2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
5 * Architecture independence:
6 * Copyright (c) 2005, Bull S.A.
7 * Written by Pierre Peiffer <pierre.peiffer@bull.net>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public Licens
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
24 * Extents support for EXT4
27 * - ext4*_error() should be used in some situations
28 * - analyze all BUG()/BUG_ON(), use -EIO where appropriate
29 * - smart tree reduction
33 #include <linux/time.h>
34 #include <linux/jbd2.h>
35 #include <linux/highuid.h>
36 #include <linux/pagemap.h>
37 #include <linux/quotaops.h>
38 #include <linux/string.h>
39 #include <linux/slab.h>
40 #include <linux/falloc.h>
41 #include <asm/uaccess.h>
42 #include <linux/fiemap.h>
43 #include "ext4_jbd2.h"
45 #include <trace/events/ext4.h>
48 * used by extent splitting.
50 #define EXT4_EXT_MAY_ZEROOUT 0x1 /* safe to zeroout if split fails \
52 #define EXT4_EXT_MARK_UNINIT1 0x2 /* mark first half uninitialized */
53 #define EXT4_EXT_MARK_UNINIT2 0x4 /* mark second half uninitialized */
55 static __le32
ext4_extent_block_csum(struct inode
*inode
,
56 struct ext4_extent_header
*eh
)
58 struct ext4_inode_info
*ei
= EXT4_I(inode
);
59 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
62 csum
= ext4_chksum(sbi
, ei
->i_csum_seed
, (__u8
*)eh
,
63 EXT4_EXTENT_TAIL_OFFSET(eh
));
64 return cpu_to_le32(csum
);
67 static int ext4_extent_block_csum_verify(struct inode
*inode
,
68 struct ext4_extent_header
*eh
)
70 struct ext4_extent_tail
*et
;
72 if (!EXT4_HAS_RO_COMPAT_FEATURE(inode
->i_sb
,
73 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM
))
76 et
= find_ext4_extent_tail(eh
);
77 if (et
->et_checksum
!= ext4_extent_block_csum(inode
, eh
))
82 static void ext4_extent_block_csum_set(struct inode
*inode
,
83 struct ext4_extent_header
*eh
)
85 struct ext4_extent_tail
*et
;
87 if (!EXT4_HAS_RO_COMPAT_FEATURE(inode
->i_sb
,
88 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM
))
91 et
= find_ext4_extent_tail(eh
);
92 et
->et_checksum
= ext4_extent_block_csum(inode
, eh
);
95 static int ext4_split_extent(handle_t
*handle
,
97 struct ext4_ext_path
*path
,
98 struct ext4_map_blocks
*map
,
102 static int ext4_split_extent_at(handle_t
*handle
,
104 struct ext4_ext_path
*path
,
109 static int ext4_ext_truncate_extend_restart(handle_t
*handle
,
115 if (!ext4_handle_valid(handle
))
117 if (handle
->h_buffer_credits
> needed
)
119 err
= ext4_journal_extend(handle
, needed
);
122 err
= ext4_truncate_restart_trans(handle
, inode
, needed
);
134 static int ext4_ext_get_access(handle_t
*handle
, struct inode
*inode
,
135 struct ext4_ext_path
*path
)
138 /* path points to block */
139 return ext4_journal_get_write_access(handle
, path
->p_bh
);
141 /* path points to leaf/index in inode body */
142 /* we use in-core data, no need to protect them */
152 #define ext4_ext_dirty(handle, inode, path) \
153 __ext4_ext_dirty(__func__, __LINE__, (handle), (inode), (path))
154 static int __ext4_ext_dirty(const char *where
, unsigned int line
,
155 handle_t
*handle
, struct inode
*inode
,
156 struct ext4_ext_path
*path
)
160 ext4_extent_block_csum_set(inode
, ext_block_hdr(path
->p_bh
));
161 /* path points to block */
162 err
= __ext4_handle_dirty_metadata(where
, line
, handle
,
165 /* path points to leaf/index in inode body */
166 err
= ext4_mark_inode_dirty(handle
, inode
);
171 static ext4_fsblk_t
ext4_ext_find_goal(struct inode
*inode
,
172 struct ext4_ext_path
*path
,
176 int depth
= path
->p_depth
;
177 struct ext4_extent
*ex
;
180 * Try to predict block placement assuming that we are
181 * filling in a file which will eventually be
182 * non-sparse --- i.e., in the case of libbfd writing
183 * an ELF object sections out-of-order but in a way
184 * the eventually results in a contiguous object or
185 * executable file, or some database extending a table
186 * space file. However, this is actually somewhat
187 * non-ideal if we are writing a sparse file such as
188 * qemu or KVM writing a raw image file that is going
189 * to stay fairly sparse, since it will end up
190 * fragmenting the file system's free space. Maybe we
191 * should have some hueristics or some way to allow
192 * userspace to pass a hint to file system,
193 * especially if the latter case turns out to be
196 ex
= path
[depth
].p_ext
;
198 ext4_fsblk_t ext_pblk
= ext4_ext_pblock(ex
);
199 ext4_lblk_t ext_block
= le32_to_cpu(ex
->ee_block
);
201 if (block
> ext_block
)
202 return ext_pblk
+ (block
- ext_block
);
204 return ext_pblk
- (ext_block
- block
);
207 /* it looks like index is empty;
208 * try to find starting block from index itself */
209 if (path
[depth
].p_bh
)
210 return path
[depth
].p_bh
->b_blocknr
;
213 /* OK. use inode's group */
214 return ext4_inode_to_goal_block(inode
);
218 * Allocation for a meta data block
221 ext4_ext_new_meta_block(handle_t
*handle
, struct inode
*inode
,
222 struct ext4_ext_path
*path
,
223 struct ext4_extent
*ex
, int *err
, unsigned int flags
)
225 ext4_fsblk_t goal
, newblock
;
227 goal
= ext4_ext_find_goal(inode
, path
, le32_to_cpu(ex
->ee_block
));
228 newblock
= ext4_new_meta_blocks(handle
, inode
, goal
, flags
,
233 static inline int ext4_ext_space_block(struct inode
*inode
, int check
)
237 size
= (inode
->i_sb
->s_blocksize
- sizeof(struct ext4_extent_header
))
238 / sizeof(struct ext4_extent
);
239 #ifdef AGGRESSIVE_TEST
240 if (!check
&& size
> 6)
246 static inline int ext4_ext_space_block_idx(struct inode
*inode
, int check
)
250 size
= (inode
->i_sb
->s_blocksize
- sizeof(struct ext4_extent_header
))
251 / sizeof(struct ext4_extent_idx
);
252 #ifdef AGGRESSIVE_TEST
253 if (!check
&& size
> 5)
259 static inline int ext4_ext_space_root(struct inode
*inode
, int check
)
263 size
= sizeof(EXT4_I(inode
)->i_data
);
264 size
-= sizeof(struct ext4_extent_header
);
265 size
/= sizeof(struct ext4_extent
);
266 #ifdef AGGRESSIVE_TEST
267 if (!check
&& size
> 3)
273 static inline int ext4_ext_space_root_idx(struct inode
*inode
, int check
)
277 size
= sizeof(EXT4_I(inode
)->i_data
);
278 size
-= sizeof(struct ext4_extent_header
);
279 size
/= sizeof(struct ext4_extent_idx
);
280 #ifdef AGGRESSIVE_TEST
281 if (!check
&& size
> 4)
288 * Calculate the number of metadata blocks needed
289 * to allocate @blocks
290 * Worse case is one block per extent
292 int ext4_ext_calc_metadata_amount(struct inode
*inode
, ext4_lblk_t lblock
)
294 struct ext4_inode_info
*ei
= EXT4_I(inode
);
297 idxs
= ((inode
->i_sb
->s_blocksize
- sizeof(struct ext4_extent_header
))
298 / sizeof(struct ext4_extent_idx
));
301 * If the new delayed allocation block is contiguous with the
302 * previous da block, it can share index blocks with the
303 * previous block, so we only need to allocate a new index
304 * block every idxs leaf blocks. At ldxs**2 blocks, we need
305 * an additional index block, and at ldxs**3 blocks, yet
306 * another index blocks.
308 if (ei
->i_da_metadata_calc_len
&&
309 ei
->i_da_metadata_calc_last_lblock
+1 == lblock
) {
312 if ((ei
->i_da_metadata_calc_len
% idxs
) == 0)
314 if ((ei
->i_da_metadata_calc_len
% (idxs
*idxs
)) == 0)
316 if ((ei
->i_da_metadata_calc_len
% (idxs
*idxs
*idxs
)) == 0) {
318 ei
->i_da_metadata_calc_len
= 0;
320 ei
->i_da_metadata_calc_len
++;
321 ei
->i_da_metadata_calc_last_lblock
++;
326 * In the worst case we need a new set of index blocks at
327 * every level of the inode's extent tree.
329 ei
->i_da_metadata_calc_len
= 1;
330 ei
->i_da_metadata_calc_last_lblock
= lblock
;
331 return ext_depth(inode
) + 1;
335 ext4_ext_max_entries(struct inode
*inode
, int depth
)
339 if (depth
== ext_depth(inode
)) {
341 max
= ext4_ext_space_root(inode
, 1);
343 max
= ext4_ext_space_root_idx(inode
, 1);
346 max
= ext4_ext_space_block(inode
, 1);
348 max
= ext4_ext_space_block_idx(inode
, 1);
354 static int ext4_valid_extent(struct inode
*inode
, struct ext4_extent
*ext
)
356 ext4_fsblk_t block
= ext4_ext_pblock(ext
);
357 int len
= ext4_ext_get_actual_len(ext
);
361 return ext4_data_block_valid(EXT4_SB(inode
->i_sb
), block
, len
);
364 static int ext4_valid_extent_idx(struct inode
*inode
,
365 struct ext4_extent_idx
*ext_idx
)
367 ext4_fsblk_t block
= ext4_idx_pblock(ext_idx
);
369 return ext4_data_block_valid(EXT4_SB(inode
->i_sb
), block
, 1);
372 static int ext4_valid_extent_entries(struct inode
*inode
,
373 struct ext4_extent_header
*eh
,
376 unsigned short entries
;
377 if (eh
->eh_entries
== 0)
380 entries
= le16_to_cpu(eh
->eh_entries
);
384 struct ext4_extent
*ext
= EXT_FIRST_EXTENT(eh
);
386 if (!ext4_valid_extent(inode
, ext
))
392 struct ext4_extent_idx
*ext_idx
= EXT_FIRST_INDEX(eh
);
394 if (!ext4_valid_extent_idx(inode
, ext_idx
))
403 static int __ext4_ext_check(const char *function
, unsigned int line
,
404 struct inode
*inode
, struct ext4_extent_header
*eh
,
407 const char *error_msg
;
410 if (unlikely(eh
->eh_magic
!= EXT4_EXT_MAGIC
)) {
411 error_msg
= "invalid magic";
414 if (unlikely(le16_to_cpu(eh
->eh_depth
) != depth
)) {
415 error_msg
= "unexpected eh_depth";
418 if (unlikely(eh
->eh_max
== 0)) {
419 error_msg
= "invalid eh_max";
422 max
= ext4_ext_max_entries(inode
, depth
);
423 if (unlikely(le16_to_cpu(eh
->eh_max
) > max
)) {
424 error_msg
= "too large eh_max";
427 if (unlikely(le16_to_cpu(eh
->eh_entries
) > le16_to_cpu(eh
->eh_max
))) {
428 error_msg
= "invalid eh_entries";
431 if (!ext4_valid_extent_entries(inode
, eh
, depth
)) {
432 error_msg
= "invalid extent entries";
435 /* Verify checksum on non-root extent tree nodes */
436 if (ext_depth(inode
) != depth
&&
437 !ext4_extent_block_csum_verify(inode
, eh
)) {
438 error_msg
= "extent tree corrupted";
444 ext4_error_inode(inode
, function
, line
, 0,
445 "bad header/extent: %s - magic %x, "
446 "entries %u, max %u(%u), depth %u(%u)",
447 error_msg
, le16_to_cpu(eh
->eh_magic
),
448 le16_to_cpu(eh
->eh_entries
), le16_to_cpu(eh
->eh_max
),
449 max
, le16_to_cpu(eh
->eh_depth
), depth
);
454 #define ext4_ext_check(inode, eh, depth) \
455 __ext4_ext_check(__func__, __LINE__, inode, eh, depth)
457 int ext4_ext_check_inode(struct inode
*inode
)
459 return ext4_ext_check(inode
, ext_inode_hdr(inode
), ext_depth(inode
));
462 static int __ext4_ext_check_block(const char *function
, unsigned int line
,
464 struct ext4_extent_header
*eh
,
466 struct buffer_head
*bh
)
470 if (buffer_verified(bh
))
472 ret
= ext4_ext_check(inode
, eh
, depth
);
475 set_buffer_verified(bh
);
479 #define ext4_ext_check_block(inode, eh, depth, bh) \
480 __ext4_ext_check_block(__func__, __LINE__, inode, eh, depth, bh)
483 static void ext4_ext_show_path(struct inode
*inode
, struct ext4_ext_path
*path
)
485 int k
, l
= path
->p_depth
;
488 for (k
= 0; k
<= l
; k
++, path
++) {
490 ext_debug(" %d->%llu", le32_to_cpu(path
->p_idx
->ei_block
),
491 ext4_idx_pblock(path
->p_idx
));
492 } else if (path
->p_ext
) {
493 ext_debug(" %d:[%d]%d:%llu ",
494 le32_to_cpu(path
->p_ext
->ee_block
),
495 ext4_ext_is_uninitialized(path
->p_ext
),
496 ext4_ext_get_actual_len(path
->p_ext
),
497 ext4_ext_pblock(path
->p_ext
));
504 static void ext4_ext_show_leaf(struct inode
*inode
, struct ext4_ext_path
*path
)
506 int depth
= ext_depth(inode
);
507 struct ext4_extent_header
*eh
;
508 struct ext4_extent
*ex
;
514 eh
= path
[depth
].p_hdr
;
515 ex
= EXT_FIRST_EXTENT(eh
);
517 ext_debug("Displaying leaf extents for inode %lu\n", inode
->i_ino
);
519 for (i
= 0; i
< le16_to_cpu(eh
->eh_entries
); i
++, ex
++) {
520 ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex
->ee_block
),
521 ext4_ext_is_uninitialized(ex
),
522 ext4_ext_get_actual_len(ex
), ext4_ext_pblock(ex
));
527 static void ext4_ext_show_move(struct inode
*inode
, struct ext4_ext_path
*path
,
528 ext4_fsblk_t newblock
, int level
)
530 int depth
= ext_depth(inode
);
531 struct ext4_extent
*ex
;
533 if (depth
!= level
) {
534 struct ext4_extent_idx
*idx
;
535 idx
= path
[level
].p_idx
;
536 while (idx
<= EXT_MAX_INDEX(path
[level
].p_hdr
)) {
537 ext_debug("%d: move %d:%llu in new index %llu\n", level
,
538 le32_to_cpu(idx
->ei_block
),
539 ext4_idx_pblock(idx
),
547 ex
= path
[depth
].p_ext
;
548 while (ex
<= EXT_MAX_EXTENT(path
[depth
].p_hdr
)) {
549 ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n",
550 le32_to_cpu(ex
->ee_block
),
552 ext4_ext_is_uninitialized(ex
),
553 ext4_ext_get_actual_len(ex
),
560 #define ext4_ext_show_path(inode, path)
561 #define ext4_ext_show_leaf(inode, path)
562 #define ext4_ext_show_move(inode, path, newblock, level)
565 void ext4_ext_drop_refs(struct ext4_ext_path
*path
)
567 int depth
= path
->p_depth
;
570 for (i
= 0; i
<= depth
; i
++, path
++)
578 * ext4_ext_binsearch_idx:
579 * binary search for the closest index of the given block
580 * the header must be checked before calling this
583 ext4_ext_binsearch_idx(struct inode
*inode
,
584 struct ext4_ext_path
*path
, ext4_lblk_t block
)
586 struct ext4_extent_header
*eh
= path
->p_hdr
;
587 struct ext4_extent_idx
*r
, *l
, *m
;
590 ext_debug("binsearch for %u(idx): ", block
);
592 l
= EXT_FIRST_INDEX(eh
) + 1;
593 r
= EXT_LAST_INDEX(eh
);
596 if (block
< le32_to_cpu(m
->ei_block
))
600 ext_debug("%p(%u):%p(%u):%p(%u) ", l
, le32_to_cpu(l
->ei_block
),
601 m
, le32_to_cpu(m
->ei_block
),
602 r
, le32_to_cpu(r
->ei_block
));
606 ext_debug(" -> %u->%lld ", le32_to_cpu(path
->p_idx
->ei_block
),
607 ext4_idx_pblock(path
->p_idx
));
609 #ifdef CHECK_BINSEARCH
611 struct ext4_extent_idx
*chix
, *ix
;
614 chix
= ix
= EXT_FIRST_INDEX(eh
);
615 for (k
= 0; k
< le16_to_cpu(eh
->eh_entries
); k
++, ix
++) {
617 le32_to_cpu(ix
->ei_block
) <= le32_to_cpu(ix
[-1].ei_block
)) {
618 printk(KERN_DEBUG
"k=%d, ix=0x%p, "
620 ix
, EXT_FIRST_INDEX(eh
));
621 printk(KERN_DEBUG
"%u <= %u\n",
622 le32_to_cpu(ix
->ei_block
),
623 le32_to_cpu(ix
[-1].ei_block
));
625 BUG_ON(k
&& le32_to_cpu(ix
->ei_block
)
626 <= le32_to_cpu(ix
[-1].ei_block
));
627 if (block
< le32_to_cpu(ix
->ei_block
))
631 BUG_ON(chix
!= path
->p_idx
);
638 * ext4_ext_binsearch:
639 * binary search for closest extent of the given block
640 * the header must be checked before calling this
643 ext4_ext_binsearch(struct inode
*inode
,
644 struct ext4_ext_path
*path
, ext4_lblk_t block
)
646 struct ext4_extent_header
*eh
= path
->p_hdr
;
647 struct ext4_extent
*r
, *l
, *m
;
649 if (eh
->eh_entries
== 0) {
651 * this leaf is empty:
652 * we get such a leaf in split/add case
657 ext_debug("binsearch for %u: ", block
);
659 l
= EXT_FIRST_EXTENT(eh
) + 1;
660 r
= EXT_LAST_EXTENT(eh
);
664 if (block
< le32_to_cpu(m
->ee_block
))
668 ext_debug("%p(%u):%p(%u):%p(%u) ", l
, le32_to_cpu(l
->ee_block
),
669 m
, le32_to_cpu(m
->ee_block
),
670 r
, le32_to_cpu(r
->ee_block
));
674 ext_debug(" -> %d:%llu:[%d]%d ",
675 le32_to_cpu(path
->p_ext
->ee_block
),
676 ext4_ext_pblock(path
->p_ext
),
677 ext4_ext_is_uninitialized(path
->p_ext
),
678 ext4_ext_get_actual_len(path
->p_ext
));
680 #ifdef CHECK_BINSEARCH
682 struct ext4_extent
*chex
, *ex
;
685 chex
= ex
= EXT_FIRST_EXTENT(eh
);
686 for (k
= 0; k
< le16_to_cpu(eh
->eh_entries
); k
++, ex
++) {
687 BUG_ON(k
&& le32_to_cpu(ex
->ee_block
)
688 <= le32_to_cpu(ex
[-1].ee_block
));
689 if (block
< le32_to_cpu(ex
->ee_block
))
693 BUG_ON(chex
!= path
->p_ext
);
699 int ext4_ext_tree_init(handle_t
*handle
, struct inode
*inode
)
701 struct ext4_extent_header
*eh
;
703 eh
= ext_inode_hdr(inode
);
706 eh
->eh_magic
= EXT4_EXT_MAGIC
;
707 eh
->eh_max
= cpu_to_le16(ext4_ext_space_root(inode
, 0));
708 ext4_mark_inode_dirty(handle
, inode
);
709 ext4_ext_invalidate_cache(inode
);
713 struct ext4_ext_path
*
714 ext4_ext_find_extent(struct inode
*inode
, ext4_lblk_t block
,
715 struct ext4_ext_path
*path
)
717 struct ext4_extent_header
*eh
;
718 struct buffer_head
*bh
;
719 short int depth
, i
, ppos
= 0, alloc
= 0;
721 eh
= ext_inode_hdr(inode
);
722 depth
= ext_depth(inode
);
724 /* account possible depth increase */
726 path
= kzalloc(sizeof(struct ext4_ext_path
) * (depth
+ 2),
729 return ERR_PTR(-ENOMEM
);
736 /* walk through the tree */
738 ext_debug("depth %d: num %d, max %d\n",
739 ppos
, le16_to_cpu(eh
->eh_entries
), le16_to_cpu(eh
->eh_max
));
741 ext4_ext_binsearch_idx(inode
, path
+ ppos
, block
);
742 path
[ppos
].p_block
= ext4_idx_pblock(path
[ppos
].p_idx
);
743 path
[ppos
].p_depth
= i
;
744 path
[ppos
].p_ext
= NULL
;
746 bh
= sb_getblk(inode
->i_sb
, path
[ppos
].p_block
);
749 if (!bh_uptodate_or_lock(bh
)) {
750 trace_ext4_ext_load_extent(inode
, block
,
752 if (bh_submit_read(bh
) < 0) {
757 eh
= ext_block_hdr(bh
);
759 if (unlikely(ppos
> depth
)) {
761 EXT4_ERROR_INODE(inode
,
762 "ppos %d > depth %d", ppos
, depth
);
765 path
[ppos
].p_bh
= bh
;
766 path
[ppos
].p_hdr
= eh
;
769 if (ext4_ext_check_block(inode
, eh
, i
, bh
))
773 path
[ppos
].p_depth
= i
;
774 path
[ppos
].p_ext
= NULL
;
775 path
[ppos
].p_idx
= NULL
;
778 ext4_ext_binsearch(inode
, path
+ ppos
, block
);
779 /* if not an empty leaf */
780 if (path
[ppos
].p_ext
)
781 path
[ppos
].p_block
= ext4_ext_pblock(path
[ppos
].p_ext
);
783 ext4_ext_show_path(inode
, path
);
788 ext4_ext_drop_refs(path
);
791 return ERR_PTR(-EIO
);
795 * ext4_ext_insert_index:
796 * insert new index [@logical;@ptr] into the block at @curp;
797 * check where to insert: before @curp or after @curp
799 static int ext4_ext_insert_index(handle_t
*handle
, struct inode
*inode
,
800 struct ext4_ext_path
*curp
,
801 int logical
, ext4_fsblk_t ptr
)
803 struct ext4_extent_idx
*ix
;
806 err
= ext4_ext_get_access(handle
, inode
, curp
);
810 if (unlikely(logical
== le32_to_cpu(curp
->p_idx
->ei_block
))) {
811 EXT4_ERROR_INODE(inode
,
812 "logical %d == ei_block %d!",
813 logical
, le32_to_cpu(curp
->p_idx
->ei_block
));
817 if (unlikely(le16_to_cpu(curp
->p_hdr
->eh_entries
)
818 >= le16_to_cpu(curp
->p_hdr
->eh_max
))) {
819 EXT4_ERROR_INODE(inode
,
820 "eh_entries %d >= eh_max %d!",
821 le16_to_cpu(curp
->p_hdr
->eh_entries
),
822 le16_to_cpu(curp
->p_hdr
->eh_max
));
826 if (logical
> le32_to_cpu(curp
->p_idx
->ei_block
)) {
828 ext_debug("insert new index %d after: %llu\n", logical
, ptr
);
829 ix
= curp
->p_idx
+ 1;
832 ext_debug("insert new index %d before: %llu\n", logical
, ptr
);
836 len
= EXT_LAST_INDEX(curp
->p_hdr
) - ix
+ 1;
839 ext_debug("insert new index %d: "
840 "move %d indices from 0x%p to 0x%p\n",
841 logical
, len
, ix
, ix
+ 1);
842 memmove(ix
+ 1, ix
, len
* sizeof(struct ext4_extent_idx
));
845 if (unlikely(ix
> EXT_MAX_INDEX(curp
->p_hdr
))) {
846 EXT4_ERROR_INODE(inode
, "ix > EXT_MAX_INDEX!");
850 ix
->ei_block
= cpu_to_le32(logical
);
851 ext4_idx_store_pblock(ix
, ptr
);
852 le16_add_cpu(&curp
->p_hdr
->eh_entries
, 1);
854 if (unlikely(ix
> EXT_LAST_INDEX(curp
->p_hdr
))) {
855 EXT4_ERROR_INODE(inode
, "ix > EXT_LAST_INDEX!");
859 err
= ext4_ext_dirty(handle
, inode
, curp
);
860 ext4_std_error(inode
->i_sb
, err
);
867 * inserts new subtree into the path, using free index entry
869 * - allocates all needed blocks (new leaf and all intermediate index blocks)
870 * - makes decision where to split
871 * - moves remaining extents and index entries (right to the split point)
872 * into the newly allocated blocks
873 * - initializes subtree
875 static int ext4_ext_split(handle_t
*handle
, struct inode
*inode
,
877 struct ext4_ext_path
*path
,
878 struct ext4_extent
*newext
, int at
)
880 struct buffer_head
*bh
= NULL
;
881 int depth
= ext_depth(inode
);
882 struct ext4_extent_header
*neh
;
883 struct ext4_extent_idx
*fidx
;
885 ext4_fsblk_t newblock
, oldblock
;
887 ext4_fsblk_t
*ablocks
= NULL
; /* array of allocated blocks */
890 /* make decision: where to split? */
891 /* FIXME: now decision is simplest: at current extent */
893 /* if current leaf will be split, then we should use
894 * border from split point */
895 if (unlikely(path
[depth
].p_ext
> EXT_MAX_EXTENT(path
[depth
].p_hdr
))) {
896 EXT4_ERROR_INODE(inode
, "p_ext > EXT_MAX_EXTENT!");
899 if (path
[depth
].p_ext
!= EXT_MAX_EXTENT(path
[depth
].p_hdr
)) {
900 border
= path
[depth
].p_ext
[1].ee_block
;
901 ext_debug("leaf will be split."
902 " next leaf starts at %d\n",
903 le32_to_cpu(border
));
905 border
= newext
->ee_block
;
906 ext_debug("leaf will be added."
907 " next leaf starts at %d\n",
908 le32_to_cpu(border
));
912 * If error occurs, then we break processing
913 * and mark filesystem read-only. index won't
914 * be inserted and tree will be in consistent
915 * state. Next mount will repair buffers too.
919 * Get array to track all allocated blocks.
920 * We need this to handle errors and free blocks
923 ablocks
= kzalloc(sizeof(ext4_fsblk_t
) * depth
, GFP_NOFS
);
927 /* allocate all needed blocks */
928 ext_debug("allocate %d blocks for indexes/leaf\n", depth
- at
);
929 for (a
= 0; a
< depth
- at
; a
++) {
930 newblock
= ext4_ext_new_meta_block(handle
, inode
, path
,
931 newext
, &err
, flags
);
934 ablocks
[a
] = newblock
;
937 /* initialize new leaf */
938 newblock
= ablocks
[--a
];
939 if (unlikely(newblock
== 0)) {
940 EXT4_ERROR_INODE(inode
, "newblock == 0!");
944 bh
= sb_getblk(inode
->i_sb
, newblock
);
951 err
= ext4_journal_get_create_access(handle
, bh
);
955 neh
= ext_block_hdr(bh
);
957 neh
->eh_max
= cpu_to_le16(ext4_ext_space_block(inode
, 0));
958 neh
->eh_magic
= EXT4_EXT_MAGIC
;
961 /* move remainder of path[depth] to the new leaf */
962 if (unlikely(path
[depth
].p_hdr
->eh_entries
!=
963 path
[depth
].p_hdr
->eh_max
)) {
964 EXT4_ERROR_INODE(inode
, "eh_entries %d != eh_max %d!",
965 path
[depth
].p_hdr
->eh_entries
,
966 path
[depth
].p_hdr
->eh_max
);
970 /* start copy from next extent */
971 m
= EXT_MAX_EXTENT(path
[depth
].p_hdr
) - path
[depth
].p_ext
++;
972 ext4_ext_show_move(inode
, path
, newblock
, depth
);
974 struct ext4_extent
*ex
;
975 ex
= EXT_FIRST_EXTENT(neh
);
976 memmove(ex
, path
[depth
].p_ext
, sizeof(struct ext4_extent
) * m
);
977 le16_add_cpu(&neh
->eh_entries
, m
);
980 ext4_extent_block_csum_set(inode
, neh
);
981 set_buffer_uptodate(bh
);
984 err
= ext4_handle_dirty_metadata(handle
, inode
, bh
);
990 /* correct old leaf */
992 err
= ext4_ext_get_access(handle
, inode
, path
+ depth
);
995 le16_add_cpu(&path
[depth
].p_hdr
->eh_entries
, -m
);
996 err
= ext4_ext_dirty(handle
, inode
, path
+ depth
);
1002 /* create intermediate indexes */
1004 if (unlikely(k
< 0)) {
1005 EXT4_ERROR_INODE(inode
, "k %d < 0!", k
);
1010 ext_debug("create %d intermediate indices\n", k
);
1011 /* insert new index into current index block */
1012 /* current depth stored in i var */
1015 oldblock
= newblock
;
1016 newblock
= ablocks
[--a
];
1017 bh
= sb_getblk(inode
->i_sb
, newblock
);
1024 err
= ext4_journal_get_create_access(handle
, bh
);
1028 neh
= ext_block_hdr(bh
);
1029 neh
->eh_entries
= cpu_to_le16(1);
1030 neh
->eh_magic
= EXT4_EXT_MAGIC
;
1031 neh
->eh_max
= cpu_to_le16(ext4_ext_space_block_idx(inode
, 0));
1032 neh
->eh_depth
= cpu_to_le16(depth
- i
);
1033 fidx
= EXT_FIRST_INDEX(neh
);
1034 fidx
->ei_block
= border
;
1035 ext4_idx_store_pblock(fidx
, oldblock
);
1037 ext_debug("int.index at %d (block %llu): %u -> %llu\n",
1038 i
, newblock
, le32_to_cpu(border
), oldblock
);
1040 /* move remainder of path[i] to the new index block */
1041 if (unlikely(EXT_MAX_INDEX(path
[i
].p_hdr
) !=
1042 EXT_LAST_INDEX(path
[i
].p_hdr
))) {
1043 EXT4_ERROR_INODE(inode
,
1044 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!",
1045 le32_to_cpu(path
[i
].p_ext
->ee_block
));
1049 /* start copy indexes */
1050 m
= EXT_MAX_INDEX(path
[i
].p_hdr
) - path
[i
].p_idx
++;
1051 ext_debug("cur 0x%p, last 0x%p\n", path
[i
].p_idx
,
1052 EXT_MAX_INDEX(path
[i
].p_hdr
));
1053 ext4_ext_show_move(inode
, path
, newblock
, i
);
1055 memmove(++fidx
, path
[i
].p_idx
,
1056 sizeof(struct ext4_extent_idx
) * m
);
1057 le16_add_cpu(&neh
->eh_entries
, m
);
1059 ext4_extent_block_csum_set(inode
, neh
);
1060 set_buffer_uptodate(bh
);
1063 err
= ext4_handle_dirty_metadata(handle
, inode
, bh
);
1069 /* correct old index */
1071 err
= ext4_ext_get_access(handle
, inode
, path
+ i
);
1074 le16_add_cpu(&path
[i
].p_hdr
->eh_entries
, -m
);
1075 err
= ext4_ext_dirty(handle
, inode
, path
+ i
);
1083 /* insert new index */
1084 err
= ext4_ext_insert_index(handle
, inode
, path
+ at
,
1085 le32_to_cpu(border
), newblock
);
1089 if (buffer_locked(bh
))
1095 /* free all allocated blocks in error case */
1096 for (i
= 0; i
< depth
; i
++) {
1099 ext4_free_blocks(handle
, inode
, NULL
, ablocks
[i
], 1,
1100 EXT4_FREE_BLOCKS_METADATA
);
1109 * ext4_ext_grow_indepth:
1110 * implements tree growing procedure:
1111 * - allocates new block
1112 * - moves top-level data (index block or leaf) into the new block
1113 * - initializes new top-level, creating index that points to the
1114 * just created block
1116 static int ext4_ext_grow_indepth(handle_t
*handle
, struct inode
*inode
,
1118 struct ext4_extent
*newext
)
1120 struct ext4_extent_header
*neh
;
1121 struct buffer_head
*bh
;
1122 ext4_fsblk_t newblock
;
1125 newblock
= ext4_ext_new_meta_block(handle
, inode
, NULL
,
1126 newext
, &err
, flags
);
1130 bh
= sb_getblk(inode
->i_sb
, newblock
);
1133 ext4_std_error(inode
->i_sb
, err
);
1138 err
= ext4_journal_get_create_access(handle
, bh
);
1144 /* move top-level index/leaf into new block */
1145 memmove(bh
->b_data
, EXT4_I(inode
)->i_data
,
1146 sizeof(EXT4_I(inode
)->i_data
));
1148 /* set size of new block */
1149 neh
= ext_block_hdr(bh
);
1150 /* old root could have indexes or leaves
1151 * so calculate e_max right way */
1152 if (ext_depth(inode
))
1153 neh
->eh_max
= cpu_to_le16(ext4_ext_space_block_idx(inode
, 0));
1155 neh
->eh_max
= cpu_to_le16(ext4_ext_space_block(inode
, 0));
1156 neh
->eh_magic
= EXT4_EXT_MAGIC
;
1157 ext4_extent_block_csum_set(inode
, neh
);
1158 set_buffer_uptodate(bh
);
1161 err
= ext4_handle_dirty_metadata(handle
, inode
, bh
);
1165 /* Update top-level index: num,max,pointer */
1166 neh
= ext_inode_hdr(inode
);
1167 neh
->eh_entries
= cpu_to_le16(1);
1168 ext4_idx_store_pblock(EXT_FIRST_INDEX(neh
), newblock
);
1169 if (neh
->eh_depth
== 0) {
1170 /* Root extent block becomes index block */
1171 neh
->eh_max
= cpu_to_le16(ext4_ext_space_root_idx(inode
, 0));
1172 EXT_FIRST_INDEX(neh
)->ei_block
=
1173 EXT_FIRST_EXTENT(neh
)->ee_block
;
1175 ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
1176 le16_to_cpu(neh
->eh_entries
), le16_to_cpu(neh
->eh_max
),
1177 le32_to_cpu(EXT_FIRST_INDEX(neh
)->ei_block
),
1178 ext4_idx_pblock(EXT_FIRST_INDEX(neh
)));
1180 le16_add_cpu(&neh
->eh_depth
, 1);
1181 ext4_mark_inode_dirty(handle
, inode
);
1189 * ext4_ext_create_new_leaf:
1190 * finds empty index and adds new leaf.
1191 * if no free index is found, then it requests in-depth growing.
1193 static int ext4_ext_create_new_leaf(handle_t
*handle
, struct inode
*inode
,
1195 struct ext4_ext_path
*path
,
1196 struct ext4_extent
*newext
)
1198 struct ext4_ext_path
*curp
;
1199 int depth
, i
, err
= 0;
1202 i
= depth
= ext_depth(inode
);
1204 /* walk up to the tree and look for free index entry */
1205 curp
= path
+ depth
;
1206 while (i
> 0 && !EXT_HAS_FREE_INDEX(curp
)) {
1211 /* we use already allocated block for index block,
1212 * so subsequent data blocks should be contiguous */
1213 if (EXT_HAS_FREE_INDEX(curp
)) {
1214 /* if we found index with free entry, then use that
1215 * entry: create all needed subtree and add new leaf */
1216 err
= ext4_ext_split(handle
, inode
, flags
, path
, newext
, i
);
1221 ext4_ext_drop_refs(path
);
1222 path
= ext4_ext_find_extent(inode
,
1223 (ext4_lblk_t
)le32_to_cpu(newext
->ee_block
),
1226 err
= PTR_ERR(path
);
1228 /* tree is full, time to grow in depth */
1229 err
= ext4_ext_grow_indepth(handle
, inode
, flags
, newext
);
1234 ext4_ext_drop_refs(path
);
1235 path
= ext4_ext_find_extent(inode
,
1236 (ext4_lblk_t
)le32_to_cpu(newext
->ee_block
),
1239 err
= PTR_ERR(path
);
1244 * only first (depth 0 -> 1) produces free space;
1245 * in all other cases we have to split the grown tree
1247 depth
= ext_depth(inode
);
1248 if (path
[depth
].p_hdr
->eh_entries
== path
[depth
].p_hdr
->eh_max
) {
1249 /* now we need to split */
1259 * search the closest allocated block to the left for *logical
1260 * and returns it at @logical + it's physical address at @phys
1261 * if *logical is the smallest allocated block, the function
1262 * returns 0 at @phys
1263 * return value contains 0 (success) or error code
1265 static int ext4_ext_search_left(struct inode
*inode
,
1266 struct ext4_ext_path
*path
,
1267 ext4_lblk_t
*logical
, ext4_fsblk_t
*phys
)
1269 struct ext4_extent_idx
*ix
;
1270 struct ext4_extent
*ex
;
1273 if (unlikely(path
== NULL
)) {
1274 EXT4_ERROR_INODE(inode
, "path == NULL *logical %d!", *logical
);
1277 depth
= path
->p_depth
;
1280 if (depth
== 0 && path
->p_ext
== NULL
)
1283 /* usually extent in the path covers blocks smaller
1284 * then *logical, but it can be that extent is the
1285 * first one in the file */
1287 ex
= path
[depth
].p_ext
;
1288 ee_len
= ext4_ext_get_actual_len(ex
);
1289 if (*logical
< le32_to_cpu(ex
->ee_block
)) {
1290 if (unlikely(EXT_FIRST_EXTENT(path
[depth
].p_hdr
) != ex
)) {
1291 EXT4_ERROR_INODE(inode
,
1292 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!",
1293 *logical
, le32_to_cpu(ex
->ee_block
));
1296 while (--depth
>= 0) {
1297 ix
= path
[depth
].p_idx
;
1298 if (unlikely(ix
!= EXT_FIRST_INDEX(path
[depth
].p_hdr
))) {
1299 EXT4_ERROR_INODE(inode
,
1300 "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!",
1301 ix
!= NULL
? le32_to_cpu(ix
->ei_block
) : 0,
1302 EXT_FIRST_INDEX(path
[depth
].p_hdr
) != NULL
?
1303 le32_to_cpu(EXT_FIRST_INDEX(path
[depth
].p_hdr
)->ei_block
) : 0,
1311 if (unlikely(*logical
< (le32_to_cpu(ex
->ee_block
) + ee_len
))) {
1312 EXT4_ERROR_INODE(inode
,
1313 "logical %d < ee_block %d + ee_len %d!",
1314 *logical
, le32_to_cpu(ex
->ee_block
), ee_len
);
1318 *logical
= le32_to_cpu(ex
->ee_block
) + ee_len
- 1;
1319 *phys
= ext4_ext_pblock(ex
) + ee_len
- 1;
1324 * search the closest allocated block to the right for *logical
1325 * and returns it at @logical + it's physical address at @phys
1326 * if *logical is the largest allocated block, the function
1327 * returns 0 at @phys
1328 * return value contains 0 (success) or error code
1330 static int ext4_ext_search_right(struct inode
*inode
,
1331 struct ext4_ext_path
*path
,
1332 ext4_lblk_t
*logical
, ext4_fsblk_t
*phys
,
1333 struct ext4_extent
**ret_ex
)
1335 struct buffer_head
*bh
= NULL
;
1336 struct ext4_extent_header
*eh
;
1337 struct ext4_extent_idx
*ix
;
1338 struct ext4_extent
*ex
;
1340 int depth
; /* Note, NOT eh_depth; depth from top of tree */
1343 if (unlikely(path
== NULL
)) {
1344 EXT4_ERROR_INODE(inode
, "path == NULL *logical %d!", *logical
);
1347 depth
= path
->p_depth
;
1350 if (depth
== 0 && path
->p_ext
== NULL
)
1353 /* usually extent in the path covers blocks smaller
1354 * then *logical, but it can be that extent is the
1355 * first one in the file */
1357 ex
= path
[depth
].p_ext
;
1358 ee_len
= ext4_ext_get_actual_len(ex
);
1359 if (*logical
< le32_to_cpu(ex
->ee_block
)) {
1360 if (unlikely(EXT_FIRST_EXTENT(path
[depth
].p_hdr
) != ex
)) {
1361 EXT4_ERROR_INODE(inode
,
1362 "first_extent(path[%d].p_hdr) != ex",
1366 while (--depth
>= 0) {
1367 ix
= path
[depth
].p_idx
;
1368 if (unlikely(ix
!= EXT_FIRST_INDEX(path
[depth
].p_hdr
))) {
1369 EXT4_ERROR_INODE(inode
,
1370 "ix != EXT_FIRST_INDEX *logical %d!",
1378 if (unlikely(*logical
< (le32_to_cpu(ex
->ee_block
) + ee_len
))) {
1379 EXT4_ERROR_INODE(inode
,
1380 "logical %d < ee_block %d + ee_len %d!",
1381 *logical
, le32_to_cpu(ex
->ee_block
), ee_len
);
1385 if (ex
!= EXT_LAST_EXTENT(path
[depth
].p_hdr
)) {
1386 /* next allocated block in this leaf */
1391 /* go up and search for index to the right */
1392 while (--depth
>= 0) {
1393 ix
= path
[depth
].p_idx
;
1394 if (ix
!= EXT_LAST_INDEX(path
[depth
].p_hdr
))
1398 /* we've gone up to the root and found no index to the right */
1402 /* we've found index to the right, let's
1403 * follow it and find the closest allocated
1404 * block to the right */
1406 block
= ext4_idx_pblock(ix
);
1407 while (++depth
< path
->p_depth
) {
1408 bh
= sb_bread(inode
->i_sb
, block
);
1411 eh
= ext_block_hdr(bh
);
1412 /* subtract from p_depth to get proper eh_depth */
1413 if (ext4_ext_check_block(inode
, eh
,
1414 path
->p_depth
- depth
, bh
)) {
1418 ix
= EXT_FIRST_INDEX(eh
);
1419 block
= ext4_idx_pblock(ix
);
1423 bh
= sb_bread(inode
->i_sb
, block
);
1426 eh
= ext_block_hdr(bh
);
1427 if (ext4_ext_check_block(inode
, eh
, path
->p_depth
- depth
, bh
)) {
1431 ex
= EXT_FIRST_EXTENT(eh
);
1433 *logical
= le32_to_cpu(ex
->ee_block
);
1434 *phys
= ext4_ext_pblock(ex
);
1442 * ext4_ext_next_allocated_block:
1443 * returns allocated block in subsequent extent or EXT_MAX_BLOCKS.
1444 * NOTE: it considers block number from index entry as
1445 * allocated block. Thus, index entries have to be consistent
1449 ext4_ext_next_allocated_block(struct ext4_ext_path
*path
)
1453 BUG_ON(path
== NULL
);
1454 depth
= path
->p_depth
;
1456 if (depth
== 0 && path
->p_ext
== NULL
)
1457 return EXT_MAX_BLOCKS
;
1459 while (depth
>= 0) {
1460 if (depth
== path
->p_depth
) {
1462 if (path
[depth
].p_ext
&&
1463 path
[depth
].p_ext
!=
1464 EXT_LAST_EXTENT(path
[depth
].p_hdr
))
1465 return le32_to_cpu(path
[depth
].p_ext
[1].ee_block
);
1468 if (path
[depth
].p_idx
!=
1469 EXT_LAST_INDEX(path
[depth
].p_hdr
))
1470 return le32_to_cpu(path
[depth
].p_idx
[1].ei_block
);
1475 return EXT_MAX_BLOCKS
;
1479 * ext4_ext_next_leaf_block:
1480 * returns first allocated block from next leaf or EXT_MAX_BLOCKS
1482 static ext4_lblk_t
ext4_ext_next_leaf_block(struct ext4_ext_path
*path
)
1486 BUG_ON(path
== NULL
);
1487 depth
= path
->p_depth
;
1489 /* zero-tree has no leaf blocks at all */
1491 return EXT_MAX_BLOCKS
;
1493 /* go to index block */
1496 while (depth
>= 0) {
1497 if (path
[depth
].p_idx
!=
1498 EXT_LAST_INDEX(path
[depth
].p_hdr
))
1499 return (ext4_lblk_t
)
1500 le32_to_cpu(path
[depth
].p_idx
[1].ei_block
);
1504 return EXT_MAX_BLOCKS
;
1508 * ext4_ext_correct_indexes:
1509 * if leaf gets modified and modified extent is first in the leaf,
1510 * then we have to correct all indexes above.
1511 * TODO: do we need to correct tree in all cases?
1513 static int ext4_ext_correct_indexes(handle_t
*handle
, struct inode
*inode
,
1514 struct ext4_ext_path
*path
)
1516 struct ext4_extent_header
*eh
;
1517 int depth
= ext_depth(inode
);
1518 struct ext4_extent
*ex
;
1522 eh
= path
[depth
].p_hdr
;
1523 ex
= path
[depth
].p_ext
;
1525 if (unlikely(ex
== NULL
|| eh
== NULL
)) {
1526 EXT4_ERROR_INODE(inode
,
1527 "ex %p == NULL or eh %p == NULL", ex
, eh
);
1532 /* there is no tree at all */
1536 if (ex
!= EXT_FIRST_EXTENT(eh
)) {
1537 /* we correct tree if first leaf got modified only */
1542 * TODO: we need correction if border is smaller than current one
1545 border
= path
[depth
].p_ext
->ee_block
;
1546 err
= ext4_ext_get_access(handle
, inode
, path
+ k
);
1549 path
[k
].p_idx
->ei_block
= border
;
1550 err
= ext4_ext_dirty(handle
, inode
, path
+ k
);
1555 /* change all left-side indexes */
1556 if (path
[k
+1].p_idx
!= EXT_FIRST_INDEX(path
[k
+1].p_hdr
))
1558 err
= ext4_ext_get_access(handle
, inode
, path
+ k
);
1561 path
[k
].p_idx
->ei_block
= border
;
1562 err
= ext4_ext_dirty(handle
, inode
, path
+ k
);
1571 ext4_can_extents_be_merged(struct inode
*inode
, struct ext4_extent
*ex1
,
1572 struct ext4_extent
*ex2
)
1574 unsigned short ext1_ee_len
, ext2_ee_len
, max_len
;
1577 * Make sure that either both extents are uninitialized, or
1580 if (ext4_ext_is_uninitialized(ex1
) ^ ext4_ext_is_uninitialized(ex2
))
1583 if (ext4_ext_is_uninitialized(ex1
))
1584 max_len
= EXT_UNINIT_MAX_LEN
;
1586 max_len
= EXT_INIT_MAX_LEN
;
1588 ext1_ee_len
= ext4_ext_get_actual_len(ex1
);
1589 ext2_ee_len
= ext4_ext_get_actual_len(ex2
);
1591 if (le32_to_cpu(ex1
->ee_block
) + ext1_ee_len
!=
1592 le32_to_cpu(ex2
->ee_block
))
1596 * To allow future support for preallocated extents to be added
1597 * as an RO_COMPAT feature, refuse to merge to extents if
1598 * this can result in the top bit of ee_len being set.
1600 if (ext1_ee_len
+ ext2_ee_len
> max_len
)
1602 #ifdef AGGRESSIVE_TEST
1603 if (ext1_ee_len
>= 4)
1607 if (ext4_ext_pblock(ex1
) + ext1_ee_len
== ext4_ext_pblock(ex2
))
1613 * This function tries to merge the "ex" extent to the next extent in the tree.
1614 * It always tries to merge towards right. If you want to merge towards
1615 * left, pass "ex - 1" as argument instead of "ex".
1616 * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1617 * 1 if they got merged.
1619 static int ext4_ext_try_to_merge_right(struct inode
*inode
,
1620 struct ext4_ext_path
*path
,
1621 struct ext4_extent
*ex
)
1623 struct ext4_extent_header
*eh
;
1624 unsigned int depth
, len
;
1626 int uninitialized
= 0;
1628 depth
= ext_depth(inode
);
1629 BUG_ON(path
[depth
].p_hdr
== NULL
);
1630 eh
= path
[depth
].p_hdr
;
1632 while (ex
< EXT_LAST_EXTENT(eh
)) {
1633 if (!ext4_can_extents_be_merged(inode
, ex
, ex
+ 1))
1635 /* merge with next extent! */
1636 if (ext4_ext_is_uninitialized(ex
))
1638 ex
->ee_len
= cpu_to_le16(ext4_ext_get_actual_len(ex
)
1639 + ext4_ext_get_actual_len(ex
+ 1));
1641 ext4_ext_mark_uninitialized(ex
);
1643 if (ex
+ 1 < EXT_LAST_EXTENT(eh
)) {
1644 len
= (EXT_LAST_EXTENT(eh
) - ex
- 1)
1645 * sizeof(struct ext4_extent
);
1646 memmove(ex
+ 1, ex
+ 2, len
);
1648 le16_add_cpu(&eh
->eh_entries
, -1);
1650 WARN_ON(eh
->eh_entries
== 0);
1651 if (!eh
->eh_entries
)
1652 EXT4_ERROR_INODE(inode
, "eh->eh_entries = 0!");
1659 * This function does a very simple check to see if we can collapse
1660 * an extent tree with a single extent tree leaf block into the inode.
1662 static void ext4_ext_try_to_merge_up(handle_t
*handle
,
1663 struct inode
*inode
,
1664 struct ext4_ext_path
*path
)
1667 unsigned max_root
= ext4_ext_space_root(inode
, 0);
1670 if ((path
[0].p_depth
!= 1) ||
1671 (le16_to_cpu(path
[0].p_hdr
->eh_entries
) != 1) ||
1672 (le16_to_cpu(path
[1].p_hdr
->eh_entries
) > max_root
))
1676 * We need to modify the block allocation bitmap and the block
1677 * group descriptor to release the extent tree block. If we
1678 * can't get the journal credits, give up.
1680 if (ext4_journal_extend(handle
, 2))
1684 * Copy the extent data up to the inode
1686 blk
= ext4_idx_pblock(path
[0].p_idx
);
1687 s
= le16_to_cpu(path
[1].p_hdr
->eh_entries
) *
1688 sizeof(struct ext4_extent_idx
);
1689 s
+= sizeof(struct ext4_extent_header
);
1691 memcpy(path
[0].p_hdr
, path
[1].p_hdr
, s
);
1692 path
[0].p_depth
= 0;
1693 path
[0].p_ext
= EXT_FIRST_EXTENT(path
[0].p_hdr
) +
1694 (path
[1].p_ext
- EXT_FIRST_EXTENT(path
[1].p_hdr
));
1695 path
[0].p_hdr
->eh_max
= cpu_to_le16(max_root
);
1697 brelse(path
[1].p_bh
);
1698 ext4_free_blocks(handle
, inode
, NULL
, blk
, 1,
1699 EXT4_FREE_BLOCKS_METADATA
| EXT4_FREE_BLOCKS_FORGET
);
1703 * This function tries to merge the @ex extent to neighbours in the tree.
1704 * return 1 if merge left else 0.
1706 static void ext4_ext_try_to_merge(handle_t
*handle
,
1707 struct inode
*inode
,
1708 struct ext4_ext_path
*path
,
1709 struct ext4_extent
*ex
) {
1710 struct ext4_extent_header
*eh
;
1714 depth
= ext_depth(inode
);
1715 BUG_ON(path
[depth
].p_hdr
== NULL
);
1716 eh
= path
[depth
].p_hdr
;
1718 if (ex
> EXT_FIRST_EXTENT(eh
))
1719 merge_done
= ext4_ext_try_to_merge_right(inode
, path
, ex
- 1);
1722 (void) ext4_ext_try_to_merge_right(inode
, path
, ex
);
1724 ext4_ext_try_to_merge_up(handle
, inode
, path
);
1728 * check if a portion of the "newext" extent overlaps with an
1731 * If there is an overlap discovered, it updates the length of the newext
1732 * such that there will be no overlap, and then returns 1.
1733 * If there is no overlap found, it returns 0.
1735 static unsigned int ext4_ext_check_overlap(struct ext4_sb_info
*sbi
,
1736 struct inode
*inode
,
1737 struct ext4_extent
*newext
,
1738 struct ext4_ext_path
*path
)
1741 unsigned int depth
, len1
;
1742 unsigned int ret
= 0;
1744 b1
= le32_to_cpu(newext
->ee_block
);
1745 len1
= ext4_ext_get_actual_len(newext
);
1746 depth
= ext_depth(inode
);
1747 if (!path
[depth
].p_ext
)
1749 b2
= le32_to_cpu(path
[depth
].p_ext
->ee_block
);
1750 b2
&= ~(sbi
->s_cluster_ratio
- 1);
1753 * get the next allocated block if the extent in the path
1754 * is before the requested block(s)
1757 b2
= ext4_ext_next_allocated_block(path
);
1758 if (b2
== EXT_MAX_BLOCKS
)
1760 b2
&= ~(sbi
->s_cluster_ratio
- 1);
1763 /* check for wrap through zero on extent logical start block*/
1764 if (b1
+ len1
< b1
) {
1765 len1
= EXT_MAX_BLOCKS
- b1
;
1766 newext
->ee_len
= cpu_to_le16(len1
);
1770 /* check for overlap */
1771 if (b1
+ len1
> b2
) {
1772 newext
->ee_len
= cpu_to_le16(b2
- b1
);
1780 * ext4_ext_insert_extent:
1781 * tries to merge requsted extent into the existing extent or
1782 * inserts requested extent as new one into the tree,
1783 * creating new leaf in the no-space case.
1785 int ext4_ext_insert_extent(handle_t
*handle
, struct inode
*inode
,
1786 struct ext4_ext_path
*path
,
1787 struct ext4_extent
*newext
, int flag
)
1789 struct ext4_extent_header
*eh
;
1790 struct ext4_extent
*ex
, *fex
;
1791 struct ext4_extent
*nearex
; /* nearest extent */
1792 struct ext4_ext_path
*npath
= NULL
;
1793 int depth
, len
, err
;
1795 unsigned uninitialized
= 0;
1798 if (unlikely(ext4_ext_get_actual_len(newext
) == 0)) {
1799 EXT4_ERROR_INODE(inode
, "ext4_ext_get_actual_len(newext) == 0");
1802 depth
= ext_depth(inode
);
1803 ex
= path
[depth
].p_ext
;
1804 if (unlikely(path
[depth
].p_hdr
== NULL
)) {
1805 EXT4_ERROR_INODE(inode
, "path[%d].p_hdr == NULL", depth
);
1809 /* try to insert block into found extent and return */
1810 if (ex
&& !(flag
& EXT4_GET_BLOCKS_PRE_IO
)
1811 && ext4_can_extents_be_merged(inode
, ex
, newext
)) {
1812 ext_debug("append [%d]%d block to %u:[%d]%d (from %llu)\n",
1813 ext4_ext_is_uninitialized(newext
),
1814 ext4_ext_get_actual_len(newext
),
1815 le32_to_cpu(ex
->ee_block
),
1816 ext4_ext_is_uninitialized(ex
),
1817 ext4_ext_get_actual_len(ex
),
1818 ext4_ext_pblock(ex
));
1819 err
= ext4_ext_get_access(handle
, inode
, path
+ depth
);
1824 * ext4_can_extents_be_merged should have checked that either
1825 * both extents are uninitialized, or both aren't. Thus we
1826 * need to check only one of them here.
1828 if (ext4_ext_is_uninitialized(ex
))
1830 ex
->ee_len
= cpu_to_le16(ext4_ext_get_actual_len(ex
)
1831 + ext4_ext_get_actual_len(newext
));
1833 ext4_ext_mark_uninitialized(ex
);
1834 eh
= path
[depth
].p_hdr
;
1839 depth
= ext_depth(inode
);
1840 eh
= path
[depth
].p_hdr
;
1841 if (le16_to_cpu(eh
->eh_entries
) < le16_to_cpu(eh
->eh_max
))
1844 /* probably next leaf has space for us? */
1845 fex
= EXT_LAST_EXTENT(eh
);
1846 next
= EXT_MAX_BLOCKS
;
1847 if (le32_to_cpu(newext
->ee_block
) > le32_to_cpu(fex
->ee_block
))
1848 next
= ext4_ext_next_leaf_block(path
);
1849 if (next
!= EXT_MAX_BLOCKS
) {
1850 ext_debug("next leaf block - %u\n", next
);
1851 BUG_ON(npath
!= NULL
);
1852 npath
= ext4_ext_find_extent(inode
, next
, NULL
);
1854 return PTR_ERR(npath
);
1855 BUG_ON(npath
->p_depth
!= path
->p_depth
);
1856 eh
= npath
[depth
].p_hdr
;
1857 if (le16_to_cpu(eh
->eh_entries
) < le16_to_cpu(eh
->eh_max
)) {
1858 ext_debug("next leaf isn't full(%d)\n",
1859 le16_to_cpu(eh
->eh_entries
));
1863 ext_debug("next leaf has no free space(%d,%d)\n",
1864 le16_to_cpu(eh
->eh_entries
), le16_to_cpu(eh
->eh_max
));
1868 * There is no free space in the found leaf.
1869 * We're gonna add a new leaf in the tree.
1871 if (flag
& EXT4_GET_BLOCKS_PUNCH_OUT_EXT
)
1872 flags
= EXT4_MB_USE_ROOT_BLOCKS
;
1873 err
= ext4_ext_create_new_leaf(handle
, inode
, flags
, path
, newext
);
1876 depth
= ext_depth(inode
);
1877 eh
= path
[depth
].p_hdr
;
1880 nearex
= path
[depth
].p_ext
;
1882 err
= ext4_ext_get_access(handle
, inode
, path
+ depth
);
1887 /* there is no extent in this leaf, create first one */
1888 ext_debug("first extent in the leaf: %u:%llu:[%d]%d\n",
1889 le32_to_cpu(newext
->ee_block
),
1890 ext4_ext_pblock(newext
),
1891 ext4_ext_is_uninitialized(newext
),
1892 ext4_ext_get_actual_len(newext
));
1893 nearex
= EXT_FIRST_EXTENT(eh
);
1895 if (le32_to_cpu(newext
->ee_block
)
1896 > le32_to_cpu(nearex
->ee_block
)) {
1898 ext_debug("insert %u:%llu:[%d]%d before: "
1900 le32_to_cpu(newext
->ee_block
),
1901 ext4_ext_pblock(newext
),
1902 ext4_ext_is_uninitialized(newext
),
1903 ext4_ext_get_actual_len(newext
),
1908 BUG_ON(newext
->ee_block
== nearex
->ee_block
);
1909 ext_debug("insert %u:%llu:[%d]%d after: "
1911 le32_to_cpu(newext
->ee_block
),
1912 ext4_ext_pblock(newext
),
1913 ext4_ext_is_uninitialized(newext
),
1914 ext4_ext_get_actual_len(newext
),
1917 len
= EXT_LAST_EXTENT(eh
) - nearex
+ 1;
1919 ext_debug("insert %u:%llu:[%d]%d: "
1920 "move %d extents from 0x%p to 0x%p\n",
1921 le32_to_cpu(newext
->ee_block
),
1922 ext4_ext_pblock(newext
),
1923 ext4_ext_is_uninitialized(newext
),
1924 ext4_ext_get_actual_len(newext
),
1925 len
, nearex
, nearex
+ 1);
1926 memmove(nearex
+ 1, nearex
,
1927 len
* sizeof(struct ext4_extent
));
1931 le16_add_cpu(&eh
->eh_entries
, 1);
1932 path
[depth
].p_ext
= nearex
;
1933 nearex
->ee_block
= newext
->ee_block
;
1934 ext4_ext_store_pblock(nearex
, ext4_ext_pblock(newext
));
1935 nearex
->ee_len
= newext
->ee_len
;
1938 /* try to merge extents */
1939 if (!(flag
& EXT4_GET_BLOCKS_PRE_IO
))
1940 ext4_ext_try_to_merge(handle
, inode
, path
, nearex
);
1943 /* time to correct all indexes above */
1944 err
= ext4_ext_correct_indexes(handle
, inode
, path
);
1948 err
= ext4_ext_dirty(handle
, inode
, path
+ path
->p_depth
);
1952 ext4_ext_drop_refs(npath
);
1955 ext4_ext_invalidate_cache(inode
);
1959 static int ext4_ext_walk_space(struct inode
*inode
, ext4_lblk_t block
,
1960 ext4_lblk_t num
, ext_prepare_callback func
,
1963 struct ext4_ext_path
*path
= NULL
;
1964 struct ext4_ext_cache cbex
;
1965 struct ext4_extent
*ex
;
1966 ext4_lblk_t next
, start
= 0, end
= 0;
1967 ext4_lblk_t last
= block
+ num
;
1968 int depth
, exists
, err
= 0;
1970 BUG_ON(func
== NULL
);
1971 BUG_ON(inode
== NULL
);
1973 while (block
< last
&& block
!= EXT_MAX_BLOCKS
) {
1975 /* find extent for this block */
1976 down_read(&EXT4_I(inode
)->i_data_sem
);
1977 path
= ext4_ext_find_extent(inode
, block
, path
);
1978 up_read(&EXT4_I(inode
)->i_data_sem
);
1980 err
= PTR_ERR(path
);
1985 depth
= ext_depth(inode
);
1986 if (unlikely(path
[depth
].p_hdr
== NULL
)) {
1987 EXT4_ERROR_INODE(inode
, "path[%d].p_hdr == NULL", depth
);
1991 ex
= path
[depth
].p_ext
;
1992 next
= ext4_ext_next_allocated_block(path
);
1996 /* there is no extent yet, so try to allocate
1997 * all requested space */
2000 } else if (le32_to_cpu(ex
->ee_block
) > block
) {
2001 /* need to allocate space before found extent */
2003 end
= le32_to_cpu(ex
->ee_block
);
2004 if (block
+ num
< end
)
2006 } else if (block
>= le32_to_cpu(ex
->ee_block
)
2007 + ext4_ext_get_actual_len(ex
)) {
2008 /* need to allocate space after found extent */
2013 } else if (block
>= le32_to_cpu(ex
->ee_block
)) {
2015 * some part of requested space is covered
2019 end
= le32_to_cpu(ex
->ee_block
)
2020 + ext4_ext_get_actual_len(ex
);
2021 if (block
+ num
< end
)
2027 BUG_ON(end
<= start
);
2030 cbex
.ec_block
= start
;
2031 cbex
.ec_len
= end
- start
;
2034 cbex
.ec_block
= le32_to_cpu(ex
->ee_block
);
2035 cbex
.ec_len
= ext4_ext_get_actual_len(ex
);
2036 cbex
.ec_start
= ext4_ext_pblock(ex
);
2039 if (unlikely(cbex
.ec_len
== 0)) {
2040 EXT4_ERROR_INODE(inode
, "cbex.ec_len == 0");
2044 err
= func(inode
, next
, &cbex
, ex
, cbdata
);
2045 ext4_ext_drop_refs(path
);
2050 if (err
== EXT_REPEAT
)
2052 else if (err
== EXT_BREAK
) {
2057 if (ext_depth(inode
) != depth
) {
2058 /* depth was changed. we have to realloc path */
2063 block
= cbex
.ec_block
+ cbex
.ec_len
;
2067 ext4_ext_drop_refs(path
);
2075 ext4_ext_put_in_cache(struct inode
*inode
, ext4_lblk_t block
,
2076 __u32 len
, ext4_fsblk_t start
)
2078 struct ext4_ext_cache
*cex
;
2080 spin_lock(&EXT4_I(inode
)->i_block_reservation_lock
);
2081 trace_ext4_ext_put_in_cache(inode
, block
, len
, start
);
2082 cex
= &EXT4_I(inode
)->i_cached_extent
;
2083 cex
->ec_block
= block
;
2085 cex
->ec_start
= start
;
2086 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
2090 * ext4_ext_put_gap_in_cache:
2091 * calculate boundaries of the gap that the requested block fits into
2092 * and cache this gap
2095 ext4_ext_put_gap_in_cache(struct inode
*inode
, struct ext4_ext_path
*path
,
2098 int depth
= ext_depth(inode
);
2101 struct ext4_extent
*ex
;
2103 ex
= path
[depth
].p_ext
;
2105 /* there is no extent yet, so gap is [0;-] */
2107 len
= EXT_MAX_BLOCKS
;
2108 ext_debug("cache gap(whole file):");
2109 } else if (block
< le32_to_cpu(ex
->ee_block
)) {
2111 len
= le32_to_cpu(ex
->ee_block
) - block
;
2112 ext_debug("cache gap(before): %u [%u:%u]",
2114 le32_to_cpu(ex
->ee_block
),
2115 ext4_ext_get_actual_len(ex
));
2116 } else if (block
>= le32_to_cpu(ex
->ee_block
)
2117 + ext4_ext_get_actual_len(ex
)) {
2119 lblock
= le32_to_cpu(ex
->ee_block
)
2120 + ext4_ext_get_actual_len(ex
);
2122 next
= ext4_ext_next_allocated_block(path
);
2123 ext_debug("cache gap(after): [%u:%u] %u",
2124 le32_to_cpu(ex
->ee_block
),
2125 ext4_ext_get_actual_len(ex
),
2127 BUG_ON(next
== lblock
);
2128 len
= next
- lblock
;
2134 ext_debug(" -> %u:%lu\n", lblock
, len
);
2135 ext4_ext_put_in_cache(inode
, lblock
, len
, 0);
2139 * ext4_ext_in_cache()
2140 * Checks to see if the given block is in the cache.
2141 * If it is, the cached extent is stored in the given
2142 * cache extent pointer.
2144 * @inode: The files inode
2145 * @block: The block to look for in the cache
2146 * @ex: Pointer where the cached extent will be stored
2147 * if it contains block
2149 * Return 0 if cache is invalid; 1 if the cache is valid
2152 ext4_ext_in_cache(struct inode
*inode
, ext4_lblk_t block
,
2153 struct ext4_extent
*ex
)
2155 struct ext4_ext_cache
*cex
;
2156 struct ext4_sb_info
*sbi
;
2160 * We borrow i_block_reservation_lock to protect i_cached_extent
2162 spin_lock(&EXT4_I(inode
)->i_block_reservation_lock
);
2163 cex
= &EXT4_I(inode
)->i_cached_extent
;
2164 sbi
= EXT4_SB(inode
->i_sb
);
2166 /* has cache valid data? */
2167 if (cex
->ec_len
== 0)
2170 if (in_range(block
, cex
->ec_block
, cex
->ec_len
)) {
2171 ex
->ee_block
= cpu_to_le32(cex
->ec_block
);
2172 ext4_ext_store_pblock(ex
, cex
->ec_start
);
2173 ex
->ee_len
= cpu_to_le16(cex
->ec_len
);
2174 ext_debug("%u cached by %u:%u:%llu\n",
2176 cex
->ec_block
, cex
->ec_len
, cex
->ec_start
);
2180 trace_ext4_ext_in_cache(inode
, block
, ret
);
2181 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
2187 * removes index from the index block.
2189 static int ext4_ext_rm_idx(handle_t
*handle
, struct inode
*inode
,
2190 struct ext4_ext_path
*path
)
2195 /* free index block */
2197 leaf
= ext4_idx_pblock(path
->p_idx
);
2198 if (unlikely(path
->p_hdr
->eh_entries
== 0)) {
2199 EXT4_ERROR_INODE(inode
, "path->p_hdr->eh_entries == 0");
2202 err
= ext4_ext_get_access(handle
, inode
, path
);
2206 if (path
->p_idx
!= EXT_LAST_INDEX(path
->p_hdr
)) {
2207 int len
= EXT_LAST_INDEX(path
->p_hdr
) - path
->p_idx
;
2208 len
*= sizeof(struct ext4_extent_idx
);
2209 memmove(path
->p_idx
, path
->p_idx
+ 1, len
);
2212 le16_add_cpu(&path
->p_hdr
->eh_entries
, -1);
2213 err
= ext4_ext_dirty(handle
, inode
, path
);
2216 ext_debug("index is empty, remove it, free block %llu\n", leaf
);
2217 trace_ext4_ext_rm_idx(inode
, leaf
);
2219 ext4_free_blocks(handle
, inode
, NULL
, leaf
, 1,
2220 EXT4_FREE_BLOCKS_METADATA
| EXT4_FREE_BLOCKS_FORGET
);
2225 * ext4_ext_calc_credits_for_single_extent:
2226 * This routine returns max. credits that needed to insert an extent
2227 * to the extent tree.
2228 * When pass the actual path, the caller should calculate credits
2231 int ext4_ext_calc_credits_for_single_extent(struct inode
*inode
, int nrblocks
,
2232 struct ext4_ext_path
*path
)
2235 int depth
= ext_depth(inode
);
2238 /* probably there is space in leaf? */
2239 if (le16_to_cpu(path
[depth
].p_hdr
->eh_entries
)
2240 < le16_to_cpu(path
[depth
].p_hdr
->eh_max
)) {
2243 * There are some space in the leaf tree, no
2244 * need to account for leaf block credit
2246 * bitmaps and block group descriptor blocks
2247 * and other metadata blocks still need to be
2250 /* 1 bitmap, 1 block group descriptor */
2251 ret
= 2 + EXT4_META_TRANS_BLOCKS(inode
->i_sb
);
2256 return ext4_chunk_trans_blocks(inode
, nrblocks
);
2260 * How many index/leaf blocks need to change/allocate to modify nrblocks?
2262 * if nrblocks are fit in a single extent (chunk flag is 1), then
2263 * in the worse case, each tree level index/leaf need to be changed
2264 * if the tree split due to insert a new extent, then the old tree
2265 * index/leaf need to be updated too
2267 * If the nrblocks are discontiguous, they could cause
2268 * the whole tree split more than once, but this is really rare.
2270 int ext4_ext_index_trans_blocks(struct inode
*inode
, int nrblocks
, int chunk
)
2273 int depth
= ext_depth(inode
);
2283 static int ext4_remove_blocks(handle_t
*handle
, struct inode
*inode
,
2284 struct ext4_extent
*ex
,
2285 ext4_fsblk_t
*partial_cluster
,
2286 ext4_lblk_t from
, ext4_lblk_t to
)
2288 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
2289 unsigned short ee_len
= ext4_ext_get_actual_len(ex
);
2293 if (S_ISDIR(inode
->i_mode
) || S_ISLNK(inode
->i_mode
))
2294 flags
|= EXT4_FREE_BLOCKS_METADATA
| EXT4_FREE_BLOCKS_FORGET
;
2295 else if (ext4_should_journal_data(inode
))
2296 flags
|= EXT4_FREE_BLOCKS_FORGET
;
2299 * For bigalloc file systems, we never free a partial cluster
2300 * at the beginning of the extent. Instead, we make a note
2301 * that we tried freeing the cluster, and check to see if we
2302 * need to free it on a subsequent call to ext4_remove_blocks,
2303 * or at the end of the ext4_truncate() operation.
2305 flags
|= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER
;
2307 trace_ext4_remove_blocks(inode
, ex
, from
, to
, *partial_cluster
);
2309 * If we have a partial cluster, and it's different from the
2310 * cluster of the last block, we need to explicitly free the
2311 * partial cluster here.
2313 pblk
= ext4_ext_pblock(ex
) + ee_len
- 1;
2314 if (*partial_cluster
&& (EXT4_B2C(sbi
, pblk
) != *partial_cluster
)) {
2315 ext4_free_blocks(handle
, inode
, NULL
,
2316 EXT4_C2B(sbi
, *partial_cluster
),
2317 sbi
->s_cluster_ratio
, flags
);
2318 *partial_cluster
= 0;
2321 #ifdef EXTENTS_STATS
2323 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
2324 spin_lock(&sbi
->s_ext_stats_lock
);
2325 sbi
->s_ext_blocks
+= ee_len
;
2326 sbi
->s_ext_extents
++;
2327 if (ee_len
< sbi
->s_ext_min
)
2328 sbi
->s_ext_min
= ee_len
;
2329 if (ee_len
> sbi
->s_ext_max
)
2330 sbi
->s_ext_max
= ee_len
;
2331 if (ext_depth(inode
) > sbi
->s_depth_max
)
2332 sbi
->s_depth_max
= ext_depth(inode
);
2333 spin_unlock(&sbi
->s_ext_stats_lock
);
2336 if (from
>= le32_to_cpu(ex
->ee_block
)
2337 && to
== le32_to_cpu(ex
->ee_block
) + ee_len
- 1) {
2341 num
= le32_to_cpu(ex
->ee_block
) + ee_len
- from
;
2342 pblk
= ext4_ext_pblock(ex
) + ee_len
- num
;
2343 ext_debug("free last %u blocks starting %llu\n", num
, pblk
);
2344 ext4_free_blocks(handle
, inode
, NULL
, pblk
, num
, flags
);
2346 * If the block range to be freed didn't start at the
2347 * beginning of a cluster, and we removed the entire
2348 * extent, save the partial cluster here, since we
2349 * might need to delete if we determine that the
2350 * truncate operation has removed all of the blocks in
2353 if (pblk
& (sbi
->s_cluster_ratio
- 1) &&
2355 *partial_cluster
= EXT4_B2C(sbi
, pblk
);
2357 *partial_cluster
= 0;
2358 } else if (from
== le32_to_cpu(ex
->ee_block
)
2359 && to
<= le32_to_cpu(ex
->ee_block
) + ee_len
- 1) {
2365 start
= ext4_ext_pblock(ex
);
2367 ext_debug("free first %u blocks starting %llu\n", num
, start
);
2368 ext4_free_blocks(handle
, inode
, NULL
, start
, num
, flags
);
2371 printk(KERN_INFO
"strange request: removal(2) "
2372 "%u-%u from %u:%u\n",
2373 from
, to
, le32_to_cpu(ex
->ee_block
), ee_len
);
2380 * ext4_ext_rm_leaf() Removes the extents associated with the
2381 * blocks appearing between "start" and "end", and splits the extents
2382 * if "start" and "end" appear in the same extent
2384 * @handle: The journal handle
2385 * @inode: The files inode
2386 * @path: The path to the leaf
2387 * @start: The first block to remove
2388 * @end: The last block to remove
2391 ext4_ext_rm_leaf(handle_t
*handle
, struct inode
*inode
,
2392 struct ext4_ext_path
*path
, ext4_fsblk_t
*partial_cluster
,
2393 ext4_lblk_t start
, ext4_lblk_t end
)
2395 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
2396 int err
= 0, correct_index
= 0;
2397 int depth
= ext_depth(inode
), credits
;
2398 struct ext4_extent_header
*eh
;
2401 ext4_lblk_t ex_ee_block
;
2402 unsigned short ex_ee_len
;
2403 unsigned uninitialized
= 0;
2404 struct ext4_extent
*ex
;
2406 /* the header must be checked already in ext4_ext_remove_space() */
2407 ext_debug("truncate since %u in leaf to %u\n", start
, end
);
2408 if (!path
[depth
].p_hdr
)
2409 path
[depth
].p_hdr
= ext_block_hdr(path
[depth
].p_bh
);
2410 eh
= path
[depth
].p_hdr
;
2411 if (unlikely(path
[depth
].p_hdr
== NULL
)) {
2412 EXT4_ERROR_INODE(inode
, "path[%d].p_hdr == NULL", depth
);
2415 /* find where to start removing */
2416 ex
= EXT_LAST_EXTENT(eh
);
2418 ex_ee_block
= le32_to_cpu(ex
->ee_block
);
2419 ex_ee_len
= ext4_ext_get_actual_len(ex
);
2421 trace_ext4_ext_rm_leaf(inode
, start
, ex
, *partial_cluster
);
2423 while (ex
>= EXT_FIRST_EXTENT(eh
) &&
2424 ex_ee_block
+ ex_ee_len
> start
) {
2426 if (ext4_ext_is_uninitialized(ex
))
2431 ext_debug("remove ext %u:[%d]%d\n", ex_ee_block
,
2432 uninitialized
, ex_ee_len
);
2433 path
[depth
].p_ext
= ex
;
2435 a
= ex_ee_block
> start
? ex_ee_block
: start
;
2436 b
= ex_ee_block
+ex_ee_len
- 1 < end
?
2437 ex_ee_block
+ex_ee_len
- 1 : end
;
2439 ext_debug(" border %u:%u\n", a
, b
);
2441 /* If this extent is beyond the end of the hole, skip it */
2442 if (end
< ex_ee_block
) {
2444 ex_ee_block
= le32_to_cpu(ex
->ee_block
);
2445 ex_ee_len
= ext4_ext_get_actual_len(ex
);
2447 } else if (b
!= ex_ee_block
+ ex_ee_len
- 1) {
2448 EXT4_ERROR_INODE(inode
,
2449 "can not handle truncate %u:%u "
2451 start
, end
, ex_ee_block
,
2452 ex_ee_block
+ ex_ee_len
- 1);
2455 } else if (a
!= ex_ee_block
) {
2456 /* remove tail of the extent */
2457 num
= a
- ex_ee_block
;
2459 /* remove whole extent: excellent! */
2463 * 3 for leaf, sb, and inode plus 2 (bmap and group
2464 * descriptor) for each block group; assume two block
2465 * groups plus ex_ee_len/blocks_per_block_group for
2468 credits
= 7 + 2*(ex_ee_len
/EXT4_BLOCKS_PER_GROUP(inode
->i_sb
));
2469 if (ex
== EXT_FIRST_EXTENT(eh
)) {
2471 credits
+= (ext_depth(inode
)) + 1;
2473 credits
+= EXT4_MAXQUOTAS_TRANS_BLOCKS(inode
->i_sb
);
2475 err
= ext4_ext_truncate_extend_restart(handle
, inode
, credits
);
2479 err
= ext4_ext_get_access(handle
, inode
, path
+ depth
);
2483 err
= ext4_remove_blocks(handle
, inode
, ex
, partial_cluster
,
2489 /* this extent is removed; mark slot entirely unused */
2490 ext4_ext_store_pblock(ex
, 0);
2492 ex
->ee_len
= cpu_to_le16(num
);
2494 * Do not mark uninitialized if all the blocks in the
2495 * extent have been removed.
2497 if (uninitialized
&& num
)
2498 ext4_ext_mark_uninitialized(ex
);
2500 * If the extent was completely released,
2501 * we need to remove it from the leaf
2504 if (end
!= EXT_MAX_BLOCKS
- 1) {
2506 * For hole punching, we need to scoot all the
2507 * extents up when an extent is removed so that
2508 * we dont have blank extents in the middle
2510 memmove(ex
, ex
+1, (EXT_LAST_EXTENT(eh
) - ex
) *
2511 sizeof(struct ext4_extent
));
2513 /* Now get rid of the one at the end */
2514 memset(EXT_LAST_EXTENT(eh
), 0,
2515 sizeof(struct ext4_extent
));
2517 le16_add_cpu(&eh
->eh_entries
, -1);
2519 *partial_cluster
= 0;
2521 err
= ext4_ext_dirty(handle
, inode
, path
+ depth
);
2525 ext_debug("new extent: %u:%u:%llu\n", ex_ee_block
, num
,
2526 ext4_ext_pblock(ex
));
2528 ex_ee_block
= le32_to_cpu(ex
->ee_block
);
2529 ex_ee_len
= ext4_ext_get_actual_len(ex
);
2532 if (correct_index
&& eh
->eh_entries
)
2533 err
= ext4_ext_correct_indexes(handle
, inode
, path
);
2536 * If there is still a entry in the leaf node, check to see if
2537 * it references the partial cluster. This is the only place
2538 * where it could; if it doesn't, we can free the cluster.
2540 if (*partial_cluster
&& ex
>= EXT_FIRST_EXTENT(eh
) &&
2541 (EXT4_B2C(sbi
, ext4_ext_pblock(ex
) + ex_ee_len
- 1) !=
2542 *partial_cluster
)) {
2543 int flags
= EXT4_FREE_BLOCKS_FORGET
;
2545 if (S_ISDIR(inode
->i_mode
) || S_ISLNK(inode
->i_mode
))
2546 flags
|= EXT4_FREE_BLOCKS_METADATA
;
2548 ext4_free_blocks(handle
, inode
, NULL
,
2549 EXT4_C2B(sbi
, *partial_cluster
),
2550 sbi
->s_cluster_ratio
, flags
);
2551 *partial_cluster
= 0;
2554 /* if this leaf is free, then we should
2555 * remove it from index block above */
2556 if (err
== 0 && eh
->eh_entries
== 0 && path
[depth
].p_bh
!= NULL
)
2557 err
= ext4_ext_rm_idx(handle
, inode
, path
+ depth
);
2564 * ext4_ext_more_to_rm:
2565 * returns 1 if current index has to be freed (even partial)
2568 ext4_ext_more_to_rm(struct ext4_ext_path
*path
)
2570 BUG_ON(path
->p_idx
== NULL
);
2572 if (path
->p_idx
< EXT_FIRST_INDEX(path
->p_hdr
))
2576 * if truncate on deeper level happened, it wasn't partial,
2577 * so we have to consider current index for truncation
2579 if (le16_to_cpu(path
->p_hdr
->eh_entries
) == path
->p_block
)
2584 static int ext4_ext_remove_space(struct inode
*inode
, ext4_lblk_t start
,
2587 struct super_block
*sb
= inode
->i_sb
;
2588 int depth
= ext_depth(inode
);
2589 struct ext4_ext_path
*path
= NULL
;
2590 ext4_fsblk_t partial_cluster
= 0;
2594 ext_debug("truncate since %u to %u\n", start
, end
);
2596 /* probably first extent we're gonna free will be last in block */
2597 handle
= ext4_journal_start(inode
, depth
+ 1);
2599 return PTR_ERR(handle
);
2602 ext4_ext_invalidate_cache(inode
);
2604 trace_ext4_ext_remove_space(inode
, start
, depth
);
2607 * Check if we are removing extents inside the extent tree. If that
2608 * is the case, we are going to punch a hole inside the extent tree
2609 * so we have to check whether we need to split the extent covering
2610 * the last block to remove so we can easily remove the part of it
2611 * in ext4_ext_rm_leaf().
2613 if (end
< EXT_MAX_BLOCKS
- 1) {
2614 struct ext4_extent
*ex
;
2615 ext4_lblk_t ee_block
;
2617 /* find extent for this block */
2618 path
= ext4_ext_find_extent(inode
, end
, NULL
);
2620 ext4_journal_stop(handle
);
2621 return PTR_ERR(path
);
2623 depth
= ext_depth(inode
);
2624 /* Leaf not may not exist only if inode has no blocks at all */
2625 ex
= path
[depth
].p_ext
;
2628 EXT4_ERROR_INODE(inode
,
2629 "path[%d].p_hdr == NULL",
2636 ee_block
= le32_to_cpu(ex
->ee_block
);
2639 * See if the last block is inside the extent, if so split
2640 * the extent at 'end' block so we can easily remove the
2641 * tail of the first part of the split extent in
2642 * ext4_ext_rm_leaf().
2644 if (end
>= ee_block
&&
2645 end
< ee_block
+ ext4_ext_get_actual_len(ex
) - 1) {
2648 if (ext4_ext_is_uninitialized(ex
))
2649 split_flag
= EXT4_EXT_MARK_UNINIT1
|
2650 EXT4_EXT_MARK_UNINIT2
;
2653 * Split the extent in two so that 'end' is the last
2654 * block in the first new extent
2656 err
= ext4_split_extent_at(handle
, inode
, path
,
2657 end
+ 1, split_flag
,
2658 EXT4_GET_BLOCKS_PRE_IO
|
2659 EXT4_GET_BLOCKS_PUNCH_OUT_EXT
);
2666 * We start scanning from right side, freeing all the blocks
2667 * after i_size and walking into the tree depth-wise.
2669 depth
= ext_depth(inode
);
2674 le16_to_cpu(path
[k
].p_hdr
->eh_entries
)+1;
2676 path
= kzalloc(sizeof(struct ext4_ext_path
) * (depth
+ 1),
2679 ext4_journal_stop(handle
);
2682 path
[0].p_depth
= depth
;
2683 path
[0].p_hdr
= ext_inode_hdr(inode
);
2686 if (ext4_ext_check(inode
, path
[0].p_hdr
, depth
)) {
2693 while (i
>= 0 && err
== 0) {
2695 /* this is leaf block */
2696 err
= ext4_ext_rm_leaf(handle
, inode
, path
,
2697 &partial_cluster
, start
,
2699 /* root level has p_bh == NULL, brelse() eats this */
2700 brelse(path
[i
].p_bh
);
2701 path
[i
].p_bh
= NULL
;
2706 /* this is index block */
2707 if (!path
[i
].p_hdr
) {
2708 ext_debug("initialize header\n");
2709 path
[i
].p_hdr
= ext_block_hdr(path
[i
].p_bh
);
2712 if (!path
[i
].p_idx
) {
2713 /* this level hasn't been touched yet */
2714 path
[i
].p_idx
= EXT_LAST_INDEX(path
[i
].p_hdr
);
2715 path
[i
].p_block
= le16_to_cpu(path
[i
].p_hdr
->eh_entries
)+1;
2716 ext_debug("init index ptr: hdr 0x%p, num %d\n",
2718 le16_to_cpu(path
[i
].p_hdr
->eh_entries
));
2720 /* we were already here, see at next index */
2724 ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
2725 i
, EXT_FIRST_INDEX(path
[i
].p_hdr
),
2727 if (ext4_ext_more_to_rm(path
+ i
)) {
2728 struct buffer_head
*bh
;
2729 /* go to the next level */
2730 ext_debug("move to level %d (block %llu)\n",
2731 i
+ 1, ext4_idx_pblock(path
[i
].p_idx
));
2732 memset(path
+ i
+ 1, 0, sizeof(*path
));
2733 bh
= sb_bread(sb
, ext4_idx_pblock(path
[i
].p_idx
));
2735 /* should we reset i_size? */
2739 if (WARN_ON(i
+ 1 > depth
)) {
2743 if (ext4_ext_check_block(inode
, ext_block_hdr(bh
),
2744 depth
- i
- 1, bh
)) {
2748 path
[i
+ 1].p_bh
= bh
;
2750 /* save actual number of indexes since this
2751 * number is changed at the next iteration */
2752 path
[i
].p_block
= le16_to_cpu(path
[i
].p_hdr
->eh_entries
);
2755 /* we finished processing this index, go up */
2756 if (path
[i
].p_hdr
->eh_entries
== 0 && i
> 0) {
2757 /* index is empty, remove it;
2758 * handle must be already prepared by the
2759 * truncatei_leaf() */
2760 err
= ext4_ext_rm_idx(handle
, inode
, path
+ i
);
2762 /* root level has p_bh == NULL, brelse() eats this */
2763 brelse(path
[i
].p_bh
);
2764 path
[i
].p_bh
= NULL
;
2766 ext_debug("return to level %d\n", i
);
2770 trace_ext4_ext_remove_space_done(inode
, start
, depth
, partial_cluster
,
2771 path
->p_hdr
->eh_entries
);
2773 /* If we still have something in the partial cluster and we have removed
2774 * even the first extent, then we should free the blocks in the partial
2775 * cluster as well. */
2776 if (partial_cluster
&& path
->p_hdr
->eh_entries
== 0) {
2777 int flags
= EXT4_FREE_BLOCKS_FORGET
;
2779 if (S_ISDIR(inode
->i_mode
) || S_ISLNK(inode
->i_mode
))
2780 flags
|= EXT4_FREE_BLOCKS_METADATA
;
2782 ext4_free_blocks(handle
, inode
, NULL
,
2783 EXT4_C2B(EXT4_SB(sb
), partial_cluster
),
2784 EXT4_SB(sb
)->s_cluster_ratio
, flags
);
2785 partial_cluster
= 0;
2788 /* TODO: flexible tree reduction should be here */
2789 if (path
->p_hdr
->eh_entries
== 0) {
2791 * truncate to zero freed all the tree,
2792 * so we need to correct eh_depth
2794 err
= ext4_ext_get_access(handle
, inode
, path
);
2796 ext_inode_hdr(inode
)->eh_depth
= 0;
2797 ext_inode_hdr(inode
)->eh_max
=
2798 cpu_to_le16(ext4_ext_space_root(inode
, 0));
2799 err
= ext4_ext_dirty(handle
, inode
, path
);
2803 ext4_ext_drop_refs(path
);
2805 if (err
== -EAGAIN
) {
2809 ext4_journal_stop(handle
);
2815 * called at mount time
2817 void ext4_ext_init(struct super_block
*sb
)
2820 * possible initialization would be here
2823 if (EXT4_HAS_INCOMPAT_FEATURE(sb
, EXT4_FEATURE_INCOMPAT_EXTENTS
)) {
2824 #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS)
2825 printk(KERN_INFO
"EXT4-fs: file extents enabled"
2826 #ifdef AGGRESSIVE_TEST
2827 ", aggressive tests"
2829 #ifdef CHECK_BINSEARCH
2832 #ifdef EXTENTS_STATS
2837 #ifdef EXTENTS_STATS
2838 spin_lock_init(&EXT4_SB(sb
)->s_ext_stats_lock
);
2839 EXT4_SB(sb
)->s_ext_min
= 1 << 30;
2840 EXT4_SB(sb
)->s_ext_max
= 0;
2846 * called at umount time
2848 void ext4_ext_release(struct super_block
*sb
)
2850 if (!EXT4_HAS_INCOMPAT_FEATURE(sb
, EXT4_FEATURE_INCOMPAT_EXTENTS
))
2853 #ifdef EXTENTS_STATS
2854 if (EXT4_SB(sb
)->s_ext_blocks
&& EXT4_SB(sb
)->s_ext_extents
) {
2855 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
2856 printk(KERN_ERR
"EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
2857 sbi
->s_ext_blocks
, sbi
->s_ext_extents
,
2858 sbi
->s_ext_blocks
/ sbi
->s_ext_extents
);
2859 printk(KERN_ERR
"EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
2860 sbi
->s_ext_min
, sbi
->s_ext_max
, sbi
->s_depth_max
);
2865 /* FIXME!! we need to try to merge to left or right after zero-out */
2866 static int ext4_ext_zeroout(struct inode
*inode
, struct ext4_extent
*ex
)
2868 ext4_fsblk_t ee_pblock
;
2869 unsigned int ee_len
;
2872 ee_len
= ext4_ext_get_actual_len(ex
);
2873 ee_pblock
= ext4_ext_pblock(ex
);
2875 ret
= sb_issue_zeroout(inode
->i_sb
, ee_pblock
, ee_len
, GFP_NOFS
);
2883 * ext4_split_extent_at() splits an extent at given block.
2885 * @handle: the journal handle
2886 * @inode: the file inode
2887 * @path: the path to the extent
2888 * @split: the logical block where the extent is splitted.
2889 * @split_flags: indicates if the extent could be zeroout if split fails, and
2890 * the states(init or uninit) of new extents.
2891 * @flags: flags used to insert new extent to extent tree.
2894 * Splits extent [a, b] into two extents [a, @split) and [@split, b], states
2895 * of which are deterimined by split_flag.
2897 * There are two cases:
2898 * a> the extent are splitted into two extent.
2899 * b> split is not needed, and just mark the extent.
2901 * return 0 on success.
2903 static int ext4_split_extent_at(handle_t
*handle
,
2904 struct inode
*inode
,
2905 struct ext4_ext_path
*path
,
2910 ext4_fsblk_t newblock
;
2911 ext4_lblk_t ee_block
;
2912 struct ext4_extent
*ex
, newex
, orig_ex
;
2913 struct ext4_extent
*ex2
= NULL
;
2914 unsigned int ee_len
, depth
;
2917 ext_debug("ext4_split_extents_at: inode %lu, logical"
2918 "block %llu\n", inode
->i_ino
, (unsigned long long)split
);
2920 ext4_ext_show_leaf(inode
, path
);
2922 depth
= ext_depth(inode
);
2923 ex
= path
[depth
].p_ext
;
2924 ee_block
= le32_to_cpu(ex
->ee_block
);
2925 ee_len
= ext4_ext_get_actual_len(ex
);
2926 newblock
= split
- ee_block
+ ext4_ext_pblock(ex
);
2928 BUG_ON(split
< ee_block
|| split
>= (ee_block
+ ee_len
));
2930 err
= ext4_ext_get_access(handle
, inode
, path
+ depth
);
2934 if (split
== ee_block
) {
2936 * case b: block @split is the block that the extent begins with
2937 * then we just change the state of the extent, and splitting
2940 if (split_flag
& EXT4_EXT_MARK_UNINIT2
)
2941 ext4_ext_mark_uninitialized(ex
);
2943 ext4_ext_mark_initialized(ex
);
2945 if (!(flags
& EXT4_GET_BLOCKS_PRE_IO
))
2946 ext4_ext_try_to_merge(handle
, inode
, path
, ex
);
2948 err
= ext4_ext_dirty(handle
, inode
, path
+ path
->p_depth
);
2953 memcpy(&orig_ex
, ex
, sizeof(orig_ex
));
2954 ex
->ee_len
= cpu_to_le16(split
- ee_block
);
2955 if (split_flag
& EXT4_EXT_MARK_UNINIT1
)
2956 ext4_ext_mark_uninitialized(ex
);
2959 * path may lead to new leaf, not to original leaf any more
2960 * after ext4_ext_insert_extent() returns,
2962 err
= ext4_ext_dirty(handle
, inode
, path
+ depth
);
2964 goto fix_extent_len
;
2967 ex2
->ee_block
= cpu_to_le32(split
);
2968 ex2
->ee_len
= cpu_to_le16(ee_len
- (split
- ee_block
));
2969 ext4_ext_store_pblock(ex2
, newblock
);
2970 if (split_flag
& EXT4_EXT_MARK_UNINIT2
)
2971 ext4_ext_mark_uninitialized(ex2
);
2973 err
= ext4_ext_insert_extent(handle
, inode
, path
, &newex
, flags
);
2974 if (err
== -ENOSPC
&& (EXT4_EXT_MAY_ZEROOUT
& split_flag
)) {
2975 err
= ext4_ext_zeroout(inode
, &orig_ex
);
2977 goto fix_extent_len
;
2978 /* update the extent length and mark as initialized */
2979 ex
->ee_len
= cpu_to_le16(ee_len
);
2980 ext4_ext_try_to_merge(handle
, inode
, path
, ex
);
2981 err
= ext4_ext_dirty(handle
, inode
, path
+ path
->p_depth
);
2984 goto fix_extent_len
;
2987 ext4_ext_show_leaf(inode
, path
);
2991 ex
->ee_len
= orig_ex
.ee_len
;
2992 ext4_ext_dirty(handle
, inode
, path
+ depth
);
2997 * ext4_split_extents() splits an extent and mark extent which is covered
2998 * by @map as split_flags indicates
3000 * It may result in splitting the extent into multiple extents (upto three)
3001 * There are three possibilities:
3002 * a> There is no split required
3003 * b> Splits in two extents: Split is happening at either end of the extent
3004 * c> Splits in three extents: Somone is splitting in middle of the extent
3007 static int ext4_split_extent(handle_t
*handle
,
3008 struct inode
*inode
,
3009 struct ext4_ext_path
*path
,
3010 struct ext4_map_blocks
*map
,
3014 ext4_lblk_t ee_block
;
3015 struct ext4_extent
*ex
;
3016 unsigned int ee_len
, depth
;
3019 int split_flag1
, flags1
;
3021 depth
= ext_depth(inode
);
3022 ex
= path
[depth
].p_ext
;
3023 ee_block
= le32_to_cpu(ex
->ee_block
);
3024 ee_len
= ext4_ext_get_actual_len(ex
);
3025 uninitialized
= ext4_ext_is_uninitialized(ex
);
3027 if (map
->m_lblk
+ map
->m_len
< ee_block
+ ee_len
) {
3028 split_flag1
= split_flag
& EXT4_EXT_MAY_ZEROOUT
?
3029 EXT4_EXT_MAY_ZEROOUT
: 0;
3030 flags1
= flags
| EXT4_GET_BLOCKS_PRE_IO
;
3032 split_flag1
|= EXT4_EXT_MARK_UNINIT1
|
3033 EXT4_EXT_MARK_UNINIT2
;
3034 err
= ext4_split_extent_at(handle
, inode
, path
,
3035 map
->m_lblk
+ map
->m_len
, split_flag1
, flags1
);
3040 ext4_ext_drop_refs(path
);
3041 path
= ext4_ext_find_extent(inode
, map
->m_lblk
, path
);
3043 return PTR_ERR(path
);
3045 if (map
->m_lblk
>= ee_block
) {
3046 split_flag1
= split_flag
& EXT4_EXT_MAY_ZEROOUT
?
3047 EXT4_EXT_MAY_ZEROOUT
: 0;
3049 split_flag1
|= EXT4_EXT_MARK_UNINIT1
;
3050 if (split_flag
& EXT4_EXT_MARK_UNINIT2
)
3051 split_flag1
|= EXT4_EXT_MARK_UNINIT2
;
3052 err
= ext4_split_extent_at(handle
, inode
, path
,
3053 map
->m_lblk
, split_flag1
, flags
);
3058 ext4_ext_show_leaf(inode
, path
);
3060 return err
? err
: map
->m_len
;
3064 * This function is called by ext4_ext_map_blocks() if someone tries to write
3065 * to an uninitialized extent. It may result in splitting the uninitialized
3066 * extent into multiple extents (up to three - one initialized and two
3068 * There are three possibilities:
3069 * a> There is no split required: Entire extent should be initialized
3070 * b> Splits in two extents: Write is happening at either end of the extent
3071 * c> Splits in three extents: Somone is writing in middle of the extent
3074 * - The extent pointed to by 'path' is uninitialized.
3075 * - The extent pointed to by 'path' contains a superset
3076 * of the logical span [map->m_lblk, map->m_lblk + map->m_len).
3078 * Post-conditions on success:
3079 * - the returned value is the number of blocks beyond map->l_lblk
3080 * that are allocated and initialized.
3081 * It is guaranteed to be >= map->m_len.
3083 static int ext4_ext_convert_to_initialized(handle_t
*handle
,
3084 struct inode
*inode
,
3085 struct ext4_map_blocks
*map
,
3086 struct ext4_ext_path
*path
)
3088 struct ext4_sb_info
*sbi
;
3089 struct ext4_extent_header
*eh
;
3090 struct ext4_map_blocks split_map
;
3091 struct ext4_extent zero_ex
;
3092 struct ext4_extent
*ex
;
3093 ext4_lblk_t ee_block
, eof_block
;
3094 unsigned int ee_len
, depth
;
3095 int allocated
, max_zeroout
= 0;
3099 ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical"
3100 "block %llu, max_blocks %u\n", inode
->i_ino
,
3101 (unsigned long long)map
->m_lblk
, map
->m_len
);
3103 sbi
= EXT4_SB(inode
->i_sb
);
3104 eof_block
= (inode
->i_size
+ inode
->i_sb
->s_blocksize
- 1) >>
3105 inode
->i_sb
->s_blocksize_bits
;
3106 if (eof_block
< map
->m_lblk
+ map
->m_len
)
3107 eof_block
= map
->m_lblk
+ map
->m_len
;
3109 depth
= ext_depth(inode
);
3110 eh
= path
[depth
].p_hdr
;
3111 ex
= path
[depth
].p_ext
;
3112 ee_block
= le32_to_cpu(ex
->ee_block
);
3113 ee_len
= ext4_ext_get_actual_len(ex
);
3114 allocated
= ee_len
- (map
->m_lblk
- ee_block
);
3116 trace_ext4_ext_convert_to_initialized_enter(inode
, map
, ex
);
3118 /* Pre-conditions */
3119 BUG_ON(!ext4_ext_is_uninitialized(ex
));
3120 BUG_ON(!in_range(map
->m_lblk
, ee_block
, ee_len
));
3123 * Attempt to transfer newly initialized blocks from the currently
3124 * uninitialized extent to its left neighbor. This is much cheaper
3125 * than an insertion followed by a merge as those involve costly
3126 * memmove() calls. This is the common case in steady state for
3127 * workloads doing fallocate(FALLOC_FL_KEEP_SIZE) followed by append
3130 * Limitations of the current logic:
3131 * - L1: we only deal with writes at the start of the extent.
3132 * The approach could be extended to writes at the end
3133 * of the extent but this scenario was deemed less common.
3134 * - L2: we do not deal with writes covering the whole extent.
3135 * This would require removing the extent if the transfer
3137 * - L3: we only attempt to merge with an extent stored in the
3138 * same extent tree node.
3140 if ((map
->m_lblk
== ee_block
) && /*L1*/
3141 (map
->m_len
< ee_len
) && /*L2*/
3142 (ex
> EXT_FIRST_EXTENT(eh
))) { /*L3*/
3143 struct ext4_extent
*prev_ex
;
3144 ext4_lblk_t prev_lblk
;
3145 ext4_fsblk_t prev_pblk
, ee_pblk
;
3146 unsigned int prev_len
, write_len
;
3149 prev_lblk
= le32_to_cpu(prev_ex
->ee_block
);
3150 prev_len
= ext4_ext_get_actual_len(prev_ex
);
3151 prev_pblk
= ext4_ext_pblock(prev_ex
);
3152 ee_pblk
= ext4_ext_pblock(ex
);
3153 write_len
= map
->m_len
;
3156 * A transfer of blocks from 'ex' to 'prev_ex' is allowed
3157 * upon those conditions:
3158 * - C1: prev_ex is initialized,
3159 * - C2: prev_ex is logically abutting ex,
3160 * - C3: prev_ex is physically abutting ex,
3161 * - C4: prev_ex can receive the additional blocks without
3162 * overflowing the (initialized) length limit.
3164 if ((!ext4_ext_is_uninitialized(prev_ex
)) && /*C1*/
3165 ((prev_lblk
+ prev_len
) == ee_block
) && /*C2*/
3166 ((prev_pblk
+ prev_len
) == ee_pblk
) && /*C3*/
3167 (prev_len
< (EXT_INIT_MAX_LEN
- write_len
))) { /*C4*/
3168 err
= ext4_ext_get_access(handle
, inode
, path
+ depth
);
3172 trace_ext4_ext_convert_to_initialized_fastpath(inode
,
3175 /* Shift the start of ex by 'write_len' blocks */
3176 ex
->ee_block
= cpu_to_le32(ee_block
+ write_len
);
3177 ext4_ext_store_pblock(ex
, ee_pblk
+ write_len
);
3178 ex
->ee_len
= cpu_to_le16(ee_len
- write_len
);
3179 ext4_ext_mark_uninitialized(ex
); /* Restore the flag */
3181 /* Extend prev_ex by 'write_len' blocks */
3182 prev_ex
->ee_len
= cpu_to_le16(prev_len
+ write_len
);
3184 /* Mark the block containing both extents as dirty */
3185 ext4_ext_dirty(handle
, inode
, path
+ depth
);
3187 /* Update path to point to the right extent */
3188 path
[depth
].p_ext
= prev_ex
;
3190 /* Result: number of initialized blocks past m_lblk */
3191 allocated
= write_len
;
3196 WARN_ON(map
->m_lblk
< ee_block
);
3198 * It is safe to convert extent to initialized via explicit
3199 * zeroout only if extent is fully insde i_size or new_size.
3201 split_flag
|= ee_block
+ ee_len
<= eof_block
? EXT4_EXT_MAY_ZEROOUT
: 0;
3203 if (EXT4_EXT_MAY_ZEROOUT
& split_flag
)
3204 max_zeroout
= sbi
->s_extent_max_zeroout_kb
>>
3205 inode
->i_sb
->s_blocksize_bits
;
3207 /* If extent is less than s_max_zeroout_kb, zeroout directly */
3208 if (max_zeroout
&& (ee_len
<= max_zeroout
)) {
3209 err
= ext4_ext_zeroout(inode
, ex
);
3213 err
= ext4_ext_get_access(handle
, inode
, path
+ depth
);
3216 ext4_ext_mark_initialized(ex
);
3217 ext4_ext_try_to_merge(handle
, inode
, path
, ex
);
3218 err
= ext4_ext_dirty(handle
, inode
, path
+ path
->p_depth
);
3224 * 1. split the extent into three extents.
3225 * 2. split the extent into two extents, zeroout the first half.
3226 * 3. split the extent into two extents, zeroout the second half.
3227 * 4. split the extent into two extents with out zeroout.
3229 split_map
.m_lblk
= map
->m_lblk
;
3230 split_map
.m_len
= map
->m_len
;
3232 if (max_zeroout
&& (allocated
> map
->m_len
)) {
3233 if (allocated
<= max_zeroout
) {
3236 cpu_to_le32(map
->m_lblk
);
3237 zero_ex
.ee_len
= cpu_to_le16(allocated
);
3238 ext4_ext_store_pblock(&zero_ex
,
3239 ext4_ext_pblock(ex
) + map
->m_lblk
- ee_block
);
3240 err
= ext4_ext_zeroout(inode
, &zero_ex
);
3243 split_map
.m_lblk
= map
->m_lblk
;
3244 split_map
.m_len
= allocated
;
3245 } else if (map
->m_lblk
- ee_block
+ map
->m_len
< max_zeroout
) {
3247 if (map
->m_lblk
!= ee_block
) {
3248 zero_ex
.ee_block
= ex
->ee_block
;
3249 zero_ex
.ee_len
= cpu_to_le16(map
->m_lblk
-
3251 ext4_ext_store_pblock(&zero_ex
,
3252 ext4_ext_pblock(ex
));
3253 err
= ext4_ext_zeroout(inode
, &zero_ex
);
3258 split_map
.m_lblk
= ee_block
;
3259 split_map
.m_len
= map
->m_lblk
- ee_block
+ map
->m_len
;
3260 allocated
= map
->m_len
;
3264 allocated
= ext4_split_extent(handle
, inode
, path
,
3265 &split_map
, split_flag
, 0);
3270 return err
? err
: allocated
;
3274 * This function is called by ext4_ext_map_blocks() from
3275 * ext4_get_blocks_dio_write() when DIO to write
3276 * to an uninitialized extent.
3278 * Writing to an uninitialized extent may result in splitting the uninitialized
3279 * extent into multiple initialized/uninitialized extents (up to three)
3280 * There are three possibilities:
3281 * a> There is no split required: Entire extent should be uninitialized
3282 * b> Splits in two extents: Write is happening at either end of the extent
3283 * c> Splits in three extents: Somone is writing in middle of the extent
3285 * One of more index blocks maybe needed if the extent tree grow after
3286 * the uninitialized extent split. To prevent ENOSPC occur at the IO
3287 * complete, we need to split the uninitialized extent before DIO submit
3288 * the IO. The uninitialized extent called at this time will be split
3289 * into three uninitialized extent(at most). After IO complete, the part
3290 * being filled will be convert to initialized by the end_io callback function
3291 * via ext4_convert_unwritten_extents().
3293 * Returns the size of uninitialized extent to be written on success.
3295 static int ext4_split_unwritten_extents(handle_t
*handle
,
3296 struct inode
*inode
,
3297 struct ext4_map_blocks
*map
,
3298 struct ext4_ext_path
*path
,
3301 ext4_lblk_t eof_block
;
3302 ext4_lblk_t ee_block
;
3303 struct ext4_extent
*ex
;
3304 unsigned int ee_len
;
3305 int split_flag
= 0, depth
;
3307 ext_debug("ext4_split_unwritten_extents: inode %lu, logical"
3308 "block %llu, max_blocks %u\n", inode
->i_ino
,
3309 (unsigned long long)map
->m_lblk
, map
->m_len
);
3311 eof_block
= (inode
->i_size
+ inode
->i_sb
->s_blocksize
- 1) >>
3312 inode
->i_sb
->s_blocksize_bits
;
3313 if (eof_block
< map
->m_lblk
+ map
->m_len
)
3314 eof_block
= map
->m_lblk
+ map
->m_len
;
3316 * It is safe to convert extent to initialized via explicit
3317 * zeroout only if extent is fully insde i_size or new_size.
3319 depth
= ext_depth(inode
);
3320 ex
= path
[depth
].p_ext
;
3321 ee_block
= le32_to_cpu(ex
->ee_block
);
3322 ee_len
= ext4_ext_get_actual_len(ex
);
3324 split_flag
|= ee_block
+ ee_len
<= eof_block
? EXT4_EXT_MAY_ZEROOUT
: 0;
3325 split_flag
|= EXT4_EXT_MARK_UNINIT2
;
3327 flags
|= EXT4_GET_BLOCKS_PRE_IO
;
3328 return ext4_split_extent(handle
, inode
, path
, map
, split_flag
, flags
);
3331 static int ext4_convert_unwritten_extents_endio(handle_t
*handle
,
3332 struct inode
*inode
,
3333 struct ext4_ext_path
*path
)
3335 struct ext4_extent
*ex
;
3339 depth
= ext_depth(inode
);
3340 ex
= path
[depth
].p_ext
;
3342 ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical"
3343 "block %llu, max_blocks %u\n", inode
->i_ino
,
3344 (unsigned long long)le32_to_cpu(ex
->ee_block
),
3345 ext4_ext_get_actual_len(ex
));
3347 err
= ext4_ext_get_access(handle
, inode
, path
+ depth
);
3350 /* first mark the extent as initialized */
3351 ext4_ext_mark_initialized(ex
);
3353 /* note: ext4_ext_correct_indexes() isn't needed here because
3354 * borders are not changed
3356 ext4_ext_try_to_merge(handle
, inode
, path
, ex
);
3358 /* Mark modified extent as dirty */
3359 err
= ext4_ext_dirty(handle
, inode
, path
+ path
->p_depth
);
3361 ext4_ext_show_leaf(inode
, path
);
3365 static void unmap_underlying_metadata_blocks(struct block_device
*bdev
,
3366 sector_t block
, int count
)
3369 for (i
= 0; i
< count
; i
++)
3370 unmap_underlying_metadata(bdev
, block
+ i
);
3374 * Handle EOFBLOCKS_FL flag, clearing it if necessary
3376 static int check_eofblocks_fl(handle_t
*handle
, struct inode
*inode
,
3378 struct ext4_ext_path
*path
,
3382 struct ext4_extent_header
*eh
;
3383 struct ext4_extent
*last_ex
;
3385 if (!ext4_test_inode_flag(inode
, EXT4_INODE_EOFBLOCKS
))
3388 depth
= ext_depth(inode
);
3389 eh
= path
[depth
].p_hdr
;
3392 * We're going to remove EOFBLOCKS_FL entirely in future so we
3393 * do not care for this case anymore. Simply remove the flag
3394 * if there are no extents.
3396 if (unlikely(!eh
->eh_entries
))
3398 last_ex
= EXT_LAST_EXTENT(eh
);
3400 * We should clear the EOFBLOCKS_FL flag if we are writing the
3401 * last block in the last extent in the file. We test this by
3402 * first checking to see if the caller to
3403 * ext4_ext_get_blocks() was interested in the last block (or
3404 * a block beyond the last block) in the current extent. If
3405 * this turns out to be false, we can bail out from this
3406 * function immediately.
3408 if (lblk
+ len
< le32_to_cpu(last_ex
->ee_block
) +
3409 ext4_ext_get_actual_len(last_ex
))
3412 * If the caller does appear to be planning to write at or
3413 * beyond the end of the current extent, we then test to see
3414 * if the current extent is the last extent in the file, by
3415 * checking to make sure it was reached via the rightmost node
3416 * at each level of the tree.
3418 for (i
= depth
-1; i
>= 0; i
--)
3419 if (path
[i
].p_idx
!= EXT_LAST_INDEX(path
[i
].p_hdr
))
3422 ext4_clear_inode_flag(inode
, EXT4_INODE_EOFBLOCKS
);
3423 return ext4_mark_inode_dirty(handle
, inode
);
3427 * ext4_find_delalloc_range: find delayed allocated block in the given range.
3429 * Goes through the buffer heads in the range [lblk_start, lblk_end] and returns
3430 * whether there are any buffers marked for delayed allocation. It returns '1'
3431 * on the first delalloc'ed buffer head found. If no buffer head in the given
3432 * range is marked for delalloc, it returns 0.
3433 * lblk_start should always be <= lblk_end.
3434 * search_hint_reverse is to indicate that searching in reverse from lblk_end to
3435 * lblk_start might be more efficient (i.e., we will likely hit the delalloc'ed
3436 * block sooner). This is useful when blocks are truncated sequentially from
3437 * lblk_start towards lblk_end.
3439 static int ext4_find_delalloc_range(struct inode
*inode
,
3440 ext4_lblk_t lblk_start
,
3441 ext4_lblk_t lblk_end
,
3442 int search_hint_reverse
)
3444 struct address_space
*mapping
= inode
->i_mapping
;
3445 struct buffer_head
*head
, *bh
= NULL
;
3447 ext4_lblk_t i
, pg_lblk
;
3450 if (!test_opt(inode
->i_sb
, DELALLOC
))
3453 /* reverse search wont work if fs block size is less than page size */
3454 if (inode
->i_blkbits
< PAGE_CACHE_SHIFT
)
3455 search_hint_reverse
= 0;
3457 if (search_hint_reverse
)
3462 index
= i
>> (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
3464 while ((i
>= lblk_start
) && (i
<= lblk_end
)) {
3465 page
= find_get_page(mapping
, index
);
3469 if (!page_has_buffers(page
))
3472 head
= page_buffers(page
);
3477 pg_lblk
= index
<< (PAGE_CACHE_SHIFT
-
3480 if (unlikely(pg_lblk
< lblk_start
)) {
3482 * This is possible when fs block size is less
3483 * than page size and our cluster starts/ends in
3484 * middle of the page. So we need to skip the
3485 * initial few blocks till we reach the 'lblk'
3491 /* Check if the buffer is delayed allocated and that it
3492 * is not yet mapped. (when da-buffers are mapped during
3493 * their writeout, their da_mapped bit is set.)
3495 if (buffer_delay(bh
) && !buffer_da_mapped(bh
)) {
3496 page_cache_release(page
);
3497 trace_ext4_find_delalloc_range(inode
,
3498 lblk_start
, lblk_end
,
3499 search_hint_reverse
,
3503 if (search_hint_reverse
)
3507 } while ((i
>= lblk_start
) && (i
<= lblk_end
) &&
3508 ((bh
= bh
->b_this_page
) != head
));
3511 page_cache_release(page
);
3513 * Move to next page. 'i' will be the first lblk in the next
3516 if (search_hint_reverse
)
3520 i
= index
<< (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
3523 trace_ext4_find_delalloc_range(inode
, lblk_start
, lblk_end
,
3524 search_hint_reverse
, 0, 0);
3528 int ext4_find_delalloc_cluster(struct inode
*inode
, ext4_lblk_t lblk
,
3529 int search_hint_reverse
)
3531 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
3532 ext4_lblk_t lblk_start
, lblk_end
;
3533 lblk_start
= lblk
& (~(sbi
->s_cluster_ratio
- 1));
3534 lblk_end
= lblk_start
+ sbi
->s_cluster_ratio
- 1;
3536 return ext4_find_delalloc_range(inode
, lblk_start
, lblk_end
,
3537 search_hint_reverse
);
3541 * Determines how many complete clusters (out of those specified by the 'map')
3542 * are under delalloc and were reserved quota for.
3543 * This function is called when we are writing out the blocks that were
3544 * originally written with their allocation delayed, but then the space was
3545 * allocated using fallocate() before the delayed allocation could be resolved.
3546 * The cases to look for are:
3547 * ('=' indicated delayed allocated blocks
3548 * '-' indicates non-delayed allocated blocks)
3549 * (a) partial clusters towards beginning and/or end outside of allocated range
3550 * are not delalloc'ed.
3552 * |----c---=|====c====|====c====|===-c----|
3553 * |++++++ allocated ++++++|
3554 * ==> 4 complete clusters in above example
3556 * (b) partial cluster (outside of allocated range) towards either end is
3557 * marked for delayed allocation. In this case, we will exclude that
3560 * |----====c========|========c========|
3561 * |++++++ allocated ++++++|
3562 * ==> 1 complete clusters in above example
3565 * |================c================|
3566 * |++++++ allocated ++++++|
3567 * ==> 0 complete clusters in above example
3569 * The ext4_da_update_reserve_space will be called only if we
3570 * determine here that there were some "entire" clusters that span
3571 * this 'allocated' range.
3572 * In the non-bigalloc case, this function will just end up returning num_blks
3573 * without ever calling ext4_find_delalloc_range.
3576 get_reserved_cluster_alloc(struct inode
*inode
, ext4_lblk_t lblk_start
,
3577 unsigned int num_blks
)
3579 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
3580 ext4_lblk_t alloc_cluster_start
, alloc_cluster_end
;
3581 ext4_lblk_t lblk_from
, lblk_to
, c_offset
;
3582 unsigned int allocated_clusters
= 0;
3584 alloc_cluster_start
= EXT4_B2C(sbi
, lblk_start
);
3585 alloc_cluster_end
= EXT4_B2C(sbi
, lblk_start
+ num_blks
- 1);
3587 /* max possible clusters for this allocation */
3588 allocated_clusters
= alloc_cluster_end
- alloc_cluster_start
+ 1;
3590 trace_ext4_get_reserved_cluster_alloc(inode
, lblk_start
, num_blks
);
3592 /* Check towards left side */
3593 c_offset
= lblk_start
& (sbi
->s_cluster_ratio
- 1);
3595 lblk_from
= lblk_start
& (~(sbi
->s_cluster_ratio
- 1));
3596 lblk_to
= lblk_from
+ c_offset
- 1;
3598 if (ext4_find_delalloc_range(inode
, lblk_from
, lblk_to
, 0))
3599 allocated_clusters
--;
3602 /* Now check towards right. */
3603 c_offset
= (lblk_start
+ num_blks
) & (sbi
->s_cluster_ratio
- 1);
3604 if (allocated_clusters
&& c_offset
) {
3605 lblk_from
= lblk_start
+ num_blks
;
3606 lblk_to
= lblk_from
+ (sbi
->s_cluster_ratio
- c_offset
) - 1;
3608 if (ext4_find_delalloc_range(inode
, lblk_from
, lblk_to
, 0))
3609 allocated_clusters
--;
3612 return allocated_clusters
;
3616 ext4_ext_handle_uninitialized_extents(handle_t
*handle
, struct inode
*inode
,
3617 struct ext4_map_blocks
*map
,
3618 struct ext4_ext_path
*path
, int flags
,
3619 unsigned int allocated
, ext4_fsblk_t newblock
)
3623 ext4_io_end_t
*io
= ext4_inode_aio(inode
);
3625 ext_debug("ext4_ext_handle_uninitialized_extents: inode %lu, logical "
3626 "block %llu, max_blocks %u, flags %x, allocated %u\n",
3627 inode
->i_ino
, (unsigned long long)map
->m_lblk
, map
->m_len
,
3629 ext4_ext_show_leaf(inode
, path
);
3631 trace_ext4_ext_handle_uninitialized_extents(inode
, map
, allocated
,
3634 /* get_block() before submit the IO, split the extent */
3635 if ((flags
& EXT4_GET_BLOCKS_PRE_IO
)) {
3636 ret
= ext4_split_unwritten_extents(handle
, inode
, map
,
3641 * Flag the inode(non aio case) or end_io struct (aio case)
3642 * that this IO needs to conversion to written when IO is
3646 ext4_set_io_unwritten_flag(inode
, io
);
3648 ext4_set_inode_state(inode
, EXT4_STATE_DIO_UNWRITTEN
);
3649 if (ext4_should_dioread_nolock(inode
))
3650 map
->m_flags
|= EXT4_MAP_UNINIT
;
3653 /* IO end_io complete, convert the filled extent to written */
3654 if ((flags
& EXT4_GET_BLOCKS_CONVERT
)) {
3655 ret
= ext4_convert_unwritten_extents_endio(handle
, inode
,
3658 ext4_update_inode_fsync_trans(handle
, inode
, 1);
3659 err
= check_eofblocks_fl(handle
, inode
, map
->m_lblk
,
3665 /* buffered IO case */
3667 * repeat fallocate creation request
3668 * we already have an unwritten extent
3670 if (flags
& EXT4_GET_BLOCKS_UNINIT_EXT
)
3673 /* buffered READ or buffered write_begin() lookup */
3674 if ((flags
& EXT4_GET_BLOCKS_CREATE
) == 0) {
3676 * We have blocks reserved already. We
3677 * return allocated blocks so that delalloc
3678 * won't do block reservation for us. But
3679 * the buffer head will be unmapped so that
3680 * a read from the block returns 0s.
3682 map
->m_flags
|= EXT4_MAP_UNWRITTEN
;
3686 /* buffered write, writepage time, convert*/
3687 ret
= ext4_ext_convert_to_initialized(handle
, inode
, map
, path
);
3689 ext4_update_inode_fsync_trans(handle
, inode
, 1);
3696 map
->m_flags
|= EXT4_MAP_NEW
;
3698 * if we allocated more blocks than requested
3699 * we need to make sure we unmap the extra block
3700 * allocated. The actual needed block will get
3701 * unmapped later when we find the buffer_head marked
3704 if (allocated
> map
->m_len
) {
3705 unmap_underlying_metadata_blocks(inode
->i_sb
->s_bdev
,
3706 newblock
+ map
->m_len
,
3707 allocated
- map
->m_len
);
3708 allocated
= map
->m_len
;
3712 * If we have done fallocate with the offset that is already
3713 * delayed allocated, we would have block reservation
3714 * and quota reservation done in the delayed write path.
3715 * But fallocate would have already updated quota and block
3716 * count for this offset. So cancel these reservation
3718 if (flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
) {
3719 unsigned int reserved_clusters
;
3720 reserved_clusters
= get_reserved_cluster_alloc(inode
,
3721 map
->m_lblk
, map
->m_len
);
3722 if (reserved_clusters
)
3723 ext4_da_update_reserve_space(inode
,
3729 map
->m_flags
|= EXT4_MAP_MAPPED
;
3730 if ((flags
& EXT4_GET_BLOCKS_KEEP_SIZE
) == 0) {
3731 err
= check_eofblocks_fl(handle
, inode
, map
->m_lblk
, path
,
3737 if (allocated
> map
->m_len
)
3738 allocated
= map
->m_len
;
3739 ext4_ext_show_leaf(inode
, path
);
3740 map
->m_pblk
= newblock
;
3741 map
->m_len
= allocated
;
3744 ext4_ext_drop_refs(path
);
3747 return err
? err
: allocated
;
3751 * get_implied_cluster_alloc - check to see if the requested
3752 * allocation (in the map structure) overlaps with a cluster already
3753 * allocated in an extent.
3754 * @sb The filesystem superblock structure
3755 * @map The requested lblk->pblk mapping
3756 * @ex The extent structure which might contain an implied
3757 * cluster allocation
3759 * This function is called by ext4_ext_map_blocks() after we failed to
3760 * find blocks that were already in the inode's extent tree. Hence,
3761 * we know that the beginning of the requested region cannot overlap
3762 * the extent from the inode's extent tree. There are three cases we
3763 * want to catch. The first is this case:
3765 * |--- cluster # N--|
3766 * |--- extent ---| |---- requested region ---|
3769 * The second case that we need to test for is this one:
3771 * |--------- cluster # N ----------------|
3772 * |--- requested region --| |------- extent ----|
3773 * |=======================|
3775 * The third case is when the requested region lies between two extents
3776 * within the same cluster:
3777 * |------------- cluster # N-------------|
3778 * |----- ex -----| |---- ex_right ----|
3779 * |------ requested region ------|
3780 * |================|
3782 * In each of the above cases, we need to set the map->m_pblk and
3783 * map->m_len so it corresponds to the return the extent labelled as
3784 * "|====|" from cluster #N, since it is already in use for data in
3785 * cluster EXT4_B2C(sbi, map->m_lblk). We will then return 1 to
3786 * signal to ext4_ext_map_blocks() that map->m_pblk should be treated
3787 * as a new "allocated" block region. Otherwise, we will return 0 and
3788 * ext4_ext_map_blocks() will then allocate one or more new clusters
3789 * by calling ext4_mb_new_blocks().
3791 static int get_implied_cluster_alloc(struct super_block
*sb
,
3792 struct ext4_map_blocks
*map
,
3793 struct ext4_extent
*ex
,
3794 struct ext4_ext_path
*path
)
3796 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
3797 ext4_lblk_t c_offset
= map
->m_lblk
& (sbi
->s_cluster_ratio
-1);
3798 ext4_lblk_t ex_cluster_start
, ex_cluster_end
;
3799 ext4_lblk_t rr_cluster_start
;
3800 ext4_lblk_t ee_block
= le32_to_cpu(ex
->ee_block
);
3801 ext4_fsblk_t ee_start
= ext4_ext_pblock(ex
);
3802 unsigned short ee_len
= ext4_ext_get_actual_len(ex
);
3804 /* The extent passed in that we are trying to match */
3805 ex_cluster_start
= EXT4_B2C(sbi
, ee_block
);
3806 ex_cluster_end
= EXT4_B2C(sbi
, ee_block
+ ee_len
- 1);
3808 /* The requested region passed into ext4_map_blocks() */
3809 rr_cluster_start
= EXT4_B2C(sbi
, map
->m_lblk
);
3811 if ((rr_cluster_start
== ex_cluster_end
) ||
3812 (rr_cluster_start
== ex_cluster_start
)) {
3813 if (rr_cluster_start
== ex_cluster_end
)
3814 ee_start
+= ee_len
- 1;
3815 map
->m_pblk
= (ee_start
& ~(sbi
->s_cluster_ratio
- 1)) +
3817 map
->m_len
= min(map
->m_len
,
3818 (unsigned) sbi
->s_cluster_ratio
- c_offset
);
3820 * Check for and handle this case:
3822 * |--------- cluster # N-------------|
3823 * |------- extent ----|
3824 * |--- requested region ---|
3828 if (map
->m_lblk
< ee_block
)
3829 map
->m_len
= min(map
->m_len
, ee_block
- map
->m_lblk
);
3832 * Check for the case where there is already another allocated
3833 * block to the right of 'ex' but before the end of the cluster.
3835 * |------------- cluster # N-------------|
3836 * |----- ex -----| |---- ex_right ----|
3837 * |------ requested region ------|
3838 * |================|
3840 if (map
->m_lblk
> ee_block
) {
3841 ext4_lblk_t next
= ext4_ext_next_allocated_block(path
);
3842 map
->m_len
= min(map
->m_len
, next
- map
->m_lblk
);
3845 trace_ext4_get_implied_cluster_alloc_exit(sb
, map
, 1);
3849 trace_ext4_get_implied_cluster_alloc_exit(sb
, map
, 0);
3855 * Block allocation/map/preallocation routine for extents based files
3858 * Need to be called with
3859 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
3860 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
3862 * return > 0, number of of blocks already mapped/allocated
3863 * if create == 0 and these are pre-allocated blocks
3864 * buffer head is unmapped
3865 * otherwise blocks are mapped
3867 * return = 0, if plain look up failed (blocks have not been allocated)
3868 * buffer head is unmapped
3870 * return < 0, error case.
3872 int ext4_ext_map_blocks(handle_t
*handle
, struct inode
*inode
,
3873 struct ext4_map_blocks
*map
, int flags
)
3875 struct ext4_ext_path
*path
= NULL
;
3876 struct ext4_extent newex
, *ex
, *ex2
;
3877 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
3878 ext4_fsblk_t newblock
= 0;
3879 int free_on_err
= 0, err
= 0, depth
, ret
;
3880 unsigned int allocated
= 0, offset
= 0;
3881 unsigned int allocated_clusters
= 0;
3882 struct ext4_allocation_request ar
;
3883 ext4_io_end_t
*io
= ext4_inode_aio(inode
);
3884 ext4_lblk_t cluster_offset
;
3885 int set_unwritten
= 0;
3887 ext_debug("blocks %u/%u requested for inode %lu\n",
3888 map
->m_lblk
, map
->m_len
, inode
->i_ino
);
3889 trace_ext4_ext_map_blocks_enter(inode
, map
->m_lblk
, map
->m_len
, flags
);
3891 /* check in cache */
3892 if (ext4_ext_in_cache(inode
, map
->m_lblk
, &newex
)) {
3893 if (!newex
.ee_start_lo
&& !newex
.ee_start_hi
) {
3894 if ((sbi
->s_cluster_ratio
> 1) &&
3895 ext4_find_delalloc_cluster(inode
, map
->m_lblk
, 0))
3896 map
->m_flags
|= EXT4_MAP_FROM_CLUSTER
;
3898 if ((flags
& EXT4_GET_BLOCKS_CREATE
) == 0) {
3900 * block isn't allocated yet and
3901 * user doesn't want to allocate it
3905 /* we should allocate requested block */
3907 /* block is already allocated */
3908 if (sbi
->s_cluster_ratio
> 1)
3909 map
->m_flags
|= EXT4_MAP_FROM_CLUSTER
;
3910 newblock
= map
->m_lblk
3911 - le32_to_cpu(newex
.ee_block
)
3912 + ext4_ext_pblock(&newex
);
3913 /* number of remaining blocks in the extent */
3914 allocated
= ext4_ext_get_actual_len(&newex
) -
3915 (map
->m_lblk
- le32_to_cpu(newex
.ee_block
));
3920 /* find extent for this block */
3921 path
= ext4_ext_find_extent(inode
, map
->m_lblk
, NULL
);
3923 err
= PTR_ERR(path
);
3928 depth
= ext_depth(inode
);
3931 * consistent leaf must not be empty;
3932 * this situation is possible, though, _during_ tree modification;
3933 * this is why assert can't be put in ext4_ext_find_extent()
3935 if (unlikely(path
[depth
].p_ext
== NULL
&& depth
!= 0)) {
3936 EXT4_ERROR_INODE(inode
, "bad extent address "
3937 "lblock: %lu, depth: %d pblock %lld",
3938 (unsigned long) map
->m_lblk
, depth
,
3939 path
[depth
].p_block
);
3944 ex
= path
[depth
].p_ext
;
3946 ext4_lblk_t ee_block
= le32_to_cpu(ex
->ee_block
);
3947 ext4_fsblk_t ee_start
= ext4_ext_pblock(ex
);
3948 unsigned short ee_len
;
3951 * Uninitialized extents are treated as holes, except that
3952 * we split out initialized portions during a write.
3954 ee_len
= ext4_ext_get_actual_len(ex
);
3956 trace_ext4_ext_show_extent(inode
, ee_block
, ee_start
, ee_len
);
3958 /* if found extent covers block, simply return it */
3959 if (in_range(map
->m_lblk
, ee_block
, ee_len
)) {
3960 newblock
= map
->m_lblk
- ee_block
+ ee_start
;
3961 /* number of remaining blocks in the extent */
3962 allocated
= ee_len
- (map
->m_lblk
- ee_block
);
3963 ext_debug("%u fit into %u:%d -> %llu\n", map
->m_lblk
,
3964 ee_block
, ee_len
, newblock
);
3967 * Do not put uninitialized extent
3970 if (!ext4_ext_is_uninitialized(ex
)) {
3971 ext4_ext_put_in_cache(inode
, ee_block
,
3975 ret
= ext4_ext_handle_uninitialized_extents(
3976 handle
, inode
, map
, path
, flags
,
3977 allocated
, newblock
);
3982 if ((sbi
->s_cluster_ratio
> 1) &&
3983 ext4_find_delalloc_cluster(inode
, map
->m_lblk
, 0))
3984 map
->m_flags
|= EXT4_MAP_FROM_CLUSTER
;
3987 * requested block isn't allocated yet;
3988 * we couldn't try to create block if create flag is zero
3990 if ((flags
& EXT4_GET_BLOCKS_CREATE
) == 0) {
3992 * put just found gap into cache to speed up
3993 * subsequent requests
3995 ext4_ext_put_gap_in_cache(inode
, path
, map
->m_lblk
);
4000 * Okay, we need to do block allocation.
4002 map
->m_flags
&= ~EXT4_MAP_FROM_CLUSTER
;
4003 newex
.ee_block
= cpu_to_le32(map
->m_lblk
);
4004 cluster_offset
= map
->m_lblk
& (sbi
->s_cluster_ratio
-1);
4007 * If we are doing bigalloc, check to see if the extent returned
4008 * by ext4_ext_find_extent() implies a cluster we can use.
4010 if (cluster_offset
&& ex
&&
4011 get_implied_cluster_alloc(inode
->i_sb
, map
, ex
, path
)) {
4012 ar
.len
= allocated
= map
->m_len
;
4013 newblock
= map
->m_pblk
;
4014 map
->m_flags
|= EXT4_MAP_FROM_CLUSTER
;
4015 goto got_allocated_blocks
;
4018 /* find neighbour allocated blocks */
4019 ar
.lleft
= map
->m_lblk
;
4020 err
= ext4_ext_search_left(inode
, path
, &ar
.lleft
, &ar
.pleft
);
4023 ar
.lright
= map
->m_lblk
;
4025 err
= ext4_ext_search_right(inode
, path
, &ar
.lright
, &ar
.pright
, &ex2
);
4029 /* Check if the extent after searching to the right implies a
4030 * cluster we can use. */
4031 if ((sbi
->s_cluster_ratio
> 1) && ex2
&&
4032 get_implied_cluster_alloc(inode
->i_sb
, map
, ex2
, path
)) {
4033 ar
.len
= allocated
= map
->m_len
;
4034 newblock
= map
->m_pblk
;
4035 map
->m_flags
|= EXT4_MAP_FROM_CLUSTER
;
4036 goto got_allocated_blocks
;
4040 * See if request is beyond maximum number of blocks we can have in
4041 * a single extent. For an initialized extent this limit is
4042 * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is
4043 * EXT_UNINIT_MAX_LEN.
4045 if (map
->m_len
> EXT_INIT_MAX_LEN
&&
4046 !(flags
& EXT4_GET_BLOCKS_UNINIT_EXT
))
4047 map
->m_len
= EXT_INIT_MAX_LEN
;
4048 else if (map
->m_len
> EXT_UNINIT_MAX_LEN
&&
4049 (flags
& EXT4_GET_BLOCKS_UNINIT_EXT
))
4050 map
->m_len
= EXT_UNINIT_MAX_LEN
;
4052 /* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */
4053 newex
.ee_len
= cpu_to_le16(map
->m_len
);
4054 err
= ext4_ext_check_overlap(sbi
, inode
, &newex
, path
);
4056 allocated
= ext4_ext_get_actual_len(&newex
);
4058 allocated
= map
->m_len
;
4060 /* allocate new block */
4062 ar
.goal
= ext4_ext_find_goal(inode
, path
, map
->m_lblk
);
4063 ar
.logical
= map
->m_lblk
;
4065 * We calculate the offset from the beginning of the cluster
4066 * for the logical block number, since when we allocate a
4067 * physical cluster, the physical block should start at the
4068 * same offset from the beginning of the cluster. This is
4069 * needed so that future calls to get_implied_cluster_alloc()
4072 offset
= map
->m_lblk
& (sbi
->s_cluster_ratio
- 1);
4073 ar
.len
= EXT4_NUM_B2C(sbi
, offset
+allocated
);
4075 ar
.logical
-= offset
;
4076 if (S_ISREG(inode
->i_mode
))
4077 ar
.flags
= EXT4_MB_HINT_DATA
;
4079 /* disable in-core preallocation for non-regular files */
4081 if (flags
& EXT4_GET_BLOCKS_NO_NORMALIZE
)
4082 ar
.flags
|= EXT4_MB_HINT_NOPREALLOC
;
4083 newblock
= ext4_mb_new_blocks(handle
, &ar
, &err
);
4086 ext_debug("allocate new block: goal %llu, found %llu/%u\n",
4087 ar
.goal
, newblock
, allocated
);
4089 allocated_clusters
= ar
.len
;
4090 ar
.len
= EXT4_C2B(sbi
, ar
.len
) - offset
;
4091 if (ar
.len
> allocated
)
4094 got_allocated_blocks
:
4095 /* try to insert new extent into found leaf and return */
4096 ext4_ext_store_pblock(&newex
, newblock
+ offset
);
4097 newex
.ee_len
= cpu_to_le16(ar
.len
);
4098 /* Mark uninitialized */
4099 if (flags
& EXT4_GET_BLOCKS_UNINIT_EXT
){
4100 ext4_ext_mark_uninitialized(&newex
);
4102 * io_end structure was created for every IO write to an
4103 * uninitialized extent. To avoid unnecessary conversion,
4104 * here we flag the IO that really needs the conversion.
4105 * For non asycn direct IO case, flag the inode state
4106 * that we need to perform conversion when IO is done.
4108 if ((flags
& EXT4_GET_BLOCKS_PRE_IO
))
4110 if (ext4_should_dioread_nolock(inode
))
4111 map
->m_flags
|= EXT4_MAP_UNINIT
;
4115 if ((flags
& EXT4_GET_BLOCKS_KEEP_SIZE
) == 0)
4116 err
= check_eofblocks_fl(handle
, inode
, map
->m_lblk
,
4119 err
= ext4_ext_insert_extent(handle
, inode
, path
,
4122 if (!err
&& set_unwritten
) {
4124 ext4_set_io_unwritten_flag(inode
, io
);
4126 ext4_set_inode_state(inode
,
4127 EXT4_STATE_DIO_UNWRITTEN
);
4130 if (err
&& free_on_err
) {
4131 int fb_flags
= flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
?
4132 EXT4_FREE_BLOCKS_NO_QUOT_UPDATE
: 0;
4133 /* free data blocks we just allocated */
4134 /* not a good idea to call discard here directly,
4135 * but otherwise we'd need to call it every free() */
4136 ext4_discard_preallocations(inode
);
4137 ext4_free_blocks(handle
, inode
, NULL
, ext4_ext_pblock(&newex
),
4138 ext4_ext_get_actual_len(&newex
), fb_flags
);
4142 /* previous routine could use block we allocated */
4143 newblock
= ext4_ext_pblock(&newex
);
4144 allocated
= ext4_ext_get_actual_len(&newex
);
4145 if (allocated
> map
->m_len
)
4146 allocated
= map
->m_len
;
4147 map
->m_flags
|= EXT4_MAP_NEW
;
4150 * Update reserved blocks/metadata blocks after successful
4151 * block allocation which had been deferred till now.
4153 if (flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
) {
4154 unsigned int reserved_clusters
;
4156 * Check how many clusters we had reserved this allocated range
4158 reserved_clusters
= get_reserved_cluster_alloc(inode
,
4159 map
->m_lblk
, allocated
);
4160 if (map
->m_flags
& EXT4_MAP_FROM_CLUSTER
) {
4161 if (reserved_clusters
) {
4163 * We have clusters reserved for this range.
4164 * But since we are not doing actual allocation
4165 * and are simply using blocks from previously
4166 * allocated cluster, we should release the
4167 * reservation and not claim quota.
4169 ext4_da_update_reserve_space(inode
,
4170 reserved_clusters
, 0);
4173 BUG_ON(allocated_clusters
< reserved_clusters
);
4174 /* We will claim quota for all newly allocated blocks.*/
4175 ext4_da_update_reserve_space(inode
, allocated_clusters
,
4177 if (reserved_clusters
< allocated_clusters
) {
4178 struct ext4_inode_info
*ei
= EXT4_I(inode
);
4179 int reservation
= allocated_clusters
-
4182 * It seems we claimed few clusters outside of
4183 * the range of this allocation. We should give
4184 * it back to the reservation pool. This can
4185 * happen in the following case:
4187 * * Suppose s_cluster_ratio is 4 (i.e., each
4188 * cluster has 4 blocks. Thus, the clusters
4189 * are [0-3],[4-7],[8-11]...
4190 * * First comes delayed allocation write for
4191 * logical blocks 10 & 11. Since there were no
4192 * previous delayed allocated blocks in the
4193 * range [8-11], we would reserve 1 cluster
4195 * * Next comes write for logical blocks 3 to 8.
4196 * In this case, we will reserve 2 clusters
4197 * (for [0-3] and [4-7]; and not for [8-11] as
4198 * that range has a delayed allocated blocks.
4199 * Thus total reserved clusters now becomes 3.
4200 * * Now, during the delayed allocation writeout
4201 * time, we will first write blocks [3-8] and
4202 * allocate 3 clusters for writing these
4203 * blocks. Also, we would claim all these
4204 * three clusters above.
4205 * * Now when we come here to writeout the
4206 * blocks [10-11], we would expect to claim
4207 * the reservation of 1 cluster we had made
4208 * (and we would claim it since there are no
4209 * more delayed allocated blocks in the range
4210 * [8-11]. But our reserved cluster count had
4211 * already gone to 0.
4213 * Thus, at the step 4 above when we determine
4214 * that there are still some unwritten delayed
4215 * allocated blocks outside of our current
4216 * block range, we should increment the
4217 * reserved clusters count so that when the
4218 * remaining blocks finally gets written, we
4221 dquot_reserve_block(inode
,
4222 EXT4_C2B(sbi
, reservation
));
4223 spin_lock(&ei
->i_block_reservation_lock
);
4224 ei
->i_reserved_data_blocks
+= reservation
;
4225 spin_unlock(&ei
->i_block_reservation_lock
);
4231 * Cache the extent and update transaction to commit on fdatasync only
4232 * when it is _not_ an uninitialized extent.
4234 if ((flags
& EXT4_GET_BLOCKS_UNINIT_EXT
) == 0) {
4235 ext4_ext_put_in_cache(inode
, map
->m_lblk
, allocated
, newblock
);
4236 ext4_update_inode_fsync_trans(handle
, inode
, 1);
4238 ext4_update_inode_fsync_trans(handle
, inode
, 0);
4240 if (allocated
> map
->m_len
)
4241 allocated
= map
->m_len
;
4242 ext4_ext_show_leaf(inode
, path
);
4243 map
->m_flags
|= EXT4_MAP_MAPPED
;
4244 map
->m_pblk
= newblock
;
4245 map
->m_len
= allocated
;
4248 ext4_ext_drop_refs(path
);
4252 trace_ext4_ext_map_blocks_exit(inode
, map
->m_lblk
,
4253 newblock
, map
->m_len
, err
? err
: allocated
);
4255 return err
? err
: allocated
;
4258 void ext4_ext_truncate(struct inode
*inode
)
4260 struct address_space
*mapping
= inode
->i_mapping
;
4261 struct super_block
*sb
= inode
->i_sb
;
4262 ext4_lblk_t last_block
;
4268 * finish any pending end_io work so we won't run the risk of
4269 * converting any truncated blocks to initialized later
4271 ext4_flush_unwritten_io(inode
);
4274 * probably first extent we're gonna free will be last in block
4276 err
= ext4_writepage_trans_blocks(inode
);
4277 handle
= ext4_journal_start(inode
, err
);
4281 if (inode
->i_size
% PAGE_CACHE_SIZE
!= 0) {
4282 page_len
= PAGE_CACHE_SIZE
-
4283 (inode
->i_size
& (PAGE_CACHE_SIZE
- 1));
4285 err
= ext4_discard_partial_page_buffers(handle
,
4286 mapping
, inode
->i_size
, page_len
, 0);
4292 if (ext4_orphan_add(handle
, inode
))
4295 down_write(&EXT4_I(inode
)->i_data_sem
);
4296 ext4_ext_invalidate_cache(inode
);
4298 ext4_discard_preallocations(inode
);
4301 * TODO: optimization is possible here.
4302 * Probably we need not scan at all,
4303 * because page truncation is enough.
4306 /* we have to know where to truncate from in crash case */
4307 EXT4_I(inode
)->i_disksize
= inode
->i_size
;
4308 ext4_mark_inode_dirty(handle
, inode
);
4310 last_block
= (inode
->i_size
+ sb
->s_blocksize
- 1)
4311 >> EXT4_BLOCK_SIZE_BITS(sb
);
4312 err
= ext4_ext_remove_space(inode
, last_block
, EXT_MAX_BLOCKS
- 1);
4314 /* In a multi-transaction truncate, we only make the final
4315 * transaction synchronous.
4318 ext4_handle_sync(handle
);
4320 up_write(&EXT4_I(inode
)->i_data_sem
);
4324 * If this was a simple ftruncate() and the file will remain alive,
4325 * then we need to clear up the orphan record which we created above.
4326 * However, if this was a real unlink then we were called by
4327 * ext4_delete_inode(), and we allow that function to clean up the
4328 * orphan info for us.
4331 ext4_orphan_del(handle
, inode
);
4333 inode
->i_mtime
= inode
->i_ctime
= ext4_current_time(inode
);
4334 ext4_mark_inode_dirty(handle
, inode
);
4335 ext4_journal_stop(handle
);
4338 static void ext4_falloc_update_inode(struct inode
*inode
,
4339 int mode
, loff_t new_size
, int update_ctime
)
4341 struct timespec now
;
4344 now
= current_fs_time(inode
->i_sb
);
4345 if (!timespec_equal(&inode
->i_ctime
, &now
))
4346 inode
->i_ctime
= now
;
4349 * Update only when preallocation was requested beyond
4352 if (!(mode
& FALLOC_FL_KEEP_SIZE
)) {
4353 if (new_size
> i_size_read(inode
))
4354 i_size_write(inode
, new_size
);
4355 if (new_size
> EXT4_I(inode
)->i_disksize
)
4356 ext4_update_i_disksize(inode
, new_size
);
4359 * Mark that we allocate beyond EOF so the subsequent truncate
4360 * can proceed even if the new size is the same as i_size.
4362 if (new_size
> i_size_read(inode
))
4363 ext4_set_inode_flag(inode
, EXT4_INODE_EOFBLOCKS
);
4369 * preallocate space for a file. This implements ext4's fallocate file
4370 * operation, which gets called from sys_fallocate system call.
4371 * For block-mapped files, posix_fallocate should fall back to the method
4372 * of writing zeroes to the required new blocks (the same behavior which is
4373 * expected for file systems which do not support fallocate() system call).
4375 long ext4_fallocate(struct file
*file
, int mode
, loff_t offset
, loff_t len
)
4377 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
4380 unsigned int max_blocks
;
4385 struct ext4_map_blocks map
;
4386 unsigned int credits
, blkbits
= inode
->i_blkbits
;
4389 * currently supporting (pre)allocate mode for extent-based
4392 if (!(ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)))
4395 /* Return error if mode is not supported */
4396 if (mode
& ~(FALLOC_FL_KEEP_SIZE
| FALLOC_FL_PUNCH_HOLE
))
4399 if (mode
& FALLOC_FL_PUNCH_HOLE
)
4400 return ext4_punch_hole(file
, offset
, len
);
4402 trace_ext4_fallocate_enter(inode
, offset
, len
, mode
);
4403 map
.m_lblk
= offset
>> blkbits
;
4405 * We can't just convert len to max_blocks because
4406 * If blocksize = 4096 offset = 3072 and len = 2048
4408 max_blocks
= (EXT4_BLOCK_ALIGN(len
+ offset
, blkbits
) >> blkbits
)
4411 * credits to insert 1 extent into extent tree
4413 credits
= ext4_chunk_trans_blocks(inode
, max_blocks
);
4414 mutex_lock(&inode
->i_mutex
);
4415 ret
= inode_newsize_ok(inode
, (len
+ offset
));
4417 mutex_unlock(&inode
->i_mutex
);
4418 trace_ext4_fallocate_exit(inode
, offset
, max_blocks
, ret
);
4421 flags
= EXT4_GET_BLOCKS_CREATE_UNINIT_EXT
;
4422 if (mode
& FALLOC_FL_KEEP_SIZE
)
4423 flags
|= EXT4_GET_BLOCKS_KEEP_SIZE
;
4425 * Don't normalize the request if it can fit in one extent so
4426 * that it doesn't get unnecessarily split into multiple
4429 if (len
<= EXT_UNINIT_MAX_LEN
<< blkbits
)
4430 flags
|= EXT4_GET_BLOCKS_NO_NORMALIZE
;
4432 while (ret
>= 0 && ret
< max_blocks
) {
4433 map
.m_lblk
= map
.m_lblk
+ ret
;
4434 map
.m_len
= max_blocks
= max_blocks
- ret
;
4435 handle
= ext4_journal_start(inode
, credits
);
4436 if (IS_ERR(handle
)) {
4437 ret
= PTR_ERR(handle
);
4440 ret
= ext4_map_blocks(handle
, inode
, &map
, flags
);
4444 printk(KERN_ERR
"%s: ext4_ext_map_blocks "
4445 "returned error inode#%lu, block=%u, "
4446 "max_blocks=%u", __func__
,
4447 inode
->i_ino
, map
.m_lblk
, max_blocks
);
4449 ext4_mark_inode_dirty(handle
, inode
);
4450 ret2
= ext4_journal_stop(handle
);
4453 if ((map
.m_lblk
+ ret
) >= (EXT4_BLOCK_ALIGN(offset
+ len
,
4454 blkbits
) >> blkbits
))
4455 new_size
= offset
+ len
;
4457 new_size
= ((loff_t
) map
.m_lblk
+ ret
) << blkbits
;
4459 ext4_falloc_update_inode(inode
, mode
, new_size
,
4460 (map
.m_flags
& EXT4_MAP_NEW
));
4461 ext4_mark_inode_dirty(handle
, inode
);
4462 if ((file
->f_flags
& O_SYNC
) && ret
>= max_blocks
)
4463 ext4_handle_sync(handle
);
4464 ret2
= ext4_journal_stop(handle
);
4468 if (ret
== -ENOSPC
&&
4469 ext4_should_retry_alloc(inode
->i_sb
, &retries
)) {
4473 mutex_unlock(&inode
->i_mutex
);
4474 trace_ext4_fallocate_exit(inode
, offset
, max_blocks
,
4475 ret
> 0 ? ret2
: ret
);
4476 return ret
> 0 ? ret2
: ret
;
4480 * This function convert a range of blocks to written extents
4481 * The caller of this function will pass the start offset and the size.
4482 * all unwritten extents within this range will be converted to
4485 * This function is called from the direct IO end io call back
4486 * function, to convert the fallocated extents after IO is completed.
4487 * Returns 0 on success.
4489 int ext4_convert_unwritten_extents(struct inode
*inode
, loff_t offset
,
4493 unsigned int max_blocks
;
4496 struct ext4_map_blocks map
;
4497 unsigned int credits
, blkbits
= inode
->i_blkbits
;
4499 map
.m_lblk
= offset
>> blkbits
;
4501 * We can't just convert len to max_blocks because
4502 * If blocksize = 4096 offset = 3072 and len = 2048
4504 max_blocks
= ((EXT4_BLOCK_ALIGN(len
+ offset
, blkbits
) >> blkbits
) -
4507 * credits to insert 1 extent into extent tree
4509 credits
= ext4_chunk_trans_blocks(inode
, max_blocks
);
4510 while (ret
>= 0 && ret
< max_blocks
) {
4512 map
.m_len
= (max_blocks
-= ret
);
4513 handle
= ext4_journal_start(inode
, credits
);
4514 if (IS_ERR(handle
)) {
4515 ret
= PTR_ERR(handle
);
4518 ret
= ext4_map_blocks(handle
, inode
, &map
,
4519 EXT4_GET_BLOCKS_IO_CONVERT_EXT
);
4522 ext4_msg(inode
->i_sb
, KERN_ERR
,
4523 "%s:%d: inode #%lu: block %u: len %u: "
4524 "ext4_ext_map_blocks returned %d",
4525 __func__
, __LINE__
, inode
->i_ino
, map
.m_lblk
,
4528 ext4_mark_inode_dirty(handle
, inode
);
4529 ret2
= ext4_journal_stop(handle
);
4530 if (ret
<= 0 || ret2
)
4533 return ret
> 0 ? ret2
: ret
;
4537 * Callback function called for each extent to gather FIEMAP information.
4539 static int ext4_ext_fiemap_cb(struct inode
*inode
, ext4_lblk_t next
,
4540 struct ext4_ext_cache
*newex
, struct ext4_extent
*ex
,
4548 struct fiemap_extent_info
*fieinfo
= data
;
4549 unsigned char blksize_bits
;
4551 blksize_bits
= inode
->i_sb
->s_blocksize_bits
;
4552 logical
= (__u64
)newex
->ec_block
<< blksize_bits
;
4554 if (newex
->ec_start
== 0) {
4556 * No extent in extent-tree contains block @newex->ec_start,
4557 * then the block may stay in 1)a hole or 2)delayed-extent.
4559 * Holes or delayed-extents are processed as follows.
4560 * 1. lookup dirty pages with specified range in pagecache.
4561 * If no page is got, then there is no delayed-extent and
4562 * return with EXT_CONTINUE.
4563 * 2. find the 1st mapped buffer,
4564 * 3. check if the mapped buffer is both in the request range
4565 * and a delayed buffer. If not, there is no delayed-extent,
4567 * 4. a delayed-extent is found, the extent will be collected.
4569 ext4_lblk_t end
= 0;
4570 pgoff_t last_offset
;
4573 pgoff_t start_index
= 0;
4574 struct page
**pages
= NULL
;
4575 struct buffer_head
*bh
= NULL
;
4576 struct buffer_head
*head
= NULL
;
4577 unsigned int nr_pages
= PAGE_SIZE
/ sizeof(struct page
*);
4579 pages
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
4583 offset
= logical
>> PAGE_SHIFT
;
4585 last_offset
= offset
;
4587 ret
= find_get_pages_tag(inode
->i_mapping
, &offset
,
4588 PAGECACHE_TAG_DIRTY
, nr_pages
, pages
);
4590 if (!(flags
& FIEMAP_EXTENT_DELALLOC
)) {
4591 /* First time, try to find a mapped buffer. */
4594 for (index
= 0; index
< ret
; index
++)
4595 page_cache_release(pages
[index
]);
4598 return EXT_CONTINUE
;
4603 /* Try to find the 1st mapped buffer. */
4604 end
= ((__u64
)pages
[index
]->index
<< PAGE_SHIFT
) >>
4606 if (!page_has_buffers(pages
[index
]))
4608 head
= page_buffers(pages
[index
]);
4615 if (end
>= newex
->ec_block
+
4617 /* The buffer is out of
4618 * the request range.
4622 if (buffer_mapped(bh
) &&
4623 end
>= newex
->ec_block
) {
4624 start_index
= index
- 1;
4625 /* get the 1st mapped buffer. */
4626 goto found_mapped_buffer
;
4629 bh
= bh
->b_this_page
;
4631 } while (bh
!= head
);
4633 /* No mapped buffer in the range found in this page,
4634 * We need to look up next page.
4637 /* There is no page left, but we need to limit
4640 newex
->ec_len
= end
- newex
->ec_block
;
4645 /*Find contiguous delayed buffers. */
4646 if (ret
> 0 && pages
[0]->index
== last_offset
)
4647 head
= page_buffers(pages
[0]);
4653 found_mapped_buffer
:
4654 if (bh
!= NULL
&& buffer_delay(bh
)) {
4655 /* 1st or contiguous delayed buffer found. */
4656 if (!(flags
& FIEMAP_EXTENT_DELALLOC
)) {
4658 * 1st delayed buffer found, record
4659 * the start of extent.
4661 flags
|= FIEMAP_EXTENT_DELALLOC
;
4662 newex
->ec_block
= end
;
4663 logical
= (__u64
)end
<< blksize_bits
;
4665 /* Find contiguous delayed buffers. */
4667 if (!buffer_delay(bh
))
4668 goto found_delayed_extent
;
4669 bh
= bh
->b_this_page
;
4671 } while (bh
!= head
);
4673 for (; index
< ret
; index
++) {
4674 if (!page_has_buffers(pages
[index
])) {
4678 head
= page_buffers(pages
[index
]);
4684 if (pages
[index
]->index
!=
4685 pages
[start_index
]->index
+ index
4687 /* Blocks are not contiguous. */
4693 if (!buffer_delay(bh
))
4694 /* Delayed-extent ends. */
4695 goto found_delayed_extent
;
4696 bh
= bh
->b_this_page
;
4698 } while (bh
!= head
);
4700 } else if (!(flags
& FIEMAP_EXTENT_DELALLOC
))
4704 found_delayed_extent
:
4705 newex
->ec_len
= min(end
- newex
->ec_block
,
4706 (ext4_lblk_t
)EXT_INIT_MAX_LEN
);
4707 if (ret
== nr_pages
&& bh
!= NULL
&&
4708 newex
->ec_len
< EXT_INIT_MAX_LEN
&&
4710 /* Have not collected an extent and continue. */
4711 for (index
= 0; index
< ret
; index
++)
4712 page_cache_release(pages
[index
]);
4716 for (index
= 0; index
< ret
; index
++)
4717 page_cache_release(pages
[index
]);
4721 physical
= (__u64
)newex
->ec_start
<< blksize_bits
;
4722 length
= (__u64
)newex
->ec_len
<< blksize_bits
;
4724 if (ex
&& ext4_ext_is_uninitialized(ex
))
4725 flags
|= FIEMAP_EXTENT_UNWRITTEN
;
4727 if (next
== EXT_MAX_BLOCKS
)
4728 flags
|= FIEMAP_EXTENT_LAST
;
4730 ret
= fiemap_fill_next_extent(fieinfo
, logical
, physical
,
4736 return EXT_CONTINUE
;
4738 /* fiemap flags we can handle specified here */
4739 #define EXT4_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
4741 static int ext4_xattr_fiemap(struct inode
*inode
,
4742 struct fiemap_extent_info
*fieinfo
)
4746 __u32 flags
= FIEMAP_EXTENT_LAST
;
4747 int blockbits
= inode
->i_sb
->s_blocksize_bits
;
4751 if (ext4_test_inode_state(inode
, EXT4_STATE_XATTR
)) {
4752 struct ext4_iloc iloc
;
4753 int offset
; /* offset of xattr in inode */
4755 error
= ext4_get_inode_loc(inode
, &iloc
);
4758 physical
= iloc
.bh
->b_blocknr
<< blockbits
;
4759 offset
= EXT4_GOOD_OLD_INODE_SIZE
+
4760 EXT4_I(inode
)->i_extra_isize
;
4762 length
= EXT4_SB(inode
->i_sb
)->s_inode_size
- offset
;
4763 flags
|= FIEMAP_EXTENT_DATA_INLINE
;
4765 } else { /* external block */
4766 physical
= EXT4_I(inode
)->i_file_acl
<< blockbits
;
4767 length
= inode
->i_sb
->s_blocksize
;
4771 error
= fiemap_fill_next_extent(fieinfo
, 0, physical
,
4773 return (error
< 0 ? error
: 0);
4777 * ext4_ext_punch_hole
4779 * Punches a hole of "length" bytes in a file starting
4782 * @inode: The inode of the file to punch a hole in
4783 * @offset: The starting byte offset of the hole
4784 * @length: The length of the hole
4786 * Returns the number of blocks removed or negative on err
4788 int ext4_ext_punch_hole(struct file
*file
, loff_t offset
, loff_t length
)
4790 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
4791 struct super_block
*sb
= inode
->i_sb
;
4792 ext4_lblk_t first_block
, stop_block
;
4793 struct address_space
*mapping
= inode
->i_mapping
;
4795 loff_t first_page
, last_page
, page_len
;
4796 loff_t first_page_offset
, last_page_offset
;
4797 int credits
, err
= 0;
4800 * Write out all dirty pages to avoid race conditions
4801 * Then release them.
4803 if (mapping
->nrpages
&& mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
)) {
4804 err
= filemap_write_and_wait_range(mapping
,
4805 offset
, offset
+ length
- 1);
4811 mutex_lock(&inode
->i_mutex
);
4812 /* It's not possible punch hole on append only file */
4813 if (IS_APPEND(inode
) || IS_IMMUTABLE(inode
)) {
4817 if (IS_SWAPFILE(inode
)) {
4822 /* No need to punch hole beyond i_size */
4823 if (offset
>= inode
->i_size
)
4827 * If the hole extends beyond i_size, set the hole
4828 * to end after the page that contains i_size
4830 if (offset
+ length
> inode
->i_size
) {
4831 length
= inode
->i_size
+
4832 PAGE_CACHE_SIZE
- (inode
->i_size
& (PAGE_CACHE_SIZE
- 1)) -
4836 first_page
= (offset
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
4837 last_page
= (offset
+ length
) >> PAGE_CACHE_SHIFT
;
4839 first_page_offset
= first_page
<< PAGE_CACHE_SHIFT
;
4840 last_page_offset
= last_page
<< PAGE_CACHE_SHIFT
;
4842 /* Now release the pages */
4843 if (last_page_offset
> first_page_offset
) {
4844 truncate_pagecache_range(inode
, first_page_offset
,
4845 last_page_offset
- 1);
4848 /* Wait all existing dio workers, newcomers will block on i_mutex */
4849 ext4_inode_block_unlocked_dio(inode
);
4850 err
= ext4_flush_unwritten_io(inode
);
4853 inode_dio_wait(inode
);
4855 credits
= ext4_writepage_trans_blocks(inode
);
4856 handle
= ext4_journal_start(inode
, credits
);
4857 if (IS_ERR(handle
)) {
4858 err
= PTR_ERR(handle
);
4864 * Now we need to zero out the non-page-aligned data in the
4865 * pages at the start and tail of the hole, and unmap the buffer
4866 * heads for the block aligned regions of the page that were
4867 * completely zeroed.
4869 if (first_page
> last_page
) {
4871 * If the file space being truncated is contained within a page
4872 * just zero out and unmap the middle of that page
4874 err
= ext4_discard_partial_page_buffers(handle
,
4875 mapping
, offset
, length
, 0);
4881 * zero out and unmap the partial page that contains
4882 * the start of the hole
4884 page_len
= first_page_offset
- offset
;
4886 err
= ext4_discard_partial_page_buffers(handle
, mapping
,
4887 offset
, page_len
, 0);
4893 * zero out and unmap the partial page that contains
4894 * the end of the hole
4896 page_len
= offset
+ length
- last_page_offset
;
4898 err
= ext4_discard_partial_page_buffers(handle
, mapping
,
4899 last_page_offset
, page_len
, 0);
4906 * If i_size is contained in the last page, we need to
4907 * unmap and zero the partial page after i_size
4909 if (inode
->i_size
>> PAGE_CACHE_SHIFT
== last_page
&&
4910 inode
->i_size
% PAGE_CACHE_SIZE
!= 0) {
4912 page_len
= PAGE_CACHE_SIZE
-
4913 (inode
->i_size
& (PAGE_CACHE_SIZE
- 1));
4916 err
= ext4_discard_partial_page_buffers(handle
,
4917 mapping
, inode
->i_size
, page_len
, 0);
4924 first_block
= (offset
+ sb
->s_blocksize
- 1) >>
4925 EXT4_BLOCK_SIZE_BITS(sb
);
4926 stop_block
= (offset
+ length
) >> EXT4_BLOCK_SIZE_BITS(sb
);
4928 /* If there are no blocks to remove, return now */
4929 if (first_block
>= stop_block
)
4932 down_write(&EXT4_I(inode
)->i_data_sem
);
4933 ext4_ext_invalidate_cache(inode
);
4934 ext4_discard_preallocations(inode
);
4936 err
= ext4_ext_remove_space(inode
, first_block
, stop_block
- 1);
4938 ext4_ext_invalidate_cache(inode
);
4939 ext4_discard_preallocations(inode
);
4942 ext4_handle_sync(handle
);
4944 up_write(&EXT4_I(inode
)->i_data_sem
);
4947 inode
->i_mtime
= inode
->i_ctime
= ext4_current_time(inode
);
4948 ext4_mark_inode_dirty(handle
, inode
);
4949 ext4_journal_stop(handle
);
4951 ext4_inode_resume_unlocked_dio(inode
);
4953 mutex_unlock(&inode
->i_mutex
);
4956 int ext4_fiemap(struct inode
*inode
, struct fiemap_extent_info
*fieinfo
,
4957 __u64 start
, __u64 len
)
4959 ext4_lblk_t start_blk
;
4962 /* fallback to generic here if not in extents fmt */
4963 if (!(ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)))
4964 return generic_block_fiemap(inode
, fieinfo
, start
, len
,
4967 if (fiemap_check_flags(fieinfo
, EXT4_FIEMAP_FLAGS
))
4970 if (fieinfo
->fi_flags
& FIEMAP_FLAG_XATTR
) {
4971 error
= ext4_xattr_fiemap(inode
, fieinfo
);
4973 ext4_lblk_t len_blks
;
4976 start_blk
= start
>> inode
->i_sb
->s_blocksize_bits
;
4977 last_blk
= (start
+ len
- 1) >> inode
->i_sb
->s_blocksize_bits
;
4978 if (last_blk
>= EXT_MAX_BLOCKS
)
4979 last_blk
= EXT_MAX_BLOCKS
-1;
4980 len_blks
= ((ext4_lblk_t
) last_blk
) - start_blk
+ 1;
4983 * Walk the extent tree gathering extent information.
4984 * ext4_ext_fiemap_cb will push extents back to user.
4986 error
= ext4_ext_walk_space(inode
, start_blk
, len_blks
,
4987 ext4_ext_fiemap_cb
, fieinfo
);