sis900: stop using net_device.{base_addr, irq} and convert to __iomem.
[linux-2.6.git] / mm / memcontrol.c
blobb2ee6df0e9bb31eebd3b2f1528cbbcccb2b9c43e
1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
27 #include <linux/mm.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/export.h>
37 #include <linux/mutex.h>
38 #include <linux/rbtree.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/swapops.h>
42 #include <linux/spinlock.h>
43 #include <linux/eventfd.h>
44 #include <linux/sort.h>
45 #include <linux/fs.h>
46 #include <linux/seq_file.h>
47 #include <linux/vmalloc.h>
48 #include <linux/mm_inline.h>
49 #include <linux/page_cgroup.h>
50 #include <linux/cpu.h>
51 #include <linux/oom.h>
52 #include "internal.h"
53 #include <net/sock.h>
54 #include <net/tcp_memcontrol.h>
56 #include <asm/uaccess.h>
58 #include <trace/events/vmscan.h>
60 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
61 #define MEM_CGROUP_RECLAIM_RETRIES 5
62 struct mem_cgroup *root_mem_cgroup __read_mostly;
64 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
65 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
66 int do_swap_account __read_mostly;
68 /* for remember boot option*/
69 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
70 static int really_do_swap_account __initdata = 1;
71 #else
72 static int really_do_swap_account __initdata = 0;
73 #endif
75 #else
76 #define do_swap_account (0)
77 #endif
81 * Statistics for memory cgroup.
83 enum mem_cgroup_stat_index {
85 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
87 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
88 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
89 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
90 MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
91 MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
92 MEM_CGROUP_STAT_NSTATS,
95 enum mem_cgroup_events_index {
96 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
97 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
98 MEM_CGROUP_EVENTS_COUNT, /* # of pages paged in/out */
99 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
100 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
101 MEM_CGROUP_EVENTS_NSTATS,
104 * Per memcg event counter is incremented at every pagein/pageout. With THP,
105 * it will be incremated by the number of pages. This counter is used for
106 * for trigger some periodic events. This is straightforward and better
107 * than using jiffies etc. to handle periodic memcg event.
109 enum mem_cgroup_events_target {
110 MEM_CGROUP_TARGET_THRESH,
111 MEM_CGROUP_TARGET_SOFTLIMIT,
112 MEM_CGROUP_TARGET_NUMAINFO,
113 MEM_CGROUP_NTARGETS,
115 #define THRESHOLDS_EVENTS_TARGET (128)
116 #define SOFTLIMIT_EVENTS_TARGET (1024)
117 #define NUMAINFO_EVENTS_TARGET (1024)
119 struct mem_cgroup_stat_cpu {
120 long count[MEM_CGROUP_STAT_NSTATS];
121 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
122 unsigned long targets[MEM_CGROUP_NTARGETS];
125 struct mem_cgroup_reclaim_iter {
126 /* css_id of the last scanned hierarchy member */
127 int position;
128 /* scan generation, increased every round-trip */
129 unsigned int generation;
133 * per-zone information in memory controller.
135 struct mem_cgroup_per_zone {
136 struct lruvec lruvec;
137 unsigned long lru_size[NR_LRU_LISTS];
139 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
141 struct zone_reclaim_stat reclaim_stat;
142 struct rb_node tree_node; /* RB tree node */
143 unsigned long long usage_in_excess;/* Set to the value by which */
144 /* the soft limit is exceeded*/
145 bool on_tree;
146 struct mem_cgroup *memcg; /* Back pointer, we cannot */
147 /* use container_of */
150 struct mem_cgroup_per_node {
151 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
154 struct mem_cgroup_lru_info {
155 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
159 * Cgroups above their limits are maintained in a RB-Tree, independent of
160 * their hierarchy representation
163 struct mem_cgroup_tree_per_zone {
164 struct rb_root rb_root;
165 spinlock_t lock;
168 struct mem_cgroup_tree_per_node {
169 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
172 struct mem_cgroup_tree {
173 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
176 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
178 struct mem_cgroup_threshold {
179 struct eventfd_ctx *eventfd;
180 u64 threshold;
183 /* For threshold */
184 struct mem_cgroup_threshold_ary {
185 /* An array index points to threshold just below usage. */
186 int current_threshold;
187 /* Size of entries[] */
188 unsigned int size;
189 /* Array of thresholds */
190 struct mem_cgroup_threshold entries[0];
193 struct mem_cgroup_thresholds {
194 /* Primary thresholds array */
195 struct mem_cgroup_threshold_ary *primary;
197 * Spare threshold array.
198 * This is needed to make mem_cgroup_unregister_event() "never fail".
199 * It must be able to store at least primary->size - 1 entries.
201 struct mem_cgroup_threshold_ary *spare;
204 /* for OOM */
205 struct mem_cgroup_eventfd_list {
206 struct list_head list;
207 struct eventfd_ctx *eventfd;
210 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
211 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
214 * The memory controller data structure. The memory controller controls both
215 * page cache and RSS per cgroup. We would eventually like to provide
216 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
217 * to help the administrator determine what knobs to tune.
219 * TODO: Add a water mark for the memory controller. Reclaim will begin when
220 * we hit the water mark. May be even add a low water mark, such that
221 * no reclaim occurs from a cgroup at it's low water mark, this is
222 * a feature that will be implemented much later in the future.
224 struct mem_cgroup {
225 struct cgroup_subsys_state css;
227 * the counter to account for memory usage
229 struct res_counter res;
231 union {
233 * the counter to account for mem+swap usage.
235 struct res_counter memsw;
238 * rcu_freeing is used only when freeing struct mem_cgroup,
239 * so put it into a union to avoid wasting more memory.
240 * It must be disjoint from the css field. It could be
241 * in a union with the res field, but res plays a much
242 * larger part in mem_cgroup life than memsw, and might
243 * be of interest, even at time of free, when debugging.
244 * So share rcu_head with the less interesting memsw.
246 struct rcu_head rcu_freeing;
248 * But when using vfree(), that cannot be done at
249 * interrupt time, so we must then queue the work.
251 struct work_struct work_freeing;
255 * Per cgroup active and inactive list, similar to the
256 * per zone LRU lists.
258 struct mem_cgroup_lru_info info;
259 int last_scanned_node;
260 #if MAX_NUMNODES > 1
261 nodemask_t scan_nodes;
262 atomic_t numainfo_events;
263 atomic_t numainfo_updating;
264 #endif
266 * Should the accounting and control be hierarchical, per subtree?
268 bool use_hierarchy;
270 bool oom_lock;
271 atomic_t under_oom;
273 atomic_t refcnt;
275 int swappiness;
276 /* OOM-Killer disable */
277 int oom_kill_disable;
279 /* set when res.limit == memsw.limit */
280 bool memsw_is_minimum;
282 /* protect arrays of thresholds */
283 struct mutex thresholds_lock;
285 /* thresholds for memory usage. RCU-protected */
286 struct mem_cgroup_thresholds thresholds;
288 /* thresholds for mem+swap usage. RCU-protected */
289 struct mem_cgroup_thresholds memsw_thresholds;
291 /* For oom notifier event fd */
292 struct list_head oom_notify;
295 * Should we move charges of a task when a task is moved into this
296 * mem_cgroup ? And what type of charges should we move ?
298 unsigned long move_charge_at_immigrate;
300 * set > 0 if pages under this cgroup are moving to other cgroup.
302 atomic_t moving_account;
303 /* taken only while moving_account > 0 */
304 spinlock_t move_lock;
306 * percpu counter.
308 struct mem_cgroup_stat_cpu *stat;
310 * used when a cpu is offlined or other synchronizations
311 * See mem_cgroup_read_stat().
313 struct mem_cgroup_stat_cpu nocpu_base;
314 spinlock_t pcp_counter_lock;
316 #ifdef CONFIG_INET
317 struct tcp_memcontrol tcp_mem;
318 #endif
321 /* Stuffs for move charges at task migration. */
323 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
324 * left-shifted bitmap of these types.
326 enum move_type {
327 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
328 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
329 NR_MOVE_TYPE,
332 /* "mc" and its members are protected by cgroup_mutex */
333 static struct move_charge_struct {
334 spinlock_t lock; /* for from, to */
335 struct mem_cgroup *from;
336 struct mem_cgroup *to;
337 unsigned long precharge;
338 unsigned long moved_charge;
339 unsigned long moved_swap;
340 struct task_struct *moving_task; /* a task moving charges */
341 wait_queue_head_t waitq; /* a waitq for other context */
342 } mc = {
343 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
344 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
347 static bool move_anon(void)
349 return test_bit(MOVE_CHARGE_TYPE_ANON,
350 &mc.to->move_charge_at_immigrate);
353 static bool move_file(void)
355 return test_bit(MOVE_CHARGE_TYPE_FILE,
356 &mc.to->move_charge_at_immigrate);
360 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
361 * limit reclaim to prevent infinite loops, if they ever occur.
363 #define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
364 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
366 enum charge_type {
367 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
368 MEM_CGROUP_CHARGE_TYPE_MAPPED,
369 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
370 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
371 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
372 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
373 NR_CHARGE_TYPE,
376 /* for encoding cft->private value on file */
377 #define _MEM (0)
378 #define _MEMSWAP (1)
379 #define _OOM_TYPE (2)
380 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
381 #define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
382 #define MEMFILE_ATTR(val) ((val) & 0xffff)
383 /* Used for OOM nofiier */
384 #define OOM_CONTROL (0)
387 * Reclaim flags for mem_cgroup_hierarchical_reclaim
389 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
390 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
391 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
392 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
394 static void mem_cgroup_get(struct mem_cgroup *memcg);
395 static void mem_cgroup_put(struct mem_cgroup *memcg);
397 /* Writing them here to avoid exposing memcg's inner layout */
398 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
399 #include <net/sock.h>
400 #include <net/ip.h>
402 static bool mem_cgroup_is_root(struct mem_cgroup *memcg);
403 void sock_update_memcg(struct sock *sk)
405 if (mem_cgroup_sockets_enabled) {
406 struct mem_cgroup *memcg;
408 BUG_ON(!sk->sk_prot->proto_cgroup);
410 /* Socket cloning can throw us here with sk_cgrp already
411 * filled. It won't however, necessarily happen from
412 * process context. So the test for root memcg given
413 * the current task's memcg won't help us in this case.
415 * Respecting the original socket's memcg is a better
416 * decision in this case.
418 if (sk->sk_cgrp) {
419 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
420 mem_cgroup_get(sk->sk_cgrp->memcg);
421 return;
424 rcu_read_lock();
425 memcg = mem_cgroup_from_task(current);
426 if (!mem_cgroup_is_root(memcg)) {
427 mem_cgroup_get(memcg);
428 sk->sk_cgrp = sk->sk_prot->proto_cgroup(memcg);
430 rcu_read_unlock();
433 EXPORT_SYMBOL(sock_update_memcg);
435 void sock_release_memcg(struct sock *sk)
437 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
438 struct mem_cgroup *memcg;
439 WARN_ON(!sk->sk_cgrp->memcg);
440 memcg = sk->sk_cgrp->memcg;
441 mem_cgroup_put(memcg);
445 #ifdef CONFIG_INET
446 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
448 if (!memcg || mem_cgroup_is_root(memcg))
449 return NULL;
451 return &memcg->tcp_mem.cg_proto;
453 EXPORT_SYMBOL(tcp_proto_cgroup);
454 #endif /* CONFIG_INET */
455 #endif /* CONFIG_CGROUP_MEM_RES_CTLR_KMEM */
457 static void drain_all_stock_async(struct mem_cgroup *memcg);
459 static struct mem_cgroup_per_zone *
460 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
462 return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
465 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
467 return &memcg->css;
470 static struct mem_cgroup_per_zone *
471 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
473 int nid = page_to_nid(page);
474 int zid = page_zonenum(page);
476 return mem_cgroup_zoneinfo(memcg, nid, zid);
479 static struct mem_cgroup_tree_per_zone *
480 soft_limit_tree_node_zone(int nid, int zid)
482 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
485 static struct mem_cgroup_tree_per_zone *
486 soft_limit_tree_from_page(struct page *page)
488 int nid = page_to_nid(page);
489 int zid = page_zonenum(page);
491 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
494 static void
495 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
496 struct mem_cgroup_per_zone *mz,
497 struct mem_cgroup_tree_per_zone *mctz,
498 unsigned long long new_usage_in_excess)
500 struct rb_node **p = &mctz->rb_root.rb_node;
501 struct rb_node *parent = NULL;
502 struct mem_cgroup_per_zone *mz_node;
504 if (mz->on_tree)
505 return;
507 mz->usage_in_excess = new_usage_in_excess;
508 if (!mz->usage_in_excess)
509 return;
510 while (*p) {
511 parent = *p;
512 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
513 tree_node);
514 if (mz->usage_in_excess < mz_node->usage_in_excess)
515 p = &(*p)->rb_left;
517 * We can't avoid mem cgroups that are over their soft
518 * limit by the same amount
520 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
521 p = &(*p)->rb_right;
523 rb_link_node(&mz->tree_node, parent, p);
524 rb_insert_color(&mz->tree_node, &mctz->rb_root);
525 mz->on_tree = true;
528 static void
529 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
530 struct mem_cgroup_per_zone *mz,
531 struct mem_cgroup_tree_per_zone *mctz)
533 if (!mz->on_tree)
534 return;
535 rb_erase(&mz->tree_node, &mctz->rb_root);
536 mz->on_tree = false;
539 static void
540 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
541 struct mem_cgroup_per_zone *mz,
542 struct mem_cgroup_tree_per_zone *mctz)
544 spin_lock(&mctz->lock);
545 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
546 spin_unlock(&mctz->lock);
550 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
552 unsigned long long excess;
553 struct mem_cgroup_per_zone *mz;
554 struct mem_cgroup_tree_per_zone *mctz;
555 int nid = page_to_nid(page);
556 int zid = page_zonenum(page);
557 mctz = soft_limit_tree_from_page(page);
560 * Necessary to update all ancestors when hierarchy is used.
561 * because their event counter is not touched.
563 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
564 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
565 excess = res_counter_soft_limit_excess(&memcg->res);
567 * We have to update the tree if mz is on RB-tree or
568 * mem is over its softlimit.
570 if (excess || mz->on_tree) {
571 spin_lock(&mctz->lock);
572 /* if on-tree, remove it */
573 if (mz->on_tree)
574 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
576 * Insert again. mz->usage_in_excess will be updated.
577 * If excess is 0, no tree ops.
579 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
580 spin_unlock(&mctz->lock);
585 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
587 int node, zone;
588 struct mem_cgroup_per_zone *mz;
589 struct mem_cgroup_tree_per_zone *mctz;
591 for_each_node(node) {
592 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
593 mz = mem_cgroup_zoneinfo(memcg, node, zone);
594 mctz = soft_limit_tree_node_zone(node, zone);
595 mem_cgroup_remove_exceeded(memcg, mz, mctz);
600 static struct mem_cgroup_per_zone *
601 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
603 struct rb_node *rightmost = NULL;
604 struct mem_cgroup_per_zone *mz;
606 retry:
607 mz = NULL;
608 rightmost = rb_last(&mctz->rb_root);
609 if (!rightmost)
610 goto done; /* Nothing to reclaim from */
612 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
614 * Remove the node now but someone else can add it back,
615 * we will to add it back at the end of reclaim to its correct
616 * position in the tree.
618 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
619 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
620 !css_tryget(&mz->memcg->css))
621 goto retry;
622 done:
623 return mz;
626 static struct mem_cgroup_per_zone *
627 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
629 struct mem_cgroup_per_zone *mz;
631 spin_lock(&mctz->lock);
632 mz = __mem_cgroup_largest_soft_limit_node(mctz);
633 spin_unlock(&mctz->lock);
634 return mz;
638 * Implementation Note: reading percpu statistics for memcg.
640 * Both of vmstat[] and percpu_counter has threshold and do periodic
641 * synchronization to implement "quick" read. There are trade-off between
642 * reading cost and precision of value. Then, we may have a chance to implement
643 * a periodic synchronizion of counter in memcg's counter.
645 * But this _read() function is used for user interface now. The user accounts
646 * memory usage by memory cgroup and he _always_ requires exact value because
647 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
648 * have to visit all online cpus and make sum. So, for now, unnecessary
649 * synchronization is not implemented. (just implemented for cpu hotplug)
651 * If there are kernel internal actions which can make use of some not-exact
652 * value, and reading all cpu value can be performance bottleneck in some
653 * common workload, threashold and synchonization as vmstat[] should be
654 * implemented.
656 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
657 enum mem_cgroup_stat_index idx)
659 long val = 0;
660 int cpu;
662 get_online_cpus();
663 for_each_online_cpu(cpu)
664 val += per_cpu(memcg->stat->count[idx], cpu);
665 #ifdef CONFIG_HOTPLUG_CPU
666 spin_lock(&memcg->pcp_counter_lock);
667 val += memcg->nocpu_base.count[idx];
668 spin_unlock(&memcg->pcp_counter_lock);
669 #endif
670 put_online_cpus();
671 return val;
674 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
675 bool charge)
677 int val = (charge) ? 1 : -1;
678 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
681 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
682 enum mem_cgroup_events_index idx)
684 unsigned long val = 0;
685 int cpu;
687 for_each_online_cpu(cpu)
688 val += per_cpu(memcg->stat->events[idx], cpu);
689 #ifdef CONFIG_HOTPLUG_CPU
690 spin_lock(&memcg->pcp_counter_lock);
691 val += memcg->nocpu_base.events[idx];
692 spin_unlock(&memcg->pcp_counter_lock);
693 #endif
694 return val;
697 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
698 bool anon, int nr_pages)
700 preempt_disable();
703 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
704 * counted as CACHE even if it's on ANON LRU.
706 if (anon)
707 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
708 nr_pages);
709 else
710 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
711 nr_pages);
713 /* pagein of a big page is an event. So, ignore page size */
714 if (nr_pages > 0)
715 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
716 else {
717 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
718 nr_pages = -nr_pages; /* for event */
721 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
723 preempt_enable();
726 unsigned long
727 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
728 unsigned int lru_mask)
730 struct mem_cgroup_per_zone *mz;
731 enum lru_list lru;
732 unsigned long ret = 0;
734 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
736 for_each_lru(lru) {
737 if (BIT(lru) & lru_mask)
738 ret += mz->lru_size[lru];
740 return ret;
743 static unsigned long
744 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
745 int nid, unsigned int lru_mask)
747 u64 total = 0;
748 int zid;
750 for (zid = 0; zid < MAX_NR_ZONES; zid++)
751 total += mem_cgroup_zone_nr_lru_pages(memcg,
752 nid, zid, lru_mask);
754 return total;
757 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
758 unsigned int lru_mask)
760 int nid;
761 u64 total = 0;
763 for_each_node_state(nid, N_HIGH_MEMORY)
764 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
765 return total;
768 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
769 enum mem_cgroup_events_target target)
771 unsigned long val, next;
773 val = __this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
774 next = __this_cpu_read(memcg->stat->targets[target]);
775 /* from time_after() in jiffies.h */
776 if ((long)next - (long)val < 0) {
777 switch (target) {
778 case MEM_CGROUP_TARGET_THRESH:
779 next = val + THRESHOLDS_EVENTS_TARGET;
780 break;
781 case MEM_CGROUP_TARGET_SOFTLIMIT:
782 next = val + SOFTLIMIT_EVENTS_TARGET;
783 break;
784 case MEM_CGROUP_TARGET_NUMAINFO:
785 next = val + NUMAINFO_EVENTS_TARGET;
786 break;
787 default:
788 break;
790 __this_cpu_write(memcg->stat->targets[target], next);
791 return true;
793 return false;
797 * Check events in order.
800 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
802 preempt_disable();
803 /* threshold event is triggered in finer grain than soft limit */
804 if (unlikely(mem_cgroup_event_ratelimit(memcg,
805 MEM_CGROUP_TARGET_THRESH))) {
806 bool do_softlimit;
807 bool do_numainfo __maybe_unused;
809 do_softlimit = mem_cgroup_event_ratelimit(memcg,
810 MEM_CGROUP_TARGET_SOFTLIMIT);
811 #if MAX_NUMNODES > 1
812 do_numainfo = mem_cgroup_event_ratelimit(memcg,
813 MEM_CGROUP_TARGET_NUMAINFO);
814 #endif
815 preempt_enable();
817 mem_cgroup_threshold(memcg);
818 if (unlikely(do_softlimit))
819 mem_cgroup_update_tree(memcg, page);
820 #if MAX_NUMNODES > 1
821 if (unlikely(do_numainfo))
822 atomic_inc(&memcg->numainfo_events);
823 #endif
824 } else
825 preempt_enable();
828 struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
830 return container_of(cgroup_subsys_state(cont,
831 mem_cgroup_subsys_id), struct mem_cgroup,
832 css);
835 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
838 * mm_update_next_owner() may clear mm->owner to NULL
839 * if it races with swapoff, page migration, etc.
840 * So this can be called with p == NULL.
842 if (unlikely(!p))
843 return NULL;
845 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
846 struct mem_cgroup, css);
849 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
851 struct mem_cgroup *memcg = NULL;
853 if (!mm)
854 return NULL;
856 * Because we have no locks, mm->owner's may be being moved to other
857 * cgroup. We use css_tryget() here even if this looks
858 * pessimistic (rather than adding locks here).
860 rcu_read_lock();
861 do {
862 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
863 if (unlikely(!memcg))
864 break;
865 } while (!css_tryget(&memcg->css));
866 rcu_read_unlock();
867 return memcg;
871 * mem_cgroup_iter - iterate over memory cgroup hierarchy
872 * @root: hierarchy root
873 * @prev: previously returned memcg, NULL on first invocation
874 * @reclaim: cookie for shared reclaim walks, NULL for full walks
876 * Returns references to children of the hierarchy below @root, or
877 * @root itself, or %NULL after a full round-trip.
879 * Caller must pass the return value in @prev on subsequent
880 * invocations for reference counting, or use mem_cgroup_iter_break()
881 * to cancel a hierarchy walk before the round-trip is complete.
883 * Reclaimers can specify a zone and a priority level in @reclaim to
884 * divide up the memcgs in the hierarchy among all concurrent
885 * reclaimers operating on the same zone and priority.
887 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
888 struct mem_cgroup *prev,
889 struct mem_cgroup_reclaim_cookie *reclaim)
891 struct mem_cgroup *memcg = NULL;
892 int id = 0;
894 if (mem_cgroup_disabled())
895 return NULL;
897 if (!root)
898 root = root_mem_cgroup;
900 if (prev && !reclaim)
901 id = css_id(&prev->css);
903 if (prev && prev != root)
904 css_put(&prev->css);
906 if (!root->use_hierarchy && root != root_mem_cgroup) {
907 if (prev)
908 return NULL;
909 return root;
912 while (!memcg) {
913 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
914 struct cgroup_subsys_state *css;
916 if (reclaim) {
917 int nid = zone_to_nid(reclaim->zone);
918 int zid = zone_idx(reclaim->zone);
919 struct mem_cgroup_per_zone *mz;
921 mz = mem_cgroup_zoneinfo(root, nid, zid);
922 iter = &mz->reclaim_iter[reclaim->priority];
923 if (prev && reclaim->generation != iter->generation)
924 return NULL;
925 id = iter->position;
928 rcu_read_lock();
929 css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
930 if (css) {
931 if (css == &root->css || css_tryget(css))
932 memcg = container_of(css,
933 struct mem_cgroup, css);
934 } else
935 id = 0;
936 rcu_read_unlock();
938 if (reclaim) {
939 iter->position = id;
940 if (!css)
941 iter->generation++;
942 else if (!prev && memcg)
943 reclaim->generation = iter->generation;
946 if (prev && !css)
947 return NULL;
949 return memcg;
953 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
954 * @root: hierarchy root
955 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
957 void mem_cgroup_iter_break(struct mem_cgroup *root,
958 struct mem_cgroup *prev)
960 if (!root)
961 root = root_mem_cgroup;
962 if (prev && prev != root)
963 css_put(&prev->css);
967 * Iteration constructs for visiting all cgroups (under a tree). If
968 * loops are exited prematurely (break), mem_cgroup_iter_break() must
969 * be used for reference counting.
971 #define for_each_mem_cgroup_tree(iter, root) \
972 for (iter = mem_cgroup_iter(root, NULL, NULL); \
973 iter != NULL; \
974 iter = mem_cgroup_iter(root, iter, NULL))
976 #define for_each_mem_cgroup(iter) \
977 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
978 iter != NULL; \
979 iter = mem_cgroup_iter(NULL, iter, NULL))
981 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
983 return (memcg == root_mem_cgroup);
986 void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
988 struct mem_cgroup *memcg;
990 if (!mm)
991 return;
993 rcu_read_lock();
994 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
995 if (unlikely(!memcg))
996 goto out;
998 switch (idx) {
999 case PGFAULT:
1000 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1001 break;
1002 case PGMAJFAULT:
1003 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1004 break;
1005 default:
1006 BUG();
1008 out:
1009 rcu_read_unlock();
1011 EXPORT_SYMBOL(mem_cgroup_count_vm_event);
1014 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1015 * @zone: zone of the wanted lruvec
1016 * @mem: memcg of the wanted lruvec
1018 * Returns the lru list vector holding pages for the given @zone and
1019 * @mem. This can be the global zone lruvec, if the memory controller
1020 * is disabled.
1022 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1023 struct mem_cgroup *memcg)
1025 struct mem_cgroup_per_zone *mz;
1027 if (mem_cgroup_disabled())
1028 return &zone->lruvec;
1030 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1031 return &mz->lruvec;
1035 * Following LRU functions are allowed to be used without PCG_LOCK.
1036 * Operations are called by routine of global LRU independently from memcg.
1037 * What we have to take care of here is validness of pc->mem_cgroup.
1039 * Changes to pc->mem_cgroup happens when
1040 * 1. charge
1041 * 2. moving account
1042 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1043 * It is added to LRU before charge.
1044 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1045 * When moving account, the page is not on LRU. It's isolated.
1049 * mem_cgroup_lru_add_list - account for adding an lru page and return lruvec
1050 * @zone: zone of the page
1051 * @page: the page
1052 * @lru: current lru
1054 * This function accounts for @page being added to @lru, and returns
1055 * the lruvec for the given @zone and the memcg @page is charged to.
1057 * The callsite is then responsible for physically linking the page to
1058 * the returned lruvec->lists[@lru].
1060 struct lruvec *mem_cgroup_lru_add_list(struct zone *zone, struct page *page,
1061 enum lru_list lru)
1063 struct mem_cgroup_per_zone *mz;
1064 struct mem_cgroup *memcg;
1065 struct page_cgroup *pc;
1067 if (mem_cgroup_disabled())
1068 return &zone->lruvec;
1070 pc = lookup_page_cgroup(page);
1071 memcg = pc->mem_cgroup;
1074 * Surreptitiously switch any uncharged page to root:
1075 * an uncharged page off lru does nothing to secure
1076 * its former mem_cgroup from sudden removal.
1078 * Our caller holds lru_lock, and PageCgroupUsed is updated
1079 * under page_cgroup lock: between them, they make all uses
1080 * of pc->mem_cgroup safe.
1082 if (!PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1083 pc->mem_cgroup = memcg = root_mem_cgroup;
1085 mz = page_cgroup_zoneinfo(memcg, page);
1086 /* compound_order() is stabilized through lru_lock */
1087 mz->lru_size[lru] += 1 << compound_order(page);
1088 return &mz->lruvec;
1092 * mem_cgroup_lru_del_list - account for removing an lru page
1093 * @page: the page
1094 * @lru: target lru
1096 * This function accounts for @page being removed from @lru.
1098 * The callsite is then responsible for physically unlinking
1099 * @page->lru.
1101 void mem_cgroup_lru_del_list(struct page *page, enum lru_list lru)
1103 struct mem_cgroup_per_zone *mz;
1104 struct mem_cgroup *memcg;
1105 struct page_cgroup *pc;
1107 if (mem_cgroup_disabled())
1108 return;
1110 pc = lookup_page_cgroup(page);
1111 memcg = pc->mem_cgroup;
1112 VM_BUG_ON(!memcg);
1113 mz = page_cgroup_zoneinfo(memcg, page);
1114 /* huge page split is done under lru_lock. so, we have no races. */
1115 VM_BUG_ON(mz->lru_size[lru] < (1 << compound_order(page)));
1116 mz->lru_size[lru] -= 1 << compound_order(page);
1119 void mem_cgroup_lru_del(struct page *page)
1121 mem_cgroup_lru_del_list(page, page_lru(page));
1125 * mem_cgroup_lru_move_lists - account for moving a page between lrus
1126 * @zone: zone of the page
1127 * @page: the page
1128 * @from: current lru
1129 * @to: target lru
1131 * This function accounts for @page being moved between the lrus @from
1132 * and @to, and returns the lruvec for the given @zone and the memcg
1133 * @page is charged to.
1135 * The callsite is then responsible for physically relinking
1136 * @page->lru to the returned lruvec->lists[@to].
1138 struct lruvec *mem_cgroup_lru_move_lists(struct zone *zone,
1139 struct page *page,
1140 enum lru_list from,
1141 enum lru_list to)
1143 /* XXX: Optimize this, especially for @from == @to */
1144 mem_cgroup_lru_del_list(page, from);
1145 return mem_cgroup_lru_add_list(zone, page, to);
1149 * Checks whether given mem is same or in the root_mem_cgroup's
1150 * hierarchy subtree
1152 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1153 struct mem_cgroup *memcg)
1155 if (root_memcg != memcg) {
1156 return (root_memcg->use_hierarchy &&
1157 css_is_ancestor(&memcg->css, &root_memcg->css));
1160 return true;
1163 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1165 int ret;
1166 struct mem_cgroup *curr = NULL;
1167 struct task_struct *p;
1169 p = find_lock_task_mm(task);
1170 if (p) {
1171 curr = try_get_mem_cgroup_from_mm(p->mm);
1172 task_unlock(p);
1173 } else {
1175 * All threads may have already detached their mm's, but the oom
1176 * killer still needs to detect if they have already been oom
1177 * killed to prevent needlessly killing additional tasks.
1179 task_lock(task);
1180 curr = mem_cgroup_from_task(task);
1181 if (curr)
1182 css_get(&curr->css);
1183 task_unlock(task);
1185 if (!curr)
1186 return 0;
1188 * We should check use_hierarchy of "memcg" not "curr". Because checking
1189 * use_hierarchy of "curr" here make this function true if hierarchy is
1190 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1191 * hierarchy(even if use_hierarchy is disabled in "memcg").
1193 ret = mem_cgroup_same_or_subtree(memcg, curr);
1194 css_put(&curr->css);
1195 return ret;
1198 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg, struct zone *zone)
1200 unsigned long inactive_ratio;
1201 int nid = zone_to_nid(zone);
1202 int zid = zone_idx(zone);
1203 unsigned long inactive;
1204 unsigned long active;
1205 unsigned long gb;
1207 inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1208 BIT(LRU_INACTIVE_ANON));
1209 active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1210 BIT(LRU_ACTIVE_ANON));
1212 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1213 if (gb)
1214 inactive_ratio = int_sqrt(10 * gb);
1215 else
1216 inactive_ratio = 1;
1218 return inactive * inactive_ratio < active;
1221 int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg, struct zone *zone)
1223 unsigned long active;
1224 unsigned long inactive;
1225 int zid = zone_idx(zone);
1226 int nid = zone_to_nid(zone);
1228 inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1229 BIT(LRU_INACTIVE_FILE));
1230 active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1231 BIT(LRU_ACTIVE_FILE));
1233 return (active > inactive);
1236 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1237 struct zone *zone)
1239 int nid = zone_to_nid(zone);
1240 int zid = zone_idx(zone);
1241 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1243 return &mz->reclaim_stat;
1246 struct zone_reclaim_stat *
1247 mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1249 struct page_cgroup *pc;
1250 struct mem_cgroup_per_zone *mz;
1252 if (mem_cgroup_disabled())
1253 return NULL;
1255 pc = lookup_page_cgroup(page);
1256 if (!PageCgroupUsed(pc))
1257 return NULL;
1258 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1259 smp_rmb();
1260 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1261 return &mz->reclaim_stat;
1264 #define mem_cgroup_from_res_counter(counter, member) \
1265 container_of(counter, struct mem_cgroup, member)
1268 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1269 * @mem: the memory cgroup
1271 * Returns the maximum amount of memory @mem can be charged with, in
1272 * pages.
1274 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1276 unsigned long long margin;
1278 margin = res_counter_margin(&memcg->res);
1279 if (do_swap_account)
1280 margin = min(margin, res_counter_margin(&memcg->memsw));
1281 return margin >> PAGE_SHIFT;
1284 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1286 struct cgroup *cgrp = memcg->css.cgroup;
1288 /* root ? */
1289 if (cgrp->parent == NULL)
1290 return vm_swappiness;
1292 return memcg->swappiness;
1296 * memcg->moving_account is used for checking possibility that some thread is
1297 * calling move_account(). When a thread on CPU-A starts moving pages under
1298 * a memcg, other threads should check memcg->moving_account under
1299 * rcu_read_lock(), like this:
1301 * CPU-A CPU-B
1302 * rcu_read_lock()
1303 * memcg->moving_account+1 if (memcg->mocing_account)
1304 * take heavy locks.
1305 * synchronize_rcu() update something.
1306 * rcu_read_unlock()
1307 * start move here.
1310 /* for quick checking without looking up memcg */
1311 atomic_t memcg_moving __read_mostly;
1313 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1315 atomic_inc(&memcg_moving);
1316 atomic_inc(&memcg->moving_account);
1317 synchronize_rcu();
1320 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1323 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1324 * We check NULL in callee rather than caller.
1326 if (memcg) {
1327 atomic_dec(&memcg_moving);
1328 atomic_dec(&memcg->moving_account);
1333 * 2 routines for checking "mem" is under move_account() or not.
1335 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1336 * is used for avoiding races in accounting. If true,
1337 * pc->mem_cgroup may be overwritten.
1339 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1340 * under hierarchy of moving cgroups. This is for
1341 * waiting at hith-memory prressure caused by "move".
1344 static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1346 VM_BUG_ON(!rcu_read_lock_held());
1347 return atomic_read(&memcg->moving_account) > 0;
1350 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1352 struct mem_cgroup *from;
1353 struct mem_cgroup *to;
1354 bool ret = false;
1356 * Unlike task_move routines, we access mc.to, mc.from not under
1357 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1359 spin_lock(&mc.lock);
1360 from = mc.from;
1361 to = mc.to;
1362 if (!from)
1363 goto unlock;
1365 ret = mem_cgroup_same_or_subtree(memcg, from)
1366 || mem_cgroup_same_or_subtree(memcg, to);
1367 unlock:
1368 spin_unlock(&mc.lock);
1369 return ret;
1372 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1374 if (mc.moving_task && current != mc.moving_task) {
1375 if (mem_cgroup_under_move(memcg)) {
1376 DEFINE_WAIT(wait);
1377 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1378 /* moving charge context might have finished. */
1379 if (mc.moving_task)
1380 schedule();
1381 finish_wait(&mc.waitq, &wait);
1382 return true;
1385 return false;
1389 * Take this lock when
1390 * - a code tries to modify page's memcg while it's USED.
1391 * - a code tries to modify page state accounting in a memcg.
1392 * see mem_cgroup_stolen(), too.
1394 static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1395 unsigned long *flags)
1397 spin_lock_irqsave(&memcg->move_lock, *flags);
1400 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1401 unsigned long *flags)
1403 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1407 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1408 * @memcg: The memory cgroup that went over limit
1409 * @p: Task that is going to be killed
1411 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1412 * enabled
1414 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1416 struct cgroup *task_cgrp;
1417 struct cgroup *mem_cgrp;
1419 * Need a buffer in BSS, can't rely on allocations. The code relies
1420 * on the assumption that OOM is serialized for memory controller.
1421 * If this assumption is broken, revisit this code.
1423 static char memcg_name[PATH_MAX];
1424 int ret;
1426 if (!memcg || !p)
1427 return;
1429 rcu_read_lock();
1431 mem_cgrp = memcg->css.cgroup;
1432 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1434 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1435 if (ret < 0) {
1437 * Unfortunately, we are unable to convert to a useful name
1438 * But we'll still print out the usage information
1440 rcu_read_unlock();
1441 goto done;
1443 rcu_read_unlock();
1445 printk(KERN_INFO "Task in %s killed", memcg_name);
1447 rcu_read_lock();
1448 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1449 if (ret < 0) {
1450 rcu_read_unlock();
1451 goto done;
1453 rcu_read_unlock();
1456 * Continues from above, so we don't need an KERN_ level
1458 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1459 done:
1461 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1462 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1463 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1464 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1465 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1466 "failcnt %llu\n",
1467 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1468 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1469 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1473 * This function returns the number of memcg under hierarchy tree. Returns
1474 * 1(self count) if no children.
1476 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1478 int num = 0;
1479 struct mem_cgroup *iter;
1481 for_each_mem_cgroup_tree(iter, memcg)
1482 num++;
1483 return num;
1487 * Return the memory (and swap, if configured) limit for a memcg.
1489 u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1491 u64 limit;
1492 u64 memsw;
1494 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1495 limit += total_swap_pages << PAGE_SHIFT;
1497 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1499 * If memsw is finite and limits the amount of swap space available
1500 * to this memcg, return that limit.
1502 return min(limit, memsw);
1505 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1506 gfp_t gfp_mask,
1507 unsigned long flags)
1509 unsigned long total = 0;
1510 bool noswap = false;
1511 int loop;
1513 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1514 noswap = true;
1515 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1516 noswap = true;
1518 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1519 if (loop)
1520 drain_all_stock_async(memcg);
1521 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1523 * Allow limit shrinkers, which are triggered directly
1524 * by userspace, to catch signals and stop reclaim
1525 * after minimal progress, regardless of the margin.
1527 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1528 break;
1529 if (mem_cgroup_margin(memcg))
1530 break;
1532 * If nothing was reclaimed after two attempts, there
1533 * may be no reclaimable pages in this hierarchy.
1535 if (loop && !total)
1536 break;
1538 return total;
1542 * test_mem_cgroup_node_reclaimable
1543 * @mem: the target memcg
1544 * @nid: the node ID to be checked.
1545 * @noswap : specify true here if the user wants flle only information.
1547 * This function returns whether the specified memcg contains any
1548 * reclaimable pages on a node. Returns true if there are any reclaimable
1549 * pages in the node.
1551 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1552 int nid, bool noswap)
1554 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1555 return true;
1556 if (noswap || !total_swap_pages)
1557 return false;
1558 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1559 return true;
1560 return false;
1563 #if MAX_NUMNODES > 1
1566 * Always updating the nodemask is not very good - even if we have an empty
1567 * list or the wrong list here, we can start from some node and traverse all
1568 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1571 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1573 int nid;
1575 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1576 * pagein/pageout changes since the last update.
1578 if (!atomic_read(&memcg->numainfo_events))
1579 return;
1580 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1581 return;
1583 /* make a nodemask where this memcg uses memory from */
1584 memcg->scan_nodes = node_states[N_HIGH_MEMORY];
1586 for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1588 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1589 node_clear(nid, memcg->scan_nodes);
1592 atomic_set(&memcg->numainfo_events, 0);
1593 atomic_set(&memcg->numainfo_updating, 0);
1597 * Selecting a node where we start reclaim from. Because what we need is just
1598 * reducing usage counter, start from anywhere is O,K. Considering
1599 * memory reclaim from current node, there are pros. and cons.
1601 * Freeing memory from current node means freeing memory from a node which
1602 * we'll use or we've used. So, it may make LRU bad. And if several threads
1603 * hit limits, it will see a contention on a node. But freeing from remote
1604 * node means more costs for memory reclaim because of memory latency.
1606 * Now, we use round-robin. Better algorithm is welcomed.
1608 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1610 int node;
1612 mem_cgroup_may_update_nodemask(memcg);
1613 node = memcg->last_scanned_node;
1615 node = next_node(node, memcg->scan_nodes);
1616 if (node == MAX_NUMNODES)
1617 node = first_node(memcg->scan_nodes);
1619 * We call this when we hit limit, not when pages are added to LRU.
1620 * No LRU may hold pages because all pages are UNEVICTABLE or
1621 * memcg is too small and all pages are not on LRU. In that case,
1622 * we use curret node.
1624 if (unlikely(node == MAX_NUMNODES))
1625 node = numa_node_id();
1627 memcg->last_scanned_node = node;
1628 return node;
1632 * Check all nodes whether it contains reclaimable pages or not.
1633 * For quick scan, we make use of scan_nodes. This will allow us to skip
1634 * unused nodes. But scan_nodes is lazily updated and may not cotain
1635 * enough new information. We need to do double check.
1637 bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1639 int nid;
1642 * quick check...making use of scan_node.
1643 * We can skip unused nodes.
1645 if (!nodes_empty(memcg->scan_nodes)) {
1646 for (nid = first_node(memcg->scan_nodes);
1647 nid < MAX_NUMNODES;
1648 nid = next_node(nid, memcg->scan_nodes)) {
1650 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1651 return true;
1655 * Check rest of nodes.
1657 for_each_node_state(nid, N_HIGH_MEMORY) {
1658 if (node_isset(nid, memcg->scan_nodes))
1659 continue;
1660 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1661 return true;
1663 return false;
1666 #else
1667 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1669 return 0;
1672 bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1674 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1676 #endif
1678 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1679 struct zone *zone,
1680 gfp_t gfp_mask,
1681 unsigned long *total_scanned)
1683 struct mem_cgroup *victim = NULL;
1684 int total = 0;
1685 int loop = 0;
1686 unsigned long excess;
1687 unsigned long nr_scanned;
1688 struct mem_cgroup_reclaim_cookie reclaim = {
1689 .zone = zone,
1690 .priority = 0,
1693 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
1695 while (1) {
1696 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1697 if (!victim) {
1698 loop++;
1699 if (loop >= 2) {
1701 * If we have not been able to reclaim
1702 * anything, it might because there are
1703 * no reclaimable pages under this hierarchy
1705 if (!total)
1706 break;
1708 * We want to do more targeted reclaim.
1709 * excess >> 2 is not to excessive so as to
1710 * reclaim too much, nor too less that we keep
1711 * coming back to reclaim from this cgroup
1713 if (total >= (excess >> 2) ||
1714 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1715 break;
1717 continue;
1719 if (!mem_cgroup_reclaimable(victim, false))
1720 continue;
1721 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1722 zone, &nr_scanned);
1723 *total_scanned += nr_scanned;
1724 if (!res_counter_soft_limit_excess(&root_memcg->res))
1725 break;
1727 mem_cgroup_iter_break(root_memcg, victim);
1728 return total;
1732 * Check OOM-Killer is already running under our hierarchy.
1733 * If someone is running, return false.
1734 * Has to be called with memcg_oom_lock
1736 static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
1738 struct mem_cgroup *iter, *failed = NULL;
1740 for_each_mem_cgroup_tree(iter, memcg) {
1741 if (iter->oom_lock) {
1743 * this subtree of our hierarchy is already locked
1744 * so we cannot give a lock.
1746 failed = iter;
1747 mem_cgroup_iter_break(memcg, iter);
1748 break;
1749 } else
1750 iter->oom_lock = true;
1753 if (!failed)
1754 return true;
1757 * OK, we failed to lock the whole subtree so we have to clean up
1758 * what we set up to the failing subtree
1760 for_each_mem_cgroup_tree(iter, memcg) {
1761 if (iter == failed) {
1762 mem_cgroup_iter_break(memcg, iter);
1763 break;
1765 iter->oom_lock = false;
1767 return false;
1771 * Has to be called with memcg_oom_lock
1773 static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1775 struct mem_cgroup *iter;
1777 for_each_mem_cgroup_tree(iter, memcg)
1778 iter->oom_lock = false;
1779 return 0;
1782 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1784 struct mem_cgroup *iter;
1786 for_each_mem_cgroup_tree(iter, memcg)
1787 atomic_inc(&iter->under_oom);
1790 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1792 struct mem_cgroup *iter;
1795 * When a new child is created while the hierarchy is under oom,
1796 * mem_cgroup_oom_lock() may not be called. We have to use
1797 * atomic_add_unless() here.
1799 for_each_mem_cgroup_tree(iter, memcg)
1800 atomic_add_unless(&iter->under_oom, -1, 0);
1803 static DEFINE_SPINLOCK(memcg_oom_lock);
1804 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1806 struct oom_wait_info {
1807 struct mem_cgroup *memcg;
1808 wait_queue_t wait;
1811 static int memcg_oom_wake_function(wait_queue_t *wait,
1812 unsigned mode, int sync, void *arg)
1814 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1815 struct mem_cgroup *oom_wait_memcg;
1816 struct oom_wait_info *oom_wait_info;
1818 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1819 oom_wait_memcg = oom_wait_info->memcg;
1822 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
1823 * Then we can use css_is_ancestor without taking care of RCU.
1825 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
1826 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
1827 return 0;
1828 return autoremove_wake_function(wait, mode, sync, arg);
1831 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
1833 /* for filtering, pass "memcg" as argument. */
1834 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1837 static void memcg_oom_recover(struct mem_cgroup *memcg)
1839 if (memcg && atomic_read(&memcg->under_oom))
1840 memcg_wakeup_oom(memcg);
1844 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1846 bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1848 struct oom_wait_info owait;
1849 bool locked, need_to_kill;
1851 owait.memcg = memcg;
1852 owait.wait.flags = 0;
1853 owait.wait.func = memcg_oom_wake_function;
1854 owait.wait.private = current;
1855 INIT_LIST_HEAD(&owait.wait.task_list);
1856 need_to_kill = true;
1857 mem_cgroup_mark_under_oom(memcg);
1859 /* At first, try to OOM lock hierarchy under memcg.*/
1860 spin_lock(&memcg_oom_lock);
1861 locked = mem_cgroup_oom_lock(memcg);
1863 * Even if signal_pending(), we can't quit charge() loop without
1864 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1865 * under OOM is always welcomed, use TASK_KILLABLE here.
1867 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1868 if (!locked || memcg->oom_kill_disable)
1869 need_to_kill = false;
1870 if (locked)
1871 mem_cgroup_oom_notify(memcg);
1872 spin_unlock(&memcg_oom_lock);
1874 if (need_to_kill) {
1875 finish_wait(&memcg_oom_waitq, &owait.wait);
1876 mem_cgroup_out_of_memory(memcg, mask, order);
1877 } else {
1878 schedule();
1879 finish_wait(&memcg_oom_waitq, &owait.wait);
1881 spin_lock(&memcg_oom_lock);
1882 if (locked)
1883 mem_cgroup_oom_unlock(memcg);
1884 memcg_wakeup_oom(memcg);
1885 spin_unlock(&memcg_oom_lock);
1887 mem_cgroup_unmark_under_oom(memcg);
1889 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1890 return false;
1891 /* Give chance to dying process */
1892 schedule_timeout_uninterruptible(1);
1893 return true;
1897 * Currently used to update mapped file statistics, but the routine can be
1898 * generalized to update other statistics as well.
1900 * Notes: Race condition
1902 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1903 * it tends to be costly. But considering some conditions, we doesn't need
1904 * to do so _always_.
1906 * Considering "charge", lock_page_cgroup() is not required because all
1907 * file-stat operations happen after a page is attached to radix-tree. There
1908 * are no race with "charge".
1910 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1911 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1912 * if there are race with "uncharge". Statistics itself is properly handled
1913 * by flags.
1915 * Considering "move", this is an only case we see a race. To make the race
1916 * small, we check mm->moving_account and detect there are possibility of race
1917 * If there is, we take a lock.
1920 void __mem_cgroup_begin_update_page_stat(struct page *page,
1921 bool *locked, unsigned long *flags)
1923 struct mem_cgroup *memcg;
1924 struct page_cgroup *pc;
1926 pc = lookup_page_cgroup(page);
1927 again:
1928 memcg = pc->mem_cgroup;
1929 if (unlikely(!memcg || !PageCgroupUsed(pc)))
1930 return;
1932 * If this memory cgroup is not under account moving, we don't
1933 * need to take move_lock_page_cgroup(). Because we already hold
1934 * rcu_read_lock(), any calls to move_account will be delayed until
1935 * rcu_read_unlock() if mem_cgroup_stolen() == true.
1937 if (!mem_cgroup_stolen(memcg))
1938 return;
1940 move_lock_mem_cgroup(memcg, flags);
1941 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
1942 move_unlock_mem_cgroup(memcg, flags);
1943 goto again;
1945 *locked = true;
1948 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
1950 struct page_cgroup *pc = lookup_page_cgroup(page);
1953 * It's guaranteed that pc->mem_cgroup never changes while
1954 * lock is held because a routine modifies pc->mem_cgroup
1955 * should take move_lock_page_cgroup().
1957 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
1960 void mem_cgroup_update_page_stat(struct page *page,
1961 enum mem_cgroup_page_stat_item idx, int val)
1963 struct mem_cgroup *memcg;
1964 struct page_cgroup *pc = lookup_page_cgroup(page);
1965 unsigned long uninitialized_var(flags);
1967 if (mem_cgroup_disabled())
1968 return;
1970 memcg = pc->mem_cgroup;
1971 if (unlikely(!memcg || !PageCgroupUsed(pc)))
1972 return;
1974 switch (idx) {
1975 case MEMCG_NR_FILE_MAPPED:
1976 idx = MEM_CGROUP_STAT_FILE_MAPPED;
1977 break;
1978 default:
1979 BUG();
1982 this_cpu_add(memcg->stat->count[idx], val);
1986 * size of first charge trial. "32" comes from vmscan.c's magic value.
1987 * TODO: maybe necessary to use big numbers in big irons.
1989 #define CHARGE_BATCH 32U
1990 struct memcg_stock_pcp {
1991 struct mem_cgroup *cached; /* this never be root cgroup */
1992 unsigned int nr_pages;
1993 struct work_struct work;
1994 unsigned long flags;
1995 #define FLUSHING_CACHED_CHARGE (0)
1997 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1998 static DEFINE_MUTEX(percpu_charge_mutex);
2001 * Try to consume stocked charge on this cpu. If success, one page is consumed
2002 * from local stock and true is returned. If the stock is 0 or charges from a
2003 * cgroup which is not current target, returns false. This stock will be
2004 * refilled.
2006 static bool consume_stock(struct mem_cgroup *memcg)
2008 struct memcg_stock_pcp *stock;
2009 bool ret = true;
2011 stock = &get_cpu_var(memcg_stock);
2012 if (memcg == stock->cached && stock->nr_pages)
2013 stock->nr_pages--;
2014 else /* need to call res_counter_charge */
2015 ret = false;
2016 put_cpu_var(memcg_stock);
2017 return ret;
2021 * Returns stocks cached in percpu to res_counter and reset cached information.
2023 static void drain_stock(struct memcg_stock_pcp *stock)
2025 struct mem_cgroup *old = stock->cached;
2027 if (stock->nr_pages) {
2028 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2030 res_counter_uncharge(&old->res, bytes);
2031 if (do_swap_account)
2032 res_counter_uncharge(&old->memsw, bytes);
2033 stock->nr_pages = 0;
2035 stock->cached = NULL;
2039 * This must be called under preempt disabled or must be called by
2040 * a thread which is pinned to local cpu.
2042 static void drain_local_stock(struct work_struct *dummy)
2044 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2045 drain_stock(stock);
2046 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2050 * Cache charges(val) which is from res_counter, to local per_cpu area.
2051 * This will be consumed by consume_stock() function, later.
2053 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2055 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2057 if (stock->cached != memcg) { /* reset if necessary */
2058 drain_stock(stock);
2059 stock->cached = memcg;
2061 stock->nr_pages += nr_pages;
2062 put_cpu_var(memcg_stock);
2066 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2067 * of the hierarchy under it. sync flag says whether we should block
2068 * until the work is done.
2070 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2072 int cpu, curcpu;
2074 /* Notify other cpus that system-wide "drain" is running */
2075 get_online_cpus();
2076 curcpu = get_cpu();
2077 for_each_online_cpu(cpu) {
2078 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2079 struct mem_cgroup *memcg;
2081 memcg = stock->cached;
2082 if (!memcg || !stock->nr_pages)
2083 continue;
2084 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2085 continue;
2086 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2087 if (cpu == curcpu)
2088 drain_local_stock(&stock->work);
2089 else
2090 schedule_work_on(cpu, &stock->work);
2093 put_cpu();
2095 if (!sync)
2096 goto out;
2098 for_each_online_cpu(cpu) {
2099 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2100 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2101 flush_work(&stock->work);
2103 out:
2104 put_online_cpus();
2108 * Tries to drain stocked charges in other cpus. This function is asynchronous
2109 * and just put a work per cpu for draining localy on each cpu. Caller can
2110 * expects some charges will be back to res_counter later but cannot wait for
2111 * it.
2113 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2116 * If someone calls draining, avoid adding more kworker runs.
2118 if (!mutex_trylock(&percpu_charge_mutex))
2119 return;
2120 drain_all_stock(root_memcg, false);
2121 mutex_unlock(&percpu_charge_mutex);
2124 /* This is a synchronous drain interface. */
2125 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2127 /* called when force_empty is called */
2128 mutex_lock(&percpu_charge_mutex);
2129 drain_all_stock(root_memcg, true);
2130 mutex_unlock(&percpu_charge_mutex);
2134 * This function drains percpu counter value from DEAD cpu and
2135 * move it to local cpu. Note that this function can be preempted.
2137 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2139 int i;
2141 spin_lock(&memcg->pcp_counter_lock);
2142 for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
2143 long x = per_cpu(memcg->stat->count[i], cpu);
2145 per_cpu(memcg->stat->count[i], cpu) = 0;
2146 memcg->nocpu_base.count[i] += x;
2148 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2149 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2151 per_cpu(memcg->stat->events[i], cpu) = 0;
2152 memcg->nocpu_base.events[i] += x;
2154 spin_unlock(&memcg->pcp_counter_lock);
2157 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2158 unsigned long action,
2159 void *hcpu)
2161 int cpu = (unsigned long)hcpu;
2162 struct memcg_stock_pcp *stock;
2163 struct mem_cgroup *iter;
2165 if (action == CPU_ONLINE)
2166 return NOTIFY_OK;
2168 if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
2169 return NOTIFY_OK;
2171 for_each_mem_cgroup(iter)
2172 mem_cgroup_drain_pcp_counter(iter, cpu);
2174 stock = &per_cpu(memcg_stock, cpu);
2175 drain_stock(stock);
2176 return NOTIFY_OK;
2180 /* See __mem_cgroup_try_charge() for details */
2181 enum {
2182 CHARGE_OK, /* success */
2183 CHARGE_RETRY, /* need to retry but retry is not bad */
2184 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2185 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2186 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2189 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2190 unsigned int nr_pages, bool oom_check)
2192 unsigned long csize = nr_pages * PAGE_SIZE;
2193 struct mem_cgroup *mem_over_limit;
2194 struct res_counter *fail_res;
2195 unsigned long flags = 0;
2196 int ret;
2198 ret = res_counter_charge(&memcg->res, csize, &fail_res);
2200 if (likely(!ret)) {
2201 if (!do_swap_account)
2202 return CHARGE_OK;
2203 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2204 if (likely(!ret))
2205 return CHARGE_OK;
2207 res_counter_uncharge(&memcg->res, csize);
2208 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2209 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2210 } else
2211 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2213 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2214 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2216 * Never reclaim on behalf of optional batching, retry with a
2217 * single page instead.
2219 if (nr_pages == CHARGE_BATCH)
2220 return CHARGE_RETRY;
2222 if (!(gfp_mask & __GFP_WAIT))
2223 return CHARGE_WOULDBLOCK;
2225 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2226 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2227 return CHARGE_RETRY;
2229 * Even though the limit is exceeded at this point, reclaim
2230 * may have been able to free some pages. Retry the charge
2231 * before killing the task.
2233 * Only for regular pages, though: huge pages are rather
2234 * unlikely to succeed so close to the limit, and we fall back
2235 * to regular pages anyway in case of failure.
2237 if (nr_pages == 1 && ret)
2238 return CHARGE_RETRY;
2241 * At task move, charge accounts can be doubly counted. So, it's
2242 * better to wait until the end of task_move if something is going on.
2244 if (mem_cgroup_wait_acct_move(mem_over_limit))
2245 return CHARGE_RETRY;
2247 /* If we don't need to call oom-killer at el, return immediately */
2248 if (!oom_check)
2249 return CHARGE_NOMEM;
2250 /* check OOM */
2251 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2252 return CHARGE_OOM_DIE;
2254 return CHARGE_RETRY;
2258 * __mem_cgroup_try_charge() does
2259 * 1. detect memcg to be charged against from passed *mm and *ptr,
2260 * 2. update res_counter
2261 * 3. call memory reclaim if necessary.
2263 * In some special case, if the task is fatal, fatal_signal_pending() or
2264 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2265 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2266 * as possible without any hazards. 2: all pages should have a valid
2267 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2268 * pointer, that is treated as a charge to root_mem_cgroup.
2270 * So __mem_cgroup_try_charge() will return
2271 * 0 ... on success, filling *ptr with a valid memcg pointer.
2272 * -ENOMEM ... charge failure because of resource limits.
2273 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2275 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2276 * the oom-killer can be invoked.
2278 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2279 gfp_t gfp_mask,
2280 unsigned int nr_pages,
2281 struct mem_cgroup **ptr,
2282 bool oom)
2284 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2285 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2286 struct mem_cgroup *memcg = NULL;
2287 int ret;
2290 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2291 * in system level. So, allow to go ahead dying process in addition to
2292 * MEMDIE process.
2294 if (unlikely(test_thread_flag(TIF_MEMDIE)
2295 || fatal_signal_pending(current)))
2296 goto bypass;
2299 * We always charge the cgroup the mm_struct belongs to.
2300 * The mm_struct's mem_cgroup changes on task migration if the
2301 * thread group leader migrates. It's possible that mm is not
2302 * set, if so charge the init_mm (happens for pagecache usage).
2304 if (!*ptr && !mm)
2305 *ptr = root_mem_cgroup;
2306 again:
2307 if (*ptr) { /* css should be a valid one */
2308 memcg = *ptr;
2309 VM_BUG_ON(css_is_removed(&memcg->css));
2310 if (mem_cgroup_is_root(memcg))
2311 goto done;
2312 if (nr_pages == 1 && consume_stock(memcg))
2313 goto done;
2314 css_get(&memcg->css);
2315 } else {
2316 struct task_struct *p;
2318 rcu_read_lock();
2319 p = rcu_dereference(mm->owner);
2321 * Because we don't have task_lock(), "p" can exit.
2322 * In that case, "memcg" can point to root or p can be NULL with
2323 * race with swapoff. Then, we have small risk of mis-accouning.
2324 * But such kind of mis-account by race always happens because
2325 * we don't have cgroup_mutex(). It's overkill and we allo that
2326 * small race, here.
2327 * (*) swapoff at el will charge against mm-struct not against
2328 * task-struct. So, mm->owner can be NULL.
2330 memcg = mem_cgroup_from_task(p);
2331 if (!memcg)
2332 memcg = root_mem_cgroup;
2333 if (mem_cgroup_is_root(memcg)) {
2334 rcu_read_unlock();
2335 goto done;
2337 if (nr_pages == 1 && consume_stock(memcg)) {
2339 * It seems dagerous to access memcg without css_get().
2340 * But considering how consume_stok works, it's not
2341 * necessary. If consume_stock success, some charges
2342 * from this memcg are cached on this cpu. So, we
2343 * don't need to call css_get()/css_tryget() before
2344 * calling consume_stock().
2346 rcu_read_unlock();
2347 goto done;
2349 /* after here, we may be blocked. we need to get refcnt */
2350 if (!css_tryget(&memcg->css)) {
2351 rcu_read_unlock();
2352 goto again;
2354 rcu_read_unlock();
2357 do {
2358 bool oom_check;
2360 /* If killed, bypass charge */
2361 if (fatal_signal_pending(current)) {
2362 css_put(&memcg->css);
2363 goto bypass;
2366 oom_check = false;
2367 if (oom && !nr_oom_retries) {
2368 oom_check = true;
2369 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2372 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
2373 switch (ret) {
2374 case CHARGE_OK:
2375 break;
2376 case CHARGE_RETRY: /* not in OOM situation but retry */
2377 batch = nr_pages;
2378 css_put(&memcg->css);
2379 memcg = NULL;
2380 goto again;
2381 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2382 css_put(&memcg->css);
2383 goto nomem;
2384 case CHARGE_NOMEM: /* OOM routine works */
2385 if (!oom) {
2386 css_put(&memcg->css);
2387 goto nomem;
2389 /* If oom, we never return -ENOMEM */
2390 nr_oom_retries--;
2391 break;
2392 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2393 css_put(&memcg->css);
2394 goto bypass;
2396 } while (ret != CHARGE_OK);
2398 if (batch > nr_pages)
2399 refill_stock(memcg, batch - nr_pages);
2400 css_put(&memcg->css);
2401 done:
2402 *ptr = memcg;
2403 return 0;
2404 nomem:
2405 *ptr = NULL;
2406 return -ENOMEM;
2407 bypass:
2408 *ptr = root_mem_cgroup;
2409 return -EINTR;
2413 * Somemtimes we have to undo a charge we got by try_charge().
2414 * This function is for that and do uncharge, put css's refcnt.
2415 * gotten by try_charge().
2417 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2418 unsigned int nr_pages)
2420 if (!mem_cgroup_is_root(memcg)) {
2421 unsigned long bytes = nr_pages * PAGE_SIZE;
2423 res_counter_uncharge(&memcg->res, bytes);
2424 if (do_swap_account)
2425 res_counter_uncharge(&memcg->memsw, bytes);
2430 * A helper function to get mem_cgroup from ID. must be called under
2431 * rcu_read_lock(). The caller must check css_is_removed() or some if
2432 * it's concern. (dropping refcnt from swap can be called against removed
2433 * memcg.)
2435 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2437 struct cgroup_subsys_state *css;
2439 /* ID 0 is unused ID */
2440 if (!id)
2441 return NULL;
2442 css = css_lookup(&mem_cgroup_subsys, id);
2443 if (!css)
2444 return NULL;
2445 return container_of(css, struct mem_cgroup, css);
2448 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2450 struct mem_cgroup *memcg = NULL;
2451 struct page_cgroup *pc;
2452 unsigned short id;
2453 swp_entry_t ent;
2455 VM_BUG_ON(!PageLocked(page));
2457 pc = lookup_page_cgroup(page);
2458 lock_page_cgroup(pc);
2459 if (PageCgroupUsed(pc)) {
2460 memcg = pc->mem_cgroup;
2461 if (memcg && !css_tryget(&memcg->css))
2462 memcg = NULL;
2463 } else if (PageSwapCache(page)) {
2464 ent.val = page_private(page);
2465 id = lookup_swap_cgroup_id(ent);
2466 rcu_read_lock();
2467 memcg = mem_cgroup_lookup(id);
2468 if (memcg && !css_tryget(&memcg->css))
2469 memcg = NULL;
2470 rcu_read_unlock();
2472 unlock_page_cgroup(pc);
2473 return memcg;
2476 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2477 struct page *page,
2478 unsigned int nr_pages,
2479 struct page_cgroup *pc,
2480 enum charge_type ctype,
2481 bool lrucare)
2483 struct zone *uninitialized_var(zone);
2484 bool was_on_lru = false;
2485 bool anon;
2487 lock_page_cgroup(pc);
2488 if (unlikely(PageCgroupUsed(pc))) {
2489 unlock_page_cgroup(pc);
2490 __mem_cgroup_cancel_charge(memcg, nr_pages);
2491 return;
2494 * we don't need page_cgroup_lock about tail pages, becase they are not
2495 * accessed by any other context at this point.
2499 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2500 * may already be on some other mem_cgroup's LRU. Take care of it.
2502 if (lrucare) {
2503 zone = page_zone(page);
2504 spin_lock_irq(&zone->lru_lock);
2505 if (PageLRU(page)) {
2506 ClearPageLRU(page);
2507 del_page_from_lru_list(zone, page, page_lru(page));
2508 was_on_lru = true;
2512 pc->mem_cgroup = memcg;
2514 * We access a page_cgroup asynchronously without lock_page_cgroup().
2515 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2516 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2517 * before USED bit, we need memory barrier here.
2518 * See mem_cgroup_add_lru_list(), etc.
2520 smp_wmb();
2521 SetPageCgroupUsed(pc);
2523 if (lrucare) {
2524 if (was_on_lru) {
2525 VM_BUG_ON(PageLRU(page));
2526 SetPageLRU(page);
2527 add_page_to_lru_list(zone, page, page_lru(page));
2529 spin_unlock_irq(&zone->lru_lock);
2532 if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
2533 anon = true;
2534 else
2535 anon = false;
2537 mem_cgroup_charge_statistics(memcg, anon, nr_pages);
2538 unlock_page_cgroup(pc);
2541 * "charge_statistics" updated event counter. Then, check it.
2542 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2543 * if they exceeds softlimit.
2545 memcg_check_events(memcg, page);
2548 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2550 #define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MIGRATION))
2552 * Because tail pages are not marked as "used", set it. We're under
2553 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2554 * charge/uncharge will be never happen and move_account() is done under
2555 * compound_lock(), so we don't have to take care of races.
2557 void mem_cgroup_split_huge_fixup(struct page *head)
2559 struct page_cgroup *head_pc = lookup_page_cgroup(head);
2560 struct page_cgroup *pc;
2561 int i;
2563 if (mem_cgroup_disabled())
2564 return;
2565 for (i = 1; i < HPAGE_PMD_NR; i++) {
2566 pc = head_pc + i;
2567 pc->mem_cgroup = head_pc->mem_cgroup;
2568 smp_wmb();/* see __commit_charge() */
2569 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2572 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2575 * mem_cgroup_move_account - move account of the page
2576 * @page: the page
2577 * @nr_pages: number of regular pages (>1 for huge pages)
2578 * @pc: page_cgroup of the page.
2579 * @from: mem_cgroup which the page is moved from.
2580 * @to: mem_cgroup which the page is moved to. @from != @to.
2581 * @uncharge: whether we should call uncharge and css_put against @from.
2583 * The caller must confirm following.
2584 * - page is not on LRU (isolate_page() is useful.)
2585 * - compound_lock is held when nr_pages > 1
2587 * This function doesn't do "charge" nor css_get to new cgroup. It should be
2588 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
2589 * true, this function does "uncharge" from old cgroup, but it doesn't if
2590 * @uncharge is false, so a caller should do "uncharge".
2592 static int mem_cgroup_move_account(struct page *page,
2593 unsigned int nr_pages,
2594 struct page_cgroup *pc,
2595 struct mem_cgroup *from,
2596 struct mem_cgroup *to,
2597 bool uncharge)
2599 unsigned long flags;
2600 int ret;
2601 bool anon = PageAnon(page);
2603 VM_BUG_ON(from == to);
2604 VM_BUG_ON(PageLRU(page));
2606 * The page is isolated from LRU. So, collapse function
2607 * will not handle this page. But page splitting can happen.
2608 * Do this check under compound_page_lock(). The caller should
2609 * hold it.
2611 ret = -EBUSY;
2612 if (nr_pages > 1 && !PageTransHuge(page))
2613 goto out;
2615 lock_page_cgroup(pc);
2617 ret = -EINVAL;
2618 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2619 goto unlock;
2621 move_lock_mem_cgroup(from, &flags);
2623 if (!anon && page_mapped(page)) {
2624 /* Update mapped_file data for mem_cgroup */
2625 preempt_disable();
2626 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2627 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2628 preempt_enable();
2630 mem_cgroup_charge_statistics(from, anon, -nr_pages);
2631 if (uncharge)
2632 /* This is not "cancel", but cancel_charge does all we need. */
2633 __mem_cgroup_cancel_charge(from, nr_pages);
2635 /* caller should have done css_get */
2636 pc->mem_cgroup = to;
2637 mem_cgroup_charge_statistics(to, anon, nr_pages);
2639 * We charges against "to" which may not have any tasks. Then, "to"
2640 * can be under rmdir(). But in current implementation, caller of
2641 * this function is just force_empty() and move charge, so it's
2642 * guaranteed that "to" is never removed. So, we don't check rmdir
2643 * status here.
2645 move_unlock_mem_cgroup(from, &flags);
2646 ret = 0;
2647 unlock:
2648 unlock_page_cgroup(pc);
2650 * check events
2652 memcg_check_events(to, page);
2653 memcg_check_events(from, page);
2654 out:
2655 return ret;
2659 * move charges to its parent.
2662 static int mem_cgroup_move_parent(struct page *page,
2663 struct page_cgroup *pc,
2664 struct mem_cgroup *child,
2665 gfp_t gfp_mask)
2667 struct cgroup *cg = child->css.cgroup;
2668 struct cgroup *pcg = cg->parent;
2669 struct mem_cgroup *parent;
2670 unsigned int nr_pages;
2671 unsigned long uninitialized_var(flags);
2672 int ret;
2674 /* Is ROOT ? */
2675 if (!pcg)
2676 return -EINVAL;
2678 ret = -EBUSY;
2679 if (!get_page_unless_zero(page))
2680 goto out;
2681 if (isolate_lru_page(page))
2682 goto put;
2684 nr_pages = hpage_nr_pages(page);
2686 parent = mem_cgroup_from_cont(pcg);
2687 ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
2688 if (ret)
2689 goto put_back;
2691 if (nr_pages > 1)
2692 flags = compound_lock_irqsave(page);
2694 ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
2695 if (ret)
2696 __mem_cgroup_cancel_charge(parent, nr_pages);
2698 if (nr_pages > 1)
2699 compound_unlock_irqrestore(page, flags);
2700 put_back:
2701 putback_lru_page(page);
2702 put:
2703 put_page(page);
2704 out:
2705 return ret;
2709 * Charge the memory controller for page usage.
2710 * Return
2711 * 0 if the charge was successful
2712 * < 0 if the cgroup is over its limit
2714 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2715 gfp_t gfp_mask, enum charge_type ctype)
2717 struct mem_cgroup *memcg = NULL;
2718 unsigned int nr_pages = 1;
2719 struct page_cgroup *pc;
2720 bool oom = true;
2721 int ret;
2723 if (PageTransHuge(page)) {
2724 nr_pages <<= compound_order(page);
2725 VM_BUG_ON(!PageTransHuge(page));
2727 * Never OOM-kill a process for a huge page. The
2728 * fault handler will fall back to regular pages.
2730 oom = false;
2733 pc = lookup_page_cgroup(page);
2734 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
2735 if (ret == -ENOMEM)
2736 return ret;
2737 __mem_cgroup_commit_charge(memcg, page, nr_pages, pc, ctype, false);
2738 return 0;
2741 int mem_cgroup_newpage_charge(struct page *page,
2742 struct mm_struct *mm, gfp_t gfp_mask)
2744 if (mem_cgroup_disabled())
2745 return 0;
2746 VM_BUG_ON(page_mapped(page));
2747 VM_BUG_ON(page->mapping && !PageAnon(page));
2748 VM_BUG_ON(!mm);
2749 return mem_cgroup_charge_common(page, mm, gfp_mask,
2750 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2753 static void
2754 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2755 enum charge_type ctype);
2757 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2758 gfp_t gfp_mask)
2760 struct mem_cgroup *memcg = NULL;
2761 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
2762 int ret;
2764 if (mem_cgroup_disabled())
2765 return 0;
2766 if (PageCompound(page))
2767 return 0;
2769 if (unlikely(!mm))
2770 mm = &init_mm;
2771 if (!page_is_file_cache(page))
2772 type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2774 if (!PageSwapCache(page))
2775 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
2776 else { /* page is swapcache/shmem */
2777 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg);
2778 if (!ret)
2779 __mem_cgroup_commit_charge_swapin(page, memcg, type);
2781 return ret;
2785 * While swap-in, try_charge -> commit or cancel, the page is locked.
2786 * And when try_charge() successfully returns, one refcnt to memcg without
2787 * struct page_cgroup is acquired. This refcnt will be consumed by
2788 * "commit()" or removed by "cancel()"
2790 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2791 struct page *page,
2792 gfp_t mask, struct mem_cgroup **memcgp)
2794 struct mem_cgroup *memcg;
2795 int ret;
2797 *memcgp = NULL;
2799 if (mem_cgroup_disabled())
2800 return 0;
2802 if (!do_swap_account)
2803 goto charge_cur_mm;
2805 * A racing thread's fault, or swapoff, may have already updated
2806 * the pte, and even removed page from swap cache: in those cases
2807 * do_swap_page()'s pte_same() test will fail; but there's also a
2808 * KSM case which does need to charge the page.
2810 if (!PageSwapCache(page))
2811 goto charge_cur_mm;
2812 memcg = try_get_mem_cgroup_from_page(page);
2813 if (!memcg)
2814 goto charge_cur_mm;
2815 *memcgp = memcg;
2816 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
2817 css_put(&memcg->css);
2818 if (ret == -EINTR)
2819 ret = 0;
2820 return ret;
2821 charge_cur_mm:
2822 if (unlikely(!mm))
2823 mm = &init_mm;
2824 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
2825 if (ret == -EINTR)
2826 ret = 0;
2827 return ret;
2830 static void
2831 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
2832 enum charge_type ctype)
2834 struct page_cgroup *pc;
2836 if (mem_cgroup_disabled())
2837 return;
2838 if (!memcg)
2839 return;
2840 cgroup_exclude_rmdir(&memcg->css);
2842 pc = lookup_page_cgroup(page);
2843 __mem_cgroup_commit_charge(memcg, page, 1, pc, ctype, true);
2845 * Now swap is on-memory. This means this page may be
2846 * counted both as mem and swap....double count.
2847 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2848 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2849 * may call delete_from_swap_cache() before reach here.
2851 if (do_swap_account && PageSwapCache(page)) {
2852 swp_entry_t ent = {.val = page_private(page)};
2853 struct mem_cgroup *swap_memcg;
2854 unsigned short id;
2856 id = swap_cgroup_record(ent, 0);
2857 rcu_read_lock();
2858 swap_memcg = mem_cgroup_lookup(id);
2859 if (swap_memcg) {
2861 * This recorded memcg can be obsolete one. So, avoid
2862 * calling css_tryget
2864 if (!mem_cgroup_is_root(swap_memcg))
2865 res_counter_uncharge(&swap_memcg->memsw,
2866 PAGE_SIZE);
2867 mem_cgroup_swap_statistics(swap_memcg, false);
2868 mem_cgroup_put(swap_memcg);
2870 rcu_read_unlock();
2873 * At swapin, we may charge account against cgroup which has no tasks.
2874 * So, rmdir()->pre_destroy() can be called while we do this charge.
2875 * In that case, we need to call pre_destroy() again. check it here.
2877 cgroup_release_and_wakeup_rmdir(&memcg->css);
2880 void mem_cgroup_commit_charge_swapin(struct page *page,
2881 struct mem_cgroup *memcg)
2883 __mem_cgroup_commit_charge_swapin(page, memcg,
2884 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2887 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
2889 if (mem_cgroup_disabled())
2890 return;
2891 if (!memcg)
2892 return;
2893 __mem_cgroup_cancel_charge(memcg, 1);
2896 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
2897 unsigned int nr_pages,
2898 const enum charge_type ctype)
2900 struct memcg_batch_info *batch = NULL;
2901 bool uncharge_memsw = true;
2903 /* If swapout, usage of swap doesn't decrease */
2904 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2905 uncharge_memsw = false;
2907 batch = &current->memcg_batch;
2909 * In usual, we do css_get() when we remember memcg pointer.
2910 * But in this case, we keep res->usage until end of a series of
2911 * uncharges. Then, it's ok to ignore memcg's refcnt.
2913 if (!batch->memcg)
2914 batch->memcg = memcg;
2916 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2917 * In those cases, all pages freed continuously can be expected to be in
2918 * the same cgroup and we have chance to coalesce uncharges.
2919 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2920 * because we want to do uncharge as soon as possible.
2923 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2924 goto direct_uncharge;
2926 if (nr_pages > 1)
2927 goto direct_uncharge;
2930 * In typical case, batch->memcg == mem. This means we can
2931 * merge a series of uncharges to an uncharge of res_counter.
2932 * If not, we uncharge res_counter ony by one.
2934 if (batch->memcg != memcg)
2935 goto direct_uncharge;
2936 /* remember freed charge and uncharge it later */
2937 batch->nr_pages++;
2938 if (uncharge_memsw)
2939 batch->memsw_nr_pages++;
2940 return;
2941 direct_uncharge:
2942 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
2943 if (uncharge_memsw)
2944 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
2945 if (unlikely(batch->memcg != memcg))
2946 memcg_oom_recover(memcg);
2950 * uncharge if !page_mapped(page)
2952 static struct mem_cgroup *
2953 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2955 struct mem_cgroup *memcg = NULL;
2956 unsigned int nr_pages = 1;
2957 struct page_cgroup *pc;
2958 bool anon;
2960 if (mem_cgroup_disabled())
2961 return NULL;
2963 if (PageSwapCache(page))
2964 return NULL;
2966 if (PageTransHuge(page)) {
2967 nr_pages <<= compound_order(page);
2968 VM_BUG_ON(!PageTransHuge(page));
2971 * Check if our page_cgroup is valid
2973 pc = lookup_page_cgroup(page);
2974 if (unlikely(!PageCgroupUsed(pc)))
2975 return NULL;
2977 lock_page_cgroup(pc);
2979 memcg = pc->mem_cgroup;
2981 if (!PageCgroupUsed(pc))
2982 goto unlock_out;
2984 anon = PageAnon(page);
2986 switch (ctype) {
2987 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2989 * Generally PageAnon tells if it's the anon statistics to be
2990 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
2991 * used before page reached the stage of being marked PageAnon.
2993 anon = true;
2994 /* fallthrough */
2995 case MEM_CGROUP_CHARGE_TYPE_DROP:
2996 /* See mem_cgroup_prepare_migration() */
2997 if (page_mapped(page) || PageCgroupMigration(pc))
2998 goto unlock_out;
2999 break;
3000 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
3001 if (!PageAnon(page)) { /* Shared memory */
3002 if (page->mapping && !page_is_file_cache(page))
3003 goto unlock_out;
3004 } else if (page_mapped(page)) /* Anon */
3005 goto unlock_out;
3006 break;
3007 default:
3008 break;
3011 mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
3013 ClearPageCgroupUsed(pc);
3015 * pc->mem_cgroup is not cleared here. It will be accessed when it's
3016 * freed from LRU. This is safe because uncharged page is expected not
3017 * to be reused (freed soon). Exception is SwapCache, it's handled by
3018 * special functions.
3021 unlock_page_cgroup(pc);
3023 * even after unlock, we have memcg->res.usage here and this memcg
3024 * will never be freed.
3026 memcg_check_events(memcg, page);
3027 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3028 mem_cgroup_swap_statistics(memcg, true);
3029 mem_cgroup_get(memcg);
3031 if (!mem_cgroup_is_root(memcg))
3032 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
3034 return memcg;
3036 unlock_out:
3037 unlock_page_cgroup(pc);
3038 return NULL;
3041 void mem_cgroup_uncharge_page(struct page *page)
3043 /* early check. */
3044 if (page_mapped(page))
3045 return;
3046 VM_BUG_ON(page->mapping && !PageAnon(page));
3047 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
3050 void mem_cgroup_uncharge_cache_page(struct page *page)
3052 VM_BUG_ON(page_mapped(page));
3053 VM_BUG_ON(page->mapping);
3054 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
3058 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3059 * In that cases, pages are freed continuously and we can expect pages
3060 * are in the same memcg. All these calls itself limits the number of
3061 * pages freed at once, then uncharge_start/end() is called properly.
3062 * This may be called prural(2) times in a context,
3065 void mem_cgroup_uncharge_start(void)
3067 current->memcg_batch.do_batch++;
3068 /* We can do nest. */
3069 if (current->memcg_batch.do_batch == 1) {
3070 current->memcg_batch.memcg = NULL;
3071 current->memcg_batch.nr_pages = 0;
3072 current->memcg_batch.memsw_nr_pages = 0;
3076 void mem_cgroup_uncharge_end(void)
3078 struct memcg_batch_info *batch = &current->memcg_batch;
3080 if (!batch->do_batch)
3081 return;
3083 batch->do_batch--;
3084 if (batch->do_batch) /* If stacked, do nothing. */
3085 return;
3087 if (!batch->memcg)
3088 return;
3090 * This "batch->memcg" is valid without any css_get/put etc...
3091 * bacause we hide charges behind us.
3093 if (batch->nr_pages)
3094 res_counter_uncharge(&batch->memcg->res,
3095 batch->nr_pages * PAGE_SIZE);
3096 if (batch->memsw_nr_pages)
3097 res_counter_uncharge(&batch->memcg->memsw,
3098 batch->memsw_nr_pages * PAGE_SIZE);
3099 memcg_oom_recover(batch->memcg);
3100 /* forget this pointer (for sanity check) */
3101 batch->memcg = NULL;
3104 #ifdef CONFIG_SWAP
3106 * called after __delete_from_swap_cache() and drop "page" account.
3107 * memcg information is recorded to swap_cgroup of "ent"
3109 void
3110 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3112 struct mem_cgroup *memcg;
3113 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3115 if (!swapout) /* this was a swap cache but the swap is unused ! */
3116 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3118 memcg = __mem_cgroup_uncharge_common(page, ctype);
3121 * record memcg information, if swapout && memcg != NULL,
3122 * mem_cgroup_get() was called in uncharge().
3124 if (do_swap_account && swapout && memcg)
3125 swap_cgroup_record(ent, css_id(&memcg->css));
3127 #endif
3129 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3131 * called from swap_entry_free(). remove record in swap_cgroup and
3132 * uncharge "memsw" account.
3134 void mem_cgroup_uncharge_swap(swp_entry_t ent)
3136 struct mem_cgroup *memcg;
3137 unsigned short id;
3139 if (!do_swap_account)
3140 return;
3142 id = swap_cgroup_record(ent, 0);
3143 rcu_read_lock();
3144 memcg = mem_cgroup_lookup(id);
3145 if (memcg) {
3147 * We uncharge this because swap is freed.
3148 * This memcg can be obsolete one. We avoid calling css_tryget
3150 if (!mem_cgroup_is_root(memcg))
3151 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3152 mem_cgroup_swap_statistics(memcg, false);
3153 mem_cgroup_put(memcg);
3155 rcu_read_unlock();
3159 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3160 * @entry: swap entry to be moved
3161 * @from: mem_cgroup which the entry is moved from
3162 * @to: mem_cgroup which the entry is moved to
3163 * @need_fixup: whether we should fixup res_counters and refcounts.
3165 * It succeeds only when the swap_cgroup's record for this entry is the same
3166 * as the mem_cgroup's id of @from.
3168 * Returns 0 on success, -EINVAL on failure.
3170 * The caller must have charged to @to, IOW, called res_counter_charge() about
3171 * both res and memsw, and called css_get().
3173 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3174 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3176 unsigned short old_id, new_id;
3178 old_id = css_id(&from->css);
3179 new_id = css_id(&to->css);
3181 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3182 mem_cgroup_swap_statistics(from, false);
3183 mem_cgroup_swap_statistics(to, true);
3185 * This function is only called from task migration context now.
3186 * It postpones res_counter and refcount handling till the end
3187 * of task migration(mem_cgroup_clear_mc()) for performance
3188 * improvement. But we cannot postpone mem_cgroup_get(to)
3189 * because if the process that has been moved to @to does
3190 * swap-in, the refcount of @to might be decreased to 0.
3192 mem_cgroup_get(to);
3193 if (need_fixup) {
3194 if (!mem_cgroup_is_root(from))
3195 res_counter_uncharge(&from->memsw, PAGE_SIZE);
3196 mem_cgroup_put(from);
3198 * we charged both to->res and to->memsw, so we should
3199 * uncharge to->res.
3201 if (!mem_cgroup_is_root(to))
3202 res_counter_uncharge(&to->res, PAGE_SIZE);
3204 return 0;
3206 return -EINVAL;
3208 #else
3209 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3210 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3212 return -EINVAL;
3214 #endif
3217 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3218 * page belongs to.
3220 int mem_cgroup_prepare_migration(struct page *page,
3221 struct page *newpage, struct mem_cgroup **memcgp, gfp_t gfp_mask)
3223 struct mem_cgroup *memcg = NULL;
3224 struct page_cgroup *pc;
3225 enum charge_type ctype;
3226 int ret = 0;
3228 *memcgp = NULL;
3230 VM_BUG_ON(PageTransHuge(page));
3231 if (mem_cgroup_disabled())
3232 return 0;
3234 pc = lookup_page_cgroup(page);
3235 lock_page_cgroup(pc);
3236 if (PageCgroupUsed(pc)) {
3237 memcg = pc->mem_cgroup;
3238 css_get(&memcg->css);
3240 * At migrating an anonymous page, its mapcount goes down
3241 * to 0 and uncharge() will be called. But, even if it's fully
3242 * unmapped, migration may fail and this page has to be
3243 * charged again. We set MIGRATION flag here and delay uncharge
3244 * until end_migration() is called
3246 * Corner Case Thinking
3247 * A)
3248 * When the old page was mapped as Anon and it's unmap-and-freed
3249 * while migration was ongoing.
3250 * If unmap finds the old page, uncharge() of it will be delayed
3251 * until end_migration(). If unmap finds a new page, it's
3252 * uncharged when it make mapcount to be 1->0. If unmap code
3253 * finds swap_migration_entry, the new page will not be mapped
3254 * and end_migration() will find it(mapcount==0).
3256 * B)
3257 * When the old page was mapped but migraion fails, the kernel
3258 * remaps it. A charge for it is kept by MIGRATION flag even
3259 * if mapcount goes down to 0. We can do remap successfully
3260 * without charging it again.
3262 * C)
3263 * The "old" page is under lock_page() until the end of
3264 * migration, so, the old page itself will not be swapped-out.
3265 * If the new page is swapped out before end_migraton, our
3266 * hook to usual swap-out path will catch the event.
3268 if (PageAnon(page))
3269 SetPageCgroupMigration(pc);
3271 unlock_page_cgroup(pc);
3273 * If the page is not charged at this point,
3274 * we return here.
3276 if (!memcg)
3277 return 0;
3279 *memcgp = memcg;
3280 ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, memcgp, false);
3281 css_put(&memcg->css);/* drop extra refcnt */
3282 if (ret) {
3283 if (PageAnon(page)) {
3284 lock_page_cgroup(pc);
3285 ClearPageCgroupMigration(pc);
3286 unlock_page_cgroup(pc);
3288 * The old page may be fully unmapped while we kept it.
3290 mem_cgroup_uncharge_page(page);
3292 /* we'll need to revisit this error code (we have -EINTR) */
3293 return -ENOMEM;
3296 * We charge new page before it's used/mapped. So, even if unlock_page()
3297 * is called before end_migration, we can catch all events on this new
3298 * page. In the case new page is migrated but not remapped, new page's
3299 * mapcount will be finally 0 and we call uncharge in end_migration().
3301 pc = lookup_page_cgroup(newpage);
3302 if (PageAnon(page))
3303 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
3304 else if (page_is_file_cache(page))
3305 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3306 else
3307 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3308 __mem_cgroup_commit_charge(memcg, newpage, 1, pc, ctype, false);
3309 return ret;
3312 /* remove redundant charge if migration failed*/
3313 void mem_cgroup_end_migration(struct mem_cgroup *memcg,
3314 struct page *oldpage, struct page *newpage, bool migration_ok)
3316 struct page *used, *unused;
3317 struct page_cgroup *pc;
3318 bool anon;
3320 if (!memcg)
3321 return;
3322 /* blocks rmdir() */
3323 cgroup_exclude_rmdir(&memcg->css);
3324 if (!migration_ok) {
3325 used = oldpage;
3326 unused = newpage;
3327 } else {
3328 used = newpage;
3329 unused = oldpage;
3332 * We disallowed uncharge of pages under migration because mapcount
3333 * of the page goes down to zero, temporarly.
3334 * Clear the flag and check the page should be charged.
3336 pc = lookup_page_cgroup(oldpage);
3337 lock_page_cgroup(pc);
3338 ClearPageCgroupMigration(pc);
3339 unlock_page_cgroup(pc);
3340 anon = PageAnon(used);
3341 __mem_cgroup_uncharge_common(unused,
3342 anon ? MEM_CGROUP_CHARGE_TYPE_MAPPED
3343 : MEM_CGROUP_CHARGE_TYPE_CACHE);
3346 * If a page is a file cache, radix-tree replacement is very atomic
3347 * and we can skip this check. When it was an Anon page, its mapcount
3348 * goes down to 0. But because we added MIGRATION flage, it's not
3349 * uncharged yet. There are several case but page->mapcount check
3350 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3351 * check. (see prepare_charge() also)
3353 if (anon)
3354 mem_cgroup_uncharge_page(used);
3356 * At migration, we may charge account against cgroup which has no
3357 * tasks.
3358 * So, rmdir()->pre_destroy() can be called while we do this charge.
3359 * In that case, we need to call pre_destroy() again. check it here.
3361 cgroup_release_and_wakeup_rmdir(&memcg->css);
3365 * At replace page cache, newpage is not under any memcg but it's on
3366 * LRU. So, this function doesn't touch res_counter but handles LRU
3367 * in correct way. Both pages are locked so we cannot race with uncharge.
3369 void mem_cgroup_replace_page_cache(struct page *oldpage,
3370 struct page *newpage)
3372 struct mem_cgroup *memcg;
3373 struct page_cgroup *pc;
3374 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
3376 if (mem_cgroup_disabled())
3377 return;
3379 pc = lookup_page_cgroup(oldpage);
3380 /* fix accounting on old pages */
3381 lock_page_cgroup(pc);
3382 memcg = pc->mem_cgroup;
3383 mem_cgroup_charge_statistics(memcg, false, -1);
3384 ClearPageCgroupUsed(pc);
3385 unlock_page_cgroup(pc);
3387 if (PageSwapBacked(oldpage))
3388 type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3391 * Even if newpage->mapping was NULL before starting replacement,
3392 * the newpage may be on LRU(or pagevec for LRU) already. We lock
3393 * LRU while we overwrite pc->mem_cgroup.
3395 __mem_cgroup_commit_charge(memcg, newpage, 1, pc, type, true);
3398 #ifdef CONFIG_DEBUG_VM
3399 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3401 struct page_cgroup *pc;
3403 pc = lookup_page_cgroup(page);
3405 * Can be NULL while feeding pages into the page allocator for
3406 * the first time, i.e. during boot or memory hotplug;
3407 * or when mem_cgroup_disabled().
3409 if (likely(pc) && PageCgroupUsed(pc))
3410 return pc;
3411 return NULL;
3414 bool mem_cgroup_bad_page_check(struct page *page)
3416 if (mem_cgroup_disabled())
3417 return false;
3419 return lookup_page_cgroup_used(page) != NULL;
3422 void mem_cgroup_print_bad_page(struct page *page)
3424 struct page_cgroup *pc;
3426 pc = lookup_page_cgroup_used(page);
3427 if (pc) {
3428 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
3429 pc, pc->flags, pc->mem_cgroup);
3432 #endif
3434 static DEFINE_MUTEX(set_limit_mutex);
3436 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3437 unsigned long long val)
3439 int retry_count;
3440 u64 memswlimit, memlimit;
3441 int ret = 0;
3442 int children = mem_cgroup_count_children(memcg);
3443 u64 curusage, oldusage;
3444 int enlarge;
3447 * For keeping hierarchical_reclaim simple, how long we should retry
3448 * is depends on callers. We set our retry-count to be function
3449 * of # of children which we should visit in this loop.
3451 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3453 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3455 enlarge = 0;
3456 while (retry_count) {
3457 if (signal_pending(current)) {
3458 ret = -EINTR;
3459 break;
3462 * Rather than hide all in some function, I do this in
3463 * open coded manner. You see what this really does.
3464 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3466 mutex_lock(&set_limit_mutex);
3467 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3468 if (memswlimit < val) {
3469 ret = -EINVAL;
3470 mutex_unlock(&set_limit_mutex);
3471 break;
3474 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3475 if (memlimit < val)
3476 enlarge = 1;
3478 ret = res_counter_set_limit(&memcg->res, val);
3479 if (!ret) {
3480 if (memswlimit == val)
3481 memcg->memsw_is_minimum = true;
3482 else
3483 memcg->memsw_is_minimum = false;
3485 mutex_unlock(&set_limit_mutex);
3487 if (!ret)
3488 break;
3490 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3491 MEM_CGROUP_RECLAIM_SHRINK);
3492 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3493 /* Usage is reduced ? */
3494 if (curusage >= oldusage)
3495 retry_count--;
3496 else
3497 oldusage = curusage;
3499 if (!ret && enlarge)
3500 memcg_oom_recover(memcg);
3502 return ret;
3505 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3506 unsigned long long val)
3508 int retry_count;
3509 u64 memlimit, memswlimit, oldusage, curusage;
3510 int children = mem_cgroup_count_children(memcg);
3511 int ret = -EBUSY;
3512 int enlarge = 0;
3514 /* see mem_cgroup_resize_res_limit */
3515 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3516 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3517 while (retry_count) {
3518 if (signal_pending(current)) {
3519 ret = -EINTR;
3520 break;
3523 * Rather than hide all in some function, I do this in
3524 * open coded manner. You see what this really does.
3525 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3527 mutex_lock(&set_limit_mutex);
3528 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3529 if (memlimit > val) {
3530 ret = -EINVAL;
3531 mutex_unlock(&set_limit_mutex);
3532 break;
3534 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3535 if (memswlimit < val)
3536 enlarge = 1;
3537 ret = res_counter_set_limit(&memcg->memsw, val);
3538 if (!ret) {
3539 if (memlimit == val)
3540 memcg->memsw_is_minimum = true;
3541 else
3542 memcg->memsw_is_minimum = false;
3544 mutex_unlock(&set_limit_mutex);
3546 if (!ret)
3547 break;
3549 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3550 MEM_CGROUP_RECLAIM_NOSWAP |
3551 MEM_CGROUP_RECLAIM_SHRINK);
3552 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3553 /* Usage is reduced ? */
3554 if (curusage >= oldusage)
3555 retry_count--;
3556 else
3557 oldusage = curusage;
3559 if (!ret && enlarge)
3560 memcg_oom_recover(memcg);
3561 return ret;
3564 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3565 gfp_t gfp_mask,
3566 unsigned long *total_scanned)
3568 unsigned long nr_reclaimed = 0;
3569 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3570 unsigned long reclaimed;
3571 int loop = 0;
3572 struct mem_cgroup_tree_per_zone *mctz;
3573 unsigned long long excess;
3574 unsigned long nr_scanned;
3576 if (order > 0)
3577 return 0;
3579 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3581 * This loop can run a while, specially if mem_cgroup's continuously
3582 * keep exceeding their soft limit and putting the system under
3583 * pressure
3585 do {
3586 if (next_mz)
3587 mz = next_mz;
3588 else
3589 mz = mem_cgroup_largest_soft_limit_node(mctz);
3590 if (!mz)
3591 break;
3593 nr_scanned = 0;
3594 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
3595 gfp_mask, &nr_scanned);
3596 nr_reclaimed += reclaimed;
3597 *total_scanned += nr_scanned;
3598 spin_lock(&mctz->lock);
3601 * If we failed to reclaim anything from this memory cgroup
3602 * it is time to move on to the next cgroup
3604 next_mz = NULL;
3605 if (!reclaimed) {
3606 do {
3608 * Loop until we find yet another one.
3610 * By the time we get the soft_limit lock
3611 * again, someone might have aded the
3612 * group back on the RB tree. Iterate to
3613 * make sure we get a different mem.
3614 * mem_cgroup_largest_soft_limit_node returns
3615 * NULL if no other cgroup is present on
3616 * the tree
3618 next_mz =
3619 __mem_cgroup_largest_soft_limit_node(mctz);
3620 if (next_mz == mz)
3621 css_put(&next_mz->memcg->css);
3622 else /* next_mz == NULL or other memcg */
3623 break;
3624 } while (1);
3626 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
3627 excess = res_counter_soft_limit_excess(&mz->memcg->res);
3629 * One school of thought says that we should not add
3630 * back the node to the tree if reclaim returns 0.
3631 * But our reclaim could return 0, simply because due
3632 * to priority we are exposing a smaller subset of
3633 * memory to reclaim from. Consider this as a longer
3634 * term TODO.
3636 /* If excess == 0, no tree ops */
3637 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
3638 spin_unlock(&mctz->lock);
3639 css_put(&mz->memcg->css);
3640 loop++;
3642 * Could not reclaim anything and there are no more
3643 * mem cgroups to try or we seem to be looping without
3644 * reclaiming anything.
3646 if (!nr_reclaimed &&
3647 (next_mz == NULL ||
3648 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3649 break;
3650 } while (!nr_reclaimed);
3651 if (next_mz)
3652 css_put(&next_mz->memcg->css);
3653 return nr_reclaimed;
3657 * This routine traverse page_cgroup in given list and drop them all.
3658 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3660 static int mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
3661 int node, int zid, enum lru_list lru)
3663 struct mem_cgroup_per_zone *mz;
3664 unsigned long flags, loop;
3665 struct list_head *list;
3666 struct page *busy;
3667 struct zone *zone;
3668 int ret = 0;
3670 zone = &NODE_DATA(node)->node_zones[zid];
3671 mz = mem_cgroup_zoneinfo(memcg, node, zid);
3672 list = &mz->lruvec.lists[lru];
3674 loop = mz->lru_size[lru];
3675 /* give some margin against EBUSY etc...*/
3676 loop += 256;
3677 busy = NULL;
3678 while (loop--) {
3679 struct page_cgroup *pc;
3680 struct page *page;
3682 ret = 0;
3683 spin_lock_irqsave(&zone->lru_lock, flags);
3684 if (list_empty(list)) {
3685 spin_unlock_irqrestore(&zone->lru_lock, flags);
3686 break;
3688 page = list_entry(list->prev, struct page, lru);
3689 if (busy == page) {
3690 list_move(&page->lru, list);
3691 busy = NULL;
3692 spin_unlock_irqrestore(&zone->lru_lock, flags);
3693 continue;
3695 spin_unlock_irqrestore(&zone->lru_lock, flags);
3697 pc = lookup_page_cgroup(page);
3699 ret = mem_cgroup_move_parent(page, pc, memcg, GFP_KERNEL);
3700 if (ret == -ENOMEM || ret == -EINTR)
3701 break;
3703 if (ret == -EBUSY || ret == -EINVAL) {
3704 /* found lock contention or "pc" is obsolete. */
3705 busy = page;
3706 cond_resched();
3707 } else
3708 busy = NULL;
3711 if (!ret && !list_empty(list))
3712 return -EBUSY;
3713 return ret;
3717 * make mem_cgroup's charge to be 0 if there is no task.
3718 * This enables deleting this mem_cgroup.
3720 static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
3722 int ret;
3723 int node, zid, shrink;
3724 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3725 struct cgroup *cgrp = memcg->css.cgroup;
3727 css_get(&memcg->css);
3729 shrink = 0;
3730 /* should free all ? */
3731 if (free_all)
3732 goto try_to_free;
3733 move_account:
3734 do {
3735 ret = -EBUSY;
3736 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3737 goto out;
3738 ret = -EINTR;
3739 if (signal_pending(current))
3740 goto out;
3741 /* This is for making all *used* pages to be on LRU. */
3742 lru_add_drain_all();
3743 drain_all_stock_sync(memcg);
3744 ret = 0;
3745 mem_cgroup_start_move(memcg);
3746 for_each_node_state(node, N_HIGH_MEMORY) {
3747 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3748 enum lru_list lru;
3749 for_each_lru(lru) {
3750 ret = mem_cgroup_force_empty_list(memcg,
3751 node, zid, lru);
3752 if (ret)
3753 break;
3756 if (ret)
3757 break;
3759 mem_cgroup_end_move(memcg);
3760 memcg_oom_recover(memcg);
3761 /* it seems parent cgroup doesn't have enough mem */
3762 if (ret == -ENOMEM)
3763 goto try_to_free;
3764 cond_resched();
3765 /* "ret" should also be checked to ensure all lists are empty. */
3766 } while (memcg->res.usage > 0 || ret);
3767 out:
3768 css_put(&memcg->css);
3769 return ret;
3771 try_to_free:
3772 /* returns EBUSY if there is a task or if we come here twice. */
3773 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3774 ret = -EBUSY;
3775 goto out;
3777 /* we call try-to-free pages for make this cgroup empty */
3778 lru_add_drain_all();
3779 /* try to free all pages in this cgroup */
3780 shrink = 1;
3781 while (nr_retries && memcg->res.usage > 0) {
3782 int progress;
3784 if (signal_pending(current)) {
3785 ret = -EINTR;
3786 goto out;
3788 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
3789 false);
3790 if (!progress) {
3791 nr_retries--;
3792 /* maybe some writeback is necessary */
3793 congestion_wait(BLK_RW_ASYNC, HZ/10);
3797 lru_add_drain();
3798 /* try move_account...there may be some *locked* pages. */
3799 goto move_account;
3802 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3804 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3808 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3810 return mem_cgroup_from_cont(cont)->use_hierarchy;
3813 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3814 u64 val)
3816 int retval = 0;
3817 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3818 struct cgroup *parent = cont->parent;
3819 struct mem_cgroup *parent_memcg = NULL;
3821 if (parent)
3822 parent_memcg = mem_cgroup_from_cont(parent);
3824 cgroup_lock();
3826 * If parent's use_hierarchy is set, we can't make any modifications
3827 * in the child subtrees. If it is unset, then the change can
3828 * occur, provided the current cgroup has no children.
3830 * For the root cgroup, parent_mem is NULL, we allow value to be
3831 * set if there are no children.
3833 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3834 (val == 1 || val == 0)) {
3835 if (list_empty(&cont->children))
3836 memcg->use_hierarchy = val;
3837 else
3838 retval = -EBUSY;
3839 } else
3840 retval = -EINVAL;
3841 cgroup_unlock();
3843 return retval;
3847 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
3848 enum mem_cgroup_stat_index idx)
3850 struct mem_cgroup *iter;
3851 long val = 0;
3853 /* Per-cpu values can be negative, use a signed accumulator */
3854 for_each_mem_cgroup_tree(iter, memcg)
3855 val += mem_cgroup_read_stat(iter, idx);
3857 if (val < 0) /* race ? */
3858 val = 0;
3859 return val;
3862 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3864 u64 val;
3866 if (!mem_cgroup_is_root(memcg)) {
3867 if (!swap)
3868 return res_counter_read_u64(&memcg->res, RES_USAGE);
3869 else
3870 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
3873 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
3874 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
3876 if (swap)
3877 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
3879 return val << PAGE_SHIFT;
3882 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
3884 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3885 u64 val;
3886 int type, name;
3888 type = MEMFILE_TYPE(cft->private);
3889 name = MEMFILE_ATTR(cft->private);
3890 switch (type) {
3891 case _MEM:
3892 if (name == RES_USAGE)
3893 val = mem_cgroup_usage(memcg, false);
3894 else
3895 val = res_counter_read_u64(&memcg->res, name);
3896 break;
3897 case _MEMSWAP:
3898 if (name == RES_USAGE)
3899 val = mem_cgroup_usage(memcg, true);
3900 else
3901 val = res_counter_read_u64(&memcg->memsw, name);
3902 break;
3903 default:
3904 BUG();
3906 return val;
3909 * The user of this function is...
3910 * RES_LIMIT.
3912 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3913 const char *buffer)
3915 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3916 int type, name;
3917 unsigned long long val;
3918 int ret;
3920 type = MEMFILE_TYPE(cft->private);
3921 name = MEMFILE_ATTR(cft->private);
3922 switch (name) {
3923 case RES_LIMIT:
3924 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3925 ret = -EINVAL;
3926 break;
3928 /* This function does all necessary parse...reuse it */
3929 ret = res_counter_memparse_write_strategy(buffer, &val);
3930 if (ret)
3931 break;
3932 if (type == _MEM)
3933 ret = mem_cgroup_resize_limit(memcg, val);
3934 else
3935 ret = mem_cgroup_resize_memsw_limit(memcg, val);
3936 break;
3937 case RES_SOFT_LIMIT:
3938 ret = res_counter_memparse_write_strategy(buffer, &val);
3939 if (ret)
3940 break;
3942 * For memsw, soft limits are hard to implement in terms
3943 * of semantics, for now, we support soft limits for
3944 * control without swap
3946 if (type == _MEM)
3947 ret = res_counter_set_soft_limit(&memcg->res, val);
3948 else
3949 ret = -EINVAL;
3950 break;
3951 default:
3952 ret = -EINVAL; /* should be BUG() ? */
3953 break;
3955 return ret;
3958 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3959 unsigned long long *mem_limit, unsigned long long *memsw_limit)
3961 struct cgroup *cgroup;
3962 unsigned long long min_limit, min_memsw_limit, tmp;
3964 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3965 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3966 cgroup = memcg->css.cgroup;
3967 if (!memcg->use_hierarchy)
3968 goto out;
3970 while (cgroup->parent) {
3971 cgroup = cgroup->parent;
3972 memcg = mem_cgroup_from_cont(cgroup);
3973 if (!memcg->use_hierarchy)
3974 break;
3975 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3976 min_limit = min(min_limit, tmp);
3977 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3978 min_memsw_limit = min(min_memsw_limit, tmp);
3980 out:
3981 *mem_limit = min_limit;
3982 *memsw_limit = min_memsw_limit;
3985 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3987 struct mem_cgroup *memcg;
3988 int type, name;
3990 memcg = mem_cgroup_from_cont(cont);
3991 type = MEMFILE_TYPE(event);
3992 name = MEMFILE_ATTR(event);
3993 switch (name) {
3994 case RES_MAX_USAGE:
3995 if (type == _MEM)
3996 res_counter_reset_max(&memcg->res);
3997 else
3998 res_counter_reset_max(&memcg->memsw);
3999 break;
4000 case RES_FAILCNT:
4001 if (type == _MEM)
4002 res_counter_reset_failcnt(&memcg->res);
4003 else
4004 res_counter_reset_failcnt(&memcg->memsw);
4005 break;
4008 return 0;
4011 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
4012 struct cftype *cft)
4014 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
4017 #ifdef CONFIG_MMU
4018 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4019 struct cftype *cft, u64 val)
4021 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4023 if (val >= (1 << NR_MOVE_TYPE))
4024 return -EINVAL;
4026 * We check this value several times in both in can_attach() and
4027 * attach(), so we need cgroup lock to prevent this value from being
4028 * inconsistent.
4030 cgroup_lock();
4031 memcg->move_charge_at_immigrate = val;
4032 cgroup_unlock();
4034 return 0;
4036 #else
4037 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4038 struct cftype *cft, u64 val)
4040 return -ENOSYS;
4042 #endif
4045 /* For read statistics */
4046 enum {
4047 MCS_CACHE,
4048 MCS_RSS,
4049 MCS_FILE_MAPPED,
4050 MCS_PGPGIN,
4051 MCS_PGPGOUT,
4052 MCS_SWAP,
4053 MCS_PGFAULT,
4054 MCS_PGMAJFAULT,
4055 MCS_INACTIVE_ANON,
4056 MCS_ACTIVE_ANON,
4057 MCS_INACTIVE_FILE,
4058 MCS_ACTIVE_FILE,
4059 MCS_UNEVICTABLE,
4060 NR_MCS_STAT,
4063 struct mcs_total_stat {
4064 s64 stat[NR_MCS_STAT];
4067 struct {
4068 char *local_name;
4069 char *total_name;
4070 } memcg_stat_strings[NR_MCS_STAT] = {
4071 {"cache", "total_cache"},
4072 {"rss", "total_rss"},
4073 {"mapped_file", "total_mapped_file"},
4074 {"pgpgin", "total_pgpgin"},
4075 {"pgpgout", "total_pgpgout"},
4076 {"swap", "total_swap"},
4077 {"pgfault", "total_pgfault"},
4078 {"pgmajfault", "total_pgmajfault"},
4079 {"inactive_anon", "total_inactive_anon"},
4080 {"active_anon", "total_active_anon"},
4081 {"inactive_file", "total_inactive_file"},
4082 {"active_file", "total_active_file"},
4083 {"unevictable", "total_unevictable"}
4087 static void
4088 mem_cgroup_get_local_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
4090 s64 val;
4092 /* per cpu stat */
4093 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_CACHE);
4094 s->stat[MCS_CACHE] += val * PAGE_SIZE;
4095 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_RSS);
4096 s->stat[MCS_RSS] += val * PAGE_SIZE;
4097 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
4098 s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
4099 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGIN);
4100 s->stat[MCS_PGPGIN] += val;
4101 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGOUT);
4102 s->stat[MCS_PGPGOUT] += val;
4103 if (do_swap_account) {
4104 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
4105 s->stat[MCS_SWAP] += val * PAGE_SIZE;
4107 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGFAULT);
4108 s->stat[MCS_PGFAULT] += val;
4109 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGMAJFAULT);
4110 s->stat[MCS_PGMAJFAULT] += val;
4112 /* per zone stat */
4113 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
4114 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
4115 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
4116 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
4117 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
4118 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
4119 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
4120 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
4121 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
4122 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
4125 static void
4126 mem_cgroup_get_total_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
4128 struct mem_cgroup *iter;
4130 for_each_mem_cgroup_tree(iter, memcg)
4131 mem_cgroup_get_local_stat(iter, s);
4134 #ifdef CONFIG_NUMA
4135 static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
4137 int nid;
4138 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4139 unsigned long node_nr;
4140 struct cgroup *cont = m->private;
4141 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4143 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
4144 seq_printf(m, "total=%lu", total_nr);
4145 for_each_node_state(nid, N_HIGH_MEMORY) {
4146 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
4147 seq_printf(m, " N%d=%lu", nid, node_nr);
4149 seq_putc(m, '\n');
4151 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
4152 seq_printf(m, "file=%lu", file_nr);
4153 for_each_node_state(nid, N_HIGH_MEMORY) {
4154 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4155 LRU_ALL_FILE);
4156 seq_printf(m, " N%d=%lu", nid, node_nr);
4158 seq_putc(m, '\n');
4160 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
4161 seq_printf(m, "anon=%lu", anon_nr);
4162 for_each_node_state(nid, N_HIGH_MEMORY) {
4163 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4164 LRU_ALL_ANON);
4165 seq_printf(m, " N%d=%lu", nid, node_nr);
4167 seq_putc(m, '\n');
4169 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
4170 seq_printf(m, "unevictable=%lu", unevictable_nr);
4171 for_each_node_state(nid, N_HIGH_MEMORY) {
4172 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4173 BIT(LRU_UNEVICTABLE));
4174 seq_printf(m, " N%d=%lu", nid, node_nr);
4176 seq_putc(m, '\n');
4177 return 0;
4179 #endif /* CONFIG_NUMA */
4181 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
4182 struct cgroup_map_cb *cb)
4184 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4185 struct mcs_total_stat mystat;
4186 int i;
4188 memset(&mystat, 0, sizeof(mystat));
4189 mem_cgroup_get_local_stat(memcg, &mystat);
4192 for (i = 0; i < NR_MCS_STAT; i++) {
4193 if (i == MCS_SWAP && !do_swap_account)
4194 continue;
4195 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
4198 /* Hierarchical information */
4200 unsigned long long limit, memsw_limit;
4201 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
4202 cb->fill(cb, "hierarchical_memory_limit", limit);
4203 if (do_swap_account)
4204 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
4207 memset(&mystat, 0, sizeof(mystat));
4208 mem_cgroup_get_total_stat(memcg, &mystat);
4209 for (i = 0; i < NR_MCS_STAT; i++) {
4210 if (i == MCS_SWAP && !do_swap_account)
4211 continue;
4212 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
4215 #ifdef CONFIG_DEBUG_VM
4217 int nid, zid;
4218 struct mem_cgroup_per_zone *mz;
4219 unsigned long recent_rotated[2] = {0, 0};
4220 unsigned long recent_scanned[2] = {0, 0};
4222 for_each_online_node(nid)
4223 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4224 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
4226 recent_rotated[0] +=
4227 mz->reclaim_stat.recent_rotated[0];
4228 recent_rotated[1] +=
4229 mz->reclaim_stat.recent_rotated[1];
4230 recent_scanned[0] +=
4231 mz->reclaim_stat.recent_scanned[0];
4232 recent_scanned[1] +=
4233 mz->reclaim_stat.recent_scanned[1];
4235 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
4236 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
4237 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
4238 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
4240 #endif
4242 return 0;
4245 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4247 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4249 return mem_cgroup_swappiness(memcg);
4252 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4253 u64 val)
4255 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4256 struct mem_cgroup *parent;
4258 if (val > 100)
4259 return -EINVAL;
4261 if (cgrp->parent == NULL)
4262 return -EINVAL;
4264 parent = mem_cgroup_from_cont(cgrp->parent);
4266 cgroup_lock();
4268 /* If under hierarchy, only empty-root can set this value */
4269 if ((parent->use_hierarchy) ||
4270 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4271 cgroup_unlock();
4272 return -EINVAL;
4275 memcg->swappiness = val;
4277 cgroup_unlock();
4279 return 0;
4282 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4284 struct mem_cgroup_threshold_ary *t;
4285 u64 usage;
4286 int i;
4288 rcu_read_lock();
4289 if (!swap)
4290 t = rcu_dereference(memcg->thresholds.primary);
4291 else
4292 t = rcu_dereference(memcg->memsw_thresholds.primary);
4294 if (!t)
4295 goto unlock;
4297 usage = mem_cgroup_usage(memcg, swap);
4300 * current_threshold points to threshold just below usage.
4301 * If it's not true, a threshold was crossed after last
4302 * call of __mem_cgroup_threshold().
4304 i = t->current_threshold;
4307 * Iterate backward over array of thresholds starting from
4308 * current_threshold and check if a threshold is crossed.
4309 * If none of thresholds below usage is crossed, we read
4310 * only one element of the array here.
4312 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4313 eventfd_signal(t->entries[i].eventfd, 1);
4315 /* i = current_threshold + 1 */
4316 i++;
4319 * Iterate forward over array of thresholds starting from
4320 * current_threshold+1 and check if a threshold is crossed.
4321 * If none of thresholds above usage is crossed, we read
4322 * only one element of the array here.
4324 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4325 eventfd_signal(t->entries[i].eventfd, 1);
4327 /* Update current_threshold */
4328 t->current_threshold = i - 1;
4329 unlock:
4330 rcu_read_unlock();
4333 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4335 while (memcg) {
4336 __mem_cgroup_threshold(memcg, false);
4337 if (do_swap_account)
4338 __mem_cgroup_threshold(memcg, true);
4340 memcg = parent_mem_cgroup(memcg);
4344 static int compare_thresholds(const void *a, const void *b)
4346 const struct mem_cgroup_threshold *_a = a;
4347 const struct mem_cgroup_threshold *_b = b;
4349 return _a->threshold - _b->threshold;
4352 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4354 struct mem_cgroup_eventfd_list *ev;
4356 list_for_each_entry(ev, &memcg->oom_notify, list)
4357 eventfd_signal(ev->eventfd, 1);
4358 return 0;
4361 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4363 struct mem_cgroup *iter;
4365 for_each_mem_cgroup_tree(iter, memcg)
4366 mem_cgroup_oom_notify_cb(iter);
4369 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4370 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4372 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4373 struct mem_cgroup_thresholds *thresholds;
4374 struct mem_cgroup_threshold_ary *new;
4375 int type = MEMFILE_TYPE(cft->private);
4376 u64 threshold, usage;
4377 int i, size, ret;
4379 ret = res_counter_memparse_write_strategy(args, &threshold);
4380 if (ret)
4381 return ret;
4383 mutex_lock(&memcg->thresholds_lock);
4385 if (type == _MEM)
4386 thresholds = &memcg->thresholds;
4387 else if (type == _MEMSWAP)
4388 thresholds = &memcg->memsw_thresholds;
4389 else
4390 BUG();
4392 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4394 /* Check if a threshold crossed before adding a new one */
4395 if (thresholds->primary)
4396 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4398 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4400 /* Allocate memory for new array of thresholds */
4401 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4402 GFP_KERNEL);
4403 if (!new) {
4404 ret = -ENOMEM;
4405 goto unlock;
4407 new->size = size;
4409 /* Copy thresholds (if any) to new array */
4410 if (thresholds->primary) {
4411 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4412 sizeof(struct mem_cgroup_threshold));
4415 /* Add new threshold */
4416 new->entries[size - 1].eventfd = eventfd;
4417 new->entries[size - 1].threshold = threshold;
4419 /* Sort thresholds. Registering of new threshold isn't time-critical */
4420 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4421 compare_thresholds, NULL);
4423 /* Find current threshold */
4424 new->current_threshold = -1;
4425 for (i = 0; i < size; i++) {
4426 if (new->entries[i].threshold < usage) {
4428 * new->current_threshold will not be used until
4429 * rcu_assign_pointer(), so it's safe to increment
4430 * it here.
4432 ++new->current_threshold;
4436 /* Free old spare buffer and save old primary buffer as spare */
4437 kfree(thresholds->spare);
4438 thresholds->spare = thresholds->primary;
4440 rcu_assign_pointer(thresholds->primary, new);
4442 /* To be sure that nobody uses thresholds */
4443 synchronize_rcu();
4445 unlock:
4446 mutex_unlock(&memcg->thresholds_lock);
4448 return ret;
4451 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
4452 struct cftype *cft, struct eventfd_ctx *eventfd)
4454 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4455 struct mem_cgroup_thresholds *thresholds;
4456 struct mem_cgroup_threshold_ary *new;
4457 int type = MEMFILE_TYPE(cft->private);
4458 u64 usage;
4459 int i, j, size;
4461 mutex_lock(&memcg->thresholds_lock);
4462 if (type == _MEM)
4463 thresholds = &memcg->thresholds;
4464 else if (type == _MEMSWAP)
4465 thresholds = &memcg->memsw_thresholds;
4466 else
4467 BUG();
4469 if (!thresholds->primary)
4470 goto unlock;
4472 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4474 /* Check if a threshold crossed before removing */
4475 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4477 /* Calculate new number of threshold */
4478 size = 0;
4479 for (i = 0; i < thresholds->primary->size; i++) {
4480 if (thresholds->primary->entries[i].eventfd != eventfd)
4481 size++;
4484 new = thresholds->spare;
4486 /* Set thresholds array to NULL if we don't have thresholds */
4487 if (!size) {
4488 kfree(new);
4489 new = NULL;
4490 goto swap_buffers;
4493 new->size = size;
4495 /* Copy thresholds and find current threshold */
4496 new->current_threshold = -1;
4497 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4498 if (thresholds->primary->entries[i].eventfd == eventfd)
4499 continue;
4501 new->entries[j] = thresholds->primary->entries[i];
4502 if (new->entries[j].threshold < usage) {
4504 * new->current_threshold will not be used
4505 * until rcu_assign_pointer(), so it's safe to increment
4506 * it here.
4508 ++new->current_threshold;
4510 j++;
4513 swap_buffers:
4514 /* Swap primary and spare array */
4515 thresholds->spare = thresholds->primary;
4516 rcu_assign_pointer(thresholds->primary, new);
4518 /* To be sure that nobody uses thresholds */
4519 synchronize_rcu();
4520 unlock:
4521 mutex_unlock(&memcg->thresholds_lock);
4524 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4525 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4527 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4528 struct mem_cgroup_eventfd_list *event;
4529 int type = MEMFILE_TYPE(cft->private);
4531 BUG_ON(type != _OOM_TYPE);
4532 event = kmalloc(sizeof(*event), GFP_KERNEL);
4533 if (!event)
4534 return -ENOMEM;
4536 spin_lock(&memcg_oom_lock);
4538 event->eventfd = eventfd;
4539 list_add(&event->list, &memcg->oom_notify);
4541 /* already in OOM ? */
4542 if (atomic_read(&memcg->under_oom))
4543 eventfd_signal(eventfd, 1);
4544 spin_unlock(&memcg_oom_lock);
4546 return 0;
4549 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4550 struct cftype *cft, struct eventfd_ctx *eventfd)
4552 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4553 struct mem_cgroup_eventfd_list *ev, *tmp;
4554 int type = MEMFILE_TYPE(cft->private);
4556 BUG_ON(type != _OOM_TYPE);
4558 spin_lock(&memcg_oom_lock);
4560 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4561 if (ev->eventfd == eventfd) {
4562 list_del(&ev->list);
4563 kfree(ev);
4567 spin_unlock(&memcg_oom_lock);
4570 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4571 struct cftype *cft, struct cgroup_map_cb *cb)
4573 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4575 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
4577 if (atomic_read(&memcg->under_oom))
4578 cb->fill(cb, "under_oom", 1);
4579 else
4580 cb->fill(cb, "under_oom", 0);
4581 return 0;
4584 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4585 struct cftype *cft, u64 val)
4587 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4588 struct mem_cgroup *parent;
4590 /* cannot set to root cgroup and only 0 and 1 are allowed */
4591 if (!cgrp->parent || !((val == 0) || (val == 1)))
4592 return -EINVAL;
4594 parent = mem_cgroup_from_cont(cgrp->parent);
4596 cgroup_lock();
4597 /* oom-kill-disable is a flag for subhierarchy. */
4598 if ((parent->use_hierarchy) ||
4599 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4600 cgroup_unlock();
4601 return -EINVAL;
4603 memcg->oom_kill_disable = val;
4604 if (!val)
4605 memcg_oom_recover(memcg);
4606 cgroup_unlock();
4607 return 0;
4610 #ifdef CONFIG_NUMA
4611 static const struct file_operations mem_control_numa_stat_file_operations = {
4612 .read = seq_read,
4613 .llseek = seq_lseek,
4614 .release = single_release,
4617 static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
4619 struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;
4621 file->f_op = &mem_control_numa_stat_file_operations;
4622 return single_open(file, mem_control_numa_stat_show, cont);
4624 #endif /* CONFIG_NUMA */
4626 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
4627 static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
4630 * Part of this would be better living in a separate allocation
4631 * function, leaving us with just the cgroup tree population work.
4632 * We, however, depend on state such as network's proto_list that
4633 * is only initialized after cgroup creation. I found the less
4634 * cumbersome way to deal with it to defer it all to populate time
4636 return mem_cgroup_sockets_init(cont, ss);
4639 static void kmem_cgroup_destroy(struct cgroup *cont)
4641 mem_cgroup_sockets_destroy(cont);
4643 #else
4644 static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
4646 return 0;
4649 static void kmem_cgroup_destroy(struct cgroup *cont)
4652 #endif
4654 static struct cftype mem_cgroup_files[] = {
4656 .name = "usage_in_bytes",
4657 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4658 .read_u64 = mem_cgroup_read,
4659 .register_event = mem_cgroup_usage_register_event,
4660 .unregister_event = mem_cgroup_usage_unregister_event,
4663 .name = "max_usage_in_bytes",
4664 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4665 .trigger = mem_cgroup_reset,
4666 .read_u64 = mem_cgroup_read,
4669 .name = "limit_in_bytes",
4670 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4671 .write_string = mem_cgroup_write,
4672 .read_u64 = mem_cgroup_read,
4675 .name = "soft_limit_in_bytes",
4676 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4677 .write_string = mem_cgroup_write,
4678 .read_u64 = mem_cgroup_read,
4681 .name = "failcnt",
4682 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4683 .trigger = mem_cgroup_reset,
4684 .read_u64 = mem_cgroup_read,
4687 .name = "stat",
4688 .read_map = mem_control_stat_show,
4691 .name = "force_empty",
4692 .trigger = mem_cgroup_force_empty_write,
4695 .name = "use_hierarchy",
4696 .write_u64 = mem_cgroup_hierarchy_write,
4697 .read_u64 = mem_cgroup_hierarchy_read,
4700 .name = "swappiness",
4701 .read_u64 = mem_cgroup_swappiness_read,
4702 .write_u64 = mem_cgroup_swappiness_write,
4705 .name = "move_charge_at_immigrate",
4706 .read_u64 = mem_cgroup_move_charge_read,
4707 .write_u64 = mem_cgroup_move_charge_write,
4710 .name = "oom_control",
4711 .read_map = mem_cgroup_oom_control_read,
4712 .write_u64 = mem_cgroup_oom_control_write,
4713 .register_event = mem_cgroup_oom_register_event,
4714 .unregister_event = mem_cgroup_oom_unregister_event,
4715 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4717 #ifdef CONFIG_NUMA
4719 .name = "numa_stat",
4720 .open = mem_control_numa_stat_open,
4721 .mode = S_IRUGO,
4723 #endif
4726 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4727 static struct cftype memsw_cgroup_files[] = {
4729 .name = "memsw.usage_in_bytes",
4730 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4731 .read_u64 = mem_cgroup_read,
4732 .register_event = mem_cgroup_usage_register_event,
4733 .unregister_event = mem_cgroup_usage_unregister_event,
4736 .name = "memsw.max_usage_in_bytes",
4737 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4738 .trigger = mem_cgroup_reset,
4739 .read_u64 = mem_cgroup_read,
4742 .name = "memsw.limit_in_bytes",
4743 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4744 .write_string = mem_cgroup_write,
4745 .read_u64 = mem_cgroup_read,
4748 .name = "memsw.failcnt",
4749 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4750 .trigger = mem_cgroup_reset,
4751 .read_u64 = mem_cgroup_read,
4755 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4757 if (!do_swap_account)
4758 return 0;
4759 return cgroup_add_files(cont, ss, memsw_cgroup_files,
4760 ARRAY_SIZE(memsw_cgroup_files));
4762 #else
4763 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4765 return 0;
4767 #endif
4769 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4771 struct mem_cgroup_per_node *pn;
4772 struct mem_cgroup_per_zone *mz;
4773 enum lru_list lru;
4774 int zone, tmp = node;
4776 * This routine is called against possible nodes.
4777 * But it's BUG to call kmalloc() against offline node.
4779 * TODO: this routine can waste much memory for nodes which will
4780 * never be onlined. It's better to use memory hotplug callback
4781 * function.
4783 if (!node_state(node, N_NORMAL_MEMORY))
4784 tmp = -1;
4785 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4786 if (!pn)
4787 return 1;
4789 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4790 mz = &pn->zoneinfo[zone];
4791 for_each_lru(lru)
4792 INIT_LIST_HEAD(&mz->lruvec.lists[lru]);
4793 mz->usage_in_excess = 0;
4794 mz->on_tree = false;
4795 mz->memcg = memcg;
4797 memcg->info.nodeinfo[node] = pn;
4798 return 0;
4801 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4803 kfree(memcg->info.nodeinfo[node]);
4806 static struct mem_cgroup *mem_cgroup_alloc(void)
4808 struct mem_cgroup *memcg;
4809 int size = sizeof(struct mem_cgroup);
4811 /* Can be very big if MAX_NUMNODES is very big */
4812 if (size < PAGE_SIZE)
4813 memcg = kzalloc(size, GFP_KERNEL);
4814 else
4815 memcg = vzalloc(size);
4817 if (!memcg)
4818 return NULL;
4820 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4821 if (!memcg->stat)
4822 goto out_free;
4823 spin_lock_init(&memcg->pcp_counter_lock);
4824 return memcg;
4826 out_free:
4827 if (size < PAGE_SIZE)
4828 kfree(memcg);
4829 else
4830 vfree(memcg);
4831 return NULL;
4835 * Helpers for freeing a vzalloc()ed mem_cgroup by RCU,
4836 * but in process context. The work_freeing structure is overlaid
4837 * on the rcu_freeing structure, which itself is overlaid on memsw.
4839 static void vfree_work(struct work_struct *work)
4841 struct mem_cgroup *memcg;
4843 memcg = container_of(work, struct mem_cgroup, work_freeing);
4844 vfree(memcg);
4846 static void vfree_rcu(struct rcu_head *rcu_head)
4848 struct mem_cgroup *memcg;
4850 memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
4851 INIT_WORK(&memcg->work_freeing, vfree_work);
4852 schedule_work(&memcg->work_freeing);
4856 * At destroying mem_cgroup, references from swap_cgroup can remain.
4857 * (scanning all at force_empty is too costly...)
4859 * Instead of clearing all references at force_empty, we remember
4860 * the number of reference from swap_cgroup and free mem_cgroup when
4861 * it goes down to 0.
4863 * Removal of cgroup itself succeeds regardless of refs from swap.
4866 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4868 int node;
4870 mem_cgroup_remove_from_trees(memcg);
4871 free_css_id(&mem_cgroup_subsys, &memcg->css);
4873 for_each_node(node)
4874 free_mem_cgroup_per_zone_info(memcg, node);
4876 free_percpu(memcg->stat);
4877 if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4878 kfree_rcu(memcg, rcu_freeing);
4879 else
4880 call_rcu(&memcg->rcu_freeing, vfree_rcu);
4883 static void mem_cgroup_get(struct mem_cgroup *memcg)
4885 atomic_inc(&memcg->refcnt);
4888 static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
4890 if (atomic_sub_and_test(count, &memcg->refcnt)) {
4891 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4892 __mem_cgroup_free(memcg);
4893 if (parent)
4894 mem_cgroup_put(parent);
4898 static void mem_cgroup_put(struct mem_cgroup *memcg)
4900 __mem_cgroup_put(memcg, 1);
4904 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4906 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4908 if (!memcg->res.parent)
4909 return NULL;
4910 return mem_cgroup_from_res_counter(memcg->res.parent, res);
4912 EXPORT_SYMBOL(parent_mem_cgroup);
4914 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4915 static void __init enable_swap_cgroup(void)
4917 if (!mem_cgroup_disabled() && really_do_swap_account)
4918 do_swap_account = 1;
4920 #else
4921 static void __init enable_swap_cgroup(void)
4924 #endif
4926 static int mem_cgroup_soft_limit_tree_init(void)
4928 struct mem_cgroup_tree_per_node *rtpn;
4929 struct mem_cgroup_tree_per_zone *rtpz;
4930 int tmp, node, zone;
4932 for_each_node(node) {
4933 tmp = node;
4934 if (!node_state(node, N_NORMAL_MEMORY))
4935 tmp = -1;
4936 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4937 if (!rtpn)
4938 goto err_cleanup;
4940 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4942 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4943 rtpz = &rtpn->rb_tree_per_zone[zone];
4944 rtpz->rb_root = RB_ROOT;
4945 spin_lock_init(&rtpz->lock);
4948 return 0;
4950 err_cleanup:
4951 for_each_node(node) {
4952 if (!soft_limit_tree.rb_tree_per_node[node])
4953 break;
4954 kfree(soft_limit_tree.rb_tree_per_node[node]);
4955 soft_limit_tree.rb_tree_per_node[node] = NULL;
4957 return 1;
4961 static struct cgroup_subsys_state * __ref
4962 mem_cgroup_create(struct cgroup *cont)
4964 struct mem_cgroup *memcg, *parent;
4965 long error = -ENOMEM;
4966 int node;
4968 memcg = mem_cgroup_alloc();
4969 if (!memcg)
4970 return ERR_PTR(error);
4972 for_each_node(node)
4973 if (alloc_mem_cgroup_per_zone_info(memcg, node))
4974 goto free_out;
4976 /* root ? */
4977 if (cont->parent == NULL) {
4978 int cpu;
4979 enable_swap_cgroup();
4980 parent = NULL;
4981 if (mem_cgroup_soft_limit_tree_init())
4982 goto free_out;
4983 root_mem_cgroup = memcg;
4984 for_each_possible_cpu(cpu) {
4985 struct memcg_stock_pcp *stock =
4986 &per_cpu(memcg_stock, cpu);
4987 INIT_WORK(&stock->work, drain_local_stock);
4989 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4990 } else {
4991 parent = mem_cgroup_from_cont(cont->parent);
4992 memcg->use_hierarchy = parent->use_hierarchy;
4993 memcg->oom_kill_disable = parent->oom_kill_disable;
4996 if (parent && parent->use_hierarchy) {
4997 res_counter_init(&memcg->res, &parent->res);
4998 res_counter_init(&memcg->memsw, &parent->memsw);
5000 * We increment refcnt of the parent to ensure that we can
5001 * safely access it on res_counter_charge/uncharge.
5002 * This refcnt will be decremented when freeing this
5003 * mem_cgroup(see mem_cgroup_put).
5005 mem_cgroup_get(parent);
5006 } else {
5007 res_counter_init(&memcg->res, NULL);
5008 res_counter_init(&memcg->memsw, NULL);
5010 memcg->last_scanned_node = MAX_NUMNODES;
5011 INIT_LIST_HEAD(&memcg->oom_notify);
5013 if (parent)
5014 memcg->swappiness = mem_cgroup_swappiness(parent);
5015 atomic_set(&memcg->refcnt, 1);
5016 memcg->move_charge_at_immigrate = 0;
5017 mutex_init(&memcg->thresholds_lock);
5018 spin_lock_init(&memcg->move_lock);
5019 return &memcg->css;
5020 free_out:
5021 __mem_cgroup_free(memcg);
5022 return ERR_PTR(error);
5025 static int mem_cgroup_pre_destroy(struct cgroup *cont)
5027 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5029 return mem_cgroup_force_empty(memcg, false);
5032 static void mem_cgroup_destroy(struct cgroup *cont)
5034 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5036 kmem_cgroup_destroy(cont);
5038 mem_cgroup_put(memcg);
5041 static int mem_cgroup_populate(struct cgroup_subsys *ss,
5042 struct cgroup *cont)
5044 int ret;
5046 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
5047 ARRAY_SIZE(mem_cgroup_files));
5049 if (!ret)
5050 ret = register_memsw_files(cont, ss);
5052 if (!ret)
5053 ret = register_kmem_files(cont, ss);
5055 return ret;
5058 #ifdef CONFIG_MMU
5059 /* Handlers for move charge at task migration. */
5060 #define PRECHARGE_COUNT_AT_ONCE 256
5061 static int mem_cgroup_do_precharge(unsigned long count)
5063 int ret = 0;
5064 int batch_count = PRECHARGE_COUNT_AT_ONCE;
5065 struct mem_cgroup *memcg = mc.to;
5067 if (mem_cgroup_is_root(memcg)) {
5068 mc.precharge += count;
5069 /* we don't need css_get for root */
5070 return ret;
5072 /* try to charge at once */
5073 if (count > 1) {
5074 struct res_counter *dummy;
5076 * "memcg" cannot be under rmdir() because we've already checked
5077 * by cgroup_lock_live_cgroup() that it is not removed and we
5078 * are still under the same cgroup_mutex. So we can postpone
5079 * css_get().
5081 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
5082 goto one_by_one;
5083 if (do_swap_account && res_counter_charge(&memcg->memsw,
5084 PAGE_SIZE * count, &dummy)) {
5085 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
5086 goto one_by_one;
5088 mc.precharge += count;
5089 return ret;
5091 one_by_one:
5092 /* fall back to one by one charge */
5093 while (count--) {
5094 if (signal_pending(current)) {
5095 ret = -EINTR;
5096 break;
5098 if (!batch_count--) {
5099 batch_count = PRECHARGE_COUNT_AT_ONCE;
5100 cond_resched();
5102 ret = __mem_cgroup_try_charge(NULL,
5103 GFP_KERNEL, 1, &memcg, false);
5104 if (ret)
5105 /* mem_cgroup_clear_mc() will do uncharge later */
5106 return ret;
5107 mc.precharge++;
5109 return ret;
5113 * get_mctgt_type - get target type of moving charge
5114 * @vma: the vma the pte to be checked belongs
5115 * @addr: the address corresponding to the pte to be checked
5116 * @ptent: the pte to be checked
5117 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5119 * Returns
5120 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5121 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5122 * move charge. if @target is not NULL, the page is stored in target->page
5123 * with extra refcnt got(Callers should handle it).
5124 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5125 * target for charge migration. if @target is not NULL, the entry is stored
5126 * in target->ent.
5128 * Called with pte lock held.
5130 union mc_target {
5131 struct page *page;
5132 swp_entry_t ent;
5135 enum mc_target_type {
5136 MC_TARGET_NONE = 0,
5137 MC_TARGET_PAGE,
5138 MC_TARGET_SWAP,
5141 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5142 unsigned long addr, pte_t ptent)
5144 struct page *page = vm_normal_page(vma, addr, ptent);
5146 if (!page || !page_mapped(page))
5147 return NULL;
5148 if (PageAnon(page)) {
5149 /* we don't move shared anon */
5150 if (!move_anon() || page_mapcount(page) > 2)
5151 return NULL;
5152 } else if (!move_file())
5153 /* we ignore mapcount for file pages */
5154 return NULL;
5155 if (!get_page_unless_zero(page))
5156 return NULL;
5158 return page;
5161 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5162 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5164 int usage_count;
5165 struct page *page = NULL;
5166 swp_entry_t ent = pte_to_swp_entry(ptent);
5168 if (!move_anon() || non_swap_entry(ent))
5169 return NULL;
5170 usage_count = mem_cgroup_count_swap_user(ent, &page);
5171 if (usage_count > 1) { /* we don't move shared anon */
5172 if (page)
5173 put_page(page);
5174 return NULL;
5176 if (do_swap_account)
5177 entry->val = ent.val;
5179 return page;
5182 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5183 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5185 struct page *page = NULL;
5186 struct inode *inode;
5187 struct address_space *mapping;
5188 pgoff_t pgoff;
5190 if (!vma->vm_file) /* anonymous vma */
5191 return NULL;
5192 if (!move_file())
5193 return NULL;
5195 inode = vma->vm_file->f_path.dentry->d_inode;
5196 mapping = vma->vm_file->f_mapping;
5197 if (pte_none(ptent))
5198 pgoff = linear_page_index(vma, addr);
5199 else /* pte_file(ptent) is true */
5200 pgoff = pte_to_pgoff(ptent);
5202 /* page is moved even if it's not RSS of this task(page-faulted). */
5203 page = find_get_page(mapping, pgoff);
5205 #ifdef CONFIG_SWAP
5206 /* shmem/tmpfs may report page out on swap: account for that too. */
5207 if (radix_tree_exceptional_entry(page)) {
5208 swp_entry_t swap = radix_to_swp_entry(page);
5209 if (do_swap_account)
5210 *entry = swap;
5211 page = find_get_page(&swapper_space, swap.val);
5213 #endif
5214 return page;
5217 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5218 unsigned long addr, pte_t ptent, union mc_target *target)
5220 struct page *page = NULL;
5221 struct page_cgroup *pc;
5222 enum mc_target_type ret = MC_TARGET_NONE;
5223 swp_entry_t ent = { .val = 0 };
5225 if (pte_present(ptent))
5226 page = mc_handle_present_pte(vma, addr, ptent);
5227 else if (is_swap_pte(ptent))
5228 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5229 else if (pte_none(ptent) || pte_file(ptent))
5230 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5232 if (!page && !ent.val)
5233 return ret;
5234 if (page) {
5235 pc = lookup_page_cgroup(page);
5237 * Do only loose check w/o page_cgroup lock.
5238 * mem_cgroup_move_account() checks the pc is valid or not under
5239 * the lock.
5241 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5242 ret = MC_TARGET_PAGE;
5243 if (target)
5244 target->page = page;
5246 if (!ret || !target)
5247 put_page(page);
5249 /* There is a swap entry and a page doesn't exist or isn't charged */
5250 if (ent.val && !ret &&
5251 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
5252 ret = MC_TARGET_SWAP;
5253 if (target)
5254 target->ent = ent;
5256 return ret;
5259 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5261 * We don't consider swapping or file mapped pages because THP does not
5262 * support them for now.
5263 * Caller should make sure that pmd_trans_huge(pmd) is true.
5265 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5266 unsigned long addr, pmd_t pmd, union mc_target *target)
5268 struct page *page = NULL;
5269 struct page_cgroup *pc;
5270 enum mc_target_type ret = MC_TARGET_NONE;
5272 page = pmd_page(pmd);
5273 VM_BUG_ON(!page || !PageHead(page));
5274 if (!move_anon())
5275 return ret;
5276 pc = lookup_page_cgroup(page);
5277 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5278 ret = MC_TARGET_PAGE;
5279 if (target) {
5280 get_page(page);
5281 target->page = page;
5284 return ret;
5286 #else
5287 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5288 unsigned long addr, pmd_t pmd, union mc_target *target)
5290 return MC_TARGET_NONE;
5292 #endif
5294 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5295 unsigned long addr, unsigned long end,
5296 struct mm_walk *walk)
5298 struct vm_area_struct *vma = walk->private;
5299 pte_t *pte;
5300 spinlock_t *ptl;
5302 if (pmd_trans_huge_lock(pmd, vma) == 1) {
5303 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5304 mc.precharge += HPAGE_PMD_NR;
5305 spin_unlock(&vma->vm_mm->page_table_lock);
5306 return 0;
5309 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5310 for (; addr != end; pte++, addr += PAGE_SIZE)
5311 if (get_mctgt_type(vma, addr, *pte, NULL))
5312 mc.precharge++; /* increment precharge temporarily */
5313 pte_unmap_unlock(pte - 1, ptl);
5314 cond_resched();
5316 return 0;
5319 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5321 unsigned long precharge;
5322 struct vm_area_struct *vma;
5324 down_read(&mm->mmap_sem);
5325 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5326 struct mm_walk mem_cgroup_count_precharge_walk = {
5327 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5328 .mm = mm,
5329 .private = vma,
5331 if (is_vm_hugetlb_page(vma))
5332 continue;
5333 walk_page_range(vma->vm_start, vma->vm_end,
5334 &mem_cgroup_count_precharge_walk);
5336 up_read(&mm->mmap_sem);
5338 precharge = mc.precharge;
5339 mc.precharge = 0;
5341 return precharge;
5344 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5346 unsigned long precharge = mem_cgroup_count_precharge(mm);
5348 VM_BUG_ON(mc.moving_task);
5349 mc.moving_task = current;
5350 return mem_cgroup_do_precharge(precharge);
5353 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5354 static void __mem_cgroup_clear_mc(void)
5356 struct mem_cgroup *from = mc.from;
5357 struct mem_cgroup *to = mc.to;
5359 /* we must uncharge all the leftover precharges from mc.to */
5360 if (mc.precharge) {
5361 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
5362 mc.precharge = 0;
5365 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5366 * we must uncharge here.
5368 if (mc.moved_charge) {
5369 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5370 mc.moved_charge = 0;
5372 /* we must fixup refcnts and charges */
5373 if (mc.moved_swap) {
5374 /* uncharge swap account from the old cgroup */
5375 if (!mem_cgroup_is_root(mc.from))
5376 res_counter_uncharge(&mc.from->memsw,
5377 PAGE_SIZE * mc.moved_swap);
5378 __mem_cgroup_put(mc.from, mc.moved_swap);
5380 if (!mem_cgroup_is_root(mc.to)) {
5382 * we charged both to->res and to->memsw, so we should
5383 * uncharge to->res.
5385 res_counter_uncharge(&mc.to->res,
5386 PAGE_SIZE * mc.moved_swap);
5388 /* we've already done mem_cgroup_get(mc.to) */
5389 mc.moved_swap = 0;
5391 memcg_oom_recover(from);
5392 memcg_oom_recover(to);
5393 wake_up_all(&mc.waitq);
5396 static void mem_cgroup_clear_mc(void)
5398 struct mem_cgroup *from = mc.from;
5401 * we must clear moving_task before waking up waiters at the end of
5402 * task migration.
5404 mc.moving_task = NULL;
5405 __mem_cgroup_clear_mc();
5406 spin_lock(&mc.lock);
5407 mc.from = NULL;
5408 mc.to = NULL;
5409 spin_unlock(&mc.lock);
5410 mem_cgroup_end_move(from);
5413 static int mem_cgroup_can_attach(struct cgroup *cgroup,
5414 struct cgroup_taskset *tset)
5416 struct task_struct *p = cgroup_taskset_first(tset);
5417 int ret = 0;
5418 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
5420 if (memcg->move_charge_at_immigrate) {
5421 struct mm_struct *mm;
5422 struct mem_cgroup *from = mem_cgroup_from_task(p);
5424 VM_BUG_ON(from == memcg);
5426 mm = get_task_mm(p);
5427 if (!mm)
5428 return 0;
5429 /* We move charges only when we move a owner of the mm */
5430 if (mm->owner == p) {
5431 VM_BUG_ON(mc.from);
5432 VM_BUG_ON(mc.to);
5433 VM_BUG_ON(mc.precharge);
5434 VM_BUG_ON(mc.moved_charge);
5435 VM_BUG_ON(mc.moved_swap);
5436 mem_cgroup_start_move(from);
5437 spin_lock(&mc.lock);
5438 mc.from = from;
5439 mc.to = memcg;
5440 spin_unlock(&mc.lock);
5441 /* We set mc.moving_task later */
5443 ret = mem_cgroup_precharge_mc(mm);
5444 if (ret)
5445 mem_cgroup_clear_mc();
5447 mmput(mm);
5449 return ret;
5452 static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5453 struct cgroup_taskset *tset)
5455 mem_cgroup_clear_mc();
5458 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5459 unsigned long addr, unsigned long end,
5460 struct mm_walk *walk)
5462 int ret = 0;
5463 struct vm_area_struct *vma = walk->private;
5464 pte_t *pte;
5465 spinlock_t *ptl;
5466 enum mc_target_type target_type;
5467 union mc_target target;
5468 struct page *page;
5469 struct page_cgroup *pc;
5472 * We don't take compound_lock() here but no race with splitting thp
5473 * happens because:
5474 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5475 * under splitting, which means there's no concurrent thp split,
5476 * - if another thread runs into split_huge_page() just after we
5477 * entered this if-block, the thread must wait for page table lock
5478 * to be unlocked in __split_huge_page_splitting(), where the main
5479 * part of thp split is not executed yet.
5481 if (pmd_trans_huge_lock(pmd, vma) == 1) {
5482 if (!mc.precharge) {
5483 spin_unlock(&vma->vm_mm->page_table_lock);
5484 return 0;
5486 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5487 if (target_type == MC_TARGET_PAGE) {
5488 page = target.page;
5489 if (!isolate_lru_page(page)) {
5490 pc = lookup_page_cgroup(page);
5491 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5492 pc, mc.from, mc.to,
5493 false)) {
5494 mc.precharge -= HPAGE_PMD_NR;
5495 mc.moved_charge += HPAGE_PMD_NR;
5497 putback_lru_page(page);
5499 put_page(page);
5501 spin_unlock(&vma->vm_mm->page_table_lock);
5502 return 0;
5505 retry:
5506 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5507 for (; addr != end; addr += PAGE_SIZE) {
5508 pte_t ptent = *(pte++);
5509 swp_entry_t ent;
5511 if (!mc.precharge)
5512 break;
5514 switch (get_mctgt_type(vma, addr, ptent, &target)) {
5515 case MC_TARGET_PAGE:
5516 page = target.page;
5517 if (isolate_lru_page(page))
5518 goto put;
5519 pc = lookup_page_cgroup(page);
5520 if (!mem_cgroup_move_account(page, 1, pc,
5521 mc.from, mc.to, false)) {
5522 mc.precharge--;
5523 /* we uncharge from mc.from later. */
5524 mc.moved_charge++;
5526 putback_lru_page(page);
5527 put: /* get_mctgt_type() gets the page */
5528 put_page(page);
5529 break;
5530 case MC_TARGET_SWAP:
5531 ent = target.ent;
5532 if (!mem_cgroup_move_swap_account(ent,
5533 mc.from, mc.to, false)) {
5534 mc.precharge--;
5535 /* we fixup refcnts and charges later. */
5536 mc.moved_swap++;
5538 break;
5539 default:
5540 break;
5543 pte_unmap_unlock(pte - 1, ptl);
5544 cond_resched();
5546 if (addr != end) {
5548 * We have consumed all precharges we got in can_attach().
5549 * We try charge one by one, but don't do any additional
5550 * charges to mc.to if we have failed in charge once in attach()
5551 * phase.
5553 ret = mem_cgroup_do_precharge(1);
5554 if (!ret)
5555 goto retry;
5558 return ret;
5561 static void mem_cgroup_move_charge(struct mm_struct *mm)
5563 struct vm_area_struct *vma;
5565 lru_add_drain_all();
5566 retry:
5567 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5569 * Someone who are holding the mmap_sem might be waiting in
5570 * waitq. So we cancel all extra charges, wake up all waiters,
5571 * and retry. Because we cancel precharges, we might not be able
5572 * to move enough charges, but moving charge is a best-effort
5573 * feature anyway, so it wouldn't be a big problem.
5575 __mem_cgroup_clear_mc();
5576 cond_resched();
5577 goto retry;
5579 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5580 int ret;
5581 struct mm_walk mem_cgroup_move_charge_walk = {
5582 .pmd_entry = mem_cgroup_move_charge_pte_range,
5583 .mm = mm,
5584 .private = vma,
5586 if (is_vm_hugetlb_page(vma))
5587 continue;
5588 ret = walk_page_range(vma->vm_start, vma->vm_end,
5589 &mem_cgroup_move_charge_walk);
5590 if (ret)
5592 * means we have consumed all precharges and failed in
5593 * doing additional charge. Just abandon here.
5595 break;
5597 up_read(&mm->mmap_sem);
5600 static void mem_cgroup_move_task(struct cgroup *cont,
5601 struct cgroup_taskset *tset)
5603 struct task_struct *p = cgroup_taskset_first(tset);
5604 struct mm_struct *mm = get_task_mm(p);
5606 if (mm) {
5607 if (mc.to)
5608 mem_cgroup_move_charge(mm);
5609 put_swap_token(mm);
5610 mmput(mm);
5612 if (mc.to)
5613 mem_cgroup_clear_mc();
5615 #else /* !CONFIG_MMU */
5616 static int mem_cgroup_can_attach(struct cgroup *cgroup,
5617 struct cgroup_taskset *tset)
5619 return 0;
5621 static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5622 struct cgroup_taskset *tset)
5625 static void mem_cgroup_move_task(struct cgroup *cont,
5626 struct cgroup_taskset *tset)
5629 #endif
5631 struct cgroup_subsys mem_cgroup_subsys = {
5632 .name = "memory",
5633 .subsys_id = mem_cgroup_subsys_id,
5634 .create = mem_cgroup_create,
5635 .pre_destroy = mem_cgroup_pre_destroy,
5636 .destroy = mem_cgroup_destroy,
5637 .populate = mem_cgroup_populate,
5638 .can_attach = mem_cgroup_can_attach,
5639 .cancel_attach = mem_cgroup_cancel_attach,
5640 .attach = mem_cgroup_move_task,
5641 .early_init = 0,
5642 .use_id = 1,
5645 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5646 static int __init enable_swap_account(char *s)
5648 /* consider enabled if no parameter or 1 is given */
5649 if (!strcmp(s, "1"))
5650 really_do_swap_account = 1;
5651 else if (!strcmp(s, "0"))
5652 really_do_swap_account = 0;
5653 return 1;
5655 __setup("swapaccount=", enable_swap_account);
5657 #endif