pinctrl: at91: copy define to driver
[linux-2.6.git] / mm / huge_memory.c
blob7489884682d84a6b5840fef19e90234076fd374e
1 /*
2 * Copyright (C) 2009 Red Hat, Inc.
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/highmem.h>
11 #include <linux/hugetlb.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/rmap.h>
14 #include <linux/swap.h>
15 #include <linux/shrinker.h>
16 #include <linux/mm_inline.h>
17 #include <linux/kthread.h>
18 #include <linux/khugepaged.h>
19 #include <linux/freezer.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/migrate.h>
23 #include <linux/hashtable.h>
25 #include <asm/tlb.h>
26 #include <asm/pgalloc.h>
27 #include "internal.h"
30 * By default transparent hugepage support is enabled for all mappings
31 * and khugepaged scans all mappings. Defrag is only invoked by
32 * khugepaged hugepage allocations and by page faults inside
33 * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
34 * allocations.
36 unsigned long transparent_hugepage_flags __read_mostly =
37 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
38 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
39 #endif
40 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
41 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
42 #endif
43 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
44 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
45 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
47 /* default scan 8*512 pte (or vmas) every 30 second */
48 static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
49 static unsigned int khugepaged_pages_collapsed;
50 static unsigned int khugepaged_full_scans;
51 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
52 /* during fragmentation poll the hugepage allocator once every minute */
53 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
54 static struct task_struct *khugepaged_thread __read_mostly;
55 static DEFINE_MUTEX(khugepaged_mutex);
56 static DEFINE_SPINLOCK(khugepaged_mm_lock);
57 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
59 * default collapse hugepages if there is at least one pte mapped like
60 * it would have happened if the vma was large enough during page
61 * fault.
63 static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
65 static int khugepaged(void *none);
66 static int khugepaged_slab_init(void);
68 #define MM_SLOTS_HASH_BITS 10
69 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
71 static struct kmem_cache *mm_slot_cache __read_mostly;
73 /**
74 * struct mm_slot - hash lookup from mm to mm_slot
75 * @hash: hash collision list
76 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
77 * @mm: the mm that this information is valid for
79 struct mm_slot {
80 struct hlist_node hash;
81 struct list_head mm_node;
82 struct mm_struct *mm;
85 /**
86 * struct khugepaged_scan - cursor for scanning
87 * @mm_head: the head of the mm list to scan
88 * @mm_slot: the current mm_slot we are scanning
89 * @address: the next address inside that to be scanned
91 * There is only the one khugepaged_scan instance of this cursor structure.
93 struct khugepaged_scan {
94 struct list_head mm_head;
95 struct mm_slot *mm_slot;
96 unsigned long address;
98 static struct khugepaged_scan khugepaged_scan = {
99 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
103 static int set_recommended_min_free_kbytes(void)
105 struct zone *zone;
106 int nr_zones = 0;
107 unsigned long recommended_min;
109 if (!khugepaged_enabled())
110 return 0;
112 for_each_populated_zone(zone)
113 nr_zones++;
115 /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
116 recommended_min = pageblock_nr_pages * nr_zones * 2;
119 * Make sure that on average at least two pageblocks are almost free
120 * of another type, one for a migratetype to fall back to and a
121 * second to avoid subsequent fallbacks of other types There are 3
122 * MIGRATE_TYPES we care about.
124 recommended_min += pageblock_nr_pages * nr_zones *
125 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
127 /* don't ever allow to reserve more than 5% of the lowmem */
128 recommended_min = min(recommended_min,
129 (unsigned long) nr_free_buffer_pages() / 20);
130 recommended_min <<= (PAGE_SHIFT-10);
132 if (recommended_min > min_free_kbytes)
133 min_free_kbytes = recommended_min;
134 setup_per_zone_wmarks();
135 return 0;
137 late_initcall(set_recommended_min_free_kbytes);
139 static int start_khugepaged(void)
141 int err = 0;
142 if (khugepaged_enabled()) {
143 if (!khugepaged_thread)
144 khugepaged_thread = kthread_run(khugepaged, NULL,
145 "khugepaged");
146 if (unlikely(IS_ERR(khugepaged_thread))) {
147 printk(KERN_ERR
148 "khugepaged: kthread_run(khugepaged) failed\n");
149 err = PTR_ERR(khugepaged_thread);
150 khugepaged_thread = NULL;
153 if (!list_empty(&khugepaged_scan.mm_head))
154 wake_up_interruptible(&khugepaged_wait);
156 set_recommended_min_free_kbytes();
157 } else if (khugepaged_thread) {
158 kthread_stop(khugepaged_thread);
159 khugepaged_thread = NULL;
162 return err;
165 static atomic_t huge_zero_refcount;
166 static struct page *huge_zero_page __read_mostly;
168 static inline bool is_huge_zero_page(struct page *page)
170 return ACCESS_ONCE(huge_zero_page) == page;
173 static inline bool is_huge_zero_pmd(pmd_t pmd)
175 return is_huge_zero_page(pmd_page(pmd));
178 static struct page *get_huge_zero_page(void)
180 struct page *zero_page;
181 retry:
182 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
183 return ACCESS_ONCE(huge_zero_page);
185 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
186 HPAGE_PMD_ORDER);
187 if (!zero_page) {
188 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
189 return NULL;
191 count_vm_event(THP_ZERO_PAGE_ALLOC);
192 preempt_disable();
193 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
194 preempt_enable();
195 __free_page(zero_page);
196 goto retry;
199 /* We take additional reference here. It will be put back by shrinker */
200 atomic_set(&huge_zero_refcount, 2);
201 preempt_enable();
202 return ACCESS_ONCE(huge_zero_page);
205 static void put_huge_zero_page(void)
208 * Counter should never go to zero here. Only shrinker can put
209 * last reference.
211 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
214 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
215 struct shrink_control *sc)
217 /* we can free zero page only if last reference remains */
218 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
221 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
222 struct shrink_control *sc)
224 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
225 struct page *zero_page = xchg(&huge_zero_page, NULL);
226 BUG_ON(zero_page == NULL);
227 __free_page(zero_page);
228 return HPAGE_PMD_NR;
231 return 0;
234 static struct shrinker huge_zero_page_shrinker = {
235 .count_objects = shrink_huge_zero_page_count,
236 .scan_objects = shrink_huge_zero_page_scan,
237 .seeks = DEFAULT_SEEKS,
240 #ifdef CONFIG_SYSFS
242 static ssize_t double_flag_show(struct kobject *kobj,
243 struct kobj_attribute *attr, char *buf,
244 enum transparent_hugepage_flag enabled,
245 enum transparent_hugepage_flag req_madv)
247 if (test_bit(enabled, &transparent_hugepage_flags)) {
248 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
249 return sprintf(buf, "[always] madvise never\n");
250 } else if (test_bit(req_madv, &transparent_hugepage_flags))
251 return sprintf(buf, "always [madvise] never\n");
252 else
253 return sprintf(buf, "always madvise [never]\n");
255 static ssize_t double_flag_store(struct kobject *kobj,
256 struct kobj_attribute *attr,
257 const char *buf, size_t count,
258 enum transparent_hugepage_flag enabled,
259 enum transparent_hugepage_flag req_madv)
261 if (!memcmp("always", buf,
262 min(sizeof("always")-1, count))) {
263 set_bit(enabled, &transparent_hugepage_flags);
264 clear_bit(req_madv, &transparent_hugepage_flags);
265 } else if (!memcmp("madvise", buf,
266 min(sizeof("madvise")-1, count))) {
267 clear_bit(enabled, &transparent_hugepage_flags);
268 set_bit(req_madv, &transparent_hugepage_flags);
269 } else if (!memcmp("never", buf,
270 min(sizeof("never")-1, count))) {
271 clear_bit(enabled, &transparent_hugepage_flags);
272 clear_bit(req_madv, &transparent_hugepage_flags);
273 } else
274 return -EINVAL;
276 return count;
279 static ssize_t enabled_show(struct kobject *kobj,
280 struct kobj_attribute *attr, char *buf)
282 return double_flag_show(kobj, attr, buf,
283 TRANSPARENT_HUGEPAGE_FLAG,
284 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
286 static ssize_t enabled_store(struct kobject *kobj,
287 struct kobj_attribute *attr,
288 const char *buf, size_t count)
290 ssize_t ret;
292 ret = double_flag_store(kobj, attr, buf, count,
293 TRANSPARENT_HUGEPAGE_FLAG,
294 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
296 if (ret > 0) {
297 int err;
299 mutex_lock(&khugepaged_mutex);
300 err = start_khugepaged();
301 mutex_unlock(&khugepaged_mutex);
303 if (err)
304 ret = err;
307 return ret;
309 static struct kobj_attribute enabled_attr =
310 __ATTR(enabled, 0644, enabled_show, enabled_store);
312 static ssize_t single_flag_show(struct kobject *kobj,
313 struct kobj_attribute *attr, char *buf,
314 enum transparent_hugepage_flag flag)
316 return sprintf(buf, "%d\n",
317 !!test_bit(flag, &transparent_hugepage_flags));
320 static ssize_t single_flag_store(struct kobject *kobj,
321 struct kobj_attribute *attr,
322 const char *buf, size_t count,
323 enum transparent_hugepage_flag flag)
325 unsigned long value;
326 int ret;
328 ret = kstrtoul(buf, 10, &value);
329 if (ret < 0)
330 return ret;
331 if (value > 1)
332 return -EINVAL;
334 if (value)
335 set_bit(flag, &transparent_hugepage_flags);
336 else
337 clear_bit(flag, &transparent_hugepage_flags);
339 return count;
343 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
344 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
345 * memory just to allocate one more hugepage.
347 static ssize_t defrag_show(struct kobject *kobj,
348 struct kobj_attribute *attr, char *buf)
350 return double_flag_show(kobj, attr, buf,
351 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
352 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
354 static ssize_t defrag_store(struct kobject *kobj,
355 struct kobj_attribute *attr,
356 const char *buf, size_t count)
358 return double_flag_store(kobj, attr, buf, count,
359 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
360 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
362 static struct kobj_attribute defrag_attr =
363 __ATTR(defrag, 0644, defrag_show, defrag_store);
365 static ssize_t use_zero_page_show(struct kobject *kobj,
366 struct kobj_attribute *attr, char *buf)
368 return single_flag_show(kobj, attr, buf,
369 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
371 static ssize_t use_zero_page_store(struct kobject *kobj,
372 struct kobj_attribute *attr, const char *buf, size_t count)
374 return single_flag_store(kobj, attr, buf, count,
375 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
377 static struct kobj_attribute use_zero_page_attr =
378 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
379 #ifdef CONFIG_DEBUG_VM
380 static ssize_t debug_cow_show(struct kobject *kobj,
381 struct kobj_attribute *attr, char *buf)
383 return single_flag_show(kobj, attr, buf,
384 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
386 static ssize_t debug_cow_store(struct kobject *kobj,
387 struct kobj_attribute *attr,
388 const char *buf, size_t count)
390 return single_flag_store(kobj, attr, buf, count,
391 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
393 static struct kobj_attribute debug_cow_attr =
394 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
395 #endif /* CONFIG_DEBUG_VM */
397 static struct attribute *hugepage_attr[] = {
398 &enabled_attr.attr,
399 &defrag_attr.attr,
400 &use_zero_page_attr.attr,
401 #ifdef CONFIG_DEBUG_VM
402 &debug_cow_attr.attr,
403 #endif
404 NULL,
407 static struct attribute_group hugepage_attr_group = {
408 .attrs = hugepage_attr,
411 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
412 struct kobj_attribute *attr,
413 char *buf)
415 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
418 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
419 struct kobj_attribute *attr,
420 const char *buf, size_t count)
422 unsigned long msecs;
423 int err;
425 err = kstrtoul(buf, 10, &msecs);
426 if (err || msecs > UINT_MAX)
427 return -EINVAL;
429 khugepaged_scan_sleep_millisecs = msecs;
430 wake_up_interruptible(&khugepaged_wait);
432 return count;
434 static struct kobj_attribute scan_sleep_millisecs_attr =
435 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
436 scan_sleep_millisecs_store);
438 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
439 struct kobj_attribute *attr,
440 char *buf)
442 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
445 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
446 struct kobj_attribute *attr,
447 const char *buf, size_t count)
449 unsigned long msecs;
450 int err;
452 err = kstrtoul(buf, 10, &msecs);
453 if (err || msecs > UINT_MAX)
454 return -EINVAL;
456 khugepaged_alloc_sleep_millisecs = msecs;
457 wake_up_interruptible(&khugepaged_wait);
459 return count;
461 static struct kobj_attribute alloc_sleep_millisecs_attr =
462 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
463 alloc_sleep_millisecs_store);
465 static ssize_t pages_to_scan_show(struct kobject *kobj,
466 struct kobj_attribute *attr,
467 char *buf)
469 return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
471 static ssize_t pages_to_scan_store(struct kobject *kobj,
472 struct kobj_attribute *attr,
473 const char *buf, size_t count)
475 int err;
476 unsigned long pages;
478 err = kstrtoul(buf, 10, &pages);
479 if (err || !pages || pages > UINT_MAX)
480 return -EINVAL;
482 khugepaged_pages_to_scan = pages;
484 return count;
486 static struct kobj_attribute pages_to_scan_attr =
487 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
488 pages_to_scan_store);
490 static ssize_t pages_collapsed_show(struct kobject *kobj,
491 struct kobj_attribute *attr,
492 char *buf)
494 return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
496 static struct kobj_attribute pages_collapsed_attr =
497 __ATTR_RO(pages_collapsed);
499 static ssize_t full_scans_show(struct kobject *kobj,
500 struct kobj_attribute *attr,
501 char *buf)
503 return sprintf(buf, "%u\n", khugepaged_full_scans);
505 static struct kobj_attribute full_scans_attr =
506 __ATTR_RO(full_scans);
508 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
509 struct kobj_attribute *attr, char *buf)
511 return single_flag_show(kobj, attr, buf,
512 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
514 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
515 struct kobj_attribute *attr,
516 const char *buf, size_t count)
518 return single_flag_store(kobj, attr, buf, count,
519 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
521 static struct kobj_attribute khugepaged_defrag_attr =
522 __ATTR(defrag, 0644, khugepaged_defrag_show,
523 khugepaged_defrag_store);
526 * max_ptes_none controls if khugepaged should collapse hugepages over
527 * any unmapped ptes in turn potentially increasing the memory
528 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
529 * reduce the available free memory in the system as it
530 * runs. Increasing max_ptes_none will instead potentially reduce the
531 * free memory in the system during the khugepaged scan.
533 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
534 struct kobj_attribute *attr,
535 char *buf)
537 return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
539 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
540 struct kobj_attribute *attr,
541 const char *buf, size_t count)
543 int err;
544 unsigned long max_ptes_none;
546 err = kstrtoul(buf, 10, &max_ptes_none);
547 if (err || max_ptes_none > HPAGE_PMD_NR-1)
548 return -EINVAL;
550 khugepaged_max_ptes_none = max_ptes_none;
552 return count;
554 static struct kobj_attribute khugepaged_max_ptes_none_attr =
555 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
556 khugepaged_max_ptes_none_store);
558 static struct attribute *khugepaged_attr[] = {
559 &khugepaged_defrag_attr.attr,
560 &khugepaged_max_ptes_none_attr.attr,
561 &pages_to_scan_attr.attr,
562 &pages_collapsed_attr.attr,
563 &full_scans_attr.attr,
564 &scan_sleep_millisecs_attr.attr,
565 &alloc_sleep_millisecs_attr.attr,
566 NULL,
569 static struct attribute_group khugepaged_attr_group = {
570 .attrs = khugepaged_attr,
571 .name = "khugepaged",
574 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
576 int err;
578 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
579 if (unlikely(!*hugepage_kobj)) {
580 printk(KERN_ERR "hugepage: failed to create transparent hugepage kobject\n");
581 return -ENOMEM;
584 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
585 if (err) {
586 printk(KERN_ERR "hugepage: failed to register transparent hugepage group\n");
587 goto delete_obj;
590 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
591 if (err) {
592 printk(KERN_ERR "hugepage: failed to register transparent hugepage group\n");
593 goto remove_hp_group;
596 return 0;
598 remove_hp_group:
599 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
600 delete_obj:
601 kobject_put(*hugepage_kobj);
602 return err;
605 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
607 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
608 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
609 kobject_put(hugepage_kobj);
611 #else
612 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
614 return 0;
617 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
620 #endif /* CONFIG_SYSFS */
622 static int __init hugepage_init(void)
624 int err;
625 struct kobject *hugepage_kobj;
627 if (!has_transparent_hugepage()) {
628 transparent_hugepage_flags = 0;
629 return -EINVAL;
632 err = hugepage_init_sysfs(&hugepage_kobj);
633 if (err)
634 return err;
636 err = khugepaged_slab_init();
637 if (err)
638 goto out;
640 register_shrinker(&huge_zero_page_shrinker);
643 * By default disable transparent hugepages on smaller systems,
644 * where the extra memory used could hurt more than TLB overhead
645 * is likely to save. The admin can still enable it through /sys.
647 if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
648 transparent_hugepage_flags = 0;
650 start_khugepaged();
652 return 0;
653 out:
654 hugepage_exit_sysfs(hugepage_kobj);
655 return err;
657 module_init(hugepage_init)
659 static int __init setup_transparent_hugepage(char *str)
661 int ret = 0;
662 if (!str)
663 goto out;
664 if (!strcmp(str, "always")) {
665 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
666 &transparent_hugepage_flags);
667 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
668 &transparent_hugepage_flags);
669 ret = 1;
670 } else if (!strcmp(str, "madvise")) {
671 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
672 &transparent_hugepage_flags);
673 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
674 &transparent_hugepage_flags);
675 ret = 1;
676 } else if (!strcmp(str, "never")) {
677 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
678 &transparent_hugepage_flags);
679 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
680 &transparent_hugepage_flags);
681 ret = 1;
683 out:
684 if (!ret)
685 printk(KERN_WARNING
686 "transparent_hugepage= cannot parse, ignored\n");
687 return ret;
689 __setup("transparent_hugepage=", setup_transparent_hugepage);
691 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
693 if (likely(vma->vm_flags & VM_WRITE))
694 pmd = pmd_mkwrite(pmd);
695 return pmd;
698 static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
700 pmd_t entry;
701 entry = mk_pmd(page, prot);
702 entry = pmd_mkhuge(entry);
703 return entry;
706 static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
707 struct vm_area_struct *vma,
708 unsigned long haddr, pmd_t *pmd,
709 struct page *page)
711 pgtable_t pgtable;
713 VM_BUG_ON(!PageCompound(page));
714 pgtable = pte_alloc_one(mm, haddr);
715 if (unlikely(!pgtable))
716 return VM_FAULT_OOM;
718 clear_huge_page(page, haddr, HPAGE_PMD_NR);
720 * The memory barrier inside __SetPageUptodate makes sure that
721 * clear_huge_page writes become visible before the set_pmd_at()
722 * write.
724 __SetPageUptodate(page);
726 spin_lock(&mm->page_table_lock);
727 if (unlikely(!pmd_none(*pmd))) {
728 spin_unlock(&mm->page_table_lock);
729 mem_cgroup_uncharge_page(page);
730 put_page(page);
731 pte_free(mm, pgtable);
732 } else {
733 pmd_t entry;
734 entry = mk_huge_pmd(page, vma->vm_page_prot);
735 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
736 page_add_new_anon_rmap(page, vma, haddr);
737 pgtable_trans_huge_deposit(mm, pmd, pgtable);
738 set_pmd_at(mm, haddr, pmd, entry);
739 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
740 mm->nr_ptes++;
741 spin_unlock(&mm->page_table_lock);
744 return 0;
747 static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
749 return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
752 static inline struct page *alloc_hugepage_vma(int defrag,
753 struct vm_area_struct *vma,
754 unsigned long haddr, int nd,
755 gfp_t extra_gfp)
757 return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
758 HPAGE_PMD_ORDER, vma, haddr, nd);
761 #ifndef CONFIG_NUMA
762 static inline struct page *alloc_hugepage(int defrag)
764 return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
765 HPAGE_PMD_ORDER);
767 #endif
769 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
770 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
771 struct page *zero_page)
773 pmd_t entry;
774 if (!pmd_none(*pmd))
775 return false;
776 entry = mk_pmd(zero_page, vma->vm_page_prot);
777 entry = pmd_wrprotect(entry);
778 entry = pmd_mkhuge(entry);
779 pgtable_trans_huge_deposit(mm, pmd, pgtable);
780 set_pmd_at(mm, haddr, pmd, entry);
781 mm->nr_ptes++;
782 return true;
785 int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
786 unsigned long address, pmd_t *pmd,
787 unsigned int flags)
789 struct page *page;
790 unsigned long haddr = address & HPAGE_PMD_MASK;
792 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
793 return VM_FAULT_FALLBACK;
794 if (unlikely(anon_vma_prepare(vma)))
795 return VM_FAULT_OOM;
796 if (unlikely(khugepaged_enter(vma)))
797 return VM_FAULT_OOM;
798 if (!(flags & FAULT_FLAG_WRITE) &&
799 transparent_hugepage_use_zero_page()) {
800 pgtable_t pgtable;
801 struct page *zero_page;
802 bool set;
803 pgtable = pte_alloc_one(mm, haddr);
804 if (unlikely(!pgtable))
805 return VM_FAULT_OOM;
806 zero_page = get_huge_zero_page();
807 if (unlikely(!zero_page)) {
808 pte_free(mm, pgtable);
809 count_vm_event(THP_FAULT_FALLBACK);
810 return VM_FAULT_FALLBACK;
812 spin_lock(&mm->page_table_lock);
813 set = set_huge_zero_page(pgtable, mm, vma, haddr, pmd,
814 zero_page);
815 spin_unlock(&mm->page_table_lock);
816 if (!set) {
817 pte_free(mm, pgtable);
818 put_huge_zero_page();
820 return 0;
822 page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
823 vma, haddr, numa_node_id(), 0);
824 if (unlikely(!page)) {
825 count_vm_event(THP_FAULT_FALLBACK);
826 return VM_FAULT_FALLBACK;
828 if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
829 put_page(page);
830 count_vm_event(THP_FAULT_FALLBACK);
831 return VM_FAULT_FALLBACK;
833 if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page))) {
834 mem_cgroup_uncharge_page(page);
835 put_page(page);
836 count_vm_event(THP_FAULT_FALLBACK);
837 return VM_FAULT_FALLBACK;
840 count_vm_event(THP_FAULT_ALLOC);
841 return 0;
844 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
845 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
846 struct vm_area_struct *vma)
848 struct page *src_page;
849 pmd_t pmd;
850 pgtable_t pgtable;
851 int ret;
853 ret = -ENOMEM;
854 pgtable = pte_alloc_one(dst_mm, addr);
855 if (unlikely(!pgtable))
856 goto out;
858 spin_lock(&dst_mm->page_table_lock);
859 spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
861 ret = -EAGAIN;
862 pmd = *src_pmd;
863 if (unlikely(!pmd_trans_huge(pmd))) {
864 pte_free(dst_mm, pgtable);
865 goto out_unlock;
868 * mm->page_table_lock is enough to be sure that huge zero pmd is not
869 * under splitting since we don't split the page itself, only pmd to
870 * a page table.
872 if (is_huge_zero_pmd(pmd)) {
873 struct page *zero_page;
874 bool set;
876 * get_huge_zero_page() will never allocate a new page here,
877 * since we already have a zero page to copy. It just takes a
878 * reference.
880 zero_page = get_huge_zero_page();
881 set = set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
882 zero_page);
883 BUG_ON(!set); /* unexpected !pmd_none(dst_pmd) */
884 ret = 0;
885 goto out_unlock;
887 if (unlikely(pmd_trans_splitting(pmd))) {
888 /* split huge page running from under us */
889 spin_unlock(&src_mm->page_table_lock);
890 spin_unlock(&dst_mm->page_table_lock);
891 pte_free(dst_mm, pgtable);
893 wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
894 goto out;
896 src_page = pmd_page(pmd);
897 VM_BUG_ON(!PageHead(src_page));
898 get_page(src_page);
899 page_dup_rmap(src_page);
900 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
902 pmdp_set_wrprotect(src_mm, addr, src_pmd);
903 pmd = pmd_mkold(pmd_wrprotect(pmd));
904 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
905 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
906 dst_mm->nr_ptes++;
908 ret = 0;
909 out_unlock:
910 spin_unlock(&src_mm->page_table_lock);
911 spin_unlock(&dst_mm->page_table_lock);
912 out:
913 return ret;
916 void huge_pmd_set_accessed(struct mm_struct *mm,
917 struct vm_area_struct *vma,
918 unsigned long address,
919 pmd_t *pmd, pmd_t orig_pmd,
920 int dirty)
922 pmd_t entry;
923 unsigned long haddr;
925 spin_lock(&mm->page_table_lock);
926 if (unlikely(!pmd_same(*pmd, orig_pmd)))
927 goto unlock;
929 entry = pmd_mkyoung(orig_pmd);
930 haddr = address & HPAGE_PMD_MASK;
931 if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
932 update_mmu_cache_pmd(vma, address, pmd);
934 unlock:
935 spin_unlock(&mm->page_table_lock);
938 static int do_huge_pmd_wp_zero_page_fallback(struct mm_struct *mm,
939 struct vm_area_struct *vma, unsigned long address,
940 pmd_t *pmd, pmd_t orig_pmd, unsigned long haddr)
942 pgtable_t pgtable;
943 pmd_t _pmd;
944 struct page *page;
945 int i, ret = 0;
946 unsigned long mmun_start; /* For mmu_notifiers */
947 unsigned long mmun_end; /* For mmu_notifiers */
949 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
950 if (!page) {
951 ret |= VM_FAULT_OOM;
952 goto out;
955 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
956 put_page(page);
957 ret |= VM_FAULT_OOM;
958 goto out;
961 clear_user_highpage(page, address);
962 __SetPageUptodate(page);
964 mmun_start = haddr;
965 mmun_end = haddr + HPAGE_PMD_SIZE;
966 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
968 spin_lock(&mm->page_table_lock);
969 if (unlikely(!pmd_same(*pmd, orig_pmd)))
970 goto out_free_page;
972 pmdp_clear_flush(vma, haddr, pmd);
973 /* leave pmd empty until pte is filled */
975 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
976 pmd_populate(mm, &_pmd, pgtable);
978 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
979 pte_t *pte, entry;
980 if (haddr == (address & PAGE_MASK)) {
981 entry = mk_pte(page, vma->vm_page_prot);
982 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
983 page_add_new_anon_rmap(page, vma, haddr);
984 } else {
985 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
986 entry = pte_mkspecial(entry);
988 pte = pte_offset_map(&_pmd, haddr);
989 VM_BUG_ON(!pte_none(*pte));
990 set_pte_at(mm, haddr, pte, entry);
991 pte_unmap(pte);
993 smp_wmb(); /* make pte visible before pmd */
994 pmd_populate(mm, pmd, pgtable);
995 spin_unlock(&mm->page_table_lock);
996 put_huge_zero_page();
997 inc_mm_counter(mm, MM_ANONPAGES);
999 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1001 ret |= VM_FAULT_WRITE;
1002 out:
1003 return ret;
1004 out_free_page:
1005 spin_unlock(&mm->page_table_lock);
1006 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1007 mem_cgroup_uncharge_page(page);
1008 put_page(page);
1009 goto out;
1012 static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
1013 struct vm_area_struct *vma,
1014 unsigned long address,
1015 pmd_t *pmd, pmd_t orig_pmd,
1016 struct page *page,
1017 unsigned long haddr)
1019 pgtable_t pgtable;
1020 pmd_t _pmd;
1021 int ret = 0, i;
1022 struct page **pages;
1023 unsigned long mmun_start; /* For mmu_notifiers */
1024 unsigned long mmun_end; /* For mmu_notifiers */
1026 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1027 GFP_KERNEL);
1028 if (unlikely(!pages)) {
1029 ret |= VM_FAULT_OOM;
1030 goto out;
1033 for (i = 0; i < HPAGE_PMD_NR; i++) {
1034 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
1035 __GFP_OTHER_NODE,
1036 vma, address, page_to_nid(page));
1037 if (unlikely(!pages[i] ||
1038 mem_cgroup_newpage_charge(pages[i], mm,
1039 GFP_KERNEL))) {
1040 if (pages[i])
1041 put_page(pages[i]);
1042 mem_cgroup_uncharge_start();
1043 while (--i >= 0) {
1044 mem_cgroup_uncharge_page(pages[i]);
1045 put_page(pages[i]);
1047 mem_cgroup_uncharge_end();
1048 kfree(pages);
1049 ret |= VM_FAULT_OOM;
1050 goto out;
1054 for (i = 0; i < HPAGE_PMD_NR; i++) {
1055 copy_user_highpage(pages[i], page + i,
1056 haddr + PAGE_SIZE * i, vma);
1057 __SetPageUptodate(pages[i]);
1058 cond_resched();
1061 mmun_start = haddr;
1062 mmun_end = haddr + HPAGE_PMD_SIZE;
1063 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1065 spin_lock(&mm->page_table_lock);
1066 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1067 goto out_free_pages;
1068 VM_BUG_ON(!PageHead(page));
1070 pmdp_clear_flush(vma, haddr, pmd);
1071 /* leave pmd empty until pte is filled */
1073 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1074 pmd_populate(mm, &_pmd, pgtable);
1076 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1077 pte_t *pte, entry;
1078 entry = mk_pte(pages[i], vma->vm_page_prot);
1079 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1080 page_add_new_anon_rmap(pages[i], vma, haddr);
1081 pte = pte_offset_map(&_pmd, haddr);
1082 VM_BUG_ON(!pte_none(*pte));
1083 set_pte_at(mm, haddr, pte, entry);
1084 pte_unmap(pte);
1086 kfree(pages);
1088 smp_wmb(); /* make pte visible before pmd */
1089 pmd_populate(mm, pmd, pgtable);
1090 page_remove_rmap(page);
1091 spin_unlock(&mm->page_table_lock);
1093 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1095 ret |= VM_FAULT_WRITE;
1096 put_page(page);
1098 out:
1099 return ret;
1101 out_free_pages:
1102 spin_unlock(&mm->page_table_lock);
1103 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1104 mem_cgroup_uncharge_start();
1105 for (i = 0; i < HPAGE_PMD_NR; i++) {
1106 mem_cgroup_uncharge_page(pages[i]);
1107 put_page(pages[i]);
1109 mem_cgroup_uncharge_end();
1110 kfree(pages);
1111 goto out;
1114 int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1115 unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
1117 int ret = 0;
1118 struct page *page = NULL, *new_page;
1119 unsigned long haddr;
1120 unsigned long mmun_start; /* For mmu_notifiers */
1121 unsigned long mmun_end; /* For mmu_notifiers */
1123 VM_BUG_ON(!vma->anon_vma);
1124 haddr = address & HPAGE_PMD_MASK;
1125 if (is_huge_zero_pmd(orig_pmd))
1126 goto alloc;
1127 spin_lock(&mm->page_table_lock);
1128 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1129 goto out_unlock;
1131 page = pmd_page(orig_pmd);
1132 VM_BUG_ON(!PageCompound(page) || !PageHead(page));
1133 if (page_mapcount(page) == 1) {
1134 pmd_t entry;
1135 entry = pmd_mkyoung(orig_pmd);
1136 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1137 if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
1138 update_mmu_cache_pmd(vma, address, pmd);
1139 ret |= VM_FAULT_WRITE;
1140 goto out_unlock;
1142 get_page(page);
1143 spin_unlock(&mm->page_table_lock);
1144 alloc:
1145 if (transparent_hugepage_enabled(vma) &&
1146 !transparent_hugepage_debug_cow())
1147 new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
1148 vma, haddr, numa_node_id(), 0);
1149 else
1150 new_page = NULL;
1152 if (unlikely(!new_page)) {
1153 if (is_huge_zero_pmd(orig_pmd)) {
1154 ret = do_huge_pmd_wp_zero_page_fallback(mm, vma,
1155 address, pmd, orig_pmd, haddr);
1156 } else {
1157 ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
1158 pmd, orig_pmd, page, haddr);
1159 if (ret & VM_FAULT_OOM)
1160 split_huge_page(page);
1161 put_page(page);
1163 count_vm_event(THP_FAULT_FALLBACK);
1164 goto out;
1167 if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
1168 put_page(new_page);
1169 if (page) {
1170 split_huge_page(page);
1171 put_page(page);
1173 count_vm_event(THP_FAULT_FALLBACK);
1174 ret |= VM_FAULT_OOM;
1175 goto out;
1178 count_vm_event(THP_FAULT_ALLOC);
1180 if (is_huge_zero_pmd(orig_pmd))
1181 clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1182 else
1183 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1184 __SetPageUptodate(new_page);
1186 mmun_start = haddr;
1187 mmun_end = haddr + HPAGE_PMD_SIZE;
1188 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1190 spin_lock(&mm->page_table_lock);
1191 if (page)
1192 put_page(page);
1193 if (unlikely(!pmd_same(*pmd, orig_pmd))) {
1194 spin_unlock(&mm->page_table_lock);
1195 mem_cgroup_uncharge_page(new_page);
1196 put_page(new_page);
1197 goto out_mn;
1198 } else {
1199 pmd_t entry;
1200 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1201 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1202 pmdp_clear_flush(vma, haddr, pmd);
1203 page_add_new_anon_rmap(new_page, vma, haddr);
1204 set_pmd_at(mm, haddr, pmd, entry);
1205 update_mmu_cache_pmd(vma, address, pmd);
1206 if (is_huge_zero_pmd(orig_pmd)) {
1207 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
1208 put_huge_zero_page();
1209 } else {
1210 VM_BUG_ON(!PageHead(page));
1211 page_remove_rmap(page);
1212 put_page(page);
1214 ret |= VM_FAULT_WRITE;
1216 spin_unlock(&mm->page_table_lock);
1217 out_mn:
1218 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1219 out:
1220 return ret;
1221 out_unlock:
1222 spin_unlock(&mm->page_table_lock);
1223 return ret;
1226 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1227 unsigned long addr,
1228 pmd_t *pmd,
1229 unsigned int flags)
1231 struct mm_struct *mm = vma->vm_mm;
1232 struct page *page = NULL;
1234 assert_spin_locked(&mm->page_table_lock);
1236 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1237 goto out;
1239 /* Avoid dumping huge zero page */
1240 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1241 return ERR_PTR(-EFAULT);
1243 page = pmd_page(*pmd);
1244 VM_BUG_ON(!PageHead(page));
1245 if (flags & FOLL_TOUCH) {
1246 pmd_t _pmd;
1248 * We should set the dirty bit only for FOLL_WRITE but
1249 * for now the dirty bit in the pmd is meaningless.
1250 * And if the dirty bit will become meaningful and
1251 * we'll only set it with FOLL_WRITE, an atomic
1252 * set_bit will be required on the pmd to set the
1253 * young bit, instead of the current set_pmd_at.
1255 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1256 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1257 pmd, _pmd, 1))
1258 update_mmu_cache_pmd(vma, addr, pmd);
1260 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1261 if (page->mapping && trylock_page(page)) {
1262 lru_add_drain();
1263 if (page->mapping)
1264 mlock_vma_page(page);
1265 unlock_page(page);
1268 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1269 VM_BUG_ON(!PageCompound(page));
1270 if (flags & FOLL_GET)
1271 get_page_foll(page);
1273 out:
1274 return page;
1277 /* NUMA hinting page fault entry point for trans huge pmds */
1278 int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
1279 unsigned long addr, pmd_t pmd, pmd_t *pmdp)
1281 struct page *page;
1282 unsigned long haddr = addr & HPAGE_PMD_MASK;
1283 int target_nid;
1284 int current_nid = -1;
1285 bool migrated;
1287 spin_lock(&mm->page_table_lock);
1288 if (unlikely(!pmd_same(pmd, *pmdp)))
1289 goto out_unlock;
1291 page = pmd_page(pmd);
1292 get_page(page);
1293 current_nid = page_to_nid(page);
1294 count_vm_numa_event(NUMA_HINT_FAULTS);
1295 if (current_nid == numa_node_id())
1296 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1298 target_nid = mpol_misplaced(page, vma, haddr);
1299 if (target_nid == -1) {
1300 put_page(page);
1301 goto clear_pmdnuma;
1304 /* Acquire the page lock to serialise THP migrations */
1305 spin_unlock(&mm->page_table_lock);
1306 lock_page(page);
1308 /* Confirm the PTE did not while locked */
1309 spin_lock(&mm->page_table_lock);
1310 if (unlikely(!pmd_same(pmd, *pmdp))) {
1311 unlock_page(page);
1312 put_page(page);
1313 goto out_unlock;
1315 spin_unlock(&mm->page_table_lock);
1317 /* Migrate the THP to the requested node */
1318 migrated = migrate_misplaced_transhuge_page(mm, vma,
1319 pmdp, pmd, addr, page, target_nid);
1320 if (!migrated)
1321 goto check_same;
1323 task_numa_fault(target_nid, HPAGE_PMD_NR, true);
1324 return 0;
1326 check_same:
1327 spin_lock(&mm->page_table_lock);
1328 if (unlikely(!pmd_same(pmd, *pmdp)))
1329 goto out_unlock;
1330 clear_pmdnuma:
1331 pmd = pmd_mknonnuma(pmd);
1332 set_pmd_at(mm, haddr, pmdp, pmd);
1333 VM_BUG_ON(pmd_numa(*pmdp));
1334 update_mmu_cache_pmd(vma, addr, pmdp);
1335 out_unlock:
1336 spin_unlock(&mm->page_table_lock);
1337 if (current_nid != -1)
1338 task_numa_fault(current_nid, HPAGE_PMD_NR, false);
1339 return 0;
1342 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1343 pmd_t *pmd, unsigned long addr)
1345 int ret = 0;
1347 if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1348 struct page *page;
1349 pgtable_t pgtable;
1350 pmd_t orig_pmd;
1352 * For architectures like ppc64 we look at deposited pgtable
1353 * when calling pmdp_get_and_clear. So do the
1354 * pgtable_trans_huge_withdraw after finishing pmdp related
1355 * operations.
1357 orig_pmd = pmdp_get_and_clear(tlb->mm, addr, pmd);
1358 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1359 pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
1360 if (is_huge_zero_pmd(orig_pmd)) {
1361 tlb->mm->nr_ptes--;
1362 spin_unlock(&tlb->mm->page_table_lock);
1363 put_huge_zero_page();
1364 } else {
1365 page = pmd_page(orig_pmd);
1366 page_remove_rmap(page);
1367 VM_BUG_ON(page_mapcount(page) < 0);
1368 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1369 VM_BUG_ON(!PageHead(page));
1370 tlb->mm->nr_ptes--;
1371 spin_unlock(&tlb->mm->page_table_lock);
1372 tlb_remove_page(tlb, page);
1374 pte_free(tlb->mm, pgtable);
1375 ret = 1;
1377 return ret;
1380 int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1381 unsigned long addr, unsigned long end,
1382 unsigned char *vec)
1384 int ret = 0;
1386 if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1388 * All logical pages in the range are present
1389 * if backed by a huge page.
1391 spin_unlock(&vma->vm_mm->page_table_lock);
1392 memset(vec, 1, (end - addr) >> PAGE_SHIFT);
1393 ret = 1;
1396 return ret;
1399 int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1400 unsigned long old_addr,
1401 unsigned long new_addr, unsigned long old_end,
1402 pmd_t *old_pmd, pmd_t *new_pmd)
1404 int ret = 0;
1405 pmd_t pmd;
1407 struct mm_struct *mm = vma->vm_mm;
1409 if ((old_addr & ~HPAGE_PMD_MASK) ||
1410 (new_addr & ~HPAGE_PMD_MASK) ||
1411 old_end - old_addr < HPAGE_PMD_SIZE ||
1412 (new_vma->vm_flags & VM_NOHUGEPAGE))
1413 goto out;
1416 * The destination pmd shouldn't be established, free_pgtables()
1417 * should have release it.
1419 if (WARN_ON(!pmd_none(*new_pmd))) {
1420 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1421 goto out;
1424 ret = __pmd_trans_huge_lock(old_pmd, vma);
1425 if (ret == 1) {
1426 pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
1427 VM_BUG_ON(!pmd_none(*new_pmd));
1428 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1429 spin_unlock(&mm->page_table_lock);
1431 out:
1432 return ret;
1435 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1436 unsigned long addr, pgprot_t newprot, int prot_numa)
1438 struct mm_struct *mm = vma->vm_mm;
1439 int ret = 0;
1441 if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1442 pmd_t entry;
1443 entry = pmdp_get_and_clear(mm, addr, pmd);
1444 if (!prot_numa) {
1445 entry = pmd_modify(entry, newprot);
1446 BUG_ON(pmd_write(entry));
1447 } else {
1448 struct page *page = pmd_page(*pmd);
1450 /* only check non-shared pages */
1451 if (page_mapcount(page) == 1 &&
1452 !pmd_numa(*pmd)) {
1453 entry = pmd_mknuma(entry);
1456 set_pmd_at(mm, addr, pmd, entry);
1457 spin_unlock(&vma->vm_mm->page_table_lock);
1458 ret = 1;
1461 return ret;
1465 * Returns 1 if a given pmd maps a stable (not under splitting) thp.
1466 * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
1468 * Note that if it returns 1, this routine returns without unlocking page
1469 * table locks. So callers must unlock them.
1471 int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1473 spin_lock(&vma->vm_mm->page_table_lock);
1474 if (likely(pmd_trans_huge(*pmd))) {
1475 if (unlikely(pmd_trans_splitting(*pmd))) {
1476 spin_unlock(&vma->vm_mm->page_table_lock);
1477 wait_split_huge_page(vma->anon_vma, pmd);
1478 return -1;
1479 } else {
1480 /* Thp mapped by 'pmd' is stable, so we can
1481 * handle it as it is. */
1482 return 1;
1485 spin_unlock(&vma->vm_mm->page_table_lock);
1486 return 0;
1489 pmd_t *page_check_address_pmd(struct page *page,
1490 struct mm_struct *mm,
1491 unsigned long address,
1492 enum page_check_address_pmd_flag flag)
1494 pmd_t *pmd, *ret = NULL;
1496 if (address & ~HPAGE_PMD_MASK)
1497 goto out;
1499 pmd = mm_find_pmd(mm, address);
1500 if (!pmd)
1501 goto out;
1502 if (pmd_none(*pmd))
1503 goto out;
1504 if (pmd_page(*pmd) != page)
1505 goto out;
1507 * split_vma() may create temporary aliased mappings. There is
1508 * no risk as long as all huge pmd are found and have their
1509 * splitting bit set before __split_huge_page_refcount
1510 * runs. Finding the same huge pmd more than once during the
1511 * same rmap walk is not a problem.
1513 if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1514 pmd_trans_splitting(*pmd))
1515 goto out;
1516 if (pmd_trans_huge(*pmd)) {
1517 VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1518 !pmd_trans_splitting(*pmd));
1519 ret = pmd;
1521 out:
1522 return ret;
1525 static int __split_huge_page_splitting(struct page *page,
1526 struct vm_area_struct *vma,
1527 unsigned long address)
1529 struct mm_struct *mm = vma->vm_mm;
1530 pmd_t *pmd;
1531 int ret = 0;
1532 /* For mmu_notifiers */
1533 const unsigned long mmun_start = address;
1534 const unsigned long mmun_end = address + HPAGE_PMD_SIZE;
1536 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1537 spin_lock(&mm->page_table_lock);
1538 pmd = page_check_address_pmd(page, mm, address,
1539 PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
1540 if (pmd) {
1542 * We can't temporarily set the pmd to null in order
1543 * to split it, the pmd must remain marked huge at all
1544 * times or the VM won't take the pmd_trans_huge paths
1545 * and it won't wait on the anon_vma->root->rwsem to
1546 * serialize against split_huge_page*.
1548 pmdp_splitting_flush(vma, address, pmd);
1549 ret = 1;
1551 spin_unlock(&mm->page_table_lock);
1552 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1554 return ret;
1557 static void __split_huge_page_refcount(struct page *page,
1558 struct list_head *list)
1560 int i;
1561 struct zone *zone = page_zone(page);
1562 struct lruvec *lruvec;
1563 int tail_count = 0;
1565 /* prevent PageLRU to go away from under us, and freeze lru stats */
1566 spin_lock_irq(&zone->lru_lock);
1567 lruvec = mem_cgroup_page_lruvec(page, zone);
1569 compound_lock(page);
1570 /* complete memcg works before add pages to LRU */
1571 mem_cgroup_split_huge_fixup(page);
1573 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
1574 struct page *page_tail = page + i;
1576 /* tail_page->_mapcount cannot change */
1577 BUG_ON(page_mapcount(page_tail) < 0);
1578 tail_count += page_mapcount(page_tail);
1579 /* check for overflow */
1580 BUG_ON(tail_count < 0);
1581 BUG_ON(atomic_read(&page_tail->_count) != 0);
1583 * tail_page->_count is zero and not changing from
1584 * under us. But get_page_unless_zero() may be running
1585 * from under us on the tail_page. If we used
1586 * atomic_set() below instead of atomic_add(), we
1587 * would then run atomic_set() concurrently with
1588 * get_page_unless_zero(), and atomic_set() is
1589 * implemented in C not using locked ops. spin_unlock
1590 * on x86 sometime uses locked ops because of PPro
1591 * errata 66, 92, so unless somebody can guarantee
1592 * atomic_set() here would be safe on all archs (and
1593 * not only on x86), it's safer to use atomic_add().
1595 atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
1596 &page_tail->_count);
1598 /* after clearing PageTail the gup refcount can be released */
1599 smp_mb();
1602 * retain hwpoison flag of the poisoned tail page:
1603 * fix for the unsuitable process killed on Guest Machine(KVM)
1604 * by the memory-failure.
1606 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
1607 page_tail->flags |= (page->flags &
1608 ((1L << PG_referenced) |
1609 (1L << PG_swapbacked) |
1610 (1L << PG_mlocked) |
1611 (1L << PG_uptodate) |
1612 (1L << PG_active) |
1613 (1L << PG_unevictable)));
1614 page_tail->flags |= (1L << PG_dirty);
1616 /* clear PageTail before overwriting first_page */
1617 smp_wmb();
1620 * __split_huge_page_splitting() already set the
1621 * splitting bit in all pmd that could map this
1622 * hugepage, that will ensure no CPU can alter the
1623 * mapcount on the head page. The mapcount is only
1624 * accounted in the head page and it has to be
1625 * transferred to all tail pages in the below code. So
1626 * for this code to be safe, the split the mapcount
1627 * can't change. But that doesn't mean userland can't
1628 * keep changing and reading the page contents while
1629 * we transfer the mapcount, so the pmd splitting
1630 * status is achieved setting a reserved bit in the
1631 * pmd, not by clearing the present bit.
1633 page_tail->_mapcount = page->_mapcount;
1635 BUG_ON(page_tail->mapping);
1636 page_tail->mapping = page->mapping;
1638 page_tail->index = page->index + i;
1639 page_nid_xchg_last(page_tail, page_nid_last(page));
1641 BUG_ON(!PageAnon(page_tail));
1642 BUG_ON(!PageUptodate(page_tail));
1643 BUG_ON(!PageDirty(page_tail));
1644 BUG_ON(!PageSwapBacked(page_tail));
1646 lru_add_page_tail(page, page_tail, lruvec, list);
1648 atomic_sub(tail_count, &page->_count);
1649 BUG_ON(atomic_read(&page->_count) <= 0);
1651 __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
1653 ClearPageCompound(page);
1654 compound_unlock(page);
1655 spin_unlock_irq(&zone->lru_lock);
1657 for (i = 1; i < HPAGE_PMD_NR; i++) {
1658 struct page *page_tail = page + i;
1659 BUG_ON(page_count(page_tail) <= 0);
1661 * Tail pages may be freed if there wasn't any mapping
1662 * like if add_to_swap() is running on a lru page that
1663 * had its mapping zapped. And freeing these pages
1664 * requires taking the lru_lock so we do the put_page
1665 * of the tail pages after the split is complete.
1667 put_page(page_tail);
1671 * Only the head page (now become a regular page) is required
1672 * to be pinned by the caller.
1674 BUG_ON(page_count(page) <= 0);
1677 static int __split_huge_page_map(struct page *page,
1678 struct vm_area_struct *vma,
1679 unsigned long address)
1681 struct mm_struct *mm = vma->vm_mm;
1682 pmd_t *pmd, _pmd;
1683 int ret = 0, i;
1684 pgtable_t pgtable;
1685 unsigned long haddr;
1687 spin_lock(&mm->page_table_lock);
1688 pmd = page_check_address_pmd(page, mm, address,
1689 PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
1690 if (pmd) {
1691 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1692 pmd_populate(mm, &_pmd, pgtable);
1694 haddr = address;
1695 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1696 pte_t *pte, entry;
1697 BUG_ON(PageCompound(page+i));
1698 entry = mk_pte(page + i, vma->vm_page_prot);
1699 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1700 if (!pmd_write(*pmd))
1701 entry = pte_wrprotect(entry);
1702 else
1703 BUG_ON(page_mapcount(page) != 1);
1704 if (!pmd_young(*pmd))
1705 entry = pte_mkold(entry);
1706 if (pmd_numa(*pmd))
1707 entry = pte_mknuma(entry);
1708 pte = pte_offset_map(&_pmd, haddr);
1709 BUG_ON(!pte_none(*pte));
1710 set_pte_at(mm, haddr, pte, entry);
1711 pte_unmap(pte);
1714 smp_wmb(); /* make pte visible before pmd */
1716 * Up to this point the pmd is present and huge and
1717 * userland has the whole access to the hugepage
1718 * during the split (which happens in place). If we
1719 * overwrite the pmd with the not-huge version
1720 * pointing to the pte here (which of course we could
1721 * if all CPUs were bug free), userland could trigger
1722 * a small page size TLB miss on the small sized TLB
1723 * while the hugepage TLB entry is still established
1724 * in the huge TLB. Some CPU doesn't like that. See
1725 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1726 * Erratum 383 on page 93. Intel should be safe but is
1727 * also warns that it's only safe if the permission
1728 * and cache attributes of the two entries loaded in
1729 * the two TLB is identical (which should be the case
1730 * here). But it is generally safer to never allow
1731 * small and huge TLB entries for the same virtual
1732 * address to be loaded simultaneously. So instead of
1733 * doing "pmd_populate(); flush_tlb_range();" we first
1734 * mark the current pmd notpresent (atomically because
1735 * here the pmd_trans_huge and pmd_trans_splitting
1736 * must remain set at all times on the pmd until the
1737 * split is complete for this pmd), then we flush the
1738 * SMP TLB and finally we write the non-huge version
1739 * of the pmd entry with pmd_populate.
1741 pmdp_invalidate(vma, address, pmd);
1742 pmd_populate(mm, pmd, pgtable);
1743 ret = 1;
1745 spin_unlock(&mm->page_table_lock);
1747 return ret;
1750 /* must be called with anon_vma->root->rwsem held */
1751 static void __split_huge_page(struct page *page,
1752 struct anon_vma *anon_vma,
1753 struct list_head *list)
1755 int mapcount, mapcount2;
1756 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1757 struct anon_vma_chain *avc;
1759 BUG_ON(!PageHead(page));
1760 BUG_ON(PageTail(page));
1762 mapcount = 0;
1763 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1764 struct vm_area_struct *vma = avc->vma;
1765 unsigned long addr = vma_address(page, vma);
1766 BUG_ON(is_vma_temporary_stack(vma));
1767 mapcount += __split_huge_page_splitting(page, vma, addr);
1770 * It is critical that new vmas are added to the tail of the
1771 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1772 * and establishes a child pmd before
1773 * __split_huge_page_splitting() freezes the parent pmd (so if
1774 * we fail to prevent copy_huge_pmd() from running until the
1775 * whole __split_huge_page() is complete), we will still see
1776 * the newly established pmd of the child later during the
1777 * walk, to be able to set it as pmd_trans_splitting too.
1779 if (mapcount != page_mapcount(page))
1780 printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1781 mapcount, page_mapcount(page));
1782 BUG_ON(mapcount != page_mapcount(page));
1784 __split_huge_page_refcount(page, list);
1786 mapcount2 = 0;
1787 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1788 struct vm_area_struct *vma = avc->vma;
1789 unsigned long addr = vma_address(page, vma);
1790 BUG_ON(is_vma_temporary_stack(vma));
1791 mapcount2 += __split_huge_page_map(page, vma, addr);
1793 if (mapcount != mapcount2)
1794 printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
1795 mapcount, mapcount2, page_mapcount(page));
1796 BUG_ON(mapcount != mapcount2);
1800 * Split a hugepage into normal pages. This doesn't change the position of head
1801 * page. If @list is null, tail pages will be added to LRU list, otherwise, to
1802 * @list. Both head page and tail pages will inherit mapping, flags, and so on
1803 * from the hugepage.
1804 * Return 0 if the hugepage is split successfully otherwise return 1.
1806 int split_huge_page_to_list(struct page *page, struct list_head *list)
1808 struct anon_vma *anon_vma;
1809 int ret = 1;
1811 BUG_ON(is_huge_zero_page(page));
1812 BUG_ON(!PageAnon(page));
1815 * The caller does not necessarily hold an mmap_sem that would prevent
1816 * the anon_vma disappearing so we first we take a reference to it
1817 * and then lock the anon_vma for write. This is similar to
1818 * page_lock_anon_vma_read except the write lock is taken to serialise
1819 * against parallel split or collapse operations.
1821 anon_vma = page_get_anon_vma(page);
1822 if (!anon_vma)
1823 goto out;
1824 anon_vma_lock_write(anon_vma);
1826 ret = 0;
1827 if (!PageCompound(page))
1828 goto out_unlock;
1830 BUG_ON(!PageSwapBacked(page));
1831 __split_huge_page(page, anon_vma, list);
1832 count_vm_event(THP_SPLIT);
1834 BUG_ON(PageCompound(page));
1835 out_unlock:
1836 anon_vma_unlock_write(anon_vma);
1837 put_anon_vma(anon_vma);
1838 out:
1839 return ret;
1842 #define VM_NO_THP (VM_SPECIAL|VM_MIXEDMAP|VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
1844 int hugepage_madvise(struct vm_area_struct *vma,
1845 unsigned long *vm_flags, int advice)
1847 struct mm_struct *mm = vma->vm_mm;
1849 switch (advice) {
1850 case MADV_HUGEPAGE:
1852 * Be somewhat over-protective like KSM for now!
1854 if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
1855 return -EINVAL;
1856 if (mm->def_flags & VM_NOHUGEPAGE)
1857 return -EINVAL;
1858 *vm_flags &= ~VM_NOHUGEPAGE;
1859 *vm_flags |= VM_HUGEPAGE;
1861 * If the vma become good for khugepaged to scan,
1862 * register it here without waiting a page fault that
1863 * may not happen any time soon.
1865 if (unlikely(khugepaged_enter_vma_merge(vma)))
1866 return -ENOMEM;
1867 break;
1868 case MADV_NOHUGEPAGE:
1870 * Be somewhat over-protective like KSM for now!
1872 if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
1873 return -EINVAL;
1874 *vm_flags &= ~VM_HUGEPAGE;
1875 *vm_flags |= VM_NOHUGEPAGE;
1877 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1878 * this vma even if we leave the mm registered in khugepaged if
1879 * it got registered before VM_NOHUGEPAGE was set.
1881 break;
1884 return 0;
1887 static int __init khugepaged_slab_init(void)
1889 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1890 sizeof(struct mm_slot),
1891 __alignof__(struct mm_slot), 0, NULL);
1892 if (!mm_slot_cache)
1893 return -ENOMEM;
1895 return 0;
1898 static inline struct mm_slot *alloc_mm_slot(void)
1900 if (!mm_slot_cache) /* initialization failed */
1901 return NULL;
1902 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1905 static inline void free_mm_slot(struct mm_slot *mm_slot)
1907 kmem_cache_free(mm_slot_cache, mm_slot);
1910 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1912 struct mm_slot *mm_slot;
1914 hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
1915 if (mm == mm_slot->mm)
1916 return mm_slot;
1918 return NULL;
1921 static void insert_to_mm_slots_hash(struct mm_struct *mm,
1922 struct mm_slot *mm_slot)
1924 mm_slot->mm = mm;
1925 hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
1928 static inline int khugepaged_test_exit(struct mm_struct *mm)
1930 return atomic_read(&mm->mm_users) == 0;
1933 int __khugepaged_enter(struct mm_struct *mm)
1935 struct mm_slot *mm_slot;
1936 int wakeup;
1938 mm_slot = alloc_mm_slot();
1939 if (!mm_slot)
1940 return -ENOMEM;
1942 /* __khugepaged_exit() must not run from under us */
1943 VM_BUG_ON(khugepaged_test_exit(mm));
1944 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1945 free_mm_slot(mm_slot);
1946 return 0;
1949 spin_lock(&khugepaged_mm_lock);
1950 insert_to_mm_slots_hash(mm, mm_slot);
1952 * Insert just behind the scanning cursor, to let the area settle
1953 * down a little.
1955 wakeup = list_empty(&khugepaged_scan.mm_head);
1956 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1957 spin_unlock(&khugepaged_mm_lock);
1959 atomic_inc(&mm->mm_count);
1960 if (wakeup)
1961 wake_up_interruptible(&khugepaged_wait);
1963 return 0;
1966 int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
1968 unsigned long hstart, hend;
1969 if (!vma->anon_vma)
1971 * Not yet faulted in so we will register later in the
1972 * page fault if needed.
1974 return 0;
1975 if (vma->vm_ops)
1976 /* khugepaged not yet working on file or special mappings */
1977 return 0;
1978 VM_BUG_ON(vma->vm_flags & VM_NO_THP);
1979 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1980 hend = vma->vm_end & HPAGE_PMD_MASK;
1981 if (hstart < hend)
1982 return khugepaged_enter(vma);
1983 return 0;
1986 void __khugepaged_exit(struct mm_struct *mm)
1988 struct mm_slot *mm_slot;
1989 int free = 0;
1991 spin_lock(&khugepaged_mm_lock);
1992 mm_slot = get_mm_slot(mm);
1993 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
1994 hash_del(&mm_slot->hash);
1995 list_del(&mm_slot->mm_node);
1996 free = 1;
1998 spin_unlock(&khugepaged_mm_lock);
2000 if (free) {
2001 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2002 free_mm_slot(mm_slot);
2003 mmdrop(mm);
2004 } else if (mm_slot) {
2006 * This is required to serialize against
2007 * khugepaged_test_exit() (which is guaranteed to run
2008 * under mmap sem read mode). Stop here (after we
2009 * return all pagetables will be destroyed) until
2010 * khugepaged has finished working on the pagetables
2011 * under the mmap_sem.
2013 down_write(&mm->mmap_sem);
2014 up_write(&mm->mmap_sem);
2018 static void release_pte_page(struct page *page)
2020 /* 0 stands for page_is_file_cache(page) == false */
2021 dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
2022 unlock_page(page);
2023 putback_lru_page(page);
2026 static void release_pte_pages(pte_t *pte, pte_t *_pte)
2028 while (--_pte >= pte) {
2029 pte_t pteval = *_pte;
2030 if (!pte_none(pteval))
2031 release_pte_page(pte_page(pteval));
2035 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
2036 unsigned long address,
2037 pte_t *pte)
2039 struct page *page;
2040 pte_t *_pte;
2041 int referenced = 0, none = 0;
2042 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
2043 _pte++, address += PAGE_SIZE) {
2044 pte_t pteval = *_pte;
2045 if (pte_none(pteval)) {
2046 if (++none <= khugepaged_max_ptes_none)
2047 continue;
2048 else
2049 goto out;
2051 if (!pte_present(pteval) || !pte_write(pteval))
2052 goto out;
2053 page = vm_normal_page(vma, address, pteval);
2054 if (unlikely(!page))
2055 goto out;
2057 VM_BUG_ON(PageCompound(page));
2058 BUG_ON(!PageAnon(page));
2059 VM_BUG_ON(!PageSwapBacked(page));
2061 /* cannot use mapcount: can't collapse if there's a gup pin */
2062 if (page_count(page) != 1)
2063 goto out;
2065 * We can do it before isolate_lru_page because the
2066 * page can't be freed from under us. NOTE: PG_lock
2067 * is needed to serialize against split_huge_page
2068 * when invoked from the VM.
2070 if (!trylock_page(page))
2071 goto out;
2073 * Isolate the page to avoid collapsing an hugepage
2074 * currently in use by the VM.
2076 if (isolate_lru_page(page)) {
2077 unlock_page(page);
2078 goto out;
2080 /* 0 stands for page_is_file_cache(page) == false */
2081 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
2082 VM_BUG_ON(!PageLocked(page));
2083 VM_BUG_ON(PageLRU(page));
2085 /* If there is no mapped pte young don't collapse the page */
2086 if (pte_young(pteval) || PageReferenced(page) ||
2087 mmu_notifier_test_young(vma->vm_mm, address))
2088 referenced = 1;
2090 if (likely(referenced))
2091 return 1;
2092 out:
2093 release_pte_pages(pte, _pte);
2094 return 0;
2097 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
2098 struct vm_area_struct *vma,
2099 unsigned long address,
2100 spinlock_t *ptl)
2102 pte_t *_pte;
2103 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
2104 pte_t pteval = *_pte;
2105 struct page *src_page;
2107 if (pte_none(pteval)) {
2108 clear_user_highpage(page, address);
2109 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
2110 } else {
2111 src_page = pte_page(pteval);
2112 copy_user_highpage(page, src_page, address, vma);
2113 VM_BUG_ON(page_mapcount(src_page) != 1);
2114 release_pte_page(src_page);
2116 * ptl mostly unnecessary, but preempt has to
2117 * be disabled to update the per-cpu stats
2118 * inside page_remove_rmap().
2120 spin_lock(ptl);
2122 * paravirt calls inside pte_clear here are
2123 * superfluous.
2125 pte_clear(vma->vm_mm, address, _pte);
2126 page_remove_rmap(src_page);
2127 spin_unlock(ptl);
2128 free_page_and_swap_cache(src_page);
2131 address += PAGE_SIZE;
2132 page++;
2136 static void khugepaged_alloc_sleep(void)
2138 wait_event_freezable_timeout(khugepaged_wait, false,
2139 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2142 #ifdef CONFIG_NUMA
2143 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2145 if (IS_ERR(*hpage)) {
2146 if (!*wait)
2147 return false;
2149 *wait = false;
2150 *hpage = NULL;
2151 khugepaged_alloc_sleep();
2152 } else if (*hpage) {
2153 put_page(*hpage);
2154 *hpage = NULL;
2157 return true;
2160 static struct page
2161 *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2162 struct vm_area_struct *vma, unsigned long address,
2163 int node)
2165 VM_BUG_ON(*hpage);
2167 * Allocate the page while the vma is still valid and under
2168 * the mmap_sem read mode so there is no memory allocation
2169 * later when we take the mmap_sem in write mode. This is more
2170 * friendly behavior (OTOH it may actually hide bugs) to
2171 * filesystems in userland with daemons allocating memory in
2172 * the userland I/O paths. Allocating memory with the
2173 * mmap_sem in read mode is good idea also to allow greater
2174 * scalability.
2176 *hpage = alloc_hugepage_vma(khugepaged_defrag(), vma, address,
2177 node, __GFP_OTHER_NODE);
2180 * After allocating the hugepage, release the mmap_sem read lock in
2181 * preparation for taking it in write mode.
2183 up_read(&mm->mmap_sem);
2184 if (unlikely(!*hpage)) {
2185 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2186 *hpage = ERR_PTR(-ENOMEM);
2187 return NULL;
2190 count_vm_event(THP_COLLAPSE_ALLOC);
2191 return *hpage;
2193 #else
2194 static struct page *khugepaged_alloc_hugepage(bool *wait)
2196 struct page *hpage;
2198 do {
2199 hpage = alloc_hugepage(khugepaged_defrag());
2200 if (!hpage) {
2201 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2202 if (!*wait)
2203 return NULL;
2205 *wait = false;
2206 khugepaged_alloc_sleep();
2207 } else
2208 count_vm_event(THP_COLLAPSE_ALLOC);
2209 } while (unlikely(!hpage) && likely(khugepaged_enabled()));
2211 return hpage;
2214 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2216 if (!*hpage)
2217 *hpage = khugepaged_alloc_hugepage(wait);
2219 if (unlikely(!*hpage))
2220 return false;
2222 return true;
2225 static struct page
2226 *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2227 struct vm_area_struct *vma, unsigned long address,
2228 int node)
2230 up_read(&mm->mmap_sem);
2231 VM_BUG_ON(!*hpage);
2232 return *hpage;
2234 #endif
2236 static bool hugepage_vma_check(struct vm_area_struct *vma)
2238 if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2239 (vma->vm_flags & VM_NOHUGEPAGE))
2240 return false;
2242 if (!vma->anon_vma || vma->vm_ops)
2243 return false;
2244 if (is_vma_temporary_stack(vma))
2245 return false;
2246 VM_BUG_ON(vma->vm_flags & VM_NO_THP);
2247 return true;
2250 static void collapse_huge_page(struct mm_struct *mm,
2251 unsigned long address,
2252 struct page **hpage,
2253 struct vm_area_struct *vma,
2254 int node)
2256 pmd_t *pmd, _pmd;
2257 pte_t *pte;
2258 pgtable_t pgtable;
2259 struct page *new_page;
2260 spinlock_t *ptl;
2261 int isolated;
2262 unsigned long hstart, hend;
2263 unsigned long mmun_start; /* For mmu_notifiers */
2264 unsigned long mmun_end; /* For mmu_notifiers */
2266 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2268 /* release the mmap_sem read lock. */
2269 new_page = khugepaged_alloc_page(hpage, mm, vma, address, node);
2270 if (!new_page)
2271 return;
2273 if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)))
2274 return;
2277 * Prevent all access to pagetables with the exception of
2278 * gup_fast later hanlded by the ptep_clear_flush and the VM
2279 * handled by the anon_vma lock + PG_lock.
2281 down_write(&mm->mmap_sem);
2282 if (unlikely(khugepaged_test_exit(mm)))
2283 goto out;
2285 vma = find_vma(mm, address);
2286 if (!vma)
2287 goto out;
2288 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2289 hend = vma->vm_end & HPAGE_PMD_MASK;
2290 if (address < hstart || address + HPAGE_PMD_SIZE > hend)
2291 goto out;
2292 if (!hugepage_vma_check(vma))
2293 goto out;
2294 pmd = mm_find_pmd(mm, address);
2295 if (!pmd)
2296 goto out;
2297 if (pmd_trans_huge(*pmd))
2298 goto out;
2300 anon_vma_lock_write(vma->anon_vma);
2302 pte = pte_offset_map(pmd, address);
2303 ptl = pte_lockptr(mm, pmd);
2305 mmun_start = address;
2306 mmun_end = address + HPAGE_PMD_SIZE;
2307 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2308 spin_lock(&mm->page_table_lock); /* probably unnecessary */
2310 * After this gup_fast can't run anymore. This also removes
2311 * any huge TLB entry from the CPU so we won't allow
2312 * huge and small TLB entries for the same virtual address
2313 * to avoid the risk of CPU bugs in that area.
2315 _pmd = pmdp_clear_flush(vma, address, pmd);
2316 spin_unlock(&mm->page_table_lock);
2317 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2319 spin_lock(ptl);
2320 isolated = __collapse_huge_page_isolate(vma, address, pte);
2321 spin_unlock(ptl);
2323 if (unlikely(!isolated)) {
2324 pte_unmap(pte);
2325 spin_lock(&mm->page_table_lock);
2326 BUG_ON(!pmd_none(*pmd));
2328 * We can only use set_pmd_at when establishing
2329 * hugepmds and never for establishing regular pmds that
2330 * points to regular pagetables. Use pmd_populate for that
2332 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
2333 spin_unlock(&mm->page_table_lock);
2334 anon_vma_unlock_write(vma->anon_vma);
2335 goto out;
2339 * All pages are isolated and locked so anon_vma rmap
2340 * can't run anymore.
2342 anon_vma_unlock_write(vma->anon_vma);
2344 __collapse_huge_page_copy(pte, new_page, vma, address, ptl);
2345 pte_unmap(pte);
2346 __SetPageUptodate(new_page);
2347 pgtable = pmd_pgtable(_pmd);
2349 _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
2350 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
2353 * spin_lock() below is not the equivalent of smp_wmb(), so
2354 * this is needed to avoid the copy_huge_page writes to become
2355 * visible after the set_pmd_at() write.
2357 smp_wmb();
2359 spin_lock(&mm->page_table_lock);
2360 BUG_ON(!pmd_none(*pmd));
2361 page_add_new_anon_rmap(new_page, vma, address);
2362 pgtable_trans_huge_deposit(mm, pmd, pgtable);
2363 set_pmd_at(mm, address, pmd, _pmd);
2364 update_mmu_cache_pmd(vma, address, pmd);
2365 spin_unlock(&mm->page_table_lock);
2367 *hpage = NULL;
2369 khugepaged_pages_collapsed++;
2370 out_up_write:
2371 up_write(&mm->mmap_sem);
2372 return;
2374 out:
2375 mem_cgroup_uncharge_page(new_page);
2376 goto out_up_write;
2379 static int khugepaged_scan_pmd(struct mm_struct *mm,
2380 struct vm_area_struct *vma,
2381 unsigned long address,
2382 struct page **hpage)
2384 pmd_t *pmd;
2385 pte_t *pte, *_pte;
2386 int ret = 0, referenced = 0, none = 0;
2387 struct page *page;
2388 unsigned long _address;
2389 spinlock_t *ptl;
2390 int node = NUMA_NO_NODE;
2392 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2394 pmd = mm_find_pmd(mm, address);
2395 if (!pmd)
2396 goto out;
2397 if (pmd_trans_huge(*pmd))
2398 goto out;
2400 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2401 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2402 _pte++, _address += PAGE_SIZE) {
2403 pte_t pteval = *_pte;
2404 if (pte_none(pteval)) {
2405 if (++none <= khugepaged_max_ptes_none)
2406 continue;
2407 else
2408 goto out_unmap;
2410 if (!pte_present(pteval) || !pte_write(pteval))
2411 goto out_unmap;
2412 page = vm_normal_page(vma, _address, pteval);
2413 if (unlikely(!page))
2414 goto out_unmap;
2416 * Chose the node of the first page. This could
2417 * be more sophisticated and look at more pages,
2418 * but isn't for now.
2420 if (node == NUMA_NO_NODE)
2421 node = page_to_nid(page);
2422 VM_BUG_ON(PageCompound(page));
2423 if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
2424 goto out_unmap;
2425 /* cannot use mapcount: can't collapse if there's a gup pin */
2426 if (page_count(page) != 1)
2427 goto out_unmap;
2428 if (pte_young(pteval) || PageReferenced(page) ||
2429 mmu_notifier_test_young(vma->vm_mm, address))
2430 referenced = 1;
2432 if (referenced)
2433 ret = 1;
2434 out_unmap:
2435 pte_unmap_unlock(pte, ptl);
2436 if (ret)
2437 /* collapse_huge_page will return with the mmap_sem released */
2438 collapse_huge_page(mm, address, hpage, vma, node);
2439 out:
2440 return ret;
2443 static void collect_mm_slot(struct mm_slot *mm_slot)
2445 struct mm_struct *mm = mm_slot->mm;
2447 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2449 if (khugepaged_test_exit(mm)) {
2450 /* free mm_slot */
2451 hash_del(&mm_slot->hash);
2452 list_del(&mm_slot->mm_node);
2455 * Not strictly needed because the mm exited already.
2457 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2460 /* khugepaged_mm_lock actually not necessary for the below */
2461 free_mm_slot(mm_slot);
2462 mmdrop(mm);
2466 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2467 struct page **hpage)
2468 __releases(&khugepaged_mm_lock)
2469 __acquires(&khugepaged_mm_lock)
2471 struct mm_slot *mm_slot;
2472 struct mm_struct *mm;
2473 struct vm_area_struct *vma;
2474 int progress = 0;
2476 VM_BUG_ON(!pages);
2477 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2479 if (khugepaged_scan.mm_slot)
2480 mm_slot = khugepaged_scan.mm_slot;
2481 else {
2482 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2483 struct mm_slot, mm_node);
2484 khugepaged_scan.address = 0;
2485 khugepaged_scan.mm_slot = mm_slot;
2487 spin_unlock(&khugepaged_mm_lock);
2489 mm = mm_slot->mm;
2490 down_read(&mm->mmap_sem);
2491 if (unlikely(khugepaged_test_exit(mm)))
2492 vma = NULL;
2493 else
2494 vma = find_vma(mm, khugepaged_scan.address);
2496 progress++;
2497 for (; vma; vma = vma->vm_next) {
2498 unsigned long hstart, hend;
2500 cond_resched();
2501 if (unlikely(khugepaged_test_exit(mm))) {
2502 progress++;
2503 break;
2505 if (!hugepage_vma_check(vma)) {
2506 skip:
2507 progress++;
2508 continue;
2510 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2511 hend = vma->vm_end & HPAGE_PMD_MASK;
2512 if (hstart >= hend)
2513 goto skip;
2514 if (khugepaged_scan.address > hend)
2515 goto skip;
2516 if (khugepaged_scan.address < hstart)
2517 khugepaged_scan.address = hstart;
2518 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2520 while (khugepaged_scan.address < hend) {
2521 int ret;
2522 cond_resched();
2523 if (unlikely(khugepaged_test_exit(mm)))
2524 goto breakouterloop;
2526 VM_BUG_ON(khugepaged_scan.address < hstart ||
2527 khugepaged_scan.address + HPAGE_PMD_SIZE >
2528 hend);
2529 ret = khugepaged_scan_pmd(mm, vma,
2530 khugepaged_scan.address,
2531 hpage);
2532 /* move to next address */
2533 khugepaged_scan.address += HPAGE_PMD_SIZE;
2534 progress += HPAGE_PMD_NR;
2535 if (ret)
2536 /* we released mmap_sem so break loop */
2537 goto breakouterloop_mmap_sem;
2538 if (progress >= pages)
2539 goto breakouterloop;
2542 breakouterloop:
2543 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2544 breakouterloop_mmap_sem:
2546 spin_lock(&khugepaged_mm_lock);
2547 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2549 * Release the current mm_slot if this mm is about to die, or
2550 * if we scanned all vmas of this mm.
2552 if (khugepaged_test_exit(mm) || !vma) {
2554 * Make sure that if mm_users is reaching zero while
2555 * khugepaged runs here, khugepaged_exit will find
2556 * mm_slot not pointing to the exiting mm.
2558 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2559 khugepaged_scan.mm_slot = list_entry(
2560 mm_slot->mm_node.next,
2561 struct mm_slot, mm_node);
2562 khugepaged_scan.address = 0;
2563 } else {
2564 khugepaged_scan.mm_slot = NULL;
2565 khugepaged_full_scans++;
2568 collect_mm_slot(mm_slot);
2571 return progress;
2574 static int khugepaged_has_work(void)
2576 return !list_empty(&khugepaged_scan.mm_head) &&
2577 khugepaged_enabled();
2580 static int khugepaged_wait_event(void)
2582 return !list_empty(&khugepaged_scan.mm_head) ||
2583 kthread_should_stop();
2586 static void khugepaged_do_scan(void)
2588 struct page *hpage = NULL;
2589 unsigned int progress = 0, pass_through_head = 0;
2590 unsigned int pages = khugepaged_pages_to_scan;
2591 bool wait = true;
2593 barrier(); /* write khugepaged_pages_to_scan to local stack */
2595 while (progress < pages) {
2596 if (!khugepaged_prealloc_page(&hpage, &wait))
2597 break;
2599 cond_resched();
2601 if (unlikely(kthread_should_stop() || freezing(current)))
2602 break;
2604 spin_lock(&khugepaged_mm_lock);
2605 if (!khugepaged_scan.mm_slot)
2606 pass_through_head++;
2607 if (khugepaged_has_work() &&
2608 pass_through_head < 2)
2609 progress += khugepaged_scan_mm_slot(pages - progress,
2610 &hpage);
2611 else
2612 progress = pages;
2613 spin_unlock(&khugepaged_mm_lock);
2616 if (!IS_ERR_OR_NULL(hpage))
2617 put_page(hpage);
2620 static void khugepaged_wait_work(void)
2622 try_to_freeze();
2624 if (khugepaged_has_work()) {
2625 if (!khugepaged_scan_sleep_millisecs)
2626 return;
2628 wait_event_freezable_timeout(khugepaged_wait,
2629 kthread_should_stop(),
2630 msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2631 return;
2634 if (khugepaged_enabled())
2635 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2638 static int khugepaged(void *none)
2640 struct mm_slot *mm_slot;
2642 set_freezable();
2643 set_user_nice(current, 19);
2645 while (!kthread_should_stop()) {
2646 khugepaged_do_scan();
2647 khugepaged_wait_work();
2650 spin_lock(&khugepaged_mm_lock);
2651 mm_slot = khugepaged_scan.mm_slot;
2652 khugepaged_scan.mm_slot = NULL;
2653 if (mm_slot)
2654 collect_mm_slot(mm_slot);
2655 spin_unlock(&khugepaged_mm_lock);
2656 return 0;
2659 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2660 unsigned long haddr, pmd_t *pmd)
2662 struct mm_struct *mm = vma->vm_mm;
2663 pgtable_t pgtable;
2664 pmd_t _pmd;
2665 int i;
2667 pmdp_clear_flush(vma, haddr, pmd);
2668 /* leave pmd empty until pte is filled */
2670 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2671 pmd_populate(mm, &_pmd, pgtable);
2673 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2674 pte_t *pte, entry;
2675 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2676 entry = pte_mkspecial(entry);
2677 pte = pte_offset_map(&_pmd, haddr);
2678 VM_BUG_ON(!pte_none(*pte));
2679 set_pte_at(mm, haddr, pte, entry);
2680 pte_unmap(pte);
2682 smp_wmb(); /* make pte visible before pmd */
2683 pmd_populate(mm, pmd, pgtable);
2684 put_huge_zero_page();
2687 void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address,
2688 pmd_t *pmd)
2690 struct page *page;
2691 struct mm_struct *mm = vma->vm_mm;
2692 unsigned long haddr = address & HPAGE_PMD_MASK;
2693 unsigned long mmun_start; /* For mmu_notifiers */
2694 unsigned long mmun_end; /* For mmu_notifiers */
2696 BUG_ON(vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE);
2698 mmun_start = haddr;
2699 mmun_end = haddr + HPAGE_PMD_SIZE;
2700 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2701 spin_lock(&mm->page_table_lock);
2702 if (unlikely(!pmd_trans_huge(*pmd))) {
2703 spin_unlock(&mm->page_table_lock);
2704 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2705 return;
2707 if (is_huge_zero_pmd(*pmd)) {
2708 __split_huge_zero_page_pmd(vma, haddr, pmd);
2709 spin_unlock(&mm->page_table_lock);
2710 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2711 return;
2713 page = pmd_page(*pmd);
2714 VM_BUG_ON(!page_count(page));
2715 get_page(page);
2716 spin_unlock(&mm->page_table_lock);
2717 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2719 split_huge_page(page);
2721 put_page(page);
2722 BUG_ON(pmd_trans_huge(*pmd));
2725 void split_huge_page_pmd_mm(struct mm_struct *mm, unsigned long address,
2726 pmd_t *pmd)
2728 struct vm_area_struct *vma;
2730 vma = find_vma(mm, address);
2731 BUG_ON(vma == NULL);
2732 split_huge_page_pmd(vma, address, pmd);
2735 static void split_huge_page_address(struct mm_struct *mm,
2736 unsigned long address)
2738 pmd_t *pmd;
2740 VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2742 pmd = mm_find_pmd(mm, address);
2743 if (!pmd)
2744 return;
2746 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2747 * materialize from under us.
2749 split_huge_page_pmd_mm(mm, address, pmd);
2752 void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2753 unsigned long start,
2754 unsigned long end,
2755 long adjust_next)
2758 * If the new start address isn't hpage aligned and it could
2759 * previously contain an hugepage: check if we need to split
2760 * an huge pmd.
2762 if (start & ~HPAGE_PMD_MASK &&
2763 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2764 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2765 split_huge_page_address(vma->vm_mm, start);
2768 * If the new end address isn't hpage aligned and it could
2769 * previously contain an hugepage: check if we need to split
2770 * an huge pmd.
2772 if (end & ~HPAGE_PMD_MASK &&
2773 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2774 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2775 split_huge_page_address(vma->vm_mm, end);
2778 * If we're also updating the vma->vm_next->vm_start, if the new
2779 * vm_next->vm_start isn't page aligned and it could previously
2780 * contain an hugepage: check if we need to split an huge pmd.
2782 if (adjust_next > 0) {
2783 struct vm_area_struct *next = vma->vm_next;
2784 unsigned long nstart = next->vm_start;
2785 nstart += adjust_next << PAGE_SHIFT;
2786 if (nstart & ~HPAGE_PMD_MASK &&
2787 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2788 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2789 split_huge_page_address(next->vm_mm, nstart);