Merge branch 'renesas/dt2' into next/dt
[linux-2.6.git] / kernel / events / core.c
blobdd236b66ca3a8ef894386e7dcb8c7f02dbba34ae
1 /*
2 * Performance events core code:
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 * For licensing details see kernel-base/COPYING
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/perf_event.h>
38 #include <linux/ftrace_event.h>
39 #include <linux/hw_breakpoint.h>
40 #include <linux/mm_types.h>
41 #include <linux/cgroup.h>
43 #include "internal.h"
45 #include <asm/irq_regs.h>
47 struct remote_function_call {
48 struct task_struct *p;
49 int (*func)(void *info);
50 void *info;
51 int ret;
54 static void remote_function(void *data)
56 struct remote_function_call *tfc = data;
57 struct task_struct *p = tfc->p;
59 if (p) {
60 tfc->ret = -EAGAIN;
61 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
62 return;
65 tfc->ret = tfc->func(tfc->info);
68 /**
69 * task_function_call - call a function on the cpu on which a task runs
70 * @p: the task to evaluate
71 * @func: the function to be called
72 * @info: the function call argument
74 * Calls the function @func when the task is currently running. This might
75 * be on the current CPU, which just calls the function directly
77 * returns: @func return value, or
78 * -ESRCH - when the process isn't running
79 * -EAGAIN - when the process moved away
81 static int
82 task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
84 struct remote_function_call data = {
85 .p = p,
86 .func = func,
87 .info = info,
88 .ret = -ESRCH, /* No such (running) process */
91 if (task_curr(p))
92 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
94 return data.ret;
97 /**
98 * cpu_function_call - call a function on the cpu
99 * @func: the function to be called
100 * @info: the function call argument
102 * Calls the function @func on the remote cpu.
104 * returns: @func return value or -ENXIO when the cpu is offline
106 static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
108 struct remote_function_call data = {
109 .p = NULL,
110 .func = func,
111 .info = info,
112 .ret = -ENXIO, /* No such CPU */
115 smp_call_function_single(cpu, remote_function, &data, 1);
117 return data.ret;
120 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
121 PERF_FLAG_FD_OUTPUT |\
122 PERF_FLAG_PID_CGROUP)
125 * branch priv levels that need permission checks
127 #define PERF_SAMPLE_BRANCH_PERM_PLM \
128 (PERF_SAMPLE_BRANCH_KERNEL |\
129 PERF_SAMPLE_BRANCH_HV)
131 enum event_type_t {
132 EVENT_FLEXIBLE = 0x1,
133 EVENT_PINNED = 0x2,
134 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
138 * perf_sched_events : >0 events exist
139 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
141 struct static_key_deferred perf_sched_events __read_mostly;
142 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
143 static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
145 static atomic_t nr_mmap_events __read_mostly;
146 static atomic_t nr_comm_events __read_mostly;
147 static atomic_t nr_task_events __read_mostly;
148 static atomic_t nr_freq_events __read_mostly;
150 static LIST_HEAD(pmus);
151 static DEFINE_MUTEX(pmus_lock);
152 static struct srcu_struct pmus_srcu;
155 * perf event paranoia level:
156 * -1 - not paranoid at all
157 * 0 - disallow raw tracepoint access for unpriv
158 * 1 - disallow cpu events for unpriv
159 * 2 - disallow kernel profiling for unpriv
161 int sysctl_perf_event_paranoid __read_mostly = 1;
163 /* Minimum for 512 kiB + 1 user control page */
164 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
167 * max perf event sample rate
169 #define DEFAULT_MAX_SAMPLE_RATE 100000
170 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
171 #define DEFAULT_CPU_TIME_MAX_PERCENT 25
173 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
175 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
176 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
178 static atomic_t perf_sample_allowed_ns __read_mostly =
179 ATOMIC_INIT( DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100);
181 void update_perf_cpu_limits(void)
183 u64 tmp = perf_sample_period_ns;
185 tmp *= sysctl_perf_cpu_time_max_percent;
186 do_div(tmp, 100);
187 atomic_set(&perf_sample_allowed_ns, tmp);
190 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
192 int perf_proc_update_handler(struct ctl_table *table, int write,
193 void __user *buffer, size_t *lenp,
194 loff_t *ppos)
196 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
198 if (ret || !write)
199 return ret;
201 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
202 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
203 update_perf_cpu_limits();
205 return 0;
208 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
210 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
211 void __user *buffer, size_t *lenp,
212 loff_t *ppos)
214 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
216 if (ret || !write)
217 return ret;
219 update_perf_cpu_limits();
221 return 0;
225 * perf samples are done in some very critical code paths (NMIs).
226 * If they take too much CPU time, the system can lock up and not
227 * get any real work done. This will drop the sample rate when
228 * we detect that events are taking too long.
230 #define NR_ACCUMULATED_SAMPLES 128
231 DEFINE_PER_CPU(u64, running_sample_length);
233 void perf_sample_event_took(u64 sample_len_ns)
235 u64 avg_local_sample_len;
236 u64 local_samples_len;
238 if (atomic_read(&perf_sample_allowed_ns) == 0)
239 return;
241 /* decay the counter by 1 average sample */
242 local_samples_len = __get_cpu_var(running_sample_length);
243 local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
244 local_samples_len += sample_len_ns;
245 __get_cpu_var(running_sample_length) = local_samples_len;
248 * note: this will be biased artifically low until we have
249 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
250 * from having to maintain a count.
252 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
254 if (avg_local_sample_len <= atomic_read(&perf_sample_allowed_ns))
255 return;
257 if (max_samples_per_tick <= 1)
258 return;
260 max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
261 sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
262 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
264 printk_ratelimited(KERN_WARNING
265 "perf samples too long (%lld > %d), lowering "
266 "kernel.perf_event_max_sample_rate to %d\n",
267 avg_local_sample_len,
268 atomic_read(&perf_sample_allowed_ns),
269 sysctl_perf_event_sample_rate);
271 update_perf_cpu_limits();
274 static atomic64_t perf_event_id;
276 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
277 enum event_type_t event_type);
279 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
280 enum event_type_t event_type,
281 struct task_struct *task);
283 static void update_context_time(struct perf_event_context *ctx);
284 static u64 perf_event_time(struct perf_event *event);
286 void __weak perf_event_print_debug(void) { }
288 extern __weak const char *perf_pmu_name(void)
290 return "pmu";
293 static inline u64 perf_clock(void)
295 return local_clock();
298 static inline struct perf_cpu_context *
299 __get_cpu_context(struct perf_event_context *ctx)
301 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
304 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
305 struct perf_event_context *ctx)
307 raw_spin_lock(&cpuctx->ctx.lock);
308 if (ctx)
309 raw_spin_lock(&ctx->lock);
312 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
313 struct perf_event_context *ctx)
315 if (ctx)
316 raw_spin_unlock(&ctx->lock);
317 raw_spin_unlock(&cpuctx->ctx.lock);
320 #ifdef CONFIG_CGROUP_PERF
323 * perf_cgroup_info keeps track of time_enabled for a cgroup.
324 * This is a per-cpu dynamically allocated data structure.
326 struct perf_cgroup_info {
327 u64 time;
328 u64 timestamp;
331 struct perf_cgroup {
332 struct cgroup_subsys_state css;
333 struct perf_cgroup_info __percpu *info;
337 * Must ensure cgroup is pinned (css_get) before calling
338 * this function. In other words, we cannot call this function
339 * if there is no cgroup event for the current CPU context.
341 static inline struct perf_cgroup *
342 perf_cgroup_from_task(struct task_struct *task)
344 return container_of(task_css(task, perf_subsys_id),
345 struct perf_cgroup, css);
348 static inline bool
349 perf_cgroup_match(struct perf_event *event)
351 struct perf_event_context *ctx = event->ctx;
352 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
354 /* @event doesn't care about cgroup */
355 if (!event->cgrp)
356 return true;
358 /* wants specific cgroup scope but @cpuctx isn't associated with any */
359 if (!cpuctx->cgrp)
360 return false;
363 * Cgroup scoping is recursive. An event enabled for a cgroup is
364 * also enabled for all its descendant cgroups. If @cpuctx's
365 * cgroup is a descendant of @event's (the test covers identity
366 * case), it's a match.
368 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
369 event->cgrp->css.cgroup);
372 static inline bool perf_tryget_cgroup(struct perf_event *event)
374 return css_tryget(&event->cgrp->css);
377 static inline void perf_put_cgroup(struct perf_event *event)
379 css_put(&event->cgrp->css);
382 static inline void perf_detach_cgroup(struct perf_event *event)
384 perf_put_cgroup(event);
385 event->cgrp = NULL;
388 static inline int is_cgroup_event(struct perf_event *event)
390 return event->cgrp != NULL;
393 static inline u64 perf_cgroup_event_time(struct perf_event *event)
395 struct perf_cgroup_info *t;
397 t = per_cpu_ptr(event->cgrp->info, event->cpu);
398 return t->time;
401 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
403 struct perf_cgroup_info *info;
404 u64 now;
406 now = perf_clock();
408 info = this_cpu_ptr(cgrp->info);
410 info->time += now - info->timestamp;
411 info->timestamp = now;
414 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
416 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
417 if (cgrp_out)
418 __update_cgrp_time(cgrp_out);
421 static inline void update_cgrp_time_from_event(struct perf_event *event)
423 struct perf_cgroup *cgrp;
426 * ensure we access cgroup data only when needed and
427 * when we know the cgroup is pinned (css_get)
429 if (!is_cgroup_event(event))
430 return;
432 cgrp = perf_cgroup_from_task(current);
434 * Do not update time when cgroup is not active
436 if (cgrp == event->cgrp)
437 __update_cgrp_time(event->cgrp);
440 static inline void
441 perf_cgroup_set_timestamp(struct task_struct *task,
442 struct perf_event_context *ctx)
444 struct perf_cgroup *cgrp;
445 struct perf_cgroup_info *info;
448 * ctx->lock held by caller
449 * ensure we do not access cgroup data
450 * unless we have the cgroup pinned (css_get)
452 if (!task || !ctx->nr_cgroups)
453 return;
455 cgrp = perf_cgroup_from_task(task);
456 info = this_cpu_ptr(cgrp->info);
457 info->timestamp = ctx->timestamp;
460 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
461 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
464 * reschedule events based on the cgroup constraint of task.
466 * mode SWOUT : schedule out everything
467 * mode SWIN : schedule in based on cgroup for next
469 void perf_cgroup_switch(struct task_struct *task, int mode)
471 struct perf_cpu_context *cpuctx;
472 struct pmu *pmu;
473 unsigned long flags;
476 * disable interrupts to avoid geting nr_cgroup
477 * changes via __perf_event_disable(). Also
478 * avoids preemption.
480 local_irq_save(flags);
483 * we reschedule only in the presence of cgroup
484 * constrained events.
486 rcu_read_lock();
488 list_for_each_entry_rcu(pmu, &pmus, entry) {
489 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
490 if (cpuctx->unique_pmu != pmu)
491 continue; /* ensure we process each cpuctx once */
494 * perf_cgroup_events says at least one
495 * context on this CPU has cgroup events.
497 * ctx->nr_cgroups reports the number of cgroup
498 * events for a context.
500 if (cpuctx->ctx.nr_cgroups > 0) {
501 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
502 perf_pmu_disable(cpuctx->ctx.pmu);
504 if (mode & PERF_CGROUP_SWOUT) {
505 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
507 * must not be done before ctxswout due
508 * to event_filter_match() in event_sched_out()
510 cpuctx->cgrp = NULL;
513 if (mode & PERF_CGROUP_SWIN) {
514 WARN_ON_ONCE(cpuctx->cgrp);
516 * set cgrp before ctxsw in to allow
517 * event_filter_match() to not have to pass
518 * task around
520 cpuctx->cgrp = perf_cgroup_from_task(task);
521 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
523 perf_pmu_enable(cpuctx->ctx.pmu);
524 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
528 rcu_read_unlock();
530 local_irq_restore(flags);
533 static inline void perf_cgroup_sched_out(struct task_struct *task,
534 struct task_struct *next)
536 struct perf_cgroup *cgrp1;
537 struct perf_cgroup *cgrp2 = NULL;
540 * we come here when we know perf_cgroup_events > 0
542 cgrp1 = perf_cgroup_from_task(task);
545 * next is NULL when called from perf_event_enable_on_exec()
546 * that will systematically cause a cgroup_switch()
548 if (next)
549 cgrp2 = perf_cgroup_from_task(next);
552 * only schedule out current cgroup events if we know
553 * that we are switching to a different cgroup. Otherwise,
554 * do no touch the cgroup events.
556 if (cgrp1 != cgrp2)
557 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
560 static inline void perf_cgroup_sched_in(struct task_struct *prev,
561 struct task_struct *task)
563 struct perf_cgroup *cgrp1;
564 struct perf_cgroup *cgrp2 = NULL;
567 * we come here when we know perf_cgroup_events > 0
569 cgrp1 = perf_cgroup_from_task(task);
571 /* prev can never be NULL */
572 cgrp2 = perf_cgroup_from_task(prev);
575 * only need to schedule in cgroup events if we are changing
576 * cgroup during ctxsw. Cgroup events were not scheduled
577 * out of ctxsw out if that was not the case.
579 if (cgrp1 != cgrp2)
580 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
583 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
584 struct perf_event_attr *attr,
585 struct perf_event *group_leader)
587 struct perf_cgroup *cgrp;
588 struct cgroup_subsys_state *css;
589 struct fd f = fdget(fd);
590 int ret = 0;
592 if (!f.file)
593 return -EBADF;
595 rcu_read_lock();
597 css = css_from_dir(f.file->f_dentry, &perf_subsys);
598 if (IS_ERR(css)) {
599 ret = PTR_ERR(css);
600 goto out;
603 cgrp = container_of(css, struct perf_cgroup, css);
604 event->cgrp = cgrp;
606 /* must be done before we fput() the file */
607 if (!perf_tryget_cgroup(event)) {
608 event->cgrp = NULL;
609 ret = -ENOENT;
610 goto out;
614 * all events in a group must monitor
615 * the same cgroup because a task belongs
616 * to only one perf cgroup at a time
618 if (group_leader && group_leader->cgrp != cgrp) {
619 perf_detach_cgroup(event);
620 ret = -EINVAL;
622 out:
623 rcu_read_unlock();
624 fdput(f);
625 return ret;
628 static inline void
629 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
631 struct perf_cgroup_info *t;
632 t = per_cpu_ptr(event->cgrp->info, event->cpu);
633 event->shadow_ctx_time = now - t->timestamp;
636 static inline void
637 perf_cgroup_defer_enabled(struct perf_event *event)
640 * when the current task's perf cgroup does not match
641 * the event's, we need to remember to call the
642 * perf_mark_enable() function the first time a task with
643 * a matching perf cgroup is scheduled in.
645 if (is_cgroup_event(event) && !perf_cgroup_match(event))
646 event->cgrp_defer_enabled = 1;
649 static inline void
650 perf_cgroup_mark_enabled(struct perf_event *event,
651 struct perf_event_context *ctx)
653 struct perf_event *sub;
654 u64 tstamp = perf_event_time(event);
656 if (!event->cgrp_defer_enabled)
657 return;
659 event->cgrp_defer_enabled = 0;
661 event->tstamp_enabled = tstamp - event->total_time_enabled;
662 list_for_each_entry(sub, &event->sibling_list, group_entry) {
663 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
664 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
665 sub->cgrp_defer_enabled = 0;
669 #else /* !CONFIG_CGROUP_PERF */
671 static inline bool
672 perf_cgroup_match(struct perf_event *event)
674 return true;
677 static inline void perf_detach_cgroup(struct perf_event *event)
680 static inline int is_cgroup_event(struct perf_event *event)
682 return 0;
685 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
687 return 0;
690 static inline void update_cgrp_time_from_event(struct perf_event *event)
694 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
698 static inline void perf_cgroup_sched_out(struct task_struct *task,
699 struct task_struct *next)
703 static inline void perf_cgroup_sched_in(struct task_struct *prev,
704 struct task_struct *task)
708 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
709 struct perf_event_attr *attr,
710 struct perf_event *group_leader)
712 return -EINVAL;
715 static inline void
716 perf_cgroup_set_timestamp(struct task_struct *task,
717 struct perf_event_context *ctx)
721 void
722 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
726 static inline void
727 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
731 static inline u64 perf_cgroup_event_time(struct perf_event *event)
733 return 0;
736 static inline void
737 perf_cgroup_defer_enabled(struct perf_event *event)
741 static inline void
742 perf_cgroup_mark_enabled(struct perf_event *event,
743 struct perf_event_context *ctx)
746 #endif
749 * set default to be dependent on timer tick just
750 * like original code
752 #define PERF_CPU_HRTIMER (1000 / HZ)
754 * function must be called with interrupts disbled
756 static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr)
758 struct perf_cpu_context *cpuctx;
759 enum hrtimer_restart ret = HRTIMER_NORESTART;
760 int rotations = 0;
762 WARN_ON(!irqs_disabled());
764 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
766 rotations = perf_rotate_context(cpuctx);
769 * arm timer if needed
771 if (rotations) {
772 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
773 ret = HRTIMER_RESTART;
776 return ret;
779 /* CPU is going down */
780 void perf_cpu_hrtimer_cancel(int cpu)
782 struct perf_cpu_context *cpuctx;
783 struct pmu *pmu;
784 unsigned long flags;
786 if (WARN_ON(cpu != smp_processor_id()))
787 return;
789 local_irq_save(flags);
791 rcu_read_lock();
793 list_for_each_entry_rcu(pmu, &pmus, entry) {
794 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
796 if (pmu->task_ctx_nr == perf_sw_context)
797 continue;
799 hrtimer_cancel(&cpuctx->hrtimer);
802 rcu_read_unlock();
804 local_irq_restore(flags);
807 static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
809 struct hrtimer *hr = &cpuctx->hrtimer;
810 struct pmu *pmu = cpuctx->ctx.pmu;
811 int timer;
813 /* no multiplexing needed for SW PMU */
814 if (pmu->task_ctx_nr == perf_sw_context)
815 return;
818 * check default is sane, if not set then force to
819 * default interval (1/tick)
821 timer = pmu->hrtimer_interval_ms;
822 if (timer < 1)
823 timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
825 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
827 hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
828 hr->function = perf_cpu_hrtimer_handler;
831 static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx)
833 struct hrtimer *hr = &cpuctx->hrtimer;
834 struct pmu *pmu = cpuctx->ctx.pmu;
836 /* not for SW PMU */
837 if (pmu->task_ctx_nr == perf_sw_context)
838 return;
840 if (hrtimer_active(hr))
841 return;
843 if (!hrtimer_callback_running(hr))
844 __hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval,
845 0, HRTIMER_MODE_REL_PINNED, 0);
848 void perf_pmu_disable(struct pmu *pmu)
850 int *count = this_cpu_ptr(pmu->pmu_disable_count);
851 if (!(*count)++)
852 pmu->pmu_disable(pmu);
855 void perf_pmu_enable(struct pmu *pmu)
857 int *count = this_cpu_ptr(pmu->pmu_disable_count);
858 if (!--(*count))
859 pmu->pmu_enable(pmu);
862 static DEFINE_PER_CPU(struct list_head, rotation_list);
865 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
866 * because they're strictly cpu affine and rotate_start is called with IRQs
867 * disabled, while rotate_context is called from IRQ context.
869 static void perf_pmu_rotate_start(struct pmu *pmu)
871 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
872 struct list_head *head = &__get_cpu_var(rotation_list);
874 WARN_ON(!irqs_disabled());
876 if (list_empty(&cpuctx->rotation_list))
877 list_add(&cpuctx->rotation_list, head);
880 static void get_ctx(struct perf_event_context *ctx)
882 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
885 static void put_ctx(struct perf_event_context *ctx)
887 if (atomic_dec_and_test(&ctx->refcount)) {
888 if (ctx->parent_ctx)
889 put_ctx(ctx->parent_ctx);
890 if (ctx->task)
891 put_task_struct(ctx->task);
892 kfree_rcu(ctx, rcu_head);
896 static void unclone_ctx(struct perf_event_context *ctx)
898 if (ctx->parent_ctx) {
899 put_ctx(ctx->parent_ctx);
900 ctx->parent_ctx = NULL;
904 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
907 * only top level events have the pid namespace they were created in
909 if (event->parent)
910 event = event->parent;
912 return task_tgid_nr_ns(p, event->ns);
915 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
918 * only top level events have the pid namespace they were created in
920 if (event->parent)
921 event = event->parent;
923 return task_pid_nr_ns(p, event->ns);
927 * If we inherit events we want to return the parent event id
928 * to userspace.
930 static u64 primary_event_id(struct perf_event *event)
932 u64 id = event->id;
934 if (event->parent)
935 id = event->parent->id;
937 return id;
941 * Get the perf_event_context for a task and lock it.
942 * This has to cope with with the fact that until it is locked,
943 * the context could get moved to another task.
945 static struct perf_event_context *
946 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
948 struct perf_event_context *ctx;
950 retry:
952 * One of the few rules of preemptible RCU is that one cannot do
953 * rcu_read_unlock() while holding a scheduler (or nested) lock when
954 * part of the read side critical section was preemptible -- see
955 * rcu_read_unlock_special().
957 * Since ctx->lock nests under rq->lock we must ensure the entire read
958 * side critical section is non-preemptible.
960 preempt_disable();
961 rcu_read_lock();
962 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
963 if (ctx) {
965 * If this context is a clone of another, it might
966 * get swapped for another underneath us by
967 * perf_event_task_sched_out, though the
968 * rcu_read_lock() protects us from any context
969 * getting freed. Lock the context and check if it
970 * got swapped before we could get the lock, and retry
971 * if so. If we locked the right context, then it
972 * can't get swapped on us any more.
974 raw_spin_lock_irqsave(&ctx->lock, *flags);
975 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
976 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
977 rcu_read_unlock();
978 preempt_enable();
979 goto retry;
982 if (!atomic_inc_not_zero(&ctx->refcount)) {
983 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
984 ctx = NULL;
987 rcu_read_unlock();
988 preempt_enable();
989 return ctx;
993 * Get the context for a task and increment its pin_count so it
994 * can't get swapped to another task. This also increments its
995 * reference count so that the context can't get freed.
997 static struct perf_event_context *
998 perf_pin_task_context(struct task_struct *task, int ctxn)
1000 struct perf_event_context *ctx;
1001 unsigned long flags;
1003 ctx = perf_lock_task_context(task, ctxn, &flags);
1004 if (ctx) {
1005 ++ctx->pin_count;
1006 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1008 return ctx;
1011 static void perf_unpin_context(struct perf_event_context *ctx)
1013 unsigned long flags;
1015 raw_spin_lock_irqsave(&ctx->lock, flags);
1016 --ctx->pin_count;
1017 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1021 * Update the record of the current time in a context.
1023 static void update_context_time(struct perf_event_context *ctx)
1025 u64 now = perf_clock();
1027 ctx->time += now - ctx->timestamp;
1028 ctx->timestamp = now;
1031 static u64 perf_event_time(struct perf_event *event)
1033 struct perf_event_context *ctx = event->ctx;
1035 if (is_cgroup_event(event))
1036 return perf_cgroup_event_time(event);
1038 return ctx ? ctx->time : 0;
1042 * Update the total_time_enabled and total_time_running fields for a event.
1043 * The caller of this function needs to hold the ctx->lock.
1045 static void update_event_times(struct perf_event *event)
1047 struct perf_event_context *ctx = event->ctx;
1048 u64 run_end;
1050 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1051 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1052 return;
1054 * in cgroup mode, time_enabled represents
1055 * the time the event was enabled AND active
1056 * tasks were in the monitored cgroup. This is
1057 * independent of the activity of the context as
1058 * there may be a mix of cgroup and non-cgroup events.
1060 * That is why we treat cgroup events differently
1061 * here.
1063 if (is_cgroup_event(event))
1064 run_end = perf_cgroup_event_time(event);
1065 else if (ctx->is_active)
1066 run_end = ctx->time;
1067 else
1068 run_end = event->tstamp_stopped;
1070 event->total_time_enabled = run_end - event->tstamp_enabled;
1072 if (event->state == PERF_EVENT_STATE_INACTIVE)
1073 run_end = event->tstamp_stopped;
1074 else
1075 run_end = perf_event_time(event);
1077 event->total_time_running = run_end - event->tstamp_running;
1082 * Update total_time_enabled and total_time_running for all events in a group.
1084 static void update_group_times(struct perf_event *leader)
1086 struct perf_event *event;
1088 update_event_times(leader);
1089 list_for_each_entry(event, &leader->sibling_list, group_entry)
1090 update_event_times(event);
1093 static struct list_head *
1094 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1096 if (event->attr.pinned)
1097 return &ctx->pinned_groups;
1098 else
1099 return &ctx->flexible_groups;
1103 * Add a event from the lists for its context.
1104 * Must be called with ctx->mutex and ctx->lock held.
1106 static void
1107 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1109 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1110 event->attach_state |= PERF_ATTACH_CONTEXT;
1113 * If we're a stand alone event or group leader, we go to the context
1114 * list, group events are kept attached to the group so that
1115 * perf_group_detach can, at all times, locate all siblings.
1117 if (event->group_leader == event) {
1118 struct list_head *list;
1120 if (is_software_event(event))
1121 event->group_flags |= PERF_GROUP_SOFTWARE;
1123 list = ctx_group_list(event, ctx);
1124 list_add_tail(&event->group_entry, list);
1127 if (is_cgroup_event(event))
1128 ctx->nr_cgroups++;
1130 if (has_branch_stack(event))
1131 ctx->nr_branch_stack++;
1133 list_add_rcu(&event->event_entry, &ctx->event_list);
1134 if (!ctx->nr_events)
1135 perf_pmu_rotate_start(ctx->pmu);
1136 ctx->nr_events++;
1137 if (event->attr.inherit_stat)
1138 ctx->nr_stat++;
1142 * Initialize event state based on the perf_event_attr::disabled.
1144 static inline void perf_event__state_init(struct perf_event *event)
1146 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1147 PERF_EVENT_STATE_INACTIVE;
1151 * Called at perf_event creation and when events are attached/detached from a
1152 * group.
1154 static void perf_event__read_size(struct perf_event *event)
1156 int entry = sizeof(u64); /* value */
1157 int size = 0;
1158 int nr = 1;
1160 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1161 size += sizeof(u64);
1163 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1164 size += sizeof(u64);
1166 if (event->attr.read_format & PERF_FORMAT_ID)
1167 entry += sizeof(u64);
1169 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1170 nr += event->group_leader->nr_siblings;
1171 size += sizeof(u64);
1174 size += entry * nr;
1175 event->read_size = size;
1178 static void perf_event__header_size(struct perf_event *event)
1180 struct perf_sample_data *data;
1181 u64 sample_type = event->attr.sample_type;
1182 u16 size = 0;
1184 perf_event__read_size(event);
1186 if (sample_type & PERF_SAMPLE_IP)
1187 size += sizeof(data->ip);
1189 if (sample_type & PERF_SAMPLE_ADDR)
1190 size += sizeof(data->addr);
1192 if (sample_type & PERF_SAMPLE_PERIOD)
1193 size += sizeof(data->period);
1195 if (sample_type & PERF_SAMPLE_WEIGHT)
1196 size += sizeof(data->weight);
1198 if (sample_type & PERF_SAMPLE_READ)
1199 size += event->read_size;
1201 if (sample_type & PERF_SAMPLE_DATA_SRC)
1202 size += sizeof(data->data_src.val);
1204 event->header_size = size;
1207 static void perf_event__id_header_size(struct perf_event *event)
1209 struct perf_sample_data *data;
1210 u64 sample_type = event->attr.sample_type;
1211 u16 size = 0;
1213 if (sample_type & PERF_SAMPLE_TID)
1214 size += sizeof(data->tid_entry);
1216 if (sample_type & PERF_SAMPLE_TIME)
1217 size += sizeof(data->time);
1219 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1220 size += sizeof(data->id);
1222 if (sample_type & PERF_SAMPLE_ID)
1223 size += sizeof(data->id);
1225 if (sample_type & PERF_SAMPLE_STREAM_ID)
1226 size += sizeof(data->stream_id);
1228 if (sample_type & PERF_SAMPLE_CPU)
1229 size += sizeof(data->cpu_entry);
1231 event->id_header_size = size;
1234 static void perf_group_attach(struct perf_event *event)
1236 struct perf_event *group_leader = event->group_leader, *pos;
1239 * We can have double attach due to group movement in perf_event_open.
1241 if (event->attach_state & PERF_ATTACH_GROUP)
1242 return;
1244 event->attach_state |= PERF_ATTACH_GROUP;
1246 if (group_leader == event)
1247 return;
1249 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1250 !is_software_event(event))
1251 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1253 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1254 group_leader->nr_siblings++;
1256 perf_event__header_size(group_leader);
1258 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1259 perf_event__header_size(pos);
1263 * Remove a event from the lists for its context.
1264 * Must be called with ctx->mutex and ctx->lock held.
1266 static void
1267 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1269 struct perf_cpu_context *cpuctx;
1271 * We can have double detach due to exit/hot-unplug + close.
1273 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1274 return;
1276 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1278 if (is_cgroup_event(event)) {
1279 ctx->nr_cgroups--;
1280 cpuctx = __get_cpu_context(ctx);
1282 * if there are no more cgroup events
1283 * then cler cgrp to avoid stale pointer
1284 * in update_cgrp_time_from_cpuctx()
1286 if (!ctx->nr_cgroups)
1287 cpuctx->cgrp = NULL;
1290 if (has_branch_stack(event))
1291 ctx->nr_branch_stack--;
1293 ctx->nr_events--;
1294 if (event->attr.inherit_stat)
1295 ctx->nr_stat--;
1297 list_del_rcu(&event->event_entry);
1299 if (event->group_leader == event)
1300 list_del_init(&event->group_entry);
1302 update_group_times(event);
1305 * If event was in error state, then keep it
1306 * that way, otherwise bogus counts will be
1307 * returned on read(). The only way to get out
1308 * of error state is by explicit re-enabling
1309 * of the event
1311 if (event->state > PERF_EVENT_STATE_OFF)
1312 event->state = PERF_EVENT_STATE_OFF;
1315 static void perf_group_detach(struct perf_event *event)
1317 struct perf_event *sibling, *tmp;
1318 struct list_head *list = NULL;
1321 * We can have double detach due to exit/hot-unplug + close.
1323 if (!(event->attach_state & PERF_ATTACH_GROUP))
1324 return;
1326 event->attach_state &= ~PERF_ATTACH_GROUP;
1329 * If this is a sibling, remove it from its group.
1331 if (event->group_leader != event) {
1332 list_del_init(&event->group_entry);
1333 event->group_leader->nr_siblings--;
1334 goto out;
1337 if (!list_empty(&event->group_entry))
1338 list = &event->group_entry;
1341 * If this was a group event with sibling events then
1342 * upgrade the siblings to singleton events by adding them
1343 * to whatever list we are on.
1345 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1346 if (list)
1347 list_move_tail(&sibling->group_entry, list);
1348 sibling->group_leader = sibling;
1350 /* Inherit group flags from the previous leader */
1351 sibling->group_flags = event->group_flags;
1354 out:
1355 perf_event__header_size(event->group_leader);
1357 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1358 perf_event__header_size(tmp);
1361 static inline int
1362 event_filter_match(struct perf_event *event)
1364 return (event->cpu == -1 || event->cpu == smp_processor_id())
1365 && perf_cgroup_match(event);
1368 static void
1369 event_sched_out(struct perf_event *event,
1370 struct perf_cpu_context *cpuctx,
1371 struct perf_event_context *ctx)
1373 u64 tstamp = perf_event_time(event);
1374 u64 delta;
1376 * An event which could not be activated because of
1377 * filter mismatch still needs to have its timings
1378 * maintained, otherwise bogus information is return
1379 * via read() for time_enabled, time_running:
1381 if (event->state == PERF_EVENT_STATE_INACTIVE
1382 && !event_filter_match(event)) {
1383 delta = tstamp - event->tstamp_stopped;
1384 event->tstamp_running += delta;
1385 event->tstamp_stopped = tstamp;
1388 if (event->state != PERF_EVENT_STATE_ACTIVE)
1389 return;
1391 event->state = PERF_EVENT_STATE_INACTIVE;
1392 if (event->pending_disable) {
1393 event->pending_disable = 0;
1394 event->state = PERF_EVENT_STATE_OFF;
1396 event->tstamp_stopped = tstamp;
1397 event->pmu->del(event, 0);
1398 event->oncpu = -1;
1400 if (!is_software_event(event))
1401 cpuctx->active_oncpu--;
1402 ctx->nr_active--;
1403 if (event->attr.freq && event->attr.sample_freq)
1404 ctx->nr_freq--;
1405 if (event->attr.exclusive || !cpuctx->active_oncpu)
1406 cpuctx->exclusive = 0;
1409 static void
1410 group_sched_out(struct perf_event *group_event,
1411 struct perf_cpu_context *cpuctx,
1412 struct perf_event_context *ctx)
1414 struct perf_event *event;
1415 int state = group_event->state;
1417 event_sched_out(group_event, cpuctx, ctx);
1420 * Schedule out siblings (if any):
1422 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1423 event_sched_out(event, cpuctx, ctx);
1425 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1426 cpuctx->exclusive = 0;
1430 * Cross CPU call to remove a performance event
1432 * We disable the event on the hardware level first. After that we
1433 * remove it from the context list.
1435 static int __perf_remove_from_context(void *info)
1437 struct perf_event *event = info;
1438 struct perf_event_context *ctx = event->ctx;
1439 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1441 raw_spin_lock(&ctx->lock);
1442 event_sched_out(event, cpuctx, ctx);
1443 list_del_event(event, ctx);
1444 if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1445 ctx->is_active = 0;
1446 cpuctx->task_ctx = NULL;
1448 raw_spin_unlock(&ctx->lock);
1450 return 0;
1455 * Remove the event from a task's (or a CPU's) list of events.
1457 * CPU events are removed with a smp call. For task events we only
1458 * call when the task is on a CPU.
1460 * If event->ctx is a cloned context, callers must make sure that
1461 * every task struct that event->ctx->task could possibly point to
1462 * remains valid. This is OK when called from perf_release since
1463 * that only calls us on the top-level context, which can't be a clone.
1464 * When called from perf_event_exit_task, it's OK because the
1465 * context has been detached from its task.
1467 static void perf_remove_from_context(struct perf_event *event)
1469 struct perf_event_context *ctx = event->ctx;
1470 struct task_struct *task = ctx->task;
1472 lockdep_assert_held(&ctx->mutex);
1474 if (!task) {
1476 * Per cpu events are removed via an smp call and
1477 * the removal is always successful.
1479 cpu_function_call(event->cpu, __perf_remove_from_context, event);
1480 return;
1483 retry:
1484 if (!task_function_call(task, __perf_remove_from_context, event))
1485 return;
1487 raw_spin_lock_irq(&ctx->lock);
1489 * If we failed to find a running task, but find the context active now
1490 * that we've acquired the ctx->lock, retry.
1492 if (ctx->is_active) {
1493 raw_spin_unlock_irq(&ctx->lock);
1494 goto retry;
1498 * Since the task isn't running, its safe to remove the event, us
1499 * holding the ctx->lock ensures the task won't get scheduled in.
1501 list_del_event(event, ctx);
1502 raw_spin_unlock_irq(&ctx->lock);
1506 * Cross CPU call to disable a performance event
1508 int __perf_event_disable(void *info)
1510 struct perf_event *event = info;
1511 struct perf_event_context *ctx = event->ctx;
1512 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1515 * If this is a per-task event, need to check whether this
1516 * event's task is the current task on this cpu.
1518 * Can trigger due to concurrent perf_event_context_sched_out()
1519 * flipping contexts around.
1521 if (ctx->task && cpuctx->task_ctx != ctx)
1522 return -EINVAL;
1524 raw_spin_lock(&ctx->lock);
1527 * If the event is on, turn it off.
1528 * If it is in error state, leave it in error state.
1530 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1531 update_context_time(ctx);
1532 update_cgrp_time_from_event(event);
1533 update_group_times(event);
1534 if (event == event->group_leader)
1535 group_sched_out(event, cpuctx, ctx);
1536 else
1537 event_sched_out(event, cpuctx, ctx);
1538 event->state = PERF_EVENT_STATE_OFF;
1541 raw_spin_unlock(&ctx->lock);
1543 return 0;
1547 * Disable a event.
1549 * If event->ctx is a cloned context, callers must make sure that
1550 * every task struct that event->ctx->task could possibly point to
1551 * remains valid. This condition is satisifed when called through
1552 * perf_event_for_each_child or perf_event_for_each because they
1553 * hold the top-level event's child_mutex, so any descendant that
1554 * goes to exit will block in sync_child_event.
1555 * When called from perf_pending_event it's OK because event->ctx
1556 * is the current context on this CPU and preemption is disabled,
1557 * hence we can't get into perf_event_task_sched_out for this context.
1559 void perf_event_disable(struct perf_event *event)
1561 struct perf_event_context *ctx = event->ctx;
1562 struct task_struct *task = ctx->task;
1564 if (!task) {
1566 * Disable the event on the cpu that it's on
1568 cpu_function_call(event->cpu, __perf_event_disable, event);
1569 return;
1572 retry:
1573 if (!task_function_call(task, __perf_event_disable, event))
1574 return;
1576 raw_spin_lock_irq(&ctx->lock);
1578 * If the event is still active, we need to retry the cross-call.
1580 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1581 raw_spin_unlock_irq(&ctx->lock);
1583 * Reload the task pointer, it might have been changed by
1584 * a concurrent perf_event_context_sched_out().
1586 task = ctx->task;
1587 goto retry;
1591 * Since we have the lock this context can't be scheduled
1592 * in, so we can change the state safely.
1594 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1595 update_group_times(event);
1596 event->state = PERF_EVENT_STATE_OFF;
1598 raw_spin_unlock_irq(&ctx->lock);
1600 EXPORT_SYMBOL_GPL(perf_event_disable);
1602 static void perf_set_shadow_time(struct perf_event *event,
1603 struct perf_event_context *ctx,
1604 u64 tstamp)
1607 * use the correct time source for the time snapshot
1609 * We could get by without this by leveraging the
1610 * fact that to get to this function, the caller
1611 * has most likely already called update_context_time()
1612 * and update_cgrp_time_xx() and thus both timestamp
1613 * are identical (or very close). Given that tstamp is,
1614 * already adjusted for cgroup, we could say that:
1615 * tstamp - ctx->timestamp
1616 * is equivalent to
1617 * tstamp - cgrp->timestamp.
1619 * Then, in perf_output_read(), the calculation would
1620 * work with no changes because:
1621 * - event is guaranteed scheduled in
1622 * - no scheduled out in between
1623 * - thus the timestamp would be the same
1625 * But this is a bit hairy.
1627 * So instead, we have an explicit cgroup call to remain
1628 * within the time time source all along. We believe it
1629 * is cleaner and simpler to understand.
1631 if (is_cgroup_event(event))
1632 perf_cgroup_set_shadow_time(event, tstamp);
1633 else
1634 event->shadow_ctx_time = tstamp - ctx->timestamp;
1637 #define MAX_INTERRUPTS (~0ULL)
1639 static void perf_log_throttle(struct perf_event *event, int enable);
1641 static int
1642 event_sched_in(struct perf_event *event,
1643 struct perf_cpu_context *cpuctx,
1644 struct perf_event_context *ctx)
1646 u64 tstamp = perf_event_time(event);
1648 if (event->state <= PERF_EVENT_STATE_OFF)
1649 return 0;
1651 event->state = PERF_EVENT_STATE_ACTIVE;
1652 event->oncpu = smp_processor_id();
1655 * Unthrottle events, since we scheduled we might have missed several
1656 * ticks already, also for a heavily scheduling task there is little
1657 * guarantee it'll get a tick in a timely manner.
1659 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1660 perf_log_throttle(event, 1);
1661 event->hw.interrupts = 0;
1665 * The new state must be visible before we turn it on in the hardware:
1667 smp_wmb();
1669 if (event->pmu->add(event, PERF_EF_START)) {
1670 event->state = PERF_EVENT_STATE_INACTIVE;
1671 event->oncpu = -1;
1672 return -EAGAIN;
1675 event->tstamp_running += tstamp - event->tstamp_stopped;
1677 perf_set_shadow_time(event, ctx, tstamp);
1679 if (!is_software_event(event))
1680 cpuctx->active_oncpu++;
1681 ctx->nr_active++;
1682 if (event->attr.freq && event->attr.sample_freq)
1683 ctx->nr_freq++;
1685 if (event->attr.exclusive)
1686 cpuctx->exclusive = 1;
1688 return 0;
1691 static int
1692 group_sched_in(struct perf_event *group_event,
1693 struct perf_cpu_context *cpuctx,
1694 struct perf_event_context *ctx)
1696 struct perf_event *event, *partial_group = NULL;
1697 struct pmu *pmu = group_event->pmu;
1698 u64 now = ctx->time;
1699 bool simulate = false;
1701 if (group_event->state == PERF_EVENT_STATE_OFF)
1702 return 0;
1704 pmu->start_txn(pmu);
1706 if (event_sched_in(group_event, cpuctx, ctx)) {
1707 pmu->cancel_txn(pmu);
1708 perf_cpu_hrtimer_restart(cpuctx);
1709 return -EAGAIN;
1713 * Schedule in siblings as one group (if any):
1715 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1716 if (event_sched_in(event, cpuctx, ctx)) {
1717 partial_group = event;
1718 goto group_error;
1722 if (!pmu->commit_txn(pmu))
1723 return 0;
1725 group_error:
1727 * Groups can be scheduled in as one unit only, so undo any
1728 * partial group before returning:
1729 * The events up to the failed event are scheduled out normally,
1730 * tstamp_stopped will be updated.
1732 * The failed events and the remaining siblings need to have
1733 * their timings updated as if they had gone thru event_sched_in()
1734 * and event_sched_out(). This is required to get consistent timings
1735 * across the group. This also takes care of the case where the group
1736 * could never be scheduled by ensuring tstamp_stopped is set to mark
1737 * the time the event was actually stopped, such that time delta
1738 * calculation in update_event_times() is correct.
1740 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1741 if (event == partial_group)
1742 simulate = true;
1744 if (simulate) {
1745 event->tstamp_running += now - event->tstamp_stopped;
1746 event->tstamp_stopped = now;
1747 } else {
1748 event_sched_out(event, cpuctx, ctx);
1751 event_sched_out(group_event, cpuctx, ctx);
1753 pmu->cancel_txn(pmu);
1755 perf_cpu_hrtimer_restart(cpuctx);
1757 return -EAGAIN;
1761 * Work out whether we can put this event group on the CPU now.
1763 static int group_can_go_on(struct perf_event *event,
1764 struct perf_cpu_context *cpuctx,
1765 int can_add_hw)
1768 * Groups consisting entirely of software events can always go on.
1770 if (event->group_flags & PERF_GROUP_SOFTWARE)
1771 return 1;
1773 * If an exclusive group is already on, no other hardware
1774 * events can go on.
1776 if (cpuctx->exclusive)
1777 return 0;
1779 * If this group is exclusive and there are already
1780 * events on the CPU, it can't go on.
1782 if (event->attr.exclusive && cpuctx->active_oncpu)
1783 return 0;
1785 * Otherwise, try to add it if all previous groups were able
1786 * to go on.
1788 return can_add_hw;
1791 static void add_event_to_ctx(struct perf_event *event,
1792 struct perf_event_context *ctx)
1794 u64 tstamp = perf_event_time(event);
1796 list_add_event(event, ctx);
1797 perf_group_attach(event);
1798 event->tstamp_enabled = tstamp;
1799 event->tstamp_running = tstamp;
1800 event->tstamp_stopped = tstamp;
1803 static void task_ctx_sched_out(struct perf_event_context *ctx);
1804 static void
1805 ctx_sched_in(struct perf_event_context *ctx,
1806 struct perf_cpu_context *cpuctx,
1807 enum event_type_t event_type,
1808 struct task_struct *task);
1810 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
1811 struct perf_event_context *ctx,
1812 struct task_struct *task)
1814 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
1815 if (ctx)
1816 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
1817 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
1818 if (ctx)
1819 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
1823 * Cross CPU call to install and enable a performance event
1825 * Must be called with ctx->mutex held
1827 static int __perf_install_in_context(void *info)
1829 struct perf_event *event = info;
1830 struct perf_event_context *ctx = event->ctx;
1831 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1832 struct perf_event_context *task_ctx = cpuctx->task_ctx;
1833 struct task_struct *task = current;
1835 perf_ctx_lock(cpuctx, task_ctx);
1836 perf_pmu_disable(cpuctx->ctx.pmu);
1839 * If there was an active task_ctx schedule it out.
1841 if (task_ctx)
1842 task_ctx_sched_out(task_ctx);
1845 * If the context we're installing events in is not the
1846 * active task_ctx, flip them.
1848 if (ctx->task && task_ctx != ctx) {
1849 if (task_ctx)
1850 raw_spin_unlock(&task_ctx->lock);
1851 raw_spin_lock(&ctx->lock);
1852 task_ctx = ctx;
1855 if (task_ctx) {
1856 cpuctx->task_ctx = task_ctx;
1857 task = task_ctx->task;
1860 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
1862 update_context_time(ctx);
1864 * update cgrp time only if current cgrp
1865 * matches event->cgrp. Must be done before
1866 * calling add_event_to_ctx()
1868 update_cgrp_time_from_event(event);
1870 add_event_to_ctx(event, ctx);
1873 * Schedule everything back in
1875 perf_event_sched_in(cpuctx, task_ctx, task);
1877 perf_pmu_enable(cpuctx->ctx.pmu);
1878 perf_ctx_unlock(cpuctx, task_ctx);
1880 return 0;
1884 * Attach a performance event to a context
1886 * First we add the event to the list with the hardware enable bit
1887 * in event->hw_config cleared.
1889 * If the event is attached to a task which is on a CPU we use a smp
1890 * call to enable it in the task context. The task might have been
1891 * scheduled away, but we check this in the smp call again.
1893 static void
1894 perf_install_in_context(struct perf_event_context *ctx,
1895 struct perf_event *event,
1896 int cpu)
1898 struct task_struct *task = ctx->task;
1900 lockdep_assert_held(&ctx->mutex);
1902 event->ctx = ctx;
1903 if (event->cpu != -1)
1904 event->cpu = cpu;
1906 if (!task) {
1908 * Per cpu events are installed via an smp call and
1909 * the install is always successful.
1911 cpu_function_call(cpu, __perf_install_in_context, event);
1912 return;
1915 retry:
1916 if (!task_function_call(task, __perf_install_in_context, event))
1917 return;
1919 raw_spin_lock_irq(&ctx->lock);
1921 * If we failed to find a running task, but find the context active now
1922 * that we've acquired the ctx->lock, retry.
1924 if (ctx->is_active) {
1925 raw_spin_unlock_irq(&ctx->lock);
1926 goto retry;
1930 * Since the task isn't running, its safe to add the event, us holding
1931 * the ctx->lock ensures the task won't get scheduled in.
1933 add_event_to_ctx(event, ctx);
1934 raw_spin_unlock_irq(&ctx->lock);
1938 * Put a event into inactive state and update time fields.
1939 * Enabling the leader of a group effectively enables all
1940 * the group members that aren't explicitly disabled, so we
1941 * have to update their ->tstamp_enabled also.
1942 * Note: this works for group members as well as group leaders
1943 * since the non-leader members' sibling_lists will be empty.
1945 static void __perf_event_mark_enabled(struct perf_event *event)
1947 struct perf_event *sub;
1948 u64 tstamp = perf_event_time(event);
1950 event->state = PERF_EVENT_STATE_INACTIVE;
1951 event->tstamp_enabled = tstamp - event->total_time_enabled;
1952 list_for_each_entry(sub, &event->sibling_list, group_entry) {
1953 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
1954 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
1959 * Cross CPU call to enable a performance event
1961 static int __perf_event_enable(void *info)
1963 struct perf_event *event = info;
1964 struct perf_event_context *ctx = event->ctx;
1965 struct perf_event *leader = event->group_leader;
1966 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1967 int err;
1970 * There's a time window between 'ctx->is_active' check
1971 * in perf_event_enable function and this place having:
1972 * - IRQs on
1973 * - ctx->lock unlocked
1975 * where the task could be killed and 'ctx' deactivated
1976 * by perf_event_exit_task.
1978 if (!ctx->is_active)
1979 return -EINVAL;
1981 raw_spin_lock(&ctx->lock);
1982 update_context_time(ctx);
1984 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1985 goto unlock;
1988 * set current task's cgroup time reference point
1990 perf_cgroup_set_timestamp(current, ctx);
1992 __perf_event_mark_enabled(event);
1994 if (!event_filter_match(event)) {
1995 if (is_cgroup_event(event))
1996 perf_cgroup_defer_enabled(event);
1997 goto unlock;
2001 * If the event is in a group and isn't the group leader,
2002 * then don't put it on unless the group is on.
2004 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2005 goto unlock;
2007 if (!group_can_go_on(event, cpuctx, 1)) {
2008 err = -EEXIST;
2009 } else {
2010 if (event == leader)
2011 err = group_sched_in(event, cpuctx, ctx);
2012 else
2013 err = event_sched_in(event, cpuctx, ctx);
2016 if (err) {
2018 * If this event can't go on and it's part of a
2019 * group, then the whole group has to come off.
2021 if (leader != event) {
2022 group_sched_out(leader, cpuctx, ctx);
2023 perf_cpu_hrtimer_restart(cpuctx);
2025 if (leader->attr.pinned) {
2026 update_group_times(leader);
2027 leader->state = PERF_EVENT_STATE_ERROR;
2031 unlock:
2032 raw_spin_unlock(&ctx->lock);
2034 return 0;
2038 * Enable a event.
2040 * If event->ctx is a cloned context, callers must make sure that
2041 * every task struct that event->ctx->task could possibly point to
2042 * remains valid. This condition is satisfied when called through
2043 * perf_event_for_each_child or perf_event_for_each as described
2044 * for perf_event_disable.
2046 void perf_event_enable(struct perf_event *event)
2048 struct perf_event_context *ctx = event->ctx;
2049 struct task_struct *task = ctx->task;
2051 if (!task) {
2053 * Enable the event on the cpu that it's on
2055 cpu_function_call(event->cpu, __perf_event_enable, event);
2056 return;
2059 raw_spin_lock_irq(&ctx->lock);
2060 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2061 goto out;
2064 * If the event is in error state, clear that first.
2065 * That way, if we see the event in error state below, we
2066 * know that it has gone back into error state, as distinct
2067 * from the task having been scheduled away before the
2068 * cross-call arrived.
2070 if (event->state == PERF_EVENT_STATE_ERROR)
2071 event->state = PERF_EVENT_STATE_OFF;
2073 retry:
2074 if (!ctx->is_active) {
2075 __perf_event_mark_enabled(event);
2076 goto out;
2079 raw_spin_unlock_irq(&ctx->lock);
2081 if (!task_function_call(task, __perf_event_enable, event))
2082 return;
2084 raw_spin_lock_irq(&ctx->lock);
2087 * If the context is active and the event is still off,
2088 * we need to retry the cross-call.
2090 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
2092 * task could have been flipped by a concurrent
2093 * perf_event_context_sched_out()
2095 task = ctx->task;
2096 goto retry;
2099 out:
2100 raw_spin_unlock_irq(&ctx->lock);
2102 EXPORT_SYMBOL_GPL(perf_event_enable);
2104 int perf_event_refresh(struct perf_event *event, int refresh)
2107 * not supported on inherited events
2109 if (event->attr.inherit || !is_sampling_event(event))
2110 return -EINVAL;
2112 atomic_add(refresh, &event->event_limit);
2113 perf_event_enable(event);
2115 return 0;
2117 EXPORT_SYMBOL_GPL(perf_event_refresh);
2119 static void ctx_sched_out(struct perf_event_context *ctx,
2120 struct perf_cpu_context *cpuctx,
2121 enum event_type_t event_type)
2123 struct perf_event *event;
2124 int is_active = ctx->is_active;
2126 ctx->is_active &= ~event_type;
2127 if (likely(!ctx->nr_events))
2128 return;
2130 update_context_time(ctx);
2131 update_cgrp_time_from_cpuctx(cpuctx);
2132 if (!ctx->nr_active)
2133 return;
2135 perf_pmu_disable(ctx->pmu);
2136 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2137 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2138 group_sched_out(event, cpuctx, ctx);
2141 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2142 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2143 group_sched_out(event, cpuctx, ctx);
2145 perf_pmu_enable(ctx->pmu);
2149 * Test whether two contexts are equivalent, i.e. whether they
2150 * have both been cloned from the same version of the same context
2151 * and they both have the same number of enabled events.
2152 * If the number of enabled events is the same, then the set
2153 * of enabled events should be the same, because these are both
2154 * inherited contexts, therefore we can't access individual events
2155 * in them directly with an fd; we can only enable/disable all
2156 * events via prctl, or enable/disable all events in a family
2157 * via ioctl, which will have the same effect on both contexts.
2159 static int context_equiv(struct perf_event_context *ctx1,
2160 struct perf_event_context *ctx2)
2162 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
2163 && ctx1->parent_gen == ctx2->parent_gen
2164 && !ctx1->pin_count && !ctx2->pin_count;
2167 static void __perf_event_sync_stat(struct perf_event *event,
2168 struct perf_event *next_event)
2170 u64 value;
2172 if (!event->attr.inherit_stat)
2173 return;
2176 * Update the event value, we cannot use perf_event_read()
2177 * because we're in the middle of a context switch and have IRQs
2178 * disabled, which upsets smp_call_function_single(), however
2179 * we know the event must be on the current CPU, therefore we
2180 * don't need to use it.
2182 switch (event->state) {
2183 case PERF_EVENT_STATE_ACTIVE:
2184 event->pmu->read(event);
2185 /* fall-through */
2187 case PERF_EVENT_STATE_INACTIVE:
2188 update_event_times(event);
2189 break;
2191 default:
2192 break;
2196 * In order to keep per-task stats reliable we need to flip the event
2197 * values when we flip the contexts.
2199 value = local64_read(&next_event->count);
2200 value = local64_xchg(&event->count, value);
2201 local64_set(&next_event->count, value);
2203 swap(event->total_time_enabled, next_event->total_time_enabled);
2204 swap(event->total_time_running, next_event->total_time_running);
2207 * Since we swizzled the values, update the user visible data too.
2209 perf_event_update_userpage(event);
2210 perf_event_update_userpage(next_event);
2213 #define list_next_entry(pos, member) \
2214 list_entry(pos->member.next, typeof(*pos), member)
2216 static void perf_event_sync_stat(struct perf_event_context *ctx,
2217 struct perf_event_context *next_ctx)
2219 struct perf_event *event, *next_event;
2221 if (!ctx->nr_stat)
2222 return;
2224 update_context_time(ctx);
2226 event = list_first_entry(&ctx->event_list,
2227 struct perf_event, event_entry);
2229 next_event = list_first_entry(&next_ctx->event_list,
2230 struct perf_event, event_entry);
2232 while (&event->event_entry != &ctx->event_list &&
2233 &next_event->event_entry != &next_ctx->event_list) {
2235 __perf_event_sync_stat(event, next_event);
2237 event = list_next_entry(event, event_entry);
2238 next_event = list_next_entry(next_event, event_entry);
2242 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2243 struct task_struct *next)
2245 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2246 struct perf_event_context *next_ctx;
2247 struct perf_event_context *parent;
2248 struct perf_cpu_context *cpuctx;
2249 int do_switch = 1;
2251 if (likely(!ctx))
2252 return;
2254 cpuctx = __get_cpu_context(ctx);
2255 if (!cpuctx->task_ctx)
2256 return;
2258 rcu_read_lock();
2259 parent = rcu_dereference(ctx->parent_ctx);
2260 next_ctx = next->perf_event_ctxp[ctxn];
2261 if (parent && next_ctx &&
2262 rcu_dereference(next_ctx->parent_ctx) == parent) {
2264 * Looks like the two contexts are clones, so we might be
2265 * able to optimize the context switch. We lock both
2266 * contexts and check that they are clones under the
2267 * lock (including re-checking that neither has been
2268 * uncloned in the meantime). It doesn't matter which
2269 * order we take the locks because no other cpu could
2270 * be trying to lock both of these tasks.
2272 raw_spin_lock(&ctx->lock);
2273 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2274 if (context_equiv(ctx, next_ctx)) {
2276 * XXX do we need a memory barrier of sorts
2277 * wrt to rcu_dereference() of perf_event_ctxp
2279 task->perf_event_ctxp[ctxn] = next_ctx;
2280 next->perf_event_ctxp[ctxn] = ctx;
2281 ctx->task = next;
2282 next_ctx->task = task;
2283 do_switch = 0;
2285 perf_event_sync_stat(ctx, next_ctx);
2287 raw_spin_unlock(&next_ctx->lock);
2288 raw_spin_unlock(&ctx->lock);
2290 rcu_read_unlock();
2292 if (do_switch) {
2293 raw_spin_lock(&ctx->lock);
2294 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2295 cpuctx->task_ctx = NULL;
2296 raw_spin_unlock(&ctx->lock);
2300 #define for_each_task_context_nr(ctxn) \
2301 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2304 * Called from scheduler to remove the events of the current task,
2305 * with interrupts disabled.
2307 * We stop each event and update the event value in event->count.
2309 * This does not protect us against NMI, but disable()
2310 * sets the disabled bit in the control field of event _before_
2311 * accessing the event control register. If a NMI hits, then it will
2312 * not restart the event.
2314 void __perf_event_task_sched_out(struct task_struct *task,
2315 struct task_struct *next)
2317 int ctxn;
2319 for_each_task_context_nr(ctxn)
2320 perf_event_context_sched_out(task, ctxn, next);
2323 * if cgroup events exist on this CPU, then we need
2324 * to check if we have to switch out PMU state.
2325 * cgroup event are system-wide mode only
2327 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2328 perf_cgroup_sched_out(task, next);
2331 static void task_ctx_sched_out(struct perf_event_context *ctx)
2333 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2335 if (!cpuctx->task_ctx)
2336 return;
2338 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2339 return;
2341 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2342 cpuctx->task_ctx = NULL;
2346 * Called with IRQs disabled
2348 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2349 enum event_type_t event_type)
2351 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2354 static void
2355 ctx_pinned_sched_in(struct perf_event_context *ctx,
2356 struct perf_cpu_context *cpuctx)
2358 struct perf_event *event;
2360 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2361 if (event->state <= PERF_EVENT_STATE_OFF)
2362 continue;
2363 if (!event_filter_match(event))
2364 continue;
2366 /* may need to reset tstamp_enabled */
2367 if (is_cgroup_event(event))
2368 perf_cgroup_mark_enabled(event, ctx);
2370 if (group_can_go_on(event, cpuctx, 1))
2371 group_sched_in(event, cpuctx, ctx);
2374 * If this pinned group hasn't been scheduled,
2375 * put it in error state.
2377 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2378 update_group_times(event);
2379 event->state = PERF_EVENT_STATE_ERROR;
2384 static void
2385 ctx_flexible_sched_in(struct perf_event_context *ctx,
2386 struct perf_cpu_context *cpuctx)
2388 struct perf_event *event;
2389 int can_add_hw = 1;
2391 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2392 /* Ignore events in OFF or ERROR state */
2393 if (event->state <= PERF_EVENT_STATE_OFF)
2394 continue;
2396 * Listen to the 'cpu' scheduling filter constraint
2397 * of events:
2399 if (!event_filter_match(event))
2400 continue;
2402 /* may need to reset tstamp_enabled */
2403 if (is_cgroup_event(event))
2404 perf_cgroup_mark_enabled(event, ctx);
2406 if (group_can_go_on(event, cpuctx, can_add_hw)) {
2407 if (group_sched_in(event, cpuctx, ctx))
2408 can_add_hw = 0;
2413 static void
2414 ctx_sched_in(struct perf_event_context *ctx,
2415 struct perf_cpu_context *cpuctx,
2416 enum event_type_t event_type,
2417 struct task_struct *task)
2419 u64 now;
2420 int is_active = ctx->is_active;
2422 ctx->is_active |= event_type;
2423 if (likely(!ctx->nr_events))
2424 return;
2426 now = perf_clock();
2427 ctx->timestamp = now;
2428 perf_cgroup_set_timestamp(task, ctx);
2430 * First go through the list and put on any pinned groups
2431 * in order to give them the best chance of going on.
2433 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2434 ctx_pinned_sched_in(ctx, cpuctx);
2436 /* Then walk through the lower prio flexible groups */
2437 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2438 ctx_flexible_sched_in(ctx, cpuctx);
2441 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2442 enum event_type_t event_type,
2443 struct task_struct *task)
2445 struct perf_event_context *ctx = &cpuctx->ctx;
2447 ctx_sched_in(ctx, cpuctx, event_type, task);
2450 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2451 struct task_struct *task)
2453 struct perf_cpu_context *cpuctx;
2455 cpuctx = __get_cpu_context(ctx);
2456 if (cpuctx->task_ctx == ctx)
2457 return;
2459 perf_ctx_lock(cpuctx, ctx);
2460 perf_pmu_disable(ctx->pmu);
2462 * We want to keep the following priority order:
2463 * cpu pinned (that don't need to move), task pinned,
2464 * cpu flexible, task flexible.
2466 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2468 if (ctx->nr_events)
2469 cpuctx->task_ctx = ctx;
2471 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2473 perf_pmu_enable(ctx->pmu);
2474 perf_ctx_unlock(cpuctx, ctx);
2477 * Since these rotations are per-cpu, we need to ensure the
2478 * cpu-context we got scheduled on is actually rotating.
2480 perf_pmu_rotate_start(ctx->pmu);
2484 * When sampling the branck stack in system-wide, it may be necessary
2485 * to flush the stack on context switch. This happens when the branch
2486 * stack does not tag its entries with the pid of the current task.
2487 * Otherwise it becomes impossible to associate a branch entry with a
2488 * task. This ambiguity is more likely to appear when the branch stack
2489 * supports priv level filtering and the user sets it to monitor only
2490 * at the user level (which could be a useful measurement in system-wide
2491 * mode). In that case, the risk is high of having a branch stack with
2492 * branch from multiple tasks. Flushing may mean dropping the existing
2493 * entries or stashing them somewhere in the PMU specific code layer.
2495 * This function provides the context switch callback to the lower code
2496 * layer. It is invoked ONLY when there is at least one system-wide context
2497 * with at least one active event using taken branch sampling.
2499 static void perf_branch_stack_sched_in(struct task_struct *prev,
2500 struct task_struct *task)
2502 struct perf_cpu_context *cpuctx;
2503 struct pmu *pmu;
2504 unsigned long flags;
2506 /* no need to flush branch stack if not changing task */
2507 if (prev == task)
2508 return;
2510 local_irq_save(flags);
2512 rcu_read_lock();
2514 list_for_each_entry_rcu(pmu, &pmus, entry) {
2515 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2518 * check if the context has at least one
2519 * event using PERF_SAMPLE_BRANCH_STACK
2521 if (cpuctx->ctx.nr_branch_stack > 0
2522 && pmu->flush_branch_stack) {
2524 pmu = cpuctx->ctx.pmu;
2526 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2528 perf_pmu_disable(pmu);
2530 pmu->flush_branch_stack();
2532 perf_pmu_enable(pmu);
2534 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2538 rcu_read_unlock();
2540 local_irq_restore(flags);
2544 * Called from scheduler to add the events of the current task
2545 * with interrupts disabled.
2547 * We restore the event value and then enable it.
2549 * This does not protect us against NMI, but enable()
2550 * sets the enabled bit in the control field of event _before_
2551 * accessing the event control register. If a NMI hits, then it will
2552 * keep the event running.
2554 void __perf_event_task_sched_in(struct task_struct *prev,
2555 struct task_struct *task)
2557 struct perf_event_context *ctx;
2558 int ctxn;
2560 for_each_task_context_nr(ctxn) {
2561 ctx = task->perf_event_ctxp[ctxn];
2562 if (likely(!ctx))
2563 continue;
2565 perf_event_context_sched_in(ctx, task);
2568 * if cgroup events exist on this CPU, then we need
2569 * to check if we have to switch in PMU state.
2570 * cgroup event are system-wide mode only
2572 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2573 perf_cgroup_sched_in(prev, task);
2575 /* check for system-wide branch_stack events */
2576 if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
2577 perf_branch_stack_sched_in(prev, task);
2580 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2582 u64 frequency = event->attr.sample_freq;
2583 u64 sec = NSEC_PER_SEC;
2584 u64 divisor, dividend;
2586 int count_fls, nsec_fls, frequency_fls, sec_fls;
2588 count_fls = fls64(count);
2589 nsec_fls = fls64(nsec);
2590 frequency_fls = fls64(frequency);
2591 sec_fls = 30;
2594 * We got @count in @nsec, with a target of sample_freq HZ
2595 * the target period becomes:
2597 * @count * 10^9
2598 * period = -------------------
2599 * @nsec * sample_freq
2604 * Reduce accuracy by one bit such that @a and @b converge
2605 * to a similar magnitude.
2607 #define REDUCE_FLS(a, b) \
2608 do { \
2609 if (a##_fls > b##_fls) { \
2610 a >>= 1; \
2611 a##_fls--; \
2612 } else { \
2613 b >>= 1; \
2614 b##_fls--; \
2616 } while (0)
2619 * Reduce accuracy until either term fits in a u64, then proceed with
2620 * the other, so that finally we can do a u64/u64 division.
2622 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2623 REDUCE_FLS(nsec, frequency);
2624 REDUCE_FLS(sec, count);
2627 if (count_fls + sec_fls > 64) {
2628 divisor = nsec * frequency;
2630 while (count_fls + sec_fls > 64) {
2631 REDUCE_FLS(count, sec);
2632 divisor >>= 1;
2635 dividend = count * sec;
2636 } else {
2637 dividend = count * sec;
2639 while (nsec_fls + frequency_fls > 64) {
2640 REDUCE_FLS(nsec, frequency);
2641 dividend >>= 1;
2644 divisor = nsec * frequency;
2647 if (!divisor)
2648 return dividend;
2650 return div64_u64(dividend, divisor);
2653 static DEFINE_PER_CPU(int, perf_throttled_count);
2654 static DEFINE_PER_CPU(u64, perf_throttled_seq);
2656 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2658 struct hw_perf_event *hwc = &event->hw;
2659 s64 period, sample_period;
2660 s64 delta;
2662 period = perf_calculate_period(event, nsec, count);
2664 delta = (s64)(period - hwc->sample_period);
2665 delta = (delta + 7) / 8; /* low pass filter */
2667 sample_period = hwc->sample_period + delta;
2669 if (!sample_period)
2670 sample_period = 1;
2672 hwc->sample_period = sample_period;
2674 if (local64_read(&hwc->period_left) > 8*sample_period) {
2675 if (disable)
2676 event->pmu->stop(event, PERF_EF_UPDATE);
2678 local64_set(&hwc->period_left, 0);
2680 if (disable)
2681 event->pmu->start(event, PERF_EF_RELOAD);
2686 * combine freq adjustment with unthrottling to avoid two passes over the
2687 * events. At the same time, make sure, having freq events does not change
2688 * the rate of unthrottling as that would introduce bias.
2690 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2691 int needs_unthr)
2693 struct perf_event *event;
2694 struct hw_perf_event *hwc;
2695 u64 now, period = TICK_NSEC;
2696 s64 delta;
2699 * only need to iterate over all events iff:
2700 * - context have events in frequency mode (needs freq adjust)
2701 * - there are events to unthrottle on this cpu
2703 if (!(ctx->nr_freq || needs_unthr))
2704 return;
2706 raw_spin_lock(&ctx->lock);
2707 perf_pmu_disable(ctx->pmu);
2709 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2710 if (event->state != PERF_EVENT_STATE_ACTIVE)
2711 continue;
2713 if (!event_filter_match(event))
2714 continue;
2716 hwc = &event->hw;
2718 if (hwc->interrupts == MAX_INTERRUPTS) {
2719 hwc->interrupts = 0;
2720 perf_log_throttle(event, 1);
2721 event->pmu->start(event, 0);
2724 if (!event->attr.freq || !event->attr.sample_freq)
2725 continue;
2728 * stop the event and update event->count
2730 event->pmu->stop(event, PERF_EF_UPDATE);
2732 now = local64_read(&event->count);
2733 delta = now - hwc->freq_count_stamp;
2734 hwc->freq_count_stamp = now;
2737 * restart the event
2738 * reload only if value has changed
2739 * we have stopped the event so tell that
2740 * to perf_adjust_period() to avoid stopping it
2741 * twice.
2743 if (delta > 0)
2744 perf_adjust_period(event, period, delta, false);
2746 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
2749 perf_pmu_enable(ctx->pmu);
2750 raw_spin_unlock(&ctx->lock);
2754 * Round-robin a context's events:
2756 static void rotate_ctx(struct perf_event_context *ctx)
2759 * Rotate the first entry last of non-pinned groups. Rotation might be
2760 * disabled by the inheritance code.
2762 if (!ctx->rotate_disable)
2763 list_rotate_left(&ctx->flexible_groups);
2767 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2768 * because they're strictly cpu affine and rotate_start is called with IRQs
2769 * disabled, while rotate_context is called from IRQ context.
2771 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
2773 struct perf_event_context *ctx = NULL;
2774 int rotate = 0, remove = 1;
2776 if (cpuctx->ctx.nr_events) {
2777 remove = 0;
2778 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2779 rotate = 1;
2782 ctx = cpuctx->task_ctx;
2783 if (ctx && ctx->nr_events) {
2784 remove = 0;
2785 if (ctx->nr_events != ctx->nr_active)
2786 rotate = 1;
2789 if (!rotate)
2790 goto done;
2792 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2793 perf_pmu_disable(cpuctx->ctx.pmu);
2795 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2796 if (ctx)
2797 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
2799 rotate_ctx(&cpuctx->ctx);
2800 if (ctx)
2801 rotate_ctx(ctx);
2803 perf_event_sched_in(cpuctx, ctx, current);
2805 perf_pmu_enable(cpuctx->ctx.pmu);
2806 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2807 done:
2808 if (remove)
2809 list_del_init(&cpuctx->rotation_list);
2811 return rotate;
2814 #ifdef CONFIG_NO_HZ_FULL
2815 bool perf_event_can_stop_tick(void)
2817 if (atomic_read(&nr_freq_events) ||
2818 __this_cpu_read(perf_throttled_count))
2819 return false;
2820 else
2821 return true;
2823 #endif
2825 void perf_event_task_tick(void)
2827 struct list_head *head = &__get_cpu_var(rotation_list);
2828 struct perf_cpu_context *cpuctx, *tmp;
2829 struct perf_event_context *ctx;
2830 int throttled;
2832 WARN_ON(!irqs_disabled());
2834 __this_cpu_inc(perf_throttled_seq);
2835 throttled = __this_cpu_xchg(perf_throttled_count, 0);
2837 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2838 ctx = &cpuctx->ctx;
2839 perf_adjust_freq_unthr_context(ctx, throttled);
2841 ctx = cpuctx->task_ctx;
2842 if (ctx)
2843 perf_adjust_freq_unthr_context(ctx, throttled);
2847 static int event_enable_on_exec(struct perf_event *event,
2848 struct perf_event_context *ctx)
2850 if (!event->attr.enable_on_exec)
2851 return 0;
2853 event->attr.enable_on_exec = 0;
2854 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2855 return 0;
2857 __perf_event_mark_enabled(event);
2859 return 1;
2863 * Enable all of a task's events that have been marked enable-on-exec.
2864 * This expects task == current.
2866 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2868 struct perf_event *event;
2869 unsigned long flags;
2870 int enabled = 0;
2871 int ret;
2873 local_irq_save(flags);
2874 if (!ctx || !ctx->nr_events)
2875 goto out;
2878 * We must ctxsw out cgroup events to avoid conflict
2879 * when invoking perf_task_event_sched_in() later on
2880 * in this function. Otherwise we end up trying to
2881 * ctxswin cgroup events which are already scheduled
2882 * in.
2884 perf_cgroup_sched_out(current, NULL);
2886 raw_spin_lock(&ctx->lock);
2887 task_ctx_sched_out(ctx);
2889 list_for_each_entry(event, &ctx->event_list, event_entry) {
2890 ret = event_enable_on_exec(event, ctx);
2891 if (ret)
2892 enabled = 1;
2896 * Unclone this context if we enabled any event.
2898 if (enabled)
2899 unclone_ctx(ctx);
2901 raw_spin_unlock(&ctx->lock);
2904 * Also calls ctxswin for cgroup events, if any:
2906 perf_event_context_sched_in(ctx, ctx->task);
2907 out:
2908 local_irq_restore(flags);
2912 * Cross CPU call to read the hardware event
2914 static void __perf_event_read(void *info)
2916 struct perf_event *event = info;
2917 struct perf_event_context *ctx = event->ctx;
2918 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2921 * If this is a task context, we need to check whether it is
2922 * the current task context of this cpu. If not it has been
2923 * scheduled out before the smp call arrived. In that case
2924 * event->count would have been updated to a recent sample
2925 * when the event was scheduled out.
2927 if (ctx->task && cpuctx->task_ctx != ctx)
2928 return;
2930 raw_spin_lock(&ctx->lock);
2931 if (ctx->is_active) {
2932 update_context_time(ctx);
2933 update_cgrp_time_from_event(event);
2935 update_event_times(event);
2936 if (event->state == PERF_EVENT_STATE_ACTIVE)
2937 event->pmu->read(event);
2938 raw_spin_unlock(&ctx->lock);
2941 static inline u64 perf_event_count(struct perf_event *event)
2943 return local64_read(&event->count) + atomic64_read(&event->child_count);
2946 static u64 perf_event_read(struct perf_event *event)
2949 * If event is enabled and currently active on a CPU, update the
2950 * value in the event structure:
2952 if (event->state == PERF_EVENT_STATE_ACTIVE) {
2953 smp_call_function_single(event->oncpu,
2954 __perf_event_read, event, 1);
2955 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2956 struct perf_event_context *ctx = event->ctx;
2957 unsigned long flags;
2959 raw_spin_lock_irqsave(&ctx->lock, flags);
2961 * may read while context is not active
2962 * (e.g., thread is blocked), in that case
2963 * we cannot update context time
2965 if (ctx->is_active) {
2966 update_context_time(ctx);
2967 update_cgrp_time_from_event(event);
2969 update_event_times(event);
2970 raw_spin_unlock_irqrestore(&ctx->lock, flags);
2973 return perf_event_count(event);
2977 * Initialize the perf_event context in a task_struct:
2979 static void __perf_event_init_context(struct perf_event_context *ctx)
2981 raw_spin_lock_init(&ctx->lock);
2982 mutex_init(&ctx->mutex);
2983 INIT_LIST_HEAD(&ctx->pinned_groups);
2984 INIT_LIST_HEAD(&ctx->flexible_groups);
2985 INIT_LIST_HEAD(&ctx->event_list);
2986 atomic_set(&ctx->refcount, 1);
2989 static struct perf_event_context *
2990 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2992 struct perf_event_context *ctx;
2994 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2995 if (!ctx)
2996 return NULL;
2998 __perf_event_init_context(ctx);
2999 if (task) {
3000 ctx->task = task;
3001 get_task_struct(task);
3003 ctx->pmu = pmu;
3005 return ctx;
3008 static struct task_struct *
3009 find_lively_task_by_vpid(pid_t vpid)
3011 struct task_struct *task;
3012 int err;
3014 rcu_read_lock();
3015 if (!vpid)
3016 task = current;
3017 else
3018 task = find_task_by_vpid(vpid);
3019 if (task)
3020 get_task_struct(task);
3021 rcu_read_unlock();
3023 if (!task)
3024 return ERR_PTR(-ESRCH);
3026 /* Reuse ptrace permission checks for now. */
3027 err = -EACCES;
3028 if (!ptrace_may_access(task, PTRACE_MODE_READ))
3029 goto errout;
3031 return task;
3032 errout:
3033 put_task_struct(task);
3034 return ERR_PTR(err);
3039 * Returns a matching context with refcount and pincount.
3041 static struct perf_event_context *
3042 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
3044 struct perf_event_context *ctx;
3045 struct perf_cpu_context *cpuctx;
3046 unsigned long flags;
3047 int ctxn, err;
3049 if (!task) {
3050 /* Must be root to operate on a CPU event: */
3051 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3052 return ERR_PTR(-EACCES);
3055 * We could be clever and allow to attach a event to an
3056 * offline CPU and activate it when the CPU comes up, but
3057 * that's for later.
3059 if (!cpu_online(cpu))
3060 return ERR_PTR(-ENODEV);
3062 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3063 ctx = &cpuctx->ctx;
3064 get_ctx(ctx);
3065 ++ctx->pin_count;
3067 return ctx;
3070 err = -EINVAL;
3071 ctxn = pmu->task_ctx_nr;
3072 if (ctxn < 0)
3073 goto errout;
3075 retry:
3076 ctx = perf_lock_task_context(task, ctxn, &flags);
3077 if (ctx) {
3078 unclone_ctx(ctx);
3079 ++ctx->pin_count;
3080 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3081 } else {
3082 ctx = alloc_perf_context(pmu, task);
3083 err = -ENOMEM;
3084 if (!ctx)
3085 goto errout;
3087 err = 0;
3088 mutex_lock(&task->perf_event_mutex);
3090 * If it has already passed perf_event_exit_task().
3091 * we must see PF_EXITING, it takes this mutex too.
3093 if (task->flags & PF_EXITING)
3094 err = -ESRCH;
3095 else if (task->perf_event_ctxp[ctxn])
3096 err = -EAGAIN;
3097 else {
3098 get_ctx(ctx);
3099 ++ctx->pin_count;
3100 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3102 mutex_unlock(&task->perf_event_mutex);
3104 if (unlikely(err)) {
3105 put_ctx(ctx);
3107 if (err == -EAGAIN)
3108 goto retry;
3109 goto errout;
3113 return ctx;
3115 errout:
3116 return ERR_PTR(err);
3119 static void perf_event_free_filter(struct perf_event *event);
3121 static void free_event_rcu(struct rcu_head *head)
3123 struct perf_event *event;
3125 event = container_of(head, struct perf_event, rcu_head);
3126 if (event->ns)
3127 put_pid_ns(event->ns);
3128 perf_event_free_filter(event);
3129 kfree(event);
3132 static void ring_buffer_put(struct ring_buffer *rb);
3133 static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb);
3135 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3137 if (event->parent)
3138 return;
3140 if (has_branch_stack(event)) {
3141 if (!(event->attach_state & PERF_ATTACH_TASK))
3142 atomic_dec(&per_cpu(perf_branch_stack_events, cpu));
3144 if (is_cgroup_event(event))
3145 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3148 static void unaccount_event(struct perf_event *event)
3150 if (event->parent)
3151 return;
3153 if (event->attach_state & PERF_ATTACH_TASK)
3154 static_key_slow_dec_deferred(&perf_sched_events);
3155 if (event->attr.mmap || event->attr.mmap_data)
3156 atomic_dec(&nr_mmap_events);
3157 if (event->attr.comm)
3158 atomic_dec(&nr_comm_events);
3159 if (event->attr.task)
3160 atomic_dec(&nr_task_events);
3161 if (event->attr.freq)
3162 atomic_dec(&nr_freq_events);
3163 if (is_cgroup_event(event))
3164 static_key_slow_dec_deferred(&perf_sched_events);
3165 if (has_branch_stack(event))
3166 static_key_slow_dec_deferred(&perf_sched_events);
3168 unaccount_event_cpu(event, event->cpu);
3171 static void __free_event(struct perf_event *event)
3173 if (!event->parent) {
3174 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3175 put_callchain_buffers();
3178 if (event->destroy)
3179 event->destroy(event);
3181 if (event->ctx)
3182 put_ctx(event->ctx);
3184 call_rcu(&event->rcu_head, free_event_rcu);
3186 static void free_event(struct perf_event *event)
3188 irq_work_sync(&event->pending);
3190 unaccount_event(event);
3192 if (event->rb) {
3193 struct ring_buffer *rb;
3196 * Can happen when we close an event with re-directed output.
3198 * Since we have a 0 refcount, perf_mmap_close() will skip
3199 * over us; possibly making our ring_buffer_put() the last.
3201 mutex_lock(&event->mmap_mutex);
3202 rb = event->rb;
3203 if (rb) {
3204 rcu_assign_pointer(event->rb, NULL);
3205 ring_buffer_detach(event, rb);
3206 ring_buffer_put(rb); /* could be last */
3208 mutex_unlock(&event->mmap_mutex);
3211 if (is_cgroup_event(event))
3212 perf_detach_cgroup(event);
3215 __free_event(event);
3218 int perf_event_release_kernel(struct perf_event *event)
3220 struct perf_event_context *ctx = event->ctx;
3222 WARN_ON_ONCE(ctx->parent_ctx);
3224 * There are two ways this annotation is useful:
3226 * 1) there is a lock recursion from perf_event_exit_task
3227 * see the comment there.
3229 * 2) there is a lock-inversion with mmap_sem through
3230 * perf_event_read_group(), which takes faults while
3231 * holding ctx->mutex, however this is called after
3232 * the last filedesc died, so there is no possibility
3233 * to trigger the AB-BA case.
3235 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
3236 raw_spin_lock_irq(&ctx->lock);
3237 perf_group_detach(event);
3238 raw_spin_unlock_irq(&ctx->lock);
3239 perf_remove_from_context(event);
3240 mutex_unlock(&ctx->mutex);
3242 free_event(event);
3244 return 0;
3246 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3249 * Called when the last reference to the file is gone.
3251 static void put_event(struct perf_event *event)
3253 struct task_struct *owner;
3255 if (!atomic_long_dec_and_test(&event->refcount))
3256 return;
3258 rcu_read_lock();
3259 owner = ACCESS_ONCE(event->owner);
3261 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3262 * !owner it means the list deletion is complete and we can indeed
3263 * free this event, otherwise we need to serialize on
3264 * owner->perf_event_mutex.
3266 smp_read_barrier_depends();
3267 if (owner) {
3269 * Since delayed_put_task_struct() also drops the last
3270 * task reference we can safely take a new reference
3271 * while holding the rcu_read_lock().
3273 get_task_struct(owner);
3275 rcu_read_unlock();
3277 if (owner) {
3278 mutex_lock(&owner->perf_event_mutex);
3280 * We have to re-check the event->owner field, if it is cleared
3281 * we raced with perf_event_exit_task(), acquiring the mutex
3282 * ensured they're done, and we can proceed with freeing the
3283 * event.
3285 if (event->owner)
3286 list_del_init(&event->owner_entry);
3287 mutex_unlock(&owner->perf_event_mutex);
3288 put_task_struct(owner);
3291 perf_event_release_kernel(event);
3294 static int perf_release(struct inode *inode, struct file *file)
3296 put_event(file->private_data);
3297 return 0;
3300 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3302 struct perf_event *child;
3303 u64 total = 0;
3305 *enabled = 0;
3306 *running = 0;
3308 mutex_lock(&event->child_mutex);
3309 total += perf_event_read(event);
3310 *enabled += event->total_time_enabled +
3311 atomic64_read(&event->child_total_time_enabled);
3312 *running += event->total_time_running +
3313 atomic64_read(&event->child_total_time_running);
3315 list_for_each_entry(child, &event->child_list, child_list) {
3316 total += perf_event_read(child);
3317 *enabled += child->total_time_enabled;
3318 *running += child->total_time_running;
3320 mutex_unlock(&event->child_mutex);
3322 return total;
3324 EXPORT_SYMBOL_GPL(perf_event_read_value);
3326 static int perf_event_read_group(struct perf_event *event,
3327 u64 read_format, char __user *buf)
3329 struct perf_event *leader = event->group_leader, *sub;
3330 int n = 0, size = 0, ret = -EFAULT;
3331 struct perf_event_context *ctx = leader->ctx;
3332 u64 values[5];
3333 u64 count, enabled, running;
3335 mutex_lock(&ctx->mutex);
3336 count = perf_event_read_value(leader, &enabled, &running);
3338 values[n++] = 1 + leader->nr_siblings;
3339 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3340 values[n++] = enabled;
3341 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3342 values[n++] = running;
3343 values[n++] = count;
3344 if (read_format & PERF_FORMAT_ID)
3345 values[n++] = primary_event_id(leader);
3347 size = n * sizeof(u64);
3349 if (copy_to_user(buf, values, size))
3350 goto unlock;
3352 ret = size;
3354 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3355 n = 0;
3357 values[n++] = perf_event_read_value(sub, &enabled, &running);
3358 if (read_format & PERF_FORMAT_ID)
3359 values[n++] = primary_event_id(sub);
3361 size = n * sizeof(u64);
3363 if (copy_to_user(buf + ret, values, size)) {
3364 ret = -EFAULT;
3365 goto unlock;
3368 ret += size;
3370 unlock:
3371 mutex_unlock(&ctx->mutex);
3373 return ret;
3376 static int perf_event_read_one(struct perf_event *event,
3377 u64 read_format, char __user *buf)
3379 u64 enabled, running;
3380 u64 values[4];
3381 int n = 0;
3383 values[n++] = perf_event_read_value(event, &enabled, &running);
3384 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3385 values[n++] = enabled;
3386 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3387 values[n++] = running;
3388 if (read_format & PERF_FORMAT_ID)
3389 values[n++] = primary_event_id(event);
3391 if (copy_to_user(buf, values, n * sizeof(u64)))
3392 return -EFAULT;
3394 return n * sizeof(u64);
3398 * Read the performance event - simple non blocking version for now
3400 static ssize_t
3401 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
3403 u64 read_format = event->attr.read_format;
3404 int ret;
3407 * Return end-of-file for a read on a event that is in
3408 * error state (i.e. because it was pinned but it couldn't be
3409 * scheduled on to the CPU at some point).
3411 if (event->state == PERF_EVENT_STATE_ERROR)
3412 return 0;
3414 if (count < event->read_size)
3415 return -ENOSPC;
3417 WARN_ON_ONCE(event->ctx->parent_ctx);
3418 if (read_format & PERF_FORMAT_GROUP)
3419 ret = perf_event_read_group(event, read_format, buf);
3420 else
3421 ret = perf_event_read_one(event, read_format, buf);
3423 return ret;
3426 static ssize_t
3427 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3429 struct perf_event *event = file->private_data;
3431 return perf_read_hw(event, buf, count);
3434 static unsigned int perf_poll(struct file *file, poll_table *wait)
3436 struct perf_event *event = file->private_data;
3437 struct ring_buffer *rb;
3438 unsigned int events = POLL_HUP;
3441 * Pin the event->rb by taking event->mmap_mutex; otherwise
3442 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
3444 mutex_lock(&event->mmap_mutex);
3445 rb = event->rb;
3446 if (rb)
3447 events = atomic_xchg(&rb->poll, 0);
3448 mutex_unlock(&event->mmap_mutex);
3450 poll_wait(file, &event->waitq, wait);
3452 return events;
3455 static void perf_event_reset(struct perf_event *event)
3457 (void)perf_event_read(event);
3458 local64_set(&event->count, 0);
3459 perf_event_update_userpage(event);
3463 * Holding the top-level event's child_mutex means that any
3464 * descendant process that has inherited this event will block
3465 * in sync_child_event if it goes to exit, thus satisfying the
3466 * task existence requirements of perf_event_enable/disable.
3468 static void perf_event_for_each_child(struct perf_event *event,
3469 void (*func)(struct perf_event *))
3471 struct perf_event *child;
3473 WARN_ON_ONCE(event->ctx->parent_ctx);
3474 mutex_lock(&event->child_mutex);
3475 func(event);
3476 list_for_each_entry(child, &event->child_list, child_list)
3477 func(child);
3478 mutex_unlock(&event->child_mutex);
3481 static void perf_event_for_each(struct perf_event *event,
3482 void (*func)(struct perf_event *))
3484 struct perf_event_context *ctx = event->ctx;
3485 struct perf_event *sibling;
3487 WARN_ON_ONCE(ctx->parent_ctx);
3488 mutex_lock(&ctx->mutex);
3489 event = event->group_leader;
3491 perf_event_for_each_child(event, func);
3492 list_for_each_entry(sibling, &event->sibling_list, group_entry)
3493 perf_event_for_each_child(sibling, func);
3494 mutex_unlock(&ctx->mutex);
3497 static int perf_event_period(struct perf_event *event, u64 __user *arg)
3499 struct perf_event_context *ctx = event->ctx;
3500 int ret = 0;
3501 u64 value;
3503 if (!is_sampling_event(event))
3504 return -EINVAL;
3506 if (copy_from_user(&value, arg, sizeof(value)))
3507 return -EFAULT;
3509 if (!value)
3510 return -EINVAL;
3512 raw_spin_lock_irq(&ctx->lock);
3513 if (event->attr.freq) {
3514 if (value > sysctl_perf_event_sample_rate) {
3515 ret = -EINVAL;
3516 goto unlock;
3519 event->attr.sample_freq = value;
3520 } else {
3521 event->attr.sample_period = value;
3522 event->hw.sample_period = value;
3524 unlock:
3525 raw_spin_unlock_irq(&ctx->lock);
3527 return ret;
3530 static const struct file_operations perf_fops;
3532 static inline int perf_fget_light(int fd, struct fd *p)
3534 struct fd f = fdget(fd);
3535 if (!f.file)
3536 return -EBADF;
3538 if (f.file->f_op != &perf_fops) {
3539 fdput(f);
3540 return -EBADF;
3542 *p = f;
3543 return 0;
3546 static int perf_event_set_output(struct perf_event *event,
3547 struct perf_event *output_event);
3548 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3550 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3552 struct perf_event *event = file->private_data;
3553 void (*func)(struct perf_event *);
3554 u32 flags = arg;
3556 switch (cmd) {
3557 case PERF_EVENT_IOC_ENABLE:
3558 func = perf_event_enable;
3559 break;
3560 case PERF_EVENT_IOC_DISABLE:
3561 func = perf_event_disable;
3562 break;
3563 case PERF_EVENT_IOC_RESET:
3564 func = perf_event_reset;
3565 break;
3567 case PERF_EVENT_IOC_REFRESH:
3568 return perf_event_refresh(event, arg);
3570 case PERF_EVENT_IOC_PERIOD:
3571 return perf_event_period(event, (u64 __user *)arg);
3573 case PERF_EVENT_IOC_ID:
3575 u64 id = primary_event_id(event);
3577 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
3578 return -EFAULT;
3579 return 0;
3582 case PERF_EVENT_IOC_SET_OUTPUT:
3584 int ret;
3585 if (arg != -1) {
3586 struct perf_event *output_event;
3587 struct fd output;
3588 ret = perf_fget_light(arg, &output);
3589 if (ret)
3590 return ret;
3591 output_event = output.file->private_data;
3592 ret = perf_event_set_output(event, output_event);
3593 fdput(output);
3594 } else {
3595 ret = perf_event_set_output(event, NULL);
3597 return ret;
3600 case PERF_EVENT_IOC_SET_FILTER:
3601 return perf_event_set_filter(event, (void __user *)arg);
3603 default:
3604 return -ENOTTY;
3607 if (flags & PERF_IOC_FLAG_GROUP)
3608 perf_event_for_each(event, func);
3609 else
3610 perf_event_for_each_child(event, func);
3612 return 0;
3615 int perf_event_task_enable(void)
3617 struct perf_event *event;
3619 mutex_lock(&current->perf_event_mutex);
3620 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3621 perf_event_for_each_child(event, perf_event_enable);
3622 mutex_unlock(&current->perf_event_mutex);
3624 return 0;
3627 int perf_event_task_disable(void)
3629 struct perf_event *event;
3631 mutex_lock(&current->perf_event_mutex);
3632 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3633 perf_event_for_each_child(event, perf_event_disable);
3634 mutex_unlock(&current->perf_event_mutex);
3636 return 0;
3639 static int perf_event_index(struct perf_event *event)
3641 if (event->hw.state & PERF_HES_STOPPED)
3642 return 0;
3644 if (event->state != PERF_EVENT_STATE_ACTIVE)
3645 return 0;
3647 return event->pmu->event_idx(event);
3650 static void calc_timer_values(struct perf_event *event,
3651 u64 *now,
3652 u64 *enabled,
3653 u64 *running)
3655 u64 ctx_time;
3657 *now = perf_clock();
3658 ctx_time = event->shadow_ctx_time + *now;
3659 *enabled = ctx_time - event->tstamp_enabled;
3660 *running = ctx_time - event->tstamp_running;
3663 void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
3668 * Callers need to ensure there can be no nesting of this function, otherwise
3669 * the seqlock logic goes bad. We can not serialize this because the arch
3670 * code calls this from NMI context.
3672 void perf_event_update_userpage(struct perf_event *event)
3674 struct perf_event_mmap_page *userpg;
3675 struct ring_buffer *rb;
3676 u64 enabled, running, now;
3678 rcu_read_lock();
3679 rb = rcu_dereference(event->rb);
3680 if (!rb)
3681 goto unlock;
3684 * compute total_time_enabled, total_time_running
3685 * based on snapshot values taken when the event
3686 * was last scheduled in.
3688 * we cannot simply called update_context_time()
3689 * because of locking issue as we can be called in
3690 * NMI context
3692 calc_timer_values(event, &now, &enabled, &running);
3694 userpg = rb->user_page;
3696 * Disable preemption so as to not let the corresponding user-space
3697 * spin too long if we get preempted.
3699 preempt_disable();
3700 ++userpg->lock;
3701 barrier();
3702 userpg->index = perf_event_index(event);
3703 userpg->offset = perf_event_count(event);
3704 if (userpg->index)
3705 userpg->offset -= local64_read(&event->hw.prev_count);
3707 userpg->time_enabled = enabled +
3708 atomic64_read(&event->child_total_time_enabled);
3710 userpg->time_running = running +
3711 atomic64_read(&event->child_total_time_running);
3713 arch_perf_update_userpage(userpg, now);
3715 barrier();
3716 ++userpg->lock;
3717 preempt_enable();
3718 unlock:
3719 rcu_read_unlock();
3722 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3724 struct perf_event *event = vma->vm_file->private_data;
3725 struct ring_buffer *rb;
3726 int ret = VM_FAULT_SIGBUS;
3728 if (vmf->flags & FAULT_FLAG_MKWRITE) {
3729 if (vmf->pgoff == 0)
3730 ret = 0;
3731 return ret;
3734 rcu_read_lock();
3735 rb = rcu_dereference(event->rb);
3736 if (!rb)
3737 goto unlock;
3739 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3740 goto unlock;
3742 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3743 if (!vmf->page)
3744 goto unlock;
3746 get_page(vmf->page);
3747 vmf->page->mapping = vma->vm_file->f_mapping;
3748 vmf->page->index = vmf->pgoff;
3750 ret = 0;
3751 unlock:
3752 rcu_read_unlock();
3754 return ret;
3757 static void ring_buffer_attach(struct perf_event *event,
3758 struct ring_buffer *rb)
3760 unsigned long flags;
3762 if (!list_empty(&event->rb_entry))
3763 return;
3765 spin_lock_irqsave(&rb->event_lock, flags);
3766 if (list_empty(&event->rb_entry))
3767 list_add(&event->rb_entry, &rb->event_list);
3768 spin_unlock_irqrestore(&rb->event_lock, flags);
3771 static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb)
3773 unsigned long flags;
3775 if (list_empty(&event->rb_entry))
3776 return;
3778 spin_lock_irqsave(&rb->event_lock, flags);
3779 list_del_init(&event->rb_entry);
3780 wake_up_all(&event->waitq);
3781 spin_unlock_irqrestore(&rb->event_lock, flags);
3784 static void ring_buffer_wakeup(struct perf_event *event)
3786 struct ring_buffer *rb;
3788 rcu_read_lock();
3789 rb = rcu_dereference(event->rb);
3790 if (rb) {
3791 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
3792 wake_up_all(&event->waitq);
3794 rcu_read_unlock();
3797 static void rb_free_rcu(struct rcu_head *rcu_head)
3799 struct ring_buffer *rb;
3801 rb = container_of(rcu_head, struct ring_buffer, rcu_head);
3802 rb_free(rb);
3805 static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3807 struct ring_buffer *rb;
3809 rcu_read_lock();
3810 rb = rcu_dereference(event->rb);
3811 if (rb) {
3812 if (!atomic_inc_not_zero(&rb->refcount))
3813 rb = NULL;
3815 rcu_read_unlock();
3817 return rb;
3820 static void ring_buffer_put(struct ring_buffer *rb)
3822 if (!atomic_dec_and_test(&rb->refcount))
3823 return;
3825 WARN_ON_ONCE(!list_empty(&rb->event_list));
3827 call_rcu(&rb->rcu_head, rb_free_rcu);
3830 static void perf_mmap_open(struct vm_area_struct *vma)
3832 struct perf_event *event = vma->vm_file->private_data;
3834 atomic_inc(&event->mmap_count);
3835 atomic_inc(&event->rb->mmap_count);
3839 * A buffer can be mmap()ed multiple times; either directly through the same
3840 * event, or through other events by use of perf_event_set_output().
3842 * In order to undo the VM accounting done by perf_mmap() we need to destroy
3843 * the buffer here, where we still have a VM context. This means we need
3844 * to detach all events redirecting to us.
3846 static void perf_mmap_close(struct vm_area_struct *vma)
3848 struct perf_event *event = vma->vm_file->private_data;
3850 struct ring_buffer *rb = event->rb;
3851 struct user_struct *mmap_user = rb->mmap_user;
3852 int mmap_locked = rb->mmap_locked;
3853 unsigned long size = perf_data_size(rb);
3855 atomic_dec(&rb->mmap_count);
3857 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
3858 return;
3860 /* Detach current event from the buffer. */
3861 rcu_assign_pointer(event->rb, NULL);
3862 ring_buffer_detach(event, rb);
3863 mutex_unlock(&event->mmap_mutex);
3865 /* If there's still other mmap()s of this buffer, we're done. */
3866 if (atomic_read(&rb->mmap_count)) {
3867 ring_buffer_put(rb); /* can't be last */
3868 return;
3872 * No other mmap()s, detach from all other events that might redirect
3873 * into the now unreachable buffer. Somewhat complicated by the
3874 * fact that rb::event_lock otherwise nests inside mmap_mutex.
3876 again:
3877 rcu_read_lock();
3878 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
3879 if (!atomic_long_inc_not_zero(&event->refcount)) {
3881 * This event is en-route to free_event() which will
3882 * detach it and remove it from the list.
3884 continue;
3886 rcu_read_unlock();
3888 mutex_lock(&event->mmap_mutex);
3890 * Check we didn't race with perf_event_set_output() which can
3891 * swizzle the rb from under us while we were waiting to
3892 * acquire mmap_mutex.
3894 * If we find a different rb; ignore this event, a next
3895 * iteration will no longer find it on the list. We have to
3896 * still restart the iteration to make sure we're not now
3897 * iterating the wrong list.
3899 if (event->rb == rb) {
3900 rcu_assign_pointer(event->rb, NULL);
3901 ring_buffer_detach(event, rb);
3902 ring_buffer_put(rb); /* can't be last, we still have one */
3904 mutex_unlock(&event->mmap_mutex);
3905 put_event(event);
3908 * Restart the iteration; either we're on the wrong list or
3909 * destroyed its integrity by doing a deletion.
3911 goto again;
3913 rcu_read_unlock();
3916 * It could be there's still a few 0-ref events on the list; they'll
3917 * get cleaned up by free_event() -- they'll also still have their
3918 * ref on the rb and will free it whenever they are done with it.
3920 * Aside from that, this buffer is 'fully' detached and unmapped,
3921 * undo the VM accounting.
3924 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
3925 vma->vm_mm->pinned_vm -= mmap_locked;
3926 free_uid(mmap_user);
3928 ring_buffer_put(rb); /* could be last */
3931 static const struct vm_operations_struct perf_mmap_vmops = {
3932 .open = perf_mmap_open,
3933 .close = perf_mmap_close,
3934 .fault = perf_mmap_fault,
3935 .page_mkwrite = perf_mmap_fault,
3938 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
3940 struct perf_event *event = file->private_data;
3941 unsigned long user_locked, user_lock_limit;
3942 struct user_struct *user = current_user();
3943 unsigned long locked, lock_limit;
3944 struct ring_buffer *rb;
3945 unsigned long vma_size;
3946 unsigned long nr_pages;
3947 long user_extra, extra;
3948 int ret = 0, flags = 0;
3951 * Don't allow mmap() of inherited per-task counters. This would
3952 * create a performance issue due to all children writing to the
3953 * same rb.
3955 if (event->cpu == -1 && event->attr.inherit)
3956 return -EINVAL;
3958 if (!(vma->vm_flags & VM_SHARED))
3959 return -EINVAL;
3961 vma_size = vma->vm_end - vma->vm_start;
3962 nr_pages = (vma_size / PAGE_SIZE) - 1;
3965 * If we have rb pages ensure they're a power-of-two number, so we
3966 * can do bitmasks instead of modulo.
3968 if (nr_pages != 0 && !is_power_of_2(nr_pages))
3969 return -EINVAL;
3971 if (vma_size != PAGE_SIZE * (1 + nr_pages))
3972 return -EINVAL;
3974 if (vma->vm_pgoff != 0)
3975 return -EINVAL;
3977 WARN_ON_ONCE(event->ctx->parent_ctx);
3978 again:
3979 mutex_lock(&event->mmap_mutex);
3980 if (event->rb) {
3981 if (event->rb->nr_pages != nr_pages) {
3982 ret = -EINVAL;
3983 goto unlock;
3986 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
3988 * Raced against perf_mmap_close() through
3989 * perf_event_set_output(). Try again, hope for better
3990 * luck.
3992 mutex_unlock(&event->mmap_mutex);
3993 goto again;
3996 goto unlock;
3999 user_extra = nr_pages + 1;
4000 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
4003 * Increase the limit linearly with more CPUs:
4005 user_lock_limit *= num_online_cpus();
4007 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4009 extra = 0;
4010 if (user_locked > user_lock_limit)
4011 extra = user_locked - user_lock_limit;
4013 lock_limit = rlimit(RLIMIT_MEMLOCK);
4014 lock_limit >>= PAGE_SHIFT;
4015 locked = vma->vm_mm->pinned_vm + extra;
4017 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4018 !capable(CAP_IPC_LOCK)) {
4019 ret = -EPERM;
4020 goto unlock;
4023 WARN_ON(event->rb);
4025 if (vma->vm_flags & VM_WRITE)
4026 flags |= RING_BUFFER_WRITABLE;
4028 rb = rb_alloc(nr_pages,
4029 event->attr.watermark ? event->attr.wakeup_watermark : 0,
4030 event->cpu, flags);
4032 if (!rb) {
4033 ret = -ENOMEM;
4034 goto unlock;
4037 atomic_set(&rb->mmap_count, 1);
4038 rb->mmap_locked = extra;
4039 rb->mmap_user = get_current_user();
4041 atomic_long_add(user_extra, &user->locked_vm);
4042 vma->vm_mm->pinned_vm += extra;
4044 ring_buffer_attach(event, rb);
4045 rcu_assign_pointer(event->rb, rb);
4047 perf_event_update_userpage(event);
4049 unlock:
4050 if (!ret)
4051 atomic_inc(&event->mmap_count);
4052 mutex_unlock(&event->mmap_mutex);
4055 * Since pinned accounting is per vm we cannot allow fork() to copy our
4056 * vma.
4058 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4059 vma->vm_ops = &perf_mmap_vmops;
4061 return ret;
4064 static int perf_fasync(int fd, struct file *filp, int on)
4066 struct inode *inode = file_inode(filp);
4067 struct perf_event *event = filp->private_data;
4068 int retval;
4070 mutex_lock(&inode->i_mutex);
4071 retval = fasync_helper(fd, filp, on, &event->fasync);
4072 mutex_unlock(&inode->i_mutex);
4074 if (retval < 0)
4075 return retval;
4077 return 0;
4080 static const struct file_operations perf_fops = {
4081 .llseek = no_llseek,
4082 .release = perf_release,
4083 .read = perf_read,
4084 .poll = perf_poll,
4085 .unlocked_ioctl = perf_ioctl,
4086 .compat_ioctl = perf_ioctl,
4087 .mmap = perf_mmap,
4088 .fasync = perf_fasync,
4092 * Perf event wakeup
4094 * If there's data, ensure we set the poll() state and publish everything
4095 * to user-space before waking everybody up.
4098 void perf_event_wakeup(struct perf_event *event)
4100 ring_buffer_wakeup(event);
4102 if (event->pending_kill) {
4103 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
4104 event->pending_kill = 0;
4108 static void perf_pending_event(struct irq_work *entry)
4110 struct perf_event *event = container_of(entry,
4111 struct perf_event, pending);
4113 if (event->pending_disable) {
4114 event->pending_disable = 0;
4115 __perf_event_disable(event);
4118 if (event->pending_wakeup) {
4119 event->pending_wakeup = 0;
4120 perf_event_wakeup(event);
4125 * We assume there is only KVM supporting the callbacks.
4126 * Later on, we might change it to a list if there is
4127 * another virtualization implementation supporting the callbacks.
4129 struct perf_guest_info_callbacks *perf_guest_cbs;
4131 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4133 perf_guest_cbs = cbs;
4134 return 0;
4136 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
4138 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4140 perf_guest_cbs = NULL;
4141 return 0;
4143 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
4145 static void
4146 perf_output_sample_regs(struct perf_output_handle *handle,
4147 struct pt_regs *regs, u64 mask)
4149 int bit;
4151 for_each_set_bit(bit, (const unsigned long *) &mask,
4152 sizeof(mask) * BITS_PER_BYTE) {
4153 u64 val;
4155 val = perf_reg_value(regs, bit);
4156 perf_output_put(handle, val);
4160 static void perf_sample_regs_user(struct perf_regs_user *regs_user,
4161 struct pt_regs *regs)
4163 if (!user_mode(regs)) {
4164 if (current->mm)
4165 regs = task_pt_regs(current);
4166 else
4167 regs = NULL;
4170 if (regs) {
4171 regs_user->regs = regs;
4172 regs_user->abi = perf_reg_abi(current);
4177 * Get remaining task size from user stack pointer.
4179 * It'd be better to take stack vma map and limit this more
4180 * precisly, but there's no way to get it safely under interrupt,
4181 * so using TASK_SIZE as limit.
4183 static u64 perf_ustack_task_size(struct pt_regs *regs)
4185 unsigned long addr = perf_user_stack_pointer(regs);
4187 if (!addr || addr >= TASK_SIZE)
4188 return 0;
4190 return TASK_SIZE - addr;
4193 static u16
4194 perf_sample_ustack_size(u16 stack_size, u16 header_size,
4195 struct pt_regs *regs)
4197 u64 task_size;
4199 /* No regs, no stack pointer, no dump. */
4200 if (!regs)
4201 return 0;
4204 * Check if we fit in with the requested stack size into the:
4205 * - TASK_SIZE
4206 * If we don't, we limit the size to the TASK_SIZE.
4208 * - remaining sample size
4209 * If we don't, we customize the stack size to
4210 * fit in to the remaining sample size.
4213 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
4214 stack_size = min(stack_size, (u16) task_size);
4216 /* Current header size plus static size and dynamic size. */
4217 header_size += 2 * sizeof(u64);
4219 /* Do we fit in with the current stack dump size? */
4220 if ((u16) (header_size + stack_size) < header_size) {
4222 * If we overflow the maximum size for the sample,
4223 * we customize the stack dump size to fit in.
4225 stack_size = USHRT_MAX - header_size - sizeof(u64);
4226 stack_size = round_up(stack_size, sizeof(u64));
4229 return stack_size;
4232 static void
4233 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
4234 struct pt_regs *regs)
4236 /* Case of a kernel thread, nothing to dump */
4237 if (!regs) {
4238 u64 size = 0;
4239 perf_output_put(handle, size);
4240 } else {
4241 unsigned long sp;
4242 unsigned int rem;
4243 u64 dyn_size;
4246 * We dump:
4247 * static size
4248 * - the size requested by user or the best one we can fit
4249 * in to the sample max size
4250 * data
4251 * - user stack dump data
4252 * dynamic size
4253 * - the actual dumped size
4256 /* Static size. */
4257 perf_output_put(handle, dump_size);
4259 /* Data. */
4260 sp = perf_user_stack_pointer(regs);
4261 rem = __output_copy_user(handle, (void *) sp, dump_size);
4262 dyn_size = dump_size - rem;
4264 perf_output_skip(handle, rem);
4266 /* Dynamic size. */
4267 perf_output_put(handle, dyn_size);
4271 static void __perf_event_header__init_id(struct perf_event_header *header,
4272 struct perf_sample_data *data,
4273 struct perf_event *event)
4275 u64 sample_type = event->attr.sample_type;
4277 data->type = sample_type;
4278 header->size += event->id_header_size;
4280 if (sample_type & PERF_SAMPLE_TID) {
4281 /* namespace issues */
4282 data->tid_entry.pid = perf_event_pid(event, current);
4283 data->tid_entry.tid = perf_event_tid(event, current);
4286 if (sample_type & PERF_SAMPLE_TIME)
4287 data->time = perf_clock();
4289 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
4290 data->id = primary_event_id(event);
4292 if (sample_type & PERF_SAMPLE_STREAM_ID)
4293 data->stream_id = event->id;
4295 if (sample_type & PERF_SAMPLE_CPU) {
4296 data->cpu_entry.cpu = raw_smp_processor_id();
4297 data->cpu_entry.reserved = 0;
4301 void perf_event_header__init_id(struct perf_event_header *header,
4302 struct perf_sample_data *data,
4303 struct perf_event *event)
4305 if (event->attr.sample_id_all)
4306 __perf_event_header__init_id(header, data, event);
4309 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
4310 struct perf_sample_data *data)
4312 u64 sample_type = data->type;
4314 if (sample_type & PERF_SAMPLE_TID)
4315 perf_output_put(handle, data->tid_entry);
4317 if (sample_type & PERF_SAMPLE_TIME)
4318 perf_output_put(handle, data->time);
4320 if (sample_type & PERF_SAMPLE_ID)
4321 perf_output_put(handle, data->id);
4323 if (sample_type & PERF_SAMPLE_STREAM_ID)
4324 perf_output_put(handle, data->stream_id);
4326 if (sample_type & PERF_SAMPLE_CPU)
4327 perf_output_put(handle, data->cpu_entry);
4329 if (sample_type & PERF_SAMPLE_IDENTIFIER)
4330 perf_output_put(handle, data->id);
4333 void perf_event__output_id_sample(struct perf_event *event,
4334 struct perf_output_handle *handle,
4335 struct perf_sample_data *sample)
4337 if (event->attr.sample_id_all)
4338 __perf_event__output_id_sample(handle, sample);
4341 static void perf_output_read_one(struct perf_output_handle *handle,
4342 struct perf_event *event,
4343 u64 enabled, u64 running)
4345 u64 read_format = event->attr.read_format;
4346 u64 values[4];
4347 int n = 0;
4349 values[n++] = perf_event_count(event);
4350 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4351 values[n++] = enabled +
4352 atomic64_read(&event->child_total_time_enabled);
4354 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4355 values[n++] = running +
4356 atomic64_read(&event->child_total_time_running);
4358 if (read_format & PERF_FORMAT_ID)
4359 values[n++] = primary_event_id(event);
4361 __output_copy(handle, values, n * sizeof(u64));
4365 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
4367 static void perf_output_read_group(struct perf_output_handle *handle,
4368 struct perf_event *event,
4369 u64 enabled, u64 running)
4371 struct perf_event *leader = event->group_leader, *sub;
4372 u64 read_format = event->attr.read_format;
4373 u64 values[5];
4374 int n = 0;
4376 values[n++] = 1 + leader->nr_siblings;
4378 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4379 values[n++] = enabled;
4381 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4382 values[n++] = running;
4384 if (leader != event)
4385 leader->pmu->read(leader);
4387 values[n++] = perf_event_count(leader);
4388 if (read_format & PERF_FORMAT_ID)
4389 values[n++] = primary_event_id(leader);
4391 __output_copy(handle, values, n * sizeof(u64));
4393 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4394 n = 0;
4396 if ((sub != event) &&
4397 (sub->state == PERF_EVENT_STATE_ACTIVE))
4398 sub->pmu->read(sub);
4400 values[n++] = perf_event_count(sub);
4401 if (read_format & PERF_FORMAT_ID)
4402 values[n++] = primary_event_id(sub);
4404 __output_copy(handle, values, n * sizeof(u64));
4408 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
4409 PERF_FORMAT_TOTAL_TIME_RUNNING)
4411 static void perf_output_read(struct perf_output_handle *handle,
4412 struct perf_event *event)
4414 u64 enabled = 0, running = 0, now;
4415 u64 read_format = event->attr.read_format;
4418 * compute total_time_enabled, total_time_running
4419 * based on snapshot values taken when the event
4420 * was last scheduled in.
4422 * we cannot simply called update_context_time()
4423 * because of locking issue as we are called in
4424 * NMI context
4426 if (read_format & PERF_FORMAT_TOTAL_TIMES)
4427 calc_timer_values(event, &now, &enabled, &running);
4429 if (event->attr.read_format & PERF_FORMAT_GROUP)
4430 perf_output_read_group(handle, event, enabled, running);
4431 else
4432 perf_output_read_one(handle, event, enabled, running);
4435 void perf_output_sample(struct perf_output_handle *handle,
4436 struct perf_event_header *header,
4437 struct perf_sample_data *data,
4438 struct perf_event *event)
4440 u64 sample_type = data->type;
4442 perf_output_put(handle, *header);
4444 if (sample_type & PERF_SAMPLE_IDENTIFIER)
4445 perf_output_put(handle, data->id);
4447 if (sample_type & PERF_SAMPLE_IP)
4448 perf_output_put(handle, data->ip);
4450 if (sample_type & PERF_SAMPLE_TID)
4451 perf_output_put(handle, data->tid_entry);
4453 if (sample_type & PERF_SAMPLE_TIME)
4454 perf_output_put(handle, data->time);
4456 if (sample_type & PERF_SAMPLE_ADDR)
4457 perf_output_put(handle, data->addr);
4459 if (sample_type & PERF_SAMPLE_ID)
4460 perf_output_put(handle, data->id);
4462 if (sample_type & PERF_SAMPLE_STREAM_ID)
4463 perf_output_put(handle, data->stream_id);
4465 if (sample_type & PERF_SAMPLE_CPU)
4466 perf_output_put(handle, data->cpu_entry);
4468 if (sample_type & PERF_SAMPLE_PERIOD)
4469 perf_output_put(handle, data->period);
4471 if (sample_type & PERF_SAMPLE_READ)
4472 perf_output_read(handle, event);
4474 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4475 if (data->callchain) {
4476 int size = 1;
4478 if (data->callchain)
4479 size += data->callchain->nr;
4481 size *= sizeof(u64);
4483 __output_copy(handle, data->callchain, size);
4484 } else {
4485 u64 nr = 0;
4486 perf_output_put(handle, nr);
4490 if (sample_type & PERF_SAMPLE_RAW) {
4491 if (data->raw) {
4492 perf_output_put(handle, data->raw->size);
4493 __output_copy(handle, data->raw->data,
4494 data->raw->size);
4495 } else {
4496 struct {
4497 u32 size;
4498 u32 data;
4499 } raw = {
4500 .size = sizeof(u32),
4501 .data = 0,
4503 perf_output_put(handle, raw);
4507 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4508 if (data->br_stack) {
4509 size_t size;
4511 size = data->br_stack->nr
4512 * sizeof(struct perf_branch_entry);
4514 perf_output_put(handle, data->br_stack->nr);
4515 perf_output_copy(handle, data->br_stack->entries, size);
4516 } else {
4518 * we always store at least the value of nr
4520 u64 nr = 0;
4521 perf_output_put(handle, nr);
4525 if (sample_type & PERF_SAMPLE_REGS_USER) {
4526 u64 abi = data->regs_user.abi;
4529 * If there are no regs to dump, notice it through
4530 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
4532 perf_output_put(handle, abi);
4534 if (abi) {
4535 u64 mask = event->attr.sample_regs_user;
4536 perf_output_sample_regs(handle,
4537 data->regs_user.regs,
4538 mask);
4542 if (sample_type & PERF_SAMPLE_STACK_USER) {
4543 perf_output_sample_ustack(handle,
4544 data->stack_user_size,
4545 data->regs_user.regs);
4548 if (sample_type & PERF_SAMPLE_WEIGHT)
4549 perf_output_put(handle, data->weight);
4551 if (sample_type & PERF_SAMPLE_DATA_SRC)
4552 perf_output_put(handle, data->data_src.val);
4554 if (!event->attr.watermark) {
4555 int wakeup_events = event->attr.wakeup_events;
4557 if (wakeup_events) {
4558 struct ring_buffer *rb = handle->rb;
4559 int events = local_inc_return(&rb->events);
4561 if (events >= wakeup_events) {
4562 local_sub(wakeup_events, &rb->events);
4563 local_inc(&rb->wakeup);
4569 void perf_prepare_sample(struct perf_event_header *header,
4570 struct perf_sample_data *data,
4571 struct perf_event *event,
4572 struct pt_regs *regs)
4574 u64 sample_type = event->attr.sample_type;
4576 header->type = PERF_RECORD_SAMPLE;
4577 header->size = sizeof(*header) + event->header_size;
4579 header->misc = 0;
4580 header->misc |= perf_misc_flags(regs);
4582 __perf_event_header__init_id(header, data, event);
4584 if (sample_type & PERF_SAMPLE_IP)
4585 data->ip = perf_instruction_pointer(regs);
4587 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4588 int size = 1;
4590 data->callchain = perf_callchain(event, regs);
4592 if (data->callchain)
4593 size += data->callchain->nr;
4595 header->size += size * sizeof(u64);
4598 if (sample_type & PERF_SAMPLE_RAW) {
4599 int size = sizeof(u32);
4601 if (data->raw)
4602 size += data->raw->size;
4603 else
4604 size += sizeof(u32);
4606 WARN_ON_ONCE(size & (sizeof(u64)-1));
4607 header->size += size;
4610 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4611 int size = sizeof(u64); /* nr */
4612 if (data->br_stack) {
4613 size += data->br_stack->nr
4614 * sizeof(struct perf_branch_entry);
4616 header->size += size;
4619 if (sample_type & PERF_SAMPLE_REGS_USER) {
4620 /* regs dump ABI info */
4621 int size = sizeof(u64);
4623 perf_sample_regs_user(&data->regs_user, regs);
4625 if (data->regs_user.regs) {
4626 u64 mask = event->attr.sample_regs_user;
4627 size += hweight64(mask) * sizeof(u64);
4630 header->size += size;
4633 if (sample_type & PERF_SAMPLE_STACK_USER) {
4635 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
4636 * processed as the last one or have additional check added
4637 * in case new sample type is added, because we could eat
4638 * up the rest of the sample size.
4640 struct perf_regs_user *uregs = &data->regs_user;
4641 u16 stack_size = event->attr.sample_stack_user;
4642 u16 size = sizeof(u64);
4644 if (!uregs->abi)
4645 perf_sample_regs_user(uregs, regs);
4647 stack_size = perf_sample_ustack_size(stack_size, header->size,
4648 uregs->regs);
4651 * If there is something to dump, add space for the dump
4652 * itself and for the field that tells the dynamic size,
4653 * which is how many have been actually dumped.
4655 if (stack_size)
4656 size += sizeof(u64) + stack_size;
4658 data->stack_user_size = stack_size;
4659 header->size += size;
4663 static void perf_event_output(struct perf_event *event,
4664 struct perf_sample_data *data,
4665 struct pt_regs *regs)
4667 struct perf_output_handle handle;
4668 struct perf_event_header header;
4670 /* protect the callchain buffers */
4671 rcu_read_lock();
4673 perf_prepare_sample(&header, data, event, regs);
4675 if (perf_output_begin(&handle, event, header.size))
4676 goto exit;
4678 perf_output_sample(&handle, &header, data, event);
4680 perf_output_end(&handle);
4682 exit:
4683 rcu_read_unlock();
4687 * read event_id
4690 struct perf_read_event {
4691 struct perf_event_header header;
4693 u32 pid;
4694 u32 tid;
4697 static void
4698 perf_event_read_event(struct perf_event *event,
4699 struct task_struct *task)
4701 struct perf_output_handle handle;
4702 struct perf_sample_data sample;
4703 struct perf_read_event read_event = {
4704 .header = {
4705 .type = PERF_RECORD_READ,
4706 .misc = 0,
4707 .size = sizeof(read_event) + event->read_size,
4709 .pid = perf_event_pid(event, task),
4710 .tid = perf_event_tid(event, task),
4712 int ret;
4714 perf_event_header__init_id(&read_event.header, &sample, event);
4715 ret = perf_output_begin(&handle, event, read_event.header.size);
4716 if (ret)
4717 return;
4719 perf_output_put(&handle, read_event);
4720 perf_output_read(&handle, event);
4721 perf_event__output_id_sample(event, &handle, &sample);
4723 perf_output_end(&handle);
4726 typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
4728 static void
4729 perf_event_aux_ctx(struct perf_event_context *ctx,
4730 perf_event_aux_output_cb output,
4731 void *data)
4733 struct perf_event *event;
4735 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4736 if (event->state < PERF_EVENT_STATE_INACTIVE)
4737 continue;
4738 if (!event_filter_match(event))
4739 continue;
4740 output(event, data);
4744 static void
4745 perf_event_aux(perf_event_aux_output_cb output, void *data,
4746 struct perf_event_context *task_ctx)
4748 struct perf_cpu_context *cpuctx;
4749 struct perf_event_context *ctx;
4750 struct pmu *pmu;
4751 int ctxn;
4753 rcu_read_lock();
4754 list_for_each_entry_rcu(pmu, &pmus, entry) {
4755 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4756 if (cpuctx->unique_pmu != pmu)
4757 goto next;
4758 perf_event_aux_ctx(&cpuctx->ctx, output, data);
4759 if (task_ctx)
4760 goto next;
4761 ctxn = pmu->task_ctx_nr;
4762 if (ctxn < 0)
4763 goto next;
4764 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4765 if (ctx)
4766 perf_event_aux_ctx(ctx, output, data);
4767 next:
4768 put_cpu_ptr(pmu->pmu_cpu_context);
4771 if (task_ctx) {
4772 preempt_disable();
4773 perf_event_aux_ctx(task_ctx, output, data);
4774 preempt_enable();
4776 rcu_read_unlock();
4780 * task tracking -- fork/exit
4782 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
4785 struct perf_task_event {
4786 struct task_struct *task;
4787 struct perf_event_context *task_ctx;
4789 struct {
4790 struct perf_event_header header;
4792 u32 pid;
4793 u32 ppid;
4794 u32 tid;
4795 u32 ptid;
4796 u64 time;
4797 } event_id;
4800 static int perf_event_task_match(struct perf_event *event)
4802 return event->attr.comm || event->attr.mmap ||
4803 event->attr.mmap2 || event->attr.mmap_data ||
4804 event->attr.task;
4807 static void perf_event_task_output(struct perf_event *event,
4808 void *data)
4810 struct perf_task_event *task_event = data;
4811 struct perf_output_handle handle;
4812 struct perf_sample_data sample;
4813 struct task_struct *task = task_event->task;
4814 int ret, size = task_event->event_id.header.size;
4816 if (!perf_event_task_match(event))
4817 return;
4819 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
4821 ret = perf_output_begin(&handle, event,
4822 task_event->event_id.header.size);
4823 if (ret)
4824 goto out;
4826 task_event->event_id.pid = perf_event_pid(event, task);
4827 task_event->event_id.ppid = perf_event_pid(event, current);
4829 task_event->event_id.tid = perf_event_tid(event, task);
4830 task_event->event_id.ptid = perf_event_tid(event, current);
4832 perf_output_put(&handle, task_event->event_id);
4834 perf_event__output_id_sample(event, &handle, &sample);
4836 perf_output_end(&handle);
4837 out:
4838 task_event->event_id.header.size = size;
4841 static void perf_event_task(struct task_struct *task,
4842 struct perf_event_context *task_ctx,
4843 int new)
4845 struct perf_task_event task_event;
4847 if (!atomic_read(&nr_comm_events) &&
4848 !atomic_read(&nr_mmap_events) &&
4849 !atomic_read(&nr_task_events))
4850 return;
4852 task_event = (struct perf_task_event){
4853 .task = task,
4854 .task_ctx = task_ctx,
4855 .event_id = {
4856 .header = {
4857 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4858 .misc = 0,
4859 .size = sizeof(task_event.event_id),
4861 /* .pid */
4862 /* .ppid */
4863 /* .tid */
4864 /* .ptid */
4865 .time = perf_clock(),
4869 perf_event_aux(perf_event_task_output,
4870 &task_event,
4871 task_ctx);
4874 void perf_event_fork(struct task_struct *task)
4876 perf_event_task(task, NULL, 1);
4880 * comm tracking
4883 struct perf_comm_event {
4884 struct task_struct *task;
4885 char *comm;
4886 int comm_size;
4888 struct {
4889 struct perf_event_header header;
4891 u32 pid;
4892 u32 tid;
4893 } event_id;
4896 static int perf_event_comm_match(struct perf_event *event)
4898 return event->attr.comm;
4901 static void perf_event_comm_output(struct perf_event *event,
4902 void *data)
4904 struct perf_comm_event *comm_event = data;
4905 struct perf_output_handle handle;
4906 struct perf_sample_data sample;
4907 int size = comm_event->event_id.header.size;
4908 int ret;
4910 if (!perf_event_comm_match(event))
4911 return;
4913 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
4914 ret = perf_output_begin(&handle, event,
4915 comm_event->event_id.header.size);
4917 if (ret)
4918 goto out;
4920 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
4921 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4923 perf_output_put(&handle, comm_event->event_id);
4924 __output_copy(&handle, comm_event->comm,
4925 comm_event->comm_size);
4927 perf_event__output_id_sample(event, &handle, &sample);
4929 perf_output_end(&handle);
4930 out:
4931 comm_event->event_id.header.size = size;
4934 static void perf_event_comm_event(struct perf_comm_event *comm_event)
4936 char comm[TASK_COMM_LEN];
4937 unsigned int size;
4939 memset(comm, 0, sizeof(comm));
4940 strlcpy(comm, comm_event->task->comm, sizeof(comm));
4941 size = ALIGN(strlen(comm)+1, sizeof(u64));
4943 comm_event->comm = comm;
4944 comm_event->comm_size = size;
4946 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
4948 perf_event_aux(perf_event_comm_output,
4949 comm_event,
4950 NULL);
4953 void perf_event_comm(struct task_struct *task)
4955 struct perf_comm_event comm_event;
4956 struct perf_event_context *ctx;
4957 int ctxn;
4959 rcu_read_lock();
4960 for_each_task_context_nr(ctxn) {
4961 ctx = task->perf_event_ctxp[ctxn];
4962 if (!ctx)
4963 continue;
4965 perf_event_enable_on_exec(ctx);
4967 rcu_read_unlock();
4969 if (!atomic_read(&nr_comm_events))
4970 return;
4972 comm_event = (struct perf_comm_event){
4973 .task = task,
4974 /* .comm */
4975 /* .comm_size */
4976 .event_id = {
4977 .header = {
4978 .type = PERF_RECORD_COMM,
4979 .misc = 0,
4980 /* .size */
4982 /* .pid */
4983 /* .tid */
4987 perf_event_comm_event(&comm_event);
4991 * mmap tracking
4994 struct perf_mmap_event {
4995 struct vm_area_struct *vma;
4997 const char *file_name;
4998 int file_size;
4999 int maj, min;
5000 u64 ino;
5001 u64 ino_generation;
5003 struct {
5004 struct perf_event_header header;
5006 u32 pid;
5007 u32 tid;
5008 u64 start;
5009 u64 len;
5010 u64 pgoff;
5011 } event_id;
5014 static int perf_event_mmap_match(struct perf_event *event,
5015 void *data)
5017 struct perf_mmap_event *mmap_event = data;
5018 struct vm_area_struct *vma = mmap_event->vma;
5019 int executable = vma->vm_flags & VM_EXEC;
5021 return (!executable && event->attr.mmap_data) ||
5022 (executable && (event->attr.mmap || event->attr.mmap2));
5025 static void perf_event_mmap_output(struct perf_event *event,
5026 void *data)
5028 struct perf_mmap_event *mmap_event = data;
5029 struct perf_output_handle handle;
5030 struct perf_sample_data sample;
5031 int size = mmap_event->event_id.header.size;
5032 int ret;
5034 if (!perf_event_mmap_match(event, data))
5035 return;
5037 if (event->attr.mmap2) {
5038 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
5039 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
5040 mmap_event->event_id.header.size += sizeof(mmap_event->min);
5041 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5042 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5045 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5046 ret = perf_output_begin(&handle, event,
5047 mmap_event->event_id.header.size);
5048 if (ret)
5049 goto out;
5051 mmap_event->event_id.pid = perf_event_pid(event, current);
5052 mmap_event->event_id.tid = perf_event_tid(event, current);
5054 perf_output_put(&handle, mmap_event->event_id);
5056 if (event->attr.mmap2) {
5057 perf_output_put(&handle, mmap_event->maj);
5058 perf_output_put(&handle, mmap_event->min);
5059 perf_output_put(&handle, mmap_event->ino);
5060 perf_output_put(&handle, mmap_event->ino_generation);
5063 __output_copy(&handle, mmap_event->file_name,
5064 mmap_event->file_size);
5066 perf_event__output_id_sample(event, &handle, &sample);
5068 perf_output_end(&handle);
5069 out:
5070 mmap_event->event_id.header.size = size;
5073 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5075 struct vm_area_struct *vma = mmap_event->vma;
5076 struct file *file = vma->vm_file;
5077 int maj = 0, min = 0;
5078 u64 ino = 0, gen = 0;
5079 unsigned int size;
5080 char tmp[16];
5081 char *buf = NULL;
5082 const char *name;
5084 memset(tmp, 0, sizeof(tmp));
5086 if (file) {
5087 struct inode *inode;
5088 dev_t dev;
5090 * d_path works from the end of the rb backwards, so we
5091 * need to add enough zero bytes after the string to handle
5092 * the 64bit alignment we do later.
5094 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
5095 if (!buf) {
5096 name = strncpy(tmp, "//enomem", sizeof(tmp));
5097 goto got_name;
5099 name = d_path(&file->f_path, buf, PATH_MAX);
5100 if (IS_ERR(name)) {
5101 name = strncpy(tmp, "//toolong", sizeof(tmp));
5102 goto got_name;
5104 inode = file_inode(vma->vm_file);
5105 dev = inode->i_sb->s_dev;
5106 ino = inode->i_ino;
5107 gen = inode->i_generation;
5108 maj = MAJOR(dev);
5109 min = MINOR(dev);
5111 } else {
5112 if (arch_vma_name(mmap_event->vma)) {
5113 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
5114 sizeof(tmp) - 1);
5115 tmp[sizeof(tmp) - 1] = '\0';
5116 goto got_name;
5119 if (!vma->vm_mm) {
5120 name = strncpy(tmp, "[vdso]", sizeof(tmp));
5121 goto got_name;
5122 } else if (vma->vm_start <= vma->vm_mm->start_brk &&
5123 vma->vm_end >= vma->vm_mm->brk) {
5124 name = strncpy(tmp, "[heap]", sizeof(tmp));
5125 goto got_name;
5126 } else if (vma->vm_start <= vma->vm_mm->start_stack &&
5127 vma->vm_end >= vma->vm_mm->start_stack) {
5128 name = strncpy(tmp, "[stack]", sizeof(tmp));
5129 goto got_name;
5132 name = strncpy(tmp, "//anon", sizeof(tmp));
5133 goto got_name;
5136 got_name:
5137 size = ALIGN(strlen(name)+1, sizeof(u64));
5139 mmap_event->file_name = name;
5140 mmap_event->file_size = size;
5141 mmap_event->maj = maj;
5142 mmap_event->min = min;
5143 mmap_event->ino = ino;
5144 mmap_event->ino_generation = gen;
5146 if (!(vma->vm_flags & VM_EXEC))
5147 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
5149 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
5151 perf_event_aux(perf_event_mmap_output,
5152 mmap_event,
5153 NULL);
5155 kfree(buf);
5158 void perf_event_mmap(struct vm_area_struct *vma)
5160 struct perf_mmap_event mmap_event;
5162 if (!atomic_read(&nr_mmap_events))
5163 return;
5165 mmap_event = (struct perf_mmap_event){
5166 .vma = vma,
5167 /* .file_name */
5168 /* .file_size */
5169 .event_id = {
5170 .header = {
5171 .type = PERF_RECORD_MMAP,
5172 .misc = PERF_RECORD_MISC_USER,
5173 /* .size */
5175 /* .pid */
5176 /* .tid */
5177 .start = vma->vm_start,
5178 .len = vma->vm_end - vma->vm_start,
5179 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
5181 /* .maj (attr_mmap2 only) */
5182 /* .min (attr_mmap2 only) */
5183 /* .ino (attr_mmap2 only) */
5184 /* .ino_generation (attr_mmap2 only) */
5187 perf_event_mmap_event(&mmap_event);
5191 * IRQ throttle logging
5194 static void perf_log_throttle(struct perf_event *event, int enable)
5196 struct perf_output_handle handle;
5197 struct perf_sample_data sample;
5198 int ret;
5200 struct {
5201 struct perf_event_header header;
5202 u64 time;
5203 u64 id;
5204 u64 stream_id;
5205 } throttle_event = {
5206 .header = {
5207 .type = PERF_RECORD_THROTTLE,
5208 .misc = 0,
5209 .size = sizeof(throttle_event),
5211 .time = perf_clock(),
5212 .id = primary_event_id(event),
5213 .stream_id = event->id,
5216 if (enable)
5217 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
5219 perf_event_header__init_id(&throttle_event.header, &sample, event);
5221 ret = perf_output_begin(&handle, event,
5222 throttle_event.header.size);
5223 if (ret)
5224 return;
5226 perf_output_put(&handle, throttle_event);
5227 perf_event__output_id_sample(event, &handle, &sample);
5228 perf_output_end(&handle);
5232 * Generic event overflow handling, sampling.
5235 static int __perf_event_overflow(struct perf_event *event,
5236 int throttle, struct perf_sample_data *data,
5237 struct pt_regs *regs)
5239 int events = atomic_read(&event->event_limit);
5240 struct hw_perf_event *hwc = &event->hw;
5241 u64 seq;
5242 int ret = 0;
5245 * Non-sampling counters might still use the PMI to fold short
5246 * hardware counters, ignore those.
5248 if (unlikely(!is_sampling_event(event)))
5249 return 0;
5251 seq = __this_cpu_read(perf_throttled_seq);
5252 if (seq != hwc->interrupts_seq) {
5253 hwc->interrupts_seq = seq;
5254 hwc->interrupts = 1;
5255 } else {
5256 hwc->interrupts++;
5257 if (unlikely(throttle
5258 && hwc->interrupts >= max_samples_per_tick)) {
5259 __this_cpu_inc(perf_throttled_count);
5260 hwc->interrupts = MAX_INTERRUPTS;
5261 perf_log_throttle(event, 0);
5262 tick_nohz_full_kick();
5263 ret = 1;
5267 if (event->attr.freq) {
5268 u64 now = perf_clock();
5269 s64 delta = now - hwc->freq_time_stamp;
5271 hwc->freq_time_stamp = now;
5273 if (delta > 0 && delta < 2*TICK_NSEC)
5274 perf_adjust_period(event, delta, hwc->last_period, true);
5278 * XXX event_limit might not quite work as expected on inherited
5279 * events
5282 event->pending_kill = POLL_IN;
5283 if (events && atomic_dec_and_test(&event->event_limit)) {
5284 ret = 1;
5285 event->pending_kill = POLL_HUP;
5286 event->pending_disable = 1;
5287 irq_work_queue(&event->pending);
5290 if (event->overflow_handler)
5291 event->overflow_handler(event, data, regs);
5292 else
5293 perf_event_output(event, data, regs);
5295 if (event->fasync && event->pending_kill) {
5296 event->pending_wakeup = 1;
5297 irq_work_queue(&event->pending);
5300 return ret;
5303 int perf_event_overflow(struct perf_event *event,
5304 struct perf_sample_data *data,
5305 struct pt_regs *regs)
5307 return __perf_event_overflow(event, 1, data, regs);
5311 * Generic software event infrastructure
5314 struct swevent_htable {
5315 struct swevent_hlist *swevent_hlist;
5316 struct mutex hlist_mutex;
5317 int hlist_refcount;
5319 /* Recursion avoidance in each contexts */
5320 int recursion[PERF_NR_CONTEXTS];
5323 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
5326 * We directly increment event->count and keep a second value in
5327 * event->hw.period_left to count intervals. This period event
5328 * is kept in the range [-sample_period, 0] so that we can use the
5329 * sign as trigger.
5332 u64 perf_swevent_set_period(struct perf_event *event)
5334 struct hw_perf_event *hwc = &event->hw;
5335 u64 period = hwc->last_period;
5336 u64 nr, offset;
5337 s64 old, val;
5339 hwc->last_period = hwc->sample_period;
5341 again:
5342 old = val = local64_read(&hwc->period_left);
5343 if (val < 0)
5344 return 0;
5346 nr = div64_u64(period + val, period);
5347 offset = nr * period;
5348 val -= offset;
5349 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
5350 goto again;
5352 return nr;
5355 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
5356 struct perf_sample_data *data,
5357 struct pt_regs *regs)
5359 struct hw_perf_event *hwc = &event->hw;
5360 int throttle = 0;
5362 if (!overflow)
5363 overflow = perf_swevent_set_period(event);
5365 if (hwc->interrupts == MAX_INTERRUPTS)
5366 return;
5368 for (; overflow; overflow--) {
5369 if (__perf_event_overflow(event, throttle,
5370 data, regs)) {
5372 * We inhibit the overflow from happening when
5373 * hwc->interrupts == MAX_INTERRUPTS.
5375 break;
5377 throttle = 1;
5381 static void perf_swevent_event(struct perf_event *event, u64 nr,
5382 struct perf_sample_data *data,
5383 struct pt_regs *regs)
5385 struct hw_perf_event *hwc = &event->hw;
5387 local64_add(nr, &event->count);
5389 if (!regs)
5390 return;
5392 if (!is_sampling_event(event))
5393 return;
5395 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
5396 data->period = nr;
5397 return perf_swevent_overflow(event, 1, data, regs);
5398 } else
5399 data->period = event->hw.last_period;
5401 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
5402 return perf_swevent_overflow(event, 1, data, regs);
5404 if (local64_add_negative(nr, &hwc->period_left))
5405 return;
5407 perf_swevent_overflow(event, 0, data, regs);
5410 static int perf_exclude_event(struct perf_event *event,
5411 struct pt_regs *regs)
5413 if (event->hw.state & PERF_HES_STOPPED)
5414 return 1;
5416 if (regs) {
5417 if (event->attr.exclude_user && user_mode(regs))
5418 return 1;
5420 if (event->attr.exclude_kernel && !user_mode(regs))
5421 return 1;
5424 return 0;
5427 static int perf_swevent_match(struct perf_event *event,
5428 enum perf_type_id type,
5429 u32 event_id,
5430 struct perf_sample_data *data,
5431 struct pt_regs *regs)
5433 if (event->attr.type != type)
5434 return 0;
5436 if (event->attr.config != event_id)
5437 return 0;
5439 if (perf_exclude_event(event, regs))
5440 return 0;
5442 return 1;
5445 static inline u64 swevent_hash(u64 type, u32 event_id)
5447 u64 val = event_id | (type << 32);
5449 return hash_64(val, SWEVENT_HLIST_BITS);
5452 static inline struct hlist_head *
5453 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
5455 u64 hash = swevent_hash(type, event_id);
5457 return &hlist->heads[hash];
5460 /* For the read side: events when they trigger */
5461 static inline struct hlist_head *
5462 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
5464 struct swevent_hlist *hlist;
5466 hlist = rcu_dereference(swhash->swevent_hlist);
5467 if (!hlist)
5468 return NULL;
5470 return __find_swevent_head(hlist, type, event_id);
5473 /* For the event head insertion and removal in the hlist */
5474 static inline struct hlist_head *
5475 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
5477 struct swevent_hlist *hlist;
5478 u32 event_id = event->attr.config;
5479 u64 type = event->attr.type;
5482 * Event scheduling is always serialized against hlist allocation
5483 * and release. Which makes the protected version suitable here.
5484 * The context lock guarantees that.
5486 hlist = rcu_dereference_protected(swhash->swevent_hlist,
5487 lockdep_is_held(&event->ctx->lock));
5488 if (!hlist)
5489 return NULL;
5491 return __find_swevent_head(hlist, type, event_id);
5494 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
5495 u64 nr,
5496 struct perf_sample_data *data,
5497 struct pt_regs *regs)
5499 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5500 struct perf_event *event;
5501 struct hlist_head *head;
5503 rcu_read_lock();
5504 head = find_swevent_head_rcu(swhash, type, event_id);
5505 if (!head)
5506 goto end;
5508 hlist_for_each_entry_rcu(event, head, hlist_entry) {
5509 if (perf_swevent_match(event, type, event_id, data, regs))
5510 perf_swevent_event(event, nr, data, regs);
5512 end:
5513 rcu_read_unlock();
5516 int perf_swevent_get_recursion_context(void)
5518 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5520 return get_recursion_context(swhash->recursion);
5522 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
5524 inline void perf_swevent_put_recursion_context(int rctx)
5526 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5528 put_recursion_context(swhash->recursion, rctx);
5531 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
5533 struct perf_sample_data data;
5534 int rctx;
5536 preempt_disable_notrace();
5537 rctx = perf_swevent_get_recursion_context();
5538 if (rctx < 0)
5539 return;
5541 perf_sample_data_init(&data, addr, 0);
5543 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
5545 perf_swevent_put_recursion_context(rctx);
5546 preempt_enable_notrace();
5549 static void perf_swevent_read(struct perf_event *event)
5553 static int perf_swevent_add(struct perf_event *event, int flags)
5555 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5556 struct hw_perf_event *hwc = &event->hw;
5557 struct hlist_head *head;
5559 if (is_sampling_event(event)) {
5560 hwc->last_period = hwc->sample_period;
5561 perf_swevent_set_period(event);
5564 hwc->state = !(flags & PERF_EF_START);
5566 head = find_swevent_head(swhash, event);
5567 if (WARN_ON_ONCE(!head))
5568 return -EINVAL;
5570 hlist_add_head_rcu(&event->hlist_entry, head);
5572 return 0;
5575 static void perf_swevent_del(struct perf_event *event, int flags)
5577 hlist_del_rcu(&event->hlist_entry);
5580 static void perf_swevent_start(struct perf_event *event, int flags)
5582 event->hw.state = 0;
5585 static void perf_swevent_stop(struct perf_event *event, int flags)
5587 event->hw.state = PERF_HES_STOPPED;
5590 /* Deref the hlist from the update side */
5591 static inline struct swevent_hlist *
5592 swevent_hlist_deref(struct swevent_htable *swhash)
5594 return rcu_dereference_protected(swhash->swevent_hlist,
5595 lockdep_is_held(&swhash->hlist_mutex));
5598 static void swevent_hlist_release(struct swevent_htable *swhash)
5600 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
5602 if (!hlist)
5603 return;
5605 rcu_assign_pointer(swhash->swevent_hlist, NULL);
5606 kfree_rcu(hlist, rcu_head);
5609 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
5611 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5613 mutex_lock(&swhash->hlist_mutex);
5615 if (!--swhash->hlist_refcount)
5616 swevent_hlist_release(swhash);
5618 mutex_unlock(&swhash->hlist_mutex);
5621 static void swevent_hlist_put(struct perf_event *event)
5623 int cpu;
5625 if (event->cpu != -1) {
5626 swevent_hlist_put_cpu(event, event->cpu);
5627 return;
5630 for_each_possible_cpu(cpu)
5631 swevent_hlist_put_cpu(event, cpu);
5634 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
5636 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5637 int err = 0;
5639 mutex_lock(&swhash->hlist_mutex);
5641 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5642 struct swevent_hlist *hlist;
5644 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5645 if (!hlist) {
5646 err = -ENOMEM;
5647 goto exit;
5649 rcu_assign_pointer(swhash->swevent_hlist, hlist);
5651 swhash->hlist_refcount++;
5652 exit:
5653 mutex_unlock(&swhash->hlist_mutex);
5655 return err;
5658 static int swevent_hlist_get(struct perf_event *event)
5660 int err;
5661 int cpu, failed_cpu;
5663 if (event->cpu != -1)
5664 return swevent_hlist_get_cpu(event, event->cpu);
5666 get_online_cpus();
5667 for_each_possible_cpu(cpu) {
5668 err = swevent_hlist_get_cpu(event, cpu);
5669 if (err) {
5670 failed_cpu = cpu;
5671 goto fail;
5674 put_online_cpus();
5676 return 0;
5677 fail:
5678 for_each_possible_cpu(cpu) {
5679 if (cpu == failed_cpu)
5680 break;
5681 swevent_hlist_put_cpu(event, cpu);
5684 put_online_cpus();
5685 return err;
5688 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
5690 static void sw_perf_event_destroy(struct perf_event *event)
5692 u64 event_id = event->attr.config;
5694 WARN_ON(event->parent);
5696 static_key_slow_dec(&perf_swevent_enabled[event_id]);
5697 swevent_hlist_put(event);
5700 static int perf_swevent_init(struct perf_event *event)
5702 u64 event_id = event->attr.config;
5704 if (event->attr.type != PERF_TYPE_SOFTWARE)
5705 return -ENOENT;
5708 * no branch sampling for software events
5710 if (has_branch_stack(event))
5711 return -EOPNOTSUPP;
5713 switch (event_id) {
5714 case PERF_COUNT_SW_CPU_CLOCK:
5715 case PERF_COUNT_SW_TASK_CLOCK:
5716 return -ENOENT;
5718 default:
5719 break;
5722 if (event_id >= PERF_COUNT_SW_MAX)
5723 return -ENOENT;
5725 if (!event->parent) {
5726 int err;
5728 err = swevent_hlist_get(event);
5729 if (err)
5730 return err;
5732 static_key_slow_inc(&perf_swevent_enabled[event_id]);
5733 event->destroy = sw_perf_event_destroy;
5736 return 0;
5739 static int perf_swevent_event_idx(struct perf_event *event)
5741 return 0;
5744 static struct pmu perf_swevent = {
5745 .task_ctx_nr = perf_sw_context,
5747 .event_init = perf_swevent_init,
5748 .add = perf_swevent_add,
5749 .del = perf_swevent_del,
5750 .start = perf_swevent_start,
5751 .stop = perf_swevent_stop,
5752 .read = perf_swevent_read,
5754 .event_idx = perf_swevent_event_idx,
5757 #ifdef CONFIG_EVENT_TRACING
5759 static int perf_tp_filter_match(struct perf_event *event,
5760 struct perf_sample_data *data)
5762 void *record = data->raw->data;
5764 if (likely(!event->filter) || filter_match_preds(event->filter, record))
5765 return 1;
5766 return 0;
5769 static int perf_tp_event_match(struct perf_event *event,
5770 struct perf_sample_data *data,
5771 struct pt_regs *regs)
5773 if (event->hw.state & PERF_HES_STOPPED)
5774 return 0;
5776 * All tracepoints are from kernel-space.
5778 if (event->attr.exclude_kernel)
5779 return 0;
5781 if (!perf_tp_filter_match(event, data))
5782 return 0;
5784 return 1;
5787 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5788 struct pt_regs *regs, struct hlist_head *head, int rctx,
5789 struct task_struct *task)
5791 struct perf_sample_data data;
5792 struct perf_event *event;
5794 struct perf_raw_record raw = {
5795 .size = entry_size,
5796 .data = record,
5799 perf_sample_data_init(&data, addr, 0);
5800 data.raw = &raw;
5802 hlist_for_each_entry_rcu(event, head, hlist_entry) {
5803 if (perf_tp_event_match(event, &data, regs))
5804 perf_swevent_event(event, count, &data, regs);
5808 * If we got specified a target task, also iterate its context and
5809 * deliver this event there too.
5811 if (task && task != current) {
5812 struct perf_event_context *ctx;
5813 struct trace_entry *entry = record;
5815 rcu_read_lock();
5816 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
5817 if (!ctx)
5818 goto unlock;
5820 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5821 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5822 continue;
5823 if (event->attr.config != entry->type)
5824 continue;
5825 if (perf_tp_event_match(event, &data, regs))
5826 perf_swevent_event(event, count, &data, regs);
5828 unlock:
5829 rcu_read_unlock();
5832 perf_swevent_put_recursion_context(rctx);
5834 EXPORT_SYMBOL_GPL(perf_tp_event);
5836 static void tp_perf_event_destroy(struct perf_event *event)
5838 perf_trace_destroy(event);
5841 static int perf_tp_event_init(struct perf_event *event)
5843 int err;
5845 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5846 return -ENOENT;
5849 * no branch sampling for tracepoint events
5851 if (has_branch_stack(event))
5852 return -EOPNOTSUPP;
5854 err = perf_trace_init(event);
5855 if (err)
5856 return err;
5858 event->destroy = tp_perf_event_destroy;
5860 return 0;
5863 static struct pmu perf_tracepoint = {
5864 .task_ctx_nr = perf_sw_context,
5866 .event_init = perf_tp_event_init,
5867 .add = perf_trace_add,
5868 .del = perf_trace_del,
5869 .start = perf_swevent_start,
5870 .stop = perf_swevent_stop,
5871 .read = perf_swevent_read,
5873 .event_idx = perf_swevent_event_idx,
5876 static inline void perf_tp_register(void)
5878 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5881 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5883 char *filter_str;
5884 int ret;
5886 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5887 return -EINVAL;
5889 filter_str = strndup_user(arg, PAGE_SIZE);
5890 if (IS_ERR(filter_str))
5891 return PTR_ERR(filter_str);
5893 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
5895 kfree(filter_str);
5896 return ret;
5899 static void perf_event_free_filter(struct perf_event *event)
5901 ftrace_profile_free_filter(event);
5904 #else
5906 static inline void perf_tp_register(void)
5910 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5912 return -ENOENT;
5915 static void perf_event_free_filter(struct perf_event *event)
5919 #endif /* CONFIG_EVENT_TRACING */
5921 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5922 void perf_bp_event(struct perf_event *bp, void *data)
5924 struct perf_sample_data sample;
5925 struct pt_regs *regs = data;
5927 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
5929 if (!bp->hw.state && !perf_exclude_event(bp, regs))
5930 perf_swevent_event(bp, 1, &sample, regs);
5932 #endif
5935 * hrtimer based swevent callback
5938 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5940 enum hrtimer_restart ret = HRTIMER_RESTART;
5941 struct perf_sample_data data;
5942 struct pt_regs *regs;
5943 struct perf_event *event;
5944 u64 period;
5946 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
5948 if (event->state != PERF_EVENT_STATE_ACTIVE)
5949 return HRTIMER_NORESTART;
5951 event->pmu->read(event);
5953 perf_sample_data_init(&data, 0, event->hw.last_period);
5954 regs = get_irq_regs();
5956 if (regs && !perf_exclude_event(event, regs)) {
5957 if (!(event->attr.exclude_idle && is_idle_task(current)))
5958 if (__perf_event_overflow(event, 1, &data, regs))
5959 ret = HRTIMER_NORESTART;
5962 period = max_t(u64, 10000, event->hw.sample_period);
5963 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
5965 return ret;
5968 static void perf_swevent_start_hrtimer(struct perf_event *event)
5970 struct hw_perf_event *hwc = &event->hw;
5971 s64 period;
5973 if (!is_sampling_event(event))
5974 return;
5976 period = local64_read(&hwc->period_left);
5977 if (period) {
5978 if (period < 0)
5979 period = 10000;
5981 local64_set(&hwc->period_left, 0);
5982 } else {
5983 period = max_t(u64, 10000, hwc->sample_period);
5985 __hrtimer_start_range_ns(&hwc->hrtimer,
5986 ns_to_ktime(period), 0,
5987 HRTIMER_MODE_REL_PINNED, 0);
5990 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
5992 struct hw_perf_event *hwc = &event->hw;
5994 if (is_sampling_event(event)) {
5995 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
5996 local64_set(&hwc->period_left, ktime_to_ns(remaining));
5998 hrtimer_cancel(&hwc->hrtimer);
6002 static void perf_swevent_init_hrtimer(struct perf_event *event)
6004 struct hw_perf_event *hwc = &event->hw;
6006 if (!is_sampling_event(event))
6007 return;
6009 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6010 hwc->hrtimer.function = perf_swevent_hrtimer;
6013 * Since hrtimers have a fixed rate, we can do a static freq->period
6014 * mapping and avoid the whole period adjust feedback stuff.
6016 if (event->attr.freq) {
6017 long freq = event->attr.sample_freq;
6019 event->attr.sample_period = NSEC_PER_SEC / freq;
6020 hwc->sample_period = event->attr.sample_period;
6021 local64_set(&hwc->period_left, hwc->sample_period);
6022 hwc->last_period = hwc->sample_period;
6023 event->attr.freq = 0;
6028 * Software event: cpu wall time clock
6031 static void cpu_clock_event_update(struct perf_event *event)
6033 s64 prev;
6034 u64 now;
6036 now = local_clock();
6037 prev = local64_xchg(&event->hw.prev_count, now);
6038 local64_add(now - prev, &event->count);
6041 static void cpu_clock_event_start(struct perf_event *event, int flags)
6043 local64_set(&event->hw.prev_count, local_clock());
6044 perf_swevent_start_hrtimer(event);
6047 static void cpu_clock_event_stop(struct perf_event *event, int flags)
6049 perf_swevent_cancel_hrtimer(event);
6050 cpu_clock_event_update(event);
6053 static int cpu_clock_event_add(struct perf_event *event, int flags)
6055 if (flags & PERF_EF_START)
6056 cpu_clock_event_start(event, flags);
6058 return 0;
6061 static void cpu_clock_event_del(struct perf_event *event, int flags)
6063 cpu_clock_event_stop(event, flags);
6066 static void cpu_clock_event_read(struct perf_event *event)
6068 cpu_clock_event_update(event);
6071 static int cpu_clock_event_init(struct perf_event *event)
6073 if (event->attr.type != PERF_TYPE_SOFTWARE)
6074 return -ENOENT;
6076 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
6077 return -ENOENT;
6080 * no branch sampling for software events
6082 if (has_branch_stack(event))
6083 return -EOPNOTSUPP;
6085 perf_swevent_init_hrtimer(event);
6087 return 0;
6090 static struct pmu perf_cpu_clock = {
6091 .task_ctx_nr = perf_sw_context,
6093 .event_init = cpu_clock_event_init,
6094 .add = cpu_clock_event_add,
6095 .del = cpu_clock_event_del,
6096 .start = cpu_clock_event_start,
6097 .stop = cpu_clock_event_stop,
6098 .read = cpu_clock_event_read,
6100 .event_idx = perf_swevent_event_idx,
6104 * Software event: task time clock
6107 static void task_clock_event_update(struct perf_event *event, u64 now)
6109 u64 prev;
6110 s64 delta;
6112 prev = local64_xchg(&event->hw.prev_count, now);
6113 delta = now - prev;
6114 local64_add(delta, &event->count);
6117 static void task_clock_event_start(struct perf_event *event, int flags)
6119 local64_set(&event->hw.prev_count, event->ctx->time);
6120 perf_swevent_start_hrtimer(event);
6123 static void task_clock_event_stop(struct perf_event *event, int flags)
6125 perf_swevent_cancel_hrtimer(event);
6126 task_clock_event_update(event, event->ctx->time);
6129 static int task_clock_event_add(struct perf_event *event, int flags)
6131 if (flags & PERF_EF_START)
6132 task_clock_event_start(event, flags);
6134 return 0;
6137 static void task_clock_event_del(struct perf_event *event, int flags)
6139 task_clock_event_stop(event, PERF_EF_UPDATE);
6142 static void task_clock_event_read(struct perf_event *event)
6144 u64 now = perf_clock();
6145 u64 delta = now - event->ctx->timestamp;
6146 u64 time = event->ctx->time + delta;
6148 task_clock_event_update(event, time);
6151 static int task_clock_event_init(struct perf_event *event)
6153 if (event->attr.type != PERF_TYPE_SOFTWARE)
6154 return -ENOENT;
6156 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
6157 return -ENOENT;
6160 * no branch sampling for software events
6162 if (has_branch_stack(event))
6163 return -EOPNOTSUPP;
6165 perf_swevent_init_hrtimer(event);
6167 return 0;
6170 static struct pmu perf_task_clock = {
6171 .task_ctx_nr = perf_sw_context,
6173 .event_init = task_clock_event_init,
6174 .add = task_clock_event_add,
6175 .del = task_clock_event_del,
6176 .start = task_clock_event_start,
6177 .stop = task_clock_event_stop,
6178 .read = task_clock_event_read,
6180 .event_idx = perf_swevent_event_idx,
6183 static void perf_pmu_nop_void(struct pmu *pmu)
6187 static int perf_pmu_nop_int(struct pmu *pmu)
6189 return 0;
6192 static void perf_pmu_start_txn(struct pmu *pmu)
6194 perf_pmu_disable(pmu);
6197 static int perf_pmu_commit_txn(struct pmu *pmu)
6199 perf_pmu_enable(pmu);
6200 return 0;
6203 static void perf_pmu_cancel_txn(struct pmu *pmu)
6205 perf_pmu_enable(pmu);
6208 static int perf_event_idx_default(struct perf_event *event)
6210 return event->hw.idx + 1;
6214 * Ensures all contexts with the same task_ctx_nr have the same
6215 * pmu_cpu_context too.
6217 static void *find_pmu_context(int ctxn)
6219 struct pmu *pmu;
6221 if (ctxn < 0)
6222 return NULL;
6224 list_for_each_entry(pmu, &pmus, entry) {
6225 if (pmu->task_ctx_nr == ctxn)
6226 return pmu->pmu_cpu_context;
6229 return NULL;
6232 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
6234 int cpu;
6236 for_each_possible_cpu(cpu) {
6237 struct perf_cpu_context *cpuctx;
6239 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6241 if (cpuctx->unique_pmu == old_pmu)
6242 cpuctx->unique_pmu = pmu;
6246 static void free_pmu_context(struct pmu *pmu)
6248 struct pmu *i;
6250 mutex_lock(&pmus_lock);
6252 * Like a real lame refcount.
6254 list_for_each_entry(i, &pmus, entry) {
6255 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
6256 update_pmu_context(i, pmu);
6257 goto out;
6261 free_percpu(pmu->pmu_cpu_context);
6262 out:
6263 mutex_unlock(&pmus_lock);
6265 static struct idr pmu_idr;
6267 static ssize_t
6268 type_show(struct device *dev, struct device_attribute *attr, char *page)
6270 struct pmu *pmu = dev_get_drvdata(dev);
6272 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
6275 static ssize_t
6276 perf_event_mux_interval_ms_show(struct device *dev,
6277 struct device_attribute *attr,
6278 char *page)
6280 struct pmu *pmu = dev_get_drvdata(dev);
6282 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
6285 static ssize_t
6286 perf_event_mux_interval_ms_store(struct device *dev,
6287 struct device_attribute *attr,
6288 const char *buf, size_t count)
6290 struct pmu *pmu = dev_get_drvdata(dev);
6291 int timer, cpu, ret;
6293 ret = kstrtoint(buf, 0, &timer);
6294 if (ret)
6295 return ret;
6297 if (timer < 1)
6298 return -EINVAL;
6300 /* same value, noting to do */
6301 if (timer == pmu->hrtimer_interval_ms)
6302 return count;
6304 pmu->hrtimer_interval_ms = timer;
6306 /* update all cpuctx for this PMU */
6307 for_each_possible_cpu(cpu) {
6308 struct perf_cpu_context *cpuctx;
6309 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6310 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
6312 if (hrtimer_active(&cpuctx->hrtimer))
6313 hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval);
6316 return count;
6319 static struct device_attribute pmu_dev_attrs[] = {
6320 __ATTR_RO(type),
6321 __ATTR_RW(perf_event_mux_interval_ms),
6322 __ATTR_NULL,
6325 static int pmu_bus_running;
6326 static struct bus_type pmu_bus = {
6327 .name = "event_source",
6328 .dev_attrs = pmu_dev_attrs,
6331 static void pmu_dev_release(struct device *dev)
6333 kfree(dev);
6336 static int pmu_dev_alloc(struct pmu *pmu)
6338 int ret = -ENOMEM;
6340 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
6341 if (!pmu->dev)
6342 goto out;
6344 pmu->dev->groups = pmu->attr_groups;
6345 device_initialize(pmu->dev);
6346 ret = dev_set_name(pmu->dev, "%s", pmu->name);
6347 if (ret)
6348 goto free_dev;
6350 dev_set_drvdata(pmu->dev, pmu);
6351 pmu->dev->bus = &pmu_bus;
6352 pmu->dev->release = pmu_dev_release;
6353 ret = device_add(pmu->dev);
6354 if (ret)
6355 goto free_dev;
6357 out:
6358 return ret;
6360 free_dev:
6361 put_device(pmu->dev);
6362 goto out;
6365 static struct lock_class_key cpuctx_mutex;
6366 static struct lock_class_key cpuctx_lock;
6368 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
6370 int cpu, ret;
6372 mutex_lock(&pmus_lock);
6373 ret = -ENOMEM;
6374 pmu->pmu_disable_count = alloc_percpu(int);
6375 if (!pmu->pmu_disable_count)
6376 goto unlock;
6378 pmu->type = -1;
6379 if (!name)
6380 goto skip_type;
6381 pmu->name = name;
6383 if (type < 0) {
6384 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
6385 if (type < 0) {
6386 ret = type;
6387 goto free_pdc;
6390 pmu->type = type;
6392 if (pmu_bus_running) {
6393 ret = pmu_dev_alloc(pmu);
6394 if (ret)
6395 goto free_idr;
6398 skip_type:
6399 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
6400 if (pmu->pmu_cpu_context)
6401 goto got_cpu_context;
6403 ret = -ENOMEM;
6404 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
6405 if (!pmu->pmu_cpu_context)
6406 goto free_dev;
6408 for_each_possible_cpu(cpu) {
6409 struct perf_cpu_context *cpuctx;
6411 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6412 __perf_event_init_context(&cpuctx->ctx);
6413 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
6414 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
6415 cpuctx->ctx.type = cpu_context;
6416 cpuctx->ctx.pmu = pmu;
6418 __perf_cpu_hrtimer_init(cpuctx, cpu);
6420 INIT_LIST_HEAD(&cpuctx->rotation_list);
6421 cpuctx->unique_pmu = pmu;
6424 got_cpu_context:
6425 if (!pmu->start_txn) {
6426 if (pmu->pmu_enable) {
6428 * If we have pmu_enable/pmu_disable calls, install
6429 * transaction stubs that use that to try and batch
6430 * hardware accesses.
6432 pmu->start_txn = perf_pmu_start_txn;
6433 pmu->commit_txn = perf_pmu_commit_txn;
6434 pmu->cancel_txn = perf_pmu_cancel_txn;
6435 } else {
6436 pmu->start_txn = perf_pmu_nop_void;
6437 pmu->commit_txn = perf_pmu_nop_int;
6438 pmu->cancel_txn = perf_pmu_nop_void;
6442 if (!pmu->pmu_enable) {
6443 pmu->pmu_enable = perf_pmu_nop_void;
6444 pmu->pmu_disable = perf_pmu_nop_void;
6447 if (!pmu->event_idx)
6448 pmu->event_idx = perf_event_idx_default;
6450 list_add_rcu(&pmu->entry, &pmus);
6451 ret = 0;
6452 unlock:
6453 mutex_unlock(&pmus_lock);
6455 return ret;
6457 free_dev:
6458 device_del(pmu->dev);
6459 put_device(pmu->dev);
6461 free_idr:
6462 if (pmu->type >= PERF_TYPE_MAX)
6463 idr_remove(&pmu_idr, pmu->type);
6465 free_pdc:
6466 free_percpu(pmu->pmu_disable_count);
6467 goto unlock;
6470 void perf_pmu_unregister(struct pmu *pmu)
6472 mutex_lock(&pmus_lock);
6473 list_del_rcu(&pmu->entry);
6474 mutex_unlock(&pmus_lock);
6477 * We dereference the pmu list under both SRCU and regular RCU, so
6478 * synchronize against both of those.
6480 synchronize_srcu(&pmus_srcu);
6481 synchronize_rcu();
6483 free_percpu(pmu->pmu_disable_count);
6484 if (pmu->type >= PERF_TYPE_MAX)
6485 idr_remove(&pmu_idr, pmu->type);
6486 device_del(pmu->dev);
6487 put_device(pmu->dev);
6488 free_pmu_context(pmu);
6491 struct pmu *perf_init_event(struct perf_event *event)
6493 struct pmu *pmu = NULL;
6494 int idx;
6495 int ret;
6497 idx = srcu_read_lock(&pmus_srcu);
6499 rcu_read_lock();
6500 pmu = idr_find(&pmu_idr, event->attr.type);
6501 rcu_read_unlock();
6502 if (pmu) {
6503 event->pmu = pmu;
6504 ret = pmu->event_init(event);
6505 if (ret)
6506 pmu = ERR_PTR(ret);
6507 goto unlock;
6510 list_for_each_entry_rcu(pmu, &pmus, entry) {
6511 event->pmu = pmu;
6512 ret = pmu->event_init(event);
6513 if (!ret)
6514 goto unlock;
6516 if (ret != -ENOENT) {
6517 pmu = ERR_PTR(ret);
6518 goto unlock;
6521 pmu = ERR_PTR(-ENOENT);
6522 unlock:
6523 srcu_read_unlock(&pmus_srcu, idx);
6525 return pmu;
6528 static void account_event_cpu(struct perf_event *event, int cpu)
6530 if (event->parent)
6531 return;
6533 if (has_branch_stack(event)) {
6534 if (!(event->attach_state & PERF_ATTACH_TASK))
6535 atomic_inc(&per_cpu(perf_branch_stack_events, cpu));
6537 if (is_cgroup_event(event))
6538 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
6541 static void account_event(struct perf_event *event)
6543 if (event->parent)
6544 return;
6546 if (event->attach_state & PERF_ATTACH_TASK)
6547 static_key_slow_inc(&perf_sched_events.key);
6548 if (event->attr.mmap || event->attr.mmap_data)
6549 atomic_inc(&nr_mmap_events);
6550 if (event->attr.comm)
6551 atomic_inc(&nr_comm_events);
6552 if (event->attr.task)
6553 atomic_inc(&nr_task_events);
6554 if (event->attr.freq) {
6555 if (atomic_inc_return(&nr_freq_events) == 1)
6556 tick_nohz_full_kick_all();
6558 if (has_branch_stack(event))
6559 static_key_slow_inc(&perf_sched_events.key);
6560 if (is_cgroup_event(event))
6561 static_key_slow_inc(&perf_sched_events.key);
6563 account_event_cpu(event, event->cpu);
6567 * Allocate and initialize a event structure
6569 static struct perf_event *
6570 perf_event_alloc(struct perf_event_attr *attr, int cpu,
6571 struct task_struct *task,
6572 struct perf_event *group_leader,
6573 struct perf_event *parent_event,
6574 perf_overflow_handler_t overflow_handler,
6575 void *context)
6577 struct pmu *pmu;
6578 struct perf_event *event;
6579 struct hw_perf_event *hwc;
6580 long err = -EINVAL;
6582 if ((unsigned)cpu >= nr_cpu_ids) {
6583 if (!task || cpu != -1)
6584 return ERR_PTR(-EINVAL);
6587 event = kzalloc(sizeof(*event), GFP_KERNEL);
6588 if (!event)
6589 return ERR_PTR(-ENOMEM);
6592 * Single events are their own group leaders, with an
6593 * empty sibling list:
6595 if (!group_leader)
6596 group_leader = event;
6598 mutex_init(&event->child_mutex);
6599 INIT_LIST_HEAD(&event->child_list);
6601 INIT_LIST_HEAD(&event->group_entry);
6602 INIT_LIST_HEAD(&event->event_entry);
6603 INIT_LIST_HEAD(&event->sibling_list);
6604 INIT_LIST_HEAD(&event->rb_entry);
6606 init_waitqueue_head(&event->waitq);
6607 init_irq_work(&event->pending, perf_pending_event);
6609 mutex_init(&event->mmap_mutex);
6611 atomic_long_set(&event->refcount, 1);
6612 event->cpu = cpu;
6613 event->attr = *attr;
6614 event->group_leader = group_leader;
6615 event->pmu = NULL;
6616 event->oncpu = -1;
6618 event->parent = parent_event;
6620 event->ns = get_pid_ns(task_active_pid_ns(current));
6621 event->id = atomic64_inc_return(&perf_event_id);
6623 event->state = PERF_EVENT_STATE_INACTIVE;
6625 if (task) {
6626 event->attach_state = PERF_ATTACH_TASK;
6628 if (attr->type == PERF_TYPE_TRACEPOINT)
6629 event->hw.tp_target = task;
6630 #ifdef CONFIG_HAVE_HW_BREAKPOINT
6632 * hw_breakpoint is a bit difficult here..
6634 else if (attr->type == PERF_TYPE_BREAKPOINT)
6635 event->hw.bp_target = task;
6636 #endif
6639 if (!overflow_handler && parent_event) {
6640 overflow_handler = parent_event->overflow_handler;
6641 context = parent_event->overflow_handler_context;
6644 event->overflow_handler = overflow_handler;
6645 event->overflow_handler_context = context;
6647 perf_event__state_init(event);
6649 pmu = NULL;
6651 hwc = &event->hw;
6652 hwc->sample_period = attr->sample_period;
6653 if (attr->freq && attr->sample_freq)
6654 hwc->sample_period = 1;
6655 hwc->last_period = hwc->sample_period;
6657 local64_set(&hwc->period_left, hwc->sample_period);
6660 * we currently do not support PERF_FORMAT_GROUP on inherited events
6662 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
6663 goto err_ns;
6665 pmu = perf_init_event(event);
6666 if (!pmu)
6667 goto err_ns;
6668 else if (IS_ERR(pmu)) {
6669 err = PTR_ERR(pmu);
6670 goto err_ns;
6673 if (!event->parent) {
6674 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
6675 err = get_callchain_buffers();
6676 if (err)
6677 goto err_pmu;
6681 return event;
6683 err_pmu:
6684 if (event->destroy)
6685 event->destroy(event);
6686 err_ns:
6687 if (event->ns)
6688 put_pid_ns(event->ns);
6689 kfree(event);
6691 return ERR_PTR(err);
6694 static int perf_copy_attr(struct perf_event_attr __user *uattr,
6695 struct perf_event_attr *attr)
6697 u32 size;
6698 int ret;
6700 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
6701 return -EFAULT;
6704 * zero the full structure, so that a short copy will be nice.
6706 memset(attr, 0, sizeof(*attr));
6708 ret = get_user(size, &uattr->size);
6709 if (ret)
6710 return ret;
6712 if (size > PAGE_SIZE) /* silly large */
6713 goto err_size;
6715 if (!size) /* abi compat */
6716 size = PERF_ATTR_SIZE_VER0;
6718 if (size < PERF_ATTR_SIZE_VER0)
6719 goto err_size;
6722 * If we're handed a bigger struct than we know of,
6723 * ensure all the unknown bits are 0 - i.e. new
6724 * user-space does not rely on any kernel feature
6725 * extensions we dont know about yet.
6727 if (size > sizeof(*attr)) {
6728 unsigned char __user *addr;
6729 unsigned char __user *end;
6730 unsigned char val;
6732 addr = (void __user *)uattr + sizeof(*attr);
6733 end = (void __user *)uattr + size;
6735 for (; addr < end; addr++) {
6736 ret = get_user(val, addr);
6737 if (ret)
6738 return ret;
6739 if (val)
6740 goto err_size;
6742 size = sizeof(*attr);
6745 ret = copy_from_user(attr, uattr, size);
6746 if (ret)
6747 return -EFAULT;
6749 if (attr->__reserved_1)
6750 return -EINVAL;
6752 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
6753 return -EINVAL;
6755 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
6756 return -EINVAL;
6758 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
6759 u64 mask = attr->branch_sample_type;
6761 /* only using defined bits */
6762 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
6763 return -EINVAL;
6765 /* at least one branch bit must be set */
6766 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
6767 return -EINVAL;
6769 /* propagate priv level, when not set for branch */
6770 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
6772 /* exclude_kernel checked on syscall entry */
6773 if (!attr->exclude_kernel)
6774 mask |= PERF_SAMPLE_BRANCH_KERNEL;
6776 if (!attr->exclude_user)
6777 mask |= PERF_SAMPLE_BRANCH_USER;
6779 if (!attr->exclude_hv)
6780 mask |= PERF_SAMPLE_BRANCH_HV;
6782 * adjust user setting (for HW filter setup)
6784 attr->branch_sample_type = mask;
6786 /* privileged levels capture (kernel, hv): check permissions */
6787 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
6788 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6789 return -EACCES;
6792 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
6793 ret = perf_reg_validate(attr->sample_regs_user);
6794 if (ret)
6795 return ret;
6798 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
6799 if (!arch_perf_have_user_stack_dump())
6800 return -ENOSYS;
6803 * We have __u32 type for the size, but so far
6804 * we can only use __u16 as maximum due to the
6805 * __u16 sample size limit.
6807 if (attr->sample_stack_user >= USHRT_MAX)
6808 ret = -EINVAL;
6809 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
6810 ret = -EINVAL;
6813 out:
6814 return ret;
6816 err_size:
6817 put_user(sizeof(*attr), &uattr->size);
6818 ret = -E2BIG;
6819 goto out;
6822 static int
6823 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
6825 struct ring_buffer *rb = NULL, *old_rb = NULL;
6826 int ret = -EINVAL;
6828 if (!output_event)
6829 goto set;
6831 /* don't allow circular references */
6832 if (event == output_event)
6833 goto out;
6836 * Don't allow cross-cpu buffers
6838 if (output_event->cpu != event->cpu)
6839 goto out;
6842 * If its not a per-cpu rb, it must be the same task.
6844 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
6845 goto out;
6847 set:
6848 mutex_lock(&event->mmap_mutex);
6849 /* Can't redirect output if we've got an active mmap() */
6850 if (atomic_read(&event->mmap_count))
6851 goto unlock;
6853 old_rb = event->rb;
6855 if (output_event) {
6856 /* get the rb we want to redirect to */
6857 rb = ring_buffer_get(output_event);
6858 if (!rb)
6859 goto unlock;
6862 if (old_rb)
6863 ring_buffer_detach(event, old_rb);
6865 if (rb)
6866 ring_buffer_attach(event, rb);
6868 rcu_assign_pointer(event->rb, rb);
6870 if (old_rb) {
6871 ring_buffer_put(old_rb);
6873 * Since we detached before setting the new rb, so that we
6874 * could attach the new rb, we could have missed a wakeup.
6875 * Provide it now.
6877 wake_up_all(&event->waitq);
6880 ret = 0;
6881 unlock:
6882 mutex_unlock(&event->mmap_mutex);
6884 out:
6885 return ret;
6889 * sys_perf_event_open - open a performance event, associate it to a task/cpu
6891 * @attr_uptr: event_id type attributes for monitoring/sampling
6892 * @pid: target pid
6893 * @cpu: target cpu
6894 * @group_fd: group leader event fd
6896 SYSCALL_DEFINE5(perf_event_open,
6897 struct perf_event_attr __user *, attr_uptr,
6898 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
6900 struct perf_event *group_leader = NULL, *output_event = NULL;
6901 struct perf_event *event, *sibling;
6902 struct perf_event_attr attr;
6903 struct perf_event_context *ctx;
6904 struct file *event_file = NULL;
6905 struct fd group = {NULL, 0};
6906 struct task_struct *task = NULL;
6907 struct pmu *pmu;
6908 int event_fd;
6909 int move_group = 0;
6910 int err;
6912 /* for future expandability... */
6913 if (flags & ~PERF_FLAG_ALL)
6914 return -EINVAL;
6916 err = perf_copy_attr(attr_uptr, &attr);
6917 if (err)
6918 return err;
6920 if (!attr.exclude_kernel) {
6921 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6922 return -EACCES;
6925 if (attr.freq) {
6926 if (attr.sample_freq > sysctl_perf_event_sample_rate)
6927 return -EINVAL;
6931 * In cgroup mode, the pid argument is used to pass the fd
6932 * opened to the cgroup directory in cgroupfs. The cpu argument
6933 * designates the cpu on which to monitor threads from that
6934 * cgroup.
6936 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
6937 return -EINVAL;
6939 event_fd = get_unused_fd();
6940 if (event_fd < 0)
6941 return event_fd;
6943 if (group_fd != -1) {
6944 err = perf_fget_light(group_fd, &group);
6945 if (err)
6946 goto err_fd;
6947 group_leader = group.file->private_data;
6948 if (flags & PERF_FLAG_FD_OUTPUT)
6949 output_event = group_leader;
6950 if (flags & PERF_FLAG_FD_NO_GROUP)
6951 group_leader = NULL;
6954 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
6955 task = find_lively_task_by_vpid(pid);
6956 if (IS_ERR(task)) {
6957 err = PTR_ERR(task);
6958 goto err_group_fd;
6962 get_online_cpus();
6964 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
6965 NULL, NULL);
6966 if (IS_ERR(event)) {
6967 err = PTR_ERR(event);
6968 goto err_task;
6971 if (flags & PERF_FLAG_PID_CGROUP) {
6972 err = perf_cgroup_connect(pid, event, &attr, group_leader);
6973 if (err) {
6974 __free_event(event);
6975 goto err_task;
6979 account_event(event);
6982 * Special case software events and allow them to be part of
6983 * any hardware group.
6985 pmu = event->pmu;
6987 if (group_leader &&
6988 (is_software_event(event) != is_software_event(group_leader))) {
6989 if (is_software_event(event)) {
6991 * If event and group_leader are not both a software
6992 * event, and event is, then group leader is not.
6994 * Allow the addition of software events to !software
6995 * groups, this is safe because software events never
6996 * fail to schedule.
6998 pmu = group_leader->pmu;
6999 } else if (is_software_event(group_leader) &&
7000 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
7002 * In case the group is a pure software group, and we
7003 * try to add a hardware event, move the whole group to
7004 * the hardware context.
7006 move_group = 1;
7011 * Get the target context (task or percpu):
7013 ctx = find_get_context(pmu, task, event->cpu);
7014 if (IS_ERR(ctx)) {
7015 err = PTR_ERR(ctx);
7016 goto err_alloc;
7019 if (task) {
7020 put_task_struct(task);
7021 task = NULL;
7025 * Look up the group leader (we will attach this event to it):
7027 if (group_leader) {
7028 err = -EINVAL;
7031 * Do not allow a recursive hierarchy (this new sibling
7032 * becoming part of another group-sibling):
7034 if (group_leader->group_leader != group_leader)
7035 goto err_context;
7037 * Do not allow to attach to a group in a different
7038 * task or CPU context:
7040 if (move_group) {
7041 if (group_leader->ctx->type != ctx->type)
7042 goto err_context;
7043 } else {
7044 if (group_leader->ctx != ctx)
7045 goto err_context;
7049 * Only a group leader can be exclusive or pinned
7051 if (attr.exclusive || attr.pinned)
7052 goto err_context;
7055 if (output_event) {
7056 err = perf_event_set_output(event, output_event);
7057 if (err)
7058 goto err_context;
7061 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
7062 if (IS_ERR(event_file)) {
7063 err = PTR_ERR(event_file);
7064 goto err_context;
7067 if (move_group) {
7068 struct perf_event_context *gctx = group_leader->ctx;
7070 mutex_lock(&gctx->mutex);
7071 perf_remove_from_context(group_leader);
7074 * Removing from the context ends up with disabled
7075 * event. What we want here is event in the initial
7076 * startup state, ready to be add into new context.
7078 perf_event__state_init(group_leader);
7079 list_for_each_entry(sibling, &group_leader->sibling_list,
7080 group_entry) {
7081 perf_remove_from_context(sibling);
7082 perf_event__state_init(sibling);
7083 put_ctx(gctx);
7085 mutex_unlock(&gctx->mutex);
7086 put_ctx(gctx);
7089 WARN_ON_ONCE(ctx->parent_ctx);
7090 mutex_lock(&ctx->mutex);
7092 if (move_group) {
7093 synchronize_rcu();
7094 perf_install_in_context(ctx, group_leader, event->cpu);
7095 get_ctx(ctx);
7096 list_for_each_entry(sibling, &group_leader->sibling_list,
7097 group_entry) {
7098 perf_install_in_context(ctx, sibling, event->cpu);
7099 get_ctx(ctx);
7103 perf_install_in_context(ctx, event, event->cpu);
7104 ++ctx->generation;
7105 perf_unpin_context(ctx);
7106 mutex_unlock(&ctx->mutex);
7108 put_online_cpus();
7110 event->owner = current;
7112 mutex_lock(&current->perf_event_mutex);
7113 list_add_tail(&event->owner_entry, &current->perf_event_list);
7114 mutex_unlock(&current->perf_event_mutex);
7117 * Precalculate sample_data sizes
7119 perf_event__header_size(event);
7120 perf_event__id_header_size(event);
7123 * Drop the reference on the group_event after placing the
7124 * new event on the sibling_list. This ensures destruction
7125 * of the group leader will find the pointer to itself in
7126 * perf_group_detach().
7128 fdput(group);
7129 fd_install(event_fd, event_file);
7130 return event_fd;
7132 err_context:
7133 perf_unpin_context(ctx);
7134 put_ctx(ctx);
7135 err_alloc:
7136 free_event(event);
7137 err_task:
7138 put_online_cpus();
7139 if (task)
7140 put_task_struct(task);
7141 err_group_fd:
7142 fdput(group);
7143 err_fd:
7144 put_unused_fd(event_fd);
7145 return err;
7149 * perf_event_create_kernel_counter
7151 * @attr: attributes of the counter to create
7152 * @cpu: cpu in which the counter is bound
7153 * @task: task to profile (NULL for percpu)
7155 struct perf_event *
7156 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
7157 struct task_struct *task,
7158 perf_overflow_handler_t overflow_handler,
7159 void *context)
7161 struct perf_event_context *ctx;
7162 struct perf_event *event;
7163 int err;
7166 * Get the target context (task or percpu):
7169 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
7170 overflow_handler, context);
7171 if (IS_ERR(event)) {
7172 err = PTR_ERR(event);
7173 goto err;
7176 account_event(event);
7178 ctx = find_get_context(event->pmu, task, cpu);
7179 if (IS_ERR(ctx)) {
7180 err = PTR_ERR(ctx);
7181 goto err_free;
7184 WARN_ON_ONCE(ctx->parent_ctx);
7185 mutex_lock(&ctx->mutex);
7186 perf_install_in_context(ctx, event, cpu);
7187 ++ctx->generation;
7188 perf_unpin_context(ctx);
7189 mutex_unlock(&ctx->mutex);
7191 return event;
7193 err_free:
7194 free_event(event);
7195 err:
7196 return ERR_PTR(err);
7198 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
7200 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
7202 struct perf_event_context *src_ctx;
7203 struct perf_event_context *dst_ctx;
7204 struct perf_event *event, *tmp;
7205 LIST_HEAD(events);
7207 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
7208 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
7210 mutex_lock(&src_ctx->mutex);
7211 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
7212 event_entry) {
7213 perf_remove_from_context(event);
7214 unaccount_event_cpu(event, src_cpu);
7215 put_ctx(src_ctx);
7216 list_add(&event->event_entry, &events);
7218 mutex_unlock(&src_ctx->mutex);
7220 synchronize_rcu();
7222 mutex_lock(&dst_ctx->mutex);
7223 list_for_each_entry_safe(event, tmp, &events, event_entry) {
7224 list_del(&event->event_entry);
7225 if (event->state >= PERF_EVENT_STATE_OFF)
7226 event->state = PERF_EVENT_STATE_INACTIVE;
7227 account_event_cpu(event, dst_cpu);
7228 perf_install_in_context(dst_ctx, event, dst_cpu);
7229 get_ctx(dst_ctx);
7231 mutex_unlock(&dst_ctx->mutex);
7233 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
7235 static void sync_child_event(struct perf_event *child_event,
7236 struct task_struct *child)
7238 struct perf_event *parent_event = child_event->parent;
7239 u64 child_val;
7241 if (child_event->attr.inherit_stat)
7242 perf_event_read_event(child_event, child);
7244 child_val = perf_event_count(child_event);
7247 * Add back the child's count to the parent's count:
7249 atomic64_add(child_val, &parent_event->child_count);
7250 atomic64_add(child_event->total_time_enabled,
7251 &parent_event->child_total_time_enabled);
7252 atomic64_add(child_event->total_time_running,
7253 &parent_event->child_total_time_running);
7256 * Remove this event from the parent's list
7258 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7259 mutex_lock(&parent_event->child_mutex);
7260 list_del_init(&child_event->child_list);
7261 mutex_unlock(&parent_event->child_mutex);
7264 * Release the parent event, if this was the last
7265 * reference to it.
7267 put_event(parent_event);
7270 static void
7271 __perf_event_exit_task(struct perf_event *child_event,
7272 struct perf_event_context *child_ctx,
7273 struct task_struct *child)
7275 if (child_event->parent) {
7276 raw_spin_lock_irq(&child_ctx->lock);
7277 perf_group_detach(child_event);
7278 raw_spin_unlock_irq(&child_ctx->lock);
7281 perf_remove_from_context(child_event);
7284 * It can happen that the parent exits first, and has events
7285 * that are still around due to the child reference. These
7286 * events need to be zapped.
7288 if (child_event->parent) {
7289 sync_child_event(child_event, child);
7290 free_event(child_event);
7294 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
7296 struct perf_event *child_event, *tmp;
7297 struct perf_event_context *child_ctx;
7298 unsigned long flags;
7300 if (likely(!child->perf_event_ctxp[ctxn])) {
7301 perf_event_task(child, NULL, 0);
7302 return;
7305 local_irq_save(flags);
7307 * We can't reschedule here because interrupts are disabled,
7308 * and either child is current or it is a task that can't be
7309 * scheduled, so we are now safe from rescheduling changing
7310 * our context.
7312 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
7315 * Take the context lock here so that if find_get_context is
7316 * reading child->perf_event_ctxp, we wait until it has
7317 * incremented the context's refcount before we do put_ctx below.
7319 raw_spin_lock(&child_ctx->lock);
7320 task_ctx_sched_out(child_ctx);
7321 child->perf_event_ctxp[ctxn] = NULL;
7323 * If this context is a clone; unclone it so it can't get
7324 * swapped to another process while we're removing all
7325 * the events from it.
7327 unclone_ctx(child_ctx);
7328 update_context_time(child_ctx);
7329 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
7332 * Report the task dead after unscheduling the events so that we
7333 * won't get any samples after PERF_RECORD_EXIT. We can however still
7334 * get a few PERF_RECORD_READ events.
7336 perf_event_task(child, child_ctx, 0);
7339 * We can recurse on the same lock type through:
7341 * __perf_event_exit_task()
7342 * sync_child_event()
7343 * put_event()
7344 * mutex_lock(&ctx->mutex)
7346 * But since its the parent context it won't be the same instance.
7348 mutex_lock(&child_ctx->mutex);
7350 again:
7351 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
7352 group_entry)
7353 __perf_event_exit_task(child_event, child_ctx, child);
7355 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
7356 group_entry)
7357 __perf_event_exit_task(child_event, child_ctx, child);
7360 * If the last event was a group event, it will have appended all
7361 * its siblings to the list, but we obtained 'tmp' before that which
7362 * will still point to the list head terminating the iteration.
7364 if (!list_empty(&child_ctx->pinned_groups) ||
7365 !list_empty(&child_ctx->flexible_groups))
7366 goto again;
7368 mutex_unlock(&child_ctx->mutex);
7370 put_ctx(child_ctx);
7374 * When a child task exits, feed back event values to parent events.
7376 void perf_event_exit_task(struct task_struct *child)
7378 struct perf_event *event, *tmp;
7379 int ctxn;
7381 mutex_lock(&child->perf_event_mutex);
7382 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
7383 owner_entry) {
7384 list_del_init(&event->owner_entry);
7387 * Ensure the list deletion is visible before we clear
7388 * the owner, closes a race against perf_release() where
7389 * we need to serialize on the owner->perf_event_mutex.
7391 smp_wmb();
7392 event->owner = NULL;
7394 mutex_unlock(&child->perf_event_mutex);
7396 for_each_task_context_nr(ctxn)
7397 perf_event_exit_task_context(child, ctxn);
7400 static void perf_free_event(struct perf_event *event,
7401 struct perf_event_context *ctx)
7403 struct perf_event *parent = event->parent;
7405 if (WARN_ON_ONCE(!parent))
7406 return;
7408 mutex_lock(&parent->child_mutex);
7409 list_del_init(&event->child_list);
7410 mutex_unlock(&parent->child_mutex);
7412 put_event(parent);
7414 perf_group_detach(event);
7415 list_del_event(event, ctx);
7416 free_event(event);
7420 * free an unexposed, unused context as created by inheritance by
7421 * perf_event_init_task below, used by fork() in case of fail.
7423 void perf_event_free_task(struct task_struct *task)
7425 struct perf_event_context *ctx;
7426 struct perf_event *event, *tmp;
7427 int ctxn;
7429 for_each_task_context_nr(ctxn) {
7430 ctx = task->perf_event_ctxp[ctxn];
7431 if (!ctx)
7432 continue;
7434 mutex_lock(&ctx->mutex);
7435 again:
7436 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
7437 group_entry)
7438 perf_free_event(event, ctx);
7440 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
7441 group_entry)
7442 perf_free_event(event, ctx);
7444 if (!list_empty(&ctx->pinned_groups) ||
7445 !list_empty(&ctx->flexible_groups))
7446 goto again;
7448 mutex_unlock(&ctx->mutex);
7450 put_ctx(ctx);
7454 void perf_event_delayed_put(struct task_struct *task)
7456 int ctxn;
7458 for_each_task_context_nr(ctxn)
7459 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
7463 * inherit a event from parent task to child task:
7465 static struct perf_event *
7466 inherit_event(struct perf_event *parent_event,
7467 struct task_struct *parent,
7468 struct perf_event_context *parent_ctx,
7469 struct task_struct *child,
7470 struct perf_event *group_leader,
7471 struct perf_event_context *child_ctx)
7473 struct perf_event *child_event;
7474 unsigned long flags;
7477 * Instead of creating recursive hierarchies of events,
7478 * we link inherited events back to the original parent,
7479 * which has a filp for sure, which we use as the reference
7480 * count:
7482 if (parent_event->parent)
7483 parent_event = parent_event->parent;
7485 child_event = perf_event_alloc(&parent_event->attr,
7486 parent_event->cpu,
7487 child,
7488 group_leader, parent_event,
7489 NULL, NULL);
7490 if (IS_ERR(child_event))
7491 return child_event;
7493 if (!atomic_long_inc_not_zero(&parent_event->refcount)) {
7494 free_event(child_event);
7495 return NULL;
7498 get_ctx(child_ctx);
7501 * Make the child state follow the state of the parent event,
7502 * not its attr.disabled bit. We hold the parent's mutex,
7503 * so we won't race with perf_event_{en, dis}able_family.
7505 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
7506 child_event->state = PERF_EVENT_STATE_INACTIVE;
7507 else
7508 child_event->state = PERF_EVENT_STATE_OFF;
7510 if (parent_event->attr.freq) {
7511 u64 sample_period = parent_event->hw.sample_period;
7512 struct hw_perf_event *hwc = &child_event->hw;
7514 hwc->sample_period = sample_period;
7515 hwc->last_period = sample_period;
7517 local64_set(&hwc->period_left, sample_period);
7520 child_event->ctx = child_ctx;
7521 child_event->overflow_handler = parent_event->overflow_handler;
7522 child_event->overflow_handler_context
7523 = parent_event->overflow_handler_context;
7526 * Precalculate sample_data sizes
7528 perf_event__header_size(child_event);
7529 perf_event__id_header_size(child_event);
7532 * Link it up in the child's context:
7534 raw_spin_lock_irqsave(&child_ctx->lock, flags);
7535 add_event_to_ctx(child_event, child_ctx);
7536 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
7539 * Link this into the parent event's child list
7541 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7542 mutex_lock(&parent_event->child_mutex);
7543 list_add_tail(&child_event->child_list, &parent_event->child_list);
7544 mutex_unlock(&parent_event->child_mutex);
7546 return child_event;
7549 static int inherit_group(struct perf_event *parent_event,
7550 struct task_struct *parent,
7551 struct perf_event_context *parent_ctx,
7552 struct task_struct *child,
7553 struct perf_event_context *child_ctx)
7555 struct perf_event *leader;
7556 struct perf_event *sub;
7557 struct perf_event *child_ctr;
7559 leader = inherit_event(parent_event, parent, parent_ctx,
7560 child, NULL, child_ctx);
7561 if (IS_ERR(leader))
7562 return PTR_ERR(leader);
7563 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
7564 child_ctr = inherit_event(sub, parent, parent_ctx,
7565 child, leader, child_ctx);
7566 if (IS_ERR(child_ctr))
7567 return PTR_ERR(child_ctr);
7569 return 0;
7572 static int
7573 inherit_task_group(struct perf_event *event, struct task_struct *parent,
7574 struct perf_event_context *parent_ctx,
7575 struct task_struct *child, int ctxn,
7576 int *inherited_all)
7578 int ret;
7579 struct perf_event_context *child_ctx;
7581 if (!event->attr.inherit) {
7582 *inherited_all = 0;
7583 return 0;
7586 child_ctx = child->perf_event_ctxp[ctxn];
7587 if (!child_ctx) {
7589 * This is executed from the parent task context, so
7590 * inherit events that have been marked for cloning.
7591 * First allocate and initialize a context for the
7592 * child.
7595 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
7596 if (!child_ctx)
7597 return -ENOMEM;
7599 child->perf_event_ctxp[ctxn] = child_ctx;
7602 ret = inherit_group(event, parent, parent_ctx,
7603 child, child_ctx);
7605 if (ret)
7606 *inherited_all = 0;
7608 return ret;
7612 * Initialize the perf_event context in task_struct
7614 int perf_event_init_context(struct task_struct *child, int ctxn)
7616 struct perf_event_context *child_ctx, *parent_ctx;
7617 struct perf_event_context *cloned_ctx;
7618 struct perf_event *event;
7619 struct task_struct *parent = current;
7620 int inherited_all = 1;
7621 unsigned long flags;
7622 int ret = 0;
7624 if (likely(!parent->perf_event_ctxp[ctxn]))
7625 return 0;
7628 * If the parent's context is a clone, pin it so it won't get
7629 * swapped under us.
7631 parent_ctx = perf_pin_task_context(parent, ctxn);
7634 * No need to check if parent_ctx != NULL here; since we saw
7635 * it non-NULL earlier, the only reason for it to become NULL
7636 * is if we exit, and since we're currently in the middle of
7637 * a fork we can't be exiting at the same time.
7641 * Lock the parent list. No need to lock the child - not PID
7642 * hashed yet and not running, so nobody can access it.
7644 mutex_lock(&parent_ctx->mutex);
7647 * We dont have to disable NMIs - we are only looking at
7648 * the list, not manipulating it:
7650 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
7651 ret = inherit_task_group(event, parent, parent_ctx,
7652 child, ctxn, &inherited_all);
7653 if (ret)
7654 break;
7658 * We can't hold ctx->lock when iterating the ->flexible_group list due
7659 * to allocations, but we need to prevent rotation because
7660 * rotate_ctx() will change the list from interrupt context.
7662 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7663 parent_ctx->rotate_disable = 1;
7664 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7666 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
7667 ret = inherit_task_group(event, parent, parent_ctx,
7668 child, ctxn, &inherited_all);
7669 if (ret)
7670 break;
7673 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7674 parent_ctx->rotate_disable = 0;
7676 child_ctx = child->perf_event_ctxp[ctxn];
7678 if (child_ctx && inherited_all) {
7680 * Mark the child context as a clone of the parent
7681 * context, or of whatever the parent is a clone of.
7683 * Note that if the parent is a clone, the holding of
7684 * parent_ctx->lock avoids it from being uncloned.
7686 cloned_ctx = parent_ctx->parent_ctx;
7687 if (cloned_ctx) {
7688 child_ctx->parent_ctx = cloned_ctx;
7689 child_ctx->parent_gen = parent_ctx->parent_gen;
7690 } else {
7691 child_ctx->parent_ctx = parent_ctx;
7692 child_ctx->parent_gen = parent_ctx->generation;
7694 get_ctx(child_ctx->parent_ctx);
7697 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7698 mutex_unlock(&parent_ctx->mutex);
7700 perf_unpin_context(parent_ctx);
7701 put_ctx(parent_ctx);
7703 return ret;
7707 * Initialize the perf_event context in task_struct
7709 int perf_event_init_task(struct task_struct *child)
7711 int ctxn, ret;
7713 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
7714 mutex_init(&child->perf_event_mutex);
7715 INIT_LIST_HEAD(&child->perf_event_list);
7717 for_each_task_context_nr(ctxn) {
7718 ret = perf_event_init_context(child, ctxn);
7719 if (ret)
7720 return ret;
7723 return 0;
7726 static void __init perf_event_init_all_cpus(void)
7728 struct swevent_htable *swhash;
7729 int cpu;
7731 for_each_possible_cpu(cpu) {
7732 swhash = &per_cpu(swevent_htable, cpu);
7733 mutex_init(&swhash->hlist_mutex);
7734 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
7738 static void perf_event_init_cpu(int cpu)
7740 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7742 mutex_lock(&swhash->hlist_mutex);
7743 if (swhash->hlist_refcount > 0) {
7744 struct swevent_hlist *hlist;
7746 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
7747 WARN_ON(!hlist);
7748 rcu_assign_pointer(swhash->swevent_hlist, hlist);
7750 mutex_unlock(&swhash->hlist_mutex);
7753 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
7754 static void perf_pmu_rotate_stop(struct pmu *pmu)
7756 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7758 WARN_ON(!irqs_disabled());
7760 list_del_init(&cpuctx->rotation_list);
7763 static void __perf_event_exit_context(void *__info)
7765 struct perf_event_context *ctx = __info;
7766 struct perf_event *event, *tmp;
7768 perf_pmu_rotate_stop(ctx->pmu);
7770 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
7771 __perf_remove_from_context(event);
7772 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
7773 __perf_remove_from_context(event);
7776 static void perf_event_exit_cpu_context(int cpu)
7778 struct perf_event_context *ctx;
7779 struct pmu *pmu;
7780 int idx;
7782 idx = srcu_read_lock(&pmus_srcu);
7783 list_for_each_entry_rcu(pmu, &pmus, entry) {
7784 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
7786 mutex_lock(&ctx->mutex);
7787 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
7788 mutex_unlock(&ctx->mutex);
7790 srcu_read_unlock(&pmus_srcu, idx);
7793 static void perf_event_exit_cpu(int cpu)
7795 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7797 mutex_lock(&swhash->hlist_mutex);
7798 swevent_hlist_release(swhash);
7799 mutex_unlock(&swhash->hlist_mutex);
7801 perf_event_exit_cpu_context(cpu);
7803 #else
7804 static inline void perf_event_exit_cpu(int cpu) { }
7805 #endif
7807 static int
7808 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
7810 int cpu;
7812 for_each_online_cpu(cpu)
7813 perf_event_exit_cpu(cpu);
7815 return NOTIFY_OK;
7819 * Run the perf reboot notifier at the very last possible moment so that
7820 * the generic watchdog code runs as long as possible.
7822 static struct notifier_block perf_reboot_notifier = {
7823 .notifier_call = perf_reboot,
7824 .priority = INT_MIN,
7827 static int
7828 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
7830 unsigned int cpu = (long)hcpu;
7832 switch (action & ~CPU_TASKS_FROZEN) {
7834 case CPU_UP_PREPARE:
7835 case CPU_DOWN_FAILED:
7836 perf_event_init_cpu(cpu);
7837 break;
7839 case CPU_UP_CANCELED:
7840 case CPU_DOWN_PREPARE:
7841 perf_event_exit_cpu(cpu);
7842 break;
7843 default:
7844 break;
7847 return NOTIFY_OK;
7850 void __init perf_event_init(void)
7852 int ret;
7854 idr_init(&pmu_idr);
7856 perf_event_init_all_cpus();
7857 init_srcu_struct(&pmus_srcu);
7858 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
7859 perf_pmu_register(&perf_cpu_clock, NULL, -1);
7860 perf_pmu_register(&perf_task_clock, NULL, -1);
7861 perf_tp_register();
7862 perf_cpu_notifier(perf_cpu_notify);
7863 register_reboot_notifier(&perf_reboot_notifier);
7865 ret = init_hw_breakpoint();
7866 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
7868 /* do not patch jump label more than once per second */
7869 jump_label_rate_limit(&perf_sched_events, HZ);
7872 * Build time assertion that we keep the data_head at the intended
7873 * location. IOW, validation we got the __reserved[] size right.
7875 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
7876 != 1024);
7879 static int __init perf_event_sysfs_init(void)
7881 struct pmu *pmu;
7882 int ret;
7884 mutex_lock(&pmus_lock);
7886 ret = bus_register(&pmu_bus);
7887 if (ret)
7888 goto unlock;
7890 list_for_each_entry(pmu, &pmus, entry) {
7891 if (!pmu->name || pmu->type < 0)
7892 continue;
7894 ret = pmu_dev_alloc(pmu);
7895 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
7897 pmu_bus_running = 1;
7898 ret = 0;
7900 unlock:
7901 mutex_unlock(&pmus_lock);
7903 return ret;
7905 device_initcall(perf_event_sysfs_init);
7907 #ifdef CONFIG_CGROUP_PERF
7908 static struct cgroup_subsys_state *
7909 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7911 struct perf_cgroup *jc;
7913 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
7914 if (!jc)
7915 return ERR_PTR(-ENOMEM);
7917 jc->info = alloc_percpu(struct perf_cgroup_info);
7918 if (!jc->info) {
7919 kfree(jc);
7920 return ERR_PTR(-ENOMEM);
7923 return &jc->css;
7926 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
7928 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
7930 free_percpu(jc->info);
7931 kfree(jc);
7934 static int __perf_cgroup_move(void *info)
7936 struct task_struct *task = info;
7937 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
7938 return 0;
7941 static void perf_cgroup_attach(struct cgroup_subsys_state *css,
7942 struct cgroup_taskset *tset)
7944 struct task_struct *task;
7946 cgroup_taskset_for_each(task, css, tset)
7947 task_function_call(task, __perf_cgroup_move, task);
7950 static void perf_cgroup_exit(struct cgroup_subsys_state *css,
7951 struct cgroup_subsys_state *old_css,
7952 struct task_struct *task)
7955 * cgroup_exit() is called in the copy_process() failure path.
7956 * Ignore this case since the task hasn't ran yet, this avoids
7957 * trying to poke a half freed task state from generic code.
7959 if (!(task->flags & PF_EXITING))
7960 return;
7962 task_function_call(task, __perf_cgroup_move, task);
7965 struct cgroup_subsys perf_subsys = {
7966 .name = "perf_event",
7967 .subsys_id = perf_subsys_id,
7968 .css_alloc = perf_cgroup_css_alloc,
7969 .css_free = perf_cgroup_css_free,
7970 .exit = perf_cgroup_exit,
7971 .attach = perf_cgroup_attach,
7973 #endif /* CONFIG_CGROUP_PERF */