP
] += val
* PAGE_SIZE
;
4092 val
= mem_cgroup_read_events(memcg
, MEM_CGROUP_EVENTS_PGFAULT
);
4093 s
->stat
[MCS_PGFAULT
] += val
;
4094 val
= mem_cgroup_read_events(memcg
, MEM_CGROUP_EVENTS_PGMAJFAULT
);
4095 s
->stat
[MCS_PGMAJFAULT
] += val
;
4098 val
= mem_cgroup_nr_lru_pages(memcg
, BIT(LRU_INACTIVE_ANON
));
4099 s
->stat
[MCS_INACTIVE_ANON
] += val
* PAGE_SIZE
;
4100 val
= mem_cgroup_nr_lru_pages(memcg
, BIT(LRU_ACTIVE_ANON
));
4101 s
->stat
[MCS_ACTIVE_ANON
] += val
* PAGE_SIZE
;
4102 val
= mem_cgroup_nr_lru_pages(memcg
, BIT(LRU_INACTIVE_FILE
));
4103 s
->stat
[MCS_INACTIVE_FILE
] += val
* PAGE_SIZE
;
4104 val
= mem_cgroup_nr_lru_pages(memcg
, BIT(LRU_ACTIVE_FILE
));
4105 s
->stat
[MCS_ACTIVE_FILE
] += val
* PAGE_SIZE
;
4106 val
= mem_cgroup_nr_lru_pages(memcg
, BIT(LRU_UNEVICTABLE
));
4107 s
->stat
[MCS_UNEVICTABLE
] += val
* PAGE_SIZE
;
4111 mem_cgroup_get_total_stat(struct mem_cgroup
*memcg
, struct mcs_total_stat
*s
)
4113 struct mem_cgroup
*iter
;
4115 for_each_mem_cgroup_tree(iter
, memcg
)
4116 mem_cgroup_get_local_stat(iter
, s
);
4120 static int mem_control_numa_stat_show(struct seq_file
*m
, void *arg
)
4123 unsigned long total_nr
, file_nr
, anon_nr
, unevictable_nr
;
4124 unsigned long node_nr
;
4125 struct cgroup
*cont
= m
->private;
4126 struct mem_cgroup
*mem_cont
= mem_cgroup_from_cont(cont
);
4128 total_nr
= mem_cgroup_nr_lru_pages(mem_cont
, LRU_ALL
);
4129 seq_printf(m
, "total=%lu", total_nr
);
4130 for_each_node_state(nid
, N_HIGH_MEMORY
) {
4131 node_nr
= mem_cgroup_node_nr_lru_pages(mem_cont
, nid
, LRU_ALL
);
4132 seq_printf(m
, " N%d=%lu", nid
, node_nr
);
4136 file_nr
= mem_cgroup_nr_lru_pages(mem_cont
, LRU_ALL_FILE
);
4137 seq_printf(m
, "file=%lu", file_nr
);
4138 for_each_node_state(nid
, N_HIGH_MEMORY
) {
4139 node_nr
= mem_cgroup_node_nr_lru_pages(mem_cont
, nid
,
4141 seq_printf(m
, " N%d=%lu", nid
, node_nr
);
4145 anon_nr
= mem_cgroup_nr_lru_pages(mem_cont
, LRU_ALL_ANON
);
4146 seq_printf(m
, "anon=%lu", anon_nr
);
4147 for_each_node_state(nid
, N_HIGH_MEMORY
) {
4148 node_nr
= mem_cgroup_node_nr_lru_pages(mem_cont
, nid
,
4150 seq_printf(m
, " N%d=%lu", nid
, node_nr
);
4154 unevictable_nr
= mem_cgroup_nr_lru_pages(mem_cont
, BIT(LRU_UNEVICTABLE
));
4155 seq_printf(m
, "unevictable=%lu", unevictable_nr
);
4156 for_each_node_state(nid
, N_HIGH_MEMORY
) {
4157 node_nr
= mem_cgroup_node_nr_lru_pages(mem_cont
, nid
,
4158 BIT(LRU_UNEVICTABLE
));
4159 seq_printf(m
, " N%d=%lu", nid
, node_nr
);
4164 #endif /* CONFIG_NUMA */
4166 static int mem_control_stat_show(struct cgroup
*cont
, struct cftype
*cft
,
4167 struct cgroup_map_cb
*cb
)
4169 struct mem_cgroup
*mem_cont
= mem_cgroup_from_cont(cont
);
4170 struct mcs_total_stat mystat
;
4173 memset(&mystat
, 0, sizeof(mystat
));
4174 mem_cgroup_get_local_stat(mem_cont
, &mystat
);
4177 for (i
= 0; i
< NR_MCS_STAT
; i
++) {
4178 if (i
== MCS_SWAP
&& !do_swap_account
)
4180 cb
->fill(cb
, memcg_stat_strings
[i
].local_name
, mystat
.stat
[i
]);
4183 /* Hierarchical information */
4185 unsigned long long limit
, memsw_limit
;
4186 memcg_get_hierarchical_limit(mem_cont
, &limit
, &memsw_limit
);
4187 cb
->fill(cb
, "hierarchical_memory_limit", limit
);
4188 if (do_swap_account
)
4189 cb
->fill(cb
, "hierarchical_memsw_limit", memsw_limit
);
4192 memset(&mystat
, 0, sizeof(mystat
));
4193 mem_cgroup_get_total_stat(mem_cont
, &mystat
);
4194 for (i
= 0; i
< NR_MCS_STAT
; i
++) {
4195 if (i
== MCS_SWAP
&& !do_swap_account
)
4197 cb
->fill(cb
, memcg_stat_strings
[i
].total_name
, mystat
.stat
[i
]);
4200 #ifdef CONFIG_DEBUG_VM
4203 struct mem_cgroup_per_zone
*mz
;
4204 unsigned long recent_rotated
[2] = {0, 0};
4205 unsigned long recent_scanned
[2] = {0, 0};
4207 for_each_online_node(nid
)
4208 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
4209 mz
= mem_cgroup_zoneinfo(mem_cont
, nid
, zid
);
4211 recent_rotated
[0] +=
4212 mz
->reclaim_stat
.recent_rotated
[0];
4213 recent_rotated
[1] +=
4214 mz
->reclaim_stat
.recent_rotated
[1];
4215 recent_scanned
[0] +=
4216 mz
->reclaim_stat
.recent_scanned
[0];
4217 recent_scanned
[1] +=
4218 mz
->reclaim_stat
.recent_scanned
[1];
4220 cb
->fill(cb
, "recent_rotated_anon", recent_rotated
[0]);
4221 cb
->fill(cb
, "recent_rotated_file", recent_rotated
[1]);
4222 cb
->fill(cb
, "recent_scanned_anon", recent_scanned
[0]);
4223 cb
->fill(cb
, "recent_scanned_file", recent_scanned
[1]);
4230 static u64
mem_cgroup_swappiness_read(struct cgroup
*cgrp
, struct cftype
*cft
)
4232 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
4234 return mem_cgroup_swappiness(memcg
);
4237 static int mem_cgroup_swappiness_write(struct cgroup
*cgrp
, struct cftype
*cft
,
4240 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
4241 struct mem_cgroup
*parent
;
4246 if (cgrp
->parent
== NULL
)
4249 parent
= mem_cgroup_from_cont(cgrp
->parent
);
4253 /* If under hierarchy, only empty-root can set this value */
4254 if ((parent
->use_hierarchy
) ||
4255 (memcg
->use_hierarchy
&& !list_empty(&cgrp
->children
))) {
4260 memcg
->swappiness
= val
;
4267 static void __mem_cgroup_threshold(struct mem_cgroup
*memcg
, bool swap
)
4269 struct mem_cgroup_threshold_ary
*t
;
4275 t
= rcu_dereference(memcg
->thresholds
.primary
);
4277 t
= rcu_dereference(memcg
->memsw_thresholds
.primary
);
4282 usage
= mem_cgroup_usage(memcg
, swap
);
4285 * current_threshold points to threshold just below usage.
4286 * If it's not true, a threshold was crossed after last
4287 * call of __mem_cgroup_threshold().
4289 i
= t
->current_threshold
;
4292 * Iterate backward over array of thresholds starting from
4293 * current_threshold and check if a threshold is crossed.
4294 * If none of thresholds below usage is crossed, we read
4295 * only one element of the array here.
4297 for (; i
>= 0 && unlikely(t
->entries
[i
].threshold
> usage
); i
--)
4298 eventfd_signal(t
->entries
[i
].eventfd
, 1);
4300 /* i = current_threshold + 1 */
4304 * Iterate forward over array of thresholds starting from
4305 * current_threshold+1 and check if a threshold is crossed.
4306 * If none of thresholds above usage is crossed, we read
4307 * only one element of the array here.
4309 for (; i
< t
->size
&& unlikely(t
->entries
[i
].threshold
<= usage
); i
++)
4310 eventfd_signal(t
->entries
[i
].eventfd
, 1);
4312 /* Update current_threshold */
4313 t
->current_threshold
= i
- 1;
4318 static void mem_cgroup_threshold(struct mem_cgroup
*memcg
)
4321 __mem_cgroup_threshold(memcg
, false);
4322 if (do_swap_account
)
4323 __mem_cgroup_threshold(memcg
, true);
4325 memcg
= parent_mem_cgroup(memcg
);
4329 static int compare_thresholds(const void *a
, const void *b
)
4331 const struct mem_cgroup_threshold
*_a
= a
;
4332 const struct mem_cgroup_threshold
*_b
= b
;
4334 return _a
->threshold
- _b
->threshold
;
4337 static int mem_cgroup_oom_notify_cb(struct mem_cgroup
*memcg
)
4339 struct mem_cgroup_eventfd_list
*ev
;
4341 list_for_each_entry(ev
, &memcg
->oom_notify
, list
)
4342 eventfd_signal(ev
->eventfd
, 1);
4346 static void mem_cgroup_oom_notify(struct mem_cgroup
*memcg
)
4348 struct mem_cgroup
*iter
;
4350 for_each_mem_cgroup_tree(iter
, memcg
)
4351 mem_cgroup_oom_notify_cb(iter
);
4354 static int mem_cgroup_usage_register_event(struct cgroup
*cgrp
,
4355 struct cftype
*cft
, struct eventfd_ctx
*eventfd
, const char *args
)
4357 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
4358 struct mem_cgroup_thresholds
*thresholds
;
4359 struct mem_cgroup_threshold_ary
*new;
4360 int type
= MEMFILE_TYPE(cft
->private);
4361 u64 threshold
, usage
;
4364 ret
= res_counter_memparse_write_strategy(args
, &threshold
);
4368 mutex_lock(&memcg
->thresholds_lock
);
4371 thresholds
= &memcg
->thresholds
;
4372 else if (type
== _MEMSWAP
)
4373 thresholds
= &memcg
->memsw_thresholds
;
4377 usage
= mem_cgroup_usage(memcg
, type
== _MEMSWAP
);
4379 /* Check if a threshold crossed before adding a new one */
4380 if (thresholds
->primary
)
4381 __mem_cgroup_threshold(memcg
, type
== _MEMSWAP
);
4383 size
= thresholds
->primary
? thresholds
->primary
->size
+ 1 : 1;
4385 /* Allocate memory for new array of thresholds */
4386 new = kmalloc(sizeof(*new) + size
* sizeof(struct mem_cgroup_threshold
),
4394 /* Copy thresholds (if any) to new array */
4395 if (thresholds
->primary
) {
4396 memcpy(new->entries
, thresholds
->primary
->entries
, (size
- 1) *
4397 sizeof(struct mem_cgroup_threshold
));
4400 /* Add new threshold */
4401 new->entries
[size
- 1].eventfd
= eventfd
;
4402 new->entries
[size
- 1].threshold
= threshold
;
4404 /* Sort thresholds. Registering of new threshold isn't time-critical */
4405 sort(new->entries
, size
, sizeof(struct mem_cgroup_threshold
),
4406 compare_thresholds
, NULL
);
4408 /* Find current threshold */
4409 new->current_threshold
= -1;
4410 for (i
= 0; i
< size
; i
++) {
4411 if (new->entries
[i
].threshold
< usage
) {
4413 * new->current_threshold will not be used until
4414 * rcu_assign_pointer(), so it's safe to increment
4417 ++new->current_threshold
;
4421 /* Free old spare buffer and save old primary buffer as spare */
4422 kfree(thresholds
->spare
);
4423 thresholds
->spare
= thresholds
->primary
;
4425 rcu_assign_pointer(thresholds
->primary
, new);
4427 /* To be sure that nobody uses thresholds */
4431 mutex_unlock(&memcg
->thresholds_lock
);
4436 static void mem_cgroup_usage_unregister_event(struct cgroup
*cgrp
,
4437 struct cftype
*cft
, struct eventfd_ctx
*eventfd
)
4439 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
4440 struct mem_cgroup_thresholds
*thresholds
;
4441 struct mem_cgroup_threshold_ary
*new;
4442 int type
= MEMFILE_TYPE(cft
->private);
4446 mutex_lock(&memcg
->thresholds_lock
);
4448 thresholds
= &memcg
->thresholds
;
4449 else if (type
== _MEMSWAP
)
4450 thresholds
= &memcg
->memsw_thresholds
;
4455 * Something went wrong if we trying to unregister a threshold
4456 * if we don't have thresholds
4458 BUG_ON(!thresholds
);
4460 usage
= mem_cgroup_usage(memcg
, type
== _MEMSWAP
);
4462 /* Check if a threshold crossed before removing */
4463 __mem_cgroup_threshold(memcg
, type
== _MEMSWAP
);
4465 /* Calculate new number of threshold */
4467 for (i
= 0; i
< thresholds
->primary
->size
; i
++) {
4468 if (thresholds
->primary
->entries
[i
].eventfd
!= eventfd
)
4472 new = thresholds
->spare
;
4474 /* Set thresholds array to NULL if we don't have thresholds */
4483 /* Copy thresholds and find current threshold */
4484 new->current_threshold
= -1;
4485 for (i
= 0, j
= 0; i
< thresholds
->primary
->size
; i
++) {
4486 if (thresholds
->primary
->entries
[i
].eventfd
== eventfd
)
4489 new->entries
[j
] = thresholds
->primary
->entries
[i
];
4490 if (new->entries
[j
].threshold
< usage
) {
4492 * new->current_threshold will not be used
4493 * until rcu_assign_pointer(), so it's safe to increment
4496 ++new->current_threshold
;
4502 /* Swap primary and spare array */
4503 thresholds
->spare
= thresholds
->primary
;
4504 rcu_assign_pointer(thresholds
->primary
, new);
4506 /* To be sure that nobody uses thresholds */
4509 mutex_unlock(&memcg
->thresholds_lock
);
4512 static int mem_cgroup_oom_register_event(struct cgroup
*cgrp
,
4513 struct cftype
*cft
, struct eventfd_ctx
*eventfd
, const char *args
)
4515 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
4516 struct mem_cgroup_eventfd_list
*event
;
4517 int type
= MEMFILE_TYPE(cft
->private);
4519 BUG_ON(type
!= _OOM_TYPE
);
4520 event
= kmalloc(sizeof(*event
), GFP_KERNEL
);
4524 spin_lock(&memcg_oom_lock
);
4526 event
->eventfd
= eventfd
;
4527 list_add(&event
->list
, &memcg
->oom_notify
);
4529 /* already in OOM ? */
4530 if (atomic_read(&memcg
->under_oom
))
4531 eventfd_signal(eventfd
, 1);
4532 spin_unlock(&memcg_oom_lock
);
4537 static void mem_cgroup_oom_unregister_event(struct cgroup
*cgrp
,
4538 struct cftype
*cft
, struct eventfd_ctx
*eventfd
)
4540 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
4541 struct mem_cgroup_eventfd_list
*ev
, *tmp
;
4542 int type
= MEMFILE_TYPE(cft
->private);
4544 BUG_ON(type
!= _OOM_TYPE
);
4546 spin_lock(&memcg_oom_lock
);
4548 list_for_each_entry_safe(ev
, tmp
, &memcg
->oom_notify
, list
) {
4549 if (ev
->eventfd
== eventfd
) {
4550 list_del(&ev
->list
);
4555 spin_unlock(&memcg_oom_lock
);
4558 static int mem_cgroup_oom_control_read(struct cgroup
*cgrp
,
4559 struct cftype
*cft
, struct cgroup_map_cb
*cb
)
4561 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
4563 cb
->fill(cb
, "oom_kill_disable", memcg
->oom_kill_disable
);
4565 if (atomic_read(&memcg
->under_oom
))
4566 cb
->fill(cb
, "under_oom", 1);
4568 cb
->fill(cb
, "under_oom", 0);
4572 static int mem_cgroup_oom_control_write(struct cgroup
*cgrp
,
4573 struct cftype
*cft
, u64 val
)
4575 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
4576 struct mem_cgroup
*parent
;
4578 /* cannot set to root cgroup and only 0 and 1 are allowed */
4579 if (!cgrp
->parent
|| !((val
== 0) || (val
== 1)))
4582 parent
= mem_cgroup_from_cont(cgrp
->parent
);
4585 /* oom-kill-disable is a flag for subhierarchy. */
4586 if ((parent
->use_hierarchy
) ||
4587 (memcg
->use_hierarchy
&& !list_empty(&cgrp
->children
))) {
4591 memcg
->oom_kill_disable
= val
;
4593 memcg_oom_recover(memcg
);
4599 static const struct file_operations mem_control_numa_stat_file_operations
= {
4601 .llseek
= seq_lseek
,
4602 .release
= single_release
,
4605 static int mem_control_numa_stat_open(struct inode
*unused
, struct file
*file
)
4607 struct cgroup
*cont
= file
->f_dentry
->d_parent
->d_fsdata
;
4609 file
->f_op
= &mem_control_numa_stat_file_operations
;
4610 return single_open(file
, mem_control_numa_stat_show
, cont
);
4612 #endif /* CONFIG_NUMA */
4614 static struct cftype mem_cgroup_files
[] = {
4616 .name
= "usage_in_bytes",
4617 .private = MEMFILE_PRIVATE(_MEM
, RES_USAGE
),
4618 .read_u64
= mem_cgroup_read
,
4619 .register_event
= mem_cgroup_usage_register_event
,
4620 .unregister_event
= mem_cgroup_usage_unregister_event
,
4623 .name
= "max_usage_in_bytes",
4624 .private = MEMFILE_PRIVATE(_MEM
, RES_MAX_USAGE
),
4625 .trigger
= mem_cgroup_reset
,
4626 .read_u64
= mem_cgroup_read
,
4629 .name
= "limit_in_bytes",
4630 .private = MEMFILE_PRIVATE(_MEM
, RES_LIMIT
),
4631 .write_string
= mem_cgroup_write
,
4632 .read_u64
= mem_cgroup_read
,
4635 .name
= "soft_limit_in_bytes",
4636 .private = MEMFILE_PRIVATE(_MEM
, RES_SOFT_LIMIT
),
4637 .write_string
= mem_cgroup_write
,
4638 .read_u64
= mem_cgroup_read
,
4642 .private = MEMFILE_PRIVATE(_MEM
, RES_FAILCNT
),
4643 .trigger
= mem_cgroup_reset
,
4644 .read_u64
= mem_cgroup_read
,
4648 .read_map
= mem_control_stat_show
,
4651 .name
= "force_empty",
4652 .trigger
= mem_cgroup_force_empty_write
,
4655 .name
= "use_hierarchy",
4656 .write_u64
= mem_cgroup_hierarchy_write
,
4657 .read_u64
= mem_cgroup_hierarchy_read
,
4660 .name
= "swappiness",
4661 .read_u64
= mem_cgroup_swappiness_read
,
4662 .write_u64
= mem_cgroup_swappiness_write
,
4665 .name
= "move_charge_at_immigrate",
4666 .read_u64
= mem_cgroup_move_charge_read
,
4667 .write_u64
= mem_cgroup_move_charge_write
,
4670 .name
= "oom_control",
4671 .read_map
= mem_cgroup_oom_control_read
,
4672 .write_u64
= mem_cgroup_oom_control_write
,
4673 .register_event
= mem_cgroup_oom_register_event
,
4674 .unregister_event
= mem_cgroup_oom_unregister_event
,
4675 .private = MEMFILE_PRIVATE(_OOM_TYPE
, OOM_CONTROL
),
4679 .name
= "numa_stat",
4680 .open
= mem_control_numa_stat_open
,
4686 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4687 static struct cftype memsw_cgroup_files
[] = {
4689 .name
= "memsw.usage_in_bytes",
4690 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_USAGE
),
4691 .read_u64
= mem_cgroup_read
,
4692 .register_event
= mem_cgroup_usage_register_event
,
4693 .unregister_event
= mem_cgroup_usage_unregister_event
,
4696 .name
= "memsw.max_usage_in_bytes",
4697 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_MAX_USAGE
),
4698 .trigger
= mem_cgroup_reset
,
4699 .read_u64
= mem_cgroup_read
,
4702 .name
= "memsw.limit_in_bytes",
4703 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_LIMIT
),
4704 .write_string
= mem_cgroup_write
,
4705 .read_u64
= mem_cgroup_read
,
4708 .name
= "memsw.failcnt",
4709 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_FAILCNT
),
4710 .trigger
= mem_cgroup_reset
,
4711 .read_u64
= mem_cgroup_read
,
4715 static int register_memsw_files(struct cgroup
*cont
, struct cgroup_subsys
*ss
)
4717 if (!do_swap_account
)
4719 return cgroup_add_files(cont
, ss
, memsw_cgroup_files
,
4720 ARRAY_SIZE(memsw_cgroup_files
));
4723 static int register_memsw_files(struct cgroup
*cont
, struct cgroup_subsys
*ss
)
4729 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup
*memcg
, int node
)
4731 struct mem_cgroup_per_node
*pn
;
4732 struct mem_cgroup_per_zone
*mz
;
4734 int zone
, tmp
= node
;
4736 * This routine is called against possible nodes.
4737 * But it's BUG to call kmalloc() against offline node.
4739 * TODO: this routine can waste much memory for nodes which will
4740 * never be onlined. It's better to use memory hotplug callback
4743 if (!node_state(node
, N_NORMAL_MEMORY
))
4745 pn
= kzalloc_node(sizeof(*pn
), GFP_KERNEL
, tmp
);
4749 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
4750 mz
= &pn
->zoneinfo
[zone
];
4752 INIT_LIST_HEAD(&mz
->lists
[l
]);
4753 mz
->usage_in_excess
= 0;
4754 mz
->on_tree
= false;
4757 memcg
->info
.nodeinfo
[node
] = pn
;
4761 static void free_mem_cgroup_per_zone_info(struct mem_cgroup
*memcg
, int node
)
4763 kfree(memcg
->info
.nodeinfo
[node
]);
4766 static struct mem_cgroup
*mem_cgroup_alloc(void)
4768 struct mem_cgroup
*mem
;
4769 int size
= sizeof(struct mem_cgroup
);
4771 /* Can be very big if MAX_NUMNODES is very big */
4772 if (size
< PAGE_SIZE
)
4773 mem
= kzalloc(size
, GFP_KERNEL
);
4775 mem
= vzalloc(size
);
4780 mem
->stat
= alloc_percpu(struct mem_cgroup_stat_cpu
);
4783 spin_lock_init(&mem
->pcp_counter_lock
);
4787 if (size
< PAGE_SIZE
)
4795 * At destroying mem_cgroup, references from swap_cgroup can remain.
4796 * (scanning all at force_empty is too costly...)
4798 * Instead of clearing all references at force_empty, we remember
4799 * the number of reference from swap_cgroup and free mem_cgroup when
4800 * it goes down to 0.
4802 * Removal of cgroup itself succeeds regardless of refs from swap.
4805 static void __mem_cgroup_free(struct mem_cgroup
*memcg
)
4809 mem_cgroup_remove_from_trees(memcg
);
4810 free_css_id(&mem_cgroup_subsys
, &memcg
->css
);
4812 for_each_node_state(node
, N_POSSIBLE
)
4813 free_mem_cgroup_per_zone_info(memcg
, node
);
4815 free_percpu(memcg
->stat
);
4816 if (sizeof(struct mem_cgroup
) < PAGE_SIZE
)
4822 static void mem_cgroup_get(struct mem_cgroup
*memcg
)
4824 atomic_inc(&memcg
->refcnt
);
4827 static void __mem_cgroup_put(struct mem_cgroup
*memcg
, int count
)
4829 if (atomic_sub_and_test(count
, &memcg
->refcnt
)) {
4830 struct mem_cgroup
*parent
= parent_mem_cgroup(memcg
);
4831 __mem_cgroup_free(memcg
);
4833 mem_cgroup_put(parent
);
4837 static void mem_cgroup_put(struct mem_cgroup
*memcg
)
4839 __mem_cgroup_put(memcg
, 1);
4843 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4845 static struct mem_cgroup
*parent_mem_cgroup(struct mem_cgroup
*memcg
)
4847 if (!memcg
->res
.parent
)
4849 return mem_cgroup_from_res_counter(memcg
->res
.parent
, res
);
4852 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4853 static void __init
enable_swap_cgroup(void)
4855 if (!mem_cgroup_disabled() && really_do_swap_account
)
4856 do_swap_account
= 1;
4859 static void __init
enable_swap_cgroup(void)
4864 static int mem_cgroup_soft_limit_tree_init(void)
4866 struct mem_cgroup_tree_per_node
*rtpn
;
4867 struct mem_cgroup_tree_per_zone
*rtpz
;
4868 int tmp
, node
, zone
;
4870 for_each_node_state(node
, N_POSSIBLE
) {
4872 if (!node_state(node
, N_NORMAL_MEMORY
))
4874 rtpn
= kzalloc_node(sizeof(*rtpn
), GFP_KERNEL
, tmp
);
4878 soft_limit_tree
.rb_tree_per_node
[node
] = rtpn
;
4880 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
4881 rtpz
= &rtpn
->rb_tree_per_zone
[zone
];
4882 rtpz
->rb_root
= RB_ROOT
;
4883 spin_lock_init(&rtpz
->lock
);
4889 static struct cgroup_subsys_state
* __ref
4890 mem_cgroup_create(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
4892 struct mem_cgroup
*memcg
, *parent
;
4893 long error
= -ENOMEM
;
4896 memcg
= mem_cgroup_alloc();
4898 return ERR_PTR(error
);
4900 for_each_node_state(node
, N_POSSIBLE
)
4901 if (alloc_mem_cgroup_per_zone_info(memcg
, node
))
4905 if (cont
->parent
== NULL
) {
4907 enable_swap_cgroup();
4909 root_mem_cgroup
= memcg
;
4910 if (mem_cgroup_soft_limit_tree_init())
4912 for_each_possible_cpu(cpu
) {
4913 struct memcg_stock_pcp
*stock
=
4914 &per_cpu(memcg_stock
, cpu
);
4915 INIT_WORK(&stock
->work
, drain_local_stock
);
4917 hotcpu_notifier(memcg_cpu_hotplug_callback
, 0);
4919 parent
= mem_cgroup_from_cont(cont
->parent
);
4920 memcg
->use_hierarchy
= parent
->use_hierarchy
;
4921 memcg
->oom_kill_disable
= parent
->oom_kill_disable
;
4924 if (parent
&& parent
->use_hierarchy
) {
4925 res_counter_init(&memcg
->res
, &parent
->res
);
4926 res_counter_init(&memcg
->memsw
, &parent
->memsw
);
4928 * We increment refcnt of the parent to ensure that we can
4929 * safely access it on res_counter_charge/uncharge.
4930 * This refcnt will be decremented when freeing this
4931 * mem_cgroup(see mem_cgroup_put).
4933 mem_cgroup_get(parent
);
4935 res_counter_init(&memcg
->res
, NULL
);
4936 res_counter_init(&memcg
->memsw
, NULL
);
4938 memcg
->last_scanned_child
= 0;
4939 memcg
->last_scanned_node
= MAX_NUMNODES
;
4940 INIT_LIST_HEAD(&memcg
->oom_notify
);
4943 memcg
->swappiness
= mem_cgroup_swappiness(parent
);
4944 atomic_set(&memcg
->refcnt
, 1);
4945 memcg
->move_charge_at_immigrate
= 0;
4946 mutex_init(&memcg
->thresholds_lock
);
4949 __mem_cgroup_free(memcg
);
4950 root_mem_cgroup
= NULL
;
4951 return ERR_PTR(error
);
4954 static int mem_cgroup_pre_destroy(struct cgroup_subsys
*ss
,
4955 struct cgroup
*cont
)
4957 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cont
);
4959 return mem_cgroup_force_empty(memcg
, false);
4962 static void mem_cgroup_destroy(struct cgroup_subsys
*ss
,
4963 struct cgroup
*cont
)
4965 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cont
);
4967 mem_cgroup_put(memcg
);
4970 static int mem_cgroup_populate(struct cgroup_subsys
*ss
,
4971 struct cgroup
*cont
)
4975 ret
= cgroup_add_files(cont
, ss
, mem_cgroup_files
,
4976 ARRAY_SIZE(mem_cgroup_files
));
4979 ret
= register_memsw_files(cont
, ss
);
4984 /* Handlers for move charge at task migration. */
4985 #define PRECHARGE_COUNT_AT_ONCE 256
4986 static int mem_cgroup_do_precharge(unsigned long count
)
4989 int batch_count
= PRECHARGE_COUNT_AT_ONCE
;
4990 struct mem_cgroup
*memcg
= mc
.to
;
4992 if (mem_cgroup_is_root(memcg
)) {
4993 mc
.precharge
+= count
;
4994 /* we don't need css_get for root */
4997 /* try to charge at once */
4999 struct res_counter
*dummy
;
5001 * "memcg" cannot be under rmdir() because we've already checked
5002 * by cgroup_lock_live_cgroup() that it is not removed and we
5003 * are still under the same cgroup_mutex. So we can postpone
5006 if (res_counter_charge(&memcg
->res
, PAGE_SIZE
* count
, &dummy
))
5008 if (do_swap_account
&& res_counter_charge(&memcg
->memsw
,
5009 PAGE_SIZE
* count
, &dummy
)) {
5010 res_counter_uncharge(&memcg
->res
, PAGE_SIZE
* count
);
5013 mc
.precharge
+= count
;
5017 /* fall back to one by one charge */
5019 if (signal_pending(current
)) {
5023 if (!batch_count
--) {
5024 batch_count
= PRECHARGE_COUNT_AT_ONCE
;
5027 ret
= __mem_cgroup_try_charge(NULL
,
5028 GFP_KERNEL
, 1, &memcg
, false);
5030 /* mem_cgroup_clear_mc() will do uncharge later */
5038 * is_target_pte_for_mc - check a pte whether it is valid for move charge
5039 * @vma: the vma the pte to be checked belongs
5040 * @addr: the address corresponding to the pte to be checked
5041 * @ptent: the pte to be checked
5042 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5045 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5046 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5047 * move charge. if @target is not NULL, the page is stored in target->page
5048 * with extra refcnt got(Callers should handle it).
5049 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5050 * target for charge migration. if @target is not NULL, the entry is stored
5053 * Called with pte lock held.
5060 enum mc_target_type
{
5061 MC_TARGET_NONE
, /* not used */
5066 static struct page
*mc_handle_present_pte(struct vm_area_struct
*vma
,
5067 unsigned long addr
, pte_t ptent
)
5069 struct page
*page
= vm_normal_page(vma
, addr
, ptent
);
5071 if (!page
|| !page_mapped(page
))
5073 if (PageAnon(page
)) {
5074 /* we don't move shared anon */
5075 if (!move_anon() || page_mapcount(page
) > 2)
5077 } else if (!move_file())
5078 /* we ignore mapcount for file pages */
5080 if (!get_page_unless_zero(page
))
5086 static struct page
*mc_handle_swap_pte(struct vm_area_struct
*vma
,
5087 unsigned long addr
, pte_t ptent
, swp_entry_t
*entry
)
5090 struct page
*page
= NULL
;
5091 swp_entry_t ent
= pte_to_swp_entry(ptent
);
5093 if (!move_anon() || non_swap_entry(ent
))
5095 usage_count
= mem_cgroup_count_swap_user(ent
, &page
);
5096 if (usage_count
> 1) { /* we don't move shared anon */
5101 if (do_swap_account
)
5102 entry
->val
= ent
.val
;
5107 static struct page
*mc_handle_file_pte(struct vm_area_struct
*vma
,
5108 unsigned long addr
, pte_t ptent
, swp_entry_t
*entry
)
5110 struct page
*page
= NULL
;
5111 struct inode
*inode
;
5112 struct address_space
*mapping
;
5115 if (!vma
->vm_file
) /* anonymous vma */
5120 inode
= vma
->vm_file
->f_path
.dentry
->d_inode
;
5121 mapping
= vma
->vm_file
->f_mapping
;
5122 if (pte_none(ptent
))
5123 pgoff
= linear_page_index(vma
, addr
);
5124 else /* pte_file(ptent) is true */
5125 pgoff
= pte_to_pgoff(ptent
);
5127 /* page is moved even if it's not RSS of this task(page-faulted). */
5128 page
= find_get_page(mapping
, pgoff
);
5131 /* shmem/tmpfs may report page out on swap: account for that too. */
5132 if (radix_tree_exceptional_entry(page
)) {
5133 swp_entry_t swap
= radix_to_swp_entry(page
);
5134 if (do_swap_account
)
5136 page
= find_get_page(&swapper_space
, swap
.val
);
5142 static int is_target_pte_for_mc(struct vm_area_struct
*vma
,
5143 unsigned long addr
, pte_t ptent
, union mc_target
*target
)
5145 struct page
*page
= NULL
;
5146 struct page_cgroup
*pc
;
5148 swp_entry_t ent
= { .val
= 0 };
5150 if (pte_present(ptent
))
5151 page
= mc_handle_present_pte(vma
, addr
, ptent
);
5152 else if (is_swap_pte(ptent
))
5153 page
= mc_handle_swap_pte(vma
, addr
, ptent
, &ent
);
5154 else if (pte_none(ptent
) || pte_file(ptent
))
5155 page
= mc_handle_file_pte(vma
, addr
, ptent
, &ent
);
5157 if (!page
&& !ent
.val
)
5160 pc
= lookup_page_cgroup(page
);
5162 * Do only loose check w/o page_cgroup lock.
5163 * mem_cgroup_move_account() checks the pc is valid or not under
5166 if (PageCgroupUsed(pc
) && pc
->mem_cgroup
== mc
.from
) {
5167 ret
= MC_TARGET_PAGE
;
5169 target
->page
= page
;
5171 if (!ret
|| !target
)
5174 /* There is a swap entry and a page doesn't exist or isn't charged */
5175 if (ent
.val
&& !ret
&&
5176 css_id(&mc
.from
->css
) == lookup_swap_cgroup(ent
)) {
5177 ret
= MC_TARGET_SWAP
;
5184 static int mem_cgroup_count_precharge_pte_range(pmd_t
*pmd
,
5185 unsigned long addr
, unsigned long end
,
5186 struct mm_walk
*walk
)
5188 struct vm_area_struct
*vma
= walk
->private;
5192 split_huge_page_pmd(walk
->mm
, pmd
);
5194 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
5195 for (; addr
!= end
; pte
++, addr
+= PAGE_SIZE
)
5196 if (is_target_pte_for_mc(vma
, addr
, *pte
, NULL
))
5197 mc
.precharge
++; /* increment precharge temporarily */
5198 pte_unmap_unlock(pte
- 1, ptl
);
5204 static unsigned long mem_cgroup_count_precharge(struct mm_struct
*mm
)
5206 unsigned long precharge
;
5207 struct vm_area_struct
*vma
;
5209 down_read(&mm
->mmap_sem
);
5210 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
5211 struct mm_walk mem_cgroup_count_precharge_walk
= {
5212 .pmd_entry
= mem_cgroup_count_precharge_pte_range
,
5216 if (is_vm_hugetlb_page(vma
))
5218 walk_page_range(vma
->vm_start
, vma
->vm_end
,
5219 &mem_cgroup_count_precharge_walk
);
5221 up_read(&mm
->mmap_sem
);
5223 precharge
= mc
.precharge
;
5229 static int mem_cgroup_precharge_mc(struct mm_struct
*mm
)
5231 unsigned long precharge
= mem_cgroup_count_precharge(mm
);
5233 VM_BUG_ON(mc
.moving_task
);
5234 mc
.moving_task
= current
;
5235 return mem_cgroup_do_precharge(precharge
);
5238 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5239 static void __mem_cgroup_clear_mc(void)
5241 struct mem_cgroup
*from
= mc
.from
;
5242 struct mem_cgroup
*to
= mc
.to
;
5244 /* we must uncharge all the leftover precharges from mc.to */
5246 __mem_cgroup_cancel_charge(mc
.to
, mc
.precharge
);
5250 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5251 * we must uncharge here.
5253 if (mc
.moved_charge
) {
5254 __mem_cgroup_cancel_charge(mc
.from
, mc
.moved_charge
);
5255 mc
.moved_charge
= 0;
5257 /* we must fixup refcnts and charges */
5258 if (mc
.moved_swap
) {
5259 /* uncharge swap account from the old cgroup */
5260 if (!mem_cgroup_is_root(mc
.from
))
5261 res_counter_uncharge(&mc
.from
->memsw
,
5262 PAGE_SIZE
* mc
.moved_swap
);
5263 __mem_cgroup_put(mc
.from
, mc
.moved_swap
);
5265 if (!mem_cgroup_is_root(mc
.to
)) {
5267 * we charged both to->res and to->memsw, so we should
5270 res_counter_uncharge(&mc
.to
->res
,
5271 PAGE_SIZE
* mc
.moved_swap
);
5273 /* we've already done mem_cgroup_get(mc.to) */
5276 memcg_oom_recover(from
);
5277 memcg_oom_recover(to
);
5278 wake_up_all(&mc
.waitq
);
5281 static void mem_cgroup_clear_mc(void)
5283 struct mem_cgroup
*from
= mc
.from
;
5286 * we must clear moving_task before waking up waiters at the end of
5289 mc
.moving_task
= NULL
;
5290 __mem_cgroup_clear_mc();
5291 spin_lock(&mc
.lock
);
5294 spin_unlock(&mc
.lock
);
5295 mem_cgroup_end_move(from
);
5298 static int mem_cgroup_can_attach(struct cgroup_subsys
*ss
,
5299 struct cgroup
*cgroup
,
5300 struct task_struct
*p
)
5303 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgroup
);
5305 if (memcg
->move_charge_at_immigrate
) {
5306 struct mm_struct
*mm
;
5307 struct mem_cgroup
*from
= mem_cgroup_from_task(p
);
5309 VM_BUG_ON(from
== memcg
);
5311 mm
= get_task_mm(p
);
5314 /* We move charges only when we move a owner of the mm */
5315 if (mm
->owner
== p
) {
5318 VM_BUG_ON(mc
.precharge
);
5319 VM_BUG_ON(mc
.moved_charge
);
5320 VM_BUG_ON(mc
.moved_swap
);
5321 mem_cgroup_start_move(from
);
5322 spin_lock(&mc
.lock
);
5325 spin_unlock(&mc
.lock
);
5326 /* We set mc.moving_task later */
5328 ret
= mem_cgroup_precharge_mc(mm
);
5330 mem_cgroup_clear_mc();
5337 static void mem_cgroup_cancel_attach(struct cgroup_subsys
*ss
,
5338 struct cgroup
*cgroup
,
5339 struct task_struct
*p
)
5341 mem_cgroup_clear_mc();
5344 static int mem_cgroup_move_charge_pte_range(pmd_t
*pmd
,
5345 unsigned long addr
, unsigned long end
,
5346 struct mm_walk
*walk
)
5349 struct vm_area_struct
*vma
= walk
->private;
5353 split_huge_page_pmd(walk
->mm
, pmd
);
5355 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
5356 for (; addr
!= end
; addr
+= PAGE_SIZE
) {
5357 pte_t ptent
= *(pte
++);
5358 union mc_target target
;
5361 struct page_cgroup
*pc
;
5367 type
= is_target_pte_for_mc(vma
, addr
, ptent
, &target
);
5369 case MC_TARGET_PAGE
:
5371 if (isolate_lru_page(page
))
5373 pc
= lookup_page_cgroup(page
);
5374 if (!mem_cgroup_move_account(page
, 1, pc
,
5375 mc
.from
, mc
.to
, false)) {
5377 /* we uncharge from mc.from later. */
5380 putback_lru_page(page
);
5381 put
: /* is_target_pte_for_mc() gets the page */
5384 case MC_TARGET_SWAP
:
5386 if (!mem_cgroup_move_swap_account(ent
,
5387 mc
.from
, mc
.to
, false)) {
5389 /* we fixup refcnts and charges later. */
5397 pte_unmap_unlock(pte
- 1, ptl
);
5402 * We have consumed all precharges we got in can_attach().
5403 * We try charge one by one, but don't do any additional
5404 * charges to mc.to if we have failed in charge once in attach()
5407 ret
= mem_cgroup_do_precharge(1);
5415 static void mem_cgroup_move_charge(struct mm_struct
*mm
)
5417 struct vm_area_struct
*vma
;
5419 lru_add_drain_all();
5421 if (unlikely(!down_read_trylock(&mm
->mmap_sem
))) {
5423 * Someone who are holding the mmap_sem might be waiting in
5424 * waitq. So we cancel all extra charges, wake up all waiters,
5425 * and retry. Because we cancel precharges, we might not be able
5426 * to move enough charges, but moving charge is a best-effort
5427 * feature anyway, so it wouldn't be a big problem.
5429 __mem_cgroup_clear_mc();
5433 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
5435 struct mm_walk mem_cgroup_move_charge_walk
= {
5436 .pmd_entry
= mem_cgroup_move_charge_pte_range
,
5440 if (is_vm_hugetlb_page(vma
))
5442 ret
= walk_page_range(vma
->vm_start
, vma
->vm_end
,
5443 &mem_cgroup_move_charge_walk
);
5446 * means we have consumed all precharges and failed in
5447 * doing additional charge. Just abandon here.
5451 up_read(&mm
->mmap_sem
);
5454 static void mem_cgroup_move_task(struct cgroup_subsys
*ss
,
5455 struct cgroup
*cont
,
5456 struct cgroup
*old_cont
,
5457 struct task_struct
*p
)
5459 struct mm_struct
*mm
= get_task_mm(p
);
5463 mem_cgroup_move_charge(mm
);
5468 mem_cgroup_clear_mc();
5470 #else /* !CONFIG_MMU */
5471 static int mem_cgroup_can_attach(struct cgroup_subsys
*ss
,
5472 struct cgroup
*cgroup
,
5473 struct task_struct
*p
)
5477 static void mem_cgroup_cancel_attach(struct cgroup_subsys
*ss
,
5478 struct cgroup
*cgroup
,
5479 struct task_struct
*p
)
5482 static void mem_cgroup_move_task(struct cgroup_subsys
*ss
,
5483 struct cgroup
*cont
,
5484 struct cgroup
*old_cont
,
5485 struct task_struct
*p
)
5490 struct cgroup_subsys mem_cgroup_subsys
= {
5492 .subsys_id
= mem_cgroup_subsys_id
,
5493 .create
= mem_cgroup_create
,
5494 .pre_destroy
= mem_cgroup_pre_destroy
,
5495 .destroy
= mem_cgroup_destroy
,
5496 .populate
= mem_cgroup_populate
,
5497 .can_attach
= mem_cgroup_can_attach
,
5498 .cancel_attach
= mem_cgroup_cancel_attach
,
5499 .attach
= mem_cgroup_move_task
,
5504 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5505 static int __init
enable_swap_account(char *s
)
5507 /* consider enabled if no parameter or 1 is given */
5508 if (!strcmp(s
, "1"))
5509 really_do_swap_account
= 1;
5510 else if (!strcmp(s
, "0"))
5511 really_do_swap_account
= 0;
5514 __setup("swapaccount=", enable_swap_account
);