ipv6: add support of equal cost multipath (ECMP)
[linux-2.6.git] / mm / memcontrol.c
blob7acf43bf04a270cf2bf90f342c66142d1c5cf675
1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
27 #include <linux/mm.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/export.h>
37 #include <linux/mutex.h>
38 #include <linux/rbtree.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/swapops.h>
42 #include <linux/spinlock.h>
43 #include <linux/eventfd.h>
44 #include <linux/sort.h>
45 #include <linux/fs.h>
46 #include <linux/seq_file.h>
47 #include <linux/vmalloc.h>
48 #include <linux/mm_inline.h>
49 #include <linux/page_cgroup.h>
50 #include <linux/cpu.h>
51 #include <linux/oom.h>
52 #include "internal.h"
53 #include <net/sock.h>
54 #include <net/ip.h>
55 #include <net/tcp_memcontrol.h>
57 #include <asm/uaccess.h>
59 #include <trace/events/vmscan.h>
61 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
62 #define MEM_CGROUP_RECLAIM_RETRIES 5
63 static struct mem_cgroup *root_mem_cgroup __read_mostly;
65 #ifdef CONFIG_MEMCG_SWAP
66 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
67 int do_swap_account __read_mostly;
69 /* for remember boot option*/
70 #ifdef CONFIG_MEMCG_SWAP_ENABLED
71 static int really_do_swap_account __initdata = 1;
72 #else
73 static int really_do_swap_account __initdata = 0;
74 #endif
76 #else
77 #define do_swap_account 0
78 #endif
82 * Statistics for memory cgroup.
84 enum mem_cgroup_stat_index {
86 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
88 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
89 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
90 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
91 MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
92 MEM_CGROUP_STAT_NSTATS,
95 static const char * const mem_cgroup_stat_names[] = {
96 "cache",
97 "rss",
98 "mapped_file",
99 "swap",
102 enum mem_cgroup_events_index {
103 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
104 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
105 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
106 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
107 MEM_CGROUP_EVENTS_NSTATS,
110 static const char * const mem_cgroup_events_names[] = {
111 "pgpgin",
112 "pgpgout",
113 "pgfault",
114 "pgmajfault",
118 * Per memcg event counter is incremented at every pagein/pageout. With THP,
119 * it will be incremated by the number of pages. This counter is used for
120 * for trigger some periodic events. This is straightforward and better
121 * than using jiffies etc. to handle periodic memcg event.
123 enum mem_cgroup_events_target {
124 MEM_CGROUP_TARGET_THRESH,
125 MEM_CGROUP_TARGET_SOFTLIMIT,
126 MEM_CGROUP_TARGET_NUMAINFO,
127 MEM_CGROUP_NTARGETS,
129 #define THRESHOLDS_EVENTS_TARGET 128
130 #define SOFTLIMIT_EVENTS_TARGET 1024
131 #define NUMAINFO_EVENTS_TARGET 1024
133 struct mem_cgroup_stat_cpu {
134 long count[MEM_CGROUP_STAT_NSTATS];
135 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
136 unsigned long nr_page_events;
137 unsigned long targets[MEM_CGROUP_NTARGETS];
140 struct mem_cgroup_reclaim_iter {
141 /* css_id of the last scanned hierarchy member */
142 int position;
143 /* scan generation, increased every round-trip */
144 unsigned int generation;
148 * per-zone information in memory controller.
150 struct mem_cgroup_per_zone {
151 struct lruvec lruvec;
152 unsigned long lru_size[NR_LRU_LISTS];
154 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
156 struct rb_node tree_node; /* RB tree node */
157 unsigned long long usage_in_excess;/* Set to the value by which */
158 /* the soft limit is exceeded*/
159 bool on_tree;
160 struct mem_cgroup *memcg; /* Back pointer, we cannot */
161 /* use container_of */
164 struct mem_cgroup_per_node {
165 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
168 struct mem_cgroup_lru_info {
169 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
173 * Cgroups above their limits are maintained in a RB-Tree, independent of
174 * their hierarchy representation
177 struct mem_cgroup_tree_per_zone {
178 struct rb_root rb_root;
179 spinlock_t lock;
182 struct mem_cgroup_tree_per_node {
183 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
186 struct mem_cgroup_tree {
187 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
190 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
192 struct mem_cgroup_threshold {
193 struct eventfd_ctx *eventfd;
194 u64 threshold;
197 /* For threshold */
198 struct mem_cgroup_threshold_ary {
199 /* An array index points to threshold just below or equal to usage. */
200 int current_threshold;
201 /* Size of entries[] */
202 unsigned int size;
203 /* Array of thresholds */
204 struct mem_cgroup_threshold entries[0];
207 struct mem_cgroup_thresholds {
208 /* Primary thresholds array */
209 struct mem_cgroup_threshold_ary *primary;
211 * Spare threshold array.
212 * This is needed to make mem_cgroup_unregister_event() "never fail".
213 * It must be able to store at least primary->size - 1 entries.
215 struct mem_cgroup_threshold_ary *spare;
218 /* for OOM */
219 struct mem_cgroup_eventfd_list {
220 struct list_head list;
221 struct eventfd_ctx *eventfd;
224 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
225 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
228 * The memory controller data structure. The memory controller controls both
229 * page cache and RSS per cgroup. We would eventually like to provide
230 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
231 * to help the administrator determine what knobs to tune.
233 * TODO: Add a water mark for the memory controller. Reclaim will begin when
234 * we hit the water mark. May be even add a low water mark, such that
235 * no reclaim occurs from a cgroup at it's low water mark, this is
236 * a feature that will be implemented much later in the future.
238 struct mem_cgroup {
239 struct cgroup_subsys_state css;
241 * the counter to account for memory usage
243 struct res_counter res;
245 union {
247 * the counter to account for mem+swap usage.
249 struct res_counter memsw;
252 * rcu_freeing is used only when freeing struct mem_cgroup,
253 * so put it into a union to avoid wasting more memory.
254 * It must be disjoint from the css field. It could be
255 * in a union with the res field, but res plays a much
256 * larger part in mem_cgroup life than memsw, and might
257 * be of interest, even at time of free, when debugging.
258 * So share rcu_head with the less interesting memsw.
260 struct rcu_head rcu_freeing;
262 * We also need some space for a worker in deferred freeing.
263 * By the time we call it, rcu_freeing is no longer in use.
265 struct work_struct work_freeing;
269 * Per cgroup active and inactive list, similar to the
270 * per zone LRU lists.
272 struct mem_cgroup_lru_info info;
273 int last_scanned_node;
274 #if MAX_NUMNODES > 1
275 nodemask_t scan_nodes;
276 atomic_t numainfo_events;
277 atomic_t numainfo_updating;
278 #endif
280 * Should the accounting and control be hierarchical, per subtree?
282 bool use_hierarchy;
284 bool oom_lock;
285 atomic_t under_oom;
287 atomic_t refcnt;
289 int swappiness;
290 /* OOM-Killer disable */
291 int oom_kill_disable;
293 /* set when res.limit == memsw.limit */
294 bool memsw_is_minimum;
296 /* protect arrays of thresholds */
297 struct mutex thresholds_lock;
299 /* thresholds for memory usage. RCU-protected */
300 struct mem_cgroup_thresholds thresholds;
302 /* thresholds for mem+swap usage. RCU-protected */
303 struct mem_cgroup_thresholds memsw_thresholds;
305 /* For oom notifier event fd */
306 struct list_head oom_notify;
309 * Should we move charges of a task when a task is moved into this
310 * mem_cgroup ? And what type of charges should we move ?
312 unsigned long move_charge_at_immigrate;
314 * set > 0 if pages under this cgroup are moving to other cgroup.
316 atomic_t moving_account;
317 /* taken only while moving_account > 0 */
318 spinlock_t move_lock;
320 * percpu counter.
322 struct mem_cgroup_stat_cpu __percpu *stat;
324 * used when a cpu is offlined or other synchronizations
325 * See mem_cgroup_read_stat().
327 struct mem_cgroup_stat_cpu nocpu_base;
328 spinlock_t pcp_counter_lock;
330 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
331 struct tcp_memcontrol tcp_mem;
332 #endif
335 /* Stuffs for move charges at task migration. */
337 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
338 * left-shifted bitmap of these types.
340 enum move_type {
341 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
342 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
343 NR_MOVE_TYPE,
346 /* "mc" and its members are protected by cgroup_mutex */
347 static struct move_charge_struct {
348 spinlock_t lock; /* for from, to */
349 struct mem_cgroup *from;
350 struct mem_cgroup *to;
351 unsigned long precharge;
352 unsigned long moved_charge;
353 unsigned long moved_swap;
354 struct task_struct *moving_task; /* a task moving charges */
355 wait_queue_head_t waitq; /* a waitq for other context */
356 } mc = {
357 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
358 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
361 static bool move_anon(void)
363 return test_bit(MOVE_CHARGE_TYPE_ANON,
364 &mc.to->move_charge_at_immigrate);
367 static bool move_file(void)
369 return test_bit(MOVE_CHARGE_TYPE_FILE,
370 &mc.to->move_charge_at_immigrate);
374 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
375 * limit reclaim to prevent infinite loops, if they ever occur.
377 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
378 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
380 enum charge_type {
381 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
382 MEM_CGROUP_CHARGE_TYPE_ANON,
383 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
384 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
385 NR_CHARGE_TYPE,
388 /* for encoding cft->private value on file */
389 #define _MEM (0)
390 #define _MEMSWAP (1)
391 #define _OOM_TYPE (2)
392 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
393 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
394 #define MEMFILE_ATTR(val) ((val) & 0xffff)
395 /* Used for OOM nofiier */
396 #define OOM_CONTROL (0)
399 * Reclaim flags for mem_cgroup_hierarchical_reclaim
401 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
402 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
403 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
404 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
406 static void mem_cgroup_get(struct mem_cgroup *memcg);
407 static void mem_cgroup_put(struct mem_cgroup *memcg);
409 static inline
410 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
412 return container_of(s, struct mem_cgroup, css);
415 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
417 return (memcg == root_mem_cgroup);
420 /* Writing them here to avoid exposing memcg's inner layout */
421 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
423 void sock_update_memcg(struct sock *sk)
425 if (mem_cgroup_sockets_enabled) {
426 struct mem_cgroup *memcg;
427 struct cg_proto *cg_proto;
429 BUG_ON(!sk->sk_prot->proto_cgroup);
431 /* Socket cloning can throw us here with sk_cgrp already
432 * filled. It won't however, necessarily happen from
433 * process context. So the test for root memcg given
434 * the current task's memcg won't help us in this case.
436 * Respecting the original socket's memcg is a better
437 * decision in this case.
439 if (sk->sk_cgrp) {
440 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
441 mem_cgroup_get(sk->sk_cgrp->memcg);
442 return;
445 rcu_read_lock();
446 memcg = mem_cgroup_from_task(current);
447 cg_proto = sk->sk_prot->proto_cgroup(memcg);
448 if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) {
449 mem_cgroup_get(memcg);
450 sk->sk_cgrp = cg_proto;
452 rcu_read_unlock();
455 EXPORT_SYMBOL(sock_update_memcg);
457 void sock_release_memcg(struct sock *sk)
459 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
460 struct mem_cgroup *memcg;
461 WARN_ON(!sk->sk_cgrp->memcg);
462 memcg = sk->sk_cgrp->memcg;
463 mem_cgroup_put(memcg);
467 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
469 if (!memcg || mem_cgroup_is_root(memcg))
470 return NULL;
472 return &memcg->tcp_mem.cg_proto;
474 EXPORT_SYMBOL(tcp_proto_cgroup);
476 static void disarm_sock_keys(struct mem_cgroup *memcg)
478 if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
479 return;
480 static_key_slow_dec(&memcg_socket_limit_enabled);
482 #else
483 static void disarm_sock_keys(struct mem_cgroup *memcg)
486 #endif
488 static void drain_all_stock_async(struct mem_cgroup *memcg);
490 static struct mem_cgroup_per_zone *
491 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
493 return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
496 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
498 return &memcg->css;
501 static struct mem_cgroup_per_zone *
502 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
504 int nid = page_to_nid(page);
505 int zid = page_zonenum(page);
507 return mem_cgroup_zoneinfo(memcg, nid, zid);
510 static struct mem_cgroup_tree_per_zone *
511 soft_limit_tree_node_zone(int nid, int zid)
513 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
516 static struct mem_cgroup_tree_per_zone *
517 soft_limit_tree_from_page(struct page *page)
519 int nid = page_to_nid(page);
520 int zid = page_zonenum(page);
522 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
525 static void
526 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
527 struct mem_cgroup_per_zone *mz,
528 struct mem_cgroup_tree_per_zone *mctz,
529 unsigned long long new_usage_in_excess)
531 struct rb_node **p = &mctz->rb_root.rb_node;
532 struct rb_node *parent = NULL;
533 struct mem_cgroup_per_zone *mz_node;
535 if (mz->on_tree)
536 return;
538 mz->usage_in_excess = new_usage_in_excess;
539 if (!mz->usage_in_excess)
540 return;
541 while (*p) {
542 parent = *p;
543 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
544 tree_node);
545 if (mz->usage_in_excess < mz_node->usage_in_excess)
546 p = &(*p)->rb_left;
548 * We can't avoid mem cgroups that are over their soft
549 * limit by the same amount
551 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
552 p = &(*p)->rb_right;
554 rb_link_node(&mz->tree_node, parent, p);
555 rb_insert_color(&mz->tree_node, &mctz->rb_root);
556 mz->on_tree = true;
559 static void
560 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
561 struct mem_cgroup_per_zone *mz,
562 struct mem_cgroup_tree_per_zone *mctz)
564 if (!mz->on_tree)
565 return;
566 rb_erase(&mz->tree_node, &mctz->rb_root);
567 mz->on_tree = false;
570 static void
571 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
572 struct mem_cgroup_per_zone *mz,
573 struct mem_cgroup_tree_per_zone *mctz)
575 spin_lock(&mctz->lock);
576 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
577 spin_unlock(&mctz->lock);
581 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
583 unsigned long long excess;
584 struct mem_cgroup_per_zone *mz;
585 struct mem_cgroup_tree_per_zone *mctz;
586 int nid = page_to_nid(page);
587 int zid = page_zonenum(page);
588 mctz = soft_limit_tree_from_page(page);
591 * Necessary to update all ancestors when hierarchy is used.
592 * because their event counter is not touched.
594 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
595 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
596 excess = res_counter_soft_limit_excess(&memcg->res);
598 * We have to update the tree if mz is on RB-tree or
599 * mem is over its softlimit.
601 if (excess || mz->on_tree) {
602 spin_lock(&mctz->lock);
603 /* if on-tree, remove it */
604 if (mz->on_tree)
605 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
607 * Insert again. mz->usage_in_excess will be updated.
608 * If excess is 0, no tree ops.
610 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
611 spin_unlock(&mctz->lock);
616 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
618 int node, zone;
619 struct mem_cgroup_per_zone *mz;
620 struct mem_cgroup_tree_per_zone *mctz;
622 for_each_node(node) {
623 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
624 mz = mem_cgroup_zoneinfo(memcg, node, zone);
625 mctz = soft_limit_tree_node_zone(node, zone);
626 mem_cgroup_remove_exceeded(memcg, mz, mctz);
631 static struct mem_cgroup_per_zone *
632 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
634 struct rb_node *rightmost = NULL;
635 struct mem_cgroup_per_zone *mz;
637 retry:
638 mz = NULL;
639 rightmost = rb_last(&mctz->rb_root);
640 if (!rightmost)
641 goto done; /* Nothing to reclaim from */
643 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
645 * Remove the node now but someone else can add it back,
646 * we will to add it back at the end of reclaim to its correct
647 * position in the tree.
649 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
650 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
651 !css_tryget(&mz->memcg->css))
652 goto retry;
653 done:
654 return mz;
657 static struct mem_cgroup_per_zone *
658 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
660 struct mem_cgroup_per_zone *mz;
662 spin_lock(&mctz->lock);
663 mz = __mem_cgroup_largest_soft_limit_node(mctz);
664 spin_unlock(&mctz->lock);
665 return mz;
669 * Implementation Note: reading percpu statistics for memcg.
671 * Both of vmstat[] and percpu_counter has threshold and do periodic
672 * synchronization to implement "quick" read. There are trade-off between
673 * reading cost and precision of value. Then, we may have a chance to implement
674 * a periodic synchronizion of counter in memcg's counter.
676 * But this _read() function is used for user interface now. The user accounts
677 * memory usage by memory cgroup and he _always_ requires exact value because
678 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
679 * have to visit all online cpus and make sum. So, for now, unnecessary
680 * synchronization is not implemented. (just implemented for cpu hotplug)
682 * If there are kernel internal actions which can make use of some not-exact
683 * value, and reading all cpu value can be performance bottleneck in some
684 * common workload, threashold and synchonization as vmstat[] should be
685 * implemented.
687 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
688 enum mem_cgroup_stat_index idx)
690 long val = 0;
691 int cpu;
693 get_online_cpus();
694 for_each_online_cpu(cpu)
695 val += per_cpu(memcg->stat->count[idx], cpu);
696 #ifdef CONFIG_HOTPLUG_CPU
697 spin_lock(&memcg->pcp_counter_lock);
698 val += memcg->nocpu_base.count[idx];
699 spin_unlock(&memcg->pcp_counter_lock);
700 #endif
701 put_online_cpus();
702 return val;
705 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
706 bool charge)
708 int val = (charge) ? 1 : -1;
709 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
712 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
713 enum mem_cgroup_events_index idx)
715 unsigned long val = 0;
716 int cpu;
718 for_each_online_cpu(cpu)
719 val += per_cpu(memcg->stat->events[idx], cpu);
720 #ifdef CONFIG_HOTPLUG_CPU
721 spin_lock(&memcg->pcp_counter_lock);
722 val += memcg->nocpu_base.events[idx];
723 spin_unlock(&memcg->pcp_counter_lock);
724 #endif
725 return val;
728 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
729 bool anon, int nr_pages)
731 preempt_disable();
734 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
735 * counted as CACHE even if it's on ANON LRU.
737 if (anon)
738 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
739 nr_pages);
740 else
741 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
742 nr_pages);
744 /* pagein of a big page is an event. So, ignore page size */
745 if (nr_pages > 0)
746 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
747 else {
748 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
749 nr_pages = -nr_pages; /* for event */
752 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
754 preempt_enable();
757 unsigned long
758 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
760 struct mem_cgroup_per_zone *mz;
762 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
763 return mz->lru_size[lru];
766 static unsigned long
767 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
768 unsigned int lru_mask)
770 struct mem_cgroup_per_zone *mz;
771 enum lru_list lru;
772 unsigned long ret = 0;
774 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
776 for_each_lru(lru) {
777 if (BIT(lru) & lru_mask)
778 ret += mz->lru_size[lru];
780 return ret;
783 static unsigned long
784 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
785 int nid, unsigned int lru_mask)
787 u64 total = 0;
788 int zid;
790 for (zid = 0; zid < MAX_NR_ZONES; zid++)
791 total += mem_cgroup_zone_nr_lru_pages(memcg,
792 nid, zid, lru_mask);
794 return total;
797 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
798 unsigned int lru_mask)
800 int nid;
801 u64 total = 0;
803 for_each_node_state(nid, N_HIGH_MEMORY)
804 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
805 return total;
808 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
809 enum mem_cgroup_events_target target)
811 unsigned long val, next;
813 val = __this_cpu_read(memcg->stat->nr_page_events);
814 next = __this_cpu_read(memcg->stat->targets[target]);
815 /* from time_after() in jiffies.h */
816 if ((long)next - (long)val < 0) {
817 switch (target) {
818 case MEM_CGROUP_TARGET_THRESH:
819 next = val + THRESHOLDS_EVENTS_TARGET;
820 break;
821 case MEM_CGROUP_TARGET_SOFTLIMIT:
822 next = val + SOFTLIMIT_EVENTS_TARGET;
823 break;
824 case MEM_CGROUP_TARGET_NUMAINFO:
825 next = val + NUMAINFO_EVENTS_TARGET;
826 break;
827 default:
828 break;
830 __this_cpu_write(memcg->stat->targets[target], next);
831 return true;
833 return false;
837 * Check events in order.
840 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
842 preempt_disable();
843 /* threshold event is triggered in finer grain than soft limit */
844 if (unlikely(mem_cgroup_event_ratelimit(memcg,
845 MEM_CGROUP_TARGET_THRESH))) {
846 bool do_softlimit;
847 bool do_numainfo __maybe_unused;
849 do_softlimit = mem_cgroup_event_ratelimit(memcg,
850 MEM_CGROUP_TARGET_SOFTLIMIT);
851 #if MAX_NUMNODES > 1
852 do_numainfo = mem_cgroup_event_ratelimit(memcg,
853 MEM_CGROUP_TARGET_NUMAINFO);
854 #endif
855 preempt_enable();
857 mem_cgroup_threshold(memcg);
858 if (unlikely(do_softlimit))
859 mem_cgroup_update_tree(memcg, page);
860 #if MAX_NUMNODES > 1
861 if (unlikely(do_numainfo))
862 atomic_inc(&memcg->numainfo_events);
863 #endif
864 } else
865 preempt_enable();
868 struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
870 return mem_cgroup_from_css(
871 cgroup_subsys_state(cont, mem_cgroup_subsys_id));
874 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
877 * mm_update_next_owner() may clear mm->owner to NULL
878 * if it races with swapoff, page migration, etc.
879 * So this can be called with p == NULL.
881 if (unlikely(!p))
882 return NULL;
884 return mem_cgroup_from_css(task_subsys_state(p, mem_cgroup_subsys_id));
887 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
889 struct mem_cgroup *memcg = NULL;
891 if (!mm)
892 return NULL;
894 * Because we have no locks, mm->owner's may be being moved to other
895 * cgroup. We use css_tryget() here even if this looks
896 * pessimistic (rather than adding locks here).
898 rcu_read_lock();
899 do {
900 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
901 if (unlikely(!memcg))
902 break;
903 } while (!css_tryget(&memcg->css));
904 rcu_read_unlock();
905 return memcg;
909 * mem_cgroup_iter - iterate over memory cgroup hierarchy
910 * @root: hierarchy root
911 * @prev: previously returned memcg, NULL on first invocation
912 * @reclaim: cookie for shared reclaim walks, NULL for full walks
914 * Returns references to children of the hierarchy below @root, or
915 * @root itself, or %NULL after a full round-trip.
917 * Caller must pass the return value in @prev on subsequent
918 * invocations for reference counting, or use mem_cgroup_iter_break()
919 * to cancel a hierarchy walk before the round-trip is complete.
921 * Reclaimers can specify a zone and a priority level in @reclaim to
922 * divide up the memcgs in the hierarchy among all concurrent
923 * reclaimers operating on the same zone and priority.
925 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
926 struct mem_cgroup *prev,
927 struct mem_cgroup_reclaim_cookie *reclaim)
929 struct mem_cgroup *memcg = NULL;
930 int id = 0;
932 if (mem_cgroup_disabled())
933 return NULL;
935 if (!root)
936 root = root_mem_cgroup;
938 if (prev && !reclaim)
939 id = css_id(&prev->css);
941 if (prev && prev != root)
942 css_put(&prev->css);
944 if (!root->use_hierarchy && root != root_mem_cgroup) {
945 if (prev)
946 return NULL;
947 return root;
950 while (!memcg) {
951 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
952 struct cgroup_subsys_state *css;
954 if (reclaim) {
955 int nid = zone_to_nid(reclaim->zone);
956 int zid = zone_idx(reclaim->zone);
957 struct mem_cgroup_per_zone *mz;
959 mz = mem_cgroup_zoneinfo(root, nid, zid);
960 iter = &mz->reclaim_iter[reclaim->priority];
961 if (prev && reclaim->generation != iter->generation)
962 return NULL;
963 id = iter->position;
966 rcu_read_lock();
967 css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
968 if (css) {
969 if (css == &root->css || css_tryget(css))
970 memcg = mem_cgroup_from_css(css);
971 } else
972 id = 0;
973 rcu_read_unlock();
975 if (reclaim) {
976 iter->position = id;
977 if (!css)
978 iter->generation++;
979 else if (!prev && memcg)
980 reclaim->generation = iter->generation;
983 if (prev && !css)
984 return NULL;
986 return memcg;
990 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
991 * @root: hierarchy root
992 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
994 void mem_cgroup_iter_break(struct mem_cgroup *root,
995 struct mem_cgroup *prev)
997 if (!root)
998 root = root_mem_cgroup;
999 if (prev && prev != root)
1000 css_put(&prev->css);
1004 * Iteration constructs for visiting all cgroups (under a tree). If
1005 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1006 * be used for reference counting.
1008 #define for_each_mem_cgroup_tree(iter, root) \
1009 for (iter = mem_cgroup_iter(root, NULL, NULL); \
1010 iter != NULL; \
1011 iter = mem_cgroup_iter(root, iter, NULL))
1013 #define for_each_mem_cgroup(iter) \
1014 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1015 iter != NULL; \
1016 iter = mem_cgroup_iter(NULL, iter, NULL))
1018 void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1020 struct mem_cgroup *memcg;
1022 if (!mm)
1023 return;
1025 rcu_read_lock();
1026 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1027 if (unlikely(!memcg))
1028 goto out;
1030 switch (idx) {
1031 case PGFAULT:
1032 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1033 break;
1034 case PGMAJFAULT:
1035 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1036 break;
1037 default:
1038 BUG();
1040 out:
1041 rcu_read_unlock();
1043 EXPORT_SYMBOL(mem_cgroup_count_vm_event);
1046 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1047 * @zone: zone of the wanted lruvec
1048 * @memcg: memcg of the wanted lruvec
1050 * Returns the lru list vector holding pages for the given @zone and
1051 * @mem. This can be the global zone lruvec, if the memory controller
1052 * is disabled.
1054 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1055 struct mem_cgroup *memcg)
1057 struct mem_cgroup_per_zone *mz;
1059 if (mem_cgroup_disabled())
1060 return &zone->lruvec;
1062 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1063 return &mz->lruvec;
1067 * Following LRU functions are allowed to be used without PCG_LOCK.
1068 * Operations are called by routine of global LRU independently from memcg.
1069 * What we have to take care of here is validness of pc->mem_cgroup.
1071 * Changes to pc->mem_cgroup happens when
1072 * 1. charge
1073 * 2. moving account
1074 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1075 * It is added to LRU before charge.
1076 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1077 * When moving account, the page is not on LRU. It's isolated.
1081 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1082 * @page: the page
1083 * @zone: zone of the page
1085 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1087 struct mem_cgroup_per_zone *mz;
1088 struct mem_cgroup *memcg;
1089 struct page_cgroup *pc;
1091 if (mem_cgroup_disabled())
1092 return &zone->lruvec;
1094 pc = lookup_page_cgroup(page);
1095 memcg = pc->mem_cgroup;
1098 * Surreptitiously switch any uncharged offlist page to root:
1099 * an uncharged page off lru does nothing to secure
1100 * its former mem_cgroup from sudden removal.
1102 * Our caller holds lru_lock, and PageCgroupUsed is updated
1103 * under page_cgroup lock: between them, they make all uses
1104 * of pc->mem_cgroup safe.
1106 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1107 pc->mem_cgroup = memcg = root_mem_cgroup;
1109 mz = page_cgroup_zoneinfo(memcg, page);
1110 return &mz->lruvec;
1114 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1115 * @lruvec: mem_cgroup per zone lru vector
1116 * @lru: index of lru list the page is sitting on
1117 * @nr_pages: positive when adding or negative when removing
1119 * This function must be called when a page is added to or removed from an
1120 * lru list.
1122 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1123 int nr_pages)
1125 struct mem_cgroup_per_zone *mz;
1126 unsigned long *lru_size;
1128 if (mem_cgroup_disabled())
1129 return;
1131 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1132 lru_size = mz->lru_size + lru;
1133 *lru_size += nr_pages;
1134 VM_BUG_ON((long)(*lru_size) < 0);
1138 * Checks whether given mem is same or in the root_mem_cgroup's
1139 * hierarchy subtree
1141 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1142 struct mem_cgroup *memcg)
1144 if (root_memcg == memcg)
1145 return true;
1146 if (!root_memcg->use_hierarchy || !memcg)
1147 return false;
1148 return css_is_ancestor(&memcg->css, &root_memcg->css);
1151 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1152 struct mem_cgroup *memcg)
1154 bool ret;
1156 rcu_read_lock();
1157 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1158 rcu_read_unlock();
1159 return ret;
1162 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1164 int ret;
1165 struct mem_cgroup *curr = NULL;
1166 struct task_struct *p;
1168 p = find_lock_task_mm(task);
1169 if (p) {
1170 curr = try_get_mem_cgroup_from_mm(p->mm);
1171 task_unlock(p);
1172 } else {
1174 * All threads may have already detached their mm's, but the oom
1175 * killer still needs to detect if they have already been oom
1176 * killed to prevent needlessly killing additional tasks.
1178 task_lock(task);
1179 curr = mem_cgroup_from_task(task);
1180 if (curr)
1181 css_get(&curr->css);
1182 task_unlock(task);
1184 if (!curr)
1185 return 0;
1187 * We should check use_hierarchy of "memcg" not "curr". Because checking
1188 * use_hierarchy of "curr" here make this function true if hierarchy is
1189 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1190 * hierarchy(even if use_hierarchy is disabled in "memcg").
1192 ret = mem_cgroup_same_or_subtree(memcg, curr);
1193 css_put(&curr->css);
1194 return ret;
1197 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1199 unsigned long inactive_ratio;
1200 unsigned long inactive;
1201 unsigned long active;
1202 unsigned long gb;
1204 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1205 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1207 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1208 if (gb)
1209 inactive_ratio = int_sqrt(10 * gb);
1210 else
1211 inactive_ratio = 1;
1213 return inactive * inactive_ratio < active;
1216 int mem_cgroup_inactive_file_is_low(struct lruvec *lruvec)
1218 unsigned long active;
1219 unsigned long inactive;
1221 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_FILE);
1222 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_FILE);
1224 return (active > inactive);
1227 #define mem_cgroup_from_res_counter(counter, member) \
1228 container_of(counter, struct mem_cgroup, member)
1231 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1232 * @memcg: the memory cgroup
1234 * Returns the maximum amount of memory @mem can be charged with, in
1235 * pages.
1237 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1239 unsigned long long margin;
1241 margin = res_counter_margin(&memcg->res);
1242 if (do_swap_account)
1243 margin = min(margin, res_counter_margin(&memcg->memsw));
1244 return margin >> PAGE_SHIFT;
1247 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1249 struct cgroup *cgrp = memcg->css.cgroup;
1251 /* root ? */
1252 if (cgrp->parent == NULL)
1253 return vm_swappiness;
1255 return memcg->swappiness;
1259 * memcg->moving_account is used for checking possibility that some thread is
1260 * calling move_account(). When a thread on CPU-A starts moving pages under
1261 * a memcg, other threads should check memcg->moving_account under
1262 * rcu_read_lock(), like this:
1264 * CPU-A CPU-B
1265 * rcu_read_lock()
1266 * memcg->moving_account+1 if (memcg->mocing_account)
1267 * take heavy locks.
1268 * synchronize_rcu() update something.
1269 * rcu_read_unlock()
1270 * start move here.
1273 /* for quick checking without looking up memcg */
1274 atomic_t memcg_moving __read_mostly;
1276 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1278 atomic_inc(&memcg_moving);
1279 atomic_inc(&memcg->moving_account);
1280 synchronize_rcu();
1283 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1286 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1287 * We check NULL in callee rather than caller.
1289 if (memcg) {
1290 atomic_dec(&memcg_moving);
1291 atomic_dec(&memcg->moving_account);
1296 * 2 routines for checking "mem" is under move_account() or not.
1298 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1299 * is used for avoiding races in accounting. If true,
1300 * pc->mem_cgroup may be overwritten.
1302 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1303 * under hierarchy of moving cgroups. This is for
1304 * waiting at hith-memory prressure caused by "move".
1307 static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1309 VM_BUG_ON(!rcu_read_lock_held());
1310 return atomic_read(&memcg->moving_account) > 0;
1313 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1315 struct mem_cgroup *from;
1316 struct mem_cgroup *to;
1317 bool ret = false;
1319 * Unlike task_move routines, we access mc.to, mc.from not under
1320 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1322 spin_lock(&mc.lock);
1323 from = mc.from;
1324 to = mc.to;
1325 if (!from)
1326 goto unlock;
1328 ret = mem_cgroup_same_or_subtree(memcg, from)
1329 || mem_cgroup_same_or_subtree(memcg, to);
1330 unlock:
1331 spin_unlock(&mc.lock);
1332 return ret;
1335 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1337 if (mc.moving_task && current != mc.moving_task) {
1338 if (mem_cgroup_under_move(memcg)) {
1339 DEFINE_WAIT(wait);
1340 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1341 /* moving charge context might have finished. */
1342 if (mc.moving_task)
1343 schedule();
1344 finish_wait(&mc.waitq, &wait);
1345 return true;
1348 return false;
1352 * Take this lock when
1353 * - a code tries to modify page's memcg while it's USED.
1354 * - a code tries to modify page state accounting in a memcg.
1355 * see mem_cgroup_stolen(), too.
1357 static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1358 unsigned long *flags)
1360 spin_lock_irqsave(&memcg->move_lock, *flags);
1363 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1364 unsigned long *flags)
1366 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1370 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1371 * @memcg: The memory cgroup that went over limit
1372 * @p: Task that is going to be killed
1374 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1375 * enabled
1377 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1379 struct cgroup *task_cgrp;
1380 struct cgroup *mem_cgrp;
1382 * Need a buffer in BSS, can't rely on allocations. The code relies
1383 * on the assumption that OOM is serialized for memory controller.
1384 * If this assumption is broken, revisit this code.
1386 static char memcg_name[PATH_MAX];
1387 int ret;
1389 if (!memcg || !p)
1390 return;
1392 rcu_read_lock();
1394 mem_cgrp = memcg->css.cgroup;
1395 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1397 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1398 if (ret < 0) {
1400 * Unfortunately, we are unable to convert to a useful name
1401 * But we'll still print out the usage information
1403 rcu_read_unlock();
1404 goto done;
1406 rcu_read_unlock();
1408 printk(KERN_INFO "Task in %s killed", memcg_name);
1410 rcu_read_lock();
1411 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1412 if (ret < 0) {
1413 rcu_read_unlock();
1414 goto done;
1416 rcu_read_unlock();
1419 * Continues from above, so we don't need an KERN_ level
1421 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1422 done:
1424 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1425 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1426 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1427 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1428 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1429 "failcnt %llu\n",
1430 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1431 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1432 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1436 * This function returns the number of memcg under hierarchy tree. Returns
1437 * 1(self count) if no children.
1439 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1441 int num = 0;
1442 struct mem_cgroup *iter;
1444 for_each_mem_cgroup_tree(iter, memcg)
1445 num++;
1446 return num;
1450 * Return the memory (and swap, if configured) limit for a memcg.
1452 static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1454 u64 limit;
1455 u64 memsw;
1457 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1458 limit += total_swap_pages << PAGE_SHIFT;
1460 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1462 * If memsw is finite and limits the amount of swap space available
1463 * to this memcg, return that limit.
1465 return min(limit, memsw);
1468 void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1469 int order)
1471 struct mem_cgroup *iter;
1472 unsigned long chosen_points = 0;
1473 unsigned long totalpages;
1474 unsigned int points = 0;
1475 struct task_struct *chosen = NULL;
1478 * If current has a pending SIGKILL, then automatically select it. The
1479 * goal is to allow it to allocate so that it may quickly exit and free
1480 * its memory.
1482 if (fatal_signal_pending(current)) {
1483 set_thread_flag(TIF_MEMDIE);
1484 return;
1487 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1488 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1489 for_each_mem_cgroup_tree(iter, memcg) {
1490 struct cgroup *cgroup = iter->css.cgroup;
1491 struct cgroup_iter it;
1492 struct task_struct *task;
1494 cgroup_iter_start(cgroup, &it);
1495 while ((task = cgroup_iter_next(cgroup, &it))) {
1496 switch (oom_scan_process_thread(task, totalpages, NULL,
1497 false)) {
1498 case OOM_SCAN_SELECT:
1499 if (chosen)
1500 put_task_struct(chosen);
1501 chosen = task;
1502 chosen_points = ULONG_MAX;
1503 get_task_struct(chosen);
1504 /* fall through */
1505 case OOM_SCAN_CONTINUE:
1506 continue;
1507 case OOM_SCAN_ABORT:
1508 cgroup_iter_end(cgroup, &it);
1509 mem_cgroup_iter_break(memcg, iter);
1510 if (chosen)
1511 put_task_struct(chosen);
1512 return;
1513 case OOM_SCAN_OK:
1514 break;
1516 points = oom_badness(task, memcg, NULL, totalpages);
1517 if (points > chosen_points) {
1518 if (chosen)
1519 put_task_struct(chosen);
1520 chosen = task;
1521 chosen_points = points;
1522 get_task_struct(chosen);
1525 cgroup_iter_end(cgroup, &it);
1528 if (!chosen)
1529 return;
1530 points = chosen_points * 1000 / totalpages;
1531 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1532 NULL, "Memory cgroup out of memory");
1535 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1536 gfp_t gfp_mask,
1537 unsigned long flags)
1539 unsigned long total = 0;
1540 bool noswap = false;
1541 int loop;
1543 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1544 noswap = true;
1545 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1546 noswap = true;
1548 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1549 if (loop)
1550 drain_all_stock_async(memcg);
1551 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1553 * Allow limit shrinkers, which are triggered directly
1554 * by userspace, to catch signals and stop reclaim
1555 * after minimal progress, regardless of the margin.
1557 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1558 break;
1559 if (mem_cgroup_margin(memcg))
1560 break;
1562 * If nothing was reclaimed after two attempts, there
1563 * may be no reclaimable pages in this hierarchy.
1565 if (loop && !total)
1566 break;
1568 return total;
1572 * test_mem_cgroup_node_reclaimable
1573 * @memcg: the target memcg
1574 * @nid: the node ID to be checked.
1575 * @noswap : specify true here if the user wants flle only information.
1577 * This function returns whether the specified memcg contains any
1578 * reclaimable pages on a node. Returns true if there are any reclaimable
1579 * pages in the node.
1581 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1582 int nid, bool noswap)
1584 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1585 return true;
1586 if (noswap || !total_swap_pages)
1587 return false;
1588 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1589 return true;
1590 return false;
1593 #if MAX_NUMNODES > 1
1596 * Always updating the nodemask is not very good - even if we have an empty
1597 * list or the wrong list here, we can start from some node and traverse all
1598 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1601 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1603 int nid;
1605 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1606 * pagein/pageout changes since the last update.
1608 if (!atomic_read(&memcg->numainfo_events))
1609 return;
1610 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1611 return;
1613 /* make a nodemask where this memcg uses memory from */
1614 memcg->scan_nodes = node_states[N_HIGH_MEMORY];
1616 for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1618 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1619 node_clear(nid, memcg->scan_nodes);
1622 atomic_set(&memcg->numainfo_events, 0);
1623 atomic_set(&memcg->numainfo_updating, 0);
1627 * Selecting a node where we start reclaim from. Because what we need is just
1628 * reducing usage counter, start from anywhere is O,K. Considering
1629 * memory reclaim from current node, there are pros. and cons.
1631 * Freeing memory from current node means freeing memory from a node which
1632 * we'll use or we've used. So, it may make LRU bad. And if several threads
1633 * hit limits, it will see a contention on a node. But freeing from remote
1634 * node means more costs for memory reclaim because of memory latency.
1636 * Now, we use round-robin. Better algorithm is welcomed.
1638 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1640 int node;
1642 mem_cgroup_may_update_nodemask(memcg);
1643 node = memcg->last_scanned_node;
1645 node = next_node(node, memcg->scan_nodes);
1646 if (node == MAX_NUMNODES)
1647 node = first_node(memcg->scan_nodes);
1649 * We call this when we hit limit, not when pages are added to LRU.
1650 * No LRU may hold pages because all pages are UNEVICTABLE or
1651 * memcg is too small and all pages are not on LRU. In that case,
1652 * we use curret node.
1654 if (unlikely(node == MAX_NUMNODES))
1655 node = numa_node_id();
1657 memcg->last_scanned_node = node;
1658 return node;
1662 * Check all nodes whether it contains reclaimable pages or not.
1663 * For quick scan, we make use of scan_nodes. This will allow us to skip
1664 * unused nodes. But scan_nodes is lazily updated and may not cotain
1665 * enough new information. We need to do double check.
1667 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1669 int nid;
1672 * quick check...making use of scan_node.
1673 * We can skip unused nodes.
1675 if (!nodes_empty(memcg->scan_nodes)) {
1676 for (nid = first_node(memcg->scan_nodes);
1677 nid < MAX_NUMNODES;
1678 nid = next_node(nid, memcg->scan_nodes)) {
1680 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1681 return true;
1685 * Check rest of nodes.
1687 for_each_node_state(nid, N_HIGH_MEMORY) {
1688 if (node_isset(nid, memcg->scan_nodes))
1689 continue;
1690 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1691 return true;
1693 return false;
1696 #else
1697 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1699 return 0;
1702 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1704 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1706 #endif
1708 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1709 struct zone *zone,
1710 gfp_t gfp_mask,
1711 unsigned long *total_scanned)
1713 struct mem_cgroup *victim = NULL;
1714 int total = 0;
1715 int loop = 0;
1716 unsigned long excess;
1717 unsigned long nr_scanned;
1718 struct mem_cgroup_reclaim_cookie reclaim = {
1719 .zone = zone,
1720 .priority = 0,
1723 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
1725 while (1) {
1726 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1727 if (!victim) {
1728 loop++;
1729 if (loop >= 2) {
1731 * If we have not been able to reclaim
1732 * anything, it might because there are
1733 * no reclaimable pages under this hierarchy
1735 if (!total)
1736 break;
1738 * We want to do more targeted reclaim.
1739 * excess >> 2 is not to excessive so as to
1740 * reclaim too much, nor too less that we keep
1741 * coming back to reclaim from this cgroup
1743 if (total >= (excess >> 2) ||
1744 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1745 break;
1747 continue;
1749 if (!mem_cgroup_reclaimable(victim, false))
1750 continue;
1751 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1752 zone, &nr_scanned);
1753 *total_scanned += nr_scanned;
1754 if (!res_counter_soft_limit_excess(&root_memcg->res))
1755 break;
1757 mem_cgroup_iter_break(root_memcg, victim);
1758 return total;
1762 * Check OOM-Killer is already running under our hierarchy.
1763 * If someone is running, return false.
1764 * Has to be called with memcg_oom_lock
1766 static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
1768 struct mem_cgroup *iter, *failed = NULL;
1770 for_each_mem_cgroup_tree(iter, memcg) {
1771 if (iter->oom_lock) {
1773 * this subtree of our hierarchy is already locked
1774 * so we cannot give a lock.
1776 failed = iter;
1777 mem_cgroup_iter_break(memcg, iter);
1778 break;
1779 } else
1780 iter->oom_lock = true;
1783 if (!failed)
1784 return true;
1787 * OK, we failed to lock the whole subtree so we have to clean up
1788 * what we set up to the failing subtree
1790 for_each_mem_cgroup_tree(iter, memcg) {
1791 if (iter == failed) {
1792 mem_cgroup_iter_break(memcg, iter);
1793 break;
1795 iter->oom_lock = false;
1797 return false;
1801 * Has to be called with memcg_oom_lock
1803 static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1805 struct mem_cgroup *iter;
1807 for_each_mem_cgroup_tree(iter, memcg)
1808 iter->oom_lock = false;
1809 return 0;
1812 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1814 struct mem_cgroup *iter;
1816 for_each_mem_cgroup_tree(iter, memcg)
1817 atomic_inc(&iter->under_oom);
1820 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1822 struct mem_cgroup *iter;
1825 * When a new child is created while the hierarchy is under oom,
1826 * mem_cgroup_oom_lock() may not be called. We have to use
1827 * atomic_add_unless() here.
1829 for_each_mem_cgroup_tree(iter, memcg)
1830 atomic_add_unless(&iter->under_oom, -1, 0);
1833 static DEFINE_SPINLOCK(memcg_oom_lock);
1834 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1836 struct oom_wait_info {
1837 struct mem_cgroup *memcg;
1838 wait_queue_t wait;
1841 static int memcg_oom_wake_function(wait_queue_t *wait,
1842 unsigned mode, int sync, void *arg)
1844 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1845 struct mem_cgroup *oom_wait_memcg;
1846 struct oom_wait_info *oom_wait_info;
1848 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1849 oom_wait_memcg = oom_wait_info->memcg;
1852 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
1853 * Then we can use css_is_ancestor without taking care of RCU.
1855 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
1856 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
1857 return 0;
1858 return autoremove_wake_function(wait, mode, sync, arg);
1861 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
1863 /* for filtering, pass "memcg" as argument. */
1864 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1867 static void memcg_oom_recover(struct mem_cgroup *memcg)
1869 if (memcg && atomic_read(&memcg->under_oom))
1870 memcg_wakeup_oom(memcg);
1874 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1876 static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
1877 int order)
1879 struct oom_wait_info owait;
1880 bool locked, need_to_kill;
1882 owait.memcg = memcg;
1883 owait.wait.flags = 0;
1884 owait.wait.func = memcg_oom_wake_function;
1885 owait.wait.private = current;
1886 INIT_LIST_HEAD(&owait.wait.task_list);
1887 need_to_kill = true;
1888 mem_cgroup_mark_under_oom(memcg);
1890 /* At first, try to OOM lock hierarchy under memcg.*/
1891 spin_lock(&memcg_oom_lock);
1892 locked = mem_cgroup_oom_lock(memcg);
1894 * Even if signal_pending(), we can't quit charge() loop without
1895 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1896 * under OOM is always welcomed, use TASK_KILLABLE here.
1898 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1899 if (!locked || memcg->oom_kill_disable)
1900 need_to_kill = false;
1901 if (locked)
1902 mem_cgroup_oom_notify(memcg);
1903 spin_unlock(&memcg_oom_lock);
1905 if (need_to_kill) {
1906 finish_wait(&memcg_oom_waitq, &owait.wait);
1907 mem_cgroup_out_of_memory(memcg, mask, order);
1908 } else {
1909 schedule();
1910 finish_wait(&memcg_oom_waitq, &owait.wait);
1912 spin_lock(&memcg_oom_lock);
1913 if (locked)
1914 mem_cgroup_oom_unlock(memcg);
1915 memcg_wakeup_oom(memcg);
1916 spin_unlock(&memcg_oom_lock);
1918 mem_cgroup_unmark_under_oom(memcg);
1920 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1921 return false;
1922 /* Give chance to dying process */
1923 schedule_timeout_uninterruptible(1);
1924 return true;
1928 * Currently used to update mapped file statistics, but the routine can be
1929 * generalized to update other statistics as well.
1931 * Notes: Race condition
1933 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1934 * it tends to be costly. But considering some conditions, we doesn't need
1935 * to do so _always_.
1937 * Considering "charge", lock_page_cgroup() is not required because all
1938 * file-stat operations happen after a page is attached to radix-tree. There
1939 * are no race with "charge".
1941 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1942 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1943 * if there are race with "uncharge". Statistics itself is properly handled
1944 * by flags.
1946 * Considering "move", this is an only case we see a race. To make the race
1947 * small, we check mm->moving_account and detect there are possibility of race
1948 * If there is, we take a lock.
1951 void __mem_cgroup_begin_update_page_stat(struct page *page,
1952 bool *locked, unsigned long *flags)
1954 struct mem_cgroup *memcg;
1955 struct page_cgroup *pc;
1957 pc = lookup_page_cgroup(page);
1958 again:
1959 memcg = pc->mem_cgroup;
1960 if (unlikely(!memcg || !PageCgroupUsed(pc)))
1961 return;
1963 * If this memory cgroup is not under account moving, we don't
1964 * need to take move_lock_mem_cgroup(). Because we already hold
1965 * rcu_read_lock(), any calls to move_account will be delayed until
1966 * rcu_read_unlock() if mem_cgroup_stolen() == true.
1968 if (!mem_cgroup_stolen(memcg))
1969 return;
1971 move_lock_mem_cgroup(memcg, flags);
1972 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
1973 move_unlock_mem_cgroup(memcg, flags);
1974 goto again;
1976 *locked = true;
1979 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
1981 struct page_cgroup *pc = lookup_page_cgroup(page);
1984 * It's guaranteed that pc->mem_cgroup never changes while
1985 * lock is held because a routine modifies pc->mem_cgroup
1986 * should take move_lock_mem_cgroup().
1988 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
1991 void mem_cgroup_update_page_stat(struct page *page,
1992 enum mem_cgroup_page_stat_item idx, int val)
1994 struct mem_cgroup *memcg;
1995 struct page_cgroup *pc = lookup_page_cgroup(page);
1996 unsigned long uninitialized_var(flags);
1998 if (mem_cgroup_disabled())
1999 return;
2001 memcg = pc->mem_cgroup;
2002 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2003 return;
2005 switch (idx) {
2006 case MEMCG_NR_FILE_MAPPED:
2007 idx = MEM_CGROUP_STAT_FILE_MAPPED;
2008 break;
2009 default:
2010 BUG();
2013 this_cpu_add(memcg->stat->count[idx], val);
2017 * size of first charge trial. "32" comes from vmscan.c's magic value.
2018 * TODO: maybe necessary to use big numbers in big irons.
2020 #define CHARGE_BATCH 32U
2021 struct memcg_stock_pcp {
2022 struct mem_cgroup *cached; /* this never be root cgroup */
2023 unsigned int nr_pages;
2024 struct work_struct work;
2025 unsigned long flags;
2026 #define FLUSHING_CACHED_CHARGE 0
2028 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2029 static DEFINE_MUTEX(percpu_charge_mutex);
2032 * Try to consume stocked charge on this cpu. If success, one page is consumed
2033 * from local stock and true is returned. If the stock is 0 or charges from a
2034 * cgroup which is not current target, returns false. This stock will be
2035 * refilled.
2037 static bool consume_stock(struct mem_cgroup *memcg)
2039 struct memcg_stock_pcp *stock;
2040 bool ret = true;
2042 stock = &get_cpu_var(memcg_stock);
2043 if (memcg == stock->cached && stock->nr_pages)
2044 stock->nr_pages--;
2045 else /* need to call res_counter_charge */
2046 ret = false;
2047 put_cpu_var(memcg_stock);
2048 return ret;
2052 * Returns stocks cached in percpu to res_counter and reset cached information.
2054 static void drain_stock(struct memcg_stock_pcp *stock)
2056 struct mem_cgroup *old = stock->cached;
2058 if (stock->nr_pages) {
2059 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2061 res_counter_uncharge(&old->res, bytes);
2062 if (do_swap_account)
2063 res_counter_uncharge(&old->memsw, bytes);
2064 stock->nr_pages = 0;
2066 stock->cached = NULL;
2070 * This must be called under preempt disabled or must be called by
2071 * a thread which is pinned to local cpu.
2073 static void drain_local_stock(struct work_struct *dummy)
2075 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2076 drain_stock(stock);
2077 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2081 * Cache charges(val) which is from res_counter, to local per_cpu area.
2082 * This will be consumed by consume_stock() function, later.
2084 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2086 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2088 if (stock->cached != memcg) { /* reset if necessary */
2089 drain_stock(stock);
2090 stock->cached = memcg;
2092 stock->nr_pages += nr_pages;
2093 put_cpu_var(memcg_stock);
2097 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2098 * of the hierarchy under it. sync flag says whether we should block
2099 * until the work is done.
2101 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2103 int cpu, curcpu;
2105 /* Notify other cpus that system-wide "drain" is running */
2106 get_online_cpus();
2107 curcpu = get_cpu();
2108 for_each_online_cpu(cpu) {
2109 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2110 struct mem_cgroup *memcg;
2112 memcg = stock->cached;
2113 if (!memcg || !stock->nr_pages)
2114 continue;
2115 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2116 continue;
2117 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2118 if (cpu == curcpu)
2119 drain_local_stock(&stock->work);
2120 else
2121 schedule_work_on(cpu, &stock->work);
2124 put_cpu();
2126 if (!sync)
2127 goto out;
2129 for_each_online_cpu(cpu) {
2130 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2131 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2132 flush_work(&stock->work);
2134 out:
2135 put_online_cpus();
2139 * Tries to drain stocked charges in other cpus. This function is asynchronous
2140 * and just put a work per cpu for draining localy on each cpu. Caller can
2141 * expects some charges will be back to res_counter later but cannot wait for
2142 * it.
2144 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2147 * If someone calls draining, avoid adding more kworker runs.
2149 if (!mutex_trylock(&percpu_charge_mutex))
2150 return;
2151 drain_all_stock(root_memcg, false);
2152 mutex_unlock(&percpu_charge_mutex);
2155 /* This is a synchronous drain interface. */
2156 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2158 /* called when force_empty is called */
2159 mutex_lock(&percpu_charge_mutex);
2160 drain_all_stock(root_memcg, true);
2161 mutex_unlock(&percpu_charge_mutex);
2165 * This function drains percpu counter value from DEAD cpu and
2166 * move it to local cpu. Note that this function can be preempted.
2168 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2170 int i;
2172 spin_lock(&memcg->pcp_counter_lock);
2173 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2174 long x = per_cpu(memcg->stat->count[i], cpu);
2176 per_cpu(memcg->stat->count[i], cpu) = 0;
2177 memcg->nocpu_base.count[i] += x;
2179 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2180 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2182 per_cpu(memcg->stat->events[i], cpu) = 0;
2183 memcg->nocpu_base.events[i] += x;
2185 spin_unlock(&memcg->pcp_counter_lock);
2188 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2189 unsigned long action,
2190 void *hcpu)
2192 int cpu = (unsigned long)hcpu;
2193 struct memcg_stock_pcp *stock;
2194 struct mem_cgroup *iter;
2196 if (action == CPU_ONLINE)
2197 return NOTIFY_OK;
2199 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2200 return NOTIFY_OK;
2202 for_each_mem_cgroup(iter)
2203 mem_cgroup_drain_pcp_counter(iter, cpu);
2205 stock = &per_cpu(memcg_stock, cpu);
2206 drain_stock(stock);
2207 return NOTIFY_OK;
2211 /* See __mem_cgroup_try_charge() for details */
2212 enum {
2213 CHARGE_OK, /* success */
2214 CHARGE_RETRY, /* need to retry but retry is not bad */
2215 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2216 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2217 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2220 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2221 unsigned int nr_pages, bool oom_check)
2223 unsigned long csize = nr_pages * PAGE_SIZE;
2224 struct mem_cgroup *mem_over_limit;
2225 struct res_counter *fail_res;
2226 unsigned long flags = 0;
2227 int ret;
2229 ret = res_counter_charge(&memcg->res, csize, &fail_res);
2231 if (likely(!ret)) {
2232 if (!do_swap_account)
2233 return CHARGE_OK;
2234 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2235 if (likely(!ret))
2236 return CHARGE_OK;
2238 res_counter_uncharge(&memcg->res, csize);
2239 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2240 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2241 } else
2242 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2244 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2245 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2247 * Never reclaim on behalf of optional batching, retry with a
2248 * single page instead.
2250 if (nr_pages == CHARGE_BATCH)
2251 return CHARGE_RETRY;
2253 if (!(gfp_mask & __GFP_WAIT))
2254 return CHARGE_WOULDBLOCK;
2256 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2257 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2258 return CHARGE_RETRY;
2260 * Even though the limit is exceeded at this point, reclaim
2261 * may have been able to free some pages. Retry the charge
2262 * before killing the task.
2264 * Only for regular pages, though: huge pages are rather
2265 * unlikely to succeed so close to the limit, and we fall back
2266 * to regular pages anyway in case of failure.
2268 if (nr_pages == 1 && ret)
2269 return CHARGE_RETRY;
2272 * At task move, charge accounts can be doubly counted. So, it's
2273 * better to wait until the end of task_move if something is going on.
2275 if (mem_cgroup_wait_acct_move(mem_over_limit))
2276 return CHARGE_RETRY;
2278 /* If we don't need to call oom-killer at el, return immediately */
2279 if (!oom_check)
2280 return CHARGE_NOMEM;
2281 /* check OOM */
2282 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2283 return CHARGE_OOM_DIE;
2285 return CHARGE_RETRY;
2289 * __mem_cgroup_try_charge() does
2290 * 1. detect memcg to be charged against from passed *mm and *ptr,
2291 * 2. update res_counter
2292 * 3. call memory reclaim if necessary.
2294 * In some special case, if the task is fatal, fatal_signal_pending() or
2295 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2296 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2297 * as possible without any hazards. 2: all pages should have a valid
2298 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2299 * pointer, that is treated as a charge to root_mem_cgroup.
2301 * So __mem_cgroup_try_charge() will return
2302 * 0 ... on success, filling *ptr with a valid memcg pointer.
2303 * -ENOMEM ... charge failure because of resource limits.
2304 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2306 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2307 * the oom-killer can be invoked.
2309 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2310 gfp_t gfp_mask,
2311 unsigned int nr_pages,
2312 struct mem_cgroup **ptr,
2313 bool oom)
2315 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2316 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2317 struct mem_cgroup *memcg = NULL;
2318 int ret;
2321 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2322 * in system level. So, allow to go ahead dying process in addition to
2323 * MEMDIE process.
2325 if (unlikely(test_thread_flag(TIF_MEMDIE)
2326 || fatal_signal_pending(current)))
2327 goto bypass;
2330 * We always charge the cgroup the mm_struct belongs to.
2331 * The mm_struct's mem_cgroup changes on task migration if the
2332 * thread group leader migrates. It's possible that mm is not
2333 * set, if so charge the root memcg (happens for pagecache usage).
2335 if (!*ptr && !mm)
2336 *ptr = root_mem_cgroup;
2337 again:
2338 if (*ptr) { /* css should be a valid one */
2339 memcg = *ptr;
2340 VM_BUG_ON(css_is_removed(&memcg->css));
2341 if (mem_cgroup_is_root(memcg))
2342 goto done;
2343 if (nr_pages == 1 && consume_stock(memcg))
2344 goto done;
2345 css_get(&memcg->css);
2346 } else {
2347 struct task_struct *p;
2349 rcu_read_lock();
2350 p = rcu_dereference(mm->owner);
2352 * Because we don't have task_lock(), "p" can exit.
2353 * In that case, "memcg" can point to root or p can be NULL with
2354 * race with swapoff. Then, we have small risk of mis-accouning.
2355 * But such kind of mis-account by race always happens because
2356 * we don't have cgroup_mutex(). It's overkill and we allo that
2357 * small race, here.
2358 * (*) swapoff at el will charge against mm-struct not against
2359 * task-struct. So, mm->owner can be NULL.
2361 memcg = mem_cgroup_from_task(p);
2362 if (!memcg)
2363 memcg = root_mem_cgroup;
2364 if (mem_cgroup_is_root(memcg)) {
2365 rcu_read_unlock();
2366 goto done;
2368 if (nr_pages == 1 && consume_stock(memcg)) {
2370 * It seems dagerous to access memcg without css_get().
2371 * But considering how consume_stok works, it's not
2372 * necessary. If consume_stock success, some charges
2373 * from this memcg are cached on this cpu. So, we
2374 * don't need to call css_get()/css_tryget() before
2375 * calling consume_stock().
2377 rcu_read_unlock();
2378 goto done;
2380 /* after here, we may be blocked. we need to get refcnt */
2381 if (!css_tryget(&memcg->css)) {
2382 rcu_read_unlock();
2383 goto again;
2385 rcu_read_unlock();
2388 do {
2389 bool oom_check;
2391 /* If killed, bypass charge */
2392 if (fatal_signal_pending(current)) {
2393 css_put(&memcg->css);
2394 goto bypass;
2397 oom_check = false;
2398 if (oom && !nr_oom_retries) {
2399 oom_check = true;
2400 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2403 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
2404 switch (ret) {
2405 case CHARGE_OK:
2406 break;
2407 case CHARGE_RETRY: /* not in OOM situation but retry */
2408 batch = nr_pages;
2409 css_put(&memcg->css);
2410 memcg = NULL;
2411 goto again;
2412 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2413 css_put(&memcg->css);
2414 goto nomem;
2415 case CHARGE_NOMEM: /* OOM routine works */
2416 if (!oom) {
2417 css_put(&memcg->css);
2418 goto nomem;
2420 /* If oom, we never return -ENOMEM */
2421 nr_oom_retries--;
2422 break;
2423 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2424 css_put(&memcg->css);
2425 goto bypass;
2427 } while (ret != CHARGE_OK);
2429 if (batch > nr_pages)
2430 refill_stock(memcg, batch - nr_pages);
2431 css_put(&memcg->css);
2432 done:
2433 *ptr = memcg;
2434 return 0;
2435 nomem:
2436 *ptr = NULL;
2437 return -ENOMEM;
2438 bypass:
2439 *ptr = root_mem_cgroup;
2440 return -EINTR;
2444 * Somemtimes we have to undo a charge we got by try_charge().
2445 * This function is for that and do uncharge, put css's refcnt.
2446 * gotten by try_charge().
2448 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2449 unsigned int nr_pages)
2451 if (!mem_cgroup_is_root(memcg)) {
2452 unsigned long bytes = nr_pages * PAGE_SIZE;
2454 res_counter_uncharge(&memcg->res, bytes);
2455 if (do_swap_account)
2456 res_counter_uncharge(&memcg->memsw, bytes);
2461 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2462 * This is useful when moving usage to parent cgroup.
2464 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2465 unsigned int nr_pages)
2467 unsigned long bytes = nr_pages * PAGE_SIZE;
2469 if (mem_cgroup_is_root(memcg))
2470 return;
2472 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2473 if (do_swap_account)
2474 res_counter_uncharge_until(&memcg->memsw,
2475 memcg->memsw.parent, bytes);
2479 * A helper function to get mem_cgroup from ID. must be called under
2480 * rcu_read_lock(). The caller must check css_is_removed() or some if
2481 * it's concern. (dropping refcnt from swap can be called against removed
2482 * memcg.)
2484 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2486 struct cgroup_subsys_state *css;
2488 /* ID 0 is unused ID */
2489 if (!id)
2490 return NULL;
2491 css = css_lookup(&mem_cgroup_subsys, id);
2492 if (!css)
2493 return NULL;
2494 return mem_cgroup_from_css(css);
2497 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2499 struct mem_cgroup *memcg = NULL;
2500 struct page_cgroup *pc;
2501 unsigned short id;
2502 swp_entry_t ent;
2504 VM_BUG_ON(!PageLocked(page));
2506 pc = lookup_page_cgroup(page);
2507 lock_page_cgroup(pc);
2508 if (PageCgroupUsed(pc)) {
2509 memcg = pc->mem_cgroup;
2510 if (memcg && !css_tryget(&memcg->css))
2511 memcg = NULL;
2512 } else if (PageSwapCache(page)) {
2513 ent.val = page_private(page);
2514 id = lookup_swap_cgroup_id(ent);
2515 rcu_read_lock();
2516 memcg = mem_cgroup_lookup(id);
2517 if (memcg && !css_tryget(&memcg->css))
2518 memcg = NULL;
2519 rcu_read_unlock();
2521 unlock_page_cgroup(pc);
2522 return memcg;
2525 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2526 struct page *page,
2527 unsigned int nr_pages,
2528 enum charge_type ctype,
2529 bool lrucare)
2531 struct page_cgroup *pc = lookup_page_cgroup(page);
2532 struct zone *uninitialized_var(zone);
2533 struct lruvec *lruvec;
2534 bool was_on_lru = false;
2535 bool anon;
2537 lock_page_cgroup(pc);
2538 VM_BUG_ON(PageCgroupUsed(pc));
2540 * we don't need page_cgroup_lock about tail pages, becase they are not
2541 * accessed by any other context at this point.
2545 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2546 * may already be on some other mem_cgroup's LRU. Take care of it.
2548 if (lrucare) {
2549 zone = page_zone(page);
2550 spin_lock_irq(&zone->lru_lock);
2551 if (PageLRU(page)) {
2552 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2553 ClearPageLRU(page);
2554 del_page_from_lru_list(page, lruvec, page_lru(page));
2555 was_on_lru = true;
2559 pc->mem_cgroup = memcg;
2561 * We access a page_cgroup asynchronously without lock_page_cgroup().
2562 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2563 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2564 * before USED bit, we need memory barrier here.
2565 * See mem_cgroup_add_lru_list(), etc.
2567 smp_wmb();
2568 SetPageCgroupUsed(pc);
2570 if (lrucare) {
2571 if (was_on_lru) {
2572 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2573 VM_BUG_ON(PageLRU(page));
2574 SetPageLRU(page);
2575 add_page_to_lru_list(page, lruvec, page_lru(page));
2577 spin_unlock_irq(&zone->lru_lock);
2580 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2581 anon = true;
2582 else
2583 anon = false;
2585 mem_cgroup_charge_statistics(memcg, anon, nr_pages);
2586 unlock_page_cgroup(pc);
2589 * "charge_statistics" updated event counter. Then, check it.
2590 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2591 * if they exceeds softlimit.
2593 memcg_check_events(memcg, page);
2596 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2598 #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
2600 * Because tail pages are not marked as "used", set it. We're under
2601 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2602 * charge/uncharge will be never happen and move_account() is done under
2603 * compound_lock(), so we don't have to take care of races.
2605 void mem_cgroup_split_huge_fixup(struct page *head)
2607 struct page_cgroup *head_pc = lookup_page_cgroup(head);
2608 struct page_cgroup *pc;
2609 int i;
2611 if (mem_cgroup_disabled())
2612 return;
2613 for (i = 1; i < HPAGE_PMD_NR; i++) {
2614 pc = head_pc + i;
2615 pc->mem_cgroup = head_pc->mem_cgroup;
2616 smp_wmb();/* see __commit_charge() */
2617 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2620 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2623 * mem_cgroup_move_account - move account of the page
2624 * @page: the page
2625 * @nr_pages: number of regular pages (>1 for huge pages)
2626 * @pc: page_cgroup of the page.
2627 * @from: mem_cgroup which the page is moved from.
2628 * @to: mem_cgroup which the page is moved to. @from != @to.
2630 * The caller must confirm following.
2631 * - page is not on LRU (isolate_page() is useful.)
2632 * - compound_lock is held when nr_pages > 1
2634 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
2635 * from old cgroup.
2637 static int mem_cgroup_move_account(struct page *page,
2638 unsigned int nr_pages,
2639 struct page_cgroup *pc,
2640 struct mem_cgroup *from,
2641 struct mem_cgroup *to)
2643 unsigned long flags;
2644 int ret;
2645 bool anon = PageAnon(page);
2647 VM_BUG_ON(from == to);
2648 VM_BUG_ON(PageLRU(page));
2650 * The page is isolated from LRU. So, collapse function
2651 * will not handle this page. But page splitting can happen.
2652 * Do this check under compound_page_lock(). The caller should
2653 * hold it.
2655 ret = -EBUSY;
2656 if (nr_pages > 1 && !PageTransHuge(page))
2657 goto out;
2659 lock_page_cgroup(pc);
2661 ret = -EINVAL;
2662 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2663 goto unlock;
2665 move_lock_mem_cgroup(from, &flags);
2667 if (!anon && page_mapped(page)) {
2668 /* Update mapped_file data for mem_cgroup */
2669 preempt_disable();
2670 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2671 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2672 preempt_enable();
2674 mem_cgroup_charge_statistics(from, anon, -nr_pages);
2676 /* caller should have done css_get */
2677 pc->mem_cgroup = to;
2678 mem_cgroup_charge_statistics(to, anon, nr_pages);
2680 * We charges against "to" which may not have any tasks. Then, "to"
2681 * can be under rmdir(). But in current implementation, caller of
2682 * this function is just force_empty() and move charge, so it's
2683 * guaranteed that "to" is never removed. So, we don't check rmdir
2684 * status here.
2686 move_unlock_mem_cgroup(from, &flags);
2687 ret = 0;
2688 unlock:
2689 unlock_page_cgroup(pc);
2691 * check events
2693 memcg_check_events(to, page);
2694 memcg_check_events(from, page);
2695 out:
2696 return ret;
2700 * move charges to its parent.
2703 static int mem_cgroup_move_parent(struct page *page,
2704 struct page_cgroup *pc,
2705 struct mem_cgroup *child)
2707 struct mem_cgroup *parent;
2708 unsigned int nr_pages;
2709 unsigned long uninitialized_var(flags);
2710 int ret;
2712 /* Is ROOT ? */
2713 if (mem_cgroup_is_root(child))
2714 return -EINVAL;
2716 ret = -EBUSY;
2717 if (!get_page_unless_zero(page))
2718 goto out;
2719 if (isolate_lru_page(page))
2720 goto put;
2722 nr_pages = hpage_nr_pages(page);
2724 parent = parent_mem_cgroup(child);
2726 * If no parent, move charges to root cgroup.
2728 if (!parent)
2729 parent = root_mem_cgroup;
2731 if (nr_pages > 1)
2732 flags = compound_lock_irqsave(page);
2734 ret = mem_cgroup_move_account(page, nr_pages,
2735 pc, child, parent);
2736 if (!ret)
2737 __mem_cgroup_cancel_local_charge(child, nr_pages);
2739 if (nr_pages > 1)
2740 compound_unlock_irqrestore(page, flags);
2741 putback_lru_page(page);
2742 put:
2743 put_page(page);
2744 out:
2745 return ret;
2749 * Charge the memory controller for page usage.
2750 * Return
2751 * 0 if the charge was successful
2752 * < 0 if the cgroup is over its limit
2754 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2755 gfp_t gfp_mask, enum charge_type ctype)
2757 struct mem_cgroup *memcg = NULL;
2758 unsigned int nr_pages = 1;
2759 bool oom = true;
2760 int ret;
2762 if (PageTransHuge(page)) {
2763 nr_pages <<= compound_order(page);
2764 VM_BUG_ON(!PageTransHuge(page));
2766 * Never OOM-kill a process for a huge page. The
2767 * fault handler will fall back to regular pages.
2769 oom = false;
2772 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
2773 if (ret == -ENOMEM)
2774 return ret;
2775 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
2776 return 0;
2779 int mem_cgroup_newpage_charge(struct page *page,
2780 struct mm_struct *mm, gfp_t gfp_mask)
2782 if (mem_cgroup_disabled())
2783 return 0;
2784 VM_BUG_ON(page_mapped(page));
2785 VM_BUG_ON(page->mapping && !PageAnon(page));
2786 VM_BUG_ON(!mm);
2787 return mem_cgroup_charge_common(page, mm, gfp_mask,
2788 MEM_CGROUP_CHARGE_TYPE_ANON);
2792 * While swap-in, try_charge -> commit or cancel, the page is locked.
2793 * And when try_charge() successfully returns, one refcnt to memcg without
2794 * struct page_cgroup is acquired. This refcnt will be consumed by
2795 * "commit()" or removed by "cancel()"
2797 static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2798 struct page *page,
2799 gfp_t mask,
2800 struct mem_cgroup **memcgp)
2802 struct mem_cgroup *memcg;
2803 struct page_cgroup *pc;
2804 int ret;
2806 pc = lookup_page_cgroup(page);
2808 * Every swap fault against a single page tries to charge the
2809 * page, bail as early as possible. shmem_unuse() encounters
2810 * already charged pages, too. The USED bit is protected by
2811 * the page lock, which serializes swap cache removal, which
2812 * in turn serializes uncharging.
2814 if (PageCgroupUsed(pc))
2815 return 0;
2816 if (!do_swap_account)
2817 goto charge_cur_mm;
2818 memcg = try_get_mem_cgroup_from_page(page);
2819 if (!memcg)
2820 goto charge_cur_mm;
2821 *memcgp = memcg;
2822 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
2823 css_put(&memcg->css);
2824 if (ret == -EINTR)
2825 ret = 0;
2826 return ret;
2827 charge_cur_mm:
2828 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
2829 if (ret == -EINTR)
2830 ret = 0;
2831 return ret;
2834 int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
2835 gfp_t gfp_mask, struct mem_cgroup **memcgp)
2837 *memcgp = NULL;
2838 if (mem_cgroup_disabled())
2839 return 0;
2841 * A racing thread's fault, or swapoff, may have already
2842 * updated the pte, and even removed page from swap cache: in
2843 * those cases unuse_pte()'s pte_same() test will fail; but
2844 * there's also a KSM case which does need to charge the page.
2846 if (!PageSwapCache(page)) {
2847 int ret;
2849 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
2850 if (ret == -EINTR)
2851 ret = 0;
2852 return ret;
2854 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
2857 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
2859 if (mem_cgroup_disabled())
2860 return;
2861 if (!memcg)
2862 return;
2863 __mem_cgroup_cancel_charge(memcg, 1);
2866 static void
2867 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
2868 enum charge_type ctype)
2870 if (mem_cgroup_disabled())
2871 return;
2872 if (!memcg)
2873 return;
2874 cgroup_exclude_rmdir(&memcg->css);
2876 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
2878 * Now swap is on-memory. This means this page may be
2879 * counted both as mem and swap....double count.
2880 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2881 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2882 * may call delete_from_swap_cache() before reach here.
2884 if (do_swap_account && PageSwapCache(page)) {
2885 swp_entry_t ent = {.val = page_private(page)};
2886 mem_cgroup_uncharge_swap(ent);
2889 * At swapin, we may charge account against cgroup which has no tasks.
2890 * So, rmdir()->pre_destroy() can be called while we do this charge.
2891 * In that case, we need to call pre_destroy() again. check it here.
2893 cgroup_release_and_wakeup_rmdir(&memcg->css);
2896 void mem_cgroup_commit_charge_swapin(struct page *page,
2897 struct mem_cgroup *memcg)
2899 __mem_cgroup_commit_charge_swapin(page, memcg,
2900 MEM_CGROUP_CHARGE_TYPE_ANON);
2903 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2904 gfp_t gfp_mask)
2906 struct mem_cgroup *memcg = NULL;
2907 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
2908 int ret;
2910 if (mem_cgroup_disabled())
2911 return 0;
2912 if (PageCompound(page))
2913 return 0;
2915 if (!PageSwapCache(page))
2916 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
2917 else { /* page is swapcache/shmem */
2918 ret = __mem_cgroup_try_charge_swapin(mm, page,
2919 gfp_mask, &memcg);
2920 if (!ret)
2921 __mem_cgroup_commit_charge_swapin(page, memcg, type);
2923 return ret;
2926 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
2927 unsigned int nr_pages,
2928 const enum charge_type ctype)
2930 struct memcg_batch_info *batch = NULL;
2931 bool uncharge_memsw = true;
2933 /* If swapout, usage of swap doesn't decrease */
2934 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2935 uncharge_memsw = false;
2937 batch = &current->memcg_batch;
2939 * In usual, we do css_get() when we remember memcg pointer.
2940 * But in this case, we keep res->usage until end of a series of
2941 * uncharges. Then, it's ok to ignore memcg's refcnt.
2943 if (!batch->memcg)
2944 batch->memcg = memcg;
2946 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2947 * In those cases, all pages freed continuously can be expected to be in
2948 * the same cgroup and we have chance to coalesce uncharges.
2949 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2950 * because we want to do uncharge as soon as possible.
2953 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2954 goto direct_uncharge;
2956 if (nr_pages > 1)
2957 goto direct_uncharge;
2960 * In typical case, batch->memcg == mem. This means we can
2961 * merge a series of uncharges to an uncharge of res_counter.
2962 * If not, we uncharge res_counter ony by one.
2964 if (batch->memcg != memcg)
2965 goto direct_uncharge;
2966 /* remember freed charge and uncharge it later */
2967 batch->nr_pages++;
2968 if (uncharge_memsw)
2969 batch->memsw_nr_pages++;
2970 return;
2971 direct_uncharge:
2972 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
2973 if (uncharge_memsw)
2974 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
2975 if (unlikely(batch->memcg != memcg))
2976 memcg_oom_recover(memcg);
2980 * uncharge if !page_mapped(page)
2982 static struct mem_cgroup *
2983 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
2984 bool end_migration)
2986 struct mem_cgroup *memcg = NULL;
2987 unsigned int nr_pages = 1;
2988 struct page_cgroup *pc;
2989 bool anon;
2991 if (mem_cgroup_disabled())
2992 return NULL;
2994 VM_BUG_ON(PageSwapCache(page));
2996 if (PageTransHuge(page)) {
2997 nr_pages <<= compound_order(page);
2998 VM_BUG_ON(!PageTransHuge(page));
3001 * Check if our page_cgroup is valid
3003 pc = lookup_page_cgroup(page);
3004 if (unlikely(!PageCgroupUsed(pc)))
3005 return NULL;
3007 lock_page_cgroup(pc);
3009 memcg = pc->mem_cgroup;
3011 if (!PageCgroupUsed(pc))
3012 goto unlock_out;
3014 anon = PageAnon(page);
3016 switch (ctype) {
3017 case MEM_CGROUP_CHARGE_TYPE_ANON:
3019 * Generally PageAnon tells if it's the anon statistics to be
3020 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
3021 * used before page reached the stage of being marked PageAnon.
3023 anon = true;
3024 /* fallthrough */
3025 case MEM_CGROUP_CHARGE_TYPE_DROP:
3026 /* See mem_cgroup_prepare_migration() */
3027 if (page_mapped(page))
3028 goto unlock_out;
3030 * Pages under migration may not be uncharged. But
3031 * end_migration() /must/ be the one uncharging the
3032 * unused post-migration page and so it has to call
3033 * here with the migration bit still set. See the
3034 * res_counter handling below.
3036 if (!end_migration && PageCgroupMigration(pc))
3037 goto unlock_out;
3038 break;
3039 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
3040 if (!PageAnon(page)) { /* Shared memory */
3041 if (page->mapping && !page_is_file_cache(page))
3042 goto unlock_out;
3043 } else if (page_mapped(page)) /* Anon */
3044 goto unlock_out;
3045 break;
3046 default:
3047 break;
3050 mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
3052 ClearPageCgroupUsed(pc);
3054 * pc->mem_cgroup is not cleared here. It will be accessed when it's
3055 * freed from LRU. This is safe because uncharged page is expected not
3056 * to be reused (freed soon). Exception is SwapCache, it's handled by
3057 * special functions.
3060 unlock_page_cgroup(pc);
3062 * even after unlock, we have memcg->res.usage here and this memcg
3063 * will never be freed.
3065 memcg_check_events(memcg, page);
3066 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3067 mem_cgroup_swap_statistics(memcg, true);
3068 mem_cgroup_get(memcg);
3071 * Migration does not charge the res_counter for the
3072 * replacement page, so leave it alone when phasing out the
3073 * page that is unused after the migration.
3075 if (!end_migration && !mem_cgroup_is_root(memcg))
3076 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
3078 return memcg;
3080 unlock_out:
3081 unlock_page_cgroup(pc);
3082 return NULL;
3085 void mem_cgroup_uncharge_page(struct page *page)
3087 /* early check. */
3088 if (page_mapped(page))
3089 return;
3090 VM_BUG_ON(page->mapping && !PageAnon(page));
3091 if (PageSwapCache(page))
3092 return;
3093 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
3096 void mem_cgroup_uncharge_cache_page(struct page *page)
3098 VM_BUG_ON(page_mapped(page));
3099 VM_BUG_ON(page->mapping);
3100 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
3104 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3105 * In that cases, pages are freed continuously and we can expect pages
3106 * are in the same memcg. All these calls itself limits the number of
3107 * pages freed at once, then uncharge_start/end() is called properly.
3108 * This may be called prural(2) times in a context,
3111 void mem_cgroup_uncharge_start(void)
3113 current->memcg_batch.do_batch++;
3114 /* We can do nest. */
3115 if (current->memcg_batch.do_batch == 1) {
3116 current->memcg_batch.memcg = NULL;
3117 current->memcg_batch.nr_pages = 0;
3118 current->memcg_batch.memsw_nr_pages = 0;
3122 void mem_cgroup_uncharge_end(void)
3124 struct memcg_batch_info *batch = &current->memcg_batch;
3126 if (!batch->do_batch)
3127 return;
3129 batch->do_batch--;
3130 if (batch->do_batch) /* If stacked, do nothing. */
3131 return;
3133 if (!batch->memcg)
3134 return;
3136 * This "batch->memcg" is valid without any css_get/put etc...
3137 * bacause we hide charges behind us.
3139 if (batch->nr_pages)
3140 res_counter_uncharge(&batch->memcg->res,
3141 batch->nr_pages * PAGE_SIZE);
3142 if (batch->memsw_nr_pages)
3143 res_counter_uncharge(&batch->memcg->memsw,
3144 batch->memsw_nr_pages * PAGE_SIZE);
3145 memcg_oom_recover(batch->memcg);
3146 /* forget this pointer (for sanity check) */
3147 batch->memcg = NULL;
3150 #ifdef CONFIG_SWAP
3152 * called after __delete_from_swap_cache() and drop "page" account.
3153 * memcg information is recorded to swap_cgroup of "ent"
3155 void
3156 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3158 struct mem_cgroup *memcg;
3159 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3161 if (!swapout) /* this was a swap cache but the swap is unused ! */
3162 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3164 memcg = __mem_cgroup_uncharge_common(page, ctype, false);
3167 * record memcg information, if swapout && memcg != NULL,
3168 * mem_cgroup_get() was called in uncharge().
3170 if (do_swap_account && swapout && memcg)
3171 swap_cgroup_record(ent, css_id(&memcg->css));
3173 #endif
3175 #ifdef CONFIG_MEMCG_SWAP
3177 * called from swap_entry_free(). remove record in swap_cgroup and
3178 * uncharge "memsw" account.
3180 void mem_cgroup_uncharge_swap(swp_entry_t ent)
3182 struct mem_cgroup *memcg;
3183 unsigned short id;
3185 if (!do_swap_account)
3186 return;
3188 id = swap_cgroup_record(ent, 0);
3189 rcu_read_lock();
3190 memcg = mem_cgroup_lookup(id);
3191 if (memcg) {
3193 * We uncharge this because swap is freed.
3194 * This memcg can be obsolete one. We avoid calling css_tryget
3196 if (!mem_cgroup_is_root(memcg))
3197 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3198 mem_cgroup_swap_statistics(memcg, false);
3199 mem_cgroup_put(memcg);
3201 rcu_read_unlock();
3205 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3206 * @entry: swap entry to be moved
3207 * @from: mem_cgroup which the entry is moved from
3208 * @to: mem_cgroup which the entry is moved to
3210 * It succeeds only when the swap_cgroup's record for this entry is the same
3211 * as the mem_cgroup's id of @from.
3213 * Returns 0 on success, -EINVAL on failure.
3215 * The caller must have charged to @to, IOW, called res_counter_charge() about
3216 * both res and memsw, and called css_get().
3218 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3219 struct mem_cgroup *from, struct mem_cgroup *to)
3221 unsigned short old_id, new_id;
3223 old_id = css_id(&from->css);
3224 new_id = css_id(&to->css);
3226 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3227 mem_cgroup_swap_statistics(from, false);
3228 mem_cgroup_swap_statistics(to, true);
3230 * This function is only called from task migration context now.
3231 * It postpones res_counter and refcount handling till the end
3232 * of task migration(mem_cgroup_clear_mc()) for performance
3233 * improvement. But we cannot postpone mem_cgroup_get(to)
3234 * because if the process that has been moved to @to does
3235 * swap-in, the refcount of @to might be decreased to 0.
3237 mem_cgroup_get(to);
3238 return 0;
3240 return -EINVAL;
3242 #else
3243 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3244 struct mem_cgroup *from, struct mem_cgroup *to)
3246 return -EINVAL;
3248 #endif
3251 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3252 * page belongs to.
3254 void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
3255 struct mem_cgroup **memcgp)
3257 struct mem_cgroup *memcg = NULL;
3258 struct page_cgroup *pc;
3259 enum charge_type ctype;
3261 *memcgp = NULL;
3263 VM_BUG_ON(PageTransHuge(page));
3264 if (mem_cgroup_disabled())
3265 return;
3267 pc = lookup_page_cgroup(page);
3268 lock_page_cgroup(pc);
3269 if (PageCgroupUsed(pc)) {
3270 memcg = pc->mem_cgroup;
3271 css_get(&memcg->css);
3273 * At migrating an anonymous page, its mapcount goes down
3274 * to 0 and uncharge() will be called. But, even if it's fully
3275 * unmapped, migration may fail and this page has to be
3276 * charged again. We set MIGRATION flag here and delay uncharge
3277 * until end_migration() is called
3279 * Corner Case Thinking
3280 * A)
3281 * When the old page was mapped as Anon and it's unmap-and-freed
3282 * while migration was ongoing.
3283 * If unmap finds the old page, uncharge() of it will be delayed
3284 * until end_migration(). If unmap finds a new page, it's
3285 * uncharged when it make mapcount to be 1->0. If unmap code
3286 * finds swap_migration_entry, the new page will not be mapped
3287 * and end_migration() will find it(mapcount==0).
3289 * B)
3290 * When the old page was mapped but migraion fails, the kernel
3291 * remaps it. A charge for it is kept by MIGRATION flag even
3292 * if mapcount goes down to 0. We can do remap successfully
3293 * without charging it again.
3295 * C)
3296 * The "old" page is under lock_page() until the end of
3297 * migration, so, the old page itself will not be swapped-out.
3298 * If the new page is swapped out before end_migraton, our
3299 * hook to usual swap-out path will catch the event.
3301 if (PageAnon(page))
3302 SetPageCgroupMigration(pc);
3304 unlock_page_cgroup(pc);
3306 * If the page is not charged at this point,
3307 * we return here.
3309 if (!memcg)
3310 return;
3312 *memcgp = memcg;
3314 * We charge new page before it's used/mapped. So, even if unlock_page()
3315 * is called before end_migration, we can catch all events on this new
3316 * page. In the case new page is migrated but not remapped, new page's
3317 * mapcount will be finally 0 and we call uncharge in end_migration().
3319 if (PageAnon(page))
3320 ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
3321 else
3322 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3324 * The page is committed to the memcg, but it's not actually
3325 * charged to the res_counter since we plan on replacing the
3326 * old one and only one page is going to be left afterwards.
3328 __mem_cgroup_commit_charge(memcg, newpage, 1, ctype, false);
3331 /* remove redundant charge if migration failed*/
3332 void mem_cgroup_end_migration(struct mem_cgroup *memcg,
3333 struct page *oldpage, struct page *newpage, bool migration_ok)
3335 struct page *used, *unused;
3336 struct page_cgroup *pc;
3337 bool anon;
3339 if (!memcg)
3340 return;
3341 /* blocks rmdir() */
3342 cgroup_exclude_rmdir(&memcg->css);
3343 if (!migration_ok) {
3344 used = oldpage;
3345 unused = newpage;
3346 } else {
3347 used = newpage;
3348 unused = oldpage;
3350 anon = PageAnon(used);
3351 __mem_cgroup_uncharge_common(unused,
3352 anon ? MEM_CGROUP_CHARGE_TYPE_ANON
3353 : MEM_CGROUP_CHARGE_TYPE_CACHE,
3354 true);
3355 css_put(&memcg->css);
3357 * We disallowed uncharge of pages under migration because mapcount
3358 * of the page goes down to zero, temporarly.
3359 * Clear the flag and check the page should be charged.
3361 pc = lookup_page_cgroup(oldpage);
3362 lock_page_cgroup(pc);
3363 ClearPageCgroupMigration(pc);
3364 unlock_page_cgroup(pc);
3367 * If a page is a file cache, radix-tree replacement is very atomic
3368 * and we can skip this check. When it was an Anon page, its mapcount
3369 * goes down to 0. But because we added MIGRATION flage, it's not
3370 * uncharged yet. There are several case but page->mapcount check
3371 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3372 * check. (see prepare_charge() also)
3374 if (anon)
3375 mem_cgroup_uncharge_page(used);
3377 * At migration, we may charge account against cgroup which has no
3378 * tasks.
3379 * So, rmdir()->pre_destroy() can be called while we do this charge.
3380 * In that case, we need to call pre_destroy() again. check it here.
3382 cgroup_release_and_wakeup_rmdir(&memcg->css);
3386 * At replace page cache, newpage is not under any memcg but it's on
3387 * LRU. So, this function doesn't touch res_counter but handles LRU
3388 * in correct way. Both pages are locked so we cannot race with uncharge.
3390 void mem_cgroup_replace_page_cache(struct page *oldpage,
3391 struct page *newpage)
3393 struct mem_cgroup *memcg = NULL;
3394 struct page_cgroup *pc;
3395 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
3397 if (mem_cgroup_disabled())
3398 return;
3400 pc = lookup_page_cgroup(oldpage);
3401 /* fix accounting on old pages */
3402 lock_page_cgroup(pc);
3403 if (PageCgroupUsed(pc)) {
3404 memcg = pc->mem_cgroup;
3405 mem_cgroup_charge_statistics(memcg, false, -1);
3406 ClearPageCgroupUsed(pc);
3408 unlock_page_cgroup(pc);
3411 * When called from shmem_replace_page(), in some cases the
3412 * oldpage has already been charged, and in some cases not.
3414 if (!memcg)
3415 return;
3417 * Even if newpage->mapping was NULL before starting replacement,
3418 * the newpage may be on LRU(or pagevec for LRU) already. We lock
3419 * LRU while we overwrite pc->mem_cgroup.
3421 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
3424 #ifdef CONFIG_DEBUG_VM
3425 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3427 struct page_cgroup *pc;
3429 pc = lookup_page_cgroup(page);
3431 * Can be NULL while feeding pages into the page allocator for
3432 * the first time, i.e. during boot or memory hotplug;
3433 * or when mem_cgroup_disabled().
3435 if (likely(pc) && PageCgroupUsed(pc))
3436 return pc;
3437 return NULL;
3440 bool mem_cgroup_bad_page_check(struct page *page)
3442 if (mem_cgroup_disabled())
3443 return false;
3445 return lookup_page_cgroup_used(page) != NULL;
3448 void mem_cgroup_print_bad_page(struct page *page)
3450 struct page_cgroup *pc;
3452 pc = lookup_page_cgroup_used(page);
3453 if (pc) {
3454 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
3455 pc, pc->flags, pc->mem_cgroup);
3458 #endif
3460 static DEFINE_MUTEX(set_limit_mutex);
3462 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3463 unsigned long long val)
3465 int retry_count;
3466 u64 memswlimit, memlimit;
3467 int ret = 0;
3468 int children = mem_cgroup_count_children(memcg);
3469 u64 curusage, oldusage;
3470 int enlarge;
3473 * For keeping hierarchical_reclaim simple, how long we should retry
3474 * is depends on callers. We set our retry-count to be function
3475 * of # of children which we should visit in this loop.
3477 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3479 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3481 enlarge = 0;
3482 while (retry_count) {
3483 if (signal_pending(current)) {
3484 ret = -EINTR;
3485 break;
3488 * Rather than hide all in some function, I do this in
3489 * open coded manner. You see what this really does.
3490 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
3492 mutex_lock(&set_limit_mutex);
3493 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3494 if (memswlimit < val) {
3495 ret = -EINVAL;
3496 mutex_unlock(&set_limit_mutex);
3497 break;
3500 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3501 if (memlimit < val)
3502 enlarge = 1;
3504 ret = res_counter_set_limit(&memcg->res, val);
3505 if (!ret) {
3506 if (memswlimit == val)
3507 memcg->memsw_is_minimum = true;
3508 else
3509 memcg->memsw_is_minimum = false;
3511 mutex_unlock(&set_limit_mutex);
3513 if (!ret)
3514 break;
3516 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3517 MEM_CGROUP_RECLAIM_SHRINK);
3518 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3519 /* Usage is reduced ? */
3520 if (curusage >= oldusage)
3521 retry_count--;
3522 else
3523 oldusage = curusage;
3525 if (!ret && enlarge)
3526 memcg_oom_recover(memcg);
3528 return ret;
3531 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3532 unsigned long long val)
3534 int retry_count;
3535 u64 memlimit, memswlimit, oldusage, curusage;
3536 int children = mem_cgroup_count_children(memcg);
3537 int ret = -EBUSY;
3538 int enlarge = 0;
3540 /* see mem_cgroup_resize_res_limit */
3541 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3542 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3543 while (retry_count) {
3544 if (signal_pending(current)) {
3545 ret = -EINTR;
3546 break;
3549 * Rather than hide all in some function, I do this in
3550 * open coded manner. You see what this really does.
3551 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
3553 mutex_lock(&set_limit_mutex);
3554 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3555 if (memlimit > val) {
3556 ret = -EINVAL;
3557 mutex_unlock(&set_limit_mutex);
3558 break;
3560 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3561 if (memswlimit < val)
3562 enlarge = 1;
3563 ret = res_counter_set_limit(&memcg->memsw, val);
3564 if (!ret) {
3565 if (memlimit == val)
3566 memcg->memsw_is_minimum = true;
3567 else
3568 memcg->memsw_is_minimum = false;
3570 mutex_unlock(&set_limit_mutex);
3572 if (!ret)
3573 break;
3575 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3576 MEM_CGROUP_RECLAIM_NOSWAP |
3577 MEM_CGROUP_RECLAIM_SHRINK);
3578 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3579 /* Usage is reduced ? */
3580 if (curusage >= oldusage)
3581 retry_count--;
3582 else
3583 oldusage = curusage;
3585 if (!ret && enlarge)
3586 memcg_oom_recover(memcg);
3587 return ret;
3590 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3591 gfp_t gfp_mask,
3592 unsigned long *total_scanned)
3594 unsigned long nr_reclaimed = 0;
3595 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3596 unsigned long reclaimed;
3597 int loop = 0;
3598 struct mem_cgroup_tree_per_zone *mctz;
3599 unsigned long long excess;
3600 unsigned long nr_scanned;
3602 if (order > 0)
3603 return 0;
3605 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3607 * This loop can run a while, specially if mem_cgroup's continuously
3608 * keep exceeding their soft limit and putting the system under
3609 * pressure
3611 do {
3612 if (next_mz)
3613 mz = next_mz;
3614 else
3615 mz = mem_cgroup_largest_soft_limit_node(mctz);
3616 if (!mz)
3617 break;
3619 nr_scanned = 0;
3620 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
3621 gfp_mask, &nr_scanned);
3622 nr_reclaimed += reclaimed;
3623 *total_scanned += nr_scanned;
3624 spin_lock(&mctz->lock);
3627 * If we failed to reclaim anything from this memory cgroup
3628 * it is time to move on to the next cgroup
3630 next_mz = NULL;
3631 if (!reclaimed) {
3632 do {
3634 * Loop until we find yet another one.
3636 * By the time we get the soft_limit lock
3637 * again, someone might have aded the
3638 * group back on the RB tree. Iterate to
3639 * make sure we get a different mem.
3640 * mem_cgroup_largest_soft_limit_node returns
3641 * NULL if no other cgroup is present on
3642 * the tree
3644 next_mz =
3645 __mem_cgroup_largest_soft_limit_node(mctz);
3646 if (next_mz == mz)
3647 css_put(&next_mz->memcg->css);
3648 else /* next_mz == NULL or other memcg */
3649 break;
3650 } while (1);
3652 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
3653 excess = res_counter_soft_limit_excess(&mz->memcg->res);
3655 * One school of thought says that we should not add
3656 * back the node to the tree if reclaim returns 0.
3657 * But our reclaim could return 0, simply because due
3658 * to priority we are exposing a smaller subset of
3659 * memory to reclaim from. Consider this as a longer
3660 * term TODO.
3662 /* If excess == 0, no tree ops */
3663 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
3664 spin_unlock(&mctz->lock);
3665 css_put(&mz->memcg->css);
3666 loop++;
3668 * Could not reclaim anything and there are no more
3669 * mem cgroups to try or we seem to be looping without
3670 * reclaiming anything.
3672 if (!nr_reclaimed &&
3673 (next_mz == NULL ||
3674 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3675 break;
3676 } while (!nr_reclaimed);
3677 if (next_mz)
3678 css_put(&next_mz->memcg->css);
3679 return nr_reclaimed;
3683 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
3684 * reclaim the pages page themselves - it just removes the page_cgroups.
3685 * Returns true if some page_cgroups were not freed, indicating that the caller
3686 * must retry this operation.
3688 static bool mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
3689 int node, int zid, enum lru_list lru)
3691 struct mem_cgroup_per_zone *mz;
3692 unsigned long flags, loop;
3693 struct list_head *list;
3694 struct page *busy;
3695 struct zone *zone;
3697 zone = &NODE_DATA(node)->node_zones[zid];
3698 mz = mem_cgroup_zoneinfo(memcg, node, zid);
3699 list = &mz->lruvec.lists[lru];
3701 loop = mz->lru_size[lru];
3702 /* give some margin against EBUSY etc...*/
3703 loop += 256;
3704 busy = NULL;
3705 while (loop--) {
3706 struct page_cgroup *pc;
3707 struct page *page;
3709 spin_lock_irqsave(&zone->lru_lock, flags);
3710 if (list_empty(list)) {
3711 spin_unlock_irqrestore(&zone->lru_lock, flags);
3712 break;
3714 page = list_entry(list->prev, struct page, lru);
3715 if (busy == page) {
3716 list_move(&page->lru, list);
3717 busy = NULL;
3718 spin_unlock_irqrestore(&zone->lru_lock, flags);
3719 continue;
3721 spin_unlock_irqrestore(&zone->lru_lock, flags);
3723 pc = lookup_page_cgroup(page);
3725 if (mem_cgroup_move_parent(page, pc, memcg)) {
3726 /* found lock contention or "pc" is obsolete. */
3727 busy = page;
3728 cond_resched();
3729 } else
3730 busy = NULL;
3732 return !list_empty(list);
3736 * make mem_cgroup's charge to be 0 if there is no task.
3737 * This enables deleting this mem_cgroup.
3739 static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
3741 int ret;
3742 int node, zid, shrink;
3743 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3744 struct cgroup *cgrp = memcg->css.cgroup;
3746 css_get(&memcg->css);
3748 shrink = 0;
3749 /* should free all ? */
3750 if (free_all)
3751 goto try_to_free;
3752 move_account:
3753 do {
3754 ret = -EBUSY;
3755 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3756 goto out;
3757 /* This is for making all *used* pages to be on LRU. */
3758 lru_add_drain_all();
3759 drain_all_stock_sync(memcg);
3760 ret = 0;
3761 mem_cgroup_start_move(memcg);
3762 for_each_node_state(node, N_HIGH_MEMORY) {
3763 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3764 enum lru_list lru;
3765 for_each_lru(lru) {
3766 ret = mem_cgroup_force_empty_list(memcg,
3767 node, zid, lru);
3768 if (ret)
3769 break;
3772 if (ret)
3773 break;
3775 mem_cgroup_end_move(memcg);
3776 memcg_oom_recover(memcg);
3777 cond_resched();
3778 /* "ret" should also be checked to ensure all lists are empty. */
3779 } while (res_counter_read_u64(&memcg->res, RES_USAGE) > 0 || ret);
3780 out:
3781 css_put(&memcg->css);
3782 return ret;
3784 try_to_free:
3785 /* returns EBUSY if there is a task or if we come here twice. */
3786 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3787 ret = -EBUSY;
3788 goto out;
3790 /* we call try-to-free pages for make this cgroup empty */
3791 lru_add_drain_all();
3792 /* try to free all pages in this cgroup */
3793 shrink = 1;
3794 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
3795 int progress;
3797 if (signal_pending(current)) {
3798 ret = -EINTR;
3799 goto out;
3801 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
3802 false);
3803 if (!progress) {
3804 nr_retries--;
3805 /* maybe some writeback is necessary */
3806 congestion_wait(BLK_RW_ASYNC, HZ/10);
3810 lru_add_drain();
3811 /* try move_account...there may be some *locked* pages. */
3812 goto move_account;
3815 static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3817 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3821 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3823 return mem_cgroup_from_cont(cont)->use_hierarchy;
3826 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3827 u64 val)
3829 int retval = 0;
3830 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3831 struct cgroup *parent = cont->parent;
3832 struct mem_cgroup *parent_memcg = NULL;
3834 if (parent)
3835 parent_memcg = mem_cgroup_from_cont(parent);
3837 cgroup_lock();
3839 if (memcg->use_hierarchy == val)
3840 goto out;
3843 * If parent's use_hierarchy is set, we can't make any modifications
3844 * in the child subtrees. If it is unset, then the change can
3845 * occur, provided the current cgroup has no children.
3847 * For the root cgroup, parent_mem is NULL, we allow value to be
3848 * set if there are no children.
3850 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3851 (val == 1 || val == 0)) {
3852 if (list_empty(&cont->children))
3853 memcg->use_hierarchy = val;
3854 else
3855 retval = -EBUSY;
3856 } else
3857 retval = -EINVAL;
3859 out:
3860 cgroup_unlock();
3862 return retval;
3866 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
3867 enum mem_cgroup_stat_index idx)
3869 struct mem_cgroup *iter;
3870 long val = 0;
3872 /* Per-cpu values can be negative, use a signed accumulator */
3873 for_each_mem_cgroup_tree(iter, memcg)
3874 val += mem_cgroup_read_stat(iter, idx);
3876 if (val < 0) /* race ? */
3877 val = 0;
3878 return val;
3881 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3883 u64 val;
3885 if (!mem_cgroup_is_root(memcg)) {
3886 if (!swap)
3887 return res_counter_read_u64(&memcg->res, RES_USAGE);
3888 else
3889 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
3892 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
3893 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
3895 if (swap)
3896 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
3898 return val << PAGE_SHIFT;
3901 static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
3902 struct file *file, char __user *buf,
3903 size_t nbytes, loff_t *ppos)
3905 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3906 char str[64];
3907 u64 val;
3908 int type, name, len;
3910 type = MEMFILE_TYPE(cft->private);
3911 name = MEMFILE_ATTR(cft->private);
3913 if (!do_swap_account && type == _MEMSWAP)
3914 return -EOPNOTSUPP;
3916 switch (type) {
3917 case _MEM:
3918 if (name == RES_USAGE)
3919 val = mem_cgroup_usage(memcg, false);
3920 else
3921 val = res_counter_read_u64(&memcg->res, name);
3922 break;
3923 case _MEMSWAP:
3924 if (name == RES_USAGE)
3925 val = mem_cgroup_usage(memcg, true);
3926 else
3927 val = res_counter_read_u64(&memcg->memsw, name);
3928 break;
3929 default:
3930 BUG();
3933 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
3934 return simple_read_from_buffer(buf, nbytes, ppos, str, len);
3937 * The user of this function is...
3938 * RES_LIMIT.
3940 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3941 const char *buffer)
3943 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3944 int type, name;
3945 unsigned long long val;
3946 int ret;
3948 type = MEMFILE_TYPE(cft->private);
3949 name = MEMFILE_ATTR(cft->private);
3951 if (!do_swap_account && type == _MEMSWAP)
3952 return -EOPNOTSUPP;
3954 switch (name) {
3955 case RES_LIMIT:
3956 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3957 ret = -EINVAL;
3958 break;
3960 /* This function does all necessary parse...reuse it */
3961 ret = res_counter_memparse_write_strategy(buffer, &val);
3962 if (ret)
3963 break;
3964 if (type == _MEM)
3965 ret = mem_cgroup_resize_limit(memcg, val);
3966 else
3967 ret = mem_cgroup_resize_memsw_limit(memcg, val);
3968 break;
3969 case RES_SOFT_LIMIT:
3970 ret = res_counter_memparse_write_strategy(buffer, &val);
3971 if (ret)
3972 break;
3974 * For memsw, soft limits are hard to implement in terms
3975 * of semantics, for now, we support soft limits for
3976 * control without swap
3978 if (type == _MEM)
3979 ret = res_counter_set_soft_limit(&memcg->res, val);
3980 else
3981 ret = -EINVAL;
3982 break;
3983 default:
3984 ret = -EINVAL; /* should be BUG() ? */
3985 break;
3987 return ret;
3990 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3991 unsigned long long *mem_limit, unsigned long long *memsw_limit)
3993 struct cgroup *cgroup;
3994 unsigned long long min_limit, min_memsw_limit, tmp;
3996 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3997 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3998 cgroup = memcg->css.cgroup;
3999 if (!memcg->use_hierarchy)
4000 goto out;
4002 while (cgroup->parent) {
4003 cgroup = cgroup->parent;
4004 memcg = mem_cgroup_from_cont(cgroup);
4005 if (!memcg->use_hierarchy)
4006 break;
4007 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
4008 min_limit = min(min_limit, tmp);
4009 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4010 min_memsw_limit = min(min_memsw_limit, tmp);
4012 out:
4013 *mem_limit = min_limit;
4014 *memsw_limit = min_memsw_limit;
4017 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
4019 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4020 int type, name;
4022 type = MEMFILE_TYPE(event);
4023 name = MEMFILE_ATTR(event);
4025 if (!do_swap_account && type == _MEMSWAP)
4026 return -EOPNOTSUPP;
4028 switch (name) {
4029 case RES_MAX_USAGE:
4030 if (type == _MEM)
4031 res_counter_reset_max(&memcg->res);
4032 else
4033 res_counter_reset_max(&memcg->memsw);
4034 break;
4035 case RES_FAILCNT:
4036 if (type == _MEM)
4037 res_counter_reset_failcnt(&memcg->res);
4038 else
4039 res_counter_reset_failcnt(&memcg->memsw);
4040 break;
4043 return 0;
4046 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
4047 struct cftype *cft)
4049 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
4052 #ifdef CONFIG_MMU
4053 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4054 struct cftype *cft, u64 val)
4056 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4058 if (val >= (1 << NR_MOVE_TYPE))
4059 return -EINVAL;
4061 * We check this value several times in both in can_attach() and
4062 * attach(), so we need cgroup lock to prevent this value from being
4063 * inconsistent.
4065 cgroup_lock();
4066 memcg->move_charge_at_immigrate = val;
4067 cgroup_unlock();
4069 return 0;
4071 #else
4072 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4073 struct cftype *cft, u64 val)
4075 return -ENOSYS;
4077 #endif
4079 #ifdef CONFIG_NUMA
4080 static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft,
4081 struct seq_file *m)
4083 int nid;
4084 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4085 unsigned long node_nr;
4086 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4088 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
4089 seq_printf(m, "total=%lu", total_nr);
4090 for_each_node_state(nid, N_HIGH_MEMORY) {
4091 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
4092 seq_printf(m, " N%d=%lu", nid, node_nr);
4094 seq_putc(m, '\n');
4096 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
4097 seq_printf(m, "file=%lu", file_nr);
4098 for_each_node_state(nid, N_HIGH_MEMORY) {
4099 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4100 LRU_ALL_FILE);
4101 seq_printf(m, " N%d=%lu", nid, node_nr);
4103 seq_putc(m, '\n');
4105 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
4106 seq_printf(m, "anon=%lu", anon_nr);
4107 for_each_node_state(nid, N_HIGH_MEMORY) {
4108 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4109 LRU_ALL_ANON);
4110 seq_printf(m, " N%d=%lu", nid, node_nr);
4112 seq_putc(m, '\n');
4114 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
4115 seq_printf(m, "unevictable=%lu", unevictable_nr);
4116 for_each_node_state(nid, N_HIGH_MEMORY) {
4117 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4118 BIT(LRU_UNEVICTABLE));
4119 seq_printf(m, " N%d=%lu", nid, node_nr);
4121 seq_putc(m, '\n');
4122 return 0;
4124 #endif /* CONFIG_NUMA */
4126 static const char * const mem_cgroup_lru_names[] = {
4127 "inactive_anon",
4128 "active_anon",
4129 "inactive_file",
4130 "active_file",
4131 "unevictable",
4134 static inline void mem_cgroup_lru_names_not_uptodate(void)
4136 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
4139 static int memcg_stat_show(struct cgroup *cont, struct cftype *cft,
4140 struct seq_file *m)
4142 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4143 struct mem_cgroup *mi;
4144 unsigned int i;
4146 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4147 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
4148 continue;
4149 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
4150 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
4153 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
4154 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
4155 mem_cgroup_read_events(memcg, i));
4157 for (i = 0; i < NR_LRU_LISTS; i++)
4158 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
4159 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
4161 /* Hierarchical information */
4163 unsigned long long limit, memsw_limit;
4164 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
4165 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
4166 if (do_swap_account)
4167 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4168 memsw_limit);
4171 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4172 long long val = 0;
4174 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
4175 continue;
4176 for_each_mem_cgroup_tree(mi, memcg)
4177 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
4178 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
4181 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
4182 unsigned long long val = 0;
4184 for_each_mem_cgroup_tree(mi, memcg)
4185 val += mem_cgroup_read_events(mi, i);
4186 seq_printf(m, "total_%s %llu\n",
4187 mem_cgroup_events_names[i], val);
4190 for (i = 0; i < NR_LRU_LISTS; i++) {
4191 unsigned long long val = 0;
4193 for_each_mem_cgroup_tree(mi, memcg)
4194 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
4195 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
4198 #ifdef CONFIG_DEBUG_VM
4200 int nid, zid;
4201 struct mem_cgroup_per_zone *mz;
4202 struct zone_reclaim_stat *rstat;
4203 unsigned long recent_rotated[2] = {0, 0};
4204 unsigned long recent_scanned[2] = {0, 0};
4206 for_each_online_node(nid)
4207 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4208 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
4209 rstat = &mz->lruvec.reclaim_stat;
4211 recent_rotated[0] += rstat->recent_rotated[0];
4212 recent_rotated[1] += rstat->recent_rotated[1];
4213 recent_scanned[0] += rstat->recent_scanned[0];
4214 recent_scanned[1] += rstat->recent_scanned[1];
4216 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
4217 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
4218 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
4219 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
4221 #endif
4223 return 0;
4226 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4228 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4230 return mem_cgroup_swappiness(memcg);
4233 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4234 u64 val)
4236 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4237 struct mem_cgroup *parent;
4239 if (val > 100)
4240 return -EINVAL;
4242 if (cgrp->parent == NULL)
4243 return -EINVAL;
4245 parent = mem_cgroup_from_cont(cgrp->parent);
4247 cgroup_lock();
4249 /* If under hierarchy, only empty-root can set this value */
4250 if ((parent->use_hierarchy) ||
4251 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4252 cgroup_unlock();
4253 return -EINVAL;
4256 memcg->swappiness = val;
4258 cgroup_unlock();
4260 return 0;
4263 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4265 struct mem_cgroup_threshold_ary *t;
4266 u64 usage;
4267 int i;
4269 rcu_read_lock();
4270 if (!swap)
4271 t = rcu_dereference(memcg->thresholds.primary);
4272 else
4273 t = rcu_dereference(memcg->memsw_thresholds.primary);
4275 if (!t)
4276 goto unlock;
4278 usage = mem_cgroup_usage(memcg, swap);
4281 * current_threshold points to threshold just below or equal to usage.
4282 * If it's not true, a threshold was crossed after last
4283 * call of __mem_cgroup_threshold().
4285 i = t->current_threshold;
4288 * Iterate backward over array of thresholds starting from
4289 * current_threshold and check if a threshold is crossed.
4290 * If none of thresholds below usage is crossed, we read
4291 * only one element of the array here.
4293 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4294 eventfd_signal(t->entries[i].eventfd, 1);
4296 /* i = current_threshold + 1 */
4297 i++;
4300 * Iterate forward over array of thresholds starting from
4301 * current_threshold+1 and check if a threshold is crossed.
4302 * If none of thresholds above usage is crossed, we read
4303 * only one element of the array here.
4305 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4306 eventfd_signal(t->entries[i].eventfd, 1);
4308 /* Update current_threshold */
4309 t->current_threshold = i - 1;
4310 unlock:
4311 rcu_read_unlock();
4314 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4316 while (memcg) {
4317 __mem_cgroup_threshold(memcg, false);
4318 if (do_swap_account)
4319 __mem_cgroup_threshold(memcg, true);
4321 memcg = parent_mem_cgroup(memcg);
4325 static int compare_thresholds(const void *a, const void *b)
4327 const struct mem_cgroup_threshold *_a = a;
4328 const struct mem_cgroup_threshold *_b = b;
4330 return _a->threshold - _b->threshold;
4333 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4335 struct mem_cgroup_eventfd_list *ev;
4337 list_for_each_entry(ev, &memcg->oom_notify, list)
4338 eventfd_signal(ev->eventfd, 1);
4339 return 0;
4342 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4344 struct mem_cgroup *iter;
4346 for_each_mem_cgroup_tree(iter, memcg)
4347 mem_cgroup_oom_notify_cb(iter);
4350 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4351 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4353 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4354 struct mem_cgroup_thresholds *thresholds;
4355 struct mem_cgroup_threshold_ary *new;
4356 int type = MEMFILE_TYPE(cft->private);
4357 u64 threshold, usage;
4358 int i, size, ret;
4360 ret = res_counter_memparse_write_strategy(args, &threshold);
4361 if (ret)
4362 return ret;
4364 mutex_lock(&memcg->thresholds_lock);
4366 if (type == _MEM)
4367 thresholds = &memcg->thresholds;
4368 else if (type == _MEMSWAP)
4369 thresholds = &memcg->memsw_thresholds;
4370 else
4371 BUG();
4373 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4375 /* Check if a threshold crossed before adding a new one */
4376 if (thresholds->primary)
4377 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4379 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4381 /* Allocate memory for new array of thresholds */
4382 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4383 GFP_KERNEL);
4384 if (!new) {
4385 ret = -ENOMEM;
4386 goto unlock;
4388 new->size = size;
4390 /* Copy thresholds (if any) to new array */
4391 if (thresholds->primary) {
4392 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4393 sizeof(struct mem_cgroup_threshold));
4396 /* Add new threshold */
4397 new->entries[size - 1].eventfd = eventfd;
4398 new->entries[size - 1].threshold = threshold;
4400 /* Sort thresholds. Registering of new threshold isn't time-critical */
4401 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4402 compare_thresholds, NULL);
4404 /* Find current threshold */
4405 new->current_threshold = -1;
4406 for (i = 0; i < size; i++) {
4407 if (new->entries[i].threshold <= usage) {
4409 * new->current_threshold will not be used until
4410 * rcu_assign_pointer(), so it's safe to increment
4411 * it here.
4413 ++new->current_threshold;
4414 } else
4415 break;
4418 /* Free old spare buffer and save old primary buffer as spare */
4419 kfree(thresholds->spare);
4420 thresholds->spare = thresholds->primary;
4422 rcu_assign_pointer(thresholds->primary, new);
4424 /* To be sure that nobody uses thresholds */
4425 synchronize_rcu();
4427 unlock:
4428 mutex_unlock(&memcg->thresholds_lock);
4430 return ret;
4433 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
4434 struct cftype *cft, struct eventfd_ctx *eventfd)
4436 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4437 struct mem_cgroup_thresholds *thresholds;
4438 struct mem_cgroup_threshold_ary *new;
4439 int type = MEMFILE_TYPE(cft->private);
4440 u64 usage;
4441 int i, j, size;
4443 mutex_lock(&memcg->thresholds_lock);
4444 if (type == _MEM)
4445 thresholds = &memcg->thresholds;
4446 else if (type == _MEMSWAP)
4447 thresholds = &memcg->memsw_thresholds;
4448 else
4449 BUG();
4451 if (!thresholds->primary)
4452 goto unlock;
4454 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4456 /* Check if a threshold crossed before removing */
4457 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4459 /* Calculate new number of threshold */
4460 size = 0;
4461 for (i = 0; i < thresholds->primary->size; i++) {
4462 if (thresholds->primary->entries[i].eventfd != eventfd)
4463 size++;
4466 new = thresholds->spare;
4468 /* Set thresholds array to NULL if we don't have thresholds */
4469 if (!size) {
4470 kfree(new);
4471 new = NULL;
4472 goto swap_buffers;
4475 new->size = size;
4477 /* Copy thresholds and find current threshold */
4478 new->current_threshold = -1;
4479 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4480 if (thresholds->primary->entries[i].eventfd == eventfd)
4481 continue;
4483 new->entries[j] = thresholds->primary->entries[i];
4484 if (new->entries[j].threshold <= usage) {
4486 * new->current_threshold will not be used
4487 * until rcu_assign_pointer(), so it's safe to increment
4488 * it here.
4490 ++new->current_threshold;
4492 j++;
4495 swap_buffers:
4496 /* Swap primary and spare array */
4497 thresholds->spare = thresholds->primary;
4498 /* If all events are unregistered, free the spare array */
4499 if (!new) {
4500 kfree(thresholds->spare);
4501 thresholds->spare = NULL;
4504 rcu_assign_pointer(thresholds->primary, new);
4506 /* To be sure that nobody uses thresholds */
4507 synchronize_rcu();
4508 unlock:
4509 mutex_unlock(&memcg->thresholds_lock);
4512 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4513 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4515 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4516 struct mem_cgroup_eventfd_list *event;
4517 int type = MEMFILE_TYPE(cft->private);
4519 BUG_ON(type != _OOM_TYPE);
4520 event = kmalloc(sizeof(*event), GFP_KERNEL);
4521 if (!event)
4522 return -ENOMEM;
4524 spin_lock(&memcg_oom_lock);
4526 event->eventfd = eventfd;
4527 list_add(&event->list, &memcg->oom_notify);
4529 /* already in OOM ? */
4530 if (atomic_read(&memcg->under_oom))
4531 eventfd_signal(eventfd, 1);
4532 spin_unlock(&memcg_oom_lock);
4534 return 0;
4537 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4538 struct cftype *cft, struct eventfd_ctx *eventfd)
4540 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4541 struct mem_cgroup_eventfd_list *ev, *tmp;
4542 int type = MEMFILE_TYPE(cft->private);
4544 BUG_ON(type != _OOM_TYPE);
4546 spin_lock(&memcg_oom_lock);
4548 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4549 if (ev->eventfd == eventfd) {
4550 list_del(&ev->list);
4551 kfree(ev);
4555 spin_unlock(&memcg_oom_lock);
4558 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4559 struct cftype *cft, struct cgroup_map_cb *cb)
4561 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4563 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
4565 if (atomic_read(&memcg->under_oom))
4566 cb->fill(cb, "under_oom", 1);
4567 else
4568 cb->fill(cb, "under_oom", 0);
4569 return 0;
4572 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4573 struct cftype *cft, u64 val)
4575 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4576 struct mem_cgroup *parent;
4578 /* cannot set to root cgroup and only 0 and 1 are allowed */
4579 if (!cgrp->parent || !((val == 0) || (val == 1)))
4580 return -EINVAL;
4582 parent = mem_cgroup_from_cont(cgrp->parent);
4584 cgroup_lock();
4585 /* oom-kill-disable is a flag for subhierarchy. */
4586 if ((parent->use_hierarchy) ||
4587 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4588 cgroup_unlock();
4589 return -EINVAL;
4591 memcg->oom_kill_disable = val;
4592 if (!val)
4593 memcg_oom_recover(memcg);
4594 cgroup_unlock();
4595 return 0;
4598 #ifdef CONFIG_MEMCG_KMEM
4599 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4601 return mem_cgroup_sockets_init(memcg, ss);
4604 static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
4606 mem_cgroup_sockets_destroy(memcg);
4608 #else
4609 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4611 return 0;
4614 static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
4617 #endif
4619 static struct cftype mem_cgroup_files[] = {
4621 .name = "usage_in_bytes",
4622 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4623 .read = mem_cgroup_read,
4624 .register_event = mem_cgroup_usage_register_event,
4625 .unregister_event = mem_cgroup_usage_unregister_event,
4628 .name = "max_usage_in_bytes",
4629 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4630 .trigger = mem_cgroup_reset,
4631 .read = mem_cgroup_read,
4634 .name = "limit_in_bytes",
4635 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4636 .write_string = mem_cgroup_write,
4637 .read = mem_cgroup_read,
4640 .name = "soft_limit_in_bytes",
4641 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4642 .write_string = mem_cgroup_write,
4643 .read = mem_cgroup_read,
4646 .name = "failcnt",
4647 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4648 .trigger = mem_cgroup_reset,
4649 .read = mem_cgroup_read,
4652 .name = "stat",
4653 .read_seq_string = memcg_stat_show,
4656 .name = "force_empty",
4657 .trigger = mem_cgroup_force_empty_write,
4660 .name = "use_hierarchy",
4661 .write_u64 = mem_cgroup_hierarchy_write,
4662 .read_u64 = mem_cgroup_hierarchy_read,
4665 .name = "swappiness",
4666 .read_u64 = mem_cgroup_swappiness_read,
4667 .write_u64 = mem_cgroup_swappiness_write,
4670 .name = "move_charge_at_immigrate",
4671 .read_u64 = mem_cgroup_move_charge_read,
4672 .write_u64 = mem_cgroup_move_charge_write,
4675 .name = "oom_control",
4676 .read_map = mem_cgroup_oom_control_read,
4677 .write_u64 = mem_cgroup_oom_control_write,
4678 .register_event = mem_cgroup_oom_register_event,
4679 .unregister_event = mem_cgroup_oom_unregister_event,
4680 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4682 #ifdef CONFIG_NUMA
4684 .name = "numa_stat",
4685 .read_seq_string = memcg_numa_stat_show,
4687 #endif
4688 #ifdef CONFIG_MEMCG_SWAP
4690 .name = "memsw.usage_in_bytes",
4691 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4692 .read = mem_cgroup_read,
4693 .register_event = mem_cgroup_usage_register_event,
4694 .unregister_event = mem_cgroup_usage_unregister_event,
4697 .name = "memsw.max_usage_in_bytes",
4698 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4699 .trigger = mem_cgroup_reset,
4700 .read = mem_cgroup_read,
4703 .name = "memsw.limit_in_bytes",
4704 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4705 .write_string = mem_cgroup_write,
4706 .read = mem_cgroup_read,
4709 .name = "memsw.failcnt",
4710 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4711 .trigger = mem_cgroup_reset,
4712 .read = mem_cgroup_read,
4714 #endif
4715 { }, /* terminate */
4718 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4720 struct mem_cgroup_per_node *pn;
4721 struct mem_cgroup_per_zone *mz;
4722 int zone, tmp = node;
4724 * This routine is called against possible nodes.
4725 * But it's BUG to call kmalloc() against offline node.
4727 * TODO: this routine can waste much memory for nodes which will
4728 * never be onlined. It's better to use memory hotplug callback
4729 * function.
4731 if (!node_state(node, N_NORMAL_MEMORY))
4732 tmp = -1;
4733 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4734 if (!pn)
4735 return 1;
4737 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4738 mz = &pn->zoneinfo[zone];
4739 lruvec_init(&mz->lruvec, &NODE_DATA(node)->node_zones[zone]);
4740 mz->usage_in_excess = 0;
4741 mz->on_tree = false;
4742 mz->memcg = memcg;
4744 memcg->info.nodeinfo[node] = pn;
4745 return 0;
4748 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4750 kfree(memcg->info.nodeinfo[node]);
4753 static struct mem_cgroup *mem_cgroup_alloc(void)
4755 struct mem_cgroup *memcg;
4756 int size = sizeof(struct mem_cgroup);
4758 /* Can be very big if MAX_NUMNODES is very big */
4759 if (size < PAGE_SIZE)
4760 memcg = kzalloc(size, GFP_KERNEL);
4761 else
4762 memcg = vzalloc(size);
4764 if (!memcg)
4765 return NULL;
4767 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4768 if (!memcg->stat)
4769 goto out_free;
4770 spin_lock_init(&memcg->pcp_counter_lock);
4771 return memcg;
4773 out_free:
4774 if (size < PAGE_SIZE)
4775 kfree(memcg);
4776 else
4777 vfree(memcg);
4778 return NULL;
4782 * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU,
4783 * but in process context. The work_freeing structure is overlaid
4784 * on the rcu_freeing structure, which itself is overlaid on memsw.
4786 static void free_work(struct work_struct *work)
4788 struct mem_cgroup *memcg;
4789 int size = sizeof(struct mem_cgroup);
4791 memcg = container_of(work, struct mem_cgroup, work_freeing);
4793 * We need to make sure that (at least for now), the jump label
4794 * destruction code runs outside of the cgroup lock. This is because
4795 * get_online_cpus(), which is called from the static_branch update,
4796 * can't be called inside the cgroup_lock. cpusets are the ones
4797 * enforcing this dependency, so if they ever change, we might as well.
4799 * schedule_work() will guarantee this happens. Be careful if you need
4800 * to move this code around, and make sure it is outside
4801 * the cgroup_lock.
4803 disarm_sock_keys(memcg);
4804 if (size < PAGE_SIZE)
4805 kfree(memcg);
4806 else
4807 vfree(memcg);
4810 static void free_rcu(struct rcu_head *rcu_head)
4812 struct mem_cgroup *memcg;
4814 memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
4815 INIT_WORK(&memcg->work_freeing, free_work);
4816 schedule_work(&memcg->work_freeing);
4820 * At destroying mem_cgroup, references from swap_cgroup can remain.
4821 * (scanning all at force_empty is too costly...)
4823 * Instead of clearing all references at force_empty, we remember
4824 * the number of reference from swap_cgroup and free mem_cgroup when
4825 * it goes down to 0.
4827 * Removal of cgroup itself succeeds regardless of refs from swap.
4830 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4832 int node;
4834 mem_cgroup_remove_from_trees(memcg);
4835 free_css_id(&mem_cgroup_subsys, &memcg->css);
4837 for_each_node(node)
4838 free_mem_cgroup_per_zone_info(memcg, node);
4840 free_percpu(memcg->stat);
4841 call_rcu(&memcg->rcu_freeing, free_rcu);
4844 static void mem_cgroup_get(struct mem_cgroup *memcg)
4846 atomic_inc(&memcg->refcnt);
4849 static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
4851 if (atomic_sub_and_test(count, &memcg->refcnt)) {
4852 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4853 __mem_cgroup_free(memcg);
4854 if (parent)
4855 mem_cgroup_put(parent);
4859 static void mem_cgroup_put(struct mem_cgroup *memcg)
4861 __mem_cgroup_put(memcg, 1);
4865 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4867 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4869 if (!memcg->res.parent)
4870 return NULL;
4871 return mem_cgroup_from_res_counter(memcg->res.parent, res);
4873 EXPORT_SYMBOL(parent_mem_cgroup);
4875 #ifdef CONFIG_MEMCG_SWAP
4876 static void __init enable_swap_cgroup(void)
4878 if (!mem_cgroup_disabled() && really_do_swap_account)
4879 do_swap_account = 1;
4881 #else
4882 static void __init enable_swap_cgroup(void)
4885 #endif
4887 static int mem_cgroup_soft_limit_tree_init(void)
4889 struct mem_cgroup_tree_per_node *rtpn;
4890 struct mem_cgroup_tree_per_zone *rtpz;
4891 int tmp, node, zone;
4893 for_each_node(node) {
4894 tmp = node;
4895 if (!node_state(node, N_NORMAL_MEMORY))
4896 tmp = -1;
4897 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4898 if (!rtpn)
4899 goto err_cleanup;
4901 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4903 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4904 rtpz = &rtpn->rb_tree_per_zone[zone];
4905 rtpz->rb_root = RB_ROOT;
4906 spin_lock_init(&rtpz->lock);
4909 return 0;
4911 err_cleanup:
4912 for_each_node(node) {
4913 if (!soft_limit_tree.rb_tree_per_node[node])
4914 break;
4915 kfree(soft_limit_tree.rb_tree_per_node[node]);
4916 soft_limit_tree.rb_tree_per_node[node] = NULL;
4918 return 1;
4922 static struct cgroup_subsys_state * __ref
4923 mem_cgroup_create(struct cgroup *cont)
4925 struct mem_cgroup *memcg, *parent;
4926 long error = -ENOMEM;
4927 int node;
4929 memcg = mem_cgroup_alloc();
4930 if (!memcg)
4931 return ERR_PTR(error);
4933 for_each_node(node)
4934 if (alloc_mem_cgroup_per_zone_info(memcg, node))
4935 goto free_out;
4937 /* root ? */
4938 if (cont->parent == NULL) {
4939 int cpu;
4940 enable_swap_cgroup();
4941 parent = NULL;
4942 if (mem_cgroup_soft_limit_tree_init())
4943 goto free_out;
4944 root_mem_cgroup = memcg;
4945 for_each_possible_cpu(cpu) {
4946 struct memcg_stock_pcp *stock =
4947 &per_cpu(memcg_stock, cpu);
4948 INIT_WORK(&stock->work, drain_local_stock);
4950 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4951 } else {
4952 parent = mem_cgroup_from_cont(cont->parent);
4953 memcg->use_hierarchy = parent->use_hierarchy;
4954 memcg->oom_kill_disable = parent->oom_kill_disable;
4957 if (parent && parent->use_hierarchy) {
4958 res_counter_init(&memcg->res, &parent->res);
4959 res_counter_init(&memcg->memsw, &parent->memsw);
4961 * We increment refcnt of the parent to ensure that we can
4962 * safely access it on res_counter_charge/uncharge.
4963 * This refcnt will be decremented when freeing this
4964 * mem_cgroup(see mem_cgroup_put).
4966 mem_cgroup_get(parent);
4967 } else {
4968 res_counter_init(&memcg->res, NULL);
4969 res_counter_init(&memcg->memsw, NULL);
4971 * Deeper hierachy with use_hierarchy == false doesn't make
4972 * much sense so let cgroup subsystem know about this
4973 * unfortunate state in our controller.
4975 if (parent && parent != root_mem_cgroup)
4976 mem_cgroup_subsys.broken_hierarchy = true;
4978 memcg->last_scanned_node = MAX_NUMNODES;
4979 INIT_LIST_HEAD(&memcg->oom_notify);
4981 if (parent)
4982 memcg->swappiness = mem_cgroup_swappiness(parent);
4983 atomic_set(&memcg->refcnt, 1);
4984 memcg->move_charge_at_immigrate = 0;
4985 mutex_init(&memcg->thresholds_lock);
4986 spin_lock_init(&memcg->move_lock);
4988 error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
4989 if (error) {
4991 * We call put now because our (and parent's) refcnts
4992 * are already in place. mem_cgroup_put() will internally
4993 * call __mem_cgroup_free, so return directly
4995 mem_cgroup_put(memcg);
4996 return ERR_PTR(error);
4998 return &memcg->css;
4999 free_out:
5000 __mem_cgroup_free(memcg);
5001 return ERR_PTR(error);
5004 static int mem_cgroup_pre_destroy(struct cgroup *cont)
5006 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5008 return mem_cgroup_force_empty(memcg, false);
5011 static void mem_cgroup_destroy(struct cgroup *cont)
5013 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5015 kmem_cgroup_destroy(memcg);
5017 mem_cgroup_put(memcg);
5020 #ifdef CONFIG_MMU
5021 /* Handlers for move charge at task migration. */
5022 #define PRECHARGE_COUNT_AT_ONCE 256
5023 static int mem_cgroup_do_precharge(unsigned long count)
5025 int ret = 0;
5026 int batch_count = PRECHARGE_COUNT_AT_ONCE;
5027 struct mem_cgroup *memcg = mc.to;
5029 if (mem_cgroup_is_root(memcg)) {
5030 mc.precharge += count;
5031 /* we don't need css_get for root */
5032 return ret;
5034 /* try to charge at once */
5035 if (count > 1) {
5036 struct res_counter *dummy;
5038 * "memcg" cannot be under rmdir() because we've already checked
5039 * by cgroup_lock_live_cgroup() that it is not removed and we
5040 * are still under the same cgroup_mutex. So we can postpone
5041 * css_get().
5043 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
5044 goto one_by_one;
5045 if (do_swap_account && res_counter_charge(&memcg->memsw,
5046 PAGE_SIZE * count, &dummy)) {
5047 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
5048 goto one_by_one;
5050 mc.precharge += count;
5051 return ret;
5053 one_by_one:
5054 /* fall back to one by one charge */
5055 while (count--) {
5056 if (signal_pending(current)) {
5057 ret = -EINTR;
5058 break;
5060 if (!batch_count--) {
5061 batch_count = PRECHARGE_COUNT_AT_ONCE;
5062 cond_resched();
5064 ret = __mem_cgroup_try_charge(NULL,
5065 GFP_KERNEL, 1, &memcg, false);
5066 if (ret)
5067 /* mem_cgroup_clear_mc() will do uncharge later */
5068 return ret;
5069 mc.precharge++;
5071 return ret;
5075 * get_mctgt_type - get target type of moving charge
5076 * @vma: the vma the pte to be checked belongs
5077 * @addr: the address corresponding to the pte to be checked
5078 * @ptent: the pte to be checked
5079 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5081 * Returns
5082 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5083 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5084 * move charge. if @target is not NULL, the page is stored in target->page
5085 * with extra refcnt got(Callers should handle it).
5086 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5087 * target for charge migration. if @target is not NULL, the entry is stored
5088 * in target->ent.
5090 * Called with pte lock held.
5092 union mc_target {
5093 struct page *page;
5094 swp_entry_t ent;
5097 enum mc_target_type {
5098 MC_TARGET_NONE = 0,
5099 MC_TARGET_PAGE,
5100 MC_TARGET_SWAP,
5103 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5104 unsigned long addr, pte_t ptent)
5106 struct page *page = vm_normal_page(vma, addr, ptent);
5108 if (!page || !page_mapped(page))
5109 return NULL;
5110 if (PageAnon(page)) {
5111 /* we don't move shared anon */
5112 if (!move_anon())
5113 return NULL;
5114 } else if (!move_file())
5115 /* we ignore mapcount for file pages */
5116 return NULL;
5117 if (!get_page_unless_zero(page))
5118 return NULL;
5120 return page;
5123 #ifdef CONFIG_SWAP
5124 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5125 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5127 struct page *page = NULL;
5128 swp_entry_t ent = pte_to_swp_entry(ptent);
5130 if (!move_anon() || non_swap_entry(ent))
5131 return NULL;
5133 * Because lookup_swap_cache() updates some statistics counter,
5134 * we call find_get_page() with swapper_space directly.
5136 page = find_get_page(&swapper_space, ent.val);
5137 if (do_swap_account)
5138 entry->val = ent.val;
5140 return page;
5142 #else
5143 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5144 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5146 return NULL;
5148 #endif
5150 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5151 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5153 struct page *page = NULL;
5154 struct address_space *mapping;
5155 pgoff_t pgoff;
5157 if (!vma->vm_file) /* anonymous vma */
5158 return NULL;
5159 if (!move_file())
5160 return NULL;
5162 mapping = vma->vm_file->f_mapping;
5163 if (pte_none(ptent))
5164 pgoff = linear_page_index(vma, addr);
5165 else /* pte_file(ptent) is true */
5166 pgoff = pte_to_pgoff(ptent);
5168 /* page is moved even if it's not RSS of this task(page-faulted). */
5169 page = find_get_page(mapping, pgoff);
5171 #ifdef CONFIG_SWAP
5172 /* shmem/tmpfs may report page out on swap: account for that too. */
5173 if (radix_tree_exceptional_entry(page)) {
5174 swp_entry_t swap = radix_to_swp_entry(page);
5175 if (do_swap_account)
5176 *entry = swap;
5177 page = find_get_page(&swapper_space, swap.val);
5179 #endif
5180 return page;
5183 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5184 unsigned long addr, pte_t ptent, union mc_target *target)
5186 struct page *page = NULL;
5187 struct page_cgroup *pc;
5188 enum mc_target_type ret = MC_TARGET_NONE;
5189 swp_entry_t ent = { .val = 0 };
5191 if (pte_present(ptent))
5192 page = mc_handle_present_pte(vma, addr, ptent);
5193 else if (is_swap_pte(ptent))
5194 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5195 else if (pte_none(ptent) || pte_file(ptent))
5196 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5198 if (!page && !ent.val)
5199 return ret;
5200 if (page) {
5201 pc = lookup_page_cgroup(page);
5203 * Do only loose check w/o page_cgroup lock.
5204 * mem_cgroup_move_account() checks the pc is valid or not under
5205 * the lock.
5207 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5208 ret = MC_TARGET_PAGE;
5209 if (target)
5210 target->page = page;
5212 if (!ret || !target)
5213 put_page(page);
5215 /* There is a swap entry and a page doesn't exist or isn't charged */
5216 if (ent.val && !ret &&
5217 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
5218 ret = MC_TARGET_SWAP;
5219 if (target)
5220 target->ent = ent;
5222 return ret;
5225 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5227 * We don't consider swapping or file mapped pages because THP does not
5228 * support them for now.
5229 * Caller should make sure that pmd_trans_huge(pmd) is true.
5231 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5232 unsigned long addr, pmd_t pmd, union mc_target *target)
5234 struct page *page = NULL;
5235 struct page_cgroup *pc;
5236 enum mc_target_type ret = MC_TARGET_NONE;
5238 page = pmd_page(pmd);
5239 VM_BUG_ON(!page || !PageHead(page));
5240 if (!move_anon())
5241 return ret;
5242 pc = lookup_page_cgroup(page);
5243 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5244 ret = MC_TARGET_PAGE;
5245 if (target) {
5246 get_page(page);
5247 target->page = page;
5250 return ret;
5252 #else
5253 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5254 unsigned long addr, pmd_t pmd, union mc_target *target)
5256 return MC_TARGET_NONE;
5258 #endif
5260 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5261 unsigned long addr, unsigned long end,
5262 struct mm_walk *walk)
5264 struct vm_area_struct *vma = walk->private;
5265 pte_t *pte;
5266 spinlock_t *ptl;
5268 if (pmd_trans_huge_lock(pmd, vma) == 1) {
5269 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5270 mc.precharge += HPAGE_PMD_NR;
5271 spin_unlock(&vma->vm_mm->page_table_lock);
5272 return 0;
5275 if (pmd_trans_unstable(pmd))
5276 return 0;
5277 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5278 for (; addr != end; pte++, addr += PAGE_SIZE)
5279 if (get_mctgt_type(vma, addr, *pte, NULL))
5280 mc.precharge++; /* increment precharge temporarily */
5281 pte_unmap_unlock(pte - 1, ptl);
5282 cond_resched();
5284 return 0;
5287 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5289 unsigned long precharge;
5290 struct vm_area_struct *vma;
5292 down_read(&mm->mmap_sem);
5293 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5294 struct mm_walk mem_cgroup_count_precharge_walk = {
5295 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5296 .mm = mm,
5297 .private = vma,
5299 if (is_vm_hugetlb_page(vma))
5300 continue;
5301 walk_page_range(vma->vm_start, vma->vm_end,
5302 &mem_cgroup_count_precharge_walk);
5304 up_read(&mm->mmap_sem);
5306 precharge = mc.precharge;
5307 mc.precharge = 0;
5309 return precharge;
5312 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5314 unsigned long precharge = mem_cgroup_count_precharge(mm);
5316 VM_BUG_ON(mc.moving_task);
5317 mc.moving_task = current;
5318 return mem_cgroup_do_precharge(precharge);
5321 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5322 static void __mem_cgroup_clear_mc(void)
5324 struct mem_cgroup *from = mc.from;
5325 struct mem_cgroup *to = mc.to;
5327 /* we must uncharge all the leftover precharges from mc.to */
5328 if (mc.precharge) {
5329 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
5330 mc.precharge = 0;
5333 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5334 * we must uncharge here.
5336 if (mc.moved_charge) {
5337 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5338 mc.moved_charge = 0;
5340 /* we must fixup refcnts and charges */
5341 if (mc.moved_swap) {
5342 /* uncharge swap account from the old cgroup */
5343 if (!mem_cgroup_is_root(mc.from))
5344 res_counter_uncharge(&mc.from->memsw,
5345 PAGE_SIZE * mc.moved_swap);
5346 __mem_cgroup_put(mc.from, mc.moved_swap);
5348 if (!mem_cgroup_is_root(mc.to)) {
5350 * we charged both to->res and to->memsw, so we should
5351 * uncharge to->res.
5353 res_counter_uncharge(&mc.to->res,
5354 PAGE_SIZE * mc.moved_swap);
5356 /* we've already done mem_cgroup_get(mc.to) */
5357 mc.moved_swap = 0;
5359 memcg_oom_recover(from);
5360 memcg_oom_recover(to);
5361 wake_up_all(&mc.waitq);
5364 static void mem_cgroup_clear_mc(void)
5366 struct mem_cgroup *from = mc.from;
5369 * we must clear moving_task before waking up waiters at the end of
5370 * task migration.
5372 mc.moving_task = NULL;
5373 __mem_cgroup_clear_mc();
5374 spin_lock(&mc.lock);
5375 mc.from = NULL;
5376 mc.to = NULL;
5377 spin_unlock(&mc.lock);
5378 mem_cgroup_end_move(from);
5381 static int mem_cgroup_can_attach(struct cgroup *cgroup,
5382 struct cgroup_taskset *tset)
5384 struct task_struct *p = cgroup_taskset_first(tset);
5385 int ret = 0;
5386 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
5388 if (memcg->move_charge_at_immigrate) {
5389 struct mm_struct *mm;
5390 struct mem_cgroup *from = mem_cgroup_from_task(p);
5392 VM_BUG_ON(from == memcg);
5394 mm = get_task_mm(p);
5395 if (!mm)
5396 return 0;
5397 /* We move charges only when we move a owner of the mm */
5398 if (mm->owner == p) {
5399 VM_BUG_ON(mc.from);
5400 VM_BUG_ON(mc.to);
5401 VM_BUG_ON(mc.precharge);
5402 VM_BUG_ON(mc.moved_charge);
5403 VM_BUG_ON(mc.moved_swap);
5404 mem_cgroup_start_move(from);
5405 spin_lock(&mc.lock);
5406 mc.from = from;
5407 mc.to = memcg;
5408 spin_unlock(&mc.lock);
5409 /* We set mc.moving_task later */
5411 ret = mem_cgroup_precharge_mc(mm);
5412 if (ret)
5413 mem_cgroup_clear_mc();
5415 mmput(mm);
5417 return ret;
5420 static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5421 struct cgroup_taskset *tset)
5423 mem_cgroup_clear_mc();
5426 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5427 unsigned long addr, unsigned long end,
5428 struct mm_walk *walk)
5430 int ret = 0;
5431 struct vm_area_struct *vma = walk->private;
5432 pte_t *pte;
5433 spinlock_t *ptl;
5434 enum mc_target_type target_type;
5435 union mc_target target;
5436 struct page *page;
5437 struct page_cgroup *pc;
5440 * We don't take compound_lock() here but no race with splitting thp
5441 * happens because:
5442 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5443 * under splitting, which means there's no concurrent thp split,
5444 * - if another thread runs into split_huge_page() just after we
5445 * entered this if-block, the thread must wait for page table lock
5446 * to be unlocked in __split_huge_page_splitting(), where the main
5447 * part of thp split is not executed yet.
5449 if (pmd_trans_huge_lock(pmd, vma) == 1) {
5450 if (mc.precharge < HPAGE_PMD_NR) {
5451 spin_unlock(&vma->vm_mm->page_table_lock);
5452 return 0;
5454 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5455 if (target_type == MC_TARGET_PAGE) {
5456 page = target.page;
5457 if (!isolate_lru_page(page)) {
5458 pc = lookup_page_cgroup(page);
5459 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5460 pc, mc.from, mc.to)) {
5461 mc.precharge -= HPAGE_PMD_NR;
5462 mc.moved_charge += HPAGE_PMD_NR;
5464 putback_lru_page(page);
5466 put_page(page);
5468 spin_unlock(&vma->vm_mm->page_table_lock);
5469 return 0;
5472 if (pmd_trans_unstable(pmd))
5473 return 0;
5474 retry:
5475 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5476 for (; addr != end; addr += PAGE_SIZE) {
5477 pte_t ptent = *(pte++);
5478 swp_entry_t ent;
5480 if (!mc.precharge)
5481 break;
5483 switch (get_mctgt_type(vma, addr, ptent, &target)) {
5484 case MC_TARGET_PAGE:
5485 page = target.page;
5486 if (isolate_lru_page(page))
5487 goto put;
5488 pc = lookup_page_cgroup(page);
5489 if (!mem_cgroup_move_account(page, 1, pc,
5490 mc.from, mc.to)) {
5491 mc.precharge--;
5492 /* we uncharge from mc.from later. */
5493 mc.moved_charge++;
5495 putback_lru_page(page);
5496 put: /* get_mctgt_type() gets the page */
5497 put_page(page);
5498 break;
5499 case MC_TARGET_SWAP:
5500 ent = target.ent;
5501 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5502 mc.precharge--;
5503 /* we fixup refcnts and charges later. */
5504 mc.moved_swap++;
5506 break;
5507 default:
5508 break;
5511 pte_unmap_unlock(pte - 1, ptl);
5512 cond_resched();
5514 if (addr != end) {
5516 * We have consumed all precharges we got in can_attach().
5517 * We try charge one by one, but don't do any additional
5518 * charges to mc.to if we have failed in charge once in attach()
5519 * phase.
5521 ret = mem_cgroup_do_precharge(1);
5522 if (!ret)
5523 goto retry;
5526 return ret;
5529 static void mem_cgroup_move_charge(struct mm_struct *mm)
5531 struct vm_area_struct *vma;
5533 lru_add_drain_all();
5534 retry:
5535 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5537 * Someone who are holding the mmap_sem might be waiting in
5538 * waitq. So we cancel all extra charges, wake up all waiters,
5539 * and retry. Because we cancel precharges, we might not be able
5540 * to move enough charges, but moving charge is a best-effort
5541 * feature anyway, so it wouldn't be a big problem.
5543 __mem_cgroup_clear_mc();
5544 cond_resched();
5545 goto retry;
5547 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5548 int ret;
5549 struct mm_walk mem_cgroup_move_charge_walk = {
5550 .pmd_entry = mem_cgroup_move_charge_pte_range,
5551 .mm = mm,
5552 .private = vma,
5554 if (is_vm_hugetlb_page(vma))
5555 continue;
5556 ret = walk_page_range(vma->vm_start, vma->vm_end,
5557 &mem_cgroup_move_charge_walk);
5558 if (ret)
5560 * means we have consumed all precharges and failed in
5561 * doing additional charge. Just abandon here.
5563 break;
5565 up_read(&mm->mmap_sem);
5568 static void mem_cgroup_move_task(struct cgroup *cont,
5569 struct cgroup_taskset *tset)
5571 struct task_struct *p = cgroup_taskset_first(tset);
5572 struct mm_struct *mm = get_task_mm(p);
5574 if (mm) {
5575 if (mc.to)
5576 mem_cgroup_move_charge(mm);
5577 mmput(mm);
5579 if (mc.to)
5580 mem_cgroup_clear_mc();
5582 #else /* !CONFIG_MMU */
5583 static int mem_cgroup_can_attach(struct cgroup *cgroup,
5584 struct cgroup_taskset *tset)
5586 return 0;
5588 static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5589 struct cgroup_taskset *tset)
5592 static void mem_cgroup_move_task(struct cgroup *cont,
5593 struct cgroup_taskset *tset)
5596 #endif
5598 struct cgroup_subsys mem_cgroup_subsys = {
5599 .name = "memory",
5600 .subsys_id = mem_cgroup_subsys_id,
5601 .create = mem_cgroup_create,
5602 .pre_destroy = mem_cgroup_pre_destroy,
5603 .destroy = mem_cgroup_destroy,
5604 .can_attach = mem_cgroup_can_attach,
5605 .cancel_attach = mem_cgroup_cancel_attach,
5606 .attach = mem_cgroup_move_task,
5607 .base_cftypes = mem_cgroup_files,
5608 .early_init = 0,
5609 .use_id = 1,
5610 .__DEPRECATED_clear_css_refs = true,
5613 #ifdef CONFIG_MEMCG_SWAP
5614 static int __init enable_swap_account(char *s)
5616 /* consider enabled if no parameter or 1 is given */
5617 if (!strcmp(s, "1"))
5618 really_do_swap_account = 1;
5619 else if (!strcmp(s, "0"))
5620 really_do_swap_account = 0;
5621 return 1;
5623 __setup("swapaccount=", enable_swap_account);
5625 #endif