1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/mutex.h>
37 #include <linux/rbtree.h>
38 #include <linux/slab.h>
39 #include <linux/swap.h>
40 #include <linux/swapops.h>
41 #include <linux/spinlock.h>
42 #include <linux/eventfd.h>
43 #include <linux/sort.h>
45 #include <linux/seq_file.h>
46 #include <linux/vmalloc.h>
47 #include <linux/mm_inline.h>
48 #include <linux/page_cgroup.h>
49 #include <linux/cpu.h>
52 #include <asm/uaccess.h>
54 struct cgroup_subsys mem_cgroup_subsys __read_mostly
;
55 #define MEM_CGROUP_RECLAIM_RETRIES 5
56 struct mem_cgroup
*root_mem_cgroup __read_mostly
;
58 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
59 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
60 int do_swap_account __read_mostly
;
61 static int really_do_swap_account __initdata
= 1; /* for remember boot option*/
63 #define do_swap_account (0)
67 * Per memcg event counter is incremented at every pagein/pageout. This counter
68 * is used for trigger some periodic events. This is straightforward and better
69 * than using jiffies etc. to handle periodic memcg event.
71 * These values will be used as !((event) & ((1 <<(thresh)) - 1))
73 #define THRESHOLDS_EVENTS_THRESH (7) /* once in 128 */
74 #define SOFTLIMIT_EVENTS_THRESH (10) /* once in 1024 */
77 * Statistics for memory cgroup.
79 enum mem_cgroup_stat_index
{
81 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
83 MEM_CGROUP_STAT_CACHE
, /* # of pages charged as cache */
84 MEM_CGROUP_STAT_RSS
, /* # of pages charged as anon rss */
85 MEM_CGROUP_STAT_FILE_MAPPED
, /* # of pages charged as file rss */
86 MEM_CGROUP_STAT_PGPGIN_COUNT
, /* # of pages paged in */
87 MEM_CGROUP_STAT_PGPGOUT_COUNT
, /* # of pages paged out */
88 MEM_CGROUP_STAT_SWAPOUT
, /* # of pages, swapped out */
89 MEM_CGROUP_EVENTS
, /* incremented at every pagein/pageout */
91 MEM_CGROUP_STAT_NSTATS
,
94 struct mem_cgroup_stat_cpu
{
95 s64 count
[MEM_CGROUP_STAT_NSTATS
];
99 * per-zone information in memory controller.
101 struct mem_cgroup_per_zone
{
103 * spin_lock to protect the per cgroup LRU
105 struct list_head lists
[NR_LRU_LISTS
];
106 unsigned long count
[NR_LRU_LISTS
];
108 struct zone_reclaim_stat reclaim_stat
;
109 struct rb_node tree_node
; /* RB tree node */
110 unsigned long long usage_in_excess
;/* Set to the value by which */
111 /* the soft limit is exceeded*/
113 struct mem_cgroup
*mem
; /* Back pointer, we cannot */
114 /* use container_of */
116 /* Macro for accessing counter */
117 #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
119 struct mem_cgroup_per_node
{
120 struct mem_cgroup_per_zone zoneinfo
[MAX_NR_ZONES
];
123 struct mem_cgroup_lru_info
{
124 struct mem_cgroup_per_node
*nodeinfo
[MAX_NUMNODES
];
128 * Cgroups above their limits are maintained in a RB-Tree, independent of
129 * their hierarchy representation
132 struct mem_cgroup_tree_per_zone
{
133 struct rb_root rb_root
;
137 struct mem_cgroup_tree_per_node
{
138 struct mem_cgroup_tree_per_zone rb_tree_per_zone
[MAX_NR_ZONES
];
141 struct mem_cgroup_tree
{
142 struct mem_cgroup_tree_per_node
*rb_tree_per_node
[MAX_NUMNODES
];
145 static struct mem_cgroup_tree soft_limit_tree __read_mostly
;
147 struct mem_cgroup_threshold
{
148 struct eventfd_ctx
*eventfd
;
153 struct mem_cgroup_threshold_ary
{
154 /* An array index points to threshold just below usage. */
155 int current_threshold
;
156 /* Size of entries[] */
158 /* Array of thresholds */
159 struct mem_cgroup_threshold entries
[0];
162 struct mem_cgroup_thresholds
{
163 /* Primary thresholds array */
164 struct mem_cgroup_threshold_ary
*primary
;
166 * Spare threshold array.
167 * This is needed to make mem_cgroup_unregister_event() "never fail".
168 * It must be able to store at least primary->size - 1 entries.
170 struct mem_cgroup_threshold_ary
*spare
;
174 struct mem_cgroup_eventfd_list
{
175 struct list_head list
;
176 struct eventfd_ctx
*eventfd
;
179 static void mem_cgroup_threshold(struct mem_cgroup
*mem
);
180 static void mem_cgroup_oom_notify(struct mem_cgroup
*mem
);
183 * The memory controller data structure. The memory controller controls both
184 * page cache and RSS per cgroup. We would eventually like to provide
185 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
186 * to help the administrator determine what knobs to tune.
188 * TODO: Add a water mark for the memory controller. Reclaim will begin when
189 * we hit the water mark. May be even add a low water mark, such that
190 * no reclaim occurs from a cgroup at it's low water mark, this is
191 * a feature that will be implemented much later in the future.
194 struct cgroup_subsys_state css
;
196 * the counter to account for memory usage
198 struct res_counter res
;
200 * the counter to account for mem+swap usage.
202 struct res_counter memsw
;
204 * Per cgroup active and inactive list, similar to the
205 * per zone LRU lists.
207 struct mem_cgroup_lru_info info
;
210 protect against reclaim related member.
212 spinlock_t reclaim_param_lock
;
214 int prev_priority
; /* for recording reclaim priority */
217 * While reclaiming in a hierarchy, we cache the last child we
220 int last_scanned_child
;
222 * Should the accounting and control be hierarchical, per subtree?
228 unsigned int swappiness
;
229 /* OOM-Killer disable */
230 int oom_kill_disable
;
232 /* set when res.limit == memsw.limit */
233 bool memsw_is_minimum
;
235 /* protect arrays of thresholds */
236 struct mutex thresholds_lock
;
238 /* thresholds for memory usage. RCU-protected */
239 struct mem_cgroup_thresholds thresholds
;
241 /* thresholds for mem+swap usage. RCU-protected */
242 struct mem_cgroup_thresholds memsw_thresholds
;
244 /* For oom notifier event fd */
245 struct list_head oom_notify
;
248 * Should we move charges of a task when a task is moved into this
249 * mem_cgroup ? And what type of charges should we move ?
251 unsigned long move_charge_at_immigrate
;
255 struct mem_cgroup_stat_cpu
*stat
;
258 /* Stuffs for move charges at task migration. */
260 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
261 * left-shifted bitmap of these types.
264 MOVE_CHARGE_TYPE_ANON
, /* private anonymous page and swap of it */
265 MOVE_CHARGE_TYPE_FILE
, /* file page(including tmpfs) and swap of it */
269 /* "mc" and its members are protected by cgroup_mutex */
270 static struct move_charge_struct
{
271 struct mem_cgroup
*from
;
272 struct mem_cgroup
*to
;
273 unsigned long precharge
;
274 unsigned long moved_charge
;
275 unsigned long moved_swap
;
276 struct task_struct
*moving_task
; /* a task moving charges */
277 wait_queue_head_t waitq
; /* a waitq for other context */
279 .waitq
= __WAIT_QUEUE_HEAD_INITIALIZER(mc
.waitq
),
282 static bool move_anon(void)
284 return test_bit(MOVE_CHARGE_TYPE_ANON
,
285 &mc
.to
->move_charge_at_immigrate
);
288 static bool move_file(void)
290 return test_bit(MOVE_CHARGE_TYPE_FILE
,
291 &mc
.to
->move_charge_at_immigrate
);
295 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
296 * limit reclaim to prevent infinite loops, if they ever occur.
298 #define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
299 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
302 MEM_CGROUP_CHARGE_TYPE_CACHE
= 0,
303 MEM_CGROUP_CHARGE_TYPE_MAPPED
,
304 MEM_CGROUP_CHARGE_TYPE_SHMEM
, /* used by page migration of shmem */
305 MEM_CGROUP_CHARGE_TYPE_FORCE
, /* used by force_empty */
306 MEM_CGROUP_CHARGE_TYPE_SWAPOUT
, /* for accounting swapcache */
307 MEM_CGROUP_CHARGE_TYPE_DROP
, /* a page was unused swap cache */
311 /* only for here (for easy reading.) */
312 #define PCGF_CACHE (1UL << PCG_CACHE)
313 #define PCGF_USED (1UL << PCG_USED)
314 #define PCGF_LOCK (1UL << PCG_LOCK)
315 /* Not used, but added here for completeness */
316 #define PCGF_ACCT (1UL << PCG_ACCT)
318 /* for encoding cft->private value on file */
321 #define _OOM_TYPE (2)
322 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
323 #define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
324 #define MEMFILE_ATTR(val) ((val) & 0xffff)
325 /* Used for OOM nofiier */
326 #define OOM_CONTROL (0)
329 * Reclaim flags for mem_cgroup_hierarchical_reclaim
331 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
332 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
333 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
334 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
335 #define MEM_CGROUP_RECLAIM_SOFT_BIT 0x2
336 #define MEM_CGROUP_RECLAIM_SOFT (1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
338 static void mem_cgroup_get(struct mem_cgroup
*mem
);
339 static void mem_cgroup_put(struct mem_cgroup
*mem
);
340 static struct mem_cgroup
*parent_mem_cgroup(struct mem_cgroup
*mem
);
341 static void drain_all_stock_async(void);
343 static struct mem_cgroup_per_zone
*
344 mem_cgroup_zoneinfo(struct mem_cgroup
*mem
, int nid
, int zid
)
346 return &mem
->info
.nodeinfo
[nid
]->zoneinfo
[zid
];
349 struct cgroup_subsys_state
*mem_cgroup_css(struct mem_cgroup
*mem
)
354 static struct mem_cgroup_per_zone
*
355 page_cgroup_zoneinfo(struct page_cgroup
*pc
)
357 struct mem_cgroup
*mem
= pc
->mem_cgroup
;
358 int nid
= page_cgroup_nid(pc
);
359 int zid
= page_cgroup_zid(pc
);
364 return mem_cgroup_zoneinfo(mem
, nid
, zid
);
367 static struct mem_cgroup_tree_per_zone
*
368 soft_limit_tree_node_zone(int nid
, int zid
)
370 return &soft_limit_tree
.rb_tree_per_node
[nid
]->rb_tree_per_zone
[zid
];
373 static struct mem_cgroup_tree_per_zone
*
374 soft_limit_tree_from_page(struct page
*page
)
376 int nid
= page_to_nid(page
);
377 int zid
= page_zonenum(page
);
379 return &soft_limit_tree
.rb_tree_per_node
[nid
]->rb_tree_per_zone
[zid
];
383 __mem_cgroup_insert_exceeded(struct mem_cgroup
*mem
,
384 struct mem_cgroup_per_zone
*mz
,
385 struct mem_cgroup_tree_per_zone
*mctz
,
386 unsigned long long new_usage_in_excess
)
388 struct rb_node
**p
= &mctz
->rb_root
.rb_node
;
389 struct rb_node
*parent
= NULL
;
390 struct mem_cgroup_per_zone
*mz_node
;
395 mz
->usage_in_excess
= new_usage_in_excess
;
396 if (!mz
->usage_in_excess
)
400 mz_node
= rb_entry(parent
, struct mem_cgroup_per_zone
,
402 if (mz
->usage_in_excess
< mz_node
->usage_in_excess
)
405 * We can't avoid mem cgroups that are over their soft
406 * limit by the same amount
408 else if (mz
->usage_in_excess
>= mz_node
->usage_in_excess
)
411 rb_link_node(&mz
->tree_node
, parent
, p
);
412 rb_insert_color(&mz
->tree_node
, &mctz
->rb_root
);
417 __mem_cgroup_remove_exceeded(struct mem_cgroup
*mem
,
418 struct mem_cgroup_per_zone
*mz
,
419 struct mem_cgroup_tree_per_zone
*mctz
)
423 rb_erase(&mz
->tree_node
, &mctz
->rb_root
);
428 mem_cgroup_remove_exceeded(struct mem_cgroup
*mem
,
429 struct mem_cgroup_per_zone
*mz
,
430 struct mem_cgroup_tree_per_zone
*mctz
)
432 spin_lock(&mctz
->lock
);
433 __mem_cgroup_remove_exceeded(mem
, mz
, mctz
);
434 spin_unlock(&mctz
->lock
);
438 static void mem_cgroup_update_tree(struct mem_cgroup
*mem
, struct page
*page
)
440 unsigned long long excess
;
441 struct mem_cgroup_per_zone
*mz
;
442 struct mem_cgroup_tree_per_zone
*mctz
;
443 int nid
= page_to_nid(page
);
444 int zid
= page_zonenum(page
);
445 mctz
= soft_limit_tree_from_page(page
);
448 * Necessary to update all ancestors when hierarchy is used.
449 * because their event counter is not touched.
451 for (; mem
; mem
= parent_mem_cgroup(mem
)) {
452 mz
= mem_cgroup_zoneinfo(mem
, nid
, zid
);
453 excess
= res_counter_soft_limit_excess(&mem
->res
);
455 * We have to update the tree if mz is on RB-tree or
456 * mem is over its softlimit.
458 if (excess
|| mz
->on_tree
) {
459 spin_lock(&mctz
->lock
);
460 /* if on-tree, remove it */
462 __mem_cgroup_remove_exceeded(mem
, mz
, mctz
);
464 * Insert again. mz->usage_in_excess will be updated.
465 * If excess is 0, no tree ops.
467 __mem_cgroup_insert_exceeded(mem
, mz
, mctz
, excess
);
468 spin_unlock(&mctz
->lock
);
473 static void mem_cgroup_remove_from_trees(struct mem_cgroup
*mem
)
476 struct mem_cgroup_per_zone
*mz
;
477 struct mem_cgroup_tree_per_zone
*mctz
;
479 for_each_node_state(node
, N_POSSIBLE
) {
480 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
481 mz
= mem_cgroup_zoneinfo(mem
, node
, zone
);
482 mctz
= soft_limit_tree_node_zone(node
, zone
);
483 mem_cgroup_remove_exceeded(mem
, mz
, mctz
);
488 static inline unsigned long mem_cgroup_get_excess(struct mem_cgroup
*mem
)
490 return res_counter_soft_limit_excess(&mem
->res
) >> PAGE_SHIFT
;
493 static struct mem_cgroup_per_zone
*
494 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone
*mctz
)
496 struct rb_node
*rightmost
= NULL
;
497 struct mem_cgroup_per_zone
*mz
;
501 rightmost
= rb_last(&mctz
->rb_root
);
503 goto done
; /* Nothing to reclaim from */
505 mz
= rb_entry(rightmost
, struct mem_cgroup_per_zone
, tree_node
);
507 * Remove the node now but someone else can add it back,
508 * we will to add it back at the end of reclaim to its correct
509 * position in the tree.
511 __mem_cgroup_remove_exceeded(mz
->mem
, mz
, mctz
);
512 if (!res_counter_soft_limit_excess(&mz
->mem
->res
) ||
513 !css_tryget(&mz
->mem
->css
))
519 static struct mem_cgroup_per_zone
*
520 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone
*mctz
)
522 struct mem_cgroup_per_zone
*mz
;
524 spin_lock(&mctz
->lock
);
525 mz
= __mem_cgroup_largest_soft_limit_node(mctz
);
526 spin_unlock(&mctz
->lock
);
530 static s64
mem_cgroup_read_stat(struct mem_cgroup
*mem
,
531 enum mem_cgroup_stat_index idx
)
536 for_each_possible_cpu(cpu
)
537 val
+= per_cpu(mem
->stat
->count
[idx
], cpu
);
541 static s64
mem_cgroup_local_usage(struct mem_cgroup
*mem
)
545 ret
= mem_cgroup_read_stat(mem
, MEM_CGROUP_STAT_RSS
);
546 ret
+= mem_cgroup_read_stat(mem
, MEM_CGROUP_STAT_CACHE
);
550 static void mem_cgroup_swap_statistics(struct mem_cgroup
*mem
,
553 int val
= (charge
) ? 1 : -1;
554 this_cpu_add(mem
->stat
->count
[MEM_CGROUP_STAT_SWAPOUT
], val
);
557 static void mem_cgroup_charge_statistics(struct mem_cgroup
*mem
,
558 struct page_cgroup
*pc
,
561 int val
= (charge
) ? 1 : -1;
565 if (PageCgroupCache(pc
))
566 __this_cpu_add(mem
->stat
->count
[MEM_CGROUP_STAT_CACHE
], val
);
568 __this_cpu_add(mem
->stat
->count
[MEM_CGROUP_STAT_RSS
], val
);
571 __this_cpu_inc(mem
->stat
->count
[MEM_CGROUP_STAT_PGPGIN_COUNT
]);
573 __this_cpu_inc(mem
->stat
->count
[MEM_CGROUP_STAT_PGPGOUT_COUNT
]);
574 __this_cpu_inc(mem
->stat
->count
[MEM_CGROUP_EVENTS
]);
579 static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup
*mem
,
583 struct mem_cgroup_per_zone
*mz
;
586 for_each_online_node(nid
)
587 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
588 mz
= mem_cgroup_zoneinfo(mem
, nid
, zid
);
589 total
+= MEM_CGROUP_ZSTAT(mz
, idx
);
594 static bool __memcg_event_check(struct mem_cgroup
*mem
, int event_mask_shift
)
598 val
= this_cpu_read(mem
->stat
->count
[MEM_CGROUP_EVENTS
]);
600 return !(val
& ((1 << event_mask_shift
) - 1));
604 * Check events in order.
607 static void memcg_check_events(struct mem_cgroup
*mem
, struct page
*page
)
609 /* threshold event is triggered in finer grain than soft limit */
610 if (unlikely(__memcg_event_check(mem
, THRESHOLDS_EVENTS_THRESH
))) {
611 mem_cgroup_threshold(mem
);
612 if (unlikely(__memcg_event_check(mem
, SOFTLIMIT_EVENTS_THRESH
)))
613 mem_cgroup_update_tree(mem
, page
);
617 static struct mem_cgroup
*mem_cgroup_from_cont(struct cgroup
*cont
)
619 return container_of(cgroup_subsys_state(cont
,
620 mem_cgroup_subsys_id
), struct mem_cgroup
,
624 struct mem_cgroup
*mem_cgroup_from_task(struct task_struct
*p
)
627 * mm_update_next_owner() may clear mm->owner to NULL
628 * if it races with swapoff, page migration, etc.
629 * So this can be called with p == NULL.
634 return container_of(task_subsys_state(p
, mem_cgroup_subsys_id
),
635 struct mem_cgroup
, css
);
638 static struct mem_cgroup
*try_get_mem_cgroup_from_mm(struct mm_struct
*mm
)
640 struct mem_cgroup
*mem
= NULL
;
645 * Because we have no locks, mm->owner's may be being moved to other
646 * cgroup. We use css_tryget() here even if this looks
647 * pessimistic (rather than adding locks here).
651 mem
= mem_cgroup_from_task(rcu_dereference(mm
->owner
));
654 } while (!css_tryget(&mem
->css
));
660 * Call callback function against all cgroup under hierarchy tree.
662 static int mem_cgroup_walk_tree(struct mem_cgroup
*root
, void *data
,
663 int (*func
)(struct mem_cgroup
*, void *))
665 int found
, ret
, nextid
;
666 struct cgroup_subsys_state
*css
;
667 struct mem_cgroup
*mem
;
669 if (!root
->use_hierarchy
)
670 return (*func
)(root
, data
);
678 css
= css_get_next(&mem_cgroup_subsys
, nextid
, &root
->css
,
680 if (css
&& css_tryget(css
))
681 mem
= container_of(css
, struct mem_cgroup
, css
);
685 ret
= (*func
)(mem
, data
);
689 } while (!ret
&& css
);
694 static inline bool mem_cgroup_is_root(struct mem_cgroup
*mem
)
696 return (mem
== root_mem_cgroup
);
700 * Following LRU functions are allowed to be used without PCG_LOCK.
701 * Operations are called by routine of global LRU independently from memcg.
702 * What we have to take care of here is validness of pc->mem_cgroup.
704 * Changes to pc->mem_cgroup happens when
707 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
708 * It is added to LRU before charge.
709 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
710 * When moving account, the page is not on LRU. It's isolated.
713 void mem_cgroup_del_lru_list(struct page
*page
, enum lru_list lru
)
715 struct page_cgroup
*pc
;
716 struct mem_cgroup_per_zone
*mz
;
718 if (mem_cgroup_disabled())
720 pc
= lookup_page_cgroup(page
);
721 /* can happen while we handle swapcache. */
722 if (!TestClearPageCgroupAcctLRU(pc
))
724 VM_BUG_ON(!pc
->mem_cgroup
);
726 * We don't check PCG_USED bit. It's cleared when the "page" is finally
727 * removed from global LRU.
729 mz
= page_cgroup_zoneinfo(pc
);
730 MEM_CGROUP_ZSTAT(mz
, lru
) -= 1;
731 if (mem_cgroup_is_root(pc
->mem_cgroup
))
733 VM_BUG_ON(list_empty(&pc
->lru
));
734 list_del_init(&pc
->lru
);
738 void mem_cgroup_del_lru(struct page
*page
)
740 mem_cgroup_del_lru_list(page
, page_lru(page
));
743 void mem_cgroup_rotate_lru_list(struct page
*page
, enum lru_list lru
)
745 struct mem_cgroup_per_zone
*mz
;
746 struct page_cgroup
*pc
;
748 if (mem_cgroup_disabled())
751 pc
= lookup_page_cgroup(page
);
753 * Used bit is set without atomic ops but after smp_wmb().
754 * For making pc->mem_cgroup visible, insert smp_rmb() here.
757 /* unused or root page is not rotated. */
758 if (!PageCgroupUsed(pc
) || mem_cgroup_is_root(pc
->mem_cgroup
))
760 mz
= page_cgroup_zoneinfo(pc
);
761 list_move(&pc
->lru
, &mz
->lists
[lru
]);
764 void mem_cgroup_add_lru_list(struct page
*page
, enum lru_list lru
)
766 struct page_cgroup
*pc
;
767 struct mem_cgroup_per_zone
*mz
;
769 if (mem_cgroup_disabled())
771 pc
= lookup_page_cgroup(page
);
772 VM_BUG_ON(PageCgroupAcctLRU(pc
));
774 * Used bit is set without atomic ops but after smp_wmb().
775 * For making pc->mem_cgroup visible, insert smp_rmb() here.
778 if (!PageCgroupUsed(pc
))
781 mz
= page_cgroup_zoneinfo(pc
);
782 MEM_CGROUP_ZSTAT(mz
, lru
) += 1;
783 SetPageCgroupAcctLRU(pc
);
784 if (mem_cgroup_is_root(pc
->mem_cgroup
))
786 list_add(&pc
->lru
, &mz
->lists
[lru
]);
790 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
791 * lru because the page may.be reused after it's fully uncharged (because of
792 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
793 * it again. This function is only used to charge SwapCache. It's done under
794 * lock_page and expected that zone->lru_lock is never held.
796 static void mem_cgroup_lru_del_before_commit_swapcache(struct page
*page
)
799 struct zone
*zone
= page_zone(page
);
800 struct page_cgroup
*pc
= lookup_page_cgroup(page
);
802 spin_lock_irqsave(&zone
->lru_lock
, flags
);
804 * Forget old LRU when this page_cgroup is *not* used. This Used bit
805 * is guarded by lock_page() because the page is SwapCache.
807 if (!PageCgroupUsed(pc
))
808 mem_cgroup_del_lru_list(page
, page_lru(page
));
809 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
812 static void mem_cgroup_lru_add_after_commit_swapcache(struct page
*page
)
815 struct zone
*zone
= page_zone(page
);
816 struct page_cgroup
*pc
= lookup_page_cgroup(page
);
818 spin_lock_irqsave(&zone
->lru_lock
, flags
);
819 /* link when the page is linked to LRU but page_cgroup isn't */
820 if (PageLRU(page
) && !PageCgroupAcctLRU(pc
))
821 mem_cgroup_add_lru_list(page
, page_lru(page
));
822 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
826 void mem_cgroup_move_lists(struct page
*page
,
827 enum lru_list from
, enum lru_list to
)
829 if (mem_cgroup_disabled())
831 mem_cgroup_del_lru_list(page
, from
);
832 mem_cgroup_add_lru_list(page
, to
);
835 int task_in_mem_cgroup(struct task_struct
*task
, const struct mem_cgroup
*mem
)
838 struct mem_cgroup
*curr
= NULL
;
842 curr
= try_get_mem_cgroup_from_mm(task
->mm
);
848 * We should check use_hierarchy of "mem" not "curr". Because checking
849 * use_hierarchy of "curr" here make this function true if hierarchy is
850 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
851 * hierarchy(even if use_hierarchy is disabled in "mem").
853 if (mem
->use_hierarchy
)
854 ret
= css_is_ancestor(&curr
->css
, &mem
->css
);
862 * prev_priority control...this will be used in memory reclaim path.
864 int mem_cgroup_get_reclaim_priority(struct mem_cgroup
*mem
)
868 spin_lock(&mem
->reclaim_param_lock
);
869 prev_priority
= mem
->prev_priority
;
870 spin_unlock(&mem
->reclaim_param_lock
);
872 return prev_priority
;
875 void mem_cgroup_note_reclaim_priority(struct mem_cgroup
*mem
, int priority
)
877 spin_lock(&mem
->reclaim_param_lock
);
878 if (priority
< mem
->prev_priority
)
879 mem
->prev_priority
= priority
;
880 spin_unlock(&mem
->reclaim_param_lock
);
883 void mem_cgroup_record_reclaim_priority(struct mem_cgroup
*mem
, int priority
)
885 spin_lock(&mem
->reclaim_param_lock
);
886 mem
->prev_priority
= priority
;
887 spin_unlock(&mem
->reclaim_param_lock
);
890 static int calc_inactive_ratio(struct mem_cgroup
*memcg
, unsigned long *present_pages
)
892 unsigned long active
;
893 unsigned long inactive
;
895 unsigned long inactive_ratio
;
897 inactive
= mem_cgroup_get_local_zonestat(memcg
, LRU_INACTIVE_ANON
);
898 active
= mem_cgroup_get_local_zonestat(memcg
, LRU_ACTIVE_ANON
);
900 gb
= (inactive
+ active
) >> (30 - PAGE_SHIFT
);
902 inactive_ratio
= int_sqrt(10 * gb
);
907 present_pages
[0] = inactive
;
908 present_pages
[1] = active
;
911 return inactive_ratio
;
914 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup
*memcg
)
916 unsigned long active
;
917 unsigned long inactive
;
918 unsigned long present_pages
[2];
919 unsigned long inactive_ratio
;
921 inactive_ratio
= calc_inactive_ratio(memcg
, present_pages
);
923 inactive
= present_pages
[0];
924 active
= present_pages
[1];
926 if (inactive
* inactive_ratio
< active
)
932 int mem_cgroup_inactive_file_is_low(struct mem_cgroup
*memcg
)
934 unsigned long active
;
935 unsigned long inactive
;
937 inactive
= mem_cgroup_get_local_zonestat(memcg
, LRU_INACTIVE_FILE
);
938 active
= mem_cgroup_get_local_zonestat(memcg
, LRU_ACTIVE_FILE
);
940 return (active
> inactive
);
943 unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup
*memcg
,
947 int nid
= zone
->zone_pgdat
->node_id
;
948 int zid
= zone_idx(zone
);
949 struct mem_cgroup_per_zone
*mz
= mem_cgroup_zoneinfo(memcg
, nid
, zid
);
951 return MEM_CGROUP_ZSTAT(mz
, lru
);
954 struct zone_reclaim_stat
*mem_cgroup_get_reclaim_stat(struct mem_cgroup
*memcg
,
957 int nid
= zone
->zone_pgdat
->node_id
;
958 int zid
= zone_idx(zone
);
959 struct mem_cgroup_per_zone
*mz
= mem_cgroup_zoneinfo(memcg
, nid
, zid
);
961 return &mz
->reclaim_stat
;
964 struct zone_reclaim_stat
*
965 mem_cgroup_get_reclaim_stat_from_page(struct page
*page
)
967 struct page_cgroup
*pc
;
968 struct mem_cgroup_per_zone
*mz
;
970 if (mem_cgroup_disabled())
973 pc
= lookup_page_cgroup(page
);
975 * Used bit is set without atomic ops but after smp_wmb().
976 * For making pc->mem_cgroup visible, insert smp_rmb() here.
979 if (!PageCgroupUsed(pc
))
982 mz
= page_cgroup_zoneinfo(pc
);
986 return &mz
->reclaim_stat
;
989 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan
,
990 struct list_head
*dst
,
991 unsigned long *scanned
, int order
,
992 int mode
, struct zone
*z
,
993 struct mem_cgroup
*mem_cont
,
994 int active
, int file
)
996 unsigned long nr_taken
= 0;
1000 struct list_head
*src
;
1001 struct page_cgroup
*pc
, *tmp
;
1002 int nid
= z
->zone_pgdat
->node_id
;
1003 int zid
= zone_idx(z
);
1004 struct mem_cgroup_per_zone
*mz
;
1005 int lru
= LRU_FILE
* file
+ active
;
1009 mz
= mem_cgroup_zoneinfo(mem_cont
, nid
, zid
);
1010 src
= &mz
->lists
[lru
];
1013 list_for_each_entry_safe_reverse(pc
, tmp
, src
, lru
) {
1014 if (scan
>= nr_to_scan
)
1018 if (unlikely(!PageCgroupUsed(pc
)))
1020 if (unlikely(!PageLRU(page
)))
1024 ret
= __isolate_lru_page(page
, mode
, file
);
1027 list_move(&page
->lru
, dst
);
1028 mem_cgroup_del_lru(page
);
1032 /* we don't affect global LRU but rotate in our LRU */
1033 mem_cgroup_rotate_lru_list(page
, page_lru(page
));
1044 #define mem_cgroup_from_res_counter(counter, member) \
1045 container_of(counter, struct mem_cgroup, member)
1047 static bool mem_cgroup_check_under_limit(struct mem_cgroup
*mem
)
1049 if (do_swap_account
) {
1050 if (res_counter_check_under_limit(&mem
->res
) &&
1051 res_counter_check_under_limit(&mem
->memsw
))
1054 if (res_counter_check_under_limit(&mem
->res
))
1059 static unsigned int get_swappiness(struct mem_cgroup
*memcg
)
1061 struct cgroup
*cgrp
= memcg
->css
.cgroup
;
1062 unsigned int swappiness
;
1065 if (cgrp
->parent
== NULL
)
1066 return vm_swappiness
;
1068 spin_lock(&memcg
->reclaim_param_lock
);
1069 swappiness
= memcg
->swappiness
;
1070 spin_unlock(&memcg
->reclaim_param_lock
);
1075 static int mem_cgroup_count_children_cb(struct mem_cgroup
*mem
, void *data
)
1083 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1084 * @memcg: The memory cgroup that went over limit
1085 * @p: Task that is going to be killed
1087 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1090 void mem_cgroup_print_oom_info(struct mem_cgroup
*memcg
, struct task_struct
*p
)
1092 struct cgroup
*task_cgrp
;
1093 struct cgroup
*mem_cgrp
;
1095 * Need a buffer in BSS, can't rely on allocations. The code relies
1096 * on the assumption that OOM is serialized for memory controller.
1097 * If this assumption is broken, revisit this code.
1099 static char memcg_name
[PATH_MAX
];
1108 mem_cgrp
= memcg
->css
.cgroup
;
1109 task_cgrp
= task_cgroup(p
, mem_cgroup_subsys_id
);
1111 ret
= cgroup_path(task_cgrp
, memcg_name
, PATH_MAX
);
1114 * Unfortunately, we are unable to convert to a useful name
1115 * But we'll still print out the usage information
1122 printk(KERN_INFO
"Task in %s killed", memcg_name
);
1125 ret
= cgroup_path(mem_cgrp
, memcg_name
, PATH_MAX
);
1133 * Continues from above, so we don't need an KERN_ level
1135 printk(KERN_CONT
" as a result of limit of %s\n", memcg_name
);
1138 printk(KERN_INFO
"memory: usage %llukB, limit %llukB, failcnt %llu\n",
1139 res_counter_read_u64(&memcg
->res
, RES_USAGE
) >> 10,
1140 res_counter_read_u64(&memcg
->res
, RES_LIMIT
) >> 10,
1141 res_counter_read_u64(&memcg
->res
, RES_FAILCNT
));
1142 printk(KERN_INFO
"memory+swap: usage %llukB, limit %llukB, "
1144 res_counter_read_u64(&memcg
->memsw
, RES_USAGE
) >> 10,
1145 res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
) >> 10,
1146 res_counter_read_u64(&memcg
->memsw
, RES_FAILCNT
));
1150 * This function returns the number of memcg under hierarchy tree. Returns
1151 * 1(self count) if no children.
1153 static int mem_cgroup_count_children(struct mem_cgroup
*mem
)
1156 mem_cgroup_walk_tree(mem
, &num
, mem_cgroup_count_children_cb
);
1161 * Visit the first child (need not be the first child as per the ordering
1162 * of the cgroup list, since we track last_scanned_child) of @mem and use
1163 * that to reclaim free pages from.
1165 static struct mem_cgroup
*
1166 mem_cgroup_select_victim(struct mem_cgroup
*root_mem
)
1168 struct mem_cgroup
*ret
= NULL
;
1169 struct cgroup_subsys_state
*css
;
1172 if (!root_mem
->use_hierarchy
) {
1173 css_get(&root_mem
->css
);
1179 nextid
= root_mem
->last_scanned_child
+ 1;
1180 css
= css_get_next(&mem_cgroup_subsys
, nextid
, &root_mem
->css
,
1182 if (css
&& css_tryget(css
))
1183 ret
= container_of(css
, struct mem_cgroup
, css
);
1186 /* Updates scanning parameter */
1187 spin_lock(&root_mem
->reclaim_param_lock
);
1189 /* this means start scan from ID:1 */
1190 root_mem
->last_scanned_child
= 0;
1192 root_mem
->last_scanned_child
= found
;
1193 spin_unlock(&root_mem
->reclaim_param_lock
);
1200 * Scan the hierarchy if needed to reclaim memory. We remember the last child
1201 * we reclaimed from, so that we don't end up penalizing one child extensively
1202 * based on its position in the children list.
1204 * root_mem is the original ancestor that we've been reclaim from.
1206 * We give up and return to the caller when we visit root_mem twice.
1207 * (other groups can be removed while we're walking....)
1209 * If shrink==true, for avoiding to free too much, this returns immedieately.
1211 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup
*root_mem
,
1214 unsigned long reclaim_options
)
1216 struct mem_cgroup
*victim
;
1219 bool noswap
= reclaim_options
& MEM_CGROUP_RECLAIM_NOSWAP
;
1220 bool shrink
= reclaim_options
& MEM_CGROUP_RECLAIM_SHRINK
;
1221 bool check_soft
= reclaim_options
& MEM_CGROUP_RECLAIM_SOFT
;
1222 unsigned long excess
= mem_cgroup_get_excess(root_mem
);
1224 /* If memsw_is_minimum==1, swap-out is of-no-use. */
1225 if (root_mem
->memsw_is_minimum
)
1229 victim
= mem_cgroup_select_victim(root_mem
);
1230 if (victim
== root_mem
) {
1233 drain_all_stock_async();
1236 * If we have not been able to reclaim
1237 * anything, it might because there are
1238 * no reclaimable pages under this hierarchy
1240 if (!check_soft
|| !total
) {
1241 css_put(&victim
->css
);
1245 * We want to do more targetted reclaim.
1246 * excess >> 2 is not to excessive so as to
1247 * reclaim too much, nor too less that we keep
1248 * coming back to reclaim from this cgroup
1250 if (total
>= (excess
>> 2) ||
1251 (loop
> MEM_CGROUP_MAX_RECLAIM_LOOPS
)) {
1252 css_put(&victim
->css
);
1257 if (!mem_cgroup_local_usage(victim
)) {
1258 /* this cgroup's local usage == 0 */
1259 css_put(&victim
->css
);
1262 /* we use swappiness of local cgroup */
1264 ret
= mem_cgroup_shrink_node_zone(victim
, gfp_mask
,
1265 noswap
, get_swappiness(victim
), zone
,
1266 zone
->zone_pgdat
->node_id
);
1268 ret
= try_to_free_mem_cgroup_pages(victim
, gfp_mask
,
1269 noswap
, get_swappiness(victim
));
1270 css_put(&victim
->css
);
1272 * At shrinking usage, we can't check we should stop here or
1273 * reclaim more. It's depends on callers. last_scanned_child
1274 * will work enough for keeping fairness under tree.
1280 if (res_counter_check_under_soft_limit(&root_mem
->res
))
1282 } else if (mem_cgroup_check_under_limit(root_mem
))
1288 static int mem_cgroup_oom_lock_cb(struct mem_cgroup
*mem
, void *data
)
1290 int *val
= (int *)data
;
1293 * Logically, we can stop scanning immediately when we find
1294 * a memcg is already locked. But condidering unlock ops and
1295 * creation/removal of memcg, scan-all is simple operation.
1297 x
= atomic_inc_return(&mem
->oom_lock
);
1298 *val
= max(x
, *val
);
1302 * Check OOM-Killer is already running under our hierarchy.
1303 * If someone is running, return false.
1305 static bool mem_cgroup_oom_lock(struct mem_cgroup
*mem
)
1309 mem_cgroup_walk_tree(mem
, &lock_count
, mem_cgroup_oom_lock_cb
);
1311 if (lock_count
== 1)
1316 static int mem_cgroup_oom_unlock_cb(struct mem_cgroup
*mem
, void *data
)
1319 * When a new child is created while the hierarchy is under oom,
1320 * mem_cgroup_oom_lock() may not be called. We have to use
1321 * atomic_add_unless() here.
1323 atomic_add_unless(&mem
->oom_lock
, -1, 0);
1327 static void mem_cgroup_oom_unlock(struct mem_cgroup
*mem
)
1329 mem_cgroup_walk_tree(mem
, NULL
, mem_cgroup_oom_unlock_cb
);
1332 static DEFINE_MUTEX(memcg_oom_mutex
);
1333 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq
);
1335 struct oom_wait_info
{
1336 struct mem_cgroup
*mem
;
1340 static int memcg_oom_wake_function(wait_queue_t
*wait
,
1341 unsigned mode
, int sync
, void *arg
)
1343 struct mem_cgroup
*wake_mem
= (struct mem_cgroup
*)arg
;
1344 struct oom_wait_info
*oom_wait_info
;
1346 oom_wait_info
= container_of(wait
, struct oom_wait_info
, wait
);
1348 if (oom_wait_info
->mem
== wake_mem
)
1350 /* if no hierarchy, no match */
1351 if (!oom_wait_info
->mem
->use_hierarchy
|| !wake_mem
->use_hierarchy
)
1354 * Both of oom_wait_info->mem and wake_mem are stable under us.
1355 * Then we can use css_is_ancestor without taking care of RCU.
1357 if (!css_is_ancestor(&oom_wait_info
->mem
->css
, &wake_mem
->css
) &&
1358 !css_is_ancestor(&wake_mem
->css
, &oom_wait_info
->mem
->css
))
1362 return autoremove_wake_function(wait
, mode
, sync
, arg
);
1365 static void memcg_wakeup_oom(struct mem_cgroup
*mem
)
1367 /* for filtering, pass "mem" as argument. */
1368 __wake_up(&memcg_oom_waitq
, TASK_NORMAL
, 0, mem
);
1371 static void memcg_oom_recover(struct mem_cgroup
*mem
)
1373 if (mem
->oom_kill_disable
&& atomic_read(&mem
->oom_lock
))
1374 memcg_wakeup_oom(mem
);
1378 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1380 bool mem_cgroup_handle_oom(struct mem_cgroup
*mem
, gfp_t mask
)
1382 struct oom_wait_info owait
;
1383 bool locked
, need_to_kill
;
1386 owait
.wait
.flags
= 0;
1387 owait
.wait
.func
= memcg_oom_wake_function
;
1388 owait
.wait
.private = current
;
1389 INIT_LIST_HEAD(&owait
.wait
.task_list
);
1390 need_to_kill
= true;
1391 /* At first, try to OOM lock hierarchy under mem.*/
1392 mutex_lock(&memcg_oom_mutex
);
1393 locked
= mem_cgroup_oom_lock(mem
);
1395 * Even if signal_pending(), we can't quit charge() loop without
1396 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1397 * under OOM is always welcomed, use TASK_KILLABLE here.
1399 prepare_to_wait(&memcg_oom_waitq
, &owait
.wait
, TASK_KILLABLE
);
1400 if (!locked
|| mem
->oom_kill_disable
)
1401 need_to_kill
= false;
1403 mem_cgroup_oom_notify(mem
);
1404 mutex_unlock(&memcg_oom_mutex
);
1407 finish_wait(&memcg_oom_waitq
, &owait
.wait
);
1408 mem_cgroup_out_of_memory(mem
, mask
);
1411 finish_wait(&memcg_oom_waitq
, &owait
.wait
);
1413 mutex_lock(&memcg_oom_mutex
);
1414 mem_cgroup_oom_unlock(mem
);
1415 memcg_wakeup_oom(mem
);
1416 mutex_unlock(&memcg_oom_mutex
);
1418 if (test_thread_flag(TIF_MEMDIE
) || fatal_signal_pending(current
))
1420 /* Give chance to dying process */
1421 schedule_timeout(1);
1426 * Currently used to update mapped file statistics, but the routine can be
1427 * generalized to update other statistics as well.
1429 void mem_cgroup_update_file_mapped(struct page
*page
, int val
)
1431 struct mem_cgroup
*mem
;
1432 struct page_cgroup
*pc
;
1434 pc
= lookup_page_cgroup(page
);
1438 lock_page_cgroup(pc
);
1439 mem
= pc
->mem_cgroup
;
1440 if (!mem
|| !PageCgroupUsed(pc
))
1444 * Preemption is already disabled. We can use __this_cpu_xxx
1447 __this_cpu_inc(mem
->stat
->count
[MEM_CGROUP_STAT_FILE_MAPPED
]);
1448 SetPageCgroupFileMapped(pc
);
1450 __this_cpu_dec(mem
->stat
->count
[MEM_CGROUP_STAT_FILE_MAPPED
]);
1451 ClearPageCgroupFileMapped(pc
);
1455 unlock_page_cgroup(pc
);
1459 * size of first charge trial. "32" comes from vmscan.c's magic value.
1460 * TODO: maybe necessary to use big numbers in big irons.
1462 #define CHARGE_SIZE (32 * PAGE_SIZE)
1463 struct memcg_stock_pcp
{
1464 struct mem_cgroup
*cached
; /* this never be root cgroup */
1466 struct work_struct work
;
1468 static DEFINE_PER_CPU(struct memcg_stock_pcp
, memcg_stock
);
1469 static atomic_t memcg_drain_count
;
1472 * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed
1473 * from local stock and true is returned. If the stock is 0 or charges from a
1474 * cgroup which is not current target, returns false. This stock will be
1477 static bool consume_stock(struct mem_cgroup
*mem
)
1479 struct memcg_stock_pcp
*stock
;
1482 stock
= &get_cpu_var(memcg_stock
);
1483 if (mem
== stock
->cached
&& stock
->charge
)
1484 stock
->charge
-= PAGE_SIZE
;
1485 else /* need to call res_counter_charge */
1487 put_cpu_var(memcg_stock
);
1492 * Returns stocks cached in percpu to res_counter and reset cached information.
1494 static void drain_stock(struct memcg_stock_pcp
*stock
)
1496 struct mem_cgroup
*old
= stock
->cached
;
1498 if (stock
->charge
) {
1499 res_counter_uncharge(&old
->res
, stock
->charge
);
1500 if (do_swap_account
)
1501 res_counter_uncharge(&old
->memsw
, stock
->charge
);
1503 stock
->cached
= NULL
;
1508 * This must be called under preempt disabled or must be called by
1509 * a thread which is pinned to local cpu.
1511 static void drain_local_stock(struct work_struct
*dummy
)
1513 struct memcg_stock_pcp
*stock
= &__get_cpu_var(memcg_stock
);
1518 * Cache charges(val) which is from res_counter, to local per_cpu area.
1519 * This will be consumed by consume_stock() function, later.
1521 static void refill_stock(struct mem_cgroup
*mem
, int val
)
1523 struct memcg_stock_pcp
*stock
= &get_cpu_var(memcg_stock
);
1525 if (stock
->cached
!= mem
) { /* reset if necessary */
1527 stock
->cached
= mem
;
1529 stock
->charge
+= val
;
1530 put_cpu_var(memcg_stock
);
1534 * Tries to drain stocked charges in other cpus. This function is asynchronous
1535 * and just put a work per cpu for draining localy on each cpu. Caller can
1536 * expects some charges will be back to res_counter later but cannot wait for
1539 static void drain_all_stock_async(void)
1542 /* This function is for scheduling "drain" in asynchronous way.
1543 * The result of "drain" is not directly handled by callers. Then,
1544 * if someone is calling drain, we don't have to call drain more.
1545 * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
1546 * there is a race. We just do loose check here.
1548 if (atomic_read(&memcg_drain_count
))
1550 /* Notify other cpus that system-wide "drain" is running */
1551 atomic_inc(&memcg_drain_count
);
1553 for_each_online_cpu(cpu
) {
1554 struct memcg_stock_pcp
*stock
= &per_cpu(memcg_stock
, cpu
);
1555 schedule_work_on(cpu
, &stock
->work
);
1558 atomic_dec(&memcg_drain_count
);
1559 /* We don't wait for flush_work */
1562 /* This is a synchronous drain interface. */
1563 static void drain_all_stock_sync(void)
1565 /* called when force_empty is called */
1566 atomic_inc(&memcg_drain_count
);
1567 schedule_on_each_cpu(drain_local_stock
);
1568 atomic_dec(&memcg_drain_count
);
1571 static int __cpuinit
memcg_stock_cpu_callback(struct notifier_block
*nb
,
1572 unsigned long action
,
1575 int cpu
= (unsigned long)hcpu
;
1576 struct memcg_stock_pcp
*stock
;
1578 if (action
!= CPU_DEAD
)
1580 stock
= &per_cpu(memcg_stock
, cpu
);
1586 * Unlike exported interface, "oom" parameter is added. if oom==true,
1587 * oom-killer can be invoked.
1589 static int __mem_cgroup_try_charge(struct mm_struct
*mm
,
1590 gfp_t gfp_mask
, struct mem_cgroup
**memcg
, bool oom
)
1592 struct mem_cgroup
*mem
, *mem_over_limit
;
1593 int nr_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
1594 struct res_counter
*fail_res
;
1595 int csize
= CHARGE_SIZE
;
1598 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
1599 * in system level. So, allow to go ahead dying process in addition to
1602 if (unlikely(test_thread_flag(TIF_MEMDIE
)
1603 || fatal_signal_pending(current
)))
1607 * We always charge the cgroup the mm_struct belongs to.
1608 * The mm_struct's mem_cgroup changes on task migration if the
1609 * thread group leader migrates. It's possible that mm is not
1610 * set, if so charge the init_mm (happens for pagecache usage).
1614 mem
= try_get_mem_cgroup_from_mm(mm
);
1622 VM_BUG_ON(css_is_removed(&mem
->css
));
1623 if (mem_cgroup_is_root(mem
))
1628 unsigned long flags
= 0;
1630 if (consume_stock(mem
))
1633 ret
= res_counter_charge(&mem
->res
, csize
, &fail_res
);
1635 if (!do_swap_account
)
1637 ret
= res_counter_charge(&mem
->memsw
, csize
, &fail_res
);
1640 /* mem+swap counter fails */
1641 res_counter_uncharge(&mem
->res
, csize
);
1642 flags
|= MEM_CGROUP_RECLAIM_NOSWAP
;
1643 mem_over_limit
= mem_cgroup_from_res_counter(fail_res
,
1646 /* mem counter fails */
1647 mem_over_limit
= mem_cgroup_from_res_counter(fail_res
,
1650 /* reduce request size and retry */
1651 if (csize
> PAGE_SIZE
) {
1655 if (!(gfp_mask
& __GFP_WAIT
))
1658 ret
= mem_cgroup_hierarchical_reclaim(mem_over_limit
, NULL
,
1664 * try_to_free_mem_cgroup_pages() might not give us a full
1665 * picture of reclaim. Some pages are reclaimed and might be
1666 * moved to swap cache or just unmapped from the cgroup.
1667 * Check the limit again to see if the reclaim reduced the
1668 * current usage of the cgroup before giving up
1671 if (mem_cgroup_check_under_limit(mem_over_limit
))
1674 /* try to avoid oom while someone is moving charge */
1675 if (mc
.moving_task
&& current
!= mc
.moving_task
) {
1676 struct mem_cgroup
*from
, *to
;
1677 bool do_continue
= false;
1679 * There is a small race that "from" or "to" can be
1680 * freed by rmdir, so we use css_tryget().
1684 if (from
&& css_tryget(&from
->css
)) {
1685 if (mem_over_limit
->use_hierarchy
)
1686 do_continue
= css_is_ancestor(
1688 &mem_over_limit
->css
);
1690 do_continue
= (from
== mem_over_limit
);
1691 css_put(&from
->css
);
1693 if (!do_continue
&& to
&& css_tryget(&to
->css
)) {
1694 if (mem_over_limit
->use_hierarchy
)
1695 do_continue
= css_is_ancestor(
1697 &mem_over_limit
->css
);
1699 do_continue
= (to
== mem_over_limit
);
1704 prepare_to_wait(&mc
.waitq
, &wait
,
1705 TASK_INTERRUPTIBLE
);
1706 /* moving charge context might have finished. */
1709 finish_wait(&mc
.waitq
, &wait
);
1714 if (!nr_retries
--) {
1717 if (mem_cgroup_handle_oom(mem_over_limit
, gfp_mask
)) {
1718 nr_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
1721 /* When we reach here, current task is dying .*/
1726 if (csize
> PAGE_SIZE
)
1727 refill_stock(mem
, csize
- PAGE_SIZE
);
1739 * Somemtimes we have to undo a charge we got by try_charge().
1740 * This function is for that and do uncharge, put css's refcnt.
1741 * gotten by try_charge().
1743 static void __mem_cgroup_cancel_charge(struct mem_cgroup
*mem
,
1744 unsigned long count
)
1746 if (!mem_cgroup_is_root(mem
)) {
1747 res_counter_uncharge(&mem
->res
, PAGE_SIZE
* count
);
1748 if (do_swap_account
)
1749 res_counter_uncharge(&mem
->memsw
, PAGE_SIZE
* count
);
1750 VM_BUG_ON(test_bit(CSS_ROOT
, &mem
->css
.flags
));
1751 WARN_ON_ONCE(count
> INT_MAX
);
1752 __css_put(&mem
->css
, (int)count
);
1754 /* we don't need css_put for root */
1757 static void mem_cgroup_cancel_charge(struct mem_cgroup
*mem
)
1759 __mem_cgroup_cancel_charge(mem
, 1);
1763 * A helper function to get mem_cgroup from ID. must be called under
1764 * rcu_read_lock(). The caller must check css_is_removed() or some if
1765 * it's concern. (dropping refcnt from swap can be called against removed
1768 static struct mem_cgroup
*mem_cgroup_lookup(unsigned short id
)
1770 struct cgroup_subsys_state
*css
;
1772 /* ID 0 is unused ID */
1775 css
= css_lookup(&mem_cgroup_subsys
, id
);
1778 return container_of(css
, struct mem_cgroup
, css
);
1781 struct mem_cgroup
*try_get_mem_cgroup_from_page(struct page
*page
)
1783 struct mem_cgroup
*mem
= NULL
;
1784 struct page_cgroup
*pc
;
1788 VM_BUG_ON(!PageLocked(page
));
1790 pc
= lookup_page_cgroup(page
);
1791 lock_page_cgroup(pc
);
1792 if (PageCgroupUsed(pc
)) {
1793 mem
= pc
->mem_cgroup
;
1794 if (mem
&& !css_tryget(&mem
->css
))
1796 } else if (PageSwapCache(page
)) {
1797 ent
.val
= page_private(page
);
1798 id
= lookup_swap_cgroup(ent
);
1800 mem
= mem_cgroup_lookup(id
);
1801 if (mem
&& !css_tryget(&mem
->css
))
1805 unlock_page_cgroup(pc
);
1810 * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
1811 * USED state. If already USED, uncharge and return.
1814 static void __mem_cgroup_commit_charge(struct mem_cgroup
*mem
,
1815 struct page_cgroup
*pc
,
1816 enum charge_type ctype
)
1818 /* try_charge() can return NULL to *memcg, taking care of it. */
1822 lock_page_cgroup(pc
);
1823 if (unlikely(PageCgroupUsed(pc
))) {
1824 unlock_page_cgroup(pc
);
1825 mem_cgroup_cancel_charge(mem
);
1829 pc
->mem_cgroup
= mem
;
1831 * We access a page_cgroup asynchronously without lock_page_cgroup().
1832 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
1833 * is accessed after testing USED bit. To make pc->mem_cgroup visible
1834 * before USED bit, we need memory barrier here.
1835 * See mem_cgroup_add_lru_list(), etc.
1839 case MEM_CGROUP_CHARGE_TYPE_CACHE
:
1840 case MEM_CGROUP_CHARGE_TYPE_SHMEM
:
1841 SetPageCgroupCache(pc
);
1842 SetPageCgroupUsed(pc
);
1844 case MEM_CGROUP_CHARGE_TYPE_MAPPED
:
1845 ClearPageCgroupCache(pc
);
1846 SetPageCgroupUsed(pc
);
1852 mem_cgroup_charge_statistics(mem
, pc
, true);
1854 unlock_page_cgroup(pc
);
1856 * "charge_statistics" updated event counter. Then, check it.
1857 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
1858 * if they exceeds softlimit.
1860 memcg_check_events(mem
, pc
->page
);
1864 * __mem_cgroup_move_account - move account of the page
1865 * @pc: page_cgroup of the page.
1866 * @from: mem_cgroup which the page is moved from.
1867 * @to: mem_cgroup which the page is moved to. @from != @to.
1868 * @uncharge: whether we should call uncharge and css_put against @from.
1870 * The caller must confirm following.
1871 * - page is not on LRU (isolate_page() is useful.)
1872 * - the pc is locked, used, and ->mem_cgroup points to @from.
1874 * This function doesn't do "charge" nor css_get to new cgroup. It should be
1875 * done by a caller(__mem_cgroup_try_charge would be usefull). If @uncharge is
1876 * true, this function does "uncharge" from old cgroup, but it doesn't if
1877 * @uncharge is false, so a caller should do "uncharge".
1880 static void __mem_cgroup_move_account(struct page_cgroup
*pc
,
1881 struct mem_cgroup
*from
, struct mem_cgroup
*to
, bool uncharge
)
1883 VM_BUG_ON(from
== to
);
1884 VM_BUG_ON(PageLRU(pc
->page
));
1885 VM_BUG_ON(!PageCgroupLocked(pc
));
1886 VM_BUG_ON(!PageCgroupUsed(pc
));
1887 VM_BUG_ON(pc
->mem_cgroup
!= from
);
1889 if (PageCgroupFileMapped(pc
)) {
1890 /* Update mapped_file data for mem_cgroup */
1892 __this_cpu_dec(from
->stat
->count
[MEM_CGROUP_STAT_FILE_MAPPED
]);
1893 __this_cpu_inc(to
->stat
->count
[MEM_CGROUP_STAT_FILE_MAPPED
]);
1896 mem_cgroup_charge_statistics(from
, pc
, false);
1898 /* This is not "cancel", but cancel_charge does all we need. */
1899 mem_cgroup_cancel_charge(from
);
1901 /* caller should have done css_get */
1902 pc
->mem_cgroup
= to
;
1903 mem_cgroup_charge_statistics(to
, pc
, true);
1905 * We charges against "to" which may not have any tasks. Then, "to"
1906 * can be under rmdir(). But in current implementation, caller of
1907 * this function is just force_empty() and move charge, so it's
1908 * garanteed that "to" is never removed. So, we don't check rmdir
1914 * check whether the @pc is valid for moving account and call
1915 * __mem_cgroup_move_account()
1917 static int mem_cgroup_move_account(struct page_cgroup
*pc
,
1918 struct mem_cgroup
*from
, struct mem_cgroup
*to
, bool uncharge
)
1921 lock_page_cgroup(pc
);
1922 if (PageCgroupUsed(pc
) && pc
->mem_cgroup
== from
) {
1923 __mem_cgroup_move_account(pc
, from
, to
, uncharge
);
1926 unlock_page_cgroup(pc
);
1930 memcg_check_events(to
, pc
->page
);
1931 memcg_check_events(from
, pc
->page
);
1936 * move charges to its parent.
1939 static int mem_cgroup_move_parent(struct page_cgroup
*pc
,
1940 struct mem_cgroup
*child
,
1943 struct page
*page
= pc
->page
;
1944 struct cgroup
*cg
= child
->css
.cgroup
;
1945 struct cgroup
*pcg
= cg
->parent
;
1946 struct mem_cgroup
*parent
;
1954 if (!get_page_unless_zero(page
))
1956 if (isolate_lru_page(page
))
1959 parent
= mem_cgroup_from_cont(pcg
);
1960 ret
= __mem_cgroup_try_charge(NULL
, gfp_mask
, &parent
, false);
1964 ret
= mem_cgroup_move_account(pc
, child
, parent
, true);
1966 mem_cgroup_cancel_charge(parent
);
1968 putback_lru_page(page
);
1976 * Charge the memory controller for page usage.
1978 * 0 if the charge was successful
1979 * < 0 if the cgroup is over its limit
1981 static int mem_cgroup_charge_common(struct page
*page
, struct mm_struct
*mm
,
1982 gfp_t gfp_mask
, enum charge_type ctype
,
1983 struct mem_cgroup
*memcg
)
1985 struct mem_cgroup
*mem
;
1986 struct page_cgroup
*pc
;
1989 pc
= lookup_page_cgroup(page
);
1990 /* can happen at boot */
1996 ret
= __mem_cgroup_try_charge(mm
, gfp_mask
, &mem
, true);
2000 __mem_cgroup_commit_charge(mem
, pc
, ctype
);
2004 int mem_cgroup_newpage_charge(struct page
*page
,
2005 struct mm_struct
*mm
, gfp_t gfp_mask
)
2007 if (mem_cgroup_disabled())
2009 if (PageCompound(page
))
2012 * If already mapped, we don't have to account.
2013 * If page cache, page->mapping has address_space.
2014 * But page->mapping may have out-of-use anon_vma pointer,
2015 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2018 if (page_mapped(page
) || (page
->mapping
&& !PageAnon(page
)))
2022 return mem_cgroup_charge_common(page
, mm
, gfp_mask
,
2023 MEM_CGROUP_CHARGE_TYPE_MAPPED
, NULL
);
2027 __mem_cgroup_commit_charge_swapin(struct page
*page
, struct mem_cgroup
*ptr
,
2028 enum charge_type ctype
);
2030 int mem_cgroup_cache_charge(struct page
*page
, struct mm_struct
*mm
,
2033 struct mem_cgroup
*mem
= NULL
;
2036 if (mem_cgroup_disabled())
2038 if (PageCompound(page
))
2041 * Corner case handling. This is called from add_to_page_cache()
2042 * in usual. But some FS (shmem) precharges this page before calling it
2043 * and call add_to_page_cache() with GFP_NOWAIT.
2045 * For GFP_NOWAIT case, the page may be pre-charged before calling
2046 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
2047 * charge twice. (It works but has to pay a bit larger cost.)
2048 * And when the page is SwapCache, it should take swap information
2049 * into account. This is under lock_page() now.
2051 if (!(gfp_mask
& __GFP_WAIT
)) {
2052 struct page_cgroup
*pc
;
2055 pc
= lookup_page_cgroup(page
);
2058 lock_page_cgroup(pc
);
2059 if (PageCgroupUsed(pc
)) {
2060 unlock_page_cgroup(pc
);
2063 unlock_page_cgroup(pc
);
2066 if (unlikely(!mm
&& !mem
))
2069 if (page_is_file_cache(page
))
2070 return mem_cgroup_charge_common(page
, mm
, gfp_mask
,
2071 MEM_CGROUP_CHARGE_TYPE_CACHE
, NULL
);
2074 if (PageSwapCache(page
)) {
2075 ret
= mem_cgroup_try_charge_swapin(mm
, page
, gfp_mask
, &mem
);
2077 __mem_cgroup_commit_charge_swapin(page
, mem
,
2078 MEM_CGROUP_CHARGE_TYPE_SHMEM
);
2080 ret
= mem_cgroup_charge_common(page
, mm
, gfp_mask
,
2081 MEM_CGROUP_CHARGE_TYPE_SHMEM
, mem
);
2087 * While swap-in, try_charge -> commit or cancel, the page is locked.
2088 * And when try_charge() successfully returns, one refcnt to memcg without
2089 * struct page_cgroup is acquired. This refcnt will be consumed by
2090 * "commit()" or removed by "cancel()"
2092 int mem_cgroup_try_charge_swapin(struct mm_struct
*mm
,
2094 gfp_t mask
, struct mem_cgroup
**ptr
)
2096 struct mem_cgroup
*mem
;
2099 if (mem_cgroup_disabled())
2102 if (!do_swap_account
)
2105 * A racing thread's fault, or swapoff, may have already updated
2106 * the pte, and even removed page from swap cache: in those cases
2107 * do_swap_page()'s pte_same() test will fail; but there's also a
2108 * KSM case which does need to charge the page.
2110 if (!PageSwapCache(page
))
2112 mem
= try_get_mem_cgroup_from_page(page
);
2116 ret
= __mem_cgroup_try_charge(NULL
, mask
, ptr
, true);
2117 /* drop extra refcnt from tryget */
2123 return __mem_cgroup_try_charge(mm
, mask
, ptr
, true);
2127 __mem_cgroup_commit_charge_swapin(struct page
*page
, struct mem_cgroup
*ptr
,
2128 enum charge_type ctype
)
2130 struct page_cgroup
*pc
;
2132 if (mem_cgroup_disabled())
2136 cgroup_exclude_rmdir(&ptr
->css
);
2137 pc
= lookup_page_cgroup(page
);
2138 mem_cgroup_lru_del_before_commit_swapcache(page
);
2139 __mem_cgroup_commit_charge(ptr
, pc
, ctype
);
2140 mem_cgroup_lru_add_after_commit_swapcache(page
);
2142 * Now swap is on-memory. This means this page may be
2143 * counted both as mem and swap....double count.
2144 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2145 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2146 * may call delete_from_swap_cache() before reach here.
2148 if (do_swap_account
&& PageSwapCache(page
)) {
2149 swp_entry_t ent
= {.val
= page_private(page
)};
2151 struct mem_cgroup
*memcg
;
2153 id
= swap_cgroup_record(ent
, 0);
2155 memcg
= mem_cgroup_lookup(id
);
2158 * This recorded memcg can be obsolete one. So, avoid
2159 * calling css_tryget
2161 if (!mem_cgroup_is_root(memcg
))
2162 res_counter_uncharge(&memcg
->memsw
, PAGE_SIZE
);
2163 mem_cgroup_swap_statistics(memcg
, false);
2164 mem_cgroup_put(memcg
);
2169 * At swapin, we may charge account against cgroup which has no tasks.
2170 * So, rmdir()->pre_destroy() can be called while we do this charge.
2171 * In that case, we need to call pre_destroy() again. check it here.
2173 cgroup_release_and_wakeup_rmdir(&ptr
->css
);
2176 void mem_cgroup_commit_charge_swapin(struct page
*page
, struct mem_cgroup
*ptr
)
2178 __mem_cgroup_commit_charge_swapin(page
, ptr
,
2179 MEM_CGROUP_CHARGE_TYPE_MAPPED
);
2182 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup
*mem
)
2184 if (mem_cgroup_disabled())
2188 mem_cgroup_cancel_charge(mem
);
2192 __do_uncharge(struct mem_cgroup
*mem
, const enum charge_type ctype
)
2194 struct memcg_batch_info
*batch
= NULL
;
2195 bool uncharge_memsw
= true;
2196 /* If swapout, usage of swap doesn't decrease */
2197 if (!do_swap_account
|| ctype
== MEM_CGROUP_CHARGE_TYPE_SWAPOUT
)
2198 uncharge_memsw
= false;
2200 batch
= ¤t
->memcg_batch
;
2202 * In usual, we do css_get() when we remember memcg pointer.
2203 * But in this case, we keep res->usage until end of a series of
2204 * uncharges. Then, it's ok to ignore memcg's refcnt.
2209 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2210 * In those cases, all pages freed continously can be expected to be in
2211 * the same cgroup and we have chance to coalesce uncharges.
2212 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2213 * because we want to do uncharge as soon as possible.
2216 if (!batch
->do_batch
|| test_thread_flag(TIF_MEMDIE
))
2217 goto direct_uncharge
;
2220 * In typical case, batch->memcg == mem. This means we can
2221 * merge a series of uncharges to an uncharge of res_counter.
2222 * If not, we uncharge res_counter ony by one.
2224 if (batch
->memcg
!= mem
)
2225 goto direct_uncharge
;
2226 /* remember freed charge and uncharge it later */
2227 batch
->bytes
+= PAGE_SIZE
;
2229 batch
->memsw_bytes
+= PAGE_SIZE
;
2232 res_counter_uncharge(&mem
->res
, PAGE_SIZE
);
2234 res_counter_uncharge(&mem
->memsw
, PAGE_SIZE
);
2235 if (unlikely(batch
->memcg
!= mem
))
2236 memcg_oom_recover(mem
);
2241 * uncharge if !page_mapped(page)
2243 static struct mem_cgroup
*
2244 __mem_cgroup_uncharge_common(struct page
*page
, enum charge_type ctype
)
2246 struct page_cgroup
*pc
;
2247 struct mem_cgroup
*mem
= NULL
;
2248 struct mem_cgroup_per_zone
*mz
;
2250 if (mem_cgroup_disabled())
2253 if (PageSwapCache(page
))
2257 * Check if our page_cgroup is valid
2259 pc
= lookup_page_cgroup(page
);
2260 if (unlikely(!pc
|| !PageCgroupUsed(pc
)))
2263 lock_page_cgroup(pc
);
2265 mem
= pc
->mem_cgroup
;
2267 if (!PageCgroupUsed(pc
))
2271 case MEM_CGROUP_CHARGE_TYPE_MAPPED
:
2272 case MEM_CGROUP_CHARGE_TYPE_DROP
:
2273 /* See mem_cgroup_prepare_migration() */
2274 if (page_mapped(page
) || PageCgroupMigration(pc
))
2277 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT
:
2278 if (!PageAnon(page
)) { /* Shared memory */
2279 if (page
->mapping
&& !page_is_file_cache(page
))
2281 } else if (page_mapped(page
)) /* Anon */
2288 if (!mem_cgroup_is_root(mem
))
2289 __do_uncharge(mem
, ctype
);
2290 if (ctype
== MEM_CGROUP_CHARGE_TYPE_SWAPOUT
)
2291 mem_cgroup_swap_statistics(mem
, true);
2292 mem_cgroup_charge_statistics(mem
, pc
, false);
2294 ClearPageCgroupUsed(pc
);
2296 * pc->mem_cgroup is not cleared here. It will be accessed when it's
2297 * freed from LRU. This is safe because uncharged page is expected not
2298 * to be reused (freed soon). Exception is SwapCache, it's handled by
2299 * special functions.
2302 mz
= page_cgroup_zoneinfo(pc
);
2303 unlock_page_cgroup(pc
);
2305 memcg_check_events(mem
, page
);
2306 /* at swapout, this memcg will be accessed to record to swap */
2307 if (ctype
!= MEM_CGROUP_CHARGE_TYPE_SWAPOUT
)
2313 unlock_page_cgroup(pc
);
2317 void mem_cgroup_uncharge_page(struct page
*page
)
2320 if (page_mapped(page
))
2322 if (page
->mapping
&& !PageAnon(page
))
2324 __mem_cgroup_uncharge_common(page
, MEM_CGROUP_CHARGE_TYPE_MAPPED
);
2327 void mem_cgroup_uncharge_cache_page(struct page
*page
)
2329 VM_BUG_ON(page_mapped(page
));
2330 VM_BUG_ON(page
->mapping
);
2331 __mem_cgroup_uncharge_common(page
, MEM_CGROUP_CHARGE_TYPE_CACHE
);
2335 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
2336 * In that cases, pages are freed continuously and we can expect pages
2337 * are in the same memcg. All these calls itself limits the number of
2338 * pages freed at once, then uncharge_start/end() is called properly.
2339 * This may be called prural(2) times in a context,
2342 void mem_cgroup_uncharge_start(void)
2344 current
->memcg_batch
.do_batch
++;
2345 /* We can do nest. */
2346 if (current
->memcg_batch
.do_batch
== 1) {
2347 current
->memcg_batch
.memcg
= NULL
;
2348 current
->memcg_batch
.bytes
= 0;
2349 current
->memcg_batch
.memsw_bytes
= 0;
2353 void mem_cgroup_uncharge_end(void)
2355 struct memcg_batch_info
*batch
= ¤t
->memcg_batch
;
2357 if (!batch
->do_batch
)
2361 if (batch
->do_batch
) /* If stacked, do nothing. */
2367 * This "batch->memcg" is valid without any css_get/put etc...
2368 * bacause we hide charges behind us.
2371 res_counter_uncharge(&batch
->memcg
->res
, batch
->bytes
);
2372 if (batch
->memsw_bytes
)
2373 res_counter_uncharge(&batch
->memcg
->memsw
, batch
->memsw_bytes
);
2374 memcg_oom_recover(batch
->memcg
);
2375 /* forget this pointer (for sanity check) */
2376 batch
->memcg
= NULL
;
2381 * called after __delete_from_swap_cache() and drop "page" account.
2382 * memcg information is recorded to swap_cgroup of "ent"
2385 mem_cgroup_uncharge_swapcache(struct page
*page
, swp_entry_t ent
, bool swapout
)
2387 struct mem_cgroup
*memcg
;
2388 int ctype
= MEM_CGROUP_CHARGE_TYPE_SWAPOUT
;
2390 if (!swapout
) /* this was a swap cache but the swap is unused ! */
2391 ctype
= MEM_CGROUP_CHARGE_TYPE_DROP
;
2393 memcg
= __mem_cgroup_uncharge_common(page
, ctype
);
2395 /* record memcg information */
2396 if (do_swap_account
&& swapout
&& memcg
) {
2397 swap_cgroup_record(ent
, css_id(&memcg
->css
));
2398 mem_cgroup_get(memcg
);
2400 if (swapout
&& memcg
)
2401 css_put(&memcg
->css
);
2405 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2407 * called from swap_entry_free(). remove record in swap_cgroup and
2408 * uncharge "memsw" account.
2410 void mem_cgroup_uncharge_swap(swp_entry_t ent
)
2412 struct mem_cgroup
*memcg
;
2415 if (!do_swap_account
)
2418 id
= swap_cgroup_record(ent
, 0);
2420 memcg
= mem_cgroup_lookup(id
);
2423 * We uncharge this because swap is freed.
2424 * This memcg can be obsolete one. We avoid calling css_tryget
2426 if (!mem_cgroup_is_root(memcg
))
2427 res_counter_uncharge(&memcg
->memsw
, PAGE_SIZE
);
2428 mem_cgroup_swap_statistics(memcg
, false);
2429 mem_cgroup_put(memcg
);
2435 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2436 * @entry: swap entry to be moved
2437 * @from: mem_cgroup which the entry is moved from
2438 * @to: mem_cgroup which the entry is moved to
2439 * @need_fixup: whether we should fixup res_counters and refcounts.
2441 * It succeeds only when the swap_cgroup's record for this entry is the same
2442 * as the mem_cgroup's id of @from.
2444 * Returns 0 on success, -EINVAL on failure.
2446 * The caller must have charged to @to, IOW, called res_counter_charge() about
2447 * both res and memsw, and called css_get().
2449 static int mem_cgroup_move_swap_account(swp_entry_t entry
,
2450 struct mem_cgroup
*from
, struct mem_cgroup
*to
, bool need_fixup
)
2452 unsigned short old_id
, new_id
;
2454 old_id
= css_id(&from
->css
);
2455 new_id
= css_id(&to
->css
);
2457 if (swap_cgroup_cmpxchg(entry
, old_id
, new_id
) == old_id
) {
2458 mem_cgroup_swap_statistics(from
, false);
2459 mem_cgroup_swap_statistics(to
, true);
2461 * This function is only called from task migration context now.
2462 * It postpones res_counter and refcount handling till the end
2463 * of task migration(mem_cgroup_clear_mc()) for performance
2464 * improvement. But we cannot postpone mem_cgroup_get(to)
2465 * because if the process that has been moved to @to does
2466 * swap-in, the refcount of @to might be decreased to 0.
2470 if (!mem_cgroup_is_root(from
))
2471 res_counter_uncharge(&from
->memsw
, PAGE_SIZE
);
2472 mem_cgroup_put(from
);
2474 * we charged both to->res and to->memsw, so we should
2477 if (!mem_cgroup_is_root(to
))
2478 res_counter_uncharge(&to
->res
, PAGE_SIZE
);
2486 static inline int mem_cgroup_move_swap_account(swp_entry_t entry
,
2487 struct mem_cgroup
*from
, struct mem_cgroup
*to
, bool need_fixup
)
2494 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
2497 int mem_cgroup_prepare_migration(struct page
*page
,
2498 struct page
*newpage
, struct mem_cgroup
**ptr
)
2500 struct page_cgroup
*pc
;
2501 struct mem_cgroup
*mem
= NULL
;
2502 enum charge_type ctype
;
2505 if (mem_cgroup_disabled())
2508 pc
= lookup_page_cgroup(page
);
2509 lock_page_cgroup(pc
);
2510 if (PageCgroupUsed(pc
)) {
2511 mem
= pc
->mem_cgroup
;
2514 * At migrating an anonymous page, its mapcount goes down
2515 * to 0 and uncharge() will be called. But, even if it's fully
2516 * unmapped, migration may fail and this page has to be
2517 * charged again. We set MIGRATION flag here and delay uncharge
2518 * until end_migration() is called
2520 * Corner Case Thinking
2522 * When the old page was mapped as Anon and it's unmap-and-freed
2523 * while migration was ongoing.
2524 * If unmap finds the old page, uncharge() of it will be delayed
2525 * until end_migration(). If unmap finds a new page, it's
2526 * uncharged when it make mapcount to be 1->0. If unmap code
2527 * finds swap_migration_entry, the new page will not be mapped
2528 * and end_migration() will find it(mapcount==0).
2531 * When the old page was mapped but migraion fails, the kernel
2532 * remaps it. A charge for it is kept by MIGRATION flag even
2533 * if mapcount goes down to 0. We can do remap successfully
2534 * without charging it again.
2537 * The "old" page is under lock_page() until the end of
2538 * migration, so, the old page itself will not be swapped-out.
2539 * If the new page is swapped out before end_migraton, our
2540 * hook to usual swap-out path will catch the event.
2543 SetPageCgroupMigration(pc
);
2545 unlock_page_cgroup(pc
);
2547 * If the page is not charged at this point,
2554 ret
= __mem_cgroup_try_charge(NULL
, GFP_KERNEL
, ptr
, false);
2555 css_put(&mem
->css
);/* drop extra refcnt */
2556 if (ret
|| *ptr
== NULL
) {
2557 if (PageAnon(page
)) {
2558 lock_page_cgroup(pc
);
2559 ClearPageCgroupMigration(pc
);
2560 unlock_page_cgroup(pc
);
2562 * The old page may be fully unmapped while we kept it.
2564 mem_cgroup_uncharge_page(page
);
2569 * We charge new page before it's used/mapped. So, even if unlock_page()
2570 * is called before end_migration, we can catch all events on this new
2571 * page. In the case new page is migrated but not remapped, new page's
2572 * mapcount will be finally 0 and we call uncharge in end_migration().
2574 pc
= lookup_page_cgroup(newpage
);
2576 ctype
= MEM_CGROUP_CHARGE_TYPE_MAPPED
;
2577 else if (page_is_file_cache(page
))
2578 ctype
= MEM_CGROUP_CHARGE_TYPE_CACHE
;
2580 ctype
= MEM_CGROUP_CHARGE_TYPE_SHMEM
;
2581 __mem_cgroup_commit_charge(mem
, pc
, ctype
);
2585 /* remove redundant charge if migration failed*/
2586 void mem_cgroup_end_migration(struct mem_cgroup
*mem
,
2587 struct page
*oldpage
, struct page
*newpage
)
2589 struct page
*used
, *unused
;
2590 struct page_cgroup
*pc
;
2594 /* blocks rmdir() */
2595 cgroup_exclude_rmdir(&mem
->css
);
2596 /* at migration success, oldpage->mapping is NULL. */
2597 if (oldpage
->mapping
) {
2605 * We disallowed uncharge of pages under migration because mapcount
2606 * of the page goes down to zero, temporarly.
2607 * Clear the flag and check the page should be charged.
2609 pc
= lookup_page_cgroup(oldpage
);
2610 lock_page_cgroup(pc
);
2611 ClearPageCgroupMigration(pc
);
2612 unlock_page_cgroup(pc
);
2614 if (unused
!= oldpage
)
2615 pc
= lookup_page_cgroup(unused
);
2616 __mem_cgroup_uncharge_common(unused
, MEM_CGROUP_CHARGE_TYPE_FORCE
);
2618 pc
= lookup_page_cgroup(used
);
2620 * If a page is a file cache, radix-tree replacement is very atomic
2621 * and we can skip this check. When it was an Anon page, its mapcount
2622 * goes down to 0. But because we added MIGRATION flage, it's not
2623 * uncharged yet. There are several case but page->mapcount check
2624 * and USED bit check in mem_cgroup_uncharge_page() will do enough
2625 * check. (see prepare_charge() also)
2628 mem_cgroup_uncharge_page(used
);
2630 * At migration, we may charge account against cgroup which has no
2632 * So, rmdir()->pre_destroy() can be called while we do this charge.
2633 * In that case, we need to call pre_destroy() again. check it here.
2635 cgroup_release_and_wakeup_rmdir(&mem
->css
);
2639 * A call to try to shrink memory usage on charge failure at shmem's swapin.
2640 * Calling hierarchical_reclaim is not enough because we should update
2641 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
2642 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
2643 * not from the memcg which this page would be charged to.
2644 * try_charge_swapin does all of these works properly.
2646 int mem_cgroup_shmem_charge_fallback(struct page
*page
,
2647 struct mm_struct
*mm
,
2650 struct mem_cgroup
*mem
= NULL
;
2653 if (mem_cgroup_disabled())
2656 ret
= mem_cgroup_try_charge_swapin(mm
, page
, gfp_mask
, &mem
);
2658 mem_cgroup_cancel_charge_swapin(mem
); /* it does !mem check */
2663 static DEFINE_MUTEX(set_limit_mutex
);
2665 static int mem_cgroup_resize_limit(struct mem_cgroup
*memcg
,
2666 unsigned long long val
)
2669 u64 memswlimit
, memlimit
;
2671 int children
= mem_cgroup_count_children(memcg
);
2672 u64 curusage
, oldusage
;
2676 * For keeping hierarchical_reclaim simple, how long we should retry
2677 * is depends on callers. We set our retry-count to be function
2678 * of # of children which we should visit in this loop.
2680 retry_count
= MEM_CGROUP_RECLAIM_RETRIES
* children
;
2682 oldusage
= res_counter_read_u64(&memcg
->res
, RES_USAGE
);
2685 while (retry_count
) {
2686 if (signal_pending(current
)) {
2691 * Rather than hide all in some function, I do this in
2692 * open coded manner. You see what this really does.
2693 * We have to guarantee mem->res.limit < mem->memsw.limit.
2695 mutex_lock(&set_limit_mutex
);
2696 memswlimit
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
2697 if (memswlimit
< val
) {
2699 mutex_unlock(&set_limit_mutex
);
2703 memlimit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
2707 ret
= res_counter_set_limit(&memcg
->res
, val
);
2709 if (memswlimit
== val
)
2710 memcg
->memsw_is_minimum
= true;
2712 memcg
->memsw_is_minimum
= false;
2714 mutex_unlock(&set_limit_mutex
);
2719 mem_cgroup_hierarchical_reclaim(memcg
, NULL
, GFP_KERNEL
,
2720 MEM_CGROUP_RECLAIM_SHRINK
);
2721 curusage
= res_counter_read_u64(&memcg
->res
, RES_USAGE
);
2722 /* Usage is reduced ? */
2723 if (curusage
>= oldusage
)
2726 oldusage
= curusage
;
2728 if (!ret
&& enlarge
)
2729 memcg_oom_recover(memcg
);
2734 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup
*memcg
,
2735 unsigned long long val
)
2738 u64 memlimit
, memswlimit
, oldusage
, curusage
;
2739 int children
= mem_cgroup_count_children(memcg
);
2743 /* see mem_cgroup_resize_res_limit */
2744 retry_count
= children
* MEM_CGROUP_RECLAIM_RETRIES
;
2745 oldusage
= res_counter_read_u64(&memcg
->memsw
, RES_USAGE
);
2746 while (retry_count
) {
2747 if (signal_pending(current
)) {
2752 * Rather than hide all in some function, I do this in
2753 * open coded manner. You see what this really does.
2754 * We have to guarantee mem->res.limit < mem->memsw.limit.
2756 mutex_lock(&set_limit_mutex
);
2757 memlimit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
2758 if (memlimit
> val
) {
2760 mutex_unlock(&set_limit_mutex
);
2763 memswlimit
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
2764 if (memswlimit
< val
)
2766 ret
= res_counter_set_limit(&memcg
->memsw
, val
);
2768 if (memlimit
== val
)
2769 memcg
->memsw_is_minimum
= true;
2771 memcg
->memsw_is_minimum
= false;
2773 mutex_unlock(&set_limit_mutex
);
2778 mem_cgroup_hierarchical_reclaim(memcg
, NULL
, GFP_KERNEL
,
2779 MEM_CGROUP_RECLAIM_NOSWAP
|
2780 MEM_CGROUP_RECLAIM_SHRINK
);
2781 curusage
= res_counter_read_u64(&memcg
->memsw
, RES_USAGE
);
2782 /* Usage is reduced ? */
2783 if (curusage
>= oldusage
)
2786 oldusage
= curusage
;
2788 if (!ret
&& enlarge
)
2789 memcg_oom_recover(memcg
);
2793 unsigned long mem_cgroup_soft_limit_reclaim(struct zone
*zone
, int order
,
2794 gfp_t gfp_mask
, int nid
,
2797 unsigned long nr_reclaimed
= 0;
2798 struct mem_cgroup_per_zone
*mz
, *next_mz
= NULL
;
2799 unsigned long reclaimed
;
2801 struct mem_cgroup_tree_per_zone
*mctz
;
2802 unsigned long long excess
;
2807 mctz
= soft_limit_tree_node_zone(nid
, zid
);
2809 * This loop can run a while, specially if mem_cgroup's continuously
2810 * keep exceeding their soft limit and putting the system under
2817 mz
= mem_cgroup_largest_soft_limit_node(mctz
);
2821 reclaimed
= mem_cgroup_hierarchical_reclaim(mz
->mem
, zone
,
2823 MEM_CGROUP_RECLAIM_SOFT
);
2824 nr_reclaimed
+= reclaimed
;
2825 spin_lock(&mctz
->lock
);
2828 * If we failed to reclaim anything from this memory cgroup
2829 * it is time to move on to the next cgroup
2835 * Loop until we find yet another one.
2837 * By the time we get the soft_limit lock
2838 * again, someone might have aded the
2839 * group back on the RB tree. Iterate to
2840 * make sure we get a different mem.
2841 * mem_cgroup_largest_soft_limit_node returns
2842 * NULL if no other cgroup is present on
2846 __mem_cgroup_largest_soft_limit_node(mctz
);
2847 if (next_mz
== mz
) {
2848 css_put(&next_mz
->mem
->css
);
2850 } else /* next_mz == NULL or other memcg */
2854 __mem_cgroup_remove_exceeded(mz
->mem
, mz
, mctz
);
2855 excess
= res_counter_soft_limit_excess(&mz
->mem
->res
);
2857 * One school of thought says that we should not add
2858 * back the node to the tree if reclaim returns 0.
2859 * But our reclaim could return 0, simply because due
2860 * to priority we are exposing a smaller subset of
2861 * memory to reclaim from. Consider this as a longer
2864 /* If excess == 0, no tree ops */
2865 __mem_cgroup_insert_exceeded(mz
->mem
, mz
, mctz
, excess
);
2866 spin_unlock(&mctz
->lock
);
2867 css_put(&mz
->mem
->css
);
2870 * Could not reclaim anything and there are no more
2871 * mem cgroups to try or we seem to be looping without
2872 * reclaiming anything.
2874 if (!nr_reclaimed
&&
2876 loop
> MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS
))
2878 } while (!nr_reclaimed
);
2880 css_put(&next_mz
->mem
->css
);
2881 return nr_reclaimed
;
2885 * This routine traverse page_cgroup in given list and drop them all.
2886 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
2888 static int mem_cgroup_force_empty_list(struct mem_cgroup
*mem
,
2889 int node
, int zid
, enum lru_list lru
)
2892 struct mem_cgroup_per_zone
*mz
;
2893 struct page_cgroup
*pc
, *busy
;
2894 unsigned long flags
, loop
;
2895 struct list_head
*list
;
2898 zone
= &NODE_DATA(node
)->node_zones
[zid
];
2899 mz
= mem_cgroup_zoneinfo(mem
, node
, zid
);
2900 list
= &mz
->lists
[lru
];
2902 loop
= MEM_CGROUP_ZSTAT(mz
, lru
);
2903 /* give some margin against EBUSY etc...*/
2908 spin_lock_irqsave(&zone
->lru_lock
, flags
);
2909 if (list_empty(list
)) {
2910 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
2913 pc
= list_entry(list
->prev
, struct page_cgroup
, lru
);
2915 list_move(&pc
->lru
, list
);
2917 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
2920 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
2922 ret
= mem_cgroup_move_parent(pc
, mem
, GFP_KERNEL
);
2926 if (ret
== -EBUSY
|| ret
== -EINVAL
) {
2927 /* found lock contention or "pc" is obsolete. */
2934 if (!ret
&& !list_empty(list
))
2940 * make mem_cgroup's charge to be 0 if there is no task.
2941 * This enables deleting this mem_cgroup.
2943 static int mem_cgroup_force_empty(struct mem_cgroup
*mem
, bool free_all
)
2946 int node
, zid
, shrink
;
2947 int nr_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
2948 struct cgroup
*cgrp
= mem
->css
.cgroup
;
2953 /* should free all ? */
2959 if (cgroup_task_count(cgrp
) || !list_empty(&cgrp
->children
))
2962 if (signal_pending(current
))
2964 /* This is for making all *used* pages to be on LRU. */
2965 lru_add_drain_all();
2966 drain_all_stock_sync();
2968 for_each_node_state(node
, N_HIGH_MEMORY
) {
2969 for (zid
= 0; !ret
&& zid
< MAX_NR_ZONES
; zid
++) {
2972 ret
= mem_cgroup_force_empty_list(mem
,
2981 memcg_oom_recover(mem
);
2982 /* it seems parent cgroup doesn't have enough mem */
2986 /* "ret" should also be checked to ensure all lists are empty. */
2987 } while (mem
->res
.usage
> 0 || ret
);
2993 /* returns EBUSY if there is a task or if we come here twice. */
2994 if (cgroup_task_count(cgrp
) || !list_empty(&cgrp
->children
) || shrink
) {
2998 /* we call try-to-free pages for make this cgroup empty */
2999 lru_add_drain_all();
3000 /* try to free all pages in this cgroup */
3002 while (nr_retries
&& mem
->res
.usage
> 0) {
3005 if (signal_pending(current
)) {
3009 progress
= try_to_free_mem_cgroup_pages(mem
, GFP_KERNEL
,
3010 false, get_swappiness(mem
));
3013 /* maybe some writeback is necessary */
3014 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
3019 /* try move_account...there may be some *locked* pages. */
3023 int mem_cgroup_force_empty_write(struct cgroup
*cont
, unsigned int event
)
3025 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont
), true);
3029 static u64
mem_cgroup_hierarchy_read(struct cgroup
*cont
, struct cftype
*cft
)
3031 return mem_cgroup_from_cont(cont
)->use_hierarchy
;
3034 static int mem_cgroup_hierarchy_write(struct cgroup
*cont
, struct cftype
*cft
,
3038 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cont
);
3039 struct cgroup
*parent
= cont
->parent
;
3040 struct mem_cgroup
*parent_mem
= NULL
;
3043 parent_mem
= mem_cgroup_from_cont(parent
);
3047 * If parent's use_hierarchy is set, we can't make any modifications
3048 * in the child subtrees. If it is unset, then the change can
3049 * occur, provided the current cgroup has no children.
3051 * For the root cgroup, parent_mem is NULL, we allow value to be
3052 * set if there are no children.
3054 if ((!parent_mem
|| !parent_mem
->use_hierarchy
) &&
3055 (val
== 1 || val
== 0)) {
3056 if (list_empty(&cont
->children
))
3057 mem
->use_hierarchy
= val
;
3067 struct mem_cgroup_idx_data
{
3069 enum mem_cgroup_stat_index idx
;
3073 mem_cgroup_get_idx_stat(struct mem_cgroup
*mem
, void *data
)
3075 struct mem_cgroup_idx_data
*d
= data
;
3076 d
->val
+= mem_cgroup_read_stat(mem
, d
->idx
);
3081 mem_cgroup_get_recursive_idx_stat(struct mem_cgroup
*mem
,
3082 enum mem_cgroup_stat_index idx
, s64
*val
)
3084 struct mem_cgroup_idx_data d
;
3087 mem_cgroup_walk_tree(mem
, &d
, mem_cgroup_get_idx_stat
);
3091 static inline u64
mem_cgroup_usage(struct mem_cgroup
*mem
, bool swap
)
3095 if (!mem_cgroup_is_root(mem
)) {
3097 return res_counter_read_u64(&mem
->res
, RES_USAGE
);
3099 return res_counter_read_u64(&mem
->memsw
, RES_USAGE
);
3102 mem_cgroup_get_recursive_idx_stat(mem
, MEM_CGROUP_STAT_CACHE
, &idx_val
);
3104 mem_cgroup_get_recursive_idx_stat(mem
, MEM_CGROUP_STAT_RSS
, &idx_val
);
3108 mem_cgroup_get_recursive_idx_stat(mem
,
3109 MEM_CGROUP_STAT_SWAPOUT
, &idx_val
);
3113 return val
<< PAGE_SHIFT
;
3116 static u64
mem_cgroup_read(struct cgroup
*cont
, struct cftype
*cft
)
3118 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cont
);
3122 type
= MEMFILE_TYPE(cft
->private);
3123 name
= MEMFILE_ATTR(cft
->private);
3126 if (name
== RES_USAGE
)
3127 val
= mem_cgroup_usage(mem
, false);
3129 val
= res_counter_read_u64(&mem
->res
, name
);
3132 if (name
== RES_USAGE
)
3133 val
= mem_cgroup_usage(mem
, true);
3135 val
= res_counter_read_u64(&mem
->memsw
, name
);
3144 * The user of this function is...
3147 static int mem_cgroup_write(struct cgroup
*cont
, struct cftype
*cft
,
3150 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cont
);
3152 unsigned long long val
;
3155 type
= MEMFILE_TYPE(cft
->private);
3156 name
= MEMFILE_ATTR(cft
->private);
3159 if (mem_cgroup_is_root(memcg
)) { /* Can't set limit on root */
3163 /* This function does all necessary parse...reuse it */
3164 ret
= res_counter_memparse_write_strategy(buffer
, &val
);
3168 ret
= mem_cgroup_resize_limit(memcg
, val
);
3170 ret
= mem_cgroup_resize_memsw_limit(memcg
, val
);
3172 case RES_SOFT_LIMIT
:
3173 ret
= res_counter_memparse_write_strategy(buffer
, &val
);
3177 * For memsw, soft limits are hard to implement in terms
3178 * of semantics, for now, we support soft limits for
3179 * control without swap
3182 ret
= res_counter_set_soft_limit(&memcg
->res
, val
);
3187 ret
= -EINVAL
; /* should be BUG() ? */
3193 static void memcg_get_hierarchical_limit(struct mem_cgroup
*memcg
,
3194 unsigned long long *mem_limit
, unsigned long long *memsw_limit
)
3196 struct cgroup
*cgroup
;
3197 unsigned long long min_limit
, min_memsw_limit
, tmp
;
3199 min_limit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
3200 min_memsw_limit
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
3201 cgroup
= memcg
->css
.cgroup
;
3202 if (!memcg
->use_hierarchy
)
3205 while (cgroup
->parent
) {
3206 cgroup
= cgroup
->parent
;
3207 memcg
= mem_cgroup_from_cont(cgroup
);
3208 if (!memcg
->use_hierarchy
)
3210 tmp
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
3211 min_limit
= min(min_limit
, tmp
);
3212 tmp
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
3213 min_memsw_limit
= min(min_memsw_limit
, tmp
);
3216 *mem_limit
= min_limit
;
3217 *memsw_limit
= min_memsw_limit
;
3221 static int mem_cgroup_reset(struct cgroup
*cont
, unsigned int event
)
3223 struct mem_cgroup
*mem
;
3226 mem
= mem_cgroup_from_cont(cont
);
3227 type
= MEMFILE_TYPE(event
);
3228 name
= MEMFILE_ATTR(event
);
3232 res_counter_reset_max(&mem
->res
);
3234 res_counter_reset_max(&mem
->memsw
);
3238 res_counter_reset_failcnt(&mem
->res
);
3240 res_counter_reset_failcnt(&mem
->memsw
);
3247 static u64
mem_cgroup_move_charge_read(struct cgroup
*cgrp
,
3250 return mem_cgroup_from_cont(cgrp
)->move_charge_at_immigrate
;
3254 static int mem_cgroup_move_charge_write(struct cgroup
*cgrp
,
3255 struct cftype
*cft
, u64 val
)
3257 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cgrp
);
3259 if (val
>= (1 << NR_MOVE_TYPE
))
3262 * We check this value several times in both in can_attach() and
3263 * attach(), so we need cgroup lock to prevent this value from being
3267 mem
->move_charge_at_immigrate
= val
;
3273 static int mem_cgroup_move_charge_write(struct cgroup
*cgrp
,
3274 struct cftype
*cft
, u64 val
)
3281 /* For read statistics */
3297 struct mcs_total_stat
{
3298 s64 stat
[NR_MCS_STAT
];
3304 } memcg_stat_strings
[NR_MCS_STAT
] = {
3305 {"cache", "total_cache"},
3306 {"rss", "total_rss"},
3307 {"mapped_file", "total_mapped_file"},
3308 {"pgpgin", "total_pgpgin"},
3309 {"pgpgout", "total_pgpgout"},
3310 {"swap", "total_swap"},
3311 {"inactive_anon", "total_inactive_anon"},
3312 {"active_anon", "total_active_anon"},
3313 {"inactive_file", "total_inactive_file"},
3314 {"active_file", "total_active_file"},
3315 {"unevictable", "total_unevictable"}
3319 static int mem_cgroup_get_local_stat(struct mem_cgroup
*mem
, void *data
)
3321 struct mcs_total_stat
*s
= data
;
3325 val
= mem_cgroup_read_stat(mem
, MEM_CGROUP_STAT_CACHE
);
3326 s
->stat
[MCS_CACHE
] += val
* PAGE_SIZE
;
3327 val
= mem_cgroup_read_stat(mem
, MEM_CGROUP_STAT_RSS
);
3328 s
->stat
[MCS_RSS
] += val
* PAGE_SIZE
;
3329 val
= mem_cgroup_read_stat(mem
, MEM_CGROUP_STAT_FILE_MAPPED
);
3330 s
->stat
[MCS_FILE_MAPPED
] += val
* PAGE_SIZE
;
3331 val
= mem_cgroup_read_stat(mem
, MEM_CGROUP_STAT_PGPGIN_COUNT
);
3332 s
->stat
[MCS_PGPGIN
] += val
;
3333 val
= mem_cgroup_read_stat(mem
, MEM_CGROUP_STAT_PGPGOUT_COUNT
);
3334 s
->stat
[MCS_PGPGOUT
] += val
;
3335 if (do_swap_account
) {
3336 val
= mem_cgroup_read_stat(mem
, MEM_CGROUP_STAT_SWAPOUT
);
3337 s
->stat
[MCS_SWAP
] += val
* PAGE_SIZE
;
3341 val
= mem_cgroup_get_local_zonestat(mem
, LRU_INACTIVE_ANON
);
3342 s
->stat
[MCS_INACTIVE_ANON
] += val
* PAGE_SIZE
;
3343 val
= mem_cgroup_get_local_zonestat(mem
, LRU_ACTIVE_ANON
);
3344 s
->stat
[MCS_ACTIVE_ANON
] += val
* PAGE_SIZE
;
3345 val
= mem_cgroup_get_local_zonestat(mem
, LRU_INACTIVE_FILE
);
3346 s
->stat
[MCS_INACTIVE_FILE
] += val
* PAGE_SIZE
;
3347 val
= mem_cgroup_get_local_zonestat(mem
, LRU_ACTIVE_FILE
);
3348 s
->stat
[MCS_ACTIVE_FILE
] += val
* PAGE_SIZE
;
3349 val
= mem_cgroup_get_local_zonestat(mem
, LRU_UNEVICTABLE
);
3350 s
->stat
[MCS_UNEVICTABLE
] += val
* PAGE_SIZE
;
3355 mem_cgroup_get_total_stat(struct mem_cgroup
*mem
, struct mcs_total_stat
*s
)
3357 mem_cgroup_walk_tree(mem
, s
, mem_cgroup_get_local_stat
);
3360 static int mem_control_stat_show(struct cgroup
*cont
, struct cftype
*cft
,
3361 struct cgroup_map_cb
*cb
)
3363 struct mem_cgroup
*mem_cont
= mem_cgroup_from_cont(cont
);
3364 struct mcs_total_stat mystat
;
3367 memset(&mystat
, 0, sizeof(mystat
));
3368 mem_cgroup_get_local_stat(mem_cont
, &mystat
);
3370 for (i
= 0; i
< NR_MCS_STAT
; i
++) {
3371 if (i
== MCS_SWAP
&& !do_swap_account
)
3373 cb
->fill(cb
, memcg_stat_strings
[i
].local_name
, mystat
.stat
[i
]);
3376 /* Hierarchical information */
3378 unsigned long long limit
, memsw_limit
;
3379 memcg_get_hierarchical_limit(mem_cont
, &limit
, &memsw_limit
);
3380 cb
->fill(cb
, "hierarchical_memory_limit", limit
);
3381 if (do_swap_account
)
3382 cb
->fill(cb
, "hierarchical_memsw_limit", memsw_limit
);
3385 memset(&mystat
, 0, sizeof(mystat
));
3386 mem_cgroup_get_total_stat(mem_cont
, &mystat
);
3387 for (i
= 0; i
< NR_MCS_STAT
; i
++) {
3388 if (i
== MCS_SWAP
&& !do_swap_account
)
3390 cb
->fill(cb
, memcg_stat_strings
[i
].total_name
, mystat
.stat
[i
]);
3393 #ifdef CONFIG_DEBUG_VM
3394 cb
->fill(cb
, "inactive_ratio", calc_inactive_ratio(mem_cont
, NULL
));
3398 struct mem_cgroup_per_zone
*mz
;
3399 unsigned long recent_rotated
[2] = {0, 0};
3400 unsigned long recent_scanned
[2] = {0, 0};
3402 for_each_online_node(nid
)
3403 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
3404 mz
= mem_cgroup_zoneinfo(mem_cont
, nid
, zid
);
3406 recent_rotated
[0] +=
3407 mz
->reclaim_stat
.recent_rotated
[0];
3408 recent_rotated
[1] +=
3409 mz
->reclaim_stat
.recent_rotated
[1];
3410 recent_scanned
[0] +=
3411 mz
->reclaim_stat
.recent_scanned
[0];
3412 recent_scanned
[1] +=
3413 mz
->reclaim_stat
.recent_scanned
[1];
3415 cb
->fill(cb
, "recent_rotated_anon", recent_rotated
[0]);
3416 cb
->fill(cb
, "recent_rotated_file", recent_rotated
[1]);
3417 cb
->fill(cb
, "recent_scanned_anon", recent_scanned
[0]);
3418 cb
->fill(cb
, "recent_scanned_file", recent_scanned
[1]);
3425 static u64
mem_cgroup_swappiness_read(struct cgroup
*cgrp
, struct cftype
*cft
)
3427 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
3429 return get_swappiness(memcg
);
3432 static int mem_cgroup_swappiness_write(struct cgroup
*cgrp
, struct cftype
*cft
,
3435 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
3436 struct mem_cgroup
*parent
;
3441 if (cgrp
->parent
== NULL
)
3444 parent
= mem_cgroup_from_cont(cgrp
->parent
);
3448 /* If under hierarchy, only empty-root can set this value */
3449 if ((parent
->use_hierarchy
) ||
3450 (memcg
->use_hierarchy
&& !list_empty(&cgrp
->children
))) {
3455 spin_lock(&memcg
->reclaim_param_lock
);
3456 memcg
->swappiness
= val
;
3457 spin_unlock(&memcg
->reclaim_param_lock
);
3464 static void __mem_cgroup_threshold(struct mem_cgroup
*memcg
, bool swap
)
3466 struct mem_cgroup_threshold_ary
*t
;
3472 t
= rcu_dereference(memcg
->thresholds
.primary
);
3474 t
= rcu_dereference(memcg
->memsw_thresholds
.primary
);
3479 usage
= mem_cgroup_usage(memcg
, swap
);
3482 * current_threshold points to threshold just below usage.
3483 * If it's not true, a threshold was crossed after last
3484 * call of __mem_cgroup_threshold().
3486 i
= t
->current_threshold
;
3489 * Iterate backward over array of thresholds starting from
3490 * current_threshold and check if a threshold is crossed.
3491 * If none of thresholds below usage is crossed, we read
3492 * only one element of the array here.
3494 for (; i
>= 0 && unlikely(t
->entries
[i
].threshold
> usage
); i
--)
3495 eventfd_signal(t
->entries
[i
].eventfd
, 1);
3497 /* i = current_threshold + 1 */
3501 * Iterate forward over array of thresholds starting from
3502 * current_threshold+1 and check if a threshold is crossed.
3503 * If none of thresholds above usage is crossed, we read
3504 * only one element of the array here.
3506 for (; i
< t
->size
&& unlikely(t
->entries
[i
].threshold
<= usage
); i
++)
3507 eventfd_signal(t
->entries
[i
].eventfd
, 1);
3509 /* Update current_threshold */
3510 t
->current_threshold
= i
- 1;
3515 static void mem_cgroup_threshold(struct mem_cgroup
*memcg
)
3517 __mem_cgroup_threshold(memcg
, false);
3518 if (do_swap_account
)
3519 __mem_cgroup_threshold(memcg
, true);
3522 static int compare_thresholds(const void *a
, const void *b
)
3524 const struct mem_cgroup_threshold
*_a
= a
;
3525 const struct mem_cgroup_threshold
*_b
= b
;
3527 return _a
->threshold
- _b
->threshold
;
3530 static int mem_cgroup_oom_notify_cb(struct mem_cgroup
*mem
, void *data
)
3532 struct mem_cgroup_eventfd_list
*ev
;
3534 list_for_each_entry(ev
, &mem
->oom_notify
, list
)
3535 eventfd_signal(ev
->eventfd
, 1);
3539 static void mem_cgroup_oom_notify(struct mem_cgroup
*mem
)
3541 mem_cgroup_walk_tree(mem
, NULL
, mem_cgroup_oom_notify_cb
);
3544 static int mem_cgroup_usage_register_event(struct cgroup
*cgrp
,
3545 struct cftype
*cft
, struct eventfd_ctx
*eventfd
, const char *args
)
3547 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
3548 struct mem_cgroup_thresholds
*thresholds
;
3549 struct mem_cgroup_threshold_ary
*new;
3550 int type
= MEMFILE_TYPE(cft
->private);
3551 u64 threshold
, usage
;
3554 ret
= res_counter_memparse_write_strategy(args
, &threshold
);
3558 mutex_lock(&memcg
->thresholds_lock
);
3561 thresholds
= &memcg
->thresholds
;
3562 else if (type
== _MEMSWAP
)
3563 thresholds
= &memcg
->memsw_thresholds
;
3567 usage
= mem_cgroup_usage(memcg
, type
== _MEMSWAP
);
3569 /* Check if a threshold crossed before adding a new one */
3570 if (thresholds
->primary
)
3571 __mem_cgroup_threshold(memcg
, type
== _MEMSWAP
);
3573 size
= thresholds
->primary
? thresholds
->primary
->size
+ 1 : 1;
3575 /* Allocate memory for new array of thresholds */
3576 new = kmalloc(sizeof(*new) + size
* sizeof(struct mem_cgroup_threshold
),
3584 /* Copy thresholds (if any) to new array */
3585 if (thresholds
->primary
) {
3586 memcpy(new->entries
, thresholds
->primary
->entries
, (size
- 1) *
3587 sizeof(struct mem_cgroup_threshold
));
3590 /* Add new threshold */
3591 new->entries
[size
- 1].eventfd
= eventfd
;
3592 new->entries
[size
- 1].threshold
= threshold
;
3594 /* Sort thresholds. Registering of new threshold isn't time-critical */
3595 sort(new->entries
, size
, sizeof(struct mem_cgroup_threshold
),
3596 compare_thresholds
, NULL
);
3598 /* Find current threshold */
3599 new->current_threshold
= -1;
3600 for (i
= 0; i
< size
; i
++) {
3601 if (new->entries
[i
].threshold
< usage
) {
3603 * new->current_threshold will not be used until
3604 * rcu_assign_pointer(), so it's safe to increment
3607 ++new->current_threshold
;
3611 /* Free old spare buffer and save old primary buffer as spare */
3612 kfree(thresholds
->spare
);
3613 thresholds
->spare
= thresholds
->primary
;
3615 rcu_assign_pointer(thresholds
->primary
, new);
3617 /* To be sure that nobody uses thresholds */
3621 mutex_unlock(&memcg
->thresholds_lock
);
3626 static void mem_cgroup_usage_unregister_event(struct cgroup
*cgrp
,
3627 struct cftype
*cft
, struct eventfd_ctx
*eventfd
)
3629 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
3630 struct mem_cgroup_thresholds
*thresholds
;
3631 struct mem_cgroup_threshold_ary
*new;
3632 int type
= MEMFILE_TYPE(cft
->private);
3636 mutex_lock(&memcg
->thresholds_lock
);
3638 thresholds
= &memcg
->thresholds
;
3639 else if (type
== _MEMSWAP
)
3640 thresholds
= &memcg
->memsw_thresholds
;
3645 * Something went wrong if we trying to unregister a threshold
3646 * if we don't have thresholds
3648 BUG_ON(!thresholds
);
3650 usage
= mem_cgroup_usage(memcg
, type
== _MEMSWAP
);
3652 /* Check if a threshold crossed before removing */
3653 __mem_cgroup_threshold(memcg
, type
== _MEMSWAP
);
3655 /* Calculate new number of threshold */
3657 for (i
= 0; i
< thresholds
->primary
->size
; i
++) {
3658 if (thresholds
->primary
->entries
[i
].eventfd
!= eventfd
)
3662 new = thresholds
->spare
;
3664 /* Set thresholds array to NULL if we don't have thresholds */
3673 /* Copy thresholds and find current threshold */
3674 new->current_threshold
= -1;
3675 for (i
= 0, j
= 0; i
< thresholds
->primary
->size
; i
++) {
3676 if (thresholds
->primary
->entries
[i
].eventfd
== eventfd
)
3679 new->entries
[j
] = thresholds
->primary
->entries
[i
];
3680 if (new->entries
[j
].threshold
< usage
) {
3682 * new->current_threshold will not be used
3683 * until rcu_assign_pointer(), so it's safe to increment
3686 ++new->current_threshold
;
3692 /* Swap primary and spare array */
3693 thresholds
->spare
= thresholds
->primary
;
3694 rcu_assign_pointer(thresholds
->primary
, new);
3696 /* To be sure that nobody uses thresholds */
3699 mutex_unlock(&memcg
->thresholds_lock
);
3702 static int mem_cgroup_oom_register_event(struct cgroup
*cgrp
,
3703 struct cftype
*cft
, struct eventfd_ctx
*eventfd
, const char *args
)
3705 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
3706 struct mem_cgroup_eventfd_list
*event
;
3707 int type
= MEMFILE_TYPE(cft
->private);
3709 BUG_ON(type
!= _OOM_TYPE
);
3710 event
= kmalloc(sizeof(*event
), GFP_KERNEL
);
3714 mutex_lock(&memcg_oom_mutex
);
3716 event
->eventfd
= eventfd
;
3717 list_add(&event
->list
, &memcg
->oom_notify
);
3719 /* already in OOM ? */
3720 if (atomic_read(&memcg
->oom_lock
))
3721 eventfd_signal(eventfd
, 1);
3722 mutex_unlock(&memcg_oom_mutex
);
3727 static void mem_cgroup_oom_unregister_event(struct cgroup
*cgrp
,
3728 struct cftype
*cft
, struct eventfd_ctx
*eventfd
)
3730 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cgrp
);
3731 struct mem_cgroup_eventfd_list
*ev
, *tmp
;
3732 int type
= MEMFILE_TYPE(cft
->private);
3734 BUG_ON(type
!= _OOM_TYPE
);
3736 mutex_lock(&memcg_oom_mutex
);
3738 list_for_each_entry_safe(ev
, tmp
, &mem
->oom_notify
, list
) {
3739 if (ev
->eventfd
== eventfd
) {
3740 list_del(&ev
->list
);
3745 mutex_unlock(&memcg_oom_mutex
);
3748 static int mem_cgroup_oom_control_read(struct cgroup
*cgrp
,
3749 struct cftype
*cft
, struct cgroup_map_cb
*cb
)
3751 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cgrp
);
3753 cb
->fill(cb
, "oom_kill_disable", mem
->oom_kill_disable
);
3755 if (atomic_read(&mem
->oom_lock
))
3756 cb
->fill(cb
, "under_oom", 1);
3758 cb
->fill(cb
, "under_oom", 0);
3764 static int mem_cgroup_oom_control_write(struct cgroup
*cgrp
,
3765 struct cftype
*cft
, u64 val
)
3767 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cgrp
);
3768 struct mem_cgroup
*parent
;
3770 /* cannot set to root cgroup and only 0 and 1 are allowed */
3771 if (!cgrp
->parent
|| !((val
== 0) || (val
== 1)))
3774 parent
= mem_cgroup_from_cont(cgrp
->parent
);
3777 /* oom-kill-disable is a flag for subhierarchy. */
3778 if ((parent
->use_hierarchy
) ||
3779 (mem
->use_hierarchy
&& !list_empty(&cgrp
->children
))) {
3783 mem
->oom_kill_disable
= val
;
3788 static struct cftype mem_cgroup_files
[] = {
3790 .name
= "usage_in_bytes",
3791 .private = MEMFILE_PRIVATE(_MEM
, RES_USAGE
),
3792 .read_u64
= mem_cgroup_read
,
3793 .register_event
= mem_cgroup_usage_register_event
,
3794 .unregister_event
= mem_cgroup_usage_unregister_event
,
3797 .name
= "max_usage_in_bytes",
3798 .private = MEMFILE_PRIVATE(_MEM
, RES_MAX_USAGE
),
3799 .trigger
= mem_cgroup_reset
,
3800 .read_u64
= mem_cgroup_read
,
3803 .name
= "limit_in_bytes",
3804 .private = MEMFILE_PRIVATE(_MEM
, RES_LIMIT
),
3805 .write_string
= mem_cgroup_write
,
3806 .read_u64
= mem_cgroup_read
,
3809 .name
= "soft_limit_in_bytes",
3810 .private = MEMFILE_PRIVATE(_MEM
, RES_SOFT_LIMIT
),
3811 .write_string
= mem_cgroup_write
,
3812 .read_u64
= mem_cgroup_read
,
3816 .private = MEMFILE_PRIVATE(_MEM
, RES_FAILCNT
),
3817 .trigger
= mem_cgroup_reset
,
3818 .read_u64
= mem_cgroup_read
,
3822 .read_map
= mem_control_stat_show
,
3825 .name
= "force_empty",
3826 .trigger
= mem_cgroup_force_empty_write
,
3829 .name
= "use_hierarchy",
3830 .write_u64
= mem_cgroup_hierarchy_write
,
3831 .read_u64
= mem_cgroup_hierarchy_read
,
3834 .name
= "swappiness",
3835 .read_u64
= mem_cgroup_swappiness_read
,
3836 .write_u64
= mem_cgroup_swappiness_write
,
3839 .name
= "move_charge_at_immigrate",
3840 .read_u64
= mem_cgroup_move_charge_read
,
3841 .write_u64
= mem_cgroup_move_charge_write
,
3844 .name
= "oom_control",
3845 .read_map
= mem_cgroup_oom_control_read
,
3846 .write_u64
= mem_cgroup_oom_control_write
,
3847 .register_event
= mem_cgroup_oom_register_event
,
3848 .unregister_event
= mem_cgroup_oom_unregister_event
,
3849 .private = MEMFILE_PRIVATE(_OOM_TYPE
, OOM_CONTROL
),
3853 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3854 static struct cftype memsw_cgroup_files
[] = {
3856 .name
= "memsw.usage_in_bytes",
3857 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_USAGE
),
3858 .read_u64
= mem_cgroup_read
,
3859 .register_event
= mem_cgroup_usage_register_event
,
3860 .unregister_event
= mem_cgroup_usage_unregister_event
,
3863 .name
= "memsw.max_usage_in_bytes",
3864 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_MAX_USAGE
),
3865 .trigger
= mem_cgroup_reset
,
3866 .read_u64
= mem_cgroup_read
,
3869 .name
= "memsw.limit_in_bytes",
3870 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_LIMIT
),
3871 .write_string
= mem_cgroup_write
,
3872 .read_u64
= mem_cgroup_read
,
3875 .name
= "memsw.failcnt",
3876 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_FAILCNT
),
3877 .trigger
= mem_cgroup_reset
,
3878 .read_u64
= mem_cgroup_read
,
3882 static int register_memsw_files(struct cgroup
*cont
, struct cgroup_subsys
*ss
)
3884 if (!do_swap_account
)
3886 return cgroup_add_files(cont
, ss
, memsw_cgroup_files
,
3887 ARRAY_SIZE(memsw_cgroup_files
));
3890 static int register_memsw_files(struct cgroup
*cont
, struct cgroup_subsys
*ss
)
3896 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup
*mem
, int node
)
3898 struct mem_cgroup_per_node
*pn
;
3899 struct mem_cgroup_per_zone
*mz
;
3901 int zone
, tmp
= node
;
3903 * This routine is called against possible nodes.
3904 * But it's BUG to call kmalloc() against offline node.
3906 * TODO: this routine can waste much memory for nodes which will
3907 * never be onlined. It's better to use memory hotplug callback
3910 if (!node_state(node
, N_NORMAL_MEMORY
))
3912 pn
= kmalloc_node(sizeof(*pn
), GFP_KERNEL
, tmp
);
3916 mem
->info
.nodeinfo
[node
] = pn
;
3917 memset(pn
, 0, sizeof(*pn
));
3919 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
3920 mz
= &pn
->zoneinfo
[zone
];
3922 INIT_LIST_HEAD(&mz
->lists
[l
]);
3923 mz
->usage_in_excess
= 0;
3924 mz
->on_tree
= false;
3930 static void free_mem_cgroup_per_zone_info(struct mem_cgroup
*mem
, int node
)
3932 kfree(mem
->info
.nodeinfo
[node
]);
3935 static struct mem_cgroup
*mem_cgroup_alloc(void)
3937 struct mem_cgroup
*mem
;
3938 int size
= sizeof(struct mem_cgroup
);
3940 /* Can be very big if MAX_NUMNODES is very big */
3941 if (size
< PAGE_SIZE
)
3942 mem
= kmalloc(size
, GFP_KERNEL
);
3944 mem
= vmalloc(size
);
3949 memset(mem
, 0, size
);
3950 mem
->stat
= alloc_percpu(struct mem_cgroup_stat_cpu
);
3952 if (size
< PAGE_SIZE
)
3962 * At destroying mem_cgroup, references from swap_cgroup can remain.
3963 * (scanning all at force_empty is too costly...)
3965 * Instead of clearing all references at force_empty, we remember
3966 * the number of reference from swap_cgroup and free mem_cgroup when
3967 * it goes down to 0.
3969 * Removal of cgroup itself succeeds regardless of refs from swap.
3972 static void __mem_cgroup_free(struct mem_cgroup
*mem
)
3976 mem_cgroup_remove_from_trees(mem
);
3977 free_css_id(&mem_cgroup_subsys
, &mem
->css
);
3979 for_each_node_state(node
, N_POSSIBLE
)
3980 free_mem_cgroup_per_zone_info(mem
, node
);
3982 free_percpu(mem
->stat
);
3983 if (sizeof(struct mem_cgroup
) < PAGE_SIZE
)
3989 static void mem_cgroup_get(struct mem_cgroup
*mem
)
3991 atomic_inc(&mem
->refcnt
);
3994 static void __mem_cgroup_put(struct mem_cgroup
*mem
, int count
)
3996 if (atomic_sub_and_test(count
, &mem
->refcnt
)) {
3997 struct mem_cgroup
*parent
= parent_mem_cgroup(mem
);
3998 __mem_cgroup_free(mem
);
4000 mem_cgroup_put(parent
);
4004 static void mem_cgroup_put(struct mem_cgroup
*mem
)
4006 __mem_cgroup_put(mem
, 1);
4010 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4012 static struct mem_cgroup
*parent_mem_cgroup(struct mem_cgroup
*mem
)
4014 if (!mem
->res
.parent
)
4016 return mem_cgroup_from_res_counter(mem
->res
.parent
, res
);
4019 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4020 static void __init
enable_swap_cgroup(void)
4022 if (!mem_cgroup_disabled() && really_do_swap_account
)
4023 do_swap_account
= 1;
4026 static void __init
enable_swap_cgroup(void)
4031 static int mem_cgroup_soft_limit_tree_init(void)
4033 struct mem_cgroup_tree_per_node
*rtpn
;
4034 struct mem_cgroup_tree_per_zone
*rtpz
;
4035 int tmp
, node
, zone
;
4037 for_each_node_state(node
, N_POSSIBLE
) {
4039 if (!node_state(node
, N_NORMAL_MEMORY
))
4041 rtpn
= kzalloc_node(sizeof(*rtpn
), GFP_KERNEL
, tmp
);
4045 soft_limit_tree
.rb_tree_per_node
[node
] = rtpn
;
4047 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
4048 rtpz
= &rtpn
->rb_tree_per_zone
[zone
];
4049 rtpz
->rb_root
= RB_ROOT
;
4050 spin_lock_init(&rtpz
->lock
);
4056 static struct cgroup_subsys_state
* __ref
4057 mem_cgroup_create(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
4059 struct mem_cgroup
*mem
, *parent
;
4060 long error
= -ENOMEM
;
4063 mem
= mem_cgroup_alloc();
4065 return ERR_PTR(error
);
4067 for_each_node_state(node
, N_POSSIBLE
)
4068 if (alloc_mem_cgroup_per_zone_info(mem
, node
))
4072 if (cont
->parent
== NULL
) {
4074 enable_swap_cgroup();
4076 root_mem_cgroup
= mem
;
4077 if (mem_cgroup_soft_limit_tree_init())
4079 for_each_possible_cpu(cpu
) {
4080 struct memcg_stock_pcp
*stock
=
4081 &per_cpu(memcg_stock
, cpu
);
4082 INIT_WORK(&stock
->work
, drain_local_stock
);
4084 hotcpu_notifier(memcg_stock_cpu_callback
, 0);
4086 parent
= mem_cgroup_from_cont(cont
->parent
);
4087 mem
->use_hierarchy
= parent
->use_hierarchy
;
4088 mem
->oom_kill_disable
= parent
->oom_kill_disable
;
4091 if (parent
&& parent
->use_hierarchy
) {
4092 res_counter_init(&mem
->res
, &parent
->res
);
4093 res_counter_init(&mem
->memsw
, &parent
->memsw
);
4095 * We increment refcnt of the parent to ensure that we can
4096 * safely access it on res_counter_charge/uncharge.
4097 * This refcnt will be decremented when freeing this
4098 * mem_cgroup(see mem_cgroup_put).
4100 mem_cgroup_get(parent
);
4102 res_counter_init(&mem
->res
, NULL
);
4103 res_counter_init(&mem
->memsw
, NULL
);
4105 mem
->last_scanned_child
= 0;
4106 spin_lock_init(&mem
->reclaim_param_lock
);
4107 INIT_LIST_HEAD(&mem
->oom_notify
);
4110 mem
->swappiness
= get_swappiness(parent
);
4111 atomic_set(&mem
->refcnt
, 1);
4112 mem
->move_charge_at_immigrate
= 0;
4113 mutex_init(&mem
->thresholds_lock
);
4116 __mem_cgroup_free(mem
);
4117 root_mem_cgroup
= NULL
;
4118 return ERR_PTR(error
);
4121 static int mem_cgroup_pre_destroy(struct cgroup_subsys
*ss
,
4122 struct cgroup
*cont
)
4124 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cont
);
4126 return mem_cgroup_force_empty(mem
, false);
4129 static void mem_cgroup_destroy(struct cgroup_subsys
*ss
,
4130 struct cgroup
*cont
)
4132 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cont
);
4134 mem_cgroup_put(mem
);
4137 static int mem_cgroup_populate(struct cgroup_subsys
*ss
,
4138 struct cgroup
*cont
)
4142 ret
= cgroup_add_files(cont
, ss
, mem_cgroup_files
,
4143 ARRAY_SIZE(mem_cgroup_files
));
4146 ret
= register_memsw_files(cont
, ss
);
4151 /* Handlers for move charge at task migration. */
4152 #define PRECHARGE_COUNT_AT_ONCE 256
4153 static int mem_cgroup_do_precharge(unsigned long count
)
4156 int batch_count
= PRECHARGE_COUNT_AT_ONCE
;
4157 struct mem_cgroup
*mem
= mc
.to
;
4159 if (mem_cgroup_is_root(mem
)) {
4160 mc
.precharge
+= count
;
4161 /* we don't need css_get for root */
4164 /* try to charge at once */
4166 struct res_counter
*dummy
;
4168 * "mem" cannot be under rmdir() because we've already checked
4169 * by cgroup_lock_live_cgroup() that it is not removed and we
4170 * are still under the same cgroup_mutex. So we can postpone
4173 if (res_counter_charge(&mem
->res
, PAGE_SIZE
* count
, &dummy
))
4175 if (do_swap_account
&& res_counter_charge(&mem
->memsw
,
4176 PAGE_SIZE
* count
, &dummy
)) {
4177 res_counter_uncharge(&mem
->res
, PAGE_SIZE
* count
);
4180 mc
.precharge
+= count
;
4181 VM_BUG_ON(test_bit(CSS_ROOT
, &mem
->css
.flags
));
4182 WARN_ON_ONCE(count
> INT_MAX
);
4183 __css_get(&mem
->css
, (int)count
);
4187 /* fall back to one by one charge */
4189 if (signal_pending(current
)) {
4193 if (!batch_count
--) {
4194 batch_count
= PRECHARGE_COUNT_AT_ONCE
;
4197 ret
= __mem_cgroup_try_charge(NULL
, GFP_KERNEL
, &mem
, false);
4199 /* mem_cgroup_clear_mc() will do uncharge later */
4207 * is_target_pte_for_mc - check a pte whether it is valid for move charge
4208 * @vma: the vma the pte to be checked belongs
4209 * @addr: the address corresponding to the pte to be checked
4210 * @ptent: the pte to be checked
4211 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4214 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4215 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4216 * move charge. if @target is not NULL, the page is stored in target->page
4217 * with extra refcnt got(Callers should handle it).
4218 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4219 * target for charge migration. if @target is not NULL, the entry is stored
4222 * Called with pte lock held.
4229 enum mc_target_type
{
4230 MC_TARGET_NONE
, /* not used */
4235 static struct page
*mc_handle_present_pte(struct vm_area_struct
*vma
,
4236 unsigned long addr
, pte_t ptent
)
4238 struct page
*page
= vm_normal_page(vma
, addr
, ptent
);
4240 if (!page
|| !page_mapped(page
))
4242 if (PageAnon(page
)) {
4243 /* we don't move shared anon */
4244 if (!move_anon() || page_mapcount(page
) > 2)
4246 } else if (!move_file())
4247 /* we ignore mapcount for file pages */
4249 if (!get_page_unless_zero(page
))
4255 static struct page
*mc_handle_swap_pte(struct vm_area_struct
*vma
,
4256 unsigned long addr
, pte_t ptent
, swp_entry_t
*entry
)
4259 struct page
*page
= NULL
;
4260 swp_entry_t ent
= pte_to_swp_entry(ptent
);
4262 if (!move_anon() || non_swap_entry(ent
))
4264 usage_count
= mem_cgroup_count_swap_user(ent
, &page
);
4265 if (usage_count
> 1) { /* we don't move shared anon */
4270 if (do_swap_account
)
4271 entry
->val
= ent
.val
;
4276 static struct page
*mc_handle_file_pte(struct vm_area_struct
*vma
,
4277 unsigned long addr
, pte_t ptent
, swp_entry_t
*entry
)
4279 struct page
*page
= NULL
;
4280 struct inode
*inode
;
4281 struct address_space
*mapping
;
4284 if (!vma
->vm_file
) /* anonymous vma */
4289 inode
= vma
->vm_file
->f_path
.dentry
->d_inode
;
4290 mapping
= vma
->vm_file
->f_mapping
;
4291 if (pte_none(ptent
))
4292 pgoff
= linear_page_index(vma
, addr
);
4293 else /* pte_file(ptent) is true */
4294 pgoff
= pte_to_pgoff(ptent
);
4296 /* page is moved even if it's not RSS of this task(page-faulted). */
4297 if (!mapping_cap_swap_backed(mapping
)) { /* normal file */
4298 page
= find_get_page(mapping
, pgoff
);
4299 } else { /* shmem/tmpfs file. we should take account of swap too. */
4301 mem_cgroup_get_shmem_target(inode
, pgoff
, &page
, &ent
);
4302 if (do_swap_account
)
4303 entry
->val
= ent
.val
;
4309 static int is_target_pte_for_mc(struct vm_area_struct
*vma
,
4310 unsigned long addr
, pte_t ptent
, union mc_target
*target
)
4312 struct page
*page
= NULL
;
4313 struct page_cgroup
*pc
;
4315 swp_entry_t ent
= { .val
= 0 };
4317 if (pte_present(ptent
))
4318 page
= mc_handle_present_pte(vma
, addr
, ptent
);
4319 else if (is_swap_pte(ptent
))
4320 page
= mc_handle_swap_pte(vma
, addr
, ptent
, &ent
);
4321 else if (pte_none(ptent
) || pte_file(ptent
))
4322 page
= mc_handle_file_pte(vma
, addr
, ptent
, &ent
);
4324 if (!page
&& !ent
.val
)
4327 pc
= lookup_page_cgroup(page
);
4329 * Do only loose check w/o page_cgroup lock.
4330 * mem_cgroup_move_account() checks the pc is valid or not under
4333 if (PageCgroupUsed(pc
) && pc
->mem_cgroup
== mc
.from
) {
4334 ret
= MC_TARGET_PAGE
;
4336 target
->page
= page
;
4338 if (!ret
|| !target
)
4341 /* There is a swap entry and a page doesn't exist or isn't charged */
4342 if (ent
.val
&& !ret
&&
4343 css_id(&mc
.from
->css
) == lookup_swap_cgroup(ent
)) {
4344 ret
= MC_TARGET_SWAP
;
4351 static int mem_cgroup_count_precharge_pte_range(pmd_t
*pmd
,
4352 unsigned long addr
, unsigned long end
,
4353 struct mm_walk
*walk
)
4355 struct vm_area_struct
*vma
= walk
->private;
4359 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
4360 for (; addr
!= end
; pte
++, addr
+= PAGE_SIZE
)
4361 if (is_target_pte_for_mc(vma
, addr
, *pte
, NULL
))
4362 mc
.precharge
++; /* increment precharge temporarily */
4363 pte_unmap_unlock(pte
- 1, ptl
);
4369 static unsigned long mem_cgroup_count_precharge(struct mm_struct
*mm
)
4371 unsigned long precharge
;
4372 struct vm_area_struct
*vma
;
4374 down_read(&mm
->mmap_sem
);
4375 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
4376 struct mm_walk mem_cgroup_count_precharge_walk
= {
4377 .pmd_entry
= mem_cgroup_count_precharge_pte_range
,
4381 if (is_vm_hugetlb_page(vma
))
4383 walk_page_range(vma
->vm_start
, vma
->vm_end
,
4384 &mem_cgroup_count_precharge_walk
);
4386 up_read(&mm
->mmap_sem
);
4388 precharge
= mc
.precharge
;
4394 static int mem_cgroup_precharge_mc(struct mm_struct
*mm
)
4396 return mem_cgroup_do_precharge(mem_cgroup_count_precharge(mm
));
4399 static void mem_cgroup_clear_mc(void)
4401 /* we must uncharge all the leftover precharges from mc.to */
4403 __mem_cgroup_cancel_charge(mc
.to
, mc
.precharge
);
4405 memcg_oom_recover(mc
.to
);
4408 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4409 * we must uncharge here.
4411 if (mc
.moved_charge
) {
4412 __mem_cgroup_cancel_charge(mc
.from
, mc
.moved_charge
);
4413 mc
.moved_charge
= 0;
4414 memcg_oom_recover(mc
.from
);
4416 /* we must fixup refcnts and charges */
4417 if (mc
.moved_swap
) {
4418 WARN_ON_ONCE(mc
.moved_swap
> INT_MAX
);
4419 /* uncharge swap account from the old cgroup */
4420 if (!mem_cgroup_is_root(mc
.from
))
4421 res_counter_uncharge(&mc
.from
->memsw
,
4422 PAGE_SIZE
* mc
.moved_swap
);
4423 __mem_cgroup_put(mc
.from
, mc
.moved_swap
);
4425 if (!mem_cgroup_is_root(mc
.to
)) {
4427 * we charged both to->res and to->memsw, so we should
4430 res_counter_uncharge(&mc
.to
->res
,
4431 PAGE_SIZE
* mc
.moved_swap
);
4432 VM_BUG_ON(test_bit(CSS_ROOT
, &mc
.to
->css
.flags
));
4433 __css_put(&mc
.to
->css
, mc
.moved_swap
);
4435 /* we've already done mem_cgroup_get(mc.to) */
4441 mc
.moving_task
= NULL
;
4442 wake_up_all(&mc
.waitq
);
4445 static int mem_cgroup_can_attach(struct cgroup_subsys
*ss
,
4446 struct cgroup
*cgroup
,
4447 struct task_struct
*p
,
4451 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cgroup
);
4453 if (mem
->move_charge_at_immigrate
) {
4454 struct mm_struct
*mm
;
4455 struct mem_cgroup
*from
= mem_cgroup_from_task(p
);
4457 VM_BUG_ON(from
== mem
);
4459 mm
= get_task_mm(p
);
4462 /* We move charges only when we move a owner of the mm */
4463 if (mm
->owner
== p
) {
4466 VM_BUG_ON(mc
.precharge
);
4467 VM_BUG_ON(mc
.moved_charge
);
4468 VM_BUG_ON(mc
.moved_swap
);
4469 VM_BUG_ON(mc
.moving_task
);
4473 mc
.moved_charge
= 0;
4475 mc
.moving_task
= current
;
4477 ret
= mem_cgroup_precharge_mc(mm
);
4479 mem_cgroup_clear_mc();
4486 static void mem_cgroup_cancel_attach(struct cgroup_subsys
*ss
,
4487 struct cgroup
*cgroup
,
4488 struct task_struct
*p
,
4491 mem_cgroup_clear_mc();
4494 static int mem_cgroup_move_charge_pte_range(pmd_t
*pmd
,
4495 unsigned long addr
, unsigned long end
,
4496 struct mm_walk
*walk
)
4499 struct vm_area_struct
*vma
= walk
->private;
4504 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
4505 for (; addr
!= end
; addr
+= PAGE_SIZE
) {
4506 pte_t ptent
= *(pte
++);
4507 union mc_target target
;
4510 struct page_cgroup
*pc
;
4516 type
= is_target_pte_for_mc(vma
, addr
, ptent
, &target
);
4518 case MC_TARGET_PAGE
:
4520 if (isolate_lru_page(page
))
4522 pc
= lookup_page_cgroup(page
);
4523 if (!mem_cgroup_move_account(pc
,
4524 mc
.from
, mc
.to
, false)) {
4526 /* we uncharge from mc.from later. */
4529 putback_lru_page(page
);
4530 put
: /* is_target_pte_for_mc() gets the page */
4533 case MC_TARGET_SWAP
:
4535 if (!mem_cgroup_move_swap_account(ent
,
4536 mc
.from
, mc
.to
, false)) {
4538 /* we fixup refcnts and charges later. */
4546 pte_unmap_unlock(pte
- 1, ptl
);
4551 * We have consumed all precharges we got in can_attach().
4552 * We try charge one by one, but don't do any additional
4553 * charges to mc.to if we have failed in charge once in attach()
4556 ret
= mem_cgroup_do_precharge(1);
4564 static void mem_cgroup_move_charge(struct mm_struct
*mm
)
4566 struct vm_area_struct
*vma
;
4568 lru_add_drain_all();
4569 down_read(&mm
->mmap_sem
);
4570 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
4572 struct mm_walk mem_cgroup_move_charge_walk
= {
4573 .pmd_entry
= mem_cgroup_move_charge_pte_range
,
4577 if (is_vm_hugetlb_page(vma
))
4579 ret
= walk_page_range(vma
->vm_start
, vma
->vm_end
,
4580 &mem_cgroup_move_charge_walk
);
4583 * means we have consumed all precharges and failed in
4584 * doing additional charge. Just abandon here.
4588 up_read(&mm
->mmap_sem
);
4591 static void mem_cgroup_move_task(struct cgroup_subsys
*ss
,
4592 struct cgroup
*cont
,
4593 struct cgroup
*old_cont
,
4594 struct task_struct
*p
,
4597 struct mm_struct
*mm
;
4600 /* no need to move charge */
4603 mm
= get_task_mm(p
);
4605 mem_cgroup_move_charge(mm
);
4608 mem_cgroup_clear_mc();
4610 #else /* !CONFIG_MMU */
4611 static int mem_cgroup_can_attach(struct cgroup_subsys
*ss
,
4612 struct cgroup
*cgroup
,
4613 struct task_struct
*p
,
4618 static void mem_cgroup_cancel_attach(struct cgroup_subsys
*ss
,
4619 struct cgroup
*cgroup
,
4620 struct task_struct
*p
,
4624 static void mem_cgroup_move_task(struct cgroup_subsys
*ss
,
4625 struct cgroup
*cont
,
4626 struct cgroup
*old_cont
,
4627 struct task_struct
*p
,
4633 struct cgroup_subsys mem_cgroup_subsys
= {
4635 .subsys_id
= mem_cgroup_subsys_id
,
4636 .create
= mem_cgroup_create
,
4637 .pre_destroy
= mem_cgroup_pre_destroy
,
4638 .destroy
= mem_cgroup_destroy
,
4639 .populate
= mem_cgroup_populate
,
4640 .can_attach
= mem_cgroup_can_attach
,
4641 .cancel_attach
= mem_cgroup_cancel_attach
,
4642 .attach
= mem_cgroup_move_task
,
4647 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4649 static int __init
disable_swap_account(char *s
)
4651 really_do_swap_account
= 0;
4654 __setup("noswapaccount", disable_swap_account
);