2 * Copyright (C) 2009 Red Hat, Inc.
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
9 #include <linux/sched.h>
10 #include <linux/highmem.h>
11 #include <linux/hugetlb.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/rmap.h>
14 #include <linux/swap.h>
15 #include <linux/shrinker.h>
16 #include <linux/mm_inline.h>
17 #include <linux/kthread.h>
18 #include <linux/khugepaged.h>
19 #include <linux/freezer.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/migrate.h>
23 #include <linux/hashtable.h>
26 #include <asm/pgalloc.h>
30 * By default transparent hugepage support is enabled for all mappings
31 * and khugepaged scans all mappings. Defrag is only invoked by
32 * khugepaged hugepage allocations and by page faults inside
33 * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
36 unsigned long transparent_hugepage_flags __read_mostly
=
37 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
38 (1<<TRANSPARENT_HUGEPAGE_FLAG
)|
40 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
41 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
)|
43 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG
)|
44 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG
)|
45 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG
);
47 /* default scan 8*512 pte (or vmas) every 30 second */
48 static unsigned int khugepaged_pages_to_scan __read_mostly
= HPAGE_PMD_NR
*8;
49 static unsigned int khugepaged_pages_collapsed
;
50 static unsigned int khugepaged_full_scans
;
51 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly
= 10000;
52 /* during fragmentation poll the hugepage allocator once every minute */
53 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly
= 60000;
54 static struct task_struct
*khugepaged_thread __read_mostly
;
55 static DEFINE_MUTEX(khugepaged_mutex
);
56 static DEFINE_SPINLOCK(khugepaged_mm_lock
);
57 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait
);
59 * default collapse hugepages if there is at least one pte mapped like
60 * it would have happened if the vma was large enough during page
63 static unsigned int khugepaged_max_ptes_none __read_mostly
= HPAGE_PMD_NR
-1;
65 static int khugepaged(void *none
);
66 static int khugepaged_slab_init(void);
68 #define MM_SLOTS_HASH_BITS 10
69 static __read_mostly
DEFINE_HASHTABLE(mm_slots_hash
, MM_SLOTS_HASH_BITS
);
71 static struct kmem_cache
*mm_slot_cache __read_mostly
;
74 * struct mm_slot - hash lookup from mm to mm_slot
75 * @hash: hash collision list
76 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
77 * @mm: the mm that this information is valid for
80 struct hlist_node hash
;
81 struct list_head mm_node
;
86 * struct khugepaged_scan - cursor for scanning
87 * @mm_head: the head of the mm list to scan
88 * @mm_slot: the current mm_slot we are scanning
89 * @address: the next address inside that to be scanned
91 * There is only the one khugepaged_scan instance of this cursor structure.
93 struct khugepaged_scan
{
94 struct list_head mm_head
;
95 struct mm_slot
*mm_slot
;
96 unsigned long address
;
98 static struct khugepaged_scan khugepaged_scan
= {
99 .mm_head
= LIST_HEAD_INIT(khugepaged_scan
.mm_head
),
103 static int set_recommended_min_free_kbytes(void)
107 unsigned long recommended_min
;
109 if (!khugepaged_enabled())
112 for_each_populated_zone(zone
)
115 /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
116 recommended_min
= pageblock_nr_pages
* nr_zones
* 2;
119 * Make sure that on average at least two pageblocks are almost free
120 * of another type, one for a migratetype to fall back to and a
121 * second to avoid subsequent fallbacks of other types There are 3
122 * MIGRATE_TYPES we care about.
124 recommended_min
+= pageblock_nr_pages
* nr_zones
*
125 MIGRATE_PCPTYPES
* MIGRATE_PCPTYPES
;
127 /* don't ever allow to reserve more than 5% of the lowmem */
128 recommended_min
= min(recommended_min
,
129 (unsigned long) nr_free_buffer_pages() / 20);
130 recommended_min
<<= (PAGE_SHIFT
-10);
132 if (recommended_min
> min_free_kbytes
)
133 min_free_kbytes
= recommended_min
;
134 setup_per_zone_wmarks();
137 late_initcall(set_recommended_min_free_kbytes
);
139 static int start_khugepaged(void)
142 if (khugepaged_enabled()) {
143 if (!khugepaged_thread
)
144 khugepaged_thread
= kthread_run(khugepaged
, NULL
,
146 if (unlikely(IS_ERR(khugepaged_thread
))) {
148 "khugepaged: kthread_run(khugepaged) failed\n");
149 err
= PTR_ERR(khugepaged_thread
);
150 khugepaged_thread
= NULL
;
153 if (!list_empty(&khugepaged_scan
.mm_head
))
154 wake_up_interruptible(&khugepaged_wait
);
156 set_recommended_min_free_kbytes();
157 } else if (khugepaged_thread
) {
158 kthread_stop(khugepaged_thread
);
159 khugepaged_thread
= NULL
;
165 static atomic_t huge_zero_refcount
;
166 static struct page
*huge_zero_page __read_mostly
;
168 static inline bool is_huge_zero_page(struct page
*page
)
170 return ACCESS_ONCE(huge_zero_page
) == page
;
173 static inline bool is_huge_zero_pmd(pmd_t pmd
)
175 return is_huge_zero_page(pmd_page(pmd
));
178 static struct page
*get_huge_zero_page(void)
180 struct page
*zero_page
;
182 if (likely(atomic_inc_not_zero(&huge_zero_refcount
)))
183 return ACCESS_ONCE(huge_zero_page
);
185 zero_page
= alloc_pages((GFP_TRANSHUGE
| __GFP_ZERO
) & ~__GFP_MOVABLE
,
188 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED
);
191 count_vm_event(THP_ZERO_PAGE_ALLOC
);
193 if (cmpxchg(&huge_zero_page
, NULL
, zero_page
)) {
195 __free_page(zero_page
);
199 /* We take additional reference here. It will be put back by shrinker */
200 atomic_set(&huge_zero_refcount
, 2);
202 return ACCESS_ONCE(huge_zero_page
);
205 static void put_huge_zero_page(void)
208 * Counter should never go to zero here. Only shrinker can put
211 BUG_ON(atomic_dec_and_test(&huge_zero_refcount
));
214 static int shrink_huge_zero_page(struct shrinker
*shrink
,
215 struct shrink_control
*sc
)
218 /* we can free zero page only if last reference remains */
219 return atomic_read(&huge_zero_refcount
) == 1 ? HPAGE_PMD_NR
: 0;
221 if (atomic_cmpxchg(&huge_zero_refcount
, 1, 0) == 1) {
222 struct page
*zero_page
= xchg(&huge_zero_page
, NULL
);
223 BUG_ON(zero_page
== NULL
);
224 __free_page(zero_page
);
230 static struct shrinker huge_zero_page_shrinker
= {
231 .shrink
= shrink_huge_zero_page
,
232 .seeks
= DEFAULT_SEEKS
,
237 static ssize_t
double_flag_show(struct kobject
*kobj
,
238 struct kobj_attribute
*attr
, char *buf
,
239 enum transparent_hugepage_flag enabled
,
240 enum transparent_hugepage_flag req_madv
)
242 if (test_bit(enabled
, &transparent_hugepage_flags
)) {
243 VM_BUG_ON(test_bit(req_madv
, &transparent_hugepage_flags
));
244 return sprintf(buf
, "[always] madvise never\n");
245 } else if (test_bit(req_madv
, &transparent_hugepage_flags
))
246 return sprintf(buf
, "always [madvise] never\n");
248 return sprintf(buf
, "always madvise [never]\n");
250 static ssize_t
double_flag_store(struct kobject
*kobj
,
251 struct kobj_attribute
*attr
,
252 const char *buf
, size_t count
,
253 enum transparent_hugepage_flag enabled
,
254 enum transparent_hugepage_flag req_madv
)
256 if (!memcmp("always", buf
,
257 min(sizeof("always")-1, count
))) {
258 set_bit(enabled
, &transparent_hugepage_flags
);
259 clear_bit(req_madv
, &transparent_hugepage_flags
);
260 } else if (!memcmp("madvise", buf
,
261 min(sizeof("madvise")-1, count
))) {
262 clear_bit(enabled
, &transparent_hugepage_flags
);
263 set_bit(req_madv
, &transparent_hugepage_flags
);
264 } else if (!memcmp("never", buf
,
265 min(sizeof("never")-1, count
))) {
266 clear_bit(enabled
, &transparent_hugepage_flags
);
267 clear_bit(req_madv
, &transparent_hugepage_flags
);
274 static ssize_t
enabled_show(struct kobject
*kobj
,
275 struct kobj_attribute
*attr
, char *buf
)
277 return double_flag_show(kobj
, attr
, buf
,
278 TRANSPARENT_HUGEPAGE_FLAG
,
279 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
);
281 static ssize_t
enabled_store(struct kobject
*kobj
,
282 struct kobj_attribute
*attr
,
283 const char *buf
, size_t count
)
287 ret
= double_flag_store(kobj
, attr
, buf
, count
,
288 TRANSPARENT_HUGEPAGE_FLAG
,
289 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
);
294 mutex_lock(&khugepaged_mutex
);
295 err
= start_khugepaged();
296 mutex_unlock(&khugepaged_mutex
);
304 static struct kobj_attribute enabled_attr
=
305 __ATTR(enabled
, 0644, enabled_show
, enabled_store
);
307 static ssize_t
single_flag_show(struct kobject
*kobj
,
308 struct kobj_attribute
*attr
, char *buf
,
309 enum transparent_hugepage_flag flag
)
311 return sprintf(buf
, "%d\n",
312 !!test_bit(flag
, &transparent_hugepage_flags
));
315 static ssize_t
single_flag_store(struct kobject
*kobj
,
316 struct kobj_attribute
*attr
,
317 const char *buf
, size_t count
,
318 enum transparent_hugepage_flag flag
)
323 ret
= kstrtoul(buf
, 10, &value
);
330 set_bit(flag
, &transparent_hugepage_flags
);
332 clear_bit(flag
, &transparent_hugepage_flags
);
338 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
339 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
340 * memory just to allocate one more hugepage.
342 static ssize_t
defrag_show(struct kobject
*kobj
,
343 struct kobj_attribute
*attr
, char *buf
)
345 return double_flag_show(kobj
, attr
, buf
,
346 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG
,
347 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG
);
349 static ssize_t
defrag_store(struct kobject
*kobj
,
350 struct kobj_attribute
*attr
,
351 const char *buf
, size_t count
)
353 return double_flag_store(kobj
, attr
, buf
, count
,
354 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG
,
355 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG
);
357 static struct kobj_attribute defrag_attr
=
358 __ATTR(defrag
, 0644, defrag_show
, defrag_store
);
360 static ssize_t
use_zero_page_show(struct kobject
*kobj
,
361 struct kobj_attribute
*attr
, char *buf
)
363 return single_flag_show(kobj
, attr
, buf
,
364 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG
);
366 static ssize_t
use_zero_page_store(struct kobject
*kobj
,
367 struct kobj_attribute
*attr
, const char *buf
, size_t count
)
369 return single_flag_store(kobj
, attr
, buf
, count
,
370 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG
);
372 static struct kobj_attribute use_zero_page_attr
=
373 __ATTR(use_zero_page
, 0644, use_zero_page_show
, use_zero_page_store
);
374 #ifdef CONFIG_DEBUG_VM
375 static ssize_t
debug_cow_show(struct kobject
*kobj
,
376 struct kobj_attribute
*attr
, char *buf
)
378 return single_flag_show(kobj
, attr
, buf
,
379 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG
);
381 static ssize_t
debug_cow_store(struct kobject
*kobj
,
382 struct kobj_attribute
*attr
,
383 const char *buf
, size_t count
)
385 return single_flag_store(kobj
, attr
, buf
, count
,
386 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG
);
388 static struct kobj_attribute debug_cow_attr
=
389 __ATTR(debug_cow
, 0644, debug_cow_show
, debug_cow_store
);
390 #endif /* CONFIG_DEBUG_VM */
392 static struct attribute
*hugepage_attr
[] = {
395 &use_zero_page_attr
.attr
,
396 #ifdef CONFIG_DEBUG_VM
397 &debug_cow_attr
.attr
,
402 static struct attribute_group hugepage_attr_group
= {
403 .attrs
= hugepage_attr
,
406 static ssize_t
scan_sleep_millisecs_show(struct kobject
*kobj
,
407 struct kobj_attribute
*attr
,
410 return sprintf(buf
, "%u\n", khugepaged_scan_sleep_millisecs
);
413 static ssize_t
scan_sleep_millisecs_store(struct kobject
*kobj
,
414 struct kobj_attribute
*attr
,
415 const char *buf
, size_t count
)
420 err
= strict_strtoul(buf
, 10, &msecs
);
421 if (err
|| msecs
> UINT_MAX
)
424 khugepaged_scan_sleep_millisecs
= msecs
;
425 wake_up_interruptible(&khugepaged_wait
);
429 static struct kobj_attribute scan_sleep_millisecs_attr
=
430 __ATTR(scan_sleep_millisecs
, 0644, scan_sleep_millisecs_show
,
431 scan_sleep_millisecs_store
);
433 static ssize_t
alloc_sleep_millisecs_show(struct kobject
*kobj
,
434 struct kobj_attribute
*attr
,
437 return sprintf(buf
, "%u\n", khugepaged_alloc_sleep_millisecs
);
440 static ssize_t
alloc_sleep_millisecs_store(struct kobject
*kobj
,
441 struct kobj_attribute
*attr
,
442 const char *buf
, size_t count
)
447 err
= strict_strtoul(buf
, 10, &msecs
);
448 if (err
|| msecs
> UINT_MAX
)
451 khugepaged_alloc_sleep_millisecs
= msecs
;
452 wake_up_interruptible(&khugepaged_wait
);
456 static struct kobj_attribute alloc_sleep_millisecs_attr
=
457 __ATTR(alloc_sleep_millisecs
, 0644, alloc_sleep_millisecs_show
,
458 alloc_sleep_millisecs_store
);
460 static ssize_t
pages_to_scan_show(struct kobject
*kobj
,
461 struct kobj_attribute
*attr
,
464 return sprintf(buf
, "%u\n", khugepaged_pages_to_scan
);
466 static ssize_t
pages_to_scan_store(struct kobject
*kobj
,
467 struct kobj_attribute
*attr
,
468 const char *buf
, size_t count
)
473 err
= strict_strtoul(buf
, 10, &pages
);
474 if (err
|| !pages
|| pages
> UINT_MAX
)
477 khugepaged_pages_to_scan
= pages
;
481 static struct kobj_attribute pages_to_scan_attr
=
482 __ATTR(pages_to_scan
, 0644, pages_to_scan_show
,
483 pages_to_scan_store
);
485 static ssize_t
pages_collapsed_show(struct kobject
*kobj
,
486 struct kobj_attribute
*attr
,
489 return sprintf(buf
, "%u\n", khugepaged_pages_collapsed
);
491 static struct kobj_attribute pages_collapsed_attr
=
492 __ATTR_RO(pages_collapsed
);
494 static ssize_t
full_scans_show(struct kobject
*kobj
,
495 struct kobj_attribute
*attr
,
498 return sprintf(buf
, "%u\n", khugepaged_full_scans
);
500 static struct kobj_attribute full_scans_attr
=
501 __ATTR_RO(full_scans
);
503 static ssize_t
khugepaged_defrag_show(struct kobject
*kobj
,
504 struct kobj_attribute
*attr
, char *buf
)
506 return single_flag_show(kobj
, attr
, buf
,
507 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG
);
509 static ssize_t
khugepaged_defrag_store(struct kobject
*kobj
,
510 struct kobj_attribute
*attr
,
511 const char *buf
, size_t count
)
513 return single_flag_store(kobj
, attr
, buf
, count
,
514 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG
);
516 static struct kobj_attribute khugepaged_defrag_attr
=
517 __ATTR(defrag
, 0644, khugepaged_defrag_show
,
518 khugepaged_defrag_store
);
521 * max_ptes_none controls if khugepaged should collapse hugepages over
522 * any unmapped ptes in turn potentially increasing the memory
523 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
524 * reduce the available free memory in the system as it
525 * runs. Increasing max_ptes_none will instead potentially reduce the
526 * free memory in the system during the khugepaged scan.
528 static ssize_t
khugepaged_max_ptes_none_show(struct kobject
*kobj
,
529 struct kobj_attribute
*attr
,
532 return sprintf(buf
, "%u\n", khugepaged_max_ptes_none
);
534 static ssize_t
khugepaged_max_ptes_none_store(struct kobject
*kobj
,
535 struct kobj_attribute
*attr
,
536 const char *buf
, size_t count
)
539 unsigned long max_ptes_none
;
541 err
= strict_strtoul(buf
, 10, &max_ptes_none
);
542 if (err
|| max_ptes_none
> HPAGE_PMD_NR
-1)
545 khugepaged_max_ptes_none
= max_ptes_none
;
549 static struct kobj_attribute khugepaged_max_ptes_none_attr
=
550 __ATTR(max_ptes_none
, 0644, khugepaged_max_ptes_none_show
,
551 khugepaged_max_ptes_none_store
);
553 static struct attribute
*khugepaged_attr
[] = {
554 &khugepaged_defrag_attr
.attr
,
555 &khugepaged_max_ptes_none_attr
.attr
,
556 &pages_to_scan_attr
.attr
,
557 &pages_collapsed_attr
.attr
,
558 &full_scans_attr
.attr
,
559 &scan_sleep_millisecs_attr
.attr
,
560 &alloc_sleep_millisecs_attr
.attr
,
564 static struct attribute_group khugepaged_attr_group
= {
565 .attrs
= khugepaged_attr
,
566 .name
= "khugepaged",
569 static int __init
hugepage_init_sysfs(struct kobject
**hugepage_kobj
)
573 *hugepage_kobj
= kobject_create_and_add("transparent_hugepage", mm_kobj
);
574 if (unlikely(!*hugepage_kobj
)) {
575 printk(KERN_ERR
"hugepage: failed to create transparent hugepage kobject\n");
579 err
= sysfs_create_group(*hugepage_kobj
, &hugepage_attr_group
);
581 printk(KERN_ERR
"hugepage: failed to register transparent hugepage group\n");
585 err
= sysfs_create_group(*hugepage_kobj
, &khugepaged_attr_group
);
587 printk(KERN_ERR
"hugepage: failed to register transparent hugepage group\n");
588 goto remove_hp_group
;
594 sysfs_remove_group(*hugepage_kobj
, &hugepage_attr_group
);
596 kobject_put(*hugepage_kobj
);
600 static void __init
hugepage_exit_sysfs(struct kobject
*hugepage_kobj
)
602 sysfs_remove_group(hugepage_kobj
, &khugepaged_attr_group
);
603 sysfs_remove_group(hugepage_kobj
, &hugepage_attr_group
);
604 kobject_put(hugepage_kobj
);
607 static inline int hugepage_init_sysfs(struct kobject
**hugepage_kobj
)
612 static inline void hugepage_exit_sysfs(struct kobject
*hugepage_kobj
)
615 #endif /* CONFIG_SYSFS */
617 static int __init
hugepage_init(void)
620 struct kobject
*hugepage_kobj
;
622 if (!has_transparent_hugepage()) {
623 transparent_hugepage_flags
= 0;
627 err
= hugepage_init_sysfs(&hugepage_kobj
);
631 err
= khugepaged_slab_init();
635 register_shrinker(&huge_zero_page_shrinker
);
638 * By default disable transparent hugepages on smaller systems,
639 * where the extra memory used could hurt more than TLB overhead
640 * is likely to save. The admin can still enable it through /sys.
642 if (totalram_pages
< (512 << (20 - PAGE_SHIFT
)))
643 transparent_hugepage_flags
= 0;
649 hugepage_exit_sysfs(hugepage_kobj
);
652 module_init(hugepage_init
)
654 static int __init
setup_transparent_hugepage(char *str
)
659 if (!strcmp(str
, "always")) {
660 set_bit(TRANSPARENT_HUGEPAGE_FLAG
,
661 &transparent_hugepage_flags
);
662 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
,
663 &transparent_hugepage_flags
);
665 } else if (!strcmp(str
, "madvise")) {
666 clear_bit(TRANSPARENT_HUGEPAGE_FLAG
,
667 &transparent_hugepage_flags
);
668 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
,
669 &transparent_hugepage_flags
);
671 } else if (!strcmp(str
, "never")) {
672 clear_bit(TRANSPARENT_HUGEPAGE_FLAG
,
673 &transparent_hugepage_flags
);
674 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
,
675 &transparent_hugepage_flags
);
681 "transparent_hugepage= cannot parse, ignored\n");
684 __setup("transparent_hugepage=", setup_transparent_hugepage
);
686 pmd_t
maybe_pmd_mkwrite(pmd_t pmd
, struct vm_area_struct
*vma
)
688 if (likely(vma
->vm_flags
& VM_WRITE
))
689 pmd
= pmd_mkwrite(pmd
);
693 static inline pmd_t
mk_huge_pmd(struct page
*page
, struct vm_area_struct
*vma
)
696 entry
= mk_pmd(page
, vma
->vm_page_prot
);
697 entry
= maybe_pmd_mkwrite(pmd_mkdirty(entry
), vma
);
698 entry
= pmd_mkhuge(entry
);
702 static int __do_huge_pmd_anonymous_page(struct mm_struct
*mm
,
703 struct vm_area_struct
*vma
,
704 unsigned long haddr
, pmd_t
*pmd
,
709 VM_BUG_ON(!PageCompound(page
));
710 pgtable
= pte_alloc_one(mm
, haddr
);
711 if (unlikely(!pgtable
))
714 clear_huge_page(page
, haddr
, HPAGE_PMD_NR
);
716 * The memory barrier inside __SetPageUptodate makes sure that
717 * clear_huge_page writes become visible before the set_pmd_at()
720 __SetPageUptodate(page
);
722 spin_lock(&mm
->page_table_lock
);
723 if (unlikely(!pmd_none(*pmd
))) {
724 spin_unlock(&mm
->page_table_lock
);
725 mem_cgroup_uncharge_page(page
);
727 pte_free(mm
, pgtable
);
730 entry
= mk_huge_pmd(page
, vma
);
731 page_add_new_anon_rmap(page
, vma
, haddr
);
732 pgtable_trans_huge_deposit(mm
, pmd
, pgtable
);
733 set_pmd_at(mm
, haddr
, pmd
, entry
);
734 add_mm_counter(mm
, MM_ANONPAGES
, HPAGE_PMD_NR
);
736 spin_unlock(&mm
->page_table_lock
);
742 static inline gfp_t
alloc_hugepage_gfpmask(int defrag
, gfp_t extra_gfp
)
744 return (GFP_TRANSHUGE
& ~(defrag
? 0 : __GFP_WAIT
)) | extra_gfp
;
747 static inline struct page
*alloc_hugepage_vma(int defrag
,
748 struct vm_area_struct
*vma
,
749 unsigned long haddr
, int nd
,
752 return alloc_pages_vma(alloc_hugepage_gfpmask(defrag
, extra_gfp
),
753 HPAGE_PMD_ORDER
, vma
, haddr
, nd
);
757 static inline struct page
*alloc_hugepage(int defrag
)
759 return alloc_pages(alloc_hugepage_gfpmask(defrag
, 0),
764 static bool set_huge_zero_page(pgtable_t pgtable
, struct mm_struct
*mm
,
765 struct vm_area_struct
*vma
, unsigned long haddr
, pmd_t
*pmd
,
766 struct page
*zero_page
)
771 entry
= mk_pmd(zero_page
, vma
->vm_page_prot
);
772 entry
= pmd_wrprotect(entry
);
773 entry
= pmd_mkhuge(entry
);
774 pgtable_trans_huge_deposit(mm
, pmd
, pgtable
);
775 set_pmd_at(mm
, haddr
, pmd
, entry
);
780 int do_huge_pmd_anonymous_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
781 unsigned long address
, pmd_t
*pmd
,
785 unsigned long haddr
= address
& HPAGE_PMD_MASK
;
788 if (haddr
>= vma
->vm_start
&& haddr
+ HPAGE_PMD_SIZE
<= vma
->vm_end
) {
789 if (unlikely(anon_vma_prepare(vma
)))
791 if (unlikely(khugepaged_enter(vma
)))
793 if (!(flags
& FAULT_FLAG_WRITE
) &&
794 transparent_hugepage_use_zero_page()) {
796 struct page
*zero_page
;
798 pgtable
= pte_alloc_one(mm
, haddr
);
799 if (unlikely(!pgtable
))
801 zero_page
= get_huge_zero_page();
802 if (unlikely(!zero_page
)) {
803 pte_free(mm
, pgtable
);
804 count_vm_event(THP_FAULT_FALLBACK
);
807 spin_lock(&mm
->page_table_lock
);
808 set
= set_huge_zero_page(pgtable
, mm
, vma
, haddr
, pmd
,
810 spin_unlock(&mm
->page_table_lock
);
812 pte_free(mm
, pgtable
);
813 put_huge_zero_page();
817 page
= alloc_hugepage_vma(transparent_hugepage_defrag(vma
),
818 vma
, haddr
, numa_node_id(), 0);
819 if (unlikely(!page
)) {
820 count_vm_event(THP_FAULT_FALLBACK
);
823 count_vm_event(THP_FAULT_ALLOC
);
824 if (unlikely(mem_cgroup_newpage_charge(page
, mm
, GFP_KERNEL
))) {
828 if (unlikely(__do_huge_pmd_anonymous_page(mm
, vma
, haddr
, pmd
,
830 mem_cgroup_uncharge_page(page
);
839 * Use __pte_alloc instead of pte_alloc_map, because we can't
840 * run pte_offset_map on the pmd, if an huge pmd could
841 * materialize from under us from a different thread.
843 if (unlikely(pmd_none(*pmd
)) &&
844 unlikely(__pte_alloc(mm
, vma
, pmd
, address
)))
846 /* if an huge pmd materialized from under us just retry later */
847 if (unlikely(pmd_trans_huge(*pmd
)))
850 * A regular pmd is established and it can't morph into a huge pmd
851 * from under us anymore at this point because we hold the mmap_sem
852 * read mode and khugepaged takes it in write mode. So now it's
853 * safe to run pte_offset_map().
855 pte
= pte_offset_map(pmd
, address
);
856 return handle_pte_fault(mm
, vma
, address
, pte
, pmd
, flags
);
859 int copy_huge_pmd(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
860 pmd_t
*dst_pmd
, pmd_t
*src_pmd
, unsigned long addr
,
861 struct vm_area_struct
*vma
)
863 struct page
*src_page
;
869 pgtable
= pte_alloc_one(dst_mm
, addr
);
870 if (unlikely(!pgtable
))
873 spin_lock(&dst_mm
->page_table_lock
);
874 spin_lock_nested(&src_mm
->page_table_lock
, SINGLE_DEPTH_NESTING
);
878 if (unlikely(!pmd_trans_huge(pmd
))) {
879 pte_free(dst_mm
, pgtable
);
883 * mm->page_table_lock is enough to be sure that huge zero pmd is not
884 * under splitting since we don't split the page itself, only pmd to
887 if (is_huge_zero_pmd(pmd
)) {
888 struct page
*zero_page
;
891 * get_huge_zero_page() will never allocate a new page here,
892 * since we already have a zero page to copy. It just takes a
895 zero_page
= get_huge_zero_page();
896 set
= set_huge_zero_page(pgtable
, dst_mm
, vma
, addr
, dst_pmd
,
898 BUG_ON(!set
); /* unexpected !pmd_none(dst_pmd) */
902 if (unlikely(pmd_trans_splitting(pmd
))) {
903 /* split huge page running from under us */
904 spin_unlock(&src_mm
->page_table_lock
);
905 spin_unlock(&dst_mm
->page_table_lock
);
906 pte_free(dst_mm
, pgtable
);
908 wait_split_huge_page(vma
->anon_vma
, src_pmd
); /* src_vma */
911 src_page
= pmd_page(pmd
);
912 VM_BUG_ON(!PageHead(src_page
));
914 page_dup_rmap(src_page
);
915 add_mm_counter(dst_mm
, MM_ANONPAGES
, HPAGE_PMD_NR
);
917 pmdp_set_wrprotect(src_mm
, addr
, src_pmd
);
918 pmd
= pmd_mkold(pmd_wrprotect(pmd
));
919 pgtable_trans_huge_deposit(dst_mm
, dst_pmd
, pgtable
);
920 set_pmd_at(dst_mm
, addr
, dst_pmd
, pmd
);
925 spin_unlock(&src_mm
->page_table_lock
);
926 spin_unlock(&dst_mm
->page_table_lock
);
931 void huge_pmd_set_accessed(struct mm_struct
*mm
,
932 struct vm_area_struct
*vma
,
933 unsigned long address
,
934 pmd_t
*pmd
, pmd_t orig_pmd
,
940 spin_lock(&mm
->page_table_lock
);
941 if (unlikely(!pmd_same(*pmd
, orig_pmd
)))
944 entry
= pmd_mkyoung(orig_pmd
);
945 haddr
= address
& HPAGE_PMD_MASK
;
946 if (pmdp_set_access_flags(vma
, haddr
, pmd
, entry
, dirty
))
947 update_mmu_cache_pmd(vma
, address
, pmd
);
950 spin_unlock(&mm
->page_table_lock
);
953 static int do_huge_pmd_wp_zero_page_fallback(struct mm_struct
*mm
,
954 struct vm_area_struct
*vma
, unsigned long address
,
955 pmd_t
*pmd
, pmd_t orig_pmd
, unsigned long haddr
)
961 unsigned long mmun_start
; /* For mmu_notifiers */
962 unsigned long mmun_end
; /* For mmu_notifiers */
964 page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
, address
);
970 if (mem_cgroup_newpage_charge(page
, mm
, GFP_KERNEL
)) {
976 clear_user_highpage(page
, address
);
977 __SetPageUptodate(page
);
980 mmun_end
= haddr
+ HPAGE_PMD_SIZE
;
981 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
983 spin_lock(&mm
->page_table_lock
);
984 if (unlikely(!pmd_same(*pmd
, orig_pmd
)))
987 pmdp_clear_flush(vma
, haddr
, pmd
);
988 /* leave pmd empty until pte is filled */
990 pgtable
= pgtable_trans_huge_withdraw(mm
, pmd
);
991 pmd_populate(mm
, &_pmd
, pgtable
);
993 for (i
= 0; i
< HPAGE_PMD_NR
; i
++, haddr
+= PAGE_SIZE
) {
995 if (haddr
== (address
& PAGE_MASK
)) {
996 entry
= mk_pte(page
, vma
->vm_page_prot
);
997 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
998 page_add_new_anon_rmap(page
, vma
, haddr
);
1000 entry
= pfn_pte(my_zero_pfn(haddr
), vma
->vm_page_prot
);
1001 entry
= pte_mkspecial(entry
);
1003 pte
= pte_offset_map(&_pmd
, haddr
);
1004 VM_BUG_ON(!pte_none(*pte
));
1005 set_pte_at(mm
, haddr
, pte
, entry
);
1008 smp_wmb(); /* make pte visible before pmd */
1009 pmd_populate(mm
, pmd
, pgtable
);
1010 spin_unlock(&mm
->page_table_lock
);
1011 put_huge_zero_page();
1012 inc_mm_counter(mm
, MM_ANONPAGES
);
1014 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
1016 ret
|= VM_FAULT_WRITE
;
1020 spin_unlock(&mm
->page_table_lock
);
1021 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
1022 mem_cgroup_uncharge_page(page
);
1027 static int do_huge_pmd_wp_page_fallback(struct mm_struct
*mm
,
1028 struct vm_area_struct
*vma
,
1029 unsigned long address
,
1030 pmd_t
*pmd
, pmd_t orig_pmd
,
1032 unsigned long haddr
)
1037 struct page
**pages
;
1038 unsigned long mmun_start
; /* For mmu_notifiers */
1039 unsigned long mmun_end
; /* For mmu_notifiers */
1041 pages
= kmalloc(sizeof(struct page
*) * HPAGE_PMD_NR
,
1043 if (unlikely(!pages
)) {
1044 ret
|= VM_FAULT_OOM
;
1048 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
1049 pages
[i
] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE
|
1051 vma
, address
, page_to_nid(page
));
1052 if (unlikely(!pages
[i
] ||
1053 mem_cgroup_newpage_charge(pages
[i
], mm
,
1057 mem_cgroup_uncharge_start();
1059 mem_cgroup_uncharge_page(pages
[i
]);
1062 mem_cgroup_uncharge_end();
1064 ret
|= VM_FAULT_OOM
;
1069 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
1070 copy_user_highpage(pages
[i
], page
+ i
,
1071 haddr
+ PAGE_SIZE
* i
, vma
);
1072 __SetPageUptodate(pages
[i
]);
1077 mmun_end
= haddr
+ HPAGE_PMD_SIZE
;
1078 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
1080 spin_lock(&mm
->page_table_lock
);
1081 if (unlikely(!pmd_same(*pmd
, orig_pmd
)))
1082 goto out_free_pages
;
1083 VM_BUG_ON(!PageHead(page
));
1085 pmdp_clear_flush(vma
, haddr
, pmd
);
1086 /* leave pmd empty until pte is filled */
1088 pgtable
= pgtable_trans_huge_withdraw(mm
, pmd
);
1089 pmd_populate(mm
, &_pmd
, pgtable
);
1091 for (i
= 0; i
< HPAGE_PMD_NR
; i
++, haddr
+= PAGE_SIZE
) {
1093 entry
= mk_pte(pages
[i
], vma
->vm_page_prot
);
1094 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
1095 page_add_new_anon_rmap(pages
[i
], vma
, haddr
);
1096 pte
= pte_offset_map(&_pmd
, haddr
);
1097 VM_BUG_ON(!pte_none(*pte
));
1098 set_pte_at(mm
, haddr
, pte
, entry
);
1103 smp_wmb(); /* make pte visible before pmd */
1104 pmd_populate(mm
, pmd
, pgtable
);
1105 page_remove_rmap(page
);
1106 spin_unlock(&mm
->page_table_lock
);
1108 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
1110 ret
|= VM_FAULT_WRITE
;
1117 spin_unlock(&mm
->page_table_lock
);
1118 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
1119 mem_cgroup_uncharge_start();
1120 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
1121 mem_cgroup_uncharge_page(pages
[i
]);
1124 mem_cgroup_uncharge_end();
1129 int do_huge_pmd_wp_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
1130 unsigned long address
, pmd_t
*pmd
, pmd_t orig_pmd
)
1133 struct page
*page
= NULL
, *new_page
;
1134 unsigned long haddr
;
1135 unsigned long mmun_start
; /* For mmu_notifiers */
1136 unsigned long mmun_end
; /* For mmu_notifiers */
1138 VM_BUG_ON(!vma
->anon_vma
);
1139 haddr
= address
& HPAGE_PMD_MASK
;
1140 if (is_huge_zero_pmd(orig_pmd
))
1142 spin_lock(&mm
->page_table_lock
);
1143 if (unlikely(!pmd_same(*pmd
, orig_pmd
)))
1146 page
= pmd_page(orig_pmd
);
1147 VM_BUG_ON(!PageCompound(page
) || !PageHead(page
));
1148 if (page_mapcount(page
) == 1) {
1150 entry
= pmd_mkyoung(orig_pmd
);
1151 entry
= maybe_pmd_mkwrite(pmd_mkdirty(entry
), vma
);
1152 if (pmdp_set_access_flags(vma
, haddr
, pmd
, entry
, 1))
1153 update_mmu_cache_pmd(vma
, address
, pmd
);
1154 ret
|= VM_FAULT_WRITE
;
1158 spin_unlock(&mm
->page_table_lock
);
1160 if (transparent_hugepage_enabled(vma
) &&
1161 !transparent_hugepage_debug_cow())
1162 new_page
= alloc_hugepage_vma(transparent_hugepage_defrag(vma
),
1163 vma
, haddr
, numa_node_id(), 0);
1167 if (unlikely(!new_page
)) {
1168 count_vm_event(THP_FAULT_FALLBACK
);
1169 if (is_huge_zero_pmd(orig_pmd
)) {
1170 ret
= do_huge_pmd_wp_zero_page_fallback(mm
, vma
,
1171 address
, pmd
, orig_pmd
, haddr
);
1173 ret
= do_huge_pmd_wp_page_fallback(mm
, vma
, address
,
1174 pmd
, orig_pmd
, page
, haddr
);
1175 if (ret
& VM_FAULT_OOM
)
1176 split_huge_page(page
);
1181 count_vm_event(THP_FAULT_ALLOC
);
1183 if (unlikely(mem_cgroup_newpage_charge(new_page
, mm
, GFP_KERNEL
))) {
1186 split_huge_page(page
);
1189 ret
|= VM_FAULT_OOM
;
1193 if (is_huge_zero_pmd(orig_pmd
))
1194 clear_huge_page(new_page
, haddr
, HPAGE_PMD_NR
);
1196 copy_user_huge_page(new_page
, page
, haddr
, vma
, HPAGE_PMD_NR
);
1197 __SetPageUptodate(new_page
);
1200 mmun_end
= haddr
+ HPAGE_PMD_SIZE
;
1201 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
1203 spin_lock(&mm
->page_table_lock
);
1206 if (unlikely(!pmd_same(*pmd
, orig_pmd
))) {
1207 spin_unlock(&mm
->page_table_lock
);
1208 mem_cgroup_uncharge_page(new_page
);
1213 entry
= mk_huge_pmd(new_page
, vma
);
1214 pmdp_clear_flush(vma
, haddr
, pmd
);
1215 page_add_new_anon_rmap(new_page
, vma
, haddr
);
1216 set_pmd_at(mm
, haddr
, pmd
, entry
);
1217 update_mmu_cache_pmd(vma
, address
, pmd
);
1218 if (is_huge_zero_pmd(orig_pmd
)) {
1219 add_mm_counter(mm
, MM_ANONPAGES
, HPAGE_PMD_NR
);
1220 put_huge_zero_page();
1222 VM_BUG_ON(!PageHead(page
));
1223 page_remove_rmap(page
);
1226 ret
|= VM_FAULT_WRITE
;
1228 spin_unlock(&mm
->page_table_lock
);
1230 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
1234 spin_unlock(&mm
->page_table_lock
);
1238 struct page
*follow_trans_huge_pmd(struct vm_area_struct
*vma
,
1243 struct mm_struct
*mm
= vma
->vm_mm
;
1244 struct page
*page
= NULL
;
1246 assert_spin_locked(&mm
->page_table_lock
);
1248 if (flags
& FOLL_WRITE
&& !pmd_write(*pmd
))
1251 /* Avoid dumping huge zero page */
1252 if ((flags
& FOLL_DUMP
) && is_huge_zero_pmd(*pmd
))
1253 return ERR_PTR(-EFAULT
);
1255 page
= pmd_page(*pmd
);
1256 VM_BUG_ON(!PageHead(page
));
1257 if (flags
& FOLL_TOUCH
) {
1260 * We should set the dirty bit only for FOLL_WRITE but
1261 * for now the dirty bit in the pmd is meaningless.
1262 * And if the dirty bit will become meaningful and
1263 * we'll only set it with FOLL_WRITE, an atomic
1264 * set_bit will be required on the pmd to set the
1265 * young bit, instead of the current set_pmd_at.
1267 _pmd
= pmd_mkyoung(pmd_mkdirty(*pmd
));
1268 if (pmdp_set_access_flags(vma
, addr
& HPAGE_PMD_MASK
,
1270 update_mmu_cache_pmd(vma
, addr
, pmd
);
1272 if ((flags
& FOLL_MLOCK
) && (vma
->vm_flags
& VM_LOCKED
)) {
1273 if (page
->mapping
&& trylock_page(page
)) {
1276 mlock_vma_page(page
);
1280 page
+= (addr
& ~HPAGE_PMD_MASK
) >> PAGE_SHIFT
;
1281 VM_BUG_ON(!PageCompound(page
));
1282 if (flags
& FOLL_GET
)
1283 get_page_foll(page
);
1289 /* NUMA hinting page fault entry point for trans huge pmds */
1290 int do_huge_pmd_numa_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
1291 unsigned long addr
, pmd_t pmd
, pmd_t
*pmdp
)
1294 unsigned long haddr
= addr
& HPAGE_PMD_MASK
;
1296 int current_nid
= -1;
1299 spin_lock(&mm
->page_table_lock
);
1300 if (unlikely(!pmd_same(pmd
, *pmdp
)))
1303 page
= pmd_page(pmd
);
1305 current_nid
= page_to_nid(page
);
1306 count_vm_numa_event(NUMA_HINT_FAULTS
);
1307 if (current_nid
== numa_node_id())
1308 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL
);
1310 target_nid
= mpol_misplaced(page
, vma
, haddr
);
1311 if (target_nid
== -1) {
1316 /* Acquire the page lock to serialise THP migrations */
1317 spin_unlock(&mm
->page_table_lock
);
1320 /* Confirm the PTE did not while locked */
1321 spin_lock(&mm
->page_table_lock
);
1322 if (unlikely(!pmd_same(pmd
, *pmdp
))) {
1327 spin_unlock(&mm
->page_table_lock
);
1329 /* Migrate the THP to the requested node */
1330 migrated
= migrate_misplaced_transhuge_page(mm
, vma
,
1331 pmdp
, pmd
, addr
, page
, target_nid
);
1335 task_numa_fault(target_nid
, HPAGE_PMD_NR
, true);
1339 spin_lock(&mm
->page_table_lock
);
1340 if (unlikely(!pmd_same(pmd
, *pmdp
)))
1343 pmd
= pmd_mknonnuma(pmd
);
1344 set_pmd_at(mm
, haddr
, pmdp
, pmd
);
1345 VM_BUG_ON(pmd_numa(*pmdp
));
1346 update_mmu_cache_pmd(vma
, addr
, pmdp
);
1348 spin_unlock(&mm
->page_table_lock
);
1349 if (current_nid
!= -1)
1350 task_numa_fault(current_nid
, HPAGE_PMD_NR
, false);
1354 int zap_huge_pmd(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
1355 pmd_t
*pmd
, unsigned long addr
)
1359 if (__pmd_trans_huge_lock(pmd
, vma
) == 1) {
1364 * For architectures like ppc64 we look at deposited pgtable
1365 * when calling pmdp_get_and_clear. So do the
1366 * pgtable_trans_huge_withdraw after finishing pmdp related
1369 orig_pmd
= pmdp_get_and_clear(tlb
->mm
, addr
, pmd
);
1370 tlb_remove_pmd_tlb_entry(tlb
, pmd
, addr
);
1371 pgtable
= pgtable_trans_huge_withdraw(tlb
->mm
, pmd
);
1372 if (is_huge_zero_pmd(orig_pmd
)) {
1374 spin_unlock(&tlb
->mm
->page_table_lock
);
1375 put_huge_zero_page();
1377 page
= pmd_page(orig_pmd
);
1378 page_remove_rmap(page
);
1379 VM_BUG_ON(page_mapcount(page
) < 0);
1380 add_mm_counter(tlb
->mm
, MM_ANONPAGES
, -HPAGE_PMD_NR
);
1381 VM_BUG_ON(!PageHead(page
));
1383 spin_unlock(&tlb
->mm
->page_table_lock
);
1384 tlb_remove_page(tlb
, page
);
1386 pte_free(tlb
->mm
, pgtable
);
1392 int mincore_huge_pmd(struct vm_area_struct
*vma
, pmd_t
*pmd
,
1393 unsigned long addr
, unsigned long end
,
1398 if (__pmd_trans_huge_lock(pmd
, vma
) == 1) {
1400 * All logical pages in the range are present
1401 * if backed by a huge page.
1403 spin_unlock(&vma
->vm_mm
->page_table_lock
);
1404 memset(vec
, 1, (end
- addr
) >> PAGE_SHIFT
);
1411 int move_huge_pmd(struct vm_area_struct
*vma
, struct vm_area_struct
*new_vma
,
1412 unsigned long old_addr
,
1413 unsigned long new_addr
, unsigned long old_end
,
1414 pmd_t
*old_pmd
, pmd_t
*new_pmd
)
1419 struct mm_struct
*mm
= vma
->vm_mm
;
1421 if ((old_addr
& ~HPAGE_PMD_MASK
) ||
1422 (new_addr
& ~HPAGE_PMD_MASK
) ||
1423 old_end
- old_addr
< HPAGE_PMD_SIZE
||
1424 (new_vma
->vm_flags
& VM_NOHUGEPAGE
))
1428 * The destination pmd shouldn't be established, free_pgtables()
1429 * should have release it.
1431 if (WARN_ON(!pmd_none(*new_pmd
))) {
1432 VM_BUG_ON(pmd_trans_huge(*new_pmd
));
1436 ret
= __pmd_trans_huge_lock(old_pmd
, vma
);
1438 pmd
= pmdp_get_and_clear(mm
, old_addr
, old_pmd
);
1439 VM_BUG_ON(!pmd_none(*new_pmd
));
1440 set_pmd_at(mm
, new_addr
, new_pmd
, pmd_mksoft_dirty(pmd
));
1441 spin_unlock(&mm
->page_table_lock
);
1447 int change_huge_pmd(struct vm_area_struct
*vma
, pmd_t
*pmd
,
1448 unsigned long addr
, pgprot_t newprot
, int prot_numa
)
1450 struct mm_struct
*mm
= vma
->vm_mm
;
1453 if (__pmd_trans_huge_lock(pmd
, vma
) == 1) {
1455 entry
= pmdp_get_and_clear(mm
, addr
, pmd
);
1457 entry
= pmd_modify(entry
, newprot
);
1458 BUG_ON(pmd_write(entry
));
1460 struct page
*page
= pmd_page(*pmd
);
1462 /* only check non-shared pages */
1463 if (page_mapcount(page
) == 1 &&
1465 entry
= pmd_mknuma(entry
);
1468 set_pmd_at(mm
, addr
, pmd
, entry
);
1469 spin_unlock(&vma
->vm_mm
->page_table_lock
);
1477 * Returns 1 if a given pmd maps a stable (not under splitting) thp.
1478 * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
1480 * Note that if it returns 1, this routine returns without unlocking page
1481 * table locks. So callers must unlock them.
1483 int __pmd_trans_huge_lock(pmd_t
*pmd
, struct vm_area_struct
*vma
)
1485 spin_lock(&vma
->vm_mm
->page_table_lock
);
1486 if (likely(pmd_trans_huge(*pmd
))) {
1487 if (unlikely(pmd_trans_splitting(*pmd
))) {
1488 spin_unlock(&vma
->vm_mm
->page_table_lock
);
1489 wait_split_huge_page(vma
->anon_vma
, pmd
);
1492 /* Thp mapped by 'pmd' is stable, so we can
1493 * handle it as it is. */
1497 spin_unlock(&vma
->vm_mm
->page_table_lock
);
1501 pmd_t
*page_check_address_pmd(struct page
*page
,
1502 struct mm_struct
*mm
,
1503 unsigned long address
,
1504 enum page_check_address_pmd_flag flag
)
1506 pmd_t
*pmd
, *ret
= NULL
;
1508 if (address
& ~HPAGE_PMD_MASK
)
1511 pmd
= mm_find_pmd(mm
, address
);
1516 if (pmd_page(*pmd
) != page
)
1519 * split_vma() may create temporary aliased mappings. There is
1520 * no risk as long as all huge pmd are found and have their
1521 * splitting bit set before __split_huge_page_refcount
1522 * runs. Finding the same huge pmd more than once during the
1523 * same rmap walk is not a problem.
1525 if (flag
== PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG
&&
1526 pmd_trans_splitting(*pmd
))
1528 if (pmd_trans_huge(*pmd
)) {
1529 VM_BUG_ON(flag
== PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG
&&
1530 !pmd_trans_splitting(*pmd
));
1537 static int __split_huge_page_splitting(struct page
*page
,
1538 struct vm_area_struct
*vma
,
1539 unsigned long address
)
1541 struct mm_struct
*mm
= vma
->vm_mm
;
1544 /* For mmu_notifiers */
1545 const unsigned long mmun_start
= address
;
1546 const unsigned long mmun_end
= address
+ HPAGE_PMD_SIZE
;
1548 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
1549 spin_lock(&mm
->page_table_lock
);
1550 pmd
= page_check_address_pmd(page
, mm
, address
,
1551 PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG
);
1554 * We can't temporarily set the pmd to null in order
1555 * to split it, the pmd must remain marked huge at all
1556 * times or the VM won't take the pmd_trans_huge paths
1557 * and it won't wait on the anon_vma->root->rwsem to
1558 * serialize against split_huge_page*.
1560 pmdp_splitting_flush(vma
, address
, pmd
);
1563 spin_unlock(&mm
->page_table_lock
);
1564 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
1569 static void __split_huge_page_refcount(struct page
*page
,
1570 struct list_head
*list
)
1573 struct zone
*zone
= page_zone(page
);
1574 struct lruvec
*lruvec
;
1577 /* prevent PageLRU to go away from under us, and freeze lru stats */
1578 spin_lock_irq(&zone
->lru_lock
);
1579 lruvec
= mem_cgroup_page_lruvec(page
, zone
);
1581 compound_lock(page
);
1582 /* complete memcg works before add pages to LRU */
1583 mem_cgroup_split_huge_fixup(page
);
1585 for (i
= HPAGE_PMD_NR
- 1; i
>= 1; i
--) {
1586 struct page
*page_tail
= page
+ i
;
1588 /* tail_page->_mapcount cannot change */
1589 BUG_ON(page_mapcount(page_tail
) < 0);
1590 tail_count
+= page_mapcount(page_tail
);
1591 /* check for overflow */
1592 BUG_ON(tail_count
< 0);
1593 BUG_ON(atomic_read(&page_tail
->_count
) != 0);
1595 * tail_page->_count is zero and not changing from
1596 * under us. But get_page_unless_zero() may be running
1597 * from under us on the tail_page. If we used
1598 * atomic_set() below instead of atomic_add(), we
1599 * would then run atomic_set() concurrently with
1600 * get_page_unless_zero(), and atomic_set() is
1601 * implemented in C not using locked ops. spin_unlock
1602 * on x86 sometime uses locked ops because of PPro
1603 * errata 66, 92, so unless somebody can guarantee
1604 * atomic_set() here would be safe on all archs (and
1605 * not only on x86), it's safer to use atomic_add().
1607 atomic_add(page_mapcount(page
) + page_mapcount(page_tail
) + 1,
1608 &page_tail
->_count
);
1610 /* after clearing PageTail the gup refcount can be released */
1614 * retain hwpoison flag of the poisoned tail page:
1615 * fix for the unsuitable process killed on Guest Machine(KVM)
1616 * by the memory-failure.
1618 page_tail
->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
| __PG_HWPOISON
;
1619 page_tail
->flags
|= (page
->flags
&
1620 ((1L << PG_referenced
) |
1621 (1L << PG_swapbacked
) |
1622 (1L << PG_mlocked
) |
1623 (1L << PG_uptodate
)));
1624 page_tail
->flags
|= (1L << PG_dirty
);
1626 /* clear PageTail before overwriting first_page */
1630 * __split_huge_page_splitting() already set the
1631 * splitting bit in all pmd that could map this
1632 * hugepage, that will ensure no CPU can alter the
1633 * mapcount on the head page. The mapcount is only
1634 * accounted in the head page and it has to be
1635 * transferred to all tail pages in the below code. So
1636 * for this code to be safe, the split the mapcount
1637 * can't change. But that doesn't mean userland can't
1638 * keep changing and reading the page contents while
1639 * we transfer the mapcount, so the pmd splitting
1640 * status is achieved setting a reserved bit in the
1641 * pmd, not by clearing the present bit.
1643 page_tail
->_mapcount
= page
->_mapcount
;
1645 BUG_ON(page_tail
->mapping
);
1646 page_tail
->mapping
= page
->mapping
;
1648 page_tail
->index
= page
->index
+ i
;
1649 page_nid_xchg_last(page_tail
, page_nid_last(page
));
1651 BUG_ON(!PageAnon(page_tail
));
1652 BUG_ON(!PageUptodate(page_tail
));
1653 BUG_ON(!PageDirty(page_tail
));
1654 BUG_ON(!PageSwapBacked(page_tail
));
1656 lru_add_page_tail(page
, page_tail
, lruvec
, list
);
1658 atomic_sub(tail_count
, &page
->_count
);
1659 BUG_ON(atomic_read(&page
->_count
) <= 0);
1661 __mod_zone_page_state(zone
, NR_ANON_TRANSPARENT_HUGEPAGES
, -1);
1662 __mod_zone_page_state(zone
, NR_ANON_PAGES
, HPAGE_PMD_NR
);
1664 ClearPageCompound(page
);
1665 compound_unlock(page
);
1666 spin_unlock_irq(&zone
->lru_lock
);
1668 for (i
= 1; i
< HPAGE_PMD_NR
; i
++) {
1669 struct page
*page_tail
= page
+ i
;
1670 BUG_ON(page_count(page_tail
) <= 0);
1672 * Tail pages may be freed if there wasn't any mapping
1673 * like if add_to_swap() is running on a lru page that
1674 * had its mapping zapped. And freeing these pages
1675 * requires taking the lru_lock so we do the put_page
1676 * of the tail pages after the split is complete.
1678 put_page(page_tail
);
1682 * Only the head page (now become a regular page) is required
1683 * to be pinned by the caller.
1685 BUG_ON(page_count(page
) <= 0);
1688 static int __split_huge_page_map(struct page
*page
,
1689 struct vm_area_struct
*vma
,
1690 unsigned long address
)
1692 struct mm_struct
*mm
= vma
->vm_mm
;
1696 unsigned long haddr
;
1698 spin_lock(&mm
->page_table_lock
);
1699 pmd
= page_check_address_pmd(page
, mm
, address
,
1700 PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG
);
1702 pgtable
= pgtable_trans_huge_withdraw(mm
, pmd
);
1703 pmd_populate(mm
, &_pmd
, pgtable
);
1706 for (i
= 0; i
< HPAGE_PMD_NR
; i
++, haddr
+= PAGE_SIZE
) {
1708 BUG_ON(PageCompound(page
+i
));
1709 entry
= mk_pte(page
+ i
, vma
->vm_page_prot
);
1710 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
1711 if (!pmd_write(*pmd
))
1712 entry
= pte_wrprotect(entry
);
1714 BUG_ON(page_mapcount(page
) != 1);
1715 if (!pmd_young(*pmd
))
1716 entry
= pte_mkold(entry
);
1718 entry
= pte_mknuma(entry
);
1719 pte
= pte_offset_map(&_pmd
, haddr
);
1720 BUG_ON(!pte_none(*pte
));
1721 set_pte_at(mm
, haddr
, pte
, entry
);
1725 smp_wmb(); /* make pte visible before pmd */
1727 * Up to this point the pmd is present and huge and
1728 * userland has the whole access to the hugepage
1729 * during the split (which happens in place). If we
1730 * overwrite the pmd with the not-huge version
1731 * pointing to the pte here (which of course we could
1732 * if all CPUs were bug free), userland could trigger
1733 * a small page size TLB miss on the small sized TLB
1734 * while the hugepage TLB entry is still established
1735 * in the huge TLB. Some CPU doesn't like that. See
1736 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1737 * Erratum 383 on page 93. Intel should be safe but is
1738 * also warns that it's only safe if the permission
1739 * and cache attributes of the two entries loaded in
1740 * the two TLB is identical (which should be the case
1741 * here). But it is generally safer to never allow
1742 * small and huge TLB entries for the same virtual
1743 * address to be loaded simultaneously. So instead of
1744 * doing "pmd_populate(); flush_tlb_range();" we first
1745 * mark the current pmd notpresent (atomically because
1746 * here the pmd_trans_huge and pmd_trans_splitting
1747 * must remain set at all times on the pmd until the
1748 * split is complete for this pmd), then we flush the
1749 * SMP TLB and finally we write the non-huge version
1750 * of the pmd entry with pmd_populate.
1752 pmdp_invalidate(vma
, address
, pmd
);
1753 pmd_populate(mm
, pmd
, pgtable
);
1756 spin_unlock(&mm
->page_table_lock
);
1761 /* must be called with anon_vma->root->rwsem held */
1762 static void __split_huge_page(struct page
*page
,
1763 struct anon_vma
*anon_vma
,
1764 struct list_head
*list
)
1766 int mapcount
, mapcount2
;
1767 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
1768 struct anon_vma_chain
*avc
;
1770 BUG_ON(!PageHead(page
));
1771 BUG_ON(PageTail(page
));
1774 anon_vma_interval_tree_foreach(avc
, &anon_vma
->rb_root
, pgoff
, pgoff
) {
1775 struct vm_area_struct
*vma
= avc
->vma
;
1776 unsigned long addr
= vma_address(page
, vma
);
1777 BUG_ON(is_vma_temporary_stack(vma
));
1778 mapcount
+= __split_huge_page_splitting(page
, vma
, addr
);
1781 * It is critical that new vmas are added to the tail of the
1782 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1783 * and establishes a child pmd before
1784 * __split_huge_page_splitting() freezes the parent pmd (so if
1785 * we fail to prevent copy_huge_pmd() from running until the
1786 * whole __split_huge_page() is complete), we will still see
1787 * the newly established pmd of the child later during the
1788 * walk, to be able to set it as pmd_trans_splitting too.
1790 if (mapcount
!= page_mapcount(page
))
1791 printk(KERN_ERR
"mapcount %d page_mapcount %d\n",
1792 mapcount
, page_mapcount(page
));
1793 BUG_ON(mapcount
!= page_mapcount(page
));
1795 __split_huge_page_refcount(page
, list
);
1798 anon_vma_interval_tree_foreach(avc
, &anon_vma
->rb_root
, pgoff
, pgoff
) {
1799 struct vm_area_struct
*vma
= avc
->vma
;
1800 unsigned long addr
= vma_address(page
, vma
);
1801 BUG_ON(is_vma_temporary_stack(vma
));
1802 mapcount2
+= __split_huge_page_map(page
, vma
, addr
);
1804 if (mapcount
!= mapcount2
)
1805 printk(KERN_ERR
"mapcount %d mapcount2 %d page_mapcount %d\n",
1806 mapcount
, mapcount2
, page_mapcount(page
));
1807 BUG_ON(mapcount
!= mapcount2
);
1811 * Split a hugepage into normal pages. This doesn't change the position of head
1812 * page. If @list is null, tail pages will be added to LRU list, otherwise, to
1813 * @list. Both head page and tail pages will inherit mapping, flags, and so on
1814 * from the hugepage.
1815 * Return 0 if the hugepage is split successfully otherwise return 1.
1817 int split_huge_page_to_list(struct page
*page
, struct list_head
*list
)
1819 struct anon_vma
*anon_vma
;
1822 BUG_ON(is_huge_zero_page(page
));
1823 BUG_ON(!PageAnon(page
));
1826 * The caller does not necessarily hold an mmap_sem that would prevent
1827 * the anon_vma disappearing so we first we take a reference to it
1828 * and then lock the anon_vma for write. This is similar to
1829 * page_lock_anon_vma_read except the write lock is taken to serialise
1830 * against parallel split or collapse operations.
1832 anon_vma
= page_get_anon_vma(page
);
1835 anon_vma_lock_write(anon_vma
);
1838 if (!PageCompound(page
))
1841 BUG_ON(!PageSwapBacked(page
));
1842 __split_huge_page(page
, anon_vma
, list
);
1843 count_vm_event(THP_SPLIT
);
1845 BUG_ON(PageCompound(page
));
1847 anon_vma_unlock_write(anon_vma
);
1848 put_anon_vma(anon_vma
);
1853 #define VM_NO_THP (VM_SPECIAL|VM_MIXEDMAP|VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
1855 int hugepage_madvise(struct vm_area_struct
*vma
,
1856 unsigned long *vm_flags
, int advice
)
1858 struct mm_struct
*mm
= vma
->vm_mm
;
1863 * Be somewhat over-protective like KSM for now!
1865 if (*vm_flags
& (VM_HUGEPAGE
| VM_NO_THP
))
1867 if (mm
->def_flags
& VM_NOHUGEPAGE
)
1869 *vm_flags
&= ~VM_NOHUGEPAGE
;
1870 *vm_flags
|= VM_HUGEPAGE
;
1872 * If the vma become good for khugepaged to scan,
1873 * register it here without waiting a page fault that
1874 * may not happen any time soon.
1876 if (unlikely(khugepaged_enter_vma_merge(vma
)))
1879 case MADV_NOHUGEPAGE
:
1881 * Be somewhat over-protective like KSM for now!
1883 if (*vm_flags
& (VM_NOHUGEPAGE
| VM_NO_THP
))
1885 *vm_flags
&= ~VM_HUGEPAGE
;
1886 *vm_flags
|= VM_NOHUGEPAGE
;
1888 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1889 * this vma even if we leave the mm registered in khugepaged if
1890 * it got registered before VM_NOHUGEPAGE was set.
1898 static int __init
khugepaged_slab_init(void)
1900 mm_slot_cache
= kmem_cache_create("khugepaged_mm_slot",
1901 sizeof(struct mm_slot
),
1902 __alignof__(struct mm_slot
), 0, NULL
);
1909 static inline struct mm_slot
*alloc_mm_slot(void)
1911 if (!mm_slot_cache
) /* initialization failed */
1913 return kmem_cache_zalloc(mm_slot_cache
, GFP_KERNEL
);
1916 static inline void free_mm_slot(struct mm_slot
*mm_slot
)
1918 kmem_cache_free(mm_slot_cache
, mm_slot
);
1921 static struct mm_slot
*get_mm_slot(struct mm_struct
*mm
)
1923 struct mm_slot
*mm_slot
;
1925 hash_for_each_possible(mm_slots_hash
, mm_slot
, hash
, (unsigned long)mm
)
1926 if (mm
== mm_slot
->mm
)
1932 static void insert_to_mm_slots_hash(struct mm_struct
*mm
,
1933 struct mm_slot
*mm_slot
)
1936 hash_add(mm_slots_hash
, &mm_slot
->hash
, (long)mm
);
1939 static inline int khugepaged_test_exit(struct mm_struct
*mm
)
1941 return atomic_read(&mm
->mm_users
) == 0;
1944 int __khugepaged_enter(struct mm_struct
*mm
)
1946 struct mm_slot
*mm_slot
;
1949 mm_slot
= alloc_mm_slot();
1953 /* __khugepaged_exit() must not run from under us */
1954 VM_BUG_ON(khugepaged_test_exit(mm
));
1955 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE
, &mm
->flags
))) {
1956 free_mm_slot(mm_slot
);
1960 spin_lock(&khugepaged_mm_lock
);
1961 insert_to_mm_slots_hash(mm
, mm_slot
);
1963 * Insert just behind the scanning cursor, to let the area settle
1966 wakeup
= list_empty(&khugepaged_scan
.mm_head
);
1967 list_add_tail(&mm_slot
->mm_node
, &khugepaged_scan
.mm_head
);
1968 spin_unlock(&khugepaged_mm_lock
);
1970 atomic_inc(&mm
->mm_count
);
1972 wake_up_interruptible(&khugepaged_wait
);
1977 int khugepaged_enter_vma_merge(struct vm_area_struct
*vma
)
1979 unsigned long hstart
, hend
;
1982 * Not yet faulted in so we will register later in the
1983 * page fault if needed.
1987 /* khugepaged not yet working on file or special mappings */
1989 VM_BUG_ON(vma
->vm_flags
& VM_NO_THP
);
1990 hstart
= (vma
->vm_start
+ ~HPAGE_PMD_MASK
) & HPAGE_PMD_MASK
;
1991 hend
= vma
->vm_end
& HPAGE_PMD_MASK
;
1993 return khugepaged_enter(vma
);
1997 void __khugepaged_exit(struct mm_struct
*mm
)
1999 struct mm_slot
*mm_slot
;
2002 spin_lock(&khugepaged_mm_lock
);
2003 mm_slot
= get_mm_slot(mm
);
2004 if (mm_slot
&& khugepaged_scan
.mm_slot
!= mm_slot
) {
2005 hash_del(&mm_slot
->hash
);
2006 list_del(&mm_slot
->mm_node
);
2009 spin_unlock(&khugepaged_mm_lock
);
2012 clear_bit(MMF_VM_HUGEPAGE
, &mm
->flags
);
2013 free_mm_slot(mm_slot
);
2015 } else if (mm_slot
) {
2017 * This is required to serialize against
2018 * khugepaged_test_exit() (which is guaranteed to run
2019 * under mmap sem read mode). Stop here (after we
2020 * return all pagetables will be destroyed) until
2021 * khugepaged has finished working on the pagetables
2022 * under the mmap_sem.
2024 down_write(&mm
->mmap_sem
);
2025 up_write(&mm
->mmap_sem
);
2029 static void release_pte_page(struct page
*page
)
2031 /* 0 stands for page_is_file_cache(page) == false */
2032 dec_zone_page_state(page
, NR_ISOLATED_ANON
+ 0);
2034 putback_lru_page(page
);
2037 static void release_pte_pages(pte_t
*pte
, pte_t
*_pte
)
2039 while (--_pte
>= pte
) {
2040 pte_t pteval
= *_pte
;
2041 if (!pte_none(pteval
))
2042 release_pte_page(pte_page(pteval
));
2046 static int __collapse_huge_page_isolate(struct vm_area_struct
*vma
,
2047 unsigned long address
,
2052 int referenced
= 0, none
= 0;
2053 for (_pte
= pte
; _pte
< pte
+HPAGE_PMD_NR
;
2054 _pte
++, address
+= PAGE_SIZE
) {
2055 pte_t pteval
= *_pte
;
2056 if (pte_none(pteval
)) {
2057 if (++none
<= khugepaged_max_ptes_none
)
2062 if (!pte_present(pteval
) || !pte_write(pteval
))
2064 page
= vm_normal_page(vma
, address
, pteval
);
2065 if (unlikely(!page
))
2068 VM_BUG_ON(PageCompound(page
));
2069 BUG_ON(!PageAnon(page
));
2070 VM_BUG_ON(!PageSwapBacked(page
));
2072 /* cannot use mapcount: can't collapse if there's a gup pin */
2073 if (page_count(page
) != 1)
2076 * We can do it before isolate_lru_page because the
2077 * page can't be freed from under us. NOTE: PG_lock
2078 * is needed to serialize against split_huge_page
2079 * when invoked from the VM.
2081 if (!trylock_page(page
))
2084 * Isolate the page to avoid collapsing an hugepage
2085 * currently in use by the VM.
2087 if (isolate_lru_page(page
)) {
2091 /* 0 stands for page_is_file_cache(page) == false */
2092 inc_zone_page_state(page
, NR_ISOLATED_ANON
+ 0);
2093 VM_BUG_ON(!PageLocked(page
));
2094 VM_BUG_ON(PageLRU(page
));
2096 /* If there is no mapped pte young don't collapse the page */
2097 if (pte_young(pteval
) || PageReferenced(page
) ||
2098 mmu_notifier_test_young(vma
->vm_mm
, address
))
2101 if (likely(referenced
))
2104 release_pte_pages(pte
, _pte
);
2108 static void __collapse_huge_page_copy(pte_t
*pte
, struct page
*page
,
2109 struct vm_area_struct
*vma
,
2110 unsigned long address
,
2114 for (_pte
= pte
; _pte
< pte
+HPAGE_PMD_NR
; _pte
++) {
2115 pte_t pteval
= *_pte
;
2116 struct page
*src_page
;
2118 if (pte_none(pteval
)) {
2119 clear_user_highpage(page
, address
);
2120 add_mm_counter(vma
->vm_mm
, MM_ANONPAGES
, 1);
2122 src_page
= pte_page(pteval
);
2123 copy_user_highpage(page
, src_page
, address
, vma
);
2124 VM_BUG_ON(page_mapcount(src_page
) != 1);
2125 release_pte_page(src_page
);
2127 * ptl mostly unnecessary, but preempt has to
2128 * be disabled to update the per-cpu stats
2129 * inside page_remove_rmap().
2133 * paravirt calls inside pte_clear here are
2136 pte_clear(vma
->vm_mm
, address
, _pte
);
2137 page_remove_rmap(src_page
);
2139 free_page_and_swap_cache(src_page
);
2142 address
+= PAGE_SIZE
;
2147 static void khugepaged_alloc_sleep(void)
2149 wait_event_freezable_timeout(khugepaged_wait
, false,
2150 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs
));
2154 static bool khugepaged_prealloc_page(struct page
**hpage
, bool *wait
)
2156 if (IS_ERR(*hpage
)) {
2162 khugepaged_alloc_sleep();
2163 } else if (*hpage
) {
2172 *khugepaged_alloc_page(struct page
**hpage
, struct mm_struct
*mm
,
2173 struct vm_area_struct
*vma
, unsigned long address
,
2178 * Allocate the page while the vma is still valid and under
2179 * the mmap_sem read mode so there is no memory allocation
2180 * later when we take the mmap_sem in write mode. This is more
2181 * friendly behavior (OTOH it may actually hide bugs) to
2182 * filesystems in userland with daemons allocating memory in
2183 * the userland I/O paths. Allocating memory with the
2184 * mmap_sem in read mode is good idea also to allow greater
2187 *hpage
= alloc_hugepage_vma(khugepaged_defrag(), vma
, address
,
2188 node
, __GFP_OTHER_NODE
);
2191 * After allocating the hugepage, release the mmap_sem read lock in
2192 * preparation for taking it in write mode.
2194 up_read(&mm
->mmap_sem
);
2195 if (unlikely(!*hpage
)) {
2196 count_vm_event(THP_COLLAPSE_ALLOC_FAILED
);
2197 *hpage
= ERR_PTR(-ENOMEM
);
2201 count_vm_event(THP_COLLAPSE_ALLOC
);
2205 static struct page
*khugepaged_alloc_hugepage(bool *wait
)
2210 hpage
= alloc_hugepage(khugepaged_defrag());
2212 count_vm_event(THP_COLLAPSE_ALLOC_FAILED
);
2217 khugepaged_alloc_sleep();
2219 count_vm_event(THP_COLLAPSE_ALLOC
);
2220 } while (unlikely(!hpage
) && likely(khugepaged_enabled()));
2225 static bool khugepaged_prealloc_page(struct page
**hpage
, bool *wait
)
2228 *hpage
= khugepaged_alloc_hugepage(wait
);
2230 if (unlikely(!*hpage
))
2237 *khugepaged_alloc_page(struct page
**hpage
, struct mm_struct
*mm
,
2238 struct vm_area_struct
*vma
, unsigned long address
,
2241 up_read(&mm
->mmap_sem
);
2247 static bool hugepage_vma_check(struct vm_area_struct
*vma
)
2249 if ((!(vma
->vm_flags
& VM_HUGEPAGE
) && !khugepaged_always()) ||
2250 (vma
->vm_flags
& VM_NOHUGEPAGE
))
2253 if (!vma
->anon_vma
|| vma
->vm_ops
)
2255 if (is_vma_temporary_stack(vma
))
2257 VM_BUG_ON(vma
->vm_flags
& VM_NO_THP
);
2261 static void collapse_huge_page(struct mm_struct
*mm
,
2262 unsigned long address
,
2263 struct page
**hpage
,
2264 struct vm_area_struct
*vma
,
2270 struct page
*new_page
;
2273 unsigned long hstart
, hend
;
2274 unsigned long mmun_start
; /* For mmu_notifiers */
2275 unsigned long mmun_end
; /* For mmu_notifiers */
2277 VM_BUG_ON(address
& ~HPAGE_PMD_MASK
);
2279 /* release the mmap_sem read lock. */
2280 new_page
= khugepaged_alloc_page(hpage
, mm
, vma
, address
, node
);
2284 if (unlikely(mem_cgroup_newpage_charge(new_page
, mm
, GFP_KERNEL
)))
2288 * Prevent all access to pagetables with the exception of
2289 * gup_fast later hanlded by the ptep_clear_flush and the VM
2290 * handled by the anon_vma lock + PG_lock.
2292 down_write(&mm
->mmap_sem
);
2293 if (unlikely(khugepaged_test_exit(mm
)))
2296 vma
= find_vma(mm
, address
);
2297 hstart
= (vma
->vm_start
+ ~HPAGE_PMD_MASK
) & HPAGE_PMD_MASK
;
2298 hend
= vma
->vm_end
& HPAGE_PMD_MASK
;
2299 if (address
< hstart
|| address
+ HPAGE_PMD_SIZE
> hend
)
2301 if (!hugepage_vma_check(vma
))
2303 pmd
= mm_find_pmd(mm
, address
);
2306 if (pmd_trans_huge(*pmd
))
2309 anon_vma_lock_write(vma
->anon_vma
);
2311 pte
= pte_offset_map(pmd
, address
);
2312 ptl
= pte_lockptr(mm
, pmd
);
2314 mmun_start
= address
;
2315 mmun_end
= address
+ HPAGE_PMD_SIZE
;
2316 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
2317 spin_lock(&mm
->page_table_lock
); /* probably unnecessary */
2319 * After this gup_fast can't run anymore. This also removes
2320 * any huge TLB entry from the CPU so we won't allow
2321 * huge and small TLB entries for the same virtual address
2322 * to avoid the risk of CPU bugs in that area.
2324 _pmd
= pmdp_clear_flush(vma
, address
, pmd
);
2325 spin_unlock(&mm
->page_table_lock
);
2326 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
2329 isolated
= __collapse_huge_page_isolate(vma
, address
, pte
);
2332 if (unlikely(!isolated
)) {
2334 spin_lock(&mm
->page_table_lock
);
2335 BUG_ON(!pmd_none(*pmd
));
2337 * We can only use set_pmd_at when establishing
2338 * hugepmds and never for establishing regular pmds that
2339 * points to regular pagetables. Use pmd_populate for that
2341 pmd_populate(mm
, pmd
, pmd_pgtable(_pmd
));
2342 spin_unlock(&mm
->page_table_lock
);
2343 anon_vma_unlock_write(vma
->anon_vma
);
2348 * All pages are isolated and locked so anon_vma rmap
2349 * can't run anymore.
2351 anon_vma_unlock_write(vma
->anon_vma
);
2353 __collapse_huge_page_copy(pte
, new_page
, vma
, address
, ptl
);
2355 __SetPageUptodate(new_page
);
2356 pgtable
= pmd_pgtable(_pmd
);
2358 _pmd
= mk_huge_pmd(new_page
, vma
);
2361 * spin_lock() below is not the equivalent of smp_wmb(), so
2362 * this is needed to avoid the copy_huge_page writes to become
2363 * visible after the set_pmd_at() write.
2367 spin_lock(&mm
->page_table_lock
);
2368 BUG_ON(!pmd_none(*pmd
));
2369 page_add_new_anon_rmap(new_page
, vma
, address
);
2370 pgtable_trans_huge_deposit(mm
, pmd
, pgtable
);
2371 set_pmd_at(mm
, address
, pmd
, _pmd
);
2372 update_mmu_cache_pmd(vma
, address
, pmd
);
2373 spin_unlock(&mm
->page_table_lock
);
2377 khugepaged_pages_collapsed
++;
2379 up_write(&mm
->mmap_sem
);
2383 mem_cgroup_uncharge_page(new_page
);
2387 static int khugepaged_scan_pmd(struct mm_struct
*mm
,
2388 struct vm_area_struct
*vma
,
2389 unsigned long address
,
2390 struct page
**hpage
)
2394 int ret
= 0, referenced
= 0, none
= 0;
2396 unsigned long _address
;
2398 int node
= NUMA_NO_NODE
;
2400 VM_BUG_ON(address
& ~HPAGE_PMD_MASK
);
2402 pmd
= mm_find_pmd(mm
, address
);
2405 if (pmd_trans_huge(*pmd
))
2408 pte
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2409 for (_address
= address
, _pte
= pte
; _pte
< pte
+HPAGE_PMD_NR
;
2410 _pte
++, _address
+= PAGE_SIZE
) {
2411 pte_t pteval
= *_pte
;
2412 if (pte_none(pteval
)) {
2413 if (++none
<= khugepaged_max_ptes_none
)
2418 if (!pte_present(pteval
) || !pte_write(pteval
))
2420 page
= vm_normal_page(vma
, _address
, pteval
);
2421 if (unlikely(!page
))
2424 * Chose the node of the first page. This could
2425 * be more sophisticated and look at more pages,
2426 * but isn't for now.
2428 if (node
== NUMA_NO_NODE
)
2429 node
= page_to_nid(page
);
2430 VM_BUG_ON(PageCompound(page
));
2431 if (!PageLRU(page
) || PageLocked(page
) || !PageAnon(page
))
2433 /* cannot use mapcount: can't collapse if there's a gup pin */
2434 if (page_count(page
) != 1)
2436 if (pte_young(pteval
) || PageReferenced(page
) ||
2437 mmu_notifier_test_young(vma
->vm_mm
, address
))
2443 pte_unmap_unlock(pte
, ptl
);
2445 /* collapse_huge_page will return with the mmap_sem released */
2446 collapse_huge_page(mm
, address
, hpage
, vma
, node
);
2451 static void collect_mm_slot(struct mm_slot
*mm_slot
)
2453 struct mm_struct
*mm
= mm_slot
->mm
;
2455 VM_BUG_ON(NR_CPUS
!= 1 && !spin_is_locked(&khugepaged_mm_lock
));
2457 if (khugepaged_test_exit(mm
)) {
2459 hash_del(&mm_slot
->hash
);
2460 list_del(&mm_slot
->mm_node
);
2463 * Not strictly needed because the mm exited already.
2465 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2468 /* khugepaged_mm_lock actually not necessary for the below */
2469 free_mm_slot(mm_slot
);
2474 static unsigned int khugepaged_scan_mm_slot(unsigned int pages
,
2475 struct page
**hpage
)
2476 __releases(&khugepaged_mm_lock
)
2477 __acquires(&khugepaged_mm_lock
)
2479 struct mm_slot
*mm_slot
;
2480 struct mm_struct
*mm
;
2481 struct vm_area_struct
*vma
;
2485 VM_BUG_ON(NR_CPUS
!= 1 && !spin_is_locked(&khugepaged_mm_lock
));
2487 if (khugepaged_scan
.mm_slot
)
2488 mm_slot
= khugepaged_scan
.mm_slot
;
2490 mm_slot
= list_entry(khugepaged_scan
.mm_head
.next
,
2491 struct mm_slot
, mm_node
);
2492 khugepaged_scan
.address
= 0;
2493 khugepaged_scan
.mm_slot
= mm_slot
;
2495 spin_unlock(&khugepaged_mm_lock
);
2498 down_read(&mm
->mmap_sem
);
2499 if (unlikely(khugepaged_test_exit(mm
)))
2502 vma
= find_vma(mm
, khugepaged_scan
.address
);
2505 for (; vma
; vma
= vma
->vm_next
) {
2506 unsigned long hstart
, hend
;
2509 if (unlikely(khugepaged_test_exit(mm
))) {
2513 if (!hugepage_vma_check(vma
)) {
2518 hstart
= (vma
->vm_start
+ ~HPAGE_PMD_MASK
) & HPAGE_PMD_MASK
;
2519 hend
= vma
->vm_end
& HPAGE_PMD_MASK
;
2522 if (khugepaged_scan
.address
> hend
)
2524 if (khugepaged_scan
.address
< hstart
)
2525 khugepaged_scan
.address
= hstart
;
2526 VM_BUG_ON(khugepaged_scan
.address
& ~HPAGE_PMD_MASK
);
2528 while (khugepaged_scan
.address
< hend
) {
2531 if (unlikely(khugepaged_test_exit(mm
)))
2532 goto breakouterloop
;
2534 VM_BUG_ON(khugepaged_scan
.address
< hstart
||
2535 khugepaged_scan
.address
+ HPAGE_PMD_SIZE
>
2537 ret
= khugepaged_scan_pmd(mm
, vma
,
2538 khugepaged_scan
.address
,
2540 /* move to next address */
2541 khugepaged_scan
.address
+= HPAGE_PMD_SIZE
;
2542 progress
+= HPAGE_PMD_NR
;
2544 /* we released mmap_sem so break loop */
2545 goto breakouterloop_mmap_sem
;
2546 if (progress
>= pages
)
2547 goto breakouterloop
;
2551 up_read(&mm
->mmap_sem
); /* exit_mmap will destroy ptes after this */
2552 breakouterloop_mmap_sem
:
2554 spin_lock(&khugepaged_mm_lock
);
2555 VM_BUG_ON(khugepaged_scan
.mm_slot
!= mm_slot
);
2557 * Release the current mm_slot if this mm is about to die, or
2558 * if we scanned all vmas of this mm.
2560 if (khugepaged_test_exit(mm
) || !vma
) {
2562 * Make sure that if mm_users is reaching zero while
2563 * khugepaged runs here, khugepaged_exit will find
2564 * mm_slot not pointing to the exiting mm.
2566 if (mm_slot
->mm_node
.next
!= &khugepaged_scan
.mm_head
) {
2567 khugepaged_scan
.mm_slot
= list_entry(
2568 mm_slot
->mm_node
.next
,
2569 struct mm_slot
, mm_node
);
2570 khugepaged_scan
.address
= 0;
2572 khugepaged_scan
.mm_slot
= NULL
;
2573 khugepaged_full_scans
++;
2576 collect_mm_slot(mm_slot
);
2582 static int khugepaged_has_work(void)
2584 return !list_empty(&khugepaged_scan
.mm_head
) &&
2585 khugepaged_enabled();
2588 static int khugepaged_wait_event(void)
2590 return !list_empty(&khugepaged_scan
.mm_head
) ||
2591 kthread_should_stop();
2594 static void khugepaged_do_scan(void)
2596 struct page
*hpage
= NULL
;
2597 unsigned int progress
= 0, pass_through_head
= 0;
2598 unsigned int pages
= khugepaged_pages_to_scan
;
2601 barrier(); /* write khugepaged_pages_to_scan to local stack */
2603 while (progress
< pages
) {
2604 if (!khugepaged_prealloc_page(&hpage
, &wait
))
2609 if (unlikely(kthread_should_stop() || freezing(current
)))
2612 spin_lock(&khugepaged_mm_lock
);
2613 if (!khugepaged_scan
.mm_slot
)
2614 pass_through_head
++;
2615 if (khugepaged_has_work() &&
2616 pass_through_head
< 2)
2617 progress
+= khugepaged_scan_mm_slot(pages
- progress
,
2621 spin_unlock(&khugepaged_mm_lock
);
2624 if (!IS_ERR_OR_NULL(hpage
))
2628 static void khugepaged_wait_work(void)
2632 if (khugepaged_has_work()) {
2633 if (!khugepaged_scan_sleep_millisecs
)
2636 wait_event_freezable_timeout(khugepaged_wait
,
2637 kthread_should_stop(),
2638 msecs_to_jiffies(khugepaged_scan_sleep_millisecs
));
2642 if (khugepaged_enabled())
2643 wait_event_freezable(khugepaged_wait
, khugepaged_wait_event());
2646 static int khugepaged(void *none
)
2648 struct mm_slot
*mm_slot
;
2651 set_user_nice(current
, 19);
2653 while (!kthread_should_stop()) {
2654 khugepaged_do_scan();
2655 khugepaged_wait_work();
2658 spin_lock(&khugepaged_mm_lock
);
2659 mm_slot
= khugepaged_scan
.mm_slot
;
2660 khugepaged_scan
.mm_slot
= NULL
;
2662 collect_mm_slot(mm_slot
);
2663 spin_unlock(&khugepaged_mm_lock
);
2667 static void __split_huge_zero_page_pmd(struct vm_area_struct
*vma
,
2668 unsigned long haddr
, pmd_t
*pmd
)
2670 struct mm_struct
*mm
= vma
->vm_mm
;
2675 pmdp_clear_flush(vma
, haddr
, pmd
);
2676 /* leave pmd empty until pte is filled */
2678 pgtable
= pgtable_trans_huge_withdraw(mm
, pmd
);
2679 pmd_populate(mm
, &_pmd
, pgtable
);
2681 for (i
= 0; i
< HPAGE_PMD_NR
; i
++, haddr
+= PAGE_SIZE
) {
2683 entry
= pfn_pte(my_zero_pfn(haddr
), vma
->vm_page_prot
);
2684 entry
= pte_mkspecial(entry
);
2685 pte
= pte_offset_map(&_pmd
, haddr
);
2686 VM_BUG_ON(!pte_none(*pte
));
2687 set_pte_at(mm
, haddr
, pte
, entry
);
2690 smp_wmb(); /* make pte visible before pmd */
2691 pmd_populate(mm
, pmd
, pgtable
);
2692 put_huge_zero_page();
2695 void __split_huge_page_pmd(struct vm_area_struct
*vma
, unsigned long address
,
2699 struct mm_struct
*mm
= vma
->vm_mm
;
2700 unsigned long haddr
= address
& HPAGE_PMD_MASK
;
2701 unsigned long mmun_start
; /* For mmu_notifiers */
2702 unsigned long mmun_end
; /* For mmu_notifiers */
2704 BUG_ON(vma
->vm_start
> haddr
|| vma
->vm_end
< haddr
+ HPAGE_PMD_SIZE
);
2707 mmun_end
= haddr
+ HPAGE_PMD_SIZE
;
2708 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
2709 spin_lock(&mm
->page_table_lock
);
2710 if (unlikely(!pmd_trans_huge(*pmd
))) {
2711 spin_unlock(&mm
->page_table_lock
);
2712 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
2715 if (is_huge_zero_pmd(*pmd
)) {
2716 __split_huge_zero_page_pmd(vma
, haddr
, pmd
);
2717 spin_unlock(&mm
->page_table_lock
);
2718 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
2721 page
= pmd_page(*pmd
);
2722 VM_BUG_ON(!page_count(page
));
2724 spin_unlock(&mm
->page_table_lock
);
2725 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
2727 split_huge_page(page
);
2730 BUG_ON(pmd_trans_huge(*pmd
));
2733 void split_huge_page_pmd_mm(struct mm_struct
*mm
, unsigned long address
,
2736 struct vm_area_struct
*vma
;
2738 vma
= find_vma(mm
, address
);
2739 BUG_ON(vma
== NULL
);
2740 split_huge_page_pmd(vma
, address
, pmd
);
2743 static void split_huge_page_address(struct mm_struct
*mm
,
2744 unsigned long address
)
2748 VM_BUG_ON(!(address
& ~HPAGE_PMD_MASK
));
2750 pmd
= mm_find_pmd(mm
, address
);
2754 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2755 * materialize from under us.
2757 split_huge_page_pmd_mm(mm
, address
, pmd
);
2760 void __vma_adjust_trans_huge(struct vm_area_struct
*vma
,
2761 unsigned long start
,
2766 * If the new start address isn't hpage aligned and it could
2767 * previously contain an hugepage: check if we need to split
2770 if (start
& ~HPAGE_PMD_MASK
&&
2771 (start
& HPAGE_PMD_MASK
) >= vma
->vm_start
&&
2772 (start
& HPAGE_PMD_MASK
) + HPAGE_PMD_SIZE
<= vma
->vm_end
)
2773 split_huge_page_address(vma
->vm_mm
, start
);
2776 * If the new end address isn't hpage aligned and it could
2777 * previously contain an hugepage: check if we need to split
2780 if (end
& ~HPAGE_PMD_MASK
&&
2781 (end
& HPAGE_PMD_MASK
) >= vma
->vm_start
&&
2782 (end
& HPAGE_PMD_MASK
) + HPAGE_PMD_SIZE
<= vma
->vm_end
)
2783 split_huge_page_address(vma
->vm_mm
, end
);
2786 * If we're also updating the vma->vm_next->vm_start, if the new
2787 * vm_next->vm_start isn't page aligned and it could previously
2788 * contain an hugepage: check if we need to split an huge pmd.
2790 if (adjust_next
> 0) {
2791 struct vm_area_struct
*next
= vma
->vm_next
;
2792 unsigned long nstart
= next
->vm_start
;
2793 nstart
+= adjust_next
<< PAGE_SHIFT
;
2794 if (nstart
& ~HPAGE_PMD_MASK
&&
2795 (nstart
& HPAGE_PMD_MASK
) >= next
->vm_start
&&
2796 (nstart
& HPAGE_PMD_MASK
) + HPAGE_PMD_SIZE
<= next
->vm_end
)
2797 split_huge_page_address(next
->vm_mm
, nstart
);