ipv6: add support of equal cost multipath (ECMP)
[linux-2.6.git] / fs / ext4 / extents.c
blob1c94cca35ed1a12ce42ce39bddea7c9dd23111cf
1 /*
2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
5 * Architecture independence:
6 * Copyright (c) 2005, Bull S.A.
7 * Written by Pierre Peiffer <pierre.peiffer@bull.net>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public Licens
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
24 * Extents support for EXT4
26 * TODO:
27 * - ext4*_error() should be used in some situations
28 * - analyze all BUG()/BUG_ON(), use -EIO where appropriate
29 * - smart tree reduction
32 #include <linux/fs.h>
33 #include <linux/time.h>
34 #include <linux/jbd2.h>
35 #include <linux/highuid.h>
36 #include <linux/pagemap.h>
37 #include <linux/quotaops.h>
38 #include <linux/string.h>
39 #include <linux/slab.h>
40 #include <linux/falloc.h>
41 #include <asm/uaccess.h>
42 #include <linux/fiemap.h>
43 #include "ext4_jbd2.h"
45 #include <trace/events/ext4.h>
48 * used by extent splitting.
50 #define EXT4_EXT_MAY_ZEROOUT 0x1 /* safe to zeroout if split fails \
51 due to ENOSPC */
52 #define EXT4_EXT_MARK_UNINIT1 0x2 /* mark first half uninitialized */
53 #define EXT4_EXT_MARK_UNINIT2 0x4 /* mark second half uninitialized */
55 static __le32 ext4_extent_block_csum(struct inode *inode,
56 struct ext4_extent_header *eh)
58 struct ext4_inode_info *ei = EXT4_I(inode);
59 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
60 __u32 csum;
62 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)eh,
63 EXT4_EXTENT_TAIL_OFFSET(eh));
64 return cpu_to_le32(csum);
67 static int ext4_extent_block_csum_verify(struct inode *inode,
68 struct ext4_extent_header *eh)
70 struct ext4_extent_tail *et;
72 if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
73 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
74 return 1;
76 et = find_ext4_extent_tail(eh);
77 if (et->et_checksum != ext4_extent_block_csum(inode, eh))
78 return 0;
79 return 1;
82 static void ext4_extent_block_csum_set(struct inode *inode,
83 struct ext4_extent_header *eh)
85 struct ext4_extent_tail *et;
87 if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
88 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
89 return;
91 et = find_ext4_extent_tail(eh);
92 et->et_checksum = ext4_extent_block_csum(inode, eh);
95 static int ext4_split_extent(handle_t *handle,
96 struct inode *inode,
97 struct ext4_ext_path *path,
98 struct ext4_map_blocks *map,
99 int split_flag,
100 int flags);
102 static int ext4_split_extent_at(handle_t *handle,
103 struct inode *inode,
104 struct ext4_ext_path *path,
105 ext4_lblk_t split,
106 int split_flag,
107 int flags);
109 static int ext4_ext_truncate_extend_restart(handle_t *handle,
110 struct inode *inode,
111 int needed)
113 int err;
115 if (!ext4_handle_valid(handle))
116 return 0;
117 if (handle->h_buffer_credits > needed)
118 return 0;
119 err = ext4_journal_extend(handle, needed);
120 if (err <= 0)
121 return err;
122 err = ext4_truncate_restart_trans(handle, inode, needed);
123 if (err == 0)
124 err = -EAGAIN;
126 return err;
130 * could return:
131 * - EROFS
132 * - ENOMEM
134 static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
135 struct ext4_ext_path *path)
137 if (path->p_bh) {
138 /* path points to block */
139 return ext4_journal_get_write_access(handle, path->p_bh);
141 /* path points to leaf/index in inode body */
142 /* we use in-core data, no need to protect them */
143 return 0;
147 * could return:
148 * - EROFS
149 * - ENOMEM
150 * - EIO
152 #define ext4_ext_dirty(handle, inode, path) \
153 __ext4_ext_dirty(__func__, __LINE__, (handle), (inode), (path))
154 static int __ext4_ext_dirty(const char *where, unsigned int line,
155 handle_t *handle, struct inode *inode,
156 struct ext4_ext_path *path)
158 int err;
159 if (path->p_bh) {
160 ext4_extent_block_csum_set(inode, ext_block_hdr(path->p_bh));
161 /* path points to block */
162 err = __ext4_handle_dirty_metadata(where, line, handle,
163 inode, path->p_bh);
164 } else {
165 /* path points to leaf/index in inode body */
166 err = ext4_mark_inode_dirty(handle, inode);
168 return err;
171 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
172 struct ext4_ext_path *path,
173 ext4_lblk_t block)
175 if (path) {
176 int depth = path->p_depth;
177 struct ext4_extent *ex;
180 * Try to predict block placement assuming that we are
181 * filling in a file which will eventually be
182 * non-sparse --- i.e., in the case of libbfd writing
183 * an ELF object sections out-of-order but in a way
184 * the eventually results in a contiguous object or
185 * executable file, or some database extending a table
186 * space file. However, this is actually somewhat
187 * non-ideal if we are writing a sparse file such as
188 * qemu or KVM writing a raw image file that is going
189 * to stay fairly sparse, since it will end up
190 * fragmenting the file system's free space. Maybe we
191 * should have some hueristics or some way to allow
192 * userspace to pass a hint to file system,
193 * especially if the latter case turns out to be
194 * common.
196 ex = path[depth].p_ext;
197 if (ex) {
198 ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex);
199 ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block);
201 if (block > ext_block)
202 return ext_pblk + (block - ext_block);
203 else
204 return ext_pblk - (ext_block - block);
207 /* it looks like index is empty;
208 * try to find starting block from index itself */
209 if (path[depth].p_bh)
210 return path[depth].p_bh->b_blocknr;
213 /* OK. use inode's group */
214 return ext4_inode_to_goal_block(inode);
218 * Allocation for a meta data block
220 static ext4_fsblk_t
221 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode,
222 struct ext4_ext_path *path,
223 struct ext4_extent *ex, int *err, unsigned int flags)
225 ext4_fsblk_t goal, newblock;
227 goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
228 newblock = ext4_new_meta_blocks(handle, inode, goal, flags,
229 NULL, err);
230 return newblock;
233 static inline int ext4_ext_space_block(struct inode *inode, int check)
235 int size;
237 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
238 / sizeof(struct ext4_extent);
239 #ifdef AGGRESSIVE_TEST
240 if (!check && size > 6)
241 size = 6;
242 #endif
243 return size;
246 static inline int ext4_ext_space_block_idx(struct inode *inode, int check)
248 int size;
250 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
251 / sizeof(struct ext4_extent_idx);
252 #ifdef AGGRESSIVE_TEST
253 if (!check && size > 5)
254 size = 5;
255 #endif
256 return size;
259 static inline int ext4_ext_space_root(struct inode *inode, int check)
261 int size;
263 size = sizeof(EXT4_I(inode)->i_data);
264 size -= sizeof(struct ext4_extent_header);
265 size /= sizeof(struct ext4_extent);
266 #ifdef AGGRESSIVE_TEST
267 if (!check && size > 3)
268 size = 3;
269 #endif
270 return size;
273 static inline int ext4_ext_space_root_idx(struct inode *inode, int check)
275 int size;
277 size = sizeof(EXT4_I(inode)->i_data);
278 size -= sizeof(struct ext4_extent_header);
279 size /= sizeof(struct ext4_extent_idx);
280 #ifdef AGGRESSIVE_TEST
281 if (!check && size > 4)
282 size = 4;
283 #endif
284 return size;
288 * Calculate the number of metadata blocks needed
289 * to allocate @blocks
290 * Worse case is one block per extent
292 int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
294 struct ext4_inode_info *ei = EXT4_I(inode);
295 int idxs;
297 idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
298 / sizeof(struct ext4_extent_idx));
301 * If the new delayed allocation block is contiguous with the
302 * previous da block, it can share index blocks with the
303 * previous block, so we only need to allocate a new index
304 * block every idxs leaf blocks. At ldxs**2 blocks, we need
305 * an additional index block, and at ldxs**3 blocks, yet
306 * another index blocks.
308 if (ei->i_da_metadata_calc_len &&
309 ei->i_da_metadata_calc_last_lblock+1 == lblock) {
310 int num = 0;
312 if ((ei->i_da_metadata_calc_len % idxs) == 0)
313 num++;
314 if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0)
315 num++;
316 if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) {
317 num++;
318 ei->i_da_metadata_calc_len = 0;
319 } else
320 ei->i_da_metadata_calc_len++;
321 ei->i_da_metadata_calc_last_lblock++;
322 return num;
326 * In the worst case we need a new set of index blocks at
327 * every level of the inode's extent tree.
329 ei->i_da_metadata_calc_len = 1;
330 ei->i_da_metadata_calc_last_lblock = lblock;
331 return ext_depth(inode) + 1;
334 static int
335 ext4_ext_max_entries(struct inode *inode, int depth)
337 int max;
339 if (depth == ext_depth(inode)) {
340 if (depth == 0)
341 max = ext4_ext_space_root(inode, 1);
342 else
343 max = ext4_ext_space_root_idx(inode, 1);
344 } else {
345 if (depth == 0)
346 max = ext4_ext_space_block(inode, 1);
347 else
348 max = ext4_ext_space_block_idx(inode, 1);
351 return max;
354 static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext)
356 ext4_fsblk_t block = ext4_ext_pblock(ext);
357 int len = ext4_ext_get_actual_len(ext);
359 if (len == 0)
360 return 0;
361 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len);
364 static int ext4_valid_extent_idx(struct inode *inode,
365 struct ext4_extent_idx *ext_idx)
367 ext4_fsblk_t block = ext4_idx_pblock(ext_idx);
369 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1);
372 static int ext4_valid_extent_entries(struct inode *inode,
373 struct ext4_extent_header *eh,
374 int depth)
376 unsigned short entries;
377 if (eh->eh_entries == 0)
378 return 1;
380 entries = le16_to_cpu(eh->eh_entries);
382 if (depth == 0) {
383 /* leaf entries */
384 struct ext4_extent *ext = EXT_FIRST_EXTENT(eh);
385 while (entries) {
386 if (!ext4_valid_extent(inode, ext))
387 return 0;
388 ext++;
389 entries--;
391 } else {
392 struct ext4_extent_idx *ext_idx = EXT_FIRST_INDEX(eh);
393 while (entries) {
394 if (!ext4_valid_extent_idx(inode, ext_idx))
395 return 0;
396 ext_idx++;
397 entries--;
400 return 1;
403 static int __ext4_ext_check(const char *function, unsigned int line,
404 struct inode *inode, struct ext4_extent_header *eh,
405 int depth)
407 const char *error_msg;
408 int max = 0;
410 if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
411 error_msg = "invalid magic";
412 goto corrupted;
414 if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
415 error_msg = "unexpected eh_depth";
416 goto corrupted;
418 if (unlikely(eh->eh_max == 0)) {
419 error_msg = "invalid eh_max";
420 goto corrupted;
422 max = ext4_ext_max_entries(inode, depth);
423 if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
424 error_msg = "too large eh_max";
425 goto corrupted;
427 if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
428 error_msg = "invalid eh_entries";
429 goto corrupted;
431 if (!ext4_valid_extent_entries(inode, eh, depth)) {
432 error_msg = "invalid extent entries";
433 goto corrupted;
435 /* Verify checksum on non-root extent tree nodes */
436 if (ext_depth(inode) != depth &&
437 !ext4_extent_block_csum_verify(inode, eh)) {
438 error_msg = "extent tree corrupted";
439 goto corrupted;
441 return 0;
443 corrupted:
444 ext4_error_inode(inode, function, line, 0,
445 "bad header/extent: %s - magic %x, "
446 "entries %u, max %u(%u), depth %u(%u)",
447 error_msg, le16_to_cpu(eh->eh_magic),
448 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
449 max, le16_to_cpu(eh->eh_depth), depth);
451 return -EIO;
454 #define ext4_ext_check(inode, eh, depth) \
455 __ext4_ext_check(__func__, __LINE__, inode, eh, depth)
457 int ext4_ext_check_inode(struct inode *inode)
459 return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode));
462 static int __ext4_ext_check_block(const char *function, unsigned int line,
463 struct inode *inode,
464 struct ext4_extent_header *eh,
465 int depth,
466 struct buffer_head *bh)
468 int ret;
470 if (buffer_verified(bh))
471 return 0;
472 ret = ext4_ext_check(inode, eh, depth);
473 if (ret)
474 return ret;
475 set_buffer_verified(bh);
476 return ret;
479 #define ext4_ext_check_block(inode, eh, depth, bh) \
480 __ext4_ext_check_block(__func__, __LINE__, inode, eh, depth, bh)
482 #ifdef EXT_DEBUG
483 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
485 int k, l = path->p_depth;
487 ext_debug("path:");
488 for (k = 0; k <= l; k++, path++) {
489 if (path->p_idx) {
490 ext_debug(" %d->%llu", le32_to_cpu(path->p_idx->ei_block),
491 ext4_idx_pblock(path->p_idx));
492 } else if (path->p_ext) {
493 ext_debug(" %d:[%d]%d:%llu ",
494 le32_to_cpu(path->p_ext->ee_block),
495 ext4_ext_is_uninitialized(path->p_ext),
496 ext4_ext_get_actual_len(path->p_ext),
497 ext4_ext_pblock(path->p_ext));
498 } else
499 ext_debug(" []");
501 ext_debug("\n");
504 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
506 int depth = ext_depth(inode);
507 struct ext4_extent_header *eh;
508 struct ext4_extent *ex;
509 int i;
511 if (!path)
512 return;
514 eh = path[depth].p_hdr;
515 ex = EXT_FIRST_EXTENT(eh);
517 ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino);
519 for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
520 ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block),
521 ext4_ext_is_uninitialized(ex),
522 ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex));
524 ext_debug("\n");
527 static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path,
528 ext4_fsblk_t newblock, int level)
530 int depth = ext_depth(inode);
531 struct ext4_extent *ex;
533 if (depth != level) {
534 struct ext4_extent_idx *idx;
535 idx = path[level].p_idx;
536 while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) {
537 ext_debug("%d: move %d:%llu in new index %llu\n", level,
538 le32_to_cpu(idx->ei_block),
539 ext4_idx_pblock(idx),
540 newblock);
541 idx++;
544 return;
547 ex = path[depth].p_ext;
548 while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) {
549 ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n",
550 le32_to_cpu(ex->ee_block),
551 ext4_ext_pblock(ex),
552 ext4_ext_is_uninitialized(ex),
553 ext4_ext_get_actual_len(ex),
554 newblock);
555 ex++;
559 #else
560 #define ext4_ext_show_path(inode, path)
561 #define ext4_ext_show_leaf(inode, path)
562 #define ext4_ext_show_move(inode, path, newblock, level)
563 #endif
565 void ext4_ext_drop_refs(struct ext4_ext_path *path)
567 int depth = path->p_depth;
568 int i;
570 for (i = 0; i <= depth; i++, path++)
571 if (path->p_bh) {
572 brelse(path->p_bh);
573 path->p_bh = NULL;
578 * ext4_ext_binsearch_idx:
579 * binary search for the closest index of the given block
580 * the header must be checked before calling this
582 static void
583 ext4_ext_binsearch_idx(struct inode *inode,
584 struct ext4_ext_path *path, ext4_lblk_t block)
586 struct ext4_extent_header *eh = path->p_hdr;
587 struct ext4_extent_idx *r, *l, *m;
590 ext_debug("binsearch for %u(idx): ", block);
592 l = EXT_FIRST_INDEX(eh) + 1;
593 r = EXT_LAST_INDEX(eh);
594 while (l <= r) {
595 m = l + (r - l) / 2;
596 if (block < le32_to_cpu(m->ei_block))
597 r = m - 1;
598 else
599 l = m + 1;
600 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
601 m, le32_to_cpu(m->ei_block),
602 r, le32_to_cpu(r->ei_block));
605 path->p_idx = l - 1;
606 ext_debug(" -> %u->%lld ", le32_to_cpu(path->p_idx->ei_block),
607 ext4_idx_pblock(path->p_idx));
609 #ifdef CHECK_BINSEARCH
611 struct ext4_extent_idx *chix, *ix;
612 int k;
614 chix = ix = EXT_FIRST_INDEX(eh);
615 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
616 if (k != 0 &&
617 le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
618 printk(KERN_DEBUG "k=%d, ix=0x%p, "
619 "first=0x%p\n", k,
620 ix, EXT_FIRST_INDEX(eh));
621 printk(KERN_DEBUG "%u <= %u\n",
622 le32_to_cpu(ix->ei_block),
623 le32_to_cpu(ix[-1].ei_block));
625 BUG_ON(k && le32_to_cpu(ix->ei_block)
626 <= le32_to_cpu(ix[-1].ei_block));
627 if (block < le32_to_cpu(ix->ei_block))
628 break;
629 chix = ix;
631 BUG_ON(chix != path->p_idx);
633 #endif
638 * ext4_ext_binsearch:
639 * binary search for closest extent of the given block
640 * the header must be checked before calling this
642 static void
643 ext4_ext_binsearch(struct inode *inode,
644 struct ext4_ext_path *path, ext4_lblk_t block)
646 struct ext4_extent_header *eh = path->p_hdr;
647 struct ext4_extent *r, *l, *m;
649 if (eh->eh_entries == 0) {
651 * this leaf is empty:
652 * we get such a leaf in split/add case
654 return;
657 ext_debug("binsearch for %u: ", block);
659 l = EXT_FIRST_EXTENT(eh) + 1;
660 r = EXT_LAST_EXTENT(eh);
662 while (l <= r) {
663 m = l + (r - l) / 2;
664 if (block < le32_to_cpu(m->ee_block))
665 r = m - 1;
666 else
667 l = m + 1;
668 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
669 m, le32_to_cpu(m->ee_block),
670 r, le32_to_cpu(r->ee_block));
673 path->p_ext = l - 1;
674 ext_debug(" -> %d:%llu:[%d]%d ",
675 le32_to_cpu(path->p_ext->ee_block),
676 ext4_ext_pblock(path->p_ext),
677 ext4_ext_is_uninitialized(path->p_ext),
678 ext4_ext_get_actual_len(path->p_ext));
680 #ifdef CHECK_BINSEARCH
682 struct ext4_extent *chex, *ex;
683 int k;
685 chex = ex = EXT_FIRST_EXTENT(eh);
686 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
687 BUG_ON(k && le32_to_cpu(ex->ee_block)
688 <= le32_to_cpu(ex[-1].ee_block));
689 if (block < le32_to_cpu(ex->ee_block))
690 break;
691 chex = ex;
693 BUG_ON(chex != path->p_ext);
695 #endif
699 int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
701 struct ext4_extent_header *eh;
703 eh = ext_inode_hdr(inode);
704 eh->eh_depth = 0;
705 eh->eh_entries = 0;
706 eh->eh_magic = EXT4_EXT_MAGIC;
707 eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0));
708 ext4_mark_inode_dirty(handle, inode);
709 ext4_ext_invalidate_cache(inode);
710 return 0;
713 struct ext4_ext_path *
714 ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block,
715 struct ext4_ext_path *path)
717 struct ext4_extent_header *eh;
718 struct buffer_head *bh;
719 short int depth, i, ppos = 0, alloc = 0;
721 eh = ext_inode_hdr(inode);
722 depth = ext_depth(inode);
724 /* account possible depth increase */
725 if (!path) {
726 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2),
727 GFP_NOFS);
728 if (!path)
729 return ERR_PTR(-ENOMEM);
730 alloc = 1;
732 path[0].p_hdr = eh;
733 path[0].p_bh = NULL;
735 i = depth;
736 /* walk through the tree */
737 while (i) {
738 ext_debug("depth %d: num %d, max %d\n",
739 ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
741 ext4_ext_binsearch_idx(inode, path + ppos, block);
742 path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx);
743 path[ppos].p_depth = i;
744 path[ppos].p_ext = NULL;
746 bh = sb_getblk(inode->i_sb, path[ppos].p_block);
747 if (unlikely(!bh))
748 goto err;
749 if (!bh_uptodate_or_lock(bh)) {
750 trace_ext4_ext_load_extent(inode, block,
751 path[ppos].p_block);
752 if (bh_submit_read(bh) < 0) {
753 put_bh(bh);
754 goto err;
757 eh = ext_block_hdr(bh);
758 ppos++;
759 if (unlikely(ppos > depth)) {
760 put_bh(bh);
761 EXT4_ERROR_INODE(inode,
762 "ppos %d > depth %d", ppos, depth);
763 goto err;
765 path[ppos].p_bh = bh;
766 path[ppos].p_hdr = eh;
767 i--;
769 if (ext4_ext_check_block(inode, eh, i, bh))
770 goto err;
773 path[ppos].p_depth = i;
774 path[ppos].p_ext = NULL;
775 path[ppos].p_idx = NULL;
777 /* find extent */
778 ext4_ext_binsearch(inode, path + ppos, block);
779 /* if not an empty leaf */
780 if (path[ppos].p_ext)
781 path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext);
783 ext4_ext_show_path(inode, path);
785 return path;
787 err:
788 ext4_ext_drop_refs(path);
789 if (alloc)
790 kfree(path);
791 return ERR_PTR(-EIO);
795 * ext4_ext_insert_index:
796 * insert new index [@logical;@ptr] into the block at @curp;
797 * check where to insert: before @curp or after @curp
799 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
800 struct ext4_ext_path *curp,
801 int logical, ext4_fsblk_t ptr)
803 struct ext4_extent_idx *ix;
804 int len, err;
806 err = ext4_ext_get_access(handle, inode, curp);
807 if (err)
808 return err;
810 if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) {
811 EXT4_ERROR_INODE(inode,
812 "logical %d == ei_block %d!",
813 logical, le32_to_cpu(curp->p_idx->ei_block));
814 return -EIO;
817 if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries)
818 >= le16_to_cpu(curp->p_hdr->eh_max))) {
819 EXT4_ERROR_INODE(inode,
820 "eh_entries %d >= eh_max %d!",
821 le16_to_cpu(curp->p_hdr->eh_entries),
822 le16_to_cpu(curp->p_hdr->eh_max));
823 return -EIO;
826 if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
827 /* insert after */
828 ext_debug("insert new index %d after: %llu\n", logical, ptr);
829 ix = curp->p_idx + 1;
830 } else {
831 /* insert before */
832 ext_debug("insert new index %d before: %llu\n", logical, ptr);
833 ix = curp->p_idx;
836 len = EXT_LAST_INDEX(curp->p_hdr) - ix + 1;
837 BUG_ON(len < 0);
838 if (len > 0) {
839 ext_debug("insert new index %d: "
840 "move %d indices from 0x%p to 0x%p\n",
841 logical, len, ix, ix + 1);
842 memmove(ix + 1, ix, len * sizeof(struct ext4_extent_idx));
845 if (unlikely(ix > EXT_MAX_INDEX(curp->p_hdr))) {
846 EXT4_ERROR_INODE(inode, "ix > EXT_MAX_INDEX!");
847 return -EIO;
850 ix->ei_block = cpu_to_le32(logical);
851 ext4_idx_store_pblock(ix, ptr);
852 le16_add_cpu(&curp->p_hdr->eh_entries, 1);
854 if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) {
855 EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!");
856 return -EIO;
859 err = ext4_ext_dirty(handle, inode, curp);
860 ext4_std_error(inode->i_sb, err);
862 return err;
866 * ext4_ext_split:
867 * inserts new subtree into the path, using free index entry
868 * at depth @at:
869 * - allocates all needed blocks (new leaf and all intermediate index blocks)
870 * - makes decision where to split
871 * - moves remaining extents and index entries (right to the split point)
872 * into the newly allocated blocks
873 * - initializes subtree
875 static int ext4_ext_split(handle_t *handle, struct inode *inode,
876 unsigned int flags,
877 struct ext4_ext_path *path,
878 struct ext4_extent *newext, int at)
880 struct buffer_head *bh = NULL;
881 int depth = ext_depth(inode);
882 struct ext4_extent_header *neh;
883 struct ext4_extent_idx *fidx;
884 int i = at, k, m, a;
885 ext4_fsblk_t newblock, oldblock;
886 __le32 border;
887 ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
888 int err = 0;
890 /* make decision: where to split? */
891 /* FIXME: now decision is simplest: at current extent */
893 /* if current leaf will be split, then we should use
894 * border from split point */
895 if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) {
896 EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!");
897 return -EIO;
899 if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
900 border = path[depth].p_ext[1].ee_block;
901 ext_debug("leaf will be split."
902 " next leaf starts at %d\n",
903 le32_to_cpu(border));
904 } else {
905 border = newext->ee_block;
906 ext_debug("leaf will be added."
907 " next leaf starts at %d\n",
908 le32_to_cpu(border));
912 * If error occurs, then we break processing
913 * and mark filesystem read-only. index won't
914 * be inserted and tree will be in consistent
915 * state. Next mount will repair buffers too.
919 * Get array to track all allocated blocks.
920 * We need this to handle errors and free blocks
921 * upon them.
923 ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS);
924 if (!ablocks)
925 return -ENOMEM;
927 /* allocate all needed blocks */
928 ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
929 for (a = 0; a < depth - at; a++) {
930 newblock = ext4_ext_new_meta_block(handle, inode, path,
931 newext, &err, flags);
932 if (newblock == 0)
933 goto cleanup;
934 ablocks[a] = newblock;
937 /* initialize new leaf */
938 newblock = ablocks[--a];
939 if (unlikely(newblock == 0)) {
940 EXT4_ERROR_INODE(inode, "newblock == 0!");
941 err = -EIO;
942 goto cleanup;
944 bh = sb_getblk(inode->i_sb, newblock);
945 if (!bh) {
946 err = -EIO;
947 goto cleanup;
949 lock_buffer(bh);
951 err = ext4_journal_get_create_access(handle, bh);
952 if (err)
953 goto cleanup;
955 neh = ext_block_hdr(bh);
956 neh->eh_entries = 0;
957 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
958 neh->eh_magic = EXT4_EXT_MAGIC;
959 neh->eh_depth = 0;
961 /* move remainder of path[depth] to the new leaf */
962 if (unlikely(path[depth].p_hdr->eh_entries !=
963 path[depth].p_hdr->eh_max)) {
964 EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!",
965 path[depth].p_hdr->eh_entries,
966 path[depth].p_hdr->eh_max);
967 err = -EIO;
968 goto cleanup;
970 /* start copy from next extent */
971 m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++;
972 ext4_ext_show_move(inode, path, newblock, depth);
973 if (m) {
974 struct ext4_extent *ex;
975 ex = EXT_FIRST_EXTENT(neh);
976 memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m);
977 le16_add_cpu(&neh->eh_entries, m);
980 ext4_extent_block_csum_set(inode, neh);
981 set_buffer_uptodate(bh);
982 unlock_buffer(bh);
984 err = ext4_handle_dirty_metadata(handle, inode, bh);
985 if (err)
986 goto cleanup;
987 brelse(bh);
988 bh = NULL;
990 /* correct old leaf */
991 if (m) {
992 err = ext4_ext_get_access(handle, inode, path + depth);
993 if (err)
994 goto cleanup;
995 le16_add_cpu(&path[depth].p_hdr->eh_entries, -m);
996 err = ext4_ext_dirty(handle, inode, path + depth);
997 if (err)
998 goto cleanup;
1002 /* create intermediate indexes */
1003 k = depth - at - 1;
1004 if (unlikely(k < 0)) {
1005 EXT4_ERROR_INODE(inode, "k %d < 0!", k);
1006 err = -EIO;
1007 goto cleanup;
1009 if (k)
1010 ext_debug("create %d intermediate indices\n", k);
1011 /* insert new index into current index block */
1012 /* current depth stored in i var */
1013 i = depth - 1;
1014 while (k--) {
1015 oldblock = newblock;
1016 newblock = ablocks[--a];
1017 bh = sb_getblk(inode->i_sb, newblock);
1018 if (!bh) {
1019 err = -EIO;
1020 goto cleanup;
1022 lock_buffer(bh);
1024 err = ext4_journal_get_create_access(handle, bh);
1025 if (err)
1026 goto cleanup;
1028 neh = ext_block_hdr(bh);
1029 neh->eh_entries = cpu_to_le16(1);
1030 neh->eh_magic = EXT4_EXT_MAGIC;
1031 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1032 neh->eh_depth = cpu_to_le16(depth - i);
1033 fidx = EXT_FIRST_INDEX(neh);
1034 fidx->ei_block = border;
1035 ext4_idx_store_pblock(fidx, oldblock);
1037 ext_debug("int.index at %d (block %llu): %u -> %llu\n",
1038 i, newblock, le32_to_cpu(border), oldblock);
1040 /* move remainder of path[i] to the new index block */
1041 if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) !=
1042 EXT_LAST_INDEX(path[i].p_hdr))) {
1043 EXT4_ERROR_INODE(inode,
1044 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!",
1045 le32_to_cpu(path[i].p_ext->ee_block));
1046 err = -EIO;
1047 goto cleanup;
1049 /* start copy indexes */
1050 m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++;
1051 ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
1052 EXT_MAX_INDEX(path[i].p_hdr));
1053 ext4_ext_show_move(inode, path, newblock, i);
1054 if (m) {
1055 memmove(++fidx, path[i].p_idx,
1056 sizeof(struct ext4_extent_idx) * m);
1057 le16_add_cpu(&neh->eh_entries, m);
1059 ext4_extent_block_csum_set(inode, neh);
1060 set_buffer_uptodate(bh);
1061 unlock_buffer(bh);
1063 err = ext4_handle_dirty_metadata(handle, inode, bh);
1064 if (err)
1065 goto cleanup;
1066 brelse(bh);
1067 bh = NULL;
1069 /* correct old index */
1070 if (m) {
1071 err = ext4_ext_get_access(handle, inode, path + i);
1072 if (err)
1073 goto cleanup;
1074 le16_add_cpu(&path[i].p_hdr->eh_entries, -m);
1075 err = ext4_ext_dirty(handle, inode, path + i);
1076 if (err)
1077 goto cleanup;
1080 i--;
1083 /* insert new index */
1084 err = ext4_ext_insert_index(handle, inode, path + at,
1085 le32_to_cpu(border), newblock);
1087 cleanup:
1088 if (bh) {
1089 if (buffer_locked(bh))
1090 unlock_buffer(bh);
1091 brelse(bh);
1094 if (err) {
1095 /* free all allocated blocks in error case */
1096 for (i = 0; i < depth; i++) {
1097 if (!ablocks[i])
1098 continue;
1099 ext4_free_blocks(handle, inode, NULL, ablocks[i], 1,
1100 EXT4_FREE_BLOCKS_METADATA);
1103 kfree(ablocks);
1105 return err;
1109 * ext4_ext_grow_indepth:
1110 * implements tree growing procedure:
1111 * - allocates new block
1112 * - moves top-level data (index block or leaf) into the new block
1113 * - initializes new top-level, creating index that points to the
1114 * just created block
1116 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
1117 unsigned int flags,
1118 struct ext4_extent *newext)
1120 struct ext4_extent_header *neh;
1121 struct buffer_head *bh;
1122 ext4_fsblk_t newblock;
1123 int err = 0;
1125 newblock = ext4_ext_new_meta_block(handle, inode, NULL,
1126 newext, &err, flags);
1127 if (newblock == 0)
1128 return err;
1130 bh = sb_getblk(inode->i_sb, newblock);
1131 if (!bh) {
1132 err = -EIO;
1133 ext4_std_error(inode->i_sb, err);
1134 return err;
1136 lock_buffer(bh);
1138 err = ext4_journal_get_create_access(handle, bh);
1139 if (err) {
1140 unlock_buffer(bh);
1141 goto out;
1144 /* move top-level index/leaf into new block */
1145 memmove(bh->b_data, EXT4_I(inode)->i_data,
1146 sizeof(EXT4_I(inode)->i_data));
1148 /* set size of new block */
1149 neh = ext_block_hdr(bh);
1150 /* old root could have indexes or leaves
1151 * so calculate e_max right way */
1152 if (ext_depth(inode))
1153 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1154 else
1155 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1156 neh->eh_magic = EXT4_EXT_MAGIC;
1157 ext4_extent_block_csum_set(inode, neh);
1158 set_buffer_uptodate(bh);
1159 unlock_buffer(bh);
1161 err = ext4_handle_dirty_metadata(handle, inode, bh);
1162 if (err)
1163 goto out;
1165 /* Update top-level index: num,max,pointer */
1166 neh = ext_inode_hdr(inode);
1167 neh->eh_entries = cpu_to_le16(1);
1168 ext4_idx_store_pblock(EXT_FIRST_INDEX(neh), newblock);
1169 if (neh->eh_depth == 0) {
1170 /* Root extent block becomes index block */
1171 neh->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0));
1172 EXT_FIRST_INDEX(neh)->ei_block =
1173 EXT_FIRST_EXTENT(neh)->ee_block;
1175 ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
1176 le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
1177 le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block),
1178 ext4_idx_pblock(EXT_FIRST_INDEX(neh)));
1180 le16_add_cpu(&neh->eh_depth, 1);
1181 ext4_mark_inode_dirty(handle, inode);
1182 out:
1183 brelse(bh);
1185 return err;
1189 * ext4_ext_create_new_leaf:
1190 * finds empty index and adds new leaf.
1191 * if no free index is found, then it requests in-depth growing.
1193 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
1194 unsigned int flags,
1195 struct ext4_ext_path *path,
1196 struct ext4_extent *newext)
1198 struct ext4_ext_path *curp;
1199 int depth, i, err = 0;
1201 repeat:
1202 i = depth = ext_depth(inode);
1204 /* walk up to the tree and look for free index entry */
1205 curp = path + depth;
1206 while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
1207 i--;
1208 curp--;
1211 /* we use already allocated block for index block,
1212 * so subsequent data blocks should be contiguous */
1213 if (EXT_HAS_FREE_INDEX(curp)) {
1214 /* if we found index with free entry, then use that
1215 * entry: create all needed subtree and add new leaf */
1216 err = ext4_ext_split(handle, inode, flags, path, newext, i);
1217 if (err)
1218 goto out;
1220 /* refill path */
1221 ext4_ext_drop_refs(path);
1222 path = ext4_ext_find_extent(inode,
1223 (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1224 path);
1225 if (IS_ERR(path))
1226 err = PTR_ERR(path);
1227 } else {
1228 /* tree is full, time to grow in depth */
1229 err = ext4_ext_grow_indepth(handle, inode, flags, newext);
1230 if (err)
1231 goto out;
1233 /* refill path */
1234 ext4_ext_drop_refs(path);
1235 path = ext4_ext_find_extent(inode,
1236 (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1237 path);
1238 if (IS_ERR(path)) {
1239 err = PTR_ERR(path);
1240 goto out;
1244 * only first (depth 0 -> 1) produces free space;
1245 * in all other cases we have to split the grown tree
1247 depth = ext_depth(inode);
1248 if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
1249 /* now we need to split */
1250 goto repeat;
1254 out:
1255 return err;
1259 * search the closest allocated block to the left for *logical
1260 * and returns it at @logical + it's physical address at @phys
1261 * if *logical is the smallest allocated block, the function
1262 * returns 0 at @phys
1263 * return value contains 0 (success) or error code
1265 static int ext4_ext_search_left(struct inode *inode,
1266 struct ext4_ext_path *path,
1267 ext4_lblk_t *logical, ext4_fsblk_t *phys)
1269 struct ext4_extent_idx *ix;
1270 struct ext4_extent *ex;
1271 int depth, ee_len;
1273 if (unlikely(path == NULL)) {
1274 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1275 return -EIO;
1277 depth = path->p_depth;
1278 *phys = 0;
1280 if (depth == 0 && path->p_ext == NULL)
1281 return 0;
1283 /* usually extent in the path covers blocks smaller
1284 * then *logical, but it can be that extent is the
1285 * first one in the file */
1287 ex = path[depth].p_ext;
1288 ee_len = ext4_ext_get_actual_len(ex);
1289 if (*logical < le32_to_cpu(ex->ee_block)) {
1290 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1291 EXT4_ERROR_INODE(inode,
1292 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!",
1293 *logical, le32_to_cpu(ex->ee_block));
1294 return -EIO;
1296 while (--depth >= 0) {
1297 ix = path[depth].p_idx;
1298 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1299 EXT4_ERROR_INODE(inode,
1300 "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!",
1301 ix != NULL ? le32_to_cpu(ix->ei_block) : 0,
1302 EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ?
1303 le32_to_cpu(EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block) : 0,
1304 depth);
1305 return -EIO;
1308 return 0;
1311 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1312 EXT4_ERROR_INODE(inode,
1313 "logical %d < ee_block %d + ee_len %d!",
1314 *logical, le32_to_cpu(ex->ee_block), ee_len);
1315 return -EIO;
1318 *logical = le32_to_cpu(ex->ee_block) + ee_len - 1;
1319 *phys = ext4_ext_pblock(ex) + ee_len - 1;
1320 return 0;
1324 * search the closest allocated block to the right for *logical
1325 * and returns it at @logical + it's physical address at @phys
1326 * if *logical is the largest allocated block, the function
1327 * returns 0 at @phys
1328 * return value contains 0 (success) or error code
1330 static int ext4_ext_search_right(struct inode *inode,
1331 struct ext4_ext_path *path,
1332 ext4_lblk_t *logical, ext4_fsblk_t *phys,
1333 struct ext4_extent **ret_ex)
1335 struct buffer_head *bh = NULL;
1336 struct ext4_extent_header *eh;
1337 struct ext4_extent_idx *ix;
1338 struct ext4_extent *ex;
1339 ext4_fsblk_t block;
1340 int depth; /* Note, NOT eh_depth; depth from top of tree */
1341 int ee_len;
1343 if (unlikely(path == NULL)) {
1344 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1345 return -EIO;
1347 depth = path->p_depth;
1348 *phys = 0;
1350 if (depth == 0 && path->p_ext == NULL)
1351 return 0;
1353 /* usually extent in the path covers blocks smaller
1354 * then *logical, but it can be that extent is the
1355 * first one in the file */
1357 ex = path[depth].p_ext;
1358 ee_len = ext4_ext_get_actual_len(ex);
1359 if (*logical < le32_to_cpu(ex->ee_block)) {
1360 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1361 EXT4_ERROR_INODE(inode,
1362 "first_extent(path[%d].p_hdr) != ex",
1363 depth);
1364 return -EIO;
1366 while (--depth >= 0) {
1367 ix = path[depth].p_idx;
1368 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1369 EXT4_ERROR_INODE(inode,
1370 "ix != EXT_FIRST_INDEX *logical %d!",
1371 *logical);
1372 return -EIO;
1375 goto found_extent;
1378 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1379 EXT4_ERROR_INODE(inode,
1380 "logical %d < ee_block %d + ee_len %d!",
1381 *logical, le32_to_cpu(ex->ee_block), ee_len);
1382 return -EIO;
1385 if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) {
1386 /* next allocated block in this leaf */
1387 ex++;
1388 goto found_extent;
1391 /* go up and search for index to the right */
1392 while (--depth >= 0) {
1393 ix = path[depth].p_idx;
1394 if (ix != EXT_LAST_INDEX(path[depth].p_hdr))
1395 goto got_index;
1398 /* we've gone up to the root and found no index to the right */
1399 return 0;
1401 got_index:
1402 /* we've found index to the right, let's
1403 * follow it and find the closest allocated
1404 * block to the right */
1405 ix++;
1406 block = ext4_idx_pblock(ix);
1407 while (++depth < path->p_depth) {
1408 bh = sb_bread(inode->i_sb, block);
1409 if (bh == NULL)
1410 return -EIO;
1411 eh = ext_block_hdr(bh);
1412 /* subtract from p_depth to get proper eh_depth */
1413 if (ext4_ext_check_block(inode, eh,
1414 path->p_depth - depth, bh)) {
1415 put_bh(bh);
1416 return -EIO;
1418 ix = EXT_FIRST_INDEX(eh);
1419 block = ext4_idx_pblock(ix);
1420 put_bh(bh);
1423 bh = sb_bread(inode->i_sb, block);
1424 if (bh == NULL)
1425 return -EIO;
1426 eh = ext_block_hdr(bh);
1427 if (ext4_ext_check_block(inode, eh, path->p_depth - depth, bh)) {
1428 put_bh(bh);
1429 return -EIO;
1431 ex = EXT_FIRST_EXTENT(eh);
1432 found_extent:
1433 *logical = le32_to_cpu(ex->ee_block);
1434 *phys = ext4_ext_pblock(ex);
1435 *ret_ex = ex;
1436 if (bh)
1437 put_bh(bh);
1438 return 0;
1442 * ext4_ext_next_allocated_block:
1443 * returns allocated block in subsequent extent or EXT_MAX_BLOCKS.
1444 * NOTE: it considers block number from index entry as
1445 * allocated block. Thus, index entries have to be consistent
1446 * with leaves.
1448 static ext4_lblk_t
1449 ext4_ext_next_allocated_block(struct ext4_ext_path *path)
1451 int depth;
1453 BUG_ON(path == NULL);
1454 depth = path->p_depth;
1456 if (depth == 0 && path->p_ext == NULL)
1457 return EXT_MAX_BLOCKS;
1459 while (depth >= 0) {
1460 if (depth == path->p_depth) {
1461 /* leaf */
1462 if (path[depth].p_ext &&
1463 path[depth].p_ext !=
1464 EXT_LAST_EXTENT(path[depth].p_hdr))
1465 return le32_to_cpu(path[depth].p_ext[1].ee_block);
1466 } else {
1467 /* index */
1468 if (path[depth].p_idx !=
1469 EXT_LAST_INDEX(path[depth].p_hdr))
1470 return le32_to_cpu(path[depth].p_idx[1].ei_block);
1472 depth--;
1475 return EXT_MAX_BLOCKS;
1479 * ext4_ext_next_leaf_block:
1480 * returns first allocated block from next leaf or EXT_MAX_BLOCKS
1482 static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path)
1484 int depth;
1486 BUG_ON(path == NULL);
1487 depth = path->p_depth;
1489 /* zero-tree has no leaf blocks at all */
1490 if (depth == 0)
1491 return EXT_MAX_BLOCKS;
1493 /* go to index block */
1494 depth--;
1496 while (depth >= 0) {
1497 if (path[depth].p_idx !=
1498 EXT_LAST_INDEX(path[depth].p_hdr))
1499 return (ext4_lblk_t)
1500 le32_to_cpu(path[depth].p_idx[1].ei_block);
1501 depth--;
1504 return EXT_MAX_BLOCKS;
1508 * ext4_ext_correct_indexes:
1509 * if leaf gets modified and modified extent is first in the leaf,
1510 * then we have to correct all indexes above.
1511 * TODO: do we need to correct tree in all cases?
1513 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
1514 struct ext4_ext_path *path)
1516 struct ext4_extent_header *eh;
1517 int depth = ext_depth(inode);
1518 struct ext4_extent *ex;
1519 __le32 border;
1520 int k, err = 0;
1522 eh = path[depth].p_hdr;
1523 ex = path[depth].p_ext;
1525 if (unlikely(ex == NULL || eh == NULL)) {
1526 EXT4_ERROR_INODE(inode,
1527 "ex %p == NULL or eh %p == NULL", ex, eh);
1528 return -EIO;
1531 if (depth == 0) {
1532 /* there is no tree at all */
1533 return 0;
1536 if (ex != EXT_FIRST_EXTENT(eh)) {
1537 /* we correct tree if first leaf got modified only */
1538 return 0;
1542 * TODO: we need correction if border is smaller than current one
1544 k = depth - 1;
1545 border = path[depth].p_ext->ee_block;
1546 err = ext4_ext_get_access(handle, inode, path + k);
1547 if (err)
1548 return err;
1549 path[k].p_idx->ei_block = border;
1550 err = ext4_ext_dirty(handle, inode, path + k);
1551 if (err)
1552 return err;
1554 while (k--) {
1555 /* change all left-side indexes */
1556 if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
1557 break;
1558 err = ext4_ext_get_access(handle, inode, path + k);
1559 if (err)
1560 break;
1561 path[k].p_idx->ei_block = border;
1562 err = ext4_ext_dirty(handle, inode, path + k);
1563 if (err)
1564 break;
1567 return err;
1571 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
1572 struct ext4_extent *ex2)
1574 unsigned short ext1_ee_len, ext2_ee_len, max_len;
1577 * Make sure that either both extents are uninitialized, or
1578 * both are _not_.
1580 if (ext4_ext_is_uninitialized(ex1) ^ ext4_ext_is_uninitialized(ex2))
1581 return 0;
1583 if (ext4_ext_is_uninitialized(ex1))
1584 max_len = EXT_UNINIT_MAX_LEN;
1585 else
1586 max_len = EXT_INIT_MAX_LEN;
1588 ext1_ee_len = ext4_ext_get_actual_len(ex1);
1589 ext2_ee_len = ext4_ext_get_actual_len(ex2);
1591 if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
1592 le32_to_cpu(ex2->ee_block))
1593 return 0;
1596 * To allow future support for preallocated extents to be added
1597 * as an RO_COMPAT feature, refuse to merge to extents if
1598 * this can result in the top bit of ee_len being set.
1600 if (ext1_ee_len + ext2_ee_len > max_len)
1601 return 0;
1602 #ifdef AGGRESSIVE_TEST
1603 if (ext1_ee_len >= 4)
1604 return 0;
1605 #endif
1607 if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2))
1608 return 1;
1609 return 0;
1613 * This function tries to merge the "ex" extent to the next extent in the tree.
1614 * It always tries to merge towards right. If you want to merge towards
1615 * left, pass "ex - 1" as argument instead of "ex".
1616 * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1617 * 1 if they got merged.
1619 static int ext4_ext_try_to_merge_right(struct inode *inode,
1620 struct ext4_ext_path *path,
1621 struct ext4_extent *ex)
1623 struct ext4_extent_header *eh;
1624 unsigned int depth, len;
1625 int merge_done = 0;
1626 int uninitialized = 0;
1628 depth = ext_depth(inode);
1629 BUG_ON(path[depth].p_hdr == NULL);
1630 eh = path[depth].p_hdr;
1632 while (ex < EXT_LAST_EXTENT(eh)) {
1633 if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
1634 break;
1635 /* merge with next extent! */
1636 if (ext4_ext_is_uninitialized(ex))
1637 uninitialized = 1;
1638 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1639 + ext4_ext_get_actual_len(ex + 1));
1640 if (uninitialized)
1641 ext4_ext_mark_uninitialized(ex);
1643 if (ex + 1 < EXT_LAST_EXTENT(eh)) {
1644 len = (EXT_LAST_EXTENT(eh) - ex - 1)
1645 * sizeof(struct ext4_extent);
1646 memmove(ex + 1, ex + 2, len);
1648 le16_add_cpu(&eh->eh_entries, -1);
1649 merge_done = 1;
1650 WARN_ON(eh->eh_entries == 0);
1651 if (!eh->eh_entries)
1652 EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!");
1655 return merge_done;
1659 * This function does a very simple check to see if we can collapse
1660 * an extent tree with a single extent tree leaf block into the inode.
1662 static void ext4_ext_try_to_merge_up(handle_t *handle,
1663 struct inode *inode,
1664 struct ext4_ext_path *path)
1666 size_t s;
1667 unsigned max_root = ext4_ext_space_root(inode, 0);
1668 ext4_fsblk_t blk;
1670 if ((path[0].p_depth != 1) ||
1671 (le16_to_cpu(path[0].p_hdr->eh_entries) != 1) ||
1672 (le16_to_cpu(path[1].p_hdr->eh_entries) > max_root))
1673 return;
1676 * We need to modify the block allocation bitmap and the block
1677 * group descriptor to release the extent tree block. If we
1678 * can't get the journal credits, give up.
1680 if (ext4_journal_extend(handle, 2))
1681 return;
1684 * Copy the extent data up to the inode
1686 blk = ext4_idx_pblock(path[0].p_idx);
1687 s = le16_to_cpu(path[1].p_hdr->eh_entries) *
1688 sizeof(struct ext4_extent_idx);
1689 s += sizeof(struct ext4_extent_header);
1691 memcpy(path[0].p_hdr, path[1].p_hdr, s);
1692 path[0].p_depth = 0;
1693 path[0].p_ext = EXT_FIRST_EXTENT(path[0].p_hdr) +
1694 (path[1].p_ext - EXT_FIRST_EXTENT(path[1].p_hdr));
1695 path[0].p_hdr->eh_max = cpu_to_le16(max_root);
1697 brelse(path[1].p_bh);
1698 ext4_free_blocks(handle, inode, NULL, blk, 1,
1699 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
1703 * This function tries to merge the @ex extent to neighbours in the tree.
1704 * return 1 if merge left else 0.
1706 static void ext4_ext_try_to_merge(handle_t *handle,
1707 struct inode *inode,
1708 struct ext4_ext_path *path,
1709 struct ext4_extent *ex) {
1710 struct ext4_extent_header *eh;
1711 unsigned int depth;
1712 int merge_done = 0;
1714 depth = ext_depth(inode);
1715 BUG_ON(path[depth].p_hdr == NULL);
1716 eh = path[depth].p_hdr;
1718 if (ex > EXT_FIRST_EXTENT(eh))
1719 merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1);
1721 if (!merge_done)
1722 (void) ext4_ext_try_to_merge_right(inode, path, ex);
1724 ext4_ext_try_to_merge_up(handle, inode, path);
1728 * check if a portion of the "newext" extent overlaps with an
1729 * existing extent.
1731 * If there is an overlap discovered, it updates the length of the newext
1732 * such that there will be no overlap, and then returns 1.
1733 * If there is no overlap found, it returns 0.
1735 static unsigned int ext4_ext_check_overlap(struct ext4_sb_info *sbi,
1736 struct inode *inode,
1737 struct ext4_extent *newext,
1738 struct ext4_ext_path *path)
1740 ext4_lblk_t b1, b2;
1741 unsigned int depth, len1;
1742 unsigned int ret = 0;
1744 b1 = le32_to_cpu(newext->ee_block);
1745 len1 = ext4_ext_get_actual_len(newext);
1746 depth = ext_depth(inode);
1747 if (!path[depth].p_ext)
1748 goto out;
1749 b2 = le32_to_cpu(path[depth].p_ext->ee_block);
1750 b2 &= ~(sbi->s_cluster_ratio - 1);
1753 * get the next allocated block if the extent in the path
1754 * is before the requested block(s)
1756 if (b2 < b1) {
1757 b2 = ext4_ext_next_allocated_block(path);
1758 if (b2 == EXT_MAX_BLOCKS)
1759 goto out;
1760 b2 &= ~(sbi->s_cluster_ratio - 1);
1763 /* check for wrap through zero on extent logical start block*/
1764 if (b1 + len1 < b1) {
1765 len1 = EXT_MAX_BLOCKS - b1;
1766 newext->ee_len = cpu_to_le16(len1);
1767 ret = 1;
1770 /* check for overlap */
1771 if (b1 + len1 > b2) {
1772 newext->ee_len = cpu_to_le16(b2 - b1);
1773 ret = 1;
1775 out:
1776 return ret;
1780 * ext4_ext_insert_extent:
1781 * tries to merge requsted extent into the existing extent or
1782 * inserts requested extent as new one into the tree,
1783 * creating new leaf in the no-space case.
1785 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
1786 struct ext4_ext_path *path,
1787 struct ext4_extent *newext, int flag)
1789 struct ext4_extent_header *eh;
1790 struct ext4_extent *ex, *fex;
1791 struct ext4_extent *nearex; /* nearest extent */
1792 struct ext4_ext_path *npath = NULL;
1793 int depth, len, err;
1794 ext4_lblk_t next;
1795 unsigned uninitialized = 0;
1796 int flags = 0;
1798 if (unlikely(ext4_ext_get_actual_len(newext) == 0)) {
1799 EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0");
1800 return -EIO;
1802 depth = ext_depth(inode);
1803 ex = path[depth].p_ext;
1804 if (unlikely(path[depth].p_hdr == NULL)) {
1805 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1806 return -EIO;
1809 /* try to insert block into found extent and return */
1810 if (ex && !(flag & EXT4_GET_BLOCKS_PRE_IO)
1811 && ext4_can_extents_be_merged(inode, ex, newext)) {
1812 ext_debug("append [%d]%d block to %u:[%d]%d (from %llu)\n",
1813 ext4_ext_is_uninitialized(newext),
1814 ext4_ext_get_actual_len(newext),
1815 le32_to_cpu(ex->ee_block),
1816 ext4_ext_is_uninitialized(ex),
1817 ext4_ext_get_actual_len(ex),
1818 ext4_ext_pblock(ex));
1819 err = ext4_ext_get_access(handle, inode, path + depth);
1820 if (err)
1821 return err;
1824 * ext4_can_extents_be_merged should have checked that either
1825 * both extents are uninitialized, or both aren't. Thus we
1826 * need to check only one of them here.
1828 if (ext4_ext_is_uninitialized(ex))
1829 uninitialized = 1;
1830 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1831 + ext4_ext_get_actual_len(newext));
1832 if (uninitialized)
1833 ext4_ext_mark_uninitialized(ex);
1834 eh = path[depth].p_hdr;
1835 nearex = ex;
1836 goto merge;
1839 depth = ext_depth(inode);
1840 eh = path[depth].p_hdr;
1841 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
1842 goto has_space;
1844 /* probably next leaf has space for us? */
1845 fex = EXT_LAST_EXTENT(eh);
1846 next = EXT_MAX_BLOCKS;
1847 if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block))
1848 next = ext4_ext_next_leaf_block(path);
1849 if (next != EXT_MAX_BLOCKS) {
1850 ext_debug("next leaf block - %u\n", next);
1851 BUG_ON(npath != NULL);
1852 npath = ext4_ext_find_extent(inode, next, NULL);
1853 if (IS_ERR(npath))
1854 return PTR_ERR(npath);
1855 BUG_ON(npath->p_depth != path->p_depth);
1856 eh = npath[depth].p_hdr;
1857 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
1858 ext_debug("next leaf isn't full(%d)\n",
1859 le16_to_cpu(eh->eh_entries));
1860 path = npath;
1861 goto has_space;
1863 ext_debug("next leaf has no free space(%d,%d)\n",
1864 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
1868 * There is no free space in the found leaf.
1869 * We're gonna add a new leaf in the tree.
1871 if (flag & EXT4_GET_BLOCKS_PUNCH_OUT_EXT)
1872 flags = EXT4_MB_USE_ROOT_BLOCKS;
1873 err = ext4_ext_create_new_leaf(handle, inode, flags, path, newext);
1874 if (err)
1875 goto cleanup;
1876 depth = ext_depth(inode);
1877 eh = path[depth].p_hdr;
1879 has_space:
1880 nearex = path[depth].p_ext;
1882 err = ext4_ext_get_access(handle, inode, path + depth);
1883 if (err)
1884 goto cleanup;
1886 if (!nearex) {
1887 /* there is no extent in this leaf, create first one */
1888 ext_debug("first extent in the leaf: %u:%llu:[%d]%d\n",
1889 le32_to_cpu(newext->ee_block),
1890 ext4_ext_pblock(newext),
1891 ext4_ext_is_uninitialized(newext),
1892 ext4_ext_get_actual_len(newext));
1893 nearex = EXT_FIRST_EXTENT(eh);
1894 } else {
1895 if (le32_to_cpu(newext->ee_block)
1896 > le32_to_cpu(nearex->ee_block)) {
1897 /* Insert after */
1898 ext_debug("insert %u:%llu:[%d]%d before: "
1899 "nearest %p\n",
1900 le32_to_cpu(newext->ee_block),
1901 ext4_ext_pblock(newext),
1902 ext4_ext_is_uninitialized(newext),
1903 ext4_ext_get_actual_len(newext),
1904 nearex);
1905 nearex++;
1906 } else {
1907 /* Insert before */
1908 BUG_ON(newext->ee_block == nearex->ee_block);
1909 ext_debug("insert %u:%llu:[%d]%d after: "
1910 "nearest %p\n",
1911 le32_to_cpu(newext->ee_block),
1912 ext4_ext_pblock(newext),
1913 ext4_ext_is_uninitialized(newext),
1914 ext4_ext_get_actual_len(newext),
1915 nearex);
1917 len = EXT_LAST_EXTENT(eh) - nearex + 1;
1918 if (len > 0) {
1919 ext_debug("insert %u:%llu:[%d]%d: "
1920 "move %d extents from 0x%p to 0x%p\n",
1921 le32_to_cpu(newext->ee_block),
1922 ext4_ext_pblock(newext),
1923 ext4_ext_is_uninitialized(newext),
1924 ext4_ext_get_actual_len(newext),
1925 len, nearex, nearex + 1);
1926 memmove(nearex + 1, nearex,
1927 len * sizeof(struct ext4_extent));
1931 le16_add_cpu(&eh->eh_entries, 1);
1932 path[depth].p_ext = nearex;
1933 nearex->ee_block = newext->ee_block;
1934 ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext));
1935 nearex->ee_len = newext->ee_len;
1937 merge:
1938 /* try to merge extents */
1939 if (!(flag & EXT4_GET_BLOCKS_PRE_IO))
1940 ext4_ext_try_to_merge(handle, inode, path, nearex);
1943 /* time to correct all indexes above */
1944 err = ext4_ext_correct_indexes(handle, inode, path);
1945 if (err)
1946 goto cleanup;
1948 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
1950 cleanup:
1951 if (npath) {
1952 ext4_ext_drop_refs(npath);
1953 kfree(npath);
1955 ext4_ext_invalidate_cache(inode);
1956 return err;
1959 static int ext4_ext_walk_space(struct inode *inode, ext4_lblk_t block,
1960 ext4_lblk_t num, ext_prepare_callback func,
1961 void *cbdata)
1963 struct ext4_ext_path *path = NULL;
1964 struct ext4_ext_cache cbex;
1965 struct ext4_extent *ex;
1966 ext4_lblk_t next, start = 0, end = 0;
1967 ext4_lblk_t last = block + num;
1968 int depth, exists, err = 0;
1970 BUG_ON(func == NULL);
1971 BUG_ON(inode == NULL);
1973 while (block < last && block != EXT_MAX_BLOCKS) {
1974 num = last - block;
1975 /* find extent for this block */
1976 down_read(&EXT4_I(inode)->i_data_sem);
1977 path = ext4_ext_find_extent(inode, block, path);
1978 up_read(&EXT4_I(inode)->i_data_sem);
1979 if (IS_ERR(path)) {
1980 err = PTR_ERR(path);
1981 path = NULL;
1982 break;
1985 depth = ext_depth(inode);
1986 if (unlikely(path[depth].p_hdr == NULL)) {
1987 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1988 err = -EIO;
1989 break;
1991 ex = path[depth].p_ext;
1992 next = ext4_ext_next_allocated_block(path);
1994 exists = 0;
1995 if (!ex) {
1996 /* there is no extent yet, so try to allocate
1997 * all requested space */
1998 start = block;
1999 end = block + num;
2000 } else if (le32_to_cpu(ex->ee_block) > block) {
2001 /* need to allocate space before found extent */
2002 start = block;
2003 end = le32_to_cpu(ex->ee_block);
2004 if (block + num < end)
2005 end = block + num;
2006 } else if (block >= le32_to_cpu(ex->ee_block)
2007 + ext4_ext_get_actual_len(ex)) {
2008 /* need to allocate space after found extent */
2009 start = block;
2010 end = block + num;
2011 if (end >= next)
2012 end = next;
2013 } else if (block >= le32_to_cpu(ex->ee_block)) {
2015 * some part of requested space is covered
2016 * by found extent
2018 start = block;
2019 end = le32_to_cpu(ex->ee_block)
2020 + ext4_ext_get_actual_len(ex);
2021 if (block + num < end)
2022 end = block + num;
2023 exists = 1;
2024 } else {
2025 BUG();
2027 BUG_ON(end <= start);
2029 if (!exists) {
2030 cbex.ec_block = start;
2031 cbex.ec_len = end - start;
2032 cbex.ec_start = 0;
2033 } else {
2034 cbex.ec_block = le32_to_cpu(ex->ee_block);
2035 cbex.ec_len = ext4_ext_get_actual_len(ex);
2036 cbex.ec_start = ext4_ext_pblock(ex);
2039 if (unlikely(cbex.ec_len == 0)) {
2040 EXT4_ERROR_INODE(inode, "cbex.ec_len == 0");
2041 err = -EIO;
2042 break;
2044 err = func(inode, next, &cbex, ex, cbdata);
2045 ext4_ext_drop_refs(path);
2047 if (err < 0)
2048 break;
2050 if (err == EXT_REPEAT)
2051 continue;
2052 else if (err == EXT_BREAK) {
2053 err = 0;
2054 break;
2057 if (ext_depth(inode) != depth) {
2058 /* depth was changed. we have to realloc path */
2059 kfree(path);
2060 path = NULL;
2063 block = cbex.ec_block + cbex.ec_len;
2066 if (path) {
2067 ext4_ext_drop_refs(path);
2068 kfree(path);
2071 return err;
2074 static void
2075 ext4_ext_put_in_cache(struct inode *inode, ext4_lblk_t block,
2076 __u32 len, ext4_fsblk_t start)
2078 struct ext4_ext_cache *cex;
2079 BUG_ON(len == 0);
2080 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
2081 trace_ext4_ext_put_in_cache(inode, block, len, start);
2082 cex = &EXT4_I(inode)->i_cached_extent;
2083 cex->ec_block = block;
2084 cex->ec_len = len;
2085 cex->ec_start = start;
2086 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
2090 * ext4_ext_put_gap_in_cache:
2091 * calculate boundaries of the gap that the requested block fits into
2092 * and cache this gap
2094 static void
2095 ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path,
2096 ext4_lblk_t block)
2098 int depth = ext_depth(inode);
2099 unsigned long len;
2100 ext4_lblk_t lblock;
2101 struct ext4_extent *ex;
2103 ex = path[depth].p_ext;
2104 if (ex == NULL) {
2105 /* there is no extent yet, so gap is [0;-] */
2106 lblock = 0;
2107 len = EXT_MAX_BLOCKS;
2108 ext_debug("cache gap(whole file):");
2109 } else if (block < le32_to_cpu(ex->ee_block)) {
2110 lblock = block;
2111 len = le32_to_cpu(ex->ee_block) - block;
2112 ext_debug("cache gap(before): %u [%u:%u]",
2113 block,
2114 le32_to_cpu(ex->ee_block),
2115 ext4_ext_get_actual_len(ex));
2116 } else if (block >= le32_to_cpu(ex->ee_block)
2117 + ext4_ext_get_actual_len(ex)) {
2118 ext4_lblk_t next;
2119 lblock = le32_to_cpu(ex->ee_block)
2120 + ext4_ext_get_actual_len(ex);
2122 next = ext4_ext_next_allocated_block(path);
2123 ext_debug("cache gap(after): [%u:%u] %u",
2124 le32_to_cpu(ex->ee_block),
2125 ext4_ext_get_actual_len(ex),
2126 block);
2127 BUG_ON(next == lblock);
2128 len = next - lblock;
2129 } else {
2130 lblock = len = 0;
2131 BUG();
2134 ext_debug(" -> %u:%lu\n", lblock, len);
2135 ext4_ext_put_in_cache(inode, lblock, len, 0);
2139 * ext4_ext_in_cache()
2140 * Checks to see if the given block is in the cache.
2141 * If it is, the cached extent is stored in the given
2142 * cache extent pointer.
2144 * @inode: The files inode
2145 * @block: The block to look for in the cache
2146 * @ex: Pointer where the cached extent will be stored
2147 * if it contains block
2149 * Return 0 if cache is invalid; 1 if the cache is valid
2151 static int
2152 ext4_ext_in_cache(struct inode *inode, ext4_lblk_t block,
2153 struct ext4_extent *ex)
2155 struct ext4_ext_cache *cex;
2156 struct ext4_sb_info *sbi;
2157 int ret = 0;
2160 * We borrow i_block_reservation_lock to protect i_cached_extent
2162 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
2163 cex = &EXT4_I(inode)->i_cached_extent;
2164 sbi = EXT4_SB(inode->i_sb);
2166 /* has cache valid data? */
2167 if (cex->ec_len == 0)
2168 goto errout;
2170 if (in_range(block, cex->ec_block, cex->ec_len)) {
2171 ex->ee_block = cpu_to_le32(cex->ec_block);
2172 ext4_ext_store_pblock(ex, cex->ec_start);
2173 ex->ee_len = cpu_to_le16(cex->ec_len);
2174 ext_debug("%u cached by %u:%u:%llu\n",
2175 block,
2176 cex->ec_block, cex->ec_len, cex->ec_start);
2177 ret = 1;
2179 errout:
2180 trace_ext4_ext_in_cache(inode, block, ret);
2181 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
2182 return ret;
2186 * ext4_ext_rm_idx:
2187 * removes index from the index block.
2189 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
2190 struct ext4_ext_path *path)
2192 int err;
2193 ext4_fsblk_t leaf;
2195 /* free index block */
2196 path--;
2197 leaf = ext4_idx_pblock(path->p_idx);
2198 if (unlikely(path->p_hdr->eh_entries == 0)) {
2199 EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0");
2200 return -EIO;
2202 err = ext4_ext_get_access(handle, inode, path);
2203 if (err)
2204 return err;
2206 if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) {
2207 int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx;
2208 len *= sizeof(struct ext4_extent_idx);
2209 memmove(path->p_idx, path->p_idx + 1, len);
2212 le16_add_cpu(&path->p_hdr->eh_entries, -1);
2213 err = ext4_ext_dirty(handle, inode, path);
2214 if (err)
2215 return err;
2216 ext_debug("index is empty, remove it, free block %llu\n", leaf);
2217 trace_ext4_ext_rm_idx(inode, leaf);
2219 ext4_free_blocks(handle, inode, NULL, leaf, 1,
2220 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
2221 return err;
2225 * ext4_ext_calc_credits_for_single_extent:
2226 * This routine returns max. credits that needed to insert an extent
2227 * to the extent tree.
2228 * When pass the actual path, the caller should calculate credits
2229 * under i_data_sem.
2231 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks,
2232 struct ext4_ext_path *path)
2234 if (path) {
2235 int depth = ext_depth(inode);
2236 int ret = 0;
2238 /* probably there is space in leaf? */
2239 if (le16_to_cpu(path[depth].p_hdr->eh_entries)
2240 < le16_to_cpu(path[depth].p_hdr->eh_max)) {
2243 * There are some space in the leaf tree, no
2244 * need to account for leaf block credit
2246 * bitmaps and block group descriptor blocks
2247 * and other metadata blocks still need to be
2248 * accounted.
2250 /* 1 bitmap, 1 block group descriptor */
2251 ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb);
2252 return ret;
2256 return ext4_chunk_trans_blocks(inode, nrblocks);
2260 * How many index/leaf blocks need to change/allocate to modify nrblocks?
2262 * if nrblocks are fit in a single extent (chunk flag is 1), then
2263 * in the worse case, each tree level index/leaf need to be changed
2264 * if the tree split due to insert a new extent, then the old tree
2265 * index/leaf need to be updated too
2267 * If the nrblocks are discontiguous, they could cause
2268 * the whole tree split more than once, but this is really rare.
2270 int ext4_ext_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
2272 int index;
2273 int depth = ext_depth(inode);
2275 if (chunk)
2276 index = depth * 2;
2277 else
2278 index = depth * 3;
2280 return index;
2283 static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
2284 struct ext4_extent *ex,
2285 ext4_fsblk_t *partial_cluster,
2286 ext4_lblk_t from, ext4_lblk_t to)
2288 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2289 unsigned short ee_len = ext4_ext_get_actual_len(ex);
2290 ext4_fsblk_t pblk;
2291 int flags = 0;
2293 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2294 flags |= EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET;
2295 else if (ext4_should_journal_data(inode))
2296 flags |= EXT4_FREE_BLOCKS_FORGET;
2299 * For bigalloc file systems, we never free a partial cluster
2300 * at the beginning of the extent. Instead, we make a note
2301 * that we tried freeing the cluster, and check to see if we
2302 * need to free it on a subsequent call to ext4_remove_blocks,
2303 * or at the end of the ext4_truncate() operation.
2305 flags |= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER;
2307 trace_ext4_remove_blocks(inode, ex, from, to, *partial_cluster);
2309 * If we have a partial cluster, and it's different from the
2310 * cluster of the last block, we need to explicitly free the
2311 * partial cluster here.
2313 pblk = ext4_ext_pblock(ex) + ee_len - 1;
2314 if (*partial_cluster && (EXT4_B2C(sbi, pblk) != *partial_cluster)) {
2315 ext4_free_blocks(handle, inode, NULL,
2316 EXT4_C2B(sbi, *partial_cluster),
2317 sbi->s_cluster_ratio, flags);
2318 *partial_cluster = 0;
2321 #ifdef EXTENTS_STATS
2323 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2324 spin_lock(&sbi->s_ext_stats_lock);
2325 sbi->s_ext_blocks += ee_len;
2326 sbi->s_ext_extents++;
2327 if (ee_len < sbi->s_ext_min)
2328 sbi->s_ext_min = ee_len;
2329 if (ee_len > sbi->s_ext_max)
2330 sbi->s_ext_max = ee_len;
2331 if (ext_depth(inode) > sbi->s_depth_max)
2332 sbi->s_depth_max = ext_depth(inode);
2333 spin_unlock(&sbi->s_ext_stats_lock);
2335 #endif
2336 if (from >= le32_to_cpu(ex->ee_block)
2337 && to == le32_to_cpu(ex->ee_block) + ee_len - 1) {
2338 /* tail removal */
2339 ext4_lblk_t num;
2341 num = le32_to_cpu(ex->ee_block) + ee_len - from;
2342 pblk = ext4_ext_pblock(ex) + ee_len - num;
2343 ext_debug("free last %u blocks starting %llu\n", num, pblk);
2344 ext4_free_blocks(handle, inode, NULL, pblk, num, flags);
2346 * If the block range to be freed didn't start at the
2347 * beginning of a cluster, and we removed the entire
2348 * extent, save the partial cluster here, since we
2349 * might need to delete if we determine that the
2350 * truncate operation has removed all of the blocks in
2351 * the cluster.
2353 if (pblk & (sbi->s_cluster_ratio - 1) &&
2354 (ee_len == num))
2355 *partial_cluster = EXT4_B2C(sbi, pblk);
2356 else
2357 *partial_cluster = 0;
2358 } else if (from == le32_to_cpu(ex->ee_block)
2359 && to <= le32_to_cpu(ex->ee_block) + ee_len - 1) {
2360 /* head removal */
2361 ext4_lblk_t num;
2362 ext4_fsblk_t start;
2364 num = to - from;
2365 start = ext4_ext_pblock(ex);
2367 ext_debug("free first %u blocks starting %llu\n", num, start);
2368 ext4_free_blocks(handle, inode, NULL, start, num, flags);
2370 } else {
2371 printk(KERN_INFO "strange request: removal(2) "
2372 "%u-%u from %u:%u\n",
2373 from, to, le32_to_cpu(ex->ee_block), ee_len);
2375 return 0;
2380 * ext4_ext_rm_leaf() Removes the extents associated with the
2381 * blocks appearing between "start" and "end", and splits the extents
2382 * if "start" and "end" appear in the same extent
2384 * @handle: The journal handle
2385 * @inode: The files inode
2386 * @path: The path to the leaf
2387 * @start: The first block to remove
2388 * @end: The last block to remove
2390 static int
2391 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
2392 struct ext4_ext_path *path, ext4_fsblk_t *partial_cluster,
2393 ext4_lblk_t start, ext4_lblk_t end)
2395 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2396 int err = 0, correct_index = 0;
2397 int depth = ext_depth(inode), credits;
2398 struct ext4_extent_header *eh;
2399 ext4_lblk_t a, b;
2400 unsigned num;
2401 ext4_lblk_t ex_ee_block;
2402 unsigned short ex_ee_len;
2403 unsigned uninitialized = 0;
2404 struct ext4_extent *ex;
2406 /* the header must be checked already in ext4_ext_remove_space() */
2407 ext_debug("truncate since %u in leaf to %u\n", start, end);
2408 if (!path[depth].p_hdr)
2409 path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
2410 eh = path[depth].p_hdr;
2411 if (unlikely(path[depth].p_hdr == NULL)) {
2412 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2413 return -EIO;
2415 /* find where to start removing */
2416 ex = EXT_LAST_EXTENT(eh);
2418 ex_ee_block = le32_to_cpu(ex->ee_block);
2419 ex_ee_len = ext4_ext_get_actual_len(ex);
2421 trace_ext4_ext_rm_leaf(inode, start, ex, *partial_cluster);
2423 while (ex >= EXT_FIRST_EXTENT(eh) &&
2424 ex_ee_block + ex_ee_len > start) {
2426 if (ext4_ext_is_uninitialized(ex))
2427 uninitialized = 1;
2428 else
2429 uninitialized = 0;
2431 ext_debug("remove ext %u:[%d]%d\n", ex_ee_block,
2432 uninitialized, ex_ee_len);
2433 path[depth].p_ext = ex;
2435 a = ex_ee_block > start ? ex_ee_block : start;
2436 b = ex_ee_block+ex_ee_len - 1 < end ?
2437 ex_ee_block+ex_ee_len - 1 : end;
2439 ext_debug(" border %u:%u\n", a, b);
2441 /* If this extent is beyond the end of the hole, skip it */
2442 if (end < ex_ee_block) {
2443 ex--;
2444 ex_ee_block = le32_to_cpu(ex->ee_block);
2445 ex_ee_len = ext4_ext_get_actual_len(ex);
2446 continue;
2447 } else if (b != ex_ee_block + ex_ee_len - 1) {
2448 EXT4_ERROR_INODE(inode,
2449 "can not handle truncate %u:%u "
2450 "on extent %u:%u",
2451 start, end, ex_ee_block,
2452 ex_ee_block + ex_ee_len - 1);
2453 err = -EIO;
2454 goto out;
2455 } else if (a != ex_ee_block) {
2456 /* remove tail of the extent */
2457 num = a - ex_ee_block;
2458 } else {
2459 /* remove whole extent: excellent! */
2460 num = 0;
2463 * 3 for leaf, sb, and inode plus 2 (bmap and group
2464 * descriptor) for each block group; assume two block
2465 * groups plus ex_ee_len/blocks_per_block_group for
2466 * the worst case
2468 credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb));
2469 if (ex == EXT_FIRST_EXTENT(eh)) {
2470 correct_index = 1;
2471 credits += (ext_depth(inode)) + 1;
2473 credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
2475 err = ext4_ext_truncate_extend_restart(handle, inode, credits);
2476 if (err)
2477 goto out;
2479 err = ext4_ext_get_access(handle, inode, path + depth);
2480 if (err)
2481 goto out;
2483 err = ext4_remove_blocks(handle, inode, ex, partial_cluster,
2484 a, b);
2485 if (err)
2486 goto out;
2488 if (num == 0)
2489 /* this extent is removed; mark slot entirely unused */
2490 ext4_ext_store_pblock(ex, 0);
2492 ex->ee_len = cpu_to_le16(num);
2494 * Do not mark uninitialized if all the blocks in the
2495 * extent have been removed.
2497 if (uninitialized && num)
2498 ext4_ext_mark_uninitialized(ex);
2500 * If the extent was completely released,
2501 * we need to remove it from the leaf
2503 if (num == 0) {
2504 if (end != EXT_MAX_BLOCKS - 1) {
2506 * For hole punching, we need to scoot all the
2507 * extents up when an extent is removed so that
2508 * we dont have blank extents in the middle
2510 memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) *
2511 sizeof(struct ext4_extent));
2513 /* Now get rid of the one at the end */
2514 memset(EXT_LAST_EXTENT(eh), 0,
2515 sizeof(struct ext4_extent));
2517 le16_add_cpu(&eh->eh_entries, -1);
2518 } else
2519 *partial_cluster = 0;
2521 err = ext4_ext_dirty(handle, inode, path + depth);
2522 if (err)
2523 goto out;
2525 ext_debug("new extent: %u:%u:%llu\n", ex_ee_block, num,
2526 ext4_ext_pblock(ex));
2527 ex--;
2528 ex_ee_block = le32_to_cpu(ex->ee_block);
2529 ex_ee_len = ext4_ext_get_actual_len(ex);
2532 if (correct_index && eh->eh_entries)
2533 err = ext4_ext_correct_indexes(handle, inode, path);
2536 * If there is still a entry in the leaf node, check to see if
2537 * it references the partial cluster. This is the only place
2538 * where it could; if it doesn't, we can free the cluster.
2540 if (*partial_cluster && ex >= EXT_FIRST_EXTENT(eh) &&
2541 (EXT4_B2C(sbi, ext4_ext_pblock(ex) + ex_ee_len - 1) !=
2542 *partial_cluster)) {
2543 int flags = EXT4_FREE_BLOCKS_FORGET;
2545 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2546 flags |= EXT4_FREE_BLOCKS_METADATA;
2548 ext4_free_blocks(handle, inode, NULL,
2549 EXT4_C2B(sbi, *partial_cluster),
2550 sbi->s_cluster_ratio, flags);
2551 *partial_cluster = 0;
2554 /* if this leaf is free, then we should
2555 * remove it from index block above */
2556 if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
2557 err = ext4_ext_rm_idx(handle, inode, path + depth);
2559 out:
2560 return err;
2564 * ext4_ext_more_to_rm:
2565 * returns 1 if current index has to be freed (even partial)
2567 static int
2568 ext4_ext_more_to_rm(struct ext4_ext_path *path)
2570 BUG_ON(path->p_idx == NULL);
2572 if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
2573 return 0;
2576 * if truncate on deeper level happened, it wasn't partial,
2577 * so we have to consider current index for truncation
2579 if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
2580 return 0;
2581 return 1;
2584 static int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start,
2585 ext4_lblk_t end)
2587 struct super_block *sb = inode->i_sb;
2588 int depth = ext_depth(inode);
2589 struct ext4_ext_path *path = NULL;
2590 ext4_fsblk_t partial_cluster = 0;
2591 handle_t *handle;
2592 int i = 0, err = 0;
2594 ext_debug("truncate since %u to %u\n", start, end);
2596 /* probably first extent we're gonna free will be last in block */
2597 handle = ext4_journal_start(inode, depth + 1);
2598 if (IS_ERR(handle))
2599 return PTR_ERR(handle);
2601 again:
2602 ext4_ext_invalidate_cache(inode);
2604 trace_ext4_ext_remove_space(inode, start, depth);
2607 * Check if we are removing extents inside the extent tree. If that
2608 * is the case, we are going to punch a hole inside the extent tree
2609 * so we have to check whether we need to split the extent covering
2610 * the last block to remove so we can easily remove the part of it
2611 * in ext4_ext_rm_leaf().
2613 if (end < EXT_MAX_BLOCKS - 1) {
2614 struct ext4_extent *ex;
2615 ext4_lblk_t ee_block;
2617 /* find extent for this block */
2618 path = ext4_ext_find_extent(inode, end, NULL);
2619 if (IS_ERR(path)) {
2620 ext4_journal_stop(handle);
2621 return PTR_ERR(path);
2623 depth = ext_depth(inode);
2624 /* Leaf not may not exist only if inode has no blocks at all */
2625 ex = path[depth].p_ext;
2626 if (!ex) {
2627 if (depth) {
2628 EXT4_ERROR_INODE(inode,
2629 "path[%d].p_hdr == NULL",
2630 depth);
2631 err = -EIO;
2633 goto out;
2636 ee_block = le32_to_cpu(ex->ee_block);
2639 * See if the last block is inside the extent, if so split
2640 * the extent at 'end' block so we can easily remove the
2641 * tail of the first part of the split extent in
2642 * ext4_ext_rm_leaf().
2644 if (end >= ee_block &&
2645 end < ee_block + ext4_ext_get_actual_len(ex) - 1) {
2646 int split_flag = 0;
2648 if (ext4_ext_is_uninitialized(ex))
2649 split_flag = EXT4_EXT_MARK_UNINIT1 |
2650 EXT4_EXT_MARK_UNINIT2;
2653 * Split the extent in two so that 'end' is the last
2654 * block in the first new extent
2656 err = ext4_split_extent_at(handle, inode, path,
2657 end + 1, split_flag,
2658 EXT4_GET_BLOCKS_PRE_IO |
2659 EXT4_GET_BLOCKS_PUNCH_OUT_EXT);
2661 if (err < 0)
2662 goto out;
2666 * We start scanning from right side, freeing all the blocks
2667 * after i_size and walking into the tree depth-wise.
2669 depth = ext_depth(inode);
2670 if (path) {
2671 int k = i = depth;
2672 while (--k > 0)
2673 path[k].p_block =
2674 le16_to_cpu(path[k].p_hdr->eh_entries)+1;
2675 } else {
2676 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1),
2677 GFP_NOFS);
2678 if (path == NULL) {
2679 ext4_journal_stop(handle);
2680 return -ENOMEM;
2682 path[0].p_depth = depth;
2683 path[0].p_hdr = ext_inode_hdr(inode);
2684 i = 0;
2686 if (ext4_ext_check(inode, path[0].p_hdr, depth)) {
2687 err = -EIO;
2688 goto out;
2691 err = 0;
2693 while (i >= 0 && err == 0) {
2694 if (i == depth) {
2695 /* this is leaf block */
2696 err = ext4_ext_rm_leaf(handle, inode, path,
2697 &partial_cluster, start,
2698 end);
2699 /* root level has p_bh == NULL, brelse() eats this */
2700 brelse(path[i].p_bh);
2701 path[i].p_bh = NULL;
2702 i--;
2703 continue;
2706 /* this is index block */
2707 if (!path[i].p_hdr) {
2708 ext_debug("initialize header\n");
2709 path[i].p_hdr = ext_block_hdr(path[i].p_bh);
2712 if (!path[i].p_idx) {
2713 /* this level hasn't been touched yet */
2714 path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
2715 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
2716 ext_debug("init index ptr: hdr 0x%p, num %d\n",
2717 path[i].p_hdr,
2718 le16_to_cpu(path[i].p_hdr->eh_entries));
2719 } else {
2720 /* we were already here, see at next index */
2721 path[i].p_idx--;
2724 ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
2725 i, EXT_FIRST_INDEX(path[i].p_hdr),
2726 path[i].p_idx);
2727 if (ext4_ext_more_to_rm(path + i)) {
2728 struct buffer_head *bh;
2729 /* go to the next level */
2730 ext_debug("move to level %d (block %llu)\n",
2731 i + 1, ext4_idx_pblock(path[i].p_idx));
2732 memset(path + i + 1, 0, sizeof(*path));
2733 bh = sb_bread(sb, ext4_idx_pblock(path[i].p_idx));
2734 if (!bh) {
2735 /* should we reset i_size? */
2736 err = -EIO;
2737 break;
2739 if (WARN_ON(i + 1 > depth)) {
2740 err = -EIO;
2741 break;
2743 if (ext4_ext_check_block(inode, ext_block_hdr(bh),
2744 depth - i - 1, bh)) {
2745 err = -EIO;
2746 break;
2748 path[i + 1].p_bh = bh;
2750 /* save actual number of indexes since this
2751 * number is changed at the next iteration */
2752 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
2753 i++;
2754 } else {
2755 /* we finished processing this index, go up */
2756 if (path[i].p_hdr->eh_entries == 0 && i > 0) {
2757 /* index is empty, remove it;
2758 * handle must be already prepared by the
2759 * truncatei_leaf() */
2760 err = ext4_ext_rm_idx(handle, inode, path + i);
2762 /* root level has p_bh == NULL, brelse() eats this */
2763 brelse(path[i].p_bh);
2764 path[i].p_bh = NULL;
2765 i--;
2766 ext_debug("return to level %d\n", i);
2770 trace_ext4_ext_remove_space_done(inode, start, depth, partial_cluster,
2771 path->p_hdr->eh_entries);
2773 /* If we still have something in the partial cluster and we have removed
2774 * even the first extent, then we should free the blocks in the partial
2775 * cluster as well. */
2776 if (partial_cluster && path->p_hdr->eh_entries == 0) {
2777 int flags = EXT4_FREE_BLOCKS_FORGET;
2779 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2780 flags |= EXT4_FREE_BLOCKS_METADATA;
2782 ext4_free_blocks(handle, inode, NULL,
2783 EXT4_C2B(EXT4_SB(sb), partial_cluster),
2784 EXT4_SB(sb)->s_cluster_ratio, flags);
2785 partial_cluster = 0;
2788 /* TODO: flexible tree reduction should be here */
2789 if (path->p_hdr->eh_entries == 0) {
2791 * truncate to zero freed all the tree,
2792 * so we need to correct eh_depth
2794 err = ext4_ext_get_access(handle, inode, path);
2795 if (err == 0) {
2796 ext_inode_hdr(inode)->eh_depth = 0;
2797 ext_inode_hdr(inode)->eh_max =
2798 cpu_to_le16(ext4_ext_space_root(inode, 0));
2799 err = ext4_ext_dirty(handle, inode, path);
2802 out:
2803 ext4_ext_drop_refs(path);
2804 kfree(path);
2805 if (err == -EAGAIN) {
2806 path = NULL;
2807 goto again;
2809 ext4_journal_stop(handle);
2811 return err;
2815 * called at mount time
2817 void ext4_ext_init(struct super_block *sb)
2820 * possible initialization would be here
2823 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2824 #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS)
2825 printk(KERN_INFO "EXT4-fs: file extents enabled"
2826 #ifdef AGGRESSIVE_TEST
2827 ", aggressive tests"
2828 #endif
2829 #ifdef CHECK_BINSEARCH
2830 ", check binsearch"
2831 #endif
2832 #ifdef EXTENTS_STATS
2833 ", stats"
2834 #endif
2835 "\n");
2836 #endif
2837 #ifdef EXTENTS_STATS
2838 spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
2839 EXT4_SB(sb)->s_ext_min = 1 << 30;
2840 EXT4_SB(sb)->s_ext_max = 0;
2841 #endif
2846 * called at umount time
2848 void ext4_ext_release(struct super_block *sb)
2850 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
2851 return;
2853 #ifdef EXTENTS_STATS
2854 if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
2855 struct ext4_sb_info *sbi = EXT4_SB(sb);
2856 printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
2857 sbi->s_ext_blocks, sbi->s_ext_extents,
2858 sbi->s_ext_blocks / sbi->s_ext_extents);
2859 printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
2860 sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
2862 #endif
2865 /* FIXME!! we need to try to merge to left or right after zero-out */
2866 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex)
2868 ext4_fsblk_t ee_pblock;
2869 unsigned int ee_len;
2870 int ret;
2872 ee_len = ext4_ext_get_actual_len(ex);
2873 ee_pblock = ext4_ext_pblock(ex);
2875 ret = sb_issue_zeroout(inode->i_sb, ee_pblock, ee_len, GFP_NOFS);
2876 if (ret > 0)
2877 ret = 0;
2879 return ret;
2883 * ext4_split_extent_at() splits an extent at given block.
2885 * @handle: the journal handle
2886 * @inode: the file inode
2887 * @path: the path to the extent
2888 * @split: the logical block where the extent is splitted.
2889 * @split_flags: indicates if the extent could be zeroout if split fails, and
2890 * the states(init or uninit) of new extents.
2891 * @flags: flags used to insert new extent to extent tree.
2894 * Splits extent [a, b] into two extents [a, @split) and [@split, b], states
2895 * of which are deterimined by split_flag.
2897 * There are two cases:
2898 * a> the extent are splitted into two extent.
2899 * b> split is not needed, and just mark the extent.
2901 * return 0 on success.
2903 static int ext4_split_extent_at(handle_t *handle,
2904 struct inode *inode,
2905 struct ext4_ext_path *path,
2906 ext4_lblk_t split,
2907 int split_flag,
2908 int flags)
2910 ext4_fsblk_t newblock;
2911 ext4_lblk_t ee_block;
2912 struct ext4_extent *ex, newex, orig_ex;
2913 struct ext4_extent *ex2 = NULL;
2914 unsigned int ee_len, depth;
2915 int err = 0;
2917 ext_debug("ext4_split_extents_at: inode %lu, logical"
2918 "block %llu\n", inode->i_ino, (unsigned long long)split);
2920 ext4_ext_show_leaf(inode, path);
2922 depth = ext_depth(inode);
2923 ex = path[depth].p_ext;
2924 ee_block = le32_to_cpu(ex->ee_block);
2925 ee_len = ext4_ext_get_actual_len(ex);
2926 newblock = split - ee_block + ext4_ext_pblock(ex);
2928 BUG_ON(split < ee_block || split >= (ee_block + ee_len));
2930 err = ext4_ext_get_access(handle, inode, path + depth);
2931 if (err)
2932 goto out;
2934 if (split == ee_block) {
2936 * case b: block @split is the block that the extent begins with
2937 * then we just change the state of the extent, and splitting
2938 * is not needed.
2940 if (split_flag & EXT4_EXT_MARK_UNINIT2)
2941 ext4_ext_mark_uninitialized(ex);
2942 else
2943 ext4_ext_mark_initialized(ex);
2945 if (!(flags & EXT4_GET_BLOCKS_PRE_IO))
2946 ext4_ext_try_to_merge(handle, inode, path, ex);
2948 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
2949 goto out;
2952 /* case a */
2953 memcpy(&orig_ex, ex, sizeof(orig_ex));
2954 ex->ee_len = cpu_to_le16(split - ee_block);
2955 if (split_flag & EXT4_EXT_MARK_UNINIT1)
2956 ext4_ext_mark_uninitialized(ex);
2959 * path may lead to new leaf, not to original leaf any more
2960 * after ext4_ext_insert_extent() returns,
2962 err = ext4_ext_dirty(handle, inode, path + depth);
2963 if (err)
2964 goto fix_extent_len;
2966 ex2 = &newex;
2967 ex2->ee_block = cpu_to_le32(split);
2968 ex2->ee_len = cpu_to_le16(ee_len - (split - ee_block));
2969 ext4_ext_store_pblock(ex2, newblock);
2970 if (split_flag & EXT4_EXT_MARK_UNINIT2)
2971 ext4_ext_mark_uninitialized(ex2);
2973 err = ext4_ext_insert_extent(handle, inode, path, &newex, flags);
2974 if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
2975 err = ext4_ext_zeroout(inode, &orig_ex);
2976 if (err)
2977 goto fix_extent_len;
2978 /* update the extent length and mark as initialized */
2979 ex->ee_len = cpu_to_le16(ee_len);
2980 ext4_ext_try_to_merge(handle, inode, path, ex);
2981 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
2982 goto out;
2983 } else if (err)
2984 goto fix_extent_len;
2986 out:
2987 ext4_ext_show_leaf(inode, path);
2988 return err;
2990 fix_extent_len:
2991 ex->ee_len = orig_ex.ee_len;
2992 ext4_ext_dirty(handle, inode, path + depth);
2993 return err;
2997 * ext4_split_extents() splits an extent and mark extent which is covered
2998 * by @map as split_flags indicates
3000 * It may result in splitting the extent into multiple extents (upto three)
3001 * There are three possibilities:
3002 * a> There is no split required
3003 * b> Splits in two extents: Split is happening at either end of the extent
3004 * c> Splits in three extents: Somone is splitting in middle of the extent
3007 static int ext4_split_extent(handle_t *handle,
3008 struct inode *inode,
3009 struct ext4_ext_path *path,
3010 struct ext4_map_blocks *map,
3011 int split_flag,
3012 int flags)
3014 ext4_lblk_t ee_block;
3015 struct ext4_extent *ex;
3016 unsigned int ee_len, depth;
3017 int err = 0;
3018 int uninitialized;
3019 int split_flag1, flags1;
3021 depth = ext_depth(inode);
3022 ex = path[depth].p_ext;
3023 ee_block = le32_to_cpu(ex->ee_block);
3024 ee_len = ext4_ext_get_actual_len(ex);
3025 uninitialized = ext4_ext_is_uninitialized(ex);
3027 if (map->m_lblk + map->m_len < ee_block + ee_len) {
3028 split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT ?
3029 EXT4_EXT_MAY_ZEROOUT : 0;
3030 flags1 = flags | EXT4_GET_BLOCKS_PRE_IO;
3031 if (uninitialized)
3032 split_flag1 |= EXT4_EXT_MARK_UNINIT1 |
3033 EXT4_EXT_MARK_UNINIT2;
3034 err = ext4_split_extent_at(handle, inode, path,
3035 map->m_lblk + map->m_len, split_flag1, flags1);
3036 if (err)
3037 goto out;
3040 ext4_ext_drop_refs(path);
3041 path = ext4_ext_find_extent(inode, map->m_lblk, path);
3042 if (IS_ERR(path))
3043 return PTR_ERR(path);
3045 if (map->m_lblk >= ee_block) {
3046 split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT ?
3047 EXT4_EXT_MAY_ZEROOUT : 0;
3048 if (uninitialized)
3049 split_flag1 |= EXT4_EXT_MARK_UNINIT1;
3050 if (split_flag & EXT4_EXT_MARK_UNINIT2)
3051 split_flag1 |= EXT4_EXT_MARK_UNINIT2;
3052 err = ext4_split_extent_at(handle, inode, path,
3053 map->m_lblk, split_flag1, flags);
3054 if (err)
3055 goto out;
3058 ext4_ext_show_leaf(inode, path);
3059 out:
3060 return err ? err : map->m_len;
3064 * This function is called by ext4_ext_map_blocks() if someone tries to write
3065 * to an uninitialized extent. It may result in splitting the uninitialized
3066 * extent into multiple extents (up to three - one initialized and two
3067 * uninitialized).
3068 * There are three possibilities:
3069 * a> There is no split required: Entire extent should be initialized
3070 * b> Splits in two extents: Write is happening at either end of the extent
3071 * c> Splits in three extents: Somone is writing in middle of the extent
3073 * Pre-conditions:
3074 * - The extent pointed to by 'path' is uninitialized.
3075 * - The extent pointed to by 'path' contains a superset
3076 * of the logical span [map->m_lblk, map->m_lblk + map->m_len).
3078 * Post-conditions on success:
3079 * - the returned value is the number of blocks beyond map->l_lblk
3080 * that are allocated and initialized.
3081 * It is guaranteed to be >= map->m_len.
3083 static int ext4_ext_convert_to_initialized(handle_t *handle,
3084 struct inode *inode,
3085 struct ext4_map_blocks *map,
3086 struct ext4_ext_path *path)
3088 struct ext4_sb_info *sbi;
3089 struct ext4_extent_header *eh;
3090 struct ext4_map_blocks split_map;
3091 struct ext4_extent zero_ex;
3092 struct ext4_extent *ex;
3093 ext4_lblk_t ee_block, eof_block;
3094 unsigned int ee_len, depth;
3095 int allocated, max_zeroout = 0;
3096 int err = 0;
3097 int split_flag = 0;
3099 ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical"
3100 "block %llu, max_blocks %u\n", inode->i_ino,
3101 (unsigned long long)map->m_lblk, map->m_len);
3103 sbi = EXT4_SB(inode->i_sb);
3104 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3105 inode->i_sb->s_blocksize_bits;
3106 if (eof_block < map->m_lblk + map->m_len)
3107 eof_block = map->m_lblk + map->m_len;
3109 depth = ext_depth(inode);
3110 eh = path[depth].p_hdr;
3111 ex = path[depth].p_ext;
3112 ee_block = le32_to_cpu(ex->ee_block);
3113 ee_len = ext4_ext_get_actual_len(ex);
3114 allocated = ee_len - (map->m_lblk - ee_block);
3116 trace_ext4_ext_convert_to_initialized_enter(inode, map, ex);
3118 /* Pre-conditions */
3119 BUG_ON(!ext4_ext_is_uninitialized(ex));
3120 BUG_ON(!in_range(map->m_lblk, ee_block, ee_len));
3123 * Attempt to transfer newly initialized blocks from the currently
3124 * uninitialized extent to its left neighbor. This is much cheaper
3125 * than an insertion followed by a merge as those involve costly
3126 * memmove() calls. This is the common case in steady state for
3127 * workloads doing fallocate(FALLOC_FL_KEEP_SIZE) followed by append
3128 * writes.
3130 * Limitations of the current logic:
3131 * - L1: we only deal with writes at the start of the extent.
3132 * The approach could be extended to writes at the end
3133 * of the extent but this scenario was deemed less common.
3134 * - L2: we do not deal with writes covering the whole extent.
3135 * This would require removing the extent if the transfer
3136 * is possible.
3137 * - L3: we only attempt to merge with an extent stored in the
3138 * same extent tree node.
3140 if ((map->m_lblk == ee_block) && /*L1*/
3141 (map->m_len < ee_len) && /*L2*/
3142 (ex > EXT_FIRST_EXTENT(eh))) { /*L3*/
3143 struct ext4_extent *prev_ex;
3144 ext4_lblk_t prev_lblk;
3145 ext4_fsblk_t prev_pblk, ee_pblk;
3146 unsigned int prev_len, write_len;
3148 prev_ex = ex - 1;
3149 prev_lblk = le32_to_cpu(prev_ex->ee_block);
3150 prev_len = ext4_ext_get_actual_len(prev_ex);
3151 prev_pblk = ext4_ext_pblock(prev_ex);
3152 ee_pblk = ext4_ext_pblock(ex);
3153 write_len = map->m_len;
3156 * A transfer of blocks from 'ex' to 'prev_ex' is allowed
3157 * upon those conditions:
3158 * - C1: prev_ex is initialized,
3159 * - C2: prev_ex is logically abutting ex,
3160 * - C3: prev_ex is physically abutting ex,
3161 * - C4: prev_ex can receive the additional blocks without
3162 * overflowing the (initialized) length limit.
3164 if ((!ext4_ext_is_uninitialized(prev_ex)) && /*C1*/
3165 ((prev_lblk + prev_len) == ee_block) && /*C2*/
3166 ((prev_pblk + prev_len) == ee_pblk) && /*C3*/
3167 (prev_len < (EXT_INIT_MAX_LEN - write_len))) { /*C4*/
3168 err = ext4_ext_get_access(handle, inode, path + depth);
3169 if (err)
3170 goto out;
3172 trace_ext4_ext_convert_to_initialized_fastpath(inode,
3173 map, ex, prev_ex);
3175 /* Shift the start of ex by 'write_len' blocks */
3176 ex->ee_block = cpu_to_le32(ee_block + write_len);
3177 ext4_ext_store_pblock(ex, ee_pblk + write_len);
3178 ex->ee_len = cpu_to_le16(ee_len - write_len);
3179 ext4_ext_mark_uninitialized(ex); /* Restore the flag */
3181 /* Extend prev_ex by 'write_len' blocks */
3182 prev_ex->ee_len = cpu_to_le16(prev_len + write_len);
3184 /* Mark the block containing both extents as dirty */
3185 ext4_ext_dirty(handle, inode, path + depth);
3187 /* Update path to point to the right extent */
3188 path[depth].p_ext = prev_ex;
3190 /* Result: number of initialized blocks past m_lblk */
3191 allocated = write_len;
3192 goto out;
3196 WARN_ON(map->m_lblk < ee_block);
3198 * It is safe to convert extent to initialized via explicit
3199 * zeroout only if extent is fully insde i_size or new_size.
3201 split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3203 if (EXT4_EXT_MAY_ZEROOUT & split_flag)
3204 max_zeroout = sbi->s_extent_max_zeroout_kb >>
3205 inode->i_sb->s_blocksize_bits;
3207 /* If extent is less than s_max_zeroout_kb, zeroout directly */
3208 if (max_zeroout && (ee_len <= max_zeroout)) {
3209 err = ext4_ext_zeroout(inode, ex);
3210 if (err)
3211 goto out;
3213 err = ext4_ext_get_access(handle, inode, path + depth);
3214 if (err)
3215 goto out;
3216 ext4_ext_mark_initialized(ex);
3217 ext4_ext_try_to_merge(handle, inode, path, ex);
3218 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3219 goto out;
3223 * four cases:
3224 * 1. split the extent into three extents.
3225 * 2. split the extent into two extents, zeroout the first half.
3226 * 3. split the extent into two extents, zeroout the second half.
3227 * 4. split the extent into two extents with out zeroout.
3229 split_map.m_lblk = map->m_lblk;
3230 split_map.m_len = map->m_len;
3232 if (max_zeroout && (allocated > map->m_len)) {
3233 if (allocated <= max_zeroout) {
3234 /* case 3 */
3235 zero_ex.ee_block =
3236 cpu_to_le32(map->m_lblk);
3237 zero_ex.ee_len = cpu_to_le16(allocated);
3238 ext4_ext_store_pblock(&zero_ex,
3239 ext4_ext_pblock(ex) + map->m_lblk - ee_block);
3240 err = ext4_ext_zeroout(inode, &zero_ex);
3241 if (err)
3242 goto out;
3243 split_map.m_lblk = map->m_lblk;
3244 split_map.m_len = allocated;
3245 } else if (map->m_lblk - ee_block + map->m_len < max_zeroout) {
3246 /* case 2 */
3247 if (map->m_lblk != ee_block) {
3248 zero_ex.ee_block = ex->ee_block;
3249 zero_ex.ee_len = cpu_to_le16(map->m_lblk -
3250 ee_block);
3251 ext4_ext_store_pblock(&zero_ex,
3252 ext4_ext_pblock(ex));
3253 err = ext4_ext_zeroout(inode, &zero_ex);
3254 if (err)
3255 goto out;
3258 split_map.m_lblk = ee_block;
3259 split_map.m_len = map->m_lblk - ee_block + map->m_len;
3260 allocated = map->m_len;
3264 allocated = ext4_split_extent(handle, inode, path,
3265 &split_map, split_flag, 0);
3266 if (allocated < 0)
3267 err = allocated;
3269 out:
3270 return err ? err : allocated;
3274 * This function is called by ext4_ext_map_blocks() from
3275 * ext4_get_blocks_dio_write() when DIO to write
3276 * to an uninitialized extent.
3278 * Writing to an uninitialized extent may result in splitting the uninitialized
3279 * extent into multiple initialized/uninitialized extents (up to three)
3280 * There are three possibilities:
3281 * a> There is no split required: Entire extent should be uninitialized
3282 * b> Splits in two extents: Write is happening at either end of the extent
3283 * c> Splits in three extents: Somone is writing in middle of the extent
3285 * One of more index blocks maybe needed if the extent tree grow after
3286 * the uninitialized extent split. To prevent ENOSPC occur at the IO
3287 * complete, we need to split the uninitialized extent before DIO submit
3288 * the IO. The uninitialized extent called at this time will be split
3289 * into three uninitialized extent(at most). After IO complete, the part
3290 * being filled will be convert to initialized by the end_io callback function
3291 * via ext4_convert_unwritten_extents().
3293 * Returns the size of uninitialized extent to be written on success.
3295 static int ext4_split_unwritten_extents(handle_t *handle,
3296 struct inode *inode,
3297 struct ext4_map_blocks *map,
3298 struct ext4_ext_path *path,
3299 int flags)
3301 ext4_lblk_t eof_block;
3302 ext4_lblk_t ee_block;
3303 struct ext4_extent *ex;
3304 unsigned int ee_len;
3305 int split_flag = 0, depth;
3307 ext_debug("ext4_split_unwritten_extents: inode %lu, logical"
3308 "block %llu, max_blocks %u\n", inode->i_ino,
3309 (unsigned long long)map->m_lblk, map->m_len);
3311 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3312 inode->i_sb->s_blocksize_bits;
3313 if (eof_block < map->m_lblk + map->m_len)
3314 eof_block = map->m_lblk + map->m_len;
3316 * It is safe to convert extent to initialized via explicit
3317 * zeroout only if extent is fully insde i_size or new_size.
3319 depth = ext_depth(inode);
3320 ex = path[depth].p_ext;
3321 ee_block = le32_to_cpu(ex->ee_block);
3322 ee_len = ext4_ext_get_actual_len(ex);
3324 split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3325 split_flag |= EXT4_EXT_MARK_UNINIT2;
3327 flags |= EXT4_GET_BLOCKS_PRE_IO;
3328 return ext4_split_extent(handle, inode, path, map, split_flag, flags);
3331 static int ext4_convert_unwritten_extents_endio(handle_t *handle,
3332 struct inode *inode,
3333 struct ext4_ext_path *path)
3335 struct ext4_extent *ex;
3336 int depth;
3337 int err = 0;
3339 depth = ext_depth(inode);
3340 ex = path[depth].p_ext;
3342 ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical"
3343 "block %llu, max_blocks %u\n", inode->i_ino,
3344 (unsigned long long)le32_to_cpu(ex->ee_block),
3345 ext4_ext_get_actual_len(ex));
3347 err = ext4_ext_get_access(handle, inode, path + depth);
3348 if (err)
3349 goto out;
3350 /* first mark the extent as initialized */
3351 ext4_ext_mark_initialized(ex);
3353 /* note: ext4_ext_correct_indexes() isn't needed here because
3354 * borders are not changed
3356 ext4_ext_try_to_merge(handle, inode, path, ex);
3358 /* Mark modified extent as dirty */
3359 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3360 out:
3361 ext4_ext_show_leaf(inode, path);
3362 return err;
3365 static void unmap_underlying_metadata_blocks(struct block_device *bdev,
3366 sector_t block, int count)
3368 int i;
3369 for (i = 0; i < count; i++)
3370 unmap_underlying_metadata(bdev, block + i);
3374 * Handle EOFBLOCKS_FL flag, clearing it if necessary
3376 static int check_eofblocks_fl(handle_t *handle, struct inode *inode,
3377 ext4_lblk_t lblk,
3378 struct ext4_ext_path *path,
3379 unsigned int len)
3381 int i, depth;
3382 struct ext4_extent_header *eh;
3383 struct ext4_extent *last_ex;
3385 if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
3386 return 0;
3388 depth = ext_depth(inode);
3389 eh = path[depth].p_hdr;
3392 * We're going to remove EOFBLOCKS_FL entirely in future so we
3393 * do not care for this case anymore. Simply remove the flag
3394 * if there are no extents.
3396 if (unlikely(!eh->eh_entries))
3397 goto out;
3398 last_ex = EXT_LAST_EXTENT(eh);
3400 * We should clear the EOFBLOCKS_FL flag if we are writing the
3401 * last block in the last extent in the file. We test this by
3402 * first checking to see if the caller to
3403 * ext4_ext_get_blocks() was interested in the last block (or
3404 * a block beyond the last block) in the current extent. If
3405 * this turns out to be false, we can bail out from this
3406 * function immediately.
3408 if (lblk + len < le32_to_cpu(last_ex->ee_block) +
3409 ext4_ext_get_actual_len(last_ex))
3410 return 0;
3412 * If the caller does appear to be planning to write at or
3413 * beyond the end of the current extent, we then test to see
3414 * if the current extent is the last extent in the file, by
3415 * checking to make sure it was reached via the rightmost node
3416 * at each level of the tree.
3418 for (i = depth-1; i >= 0; i--)
3419 if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr))
3420 return 0;
3421 out:
3422 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3423 return ext4_mark_inode_dirty(handle, inode);
3427 * ext4_find_delalloc_range: find delayed allocated block in the given range.
3429 * Goes through the buffer heads in the range [lblk_start, lblk_end] and returns
3430 * whether there are any buffers marked for delayed allocation. It returns '1'
3431 * on the first delalloc'ed buffer head found. If no buffer head in the given
3432 * range is marked for delalloc, it returns 0.
3433 * lblk_start should always be <= lblk_end.
3434 * search_hint_reverse is to indicate that searching in reverse from lblk_end to
3435 * lblk_start might be more efficient (i.e., we will likely hit the delalloc'ed
3436 * block sooner). This is useful when blocks are truncated sequentially from
3437 * lblk_start towards lblk_end.
3439 static int ext4_find_delalloc_range(struct inode *inode,
3440 ext4_lblk_t lblk_start,
3441 ext4_lblk_t lblk_end,
3442 int search_hint_reverse)
3444 struct address_space *mapping = inode->i_mapping;
3445 struct buffer_head *head, *bh = NULL;
3446 struct page *page;
3447 ext4_lblk_t i, pg_lblk;
3448 pgoff_t index;
3450 if (!test_opt(inode->i_sb, DELALLOC))
3451 return 0;
3453 /* reverse search wont work if fs block size is less than page size */
3454 if (inode->i_blkbits < PAGE_CACHE_SHIFT)
3455 search_hint_reverse = 0;
3457 if (search_hint_reverse)
3458 i = lblk_end;
3459 else
3460 i = lblk_start;
3462 index = i >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
3464 while ((i >= lblk_start) && (i <= lblk_end)) {
3465 page = find_get_page(mapping, index);
3466 if (!page)
3467 goto nextpage;
3469 if (!page_has_buffers(page))
3470 goto nextpage;
3472 head = page_buffers(page);
3473 if (!head)
3474 goto nextpage;
3476 bh = head;
3477 pg_lblk = index << (PAGE_CACHE_SHIFT -
3478 inode->i_blkbits);
3479 do {
3480 if (unlikely(pg_lblk < lblk_start)) {
3482 * This is possible when fs block size is less
3483 * than page size and our cluster starts/ends in
3484 * middle of the page. So we need to skip the
3485 * initial few blocks till we reach the 'lblk'
3487 pg_lblk++;
3488 continue;
3491 /* Check if the buffer is delayed allocated and that it
3492 * is not yet mapped. (when da-buffers are mapped during
3493 * their writeout, their da_mapped bit is set.)
3495 if (buffer_delay(bh) && !buffer_da_mapped(bh)) {
3496 page_cache_release(page);
3497 trace_ext4_find_delalloc_range(inode,
3498 lblk_start, lblk_end,
3499 search_hint_reverse,
3500 1, i);
3501 return 1;
3503 if (search_hint_reverse)
3504 i--;
3505 else
3506 i++;
3507 } while ((i >= lblk_start) && (i <= lblk_end) &&
3508 ((bh = bh->b_this_page) != head));
3509 nextpage:
3510 if (page)
3511 page_cache_release(page);
3513 * Move to next page. 'i' will be the first lblk in the next
3514 * page.
3516 if (search_hint_reverse)
3517 index--;
3518 else
3519 index++;
3520 i = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
3523 trace_ext4_find_delalloc_range(inode, lblk_start, lblk_end,
3524 search_hint_reverse, 0, 0);
3525 return 0;
3528 int ext4_find_delalloc_cluster(struct inode *inode, ext4_lblk_t lblk,
3529 int search_hint_reverse)
3531 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3532 ext4_lblk_t lblk_start, lblk_end;
3533 lblk_start = lblk & (~(sbi->s_cluster_ratio - 1));
3534 lblk_end = lblk_start + sbi->s_cluster_ratio - 1;
3536 return ext4_find_delalloc_range(inode, lblk_start, lblk_end,
3537 search_hint_reverse);
3541 * Determines how many complete clusters (out of those specified by the 'map')
3542 * are under delalloc and were reserved quota for.
3543 * This function is called when we are writing out the blocks that were
3544 * originally written with their allocation delayed, but then the space was
3545 * allocated using fallocate() before the delayed allocation could be resolved.
3546 * The cases to look for are:
3547 * ('=' indicated delayed allocated blocks
3548 * '-' indicates non-delayed allocated blocks)
3549 * (a) partial clusters towards beginning and/or end outside of allocated range
3550 * are not delalloc'ed.
3551 * Ex:
3552 * |----c---=|====c====|====c====|===-c----|
3553 * |++++++ allocated ++++++|
3554 * ==> 4 complete clusters in above example
3556 * (b) partial cluster (outside of allocated range) towards either end is
3557 * marked for delayed allocation. In this case, we will exclude that
3558 * cluster.
3559 * Ex:
3560 * |----====c========|========c========|
3561 * |++++++ allocated ++++++|
3562 * ==> 1 complete clusters in above example
3564 * Ex:
3565 * |================c================|
3566 * |++++++ allocated ++++++|
3567 * ==> 0 complete clusters in above example
3569 * The ext4_da_update_reserve_space will be called only if we
3570 * determine here that there were some "entire" clusters that span
3571 * this 'allocated' range.
3572 * In the non-bigalloc case, this function will just end up returning num_blks
3573 * without ever calling ext4_find_delalloc_range.
3575 static unsigned int
3576 get_reserved_cluster_alloc(struct inode *inode, ext4_lblk_t lblk_start,
3577 unsigned int num_blks)
3579 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3580 ext4_lblk_t alloc_cluster_start, alloc_cluster_end;
3581 ext4_lblk_t lblk_from, lblk_to, c_offset;
3582 unsigned int allocated_clusters = 0;
3584 alloc_cluster_start = EXT4_B2C(sbi, lblk_start);
3585 alloc_cluster_end = EXT4_B2C(sbi, lblk_start + num_blks - 1);
3587 /* max possible clusters for this allocation */
3588 allocated_clusters = alloc_cluster_end - alloc_cluster_start + 1;
3590 trace_ext4_get_reserved_cluster_alloc(inode, lblk_start, num_blks);
3592 /* Check towards left side */
3593 c_offset = lblk_start & (sbi->s_cluster_ratio - 1);
3594 if (c_offset) {
3595 lblk_from = lblk_start & (~(sbi->s_cluster_ratio - 1));
3596 lblk_to = lblk_from + c_offset - 1;
3598 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to, 0))
3599 allocated_clusters--;
3602 /* Now check towards right. */
3603 c_offset = (lblk_start + num_blks) & (sbi->s_cluster_ratio - 1);
3604 if (allocated_clusters && c_offset) {
3605 lblk_from = lblk_start + num_blks;
3606 lblk_to = lblk_from + (sbi->s_cluster_ratio - c_offset) - 1;
3608 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to, 0))
3609 allocated_clusters--;
3612 return allocated_clusters;
3615 static int
3616 ext4_ext_handle_uninitialized_extents(handle_t *handle, struct inode *inode,
3617 struct ext4_map_blocks *map,
3618 struct ext4_ext_path *path, int flags,
3619 unsigned int allocated, ext4_fsblk_t newblock)
3621 int ret = 0;
3622 int err = 0;
3623 ext4_io_end_t *io = ext4_inode_aio(inode);
3625 ext_debug("ext4_ext_handle_uninitialized_extents: inode %lu, logical "
3626 "block %llu, max_blocks %u, flags %x, allocated %u\n",
3627 inode->i_ino, (unsigned long long)map->m_lblk, map->m_len,
3628 flags, allocated);
3629 ext4_ext_show_leaf(inode, path);
3631 trace_ext4_ext_handle_uninitialized_extents(inode, map, allocated,
3632 newblock);
3634 /* get_block() before submit the IO, split the extent */
3635 if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
3636 ret = ext4_split_unwritten_extents(handle, inode, map,
3637 path, flags);
3638 if (ret <= 0)
3639 goto out;
3641 * Flag the inode(non aio case) or end_io struct (aio case)
3642 * that this IO needs to conversion to written when IO is
3643 * completed
3645 if (io)
3646 ext4_set_io_unwritten_flag(inode, io);
3647 else
3648 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3649 if (ext4_should_dioread_nolock(inode))
3650 map->m_flags |= EXT4_MAP_UNINIT;
3651 goto out;
3653 /* IO end_io complete, convert the filled extent to written */
3654 if ((flags & EXT4_GET_BLOCKS_CONVERT)) {
3655 ret = ext4_convert_unwritten_extents_endio(handle, inode,
3656 path);
3657 if (ret >= 0) {
3658 ext4_update_inode_fsync_trans(handle, inode, 1);
3659 err = check_eofblocks_fl(handle, inode, map->m_lblk,
3660 path, map->m_len);
3661 } else
3662 err = ret;
3663 goto out2;
3665 /* buffered IO case */
3667 * repeat fallocate creation request
3668 * we already have an unwritten extent
3670 if (flags & EXT4_GET_BLOCKS_UNINIT_EXT)
3671 goto map_out;
3673 /* buffered READ or buffered write_begin() lookup */
3674 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3676 * We have blocks reserved already. We
3677 * return allocated blocks so that delalloc
3678 * won't do block reservation for us. But
3679 * the buffer head will be unmapped so that
3680 * a read from the block returns 0s.
3682 map->m_flags |= EXT4_MAP_UNWRITTEN;
3683 goto out1;
3686 /* buffered write, writepage time, convert*/
3687 ret = ext4_ext_convert_to_initialized(handle, inode, map, path);
3688 if (ret >= 0)
3689 ext4_update_inode_fsync_trans(handle, inode, 1);
3690 out:
3691 if (ret <= 0) {
3692 err = ret;
3693 goto out2;
3694 } else
3695 allocated = ret;
3696 map->m_flags |= EXT4_MAP_NEW;
3698 * if we allocated more blocks than requested
3699 * we need to make sure we unmap the extra block
3700 * allocated. The actual needed block will get
3701 * unmapped later when we find the buffer_head marked
3702 * new.
3704 if (allocated > map->m_len) {
3705 unmap_underlying_metadata_blocks(inode->i_sb->s_bdev,
3706 newblock + map->m_len,
3707 allocated - map->m_len);
3708 allocated = map->m_len;
3712 * If we have done fallocate with the offset that is already
3713 * delayed allocated, we would have block reservation
3714 * and quota reservation done in the delayed write path.
3715 * But fallocate would have already updated quota and block
3716 * count for this offset. So cancel these reservation
3718 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
3719 unsigned int reserved_clusters;
3720 reserved_clusters = get_reserved_cluster_alloc(inode,
3721 map->m_lblk, map->m_len);
3722 if (reserved_clusters)
3723 ext4_da_update_reserve_space(inode,
3724 reserved_clusters,
3728 map_out:
3729 map->m_flags |= EXT4_MAP_MAPPED;
3730 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) {
3731 err = check_eofblocks_fl(handle, inode, map->m_lblk, path,
3732 map->m_len);
3733 if (err < 0)
3734 goto out2;
3736 out1:
3737 if (allocated > map->m_len)
3738 allocated = map->m_len;
3739 ext4_ext_show_leaf(inode, path);
3740 map->m_pblk = newblock;
3741 map->m_len = allocated;
3742 out2:
3743 if (path) {
3744 ext4_ext_drop_refs(path);
3745 kfree(path);
3747 return err ? err : allocated;
3751 * get_implied_cluster_alloc - check to see if the requested
3752 * allocation (in the map structure) overlaps with a cluster already
3753 * allocated in an extent.
3754 * @sb The filesystem superblock structure
3755 * @map The requested lblk->pblk mapping
3756 * @ex The extent structure which might contain an implied
3757 * cluster allocation
3759 * This function is called by ext4_ext_map_blocks() after we failed to
3760 * find blocks that were already in the inode's extent tree. Hence,
3761 * we know that the beginning of the requested region cannot overlap
3762 * the extent from the inode's extent tree. There are three cases we
3763 * want to catch. The first is this case:
3765 * |--- cluster # N--|
3766 * |--- extent ---| |---- requested region ---|
3767 * |==========|
3769 * The second case that we need to test for is this one:
3771 * |--------- cluster # N ----------------|
3772 * |--- requested region --| |------- extent ----|
3773 * |=======================|
3775 * The third case is when the requested region lies between two extents
3776 * within the same cluster:
3777 * |------------- cluster # N-------------|
3778 * |----- ex -----| |---- ex_right ----|
3779 * |------ requested region ------|
3780 * |================|
3782 * In each of the above cases, we need to set the map->m_pblk and
3783 * map->m_len so it corresponds to the return the extent labelled as
3784 * "|====|" from cluster #N, since it is already in use for data in
3785 * cluster EXT4_B2C(sbi, map->m_lblk). We will then return 1 to
3786 * signal to ext4_ext_map_blocks() that map->m_pblk should be treated
3787 * as a new "allocated" block region. Otherwise, we will return 0 and
3788 * ext4_ext_map_blocks() will then allocate one or more new clusters
3789 * by calling ext4_mb_new_blocks().
3791 static int get_implied_cluster_alloc(struct super_block *sb,
3792 struct ext4_map_blocks *map,
3793 struct ext4_extent *ex,
3794 struct ext4_ext_path *path)
3796 struct ext4_sb_info *sbi = EXT4_SB(sb);
3797 ext4_lblk_t c_offset = map->m_lblk & (sbi->s_cluster_ratio-1);
3798 ext4_lblk_t ex_cluster_start, ex_cluster_end;
3799 ext4_lblk_t rr_cluster_start;
3800 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
3801 ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
3802 unsigned short ee_len = ext4_ext_get_actual_len(ex);
3804 /* The extent passed in that we are trying to match */
3805 ex_cluster_start = EXT4_B2C(sbi, ee_block);
3806 ex_cluster_end = EXT4_B2C(sbi, ee_block + ee_len - 1);
3808 /* The requested region passed into ext4_map_blocks() */
3809 rr_cluster_start = EXT4_B2C(sbi, map->m_lblk);
3811 if ((rr_cluster_start == ex_cluster_end) ||
3812 (rr_cluster_start == ex_cluster_start)) {
3813 if (rr_cluster_start == ex_cluster_end)
3814 ee_start += ee_len - 1;
3815 map->m_pblk = (ee_start & ~(sbi->s_cluster_ratio - 1)) +
3816 c_offset;
3817 map->m_len = min(map->m_len,
3818 (unsigned) sbi->s_cluster_ratio - c_offset);
3820 * Check for and handle this case:
3822 * |--------- cluster # N-------------|
3823 * |------- extent ----|
3824 * |--- requested region ---|
3825 * |===========|
3828 if (map->m_lblk < ee_block)
3829 map->m_len = min(map->m_len, ee_block - map->m_lblk);
3832 * Check for the case where there is already another allocated
3833 * block to the right of 'ex' but before the end of the cluster.
3835 * |------------- cluster # N-------------|
3836 * |----- ex -----| |---- ex_right ----|
3837 * |------ requested region ------|
3838 * |================|
3840 if (map->m_lblk > ee_block) {
3841 ext4_lblk_t next = ext4_ext_next_allocated_block(path);
3842 map->m_len = min(map->m_len, next - map->m_lblk);
3845 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 1);
3846 return 1;
3849 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 0);
3850 return 0;
3855 * Block allocation/map/preallocation routine for extents based files
3858 * Need to be called with
3859 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
3860 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
3862 * return > 0, number of of blocks already mapped/allocated
3863 * if create == 0 and these are pre-allocated blocks
3864 * buffer head is unmapped
3865 * otherwise blocks are mapped
3867 * return = 0, if plain look up failed (blocks have not been allocated)
3868 * buffer head is unmapped
3870 * return < 0, error case.
3872 int ext4_ext_map_blocks(handle_t *handle, struct inode *inode,
3873 struct ext4_map_blocks *map, int flags)
3875 struct ext4_ext_path *path = NULL;
3876 struct ext4_extent newex, *ex, *ex2;
3877 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3878 ext4_fsblk_t newblock = 0;
3879 int free_on_err = 0, err = 0, depth, ret;
3880 unsigned int allocated = 0, offset = 0;
3881 unsigned int allocated_clusters = 0;
3882 struct ext4_allocation_request ar;
3883 ext4_io_end_t *io = ext4_inode_aio(inode);
3884 ext4_lblk_t cluster_offset;
3885 int set_unwritten = 0;
3887 ext_debug("blocks %u/%u requested for inode %lu\n",
3888 map->m_lblk, map->m_len, inode->i_ino);
3889 trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
3891 /* check in cache */
3892 if (ext4_ext_in_cache(inode, map->m_lblk, &newex)) {
3893 if (!newex.ee_start_lo && !newex.ee_start_hi) {
3894 if ((sbi->s_cluster_ratio > 1) &&
3895 ext4_find_delalloc_cluster(inode, map->m_lblk, 0))
3896 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3898 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3900 * block isn't allocated yet and
3901 * user doesn't want to allocate it
3903 goto out2;
3905 /* we should allocate requested block */
3906 } else {
3907 /* block is already allocated */
3908 if (sbi->s_cluster_ratio > 1)
3909 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3910 newblock = map->m_lblk
3911 - le32_to_cpu(newex.ee_block)
3912 + ext4_ext_pblock(&newex);
3913 /* number of remaining blocks in the extent */
3914 allocated = ext4_ext_get_actual_len(&newex) -
3915 (map->m_lblk - le32_to_cpu(newex.ee_block));
3916 goto out;
3920 /* find extent for this block */
3921 path = ext4_ext_find_extent(inode, map->m_lblk, NULL);
3922 if (IS_ERR(path)) {
3923 err = PTR_ERR(path);
3924 path = NULL;
3925 goto out2;
3928 depth = ext_depth(inode);
3931 * consistent leaf must not be empty;
3932 * this situation is possible, though, _during_ tree modification;
3933 * this is why assert can't be put in ext4_ext_find_extent()
3935 if (unlikely(path[depth].p_ext == NULL && depth != 0)) {
3936 EXT4_ERROR_INODE(inode, "bad extent address "
3937 "lblock: %lu, depth: %d pblock %lld",
3938 (unsigned long) map->m_lblk, depth,
3939 path[depth].p_block);
3940 err = -EIO;
3941 goto out2;
3944 ex = path[depth].p_ext;
3945 if (ex) {
3946 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
3947 ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
3948 unsigned short ee_len;
3951 * Uninitialized extents are treated as holes, except that
3952 * we split out initialized portions during a write.
3954 ee_len = ext4_ext_get_actual_len(ex);
3956 trace_ext4_ext_show_extent(inode, ee_block, ee_start, ee_len);
3958 /* if found extent covers block, simply return it */
3959 if (in_range(map->m_lblk, ee_block, ee_len)) {
3960 newblock = map->m_lblk - ee_block + ee_start;
3961 /* number of remaining blocks in the extent */
3962 allocated = ee_len - (map->m_lblk - ee_block);
3963 ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk,
3964 ee_block, ee_len, newblock);
3967 * Do not put uninitialized extent
3968 * in the cache
3970 if (!ext4_ext_is_uninitialized(ex)) {
3971 ext4_ext_put_in_cache(inode, ee_block,
3972 ee_len, ee_start);
3973 goto out;
3975 ret = ext4_ext_handle_uninitialized_extents(
3976 handle, inode, map, path, flags,
3977 allocated, newblock);
3978 return ret;
3982 if ((sbi->s_cluster_ratio > 1) &&
3983 ext4_find_delalloc_cluster(inode, map->m_lblk, 0))
3984 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3987 * requested block isn't allocated yet;
3988 * we couldn't try to create block if create flag is zero
3990 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3992 * put just found gap into cache to speed up
3993 * subsequent requests
3995 ext4_ext_put_gap_in_cache(inode, path, map->m_lblk);
3996 goto out2;
4000 * Okay, we need to do block allocation.
4002 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
4003 newex.ee_block = cpu_to_le32(map->m_lblk);
4004 cluster_offset = map->m_lblk & (sbi->s_cluster_ratio-1);
4007 * If we are doing bigalloc, check to see if the extent returned
4008 * by ext4_ext_find_extent() implies a cluster we can use.
4010 if (cluster_offset && ex &&
4011 get_implied_cluster_alloc(inode->i_sb, map, ex, path)) {
4012 ar.len = allocated = map->m_len;
4013 newblock = map->m_pblk;
4014 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4015 goto got_allocated_blocks;
4018 /* find neighbour allocated blocks */
4019 ar.lleft = map->m_lblk;
4020 err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft);
4021 if (err)
4022 goto out2;
4023 ar.lright = map->m_lblk;
4024 ex2 = NULL;
4025 err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright, &ex2);
4026 if (err)
4027 goto out2;
4029 /* Check if the extent after searching to the right implies a
4030 * cluster we can use. */
4031 if ((sbi->s_cluster_ratio > 1) && ex2 &&
4032 get_implied_cluster_alloc(inode->i_sb, map, ex2, path)) {
4033 ar.len = allocated = map->m_len;
4034 newblock = map->m_pblk;
4035 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4036 goto got_allocated_blocks;
4040 * See if request is beyond maximum number of blocks we can have in
4041 * a single extent. For an initialized extent this limit is
4042 * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is
4043 * EXT_UNINIT_MAX_LEN.
4045 if (map->m_len > EXT_INIT_MAX_LEN &&
4046 !(flags & EXT4_GET_BLOCKS_UNINIT_EXT))
4047 map->m_len = EXT_INIT_MAX_LEN;
4048 else if (map->m_len > EXT_UNINIT_MAX_LEN &&
4049 (flags & EXT4_GET_BLOCKS_UNINIT_EXT))
4050 map->m_len = EXT_UNINIT_MAX_LEN;
4052 /* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */
4053 newex.ee_len = cpu_to_le16(map->m_len);
4054 err = ext4_ext_check_overlap(sbi, inode, &newex, path);
4055 if (err)
4056 allocated = ext4_ext_get_actual_len(&newex);
4057 else
4058 allocated = map->m_len;
4060 /* allocate new block */
4061 ar.inode = inode;
4062 ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk);
4063 ar.logical = map->m_lblk;
4065 * We calculate the offset from the beginning of the cluster
4066 * for the logical block number, since when we allocate a
4067 * physical cluster, the physical block should start at the
4068 * same offset from the beginning of the cluster. This is
4069 * needed so that future calls to get_implied_cluster_alloc()
4070 * work correctly.
4072 offset = map->m_lblk & (sbi->s_cluster_ratio - 1);
4073 ar.len = EXT4_NUM_B2C(sbi, offset+allocated);
4074 ar.goal -= offset;
4075 ar.logical -= offset;
4076 if (S_ISREG(inode->i_mode))
4077 ar.flags = EXT4_MB_HINT_DATA;
4078 else
4079 /* disable in-core preallocation for non-regular files */
4080 ar.flags = 0;
4081 if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE)
4082 ar.flags |= EXT4_MB_HINT_NOPREALLOC;
4083 newblock = ext4_mb_new_blocks(handle, &ar, &err);
4084 if (!newblock)
4085 goto out2;
4086 ext_debug("allocate new block: goal %llu, found %llu/%u\n",
4087 ar.goal, newblock, allocated);
4088 free_on_err = 1;
4089 allocated_clusters = ar.len;
4090 ar.len = EXT4_C2B(sbi, ar.len) - offset;
4091 if (ar.len > allocated)
4092 ar.len = allocated;
4094 got_allocated_blocks:
4095 /* try to insert new extent into found leaf and return */
4096 ext4_ext_store_pblock(&newex, newblock + offset);
4097 newex.ee_len = cpu_to_le16(ar.len);
4098 /* Mark uninitialized */
4099 if (flags & EXT4_GET_BLOCKS_UNINIT_EXT){
4100 ext4_ext_mark_uninitialized(&newex);
4102 * io_end structure was created for every IO write to an
4103 * uninitialized extent. To avoid unnecessary conversion,
4104 * here we flag the IO that really needs the conversion.
4105 * For non asycn direct IO case, flag the inode state
4106 * that we need to perform conversion when IO is done.
4108 if ((flags & EXT4_GET_BLOCKS_PRE_IO))
4109 set_unwritten = 1;
4110 if (ext4_should_dioread_nolock(inode))
4111 map->m_flags |= EXT4_MAP_UNINIT;
4114 err = 0;
4115 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0)
4116 err = check_eofblocks_fl(handle, inode, map->m_lblk,
4117 path, ar.len);
4118 if (!err)
4119 err = ext4_ext_insert_extent(handle, inode, path,
4120 &newex, flags);
4122 if (!err && set_unwritten) {
4123 if (io)
4124 ext4_set_io_unwritten_flag(inode, io);
4125 else
4126 ext4_set_inode_state(inode,
4127 EXT4_STATE_DIO_UNWRITTEN);
4130 if (err && free_on_err) {
4131 int fb_flags = flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE ?
4132 EXT4_FREE_BLOCKS_NO_QUOT_UPDATE : 0;
4133 /* free data blocks we just allocated */
4134 /* not a good idea to call discard here directly,
4135 * but otherwise we'd need to call it every free() */
4136 ext4_discard_preallocations(inode);
4137 ext4_free_blocks(handle, inode, NULL, ext4_ext_pblock(&newex),
4138 ext4_ext_get_actual_len(&newex), fb_flags);
4139 goto out2;
4142 /* previous routine could use block we allocated */
4143 newblock = ext4_ext_pblock(&newex);
4144 allocated = ext4_ext_get_actual_len(&newex);
4145 if (allocated > map->m_len)
4146 allocated = map->m_len;
4147 map->m_flags |= EXT4_MAP_NEW;
4150 * Update reserved blocks/metadata blocks after successful
4151 * block allocation which had been deferred till now.
4153 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
4154 unsigned int reserved_clusters;
4156 * Check how many clusters we had reserved this allocated range
4158 reserved_clusters = get_reserved_cluster_alloc(inode,
4159 map->m_lblk, allocated);
4160 if (map->m_flags & EXT4_MAP_FROM_CLUSTER) {
4161 if (reserved_clusters) {
4163 * We have clusters reserved for this range.
4164 * But since we are not doing actual allocation
4165 * and are simply using blocks from previously
4166 * allocated cluster, we should release the
4167 * reservation and not claim quota.
4169 ext4_da_update_reserve_space(inode,
4170 reserved_clusters, 0);
4172 } else {
4173 BUG_ON(allocated_clusters < reserved_clusters);
4174 /* We will claim quota for all newly allocated blocks.*/
4175 ext4_da_update_reserve_space(inode, allocated_clusters,
4177 if (reserved_clusters < allocated_clusters) {
4178 struct ext4_inode_info *ei = EXT4_I(inode);
4179 int reservation = allocated_clusters -
4180 reserved_clusters;
4182 * It seems we claimed few clusters outside of
4183 * the range of this allocation. We should give
4184 * it back to the reservation pool. This can
4185 * happen in the following case:
4187 * * Suppose s_cluster_ratio is 4 (i.e., each
4188 * cluster has 4 blocks. Thus, the clusters
4189 * are [0-3],[4-7],[8-11]...
4190 * * First comes delayed allocation write for
4191 * logical blocks 10 & 11. Since there were no
4192 * previous delayed allocated blocks in the
4193 * range [8-11], we would reserve 1 cluster
4194 * for this write.
4195 * * Next comes write for logical blocks 3 to 8.
4196 * In this case, we will reserve 2 clusters
4197 * (for [0-3] and [4-7]; and not for [8-11] as
4198 * that range has a delayed allocated blocks.
4199 * Thus total reserved clusters now becomes 3.
4200 * * Now, during the delayed allocation writeout
4201 * time, we will first write blocks [3-8] and
4202 * allocate 3 clusters for writing these
4203 * blocks. Also, we would claim all these
4204 * three clusters above.
4205 * * Now when we come here to writeout the
4206 * blocks [10-11], we would expect to claim
4207 * the reservation of 1 cluster we had made
4208 * (and we would claim it since there are no
4209 * more delayed allocated blocks in the range
4210 * [8-11]. But our reserved cluster count had
4211 * already gone to 0.
4213 * Thus, at the step 4 above when we determine
4214 * that there are still some unwritten delayed
4215 * allocated blocks outside of our current
4216 * block range, we should increment the
4217 * reserved clusters count so that when the
4218 * remaining blocks finally gets written, we
4219 * could claim them.
4221 dquot_reserve_block(inode,
4222 EXT4_C2B(sbi, reservation));
4223 spin_lock(&ei->i_block_reservation_lock);
4224 ei->i_reserved_data_blocks += reservation;
4225 spin_unlock(&ei->i_block_reservation_lock);
4231 * Cache the extent and update transaction to commit on fdatasync only
4232 * when it is _not_ an uninitialized extent.
4234 if ((flags & EXT4_GET_BLOCKS_UNINIT_EXT) == 0) {
4235 ext4_ext_put_in_cache(inode, map->m_lblk, allocated, newblock);
4236 ext4_update_inode_fsync_trans(handle, inode, 1);
4237 } else
4238 ext4_update_inode_fsync_trans(handle, inode, 0);
4239 out:
4240 if (allocated > map->m_len)
4241 allocated = map->m_len;
4242 ext4_ext_show_leaf(inode, path);
4243 map->m_flags |= EXT4_MAP_MAPPED;
4244 map->m_pblk = newblock;
4245 map->m_len = allocated;
4246 out2:
4247 if (path) {
4248 ext4_ext_drop_refs(path);
4249 kfree(path);
4252 trace_ext4_ext_map_blocks_exit(inode, map->m_lblk,
4253 newblock, map->m_len, err ? err : allocated);
4255 return err ? err : allocated;
4258 void ext4_ext_truncate(struct inode *inode)
4260 struct address_space *mapping = inode->i_mapping;
4261 struct super_block *sb = inode->i_sb;
4262 ext4_lblk_t last_block;
4263 handle_t *handle;
4264 loff_t page_len;
4265 int err = 0;
4268 * finish any pending end_io work so we won't run the risk of
4269 * converting any truncated blocks to initialized later
4271 ext4_flush_unwritten_io(inode);
4274 * probably first extent we're gonna free will be last in block
4276 err = ext4_writepage_trans_blocks(inode);
4277 handle = ext4_journal_start(inode, err);
4278 if (IS_ERR(handle))
4279 return;
4281 if (inode->i_size % PAGE_CACHE_SIZE != 0) {
4282 page_len = PAGE_CACHE_SIZE -
4283 (inode->i_size & (PAGE_CACHE_SIZE - 1));
4285 err = ext4_discard_partial_page_buffers(handle,
4286 mapping, inode->i_size, page_len, 0);
4288 if (err)
4289 goto out_stop;
4292 if (ext4_orphan_add(handle, inode))
4293 goto out_stop;
4295 down_write(&EXT4_I(inode)->i_data_sem);
4296 ext4_ext_invalidate_cache(inode);
4298 ext4_discard_preallocations(inode);
4301 * TODO: optimization is possible here.
4302 * Probably we need not scan at all,
4303 * because page truncation is enough.
4306 /* we have to know where to truncate from in crash case */
4307 EXT4_I(inode)->i_disksize = inode->i_size;
4308 ext4_mark_inode_dirty(handle, inode);
4310 last_block = (inode->i_size + sb->s_blocksize - 1)
4311 >> EXT4_BLOCK_SIZE_BITS(sb);
4312 err = ext4_ext_remove_space(inode, last_block, EXT_MAX_BLOCKS - 1);
4314 /* In a multi-transaction truncate, we only make the final
4315 * transaction synchronous.
4317 if (IS_SYNC(inode))
4318 ext4_handle_sync(handle);
4320 up_write(&EXT4_I(inode)->i_data_sem);
4322 out_stop:
4324 * If this was a simple ftruncate() and the file will remain alive,
4325 * then we need to clear up the orphan record which we created above.
4326 * However, if this was a real unlink then we were called by
4327 * ext4_delete_inode(), and we allow that function to clean up the
4328 * orphan info for us.
4330 if (inode->i_nlink)
4331 ext4_orphan_del(handle, inode);
4333 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4334 ext4_mark_inode_dirty(handle, inode);
4335 ext4_journal_stop(handle);
4338 static void ext4_falloc_update_inode(struct inode *inode,
4339 int mode, loff_t new_size, int update_ctime)
4341 struct timespec now;
4343 if (update_ctime) {
4344 now = current_fs_time(inode->i_sb);
4345 if (!timespec_equal(&inode->i_ctime, &now))
4346 inode->i_ctime = now;
4349 * Update only when preallocation was requested beyond
4350 * the file size.
4352 if (!(mode & FALLOC_FL_KEEP_SIZE)) {
4353 if (new_size > i_size_read(inode))
4354 i_size_write(inode, new_size);
4355 if (new_size > EXT4_I(inode)->i_disksize)
4356 ext4_update_i_disksize(inode, new_size);
4357 } else {
4359 * Mark that we allocate beyond EOF so the subsequent truncate
4360 * can proceed even if the new size is the same as i_size.
4362 if (new_size > i_size_read(inode))
4363 ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4369 * preallocate space for a file. This implements ext4's fallocate file
4370 * operation, which gets called from sys_fallocate system call.
4371 * For block-mapped files, posix_fallocate should fall back to the method
4372 * of writing zeroes to the required new blocks (the same behavior which is
4373 * expected for file systems which do not support fallocate() system call).
4375 long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
4377 struct inode *inode = file->f_path.dentry->d_inode;
4378 handle_t *handle;
4379 loff_t new_size;
4380 unsigned int max_blocks;
4381 int ret = 0;
4382 int ret2 = 0;
4383 int retries = 0;
4384 int flags;
4385 struct ext4_map_blocks map;
4386 unsigned int credits, blkbits = inode->i_blkbits;
4389 * currently supporting (pre)allocate mode for extent-based
4390 * files _only_
4392 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4393 return -EOPNOTSUPP;
4395 /* Return error if mode is not supported */
4396 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
4397 return -EOPNOTSUPP;
4399 if (mode & FALLOC_FL_PUNCH_HOLE)
4400 return ext4_punch_hole(file, offset, len);
4402 trace_ext4_fallocate_enter(inode, offset, len, mode);
4403 map.m_lblk = offset >> blkbits;
4405 * We can't just convert len to max_blocks because
4406 * If blocksize = 4096 offset = 3072 and len = 2048
4408 max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits)
4409 - map.m_lblk;
4411 * credits to insert 1 extent into extent tree
4413 credits = ext4_chunk_trans_blocks(inode, max_blocks);
4414 mutex_lock(&inode->i_mutex);
4415 ret = inode_newsize_ok(inode, (len + offset));
4416 if (ret) {
4417 mutex_unlock(&inode->i_mutex);
4418 trace_ext4_fallocate_exit(inode, offset, max_blocks, ret);
4419 return ret;
4421 flags = EXT4_GET_BLOCKS_CREATE_UNINIT_EXT;
4422 if (mode & FALLOC_FL_KEEP_SIZE)
4423 flags |= EXT4_GET_BLOCKS_KEEP_SIZE;
4425 * Don't normalize the request if it can fit in one extent so
4426 * that it doesn't get unnecessarily split into multiple
4427 * extents.
4429 if (len <= EXT_UNINIT_MAX_LEN << blkbits)
4430 flags |= EXT4_GET_BLOCKS_NO_NORMALIZE;
4431 retry:
4432 while (ret >= 0 && ret < max_blocks) {
4433 map.m_lblk = map.m_lblk + ret;
4434 map.m_len = max_blocks = max_blocks - ret;
4435 handle = ext4_journal_start(inode, credits);
4436 if (IS_ERR(handle)) {
4437 ret = PTR_ERR(handle);
4438 break;
4440 ret = ext4_map_blocks(handle, inode, &map, flags);
4441 if (ret <= 0) {
4442 #ifdef EXT4FS_DEBUG
4443 WARN_ON(ret <= 0);
4444 printk(KERN_ERR "%s: ext4_ext_map_blocks "
4445 "returned error inode#%lu, block=%u, "
4446 "max_blocks=%u", __func__,
4447 inode->i_ino, map.m_lblk, max_blocks);
4448 #endif
4449 ext4_mark_inode_dirty(handle, inode);
4450 ret2 = ext4_journal_stop(handle);
4451 break;
4453 if ((map.m_lblk + ret) >= (EXT4_BLOCK_ALIGN(offset + len,
4454 blkbits) >> blkbits))
4455 new_size = offset + len;
4456 else
4457 new_size = ((loff_t) map.m_lblk + ret) << blkbits;
4459 ext4_falloc_update_inode(inode, mode, new_size,
4460 (map.m_flags & EXT4_MAP_NEW));
4461 ext4_mark_inode_dirty(handle, inode);
4462 if ((file->f_flags & O_SYNC) && ret >= max_blocks)
4463 ext4_handle_sync(handle);
4464 ret2 = ext4_journal_stop(handle);
4465 if (ret2)
4466 break;
4468 if (ret == -ENOSPC &&
4469 ext4_should_retry_alloc(inode->i_sb, &retries)) {
4470 ret = 0;
4471 goto retry;
4473 mutex_unlock(&inode->i_mutex);
4474 trace_ext4_fallocate_exit(inode, offset, max_blocks,
4475 ret > 0 ? ret2 : ret);
4476 return ret > 0 ? ret2 : ret;
4480 * This function convert a range of blocks to written extents
4481 * The caller of this function will pass the start offset and the size.
4482 * all unwritten extents within this range will be converted to
4483 * written extents.
4485 * This function is called from the direct IO end io call back
4486 * function, to convert the fallocated extents after IO is completed.
4487 * Returns 0 on success.
4489 int ext4_convert_unwritten_extents(struct inode *inode, loff_t offset,
4490 ssize_t len)
4492 handle_t *handle;
4493 unsigned int max_blocks;
4494 int ret = 0;
4495 int ret2 = 0;
4496 struct ext4_map_blocks map;
4497 unsigned int credits, blkbits = inode->i_blkbits;
4499 map.m_lblk = offset >> blkbits;
4501 * We can't just convert len to max_blocks because
4502 * If blocksize = 4096 offset = 3072 and len = 2048
4504 max_blocks = ((EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) -
4505 map.m_lblk);
4507 * credits to insert 1 extent into extent tree
4509 credits = ext4_chunk_trans_blocks(inode, max_blocks);
4510 while (ret >= 0 && ret < max_blocks) {
4511 map.m_lblk += ret;
4512 map.m_len = (max_blocks -= ret);
4513 handle = ext4_journal_start(inode, credits);
4514 if (IS_ERR(handle)) {
4515 ret = PTR_ERR(handle);
4516 break;
4518 ret = ext4_map_blocks(handle, inode, &map,
4519 EXT4_GET_BLOCKS_IO_CONVERT_EXT);
4520 if (ret <= 0) {
4521 WARN_ON(ret <= 0);
4522 ext4_msg(inode->i_sb, KERN_ERR,
4523 "%s:%d: inode #%lu: block %u: len %u: "
4524 "ext4_ext_map_blocks returned %d",
4525 __func__, __LINE__, inode->i_ino, map.m_lblk,
4526 map.m_len, ret);
4528 ext4_mark_inode_dirty(handle, inode);
4529 ret2 = ext4_journal_stop(handle);
4530 if (ret <= 0 || ret2 )
4531 break;
4533 return ret > 0 ? ret2 : ret;
4537 * Callback function called for each extent to gather FIEMAP information.
4539 static int ext4_ext_fiemap_cb(struct inode *inode, ext4_lblk_t next,
4540 struct ext4_ext_cache *newex, struct ext4_extent *ex,
4541 void *data)
4543 __u64 logical;
4544 __u64 physical;
4545 __u64 length;
4546 __u32 flags = 0;
4547 int ret = 0;
4548 struct fiemap_extent_info *fieinfo = data;
4549 unsigned char blksize_bits;
4551 blksize_bits = inode->i_sb->s_blocksize_bits;
4552 logical = (__u64)newex->ec_block << blksize_bits;
4554 if (newex->ec_start == 0) {
4556 * No extent in extent-tree contains block @newex->ec_start,
4557 * then the block may stay in 1)a hole or 2)delayed-extent.
4559 * Holes or delayed-extents are processed as follows.
4560 * 1. lookup dirty pages with specified range in pagecache.
4561 * If no page is got, then there is no delayed-extent and
4562 * return with EXT_CONTINUE.
4563 * 2. find the 1st mapped buffer,
4564 * 3. check if the mapped buffer is both in the request range
4565 * and a delayed buffer. If not, there is no delayed-extent,
4566 * then return.
4567 * 4. a delayed-extent is found, the extent will be collected.
4569 ext4_lblk_t end = 0;
4570 pgoff_t last_offset;
4571 pgoff_t offset;
4572 pgoff_t index;
4573 pgoff_t start_index = 0;
4574 struct page **pages = NULL;
4575 struct buffer_head *bh = NULL;
4576 struct buffer_head *head = NULL;
4577 unsigned int nr_pages = PAGE_SIZE / sizeof(struct page *);
4579 pages = kmalloc(PAGE_SIZE, GFP_KERNEL);
4580 if (pages == NULL)
4581 return -ENOMEM;
4583 offset = logical >> PAGE_SHIFT;
4584 repeat:
4585 last_offset = offset;
4586 head = NULL;
4587 ret = find_get_pages_tag(inode->i_mapping, &offset,
4588 PAGECACHE_TAG_DIRTY, nr_pages, pages);
4590 if (!(flags & FIEMAP_EXTENT_DELALLOC)) {
4591 /* First time, try to find a mapped buffer. */
4592 if (ret == 0) {
4593 out:
4594 for (index = 0; index < ret; index++)
4595 page_cache_release(pages[index]);
4596 /* just a hole. */
4597 kfree(pages);
4598 return EXT_CONTINUE;
4600 index = 0;
4602 next_page:
4603 /* Try to find the 1st mapped buffer. */
4604 end = ((__u64)pages[index]->index << PAGE_SHIFT) >>
4605 blksize_bits;
4606 if (!page_has_buffers(pages[index]))
4607 goto out;
4608 head = page_buffers(pages[index]);
4609 if (!head)
4610 goto out;
4612 index++;
4613 bh = head;
4614 do {
4615 if (end >= newex->ec_block +
4616 newex->ec_len)
4617 /* The buffer is out of
4618 * the request range.
4620 goto out;
4622 if (buffer_mapped(bh) &&
4623 end >= newex->ec_block) {
4624 start_index = index - 1;
4625 /* get the 1st mapped buffer. */
4626 goto found_mapped_buffer;
4629 bh = bh->b_this_page;
4630 end++;
4631 } while (bh != head);
4633 /* No mapped buffer in the range found in this page,
4634 * We need to look up next page.
4636 if (index >= ret) {
4637 /* There is no page left, but we need to limit
4638 * newex->ec_len.
4640 newex->ec_len = end - newex->ec_block;
4641 goto out;
4643 goto next_page;
4644 } else {
4645 /*Find contiguous delayed buffers. */
4646 if (ret > 0 && pages[0]->index == last_offset)
4647 head = page_buffers(pages[0]);
4648 bh = head;
4649 index = 1;
4650 start_index = 0;
4653 found_mapped_buffer:
4654 if (bh != NULL && buffer_delay(bh)) {
4655 /* 1st or contiguous delayed buffer found. */
4656 if (!(flags & FIEMAP_EXTENT_DELALLOC)) {
4658 * 1st delayed buffer found, record
4659 * the start of extent.
4661 flags |= FIEMAP_EXTENT_DELALLOC;
4662 newex->ec_block = end;
4663 logical = (__u64)end << blksize_bits;
4665 /* Find contiguous delayed buffers. */
4666 do {
4667 if (!buffer_delay(bh))
4668 goto found_delayed_extent;
4669 bh = bh->b_this_page;
4670 end++;
4671 } while (bh != head);
4673 for (; index < ret; index++) {
4674 if (!page_has_buffers(pages[index])) {
4675 bh = NULL;
4676 break;
4678 head = page_buffers(pages[index]);
4679 if (!head) {
4680 bh = NULL;
4681 break;
4684 if (pages[index]->index !=
4685 pages[start_index]->index + index
4686 - start_index) {
4687 /* Blocks are not contiguous. */
4688 bh = NULL;
4689 break;
4691 bh = head;
4692 do {
4693 if (!buffer_delay(bh))
4694 /* Delayed-extent ends. */
4695 goto found_delayed_extent;
4696 bh = bh->b_this_page;
4697 end++;
4698 } while (bh != head);
4700 } else if (!(flags & FIEMAP_EXTENT_DELALLOC))
4701 /* a hole found. */
4702 goto out;
4704 found_delayed_extent:
4705 newex->ec_len = min(end - newex->ec_block,
4706 (ext4_lblk_t)EXT_INIT_MAX_LEN);
4707 if (ret == nr_pages && bh != NULL &&
4708 newex->ec_len < EXT_INIT_MAX_LEN &&
4709 buffer_delay(bh)) {
4710 /* Have not collected an extent and continue. */
4711 for (index = 0; index < ret; index++)
4712 page_cache_release(pages[index]);
4713 goto repeat;
4716 for (index = 0; index < ret; index++)
4717 page_cache_release(pages[index]);
4718 kfree(pages);
4721 physical = (__u64)newex->ec_start << blksize_bits;
4722 length = (__u64)newex->ec_len << blksize_bits;
4724 if (ex && ext4_ext_is_uninitialized(ex))
4725 flags |= FIEMAP_EXTENT_UNWRITTEN;
4727 if (next == EXT_MAX_BLOCKS)
4728 flags |= FIEMAP_EXTENT_LAST;
4730 ret = fiemap_fill_next_extent(fieinfo, logical, physical,
4731 length, flags);
4732 if (ret < 0)
4733 return ret;
4734 if (ret == 1)
4735 return EXT_BREAK;
4736 return EXT_CONTINUE;
4738 /* fiemap flags we can handle specified here */
4739 #define EXT4_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
4741 static int ext4_xattr_fiemap(struct inode *inode,
4742 struct fiemap_extent_info *fieinfo)
4744 __u64 physical = 0;
4745 __u64 length;
4746 __u32 flags = FIEMAP_EXTENT_LAST;
4747 int blockbits = inode->i_sb->s_blocksize_bits;
4748 int error = 0;
4750 /* in-inode? */
4751 if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4752 struct ext4_iloc iloc;
4753 int offset; /* offset of xattr in inode */
4755 error = ext4_get_inode_loc(inode, &iloc);
4756 if (error)
4757 return error;
4758 physical = iloc.bh->b_blocknr << blockbits;
4759 offset = EXT4_GOOD_OLD_INODE_SIZE +
4760 EXT4_I(inode)->i_extra_isize;
4761 physical += offset;
4762 length = EXT4_SB(inode->i_sb)->s_inode_size - offset;
4763 flags |= FIEMAP_EXTENT_DATA_INLINE;
4764 brelse(iloc.bh);
4765 } else { /* external block */
4766 physical = EXT4_I(inode)->i_file_acl << blockbits;
4767 length = inode->i_sb->s_blocksize;
4770 if (physical)
4771 error = fiemap_fill_next_extent(fieinfo, 0, physical,
4772 length, flags);
4773 return (error < 0 ? error : 0);
4777 * ext4_ext_punch_hole
4779 * Punches a hole of "length" bytes in a file starting
4780 * at byte "offset"
4782 * @inode: The inode of the file to punch a hole in
4783 * @offset: The starting byte offset of the hole
4784 * @length: The length of the hole
4786 * Returns the number of blocks removed or negative on err
4788 int ext4_ext_punch_hole(struct file *file, loff_t offset, loff_t length)
4790 struct inode *inode = file->f_path.dentry->d_inode;
4791 struct super_block *sb = inode->i_sb;
4792 ext4_lblk_t first_block, stop_block;
4793 struct address_space *mapping = inode->i_mapping;
4794 handle_t *handle;
4795 loff_t first_page, last_page, page_len;
4796 loff_t first_page_offset, last_page_offset;
4797 int credits, err = 0;
4800 * Write out all dirty pages to avoid race conditions
4801 * Then release them.
4803 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4804 err = filemap_write_and_wait_range(mapping,
4805 offset, offset + length - 1);
4807 if (err)
4808 return err;
4811 mutex_lock(&inode->i_mutex);
4812 /* It's not possible punch hole on append only file */
4813 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
4814 err = -EPERM;
4815 goto out_mutex;
4817 if (IS_SWAPFILE(inode)) {
4818 err = -ETXTBSY;
4819 goto out_mutex;
4822 /* No need to punch hole beyond i_size */
4823 if (offset >= inode->i_size)
4824 goto out_mutex;
4827 * If the hole extends beyond i_size, set the hole
4828 * to end after the page that contains i_size
4830 if (offset + length > inode->i_size) {
4831 length = inode->i_size +
4832 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
4833 offset;
4836 first_page = (offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
4837 last_page = (offset + length) >> PAGE_CACHE_SHIFT;
4839 first_page_offset = first_page << PAGE_CACHE_SHIFT;
4840 last_page_offset = last_page << PAGE_CACHE_SHIFT;
4842 /* Now release the pages */
4843 if (last_page_offset > first_page_offset) {
4844 truncate_pagecache_range(inode, first_page_offset,
4845 last_page_offset - 1);
4848 /* Wait all existing dio workers, newcomers will block on i_mutex */
4849 ext4_inode_block_unlocked_dio(inode);
4850 err = ext4_flush_unwritten_io(inode);
4851 if (err)
4852 goto out_dio;
4853 inode_dio_wait(inode);
4855 credits = ext4_writepage_trans_blocks(inode);
4856 handle = ext4_journal_start(inode, credits);
4857 if (IS_ERR(handle)) {
4858 err = PTR_ERR(handle);
4859 goto out_dio;
4864 * Now we need to zero out the non-page-aligned data in the
4865 * pages at the start and tail of the hole, and unmap the buffer
4866 * heads for the block aligned regions of the page that were
4867 * completely zeroed.
4869 if (first_page > last_page) {
4871 * If the file space being truncated is contained within a page
4872 * just zero out and unmap the middle of that page
4874 err = ext4_discard_partial_page_buffers(handle,
4875 mapping, offset, length, 0);
4877 if (err)
4878 goto out;
4879 } else {
4881 * zero out and unmap the partial page that contains
4882 * the start of the hole
4884 page_len = first_page_offset - offset;
4885 if (page_len > 0) {
4886 err = ext4_discard_partial_page_buffers(handle, mapping,
4887 offset, page_len, 0);
4888 if (err)
4889 goto out;
4893 * zero out and unmap the partial page that contains
4894 * the end of the hole
4896 page_len = offset + length - last_page_offset;
4897 if (page_len > 0) {
4898 err = ext4_discard_partial_page_buffers(handle, mapping,
4899 last_page_offset, page_len, 0);
4900 if (err)
4901 goto out;
4906 * If i_size is contained in the last page, we need to
4907 * unmap and zero the partial page after i_size
4909 if (inode->i_size >> PAGE_CACHE_SHIFT == last_page &&
4910 inode->i_size % PAGE_CACHE_SIZE != 0) {
4912 page_len = PAGE_CACHE_SIZE -
4913 (inode->i_size & (PAGE_CACHE_SIZE - 1));
4915 if (page_len > 0) {
4916 err = ext4_discard_partial_page_buffers(handle,
4917 mapping, inode->i_size, page_len, 0);
4919 if (err)
4920 goto out;
4924 first_block = (offset + sb->s_blocksize - 1) >>
4925 EXT4_BLOCK_SIZE_BITS(sb);
4926 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4928 /* If there are no blocks to remove, return now */
4929 if (first_block >= stop_block)
4930 goto out;
4932 down_write(&EXT4_I(inode)->i_data_sem);
4933 ext4_ext_invalidate_cache(inode);
4934 ext4_discard_preallocations(inode);
4936 err = ext4_ext_remove_space(inode, first_block, stop_block - 1);
4938 ext4_ext_invalidate_cache(inode);
4939 ext4_discard_preallocations(inode);
4941 if (IS_SYNC(inode))
4942 ext4_handle_sync(handle);
4944 up_write(&EXT4_I(inode)->i_data_sem);
4946 out:
4947 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4948 ext4_mark_inode_dirty(handle, inode);
4949 ext4_journal_stop(handle);
4950 out_dio:
4951 ext4_inode_resume_unlocked_dio(inode);
4952 out_mutex:
4953 mutex_unlock(&inode->i_mutex);
4954 return err;
4956 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4957 __u64 start, __u64 len)
4959 ext4_lblk_t start_blk;
4960 int error = 0;
4962 /* fallback to generic here if not in extents fmt */
4963 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4964 return generic_block_fiemap(inode, fieinfo, start, len,
4965 ext4_get_block);
4967 if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS))
4968 return -EBADR;
4970 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
4971 error = ext4_xattr_fiemap(inode, fieinfo);
4972 } else {
4973 ext4_lblk_t len_blks;
4974 __u64 last_blk;
4976 start_blk = start >> inode->i_sb->s_blocksize_bits;
4977 last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits;
4978 if (last_blk >= EXT_MAX_BLOCKS)
4979 last_blk = EXT_MAX_BLOCKS-1;
4980 len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1;
4983 * Walk the extent tree gathering extent information.
4984 * ext4_ext_fiemap_cb will push extents back to user.
4986 error = ext4_ext_walk_space(inode, start_blk, len_blks,
4987 ext4_ext_fiemap_cb, fieinfo);
4990 return error;