2 * Copyright (C) 2009 Red Hat, Inc.
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
9 #include <linux/sched.h>
10 #include <linux/highmem.h>
11 #include <linux/hugetlb.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/rmap.h>
14 #include <linux/swap.h>
15 #include <linux/shrinker.h>
16 #include <linux/mm_inline.h>
17 #include <linux/kthread.h>
18 #include <linux/khugepaged.h>
19 #include <linux/freezer.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/migrate.h>
23 #include <linux/hashtable.h>
26 #include <asm/pgalloc.h>
30 * By default transparent hugepage support is enabled for all mappings
31 * and khugepaged scans all mappings. Defrag is only invoked by
32 * khugepaged hugepage allocations and by page faults inside
33 * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
36 unsigned long transparent_hugepage_flags __read_mostly
=
37 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
38 (1<<TRANSPARENT_HUGEPAGE_FLAG
)|
40 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
41 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
)|
43 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG
)|
44 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG
)|
45 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG
);
47 /* default scan 8*512 pte (or vmas) every 30 second */
48 static unsigned int khugepaged_pages_to_scan __read_mostly
= HPAGE_PMD_NR
*8;
49 static unsigned int khugepaged_pages_collapsed
;
50 static unsigned int khugepaged_full_scans
;
51 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly
= 10000;
52 /* during fragmentation poll the hugepage allocator once every minute */
53 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly
= 60000;
54 static struct task_struct
*khugepaged_thread __read_mostly
;
55 static DEFINE_MUTEX(khugepaged_mutex
);
56 static DEFINE_SPINLOCK(khugepaged_mm_lock
);
57 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait
);
59 * default collapse hugepages if there is at least one pte mapped like
60 * it would have happened if the vma was large enough during page
63 static unsigned int khugepaged_max_ptes_none __read_mostly
= HPAGE_PMD_NR
-1;
65 static int khugepaged(void *none
);
66 static int khugepaged_slab_init(void);
68 #define MM_SLOTS_HASH_BITS 10
69 static __read_mostly
DEFINE_HASHTABLE(mm_slots_hash
, MM_SLOTS_HASH_BITS
);
71 static struct kmem_cache
*mm_slot_cache __read_mostly
;
74 * struct mm_slot - hash lookup from mm to mm_slot
75 * @hash: hash collision list
76 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
77 * @mm: the mm that this information is valid for
80 struct hlist_node hash
;
81 struct list_head mm_node
;
86 * struct khugepaged_scan - cursor for scanning
87 * @mm_head: the head of the mm list to scan
88 * @mm_slot: the current mm_slot we are scanning
89 * @address: the next address inside that to be scanned
91 * There is only the one khugepaged_scan instance of this cursor structure.
93 struct khugepaged_scan
{
94 struct list_head mm_head
;
95 struct mm_slot
*mm_slot
;
96 unsigned long address
;
98 static struct khugepaged_scan khugepaged_scan
= {
99 .mm_head
= LIST_HEAD_INIT(khugepaged_scan
.mm_head
),
103 static int set_recommended_min_free_kbytes(void)
107 unsigned long recommended_min
;
109 if (!khugepaged_enabled())
112 for_each_populated_zone(zone
)
115 /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
116 recommended_min
= pageblock_nr_pages
* nr_zones
* 2;
119 * Make sure that on average at least two pageblocks are almost free
120 * of another type, one for a migratetype to fall back to and a
121 * second to avoid subsequent fallbacks of other types There are 3
122 * MIGRATE_TYPES we care about.
124 recommended_min
+= pageblock_nr_pages
* nr_zones
*
125 MIGRATE_PCPTYPES
* MIGRATE_PCPTYPES
;
127 /* don't ever allow to reserve more than 5% of the lowmem */
128 recommended_min
= min(recommended_min
,
129 (unsigned long) nr_free_buffer_pages() / 20);
130 recommended_min
<<= (PAGE_SHIFT
-10);
132 if (recommended_min
> min_free_kbytes
)
133 min_free_kbytes
= recommended_min
;
134 setup_per_zone_wmarks();
137 late_initcall(set_recommended_min_free_kbytes
);
139 static int start_khugepaged(void)
142 if (khugepaged_enabled()) {
143 if (!khugepaged_thread
)
144 khugepaged_thread
= kthread_run(khugepaged
, NULL
,
146 if (unlikely(IS_ERR(khugepaged_thread
))) {
148 "khugepaged: kthread_run(khugepaged) failed\n");
149 err
= PTR_ERR(khugepaged_thread
);
150 khugepaged_thread
= NULL
;
153 if (!list_empty(&khugepaged_scan
.mm_head
))
154 wake_up_interruptible(&khugepaged_wait
);
156 set_recommended_min_free_kbytes();
157 } else if (khugepaged_thread
) {
158 kthread_stop(khugepaged_thread
);
159 khugepaged_thread
= NULL
;
165 static atomic_t huge_zero_refcount
;
166 static unsigned long huge_zero_pfn __read_mostly
;
168 static inline bool is_huge_zero_pfn(unsigned long pfn
)
170 unsigned long zero_pfn
= ACCESS_ONCE(huge_zero_pfn
);
171 return zero_pfn
&& pfn
== zero_pfn
;
174 static inline bool is_huge_zero_pmd(pmd_t pmd
)
176 return is_huge_zero_pfn(pmd_pfn(pmd
));
179 static unsigned long get_huge_zero_page(void)
181 struct page
*zero_page
;
183 if (likely(atomic_inc_not_zero(&huge_zero_refcount
)))
184 return ACCESS_ONCE(huge_zero_pfn
);
186 zero_page
= alloc_pages((GFP_TRANSHUGE
| __GFP_ZERO
) & ~__GFP_MOVABLE
,
189 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED
);
192 count_vm_event(THP_ZERO_PAGE_ALLOC
);
194 if (cmpxchg(&huge_zero_pfn
, 0, page_to_pfn(zero_page
))) {
196 __free_page(zero_page
);
200 /* We take additional reference here. It will be put back by shrinker */
201 atomic_set(&huge_zero_refcount
, 2);
203 return ACCESS_ONCE(huge_zero_pfn
);
206 static void put_huge_zero_page(void)
209 * Counter should never go to zero here. Only shrinker can put
212 BUG_ON(atomic_dec_and_test(&huge_zero_refcount
));
215 static int shrink_huge_zero_page(struct shrinker
*shrink
,
216 struct shrink_control
*sc
)
219 /* we can free zero page only if last reference remains */
220 return atomic_read(&huge_zero_refcount
) == 1 ? HPAGE_PMD_NR
: 0;
222 if (atomic_cmpxchg(&huge_zero_refcount
, 1, 0) == 1) {
223 unsigned long zero_pfn
= xchg(&huge_zero_pfn
, 0);
224 BUG_ON(zero_pfn
== 0);
225 __free_page(__pfn_to_page(zero_pfn
));
231 static struct shrinker huge_zero_page_shrinker
= {
232 .shrink
= shrink_huge_zero_page
,
233 .seeks
= DEFAULT_SEEKS
,
238 static ssize_t
double_flag_show(struct kobject
*kobj
,
239 struct kobj_attribute
*attr
, char *buf
,
240 enum transparent_hugepage_flag enabled
,
241 enum transparent_hugepage_flag req_madv
)
243 if (test_bit(enabled
, &transparent_hugepage_flags
)) {
244 VM_BUG_ON(test_bit(req_madv
, &transparent_hugepage_flags
));
245 return sprintf(buf
, "[always] madvise never\n");
246 } else if (test_bit(req_madv
, &transparent_hugepage_flags
))
247 return sprintf(buf
, "always [madvise] never\n");
249 return sprintf(buf
, "always madvise [never]\n");
251 static ssize_t
double_flag_store(struct kobject
*kobj
,
252 struct kobj_attribute
*attr
,
253 const char *buf
, size_t count
,
254 enum transparent_hugepage_flag enabled
,
255 enum transparent_hugepage_flag req_madv
)
257 if (!memcmp("always", buf
,
258 min(sizeof("always")-1, count
))) {
259 set_bit(enabled
, &transparent_hugepage_flags
);
260 clear_bit(req_madv
, &transparent_hugepage_flags
);
261 } else if (!memcmp("madvise", buf
,
262 min(sizeof("madvise")-1, count
))) {
263 clear_bit(enabled
, &transparent_hugepage_flags
);
264 set_bit(req_madv
, &transparent_hugepage_flags
);
265 } else if (!memcmp("never", buf
,
266 min(sizeof("never")-1, count
))) {
267 clear_bit(enabled
, &transparent_hugepage_flags
);
268 clear_bit(req_madv
, &transparent_hugepage_flags
);
275 static ssize_t
enabled_show(struct kobject
*kobj
,
276 struct kobj_attribute
*attr
, char *buf
)
278 return double_flag_show(kobj
, attr
, buf
,
279 TRANSPARENT_HUGEPAGE_FLAG
,
280 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
);
282 static ssize_t
enabled_store(struct kobject
*kobj
,
283 struct kobj_attribute
*attr
,
284 const char *buf
, size_t count
)
288 ret
= double_flag_store(kobj
, attr
, buf
, count
,
289 TRANSPARENT_HUGEPAGE_FLAG
,
290 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
);
295 mutex_lock(&khugepaged_mutex
);
296 err
= start_khugepaged();
297 mutex_unlock(&khugepaged_mutex
);
305 static struct kobj_attribute enabled_attr
=
306 __ATTR(enabled
, 0644, enabled_show
, enabled_store
);
308 static ssize_t
single_flag_show(struct kobject
*kobj
,
309 struct kobj_attribute
*attr
, char *buf
,
310 enum transparent_hugepage_flag flag
)
312 return sprintf(buf
, "%d\n",
313 !!test_bit(flag
, &transparent_hugepage_flags
));
316 static ssize_t
single_flag_store(struct kobject
*kobj
,
317 struct kobj_attribute
*attr
,
318 const char *buf
, size_t count
,
319 enum transparent_hugepage_flag flag
)
324 ret
= kstrtoul(buf
, 10, &value
);
331 set_bit(flag
, &transparent_hugepage_flags
);
333 clear_bit(flag
, &transparent_hugepage_flags
);
339 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
340 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
341 * memory just to allocate one more hugepage.
343 static ssize_t
defrag_show(struct kobject
*kobj
,
344 struct kobj_attribute
*attr
, char *buf
)
346 return double_flag_show(kobj
, attr
, buf
,
347 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG
,
348 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG
);
350 static ssize_t
defrag_store(struct kobject
*kobj
,
351 struct kobj_attribute
*attr
,
352 const char *buf
, size_t count
)
354 return double_flag_store(kobj
, attr
, buf
, count
,
355 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG
,
356 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG
);
358 static struct kobj_attribute defrag_attr
=
359 __ATTR(defrag
, 0644, defrag_show
, defrag_store
);
361 static ssize_t
use_zero_page_show(struct kobject
*kobj
,
362 struct kobj_attribute
*attr
, char *buf
)
364 return single_flag_show(kobj
, attr
, buf
,
365 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG
);
367 static ssize_t
use_zero_page_store(struct kobject
*kobj
,
368 struct kobj_attribute
*attr
, const char *buf
, size_t count
)
370 return single_flag_store(kobj
, attr
, buf
, count
,
371 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG
);
373 static struct kobj_attribute use_zero_page_attr
=
374 __ATTR(use_zero_page
, 0644, use_zero_page_show
, use_zero_page_store
);
375 #ifdef CONFIG_DEBUG_VM
376 static ssize_t
debug_cow_show(struct kobject
*kobj
,
377 struct kobj_attribute
*attr
, char *buf
)
379 return single_flag_show(kobj
, attr
, buf
,
380 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG
);
382 static ssize_t
debug_cow_store(struct kobject
*kobj
,
383 struct kobj_attribute
*attr
,
384 const char *buf
, size_t count
)
386 return single_flag_store(kobj
, attr
, buf
, count
,
387 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG
);
389 static struct kobj_attribute debug_cow_attr
=
390 __ATTR(debug_cow
, 0644, debug_cow_show
, debug_cow_store
);
391 #endif /* CONFIG_DEBUG_VM */
393 static struct attribute
*hugepage_attr
[] = {
396 &use_zero_page_attr
.attr
,
397 #ifdef CONFIG_DEBUG_VM
398 &debug_cow_attr
.attr
,
403 static struct attribute_group hugepage_attr_group
= {
404 .attrs
= hugepage_attr
,
407 static ssize_t
scan_sleep_millisecs_show(struct kobject
*kobj
,
408 struct kobj_attribute
*attr
,
411 return sprintf(buf
, "%u\n", khugepaged_scan_sleep_millisecs
);
414 static ssize_t
scan_sleep_millisecs_store(struct kobject
*kobj
,
415 struct kobj_attribute
*attr
,
416 const char *buf
, size_t count
)
421 err
= strict_strtoul(buf
, 10, &msecs
);
422 if (err
|| msecs
> UINT_MAX
)
425 khugepaged_scan_sleep_millisecs
= msecs
;
426 wake_up_interruptible(&khugepaged_wait
);
430 static struct kobj_attribute scan_sleep_millisecs_attr
=
431 __ATTR(scan_sleep_millisecs
, 0644, scan_sleep_millisecs_show
,
432 scan_sleep_millisecs_store
);
434 static ssize_t
alloc_sleep_millisecs_show(struct kobject
*kobj
,
435 struct kobj_attribute
*attr
,
438 return sprintf(buf
, "%u\n", khugepaged_alloc_sleep_millisecs
);
441 static ssize_t
alloc_sleep_millisecs_store(struct kobject
*kobj
,
442 struct kobj_attribute
*attr
,
443 const char *buf
, size_t count
)
448 err
= strict_strtoul(buf
, 10, &msecs
);
449 if (err
|| msecs
> UINT_MAX
)
452 khugepaged_alloc_sleep_millisecs
= msecs
;
453 wake_up_interruptible(&khugepaged_wait
);
457 static struct kobj_attribute alloc_sleep_millisecs_attr
=
458 __ATTR(alloc_sleep_millisecs
, 0644, alloc_sleep_millisecs_show
,
459 alloc_sleep_millisecs_store
);
461 static ssize_t
pages_to_scan_show(struct kobject
*kobj
,
462 struct kobj_attribute
*attr
,
465 return sprintf(buf
, "%u\n", khugepaged_pages_to_scan
);
467 static ssize_t
pages_to_scan_store(struct kobject
*kobj
,
468 struct kobj_attribute
*attr
,
469 const char *buf
, size_t count
)
474 err
= strict_strtoul(buf
, 10, &pages
);
475 if (err
|| !pages
|| pages
> UINT_MAX
)
478 khugepaged_pages_to_scan
= pages
;
482 static struct kobj_attribute pages_to_scan_attr
=
483 __ATTR(pages_to_scan
, 0644, pages_to_scan_show
,
484 pages_to_scan_store
);
486 static ssize_t
pages_collapsed_show(struct kobject
*kobj
,
487 struct kobj_attribute
*attr
,
490 return sprintf(buf
, "%u\n", khugepaged_pages_collapsed
);
492 static struct kobj_attribute pages_collapsed_attr
=
493 __ATTR_RO(pages_collapsed
);
495 static ssize_t
full_scans_show(struct kobject
*kobj
,
496 struct kobj_attribute
*attr
,
499 return sprintf(buf
, "%u\n", khugepaged_full_scans
);
501 static struct kobj_attribute full_scans_attr
=
502 __ATTR_RO(full_scans
);
504 static ssize_t
khugepaged_defrag_show(struct kobject
*kobj
,
505 struct kobj_attribute
*attr
, char *buf
)
507 return single_flag_show(kobj
, attr
, buf
,
508 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG
);
510 static ssize_t
khugepaged_defrag_store(struct kobject
*kobj
,
511 struct kobj_attribute
*attr
,
512 const char *buf
, size_t count
)
514 return single_flag_store(kobj
, attr
, buf
, count
,
515 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG
);
517 static struct kobj_attribute khugepaged_defrag_attr
=
518 __ATTR(defrag
, 0644, khugepaged_defrag_show
,
519 khugepaged_defrag_store
);
522 * max_ptes_none controls if khugepaged should collapse hugepages over
523 * any unmapped ptes in turn potentially increasing the memory
524 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
525 * reduce the available free memory in the system as it
526 * runs. Increasing max_ptes_none will instead potentially reduce the
527 * free memory in the system during the khugepaged scan.
529 static ssize_t
khugepaged_max_ptes_none_show(struct kobject
*kobj
,
530 struct kobj_attribute
*attr
,
533 return sprintf(buf
, "%u\n", khugepaged_max_ptes_none
);
535 static ssize_t
khugepaged_max_ptes_none_store(struct kobject
*kobj
,
536 struct kobj_attribute
*attr
,
537 const char *buf
, size_t count
)
540 unsigned long max_ptes_none
;
542 err
= strict_strtoul(buf
, 10, &max_ptes_none
);
543 if (err
|| max_ptes_none
> HPAGE_PMD_NR
-1)
546 khugepaged_max_ptes_none
= max_ptes_none
;
550 static struct kobj_attribute khugepaged_max_ptes_none_attr
=
551 __ATTR(max_ptes_none
, 0644, khugepaged_max_ptes_none_show
,
552 khugepaged_max_ptes_none_store
);
554 static struct attribute
*khugepaged_attr
[] = {
555 &khugepaged_defrag_attr
.attr
,
556 &khugepaged_max_ptes_none_attr
.attr
,
557 &pages_to_scan_attr
.attr
,
558 &pages_collapsed_attr
.attr
,
559 &full_scans_attr
.attr
,
560 &scan_sleep_millisecs_attr
.attr
,
561 &alloc_sleep_millisecs_attr
.attr
,
565 static struct attribute_group khugepaged_attr_group
= {
566 .attrs
= khugepaged_attr
,
567 .name
= "khugepaged",
570 static int __init
hugepage_init_sysfs(struct kobject
**hugepage_kobj
)
574 *hugepage_kobj
= kobject_create_and_add("transparent_hugepage", mm_kobj
);
575 if (unlikely(!*hugepage_kobj
)) {
576 printk(KERN_ERR
"hugepage: failed to create transparent hugepage kobject\n");
580 err
= sysfs_create_group(*hugepage_kobj
, &hugepage_attr_group
);
582 printk(KERN_ERR
"hugepage: failed to register transparent hugepage group\n");
586 err
= sysfs_create_group(*hugepage_kobj
, &khugepaged_attr_group
);
588 printk(KERN_ERR
"hugepage: failed to register transparent hugepage group\n");
589 goto remove_hp_group
;
595 sysfs_remove_group(*hugepage_kobj
, &hugepage_attr_group
);
597 kobject_put(*hugepage_kobj
);
601 static void __init
hugepage_exit_sysfs(struct kobject
*hugepage_kobj
)
603 sysfs_remove_group(hugepage_kobj
, &khugepaged_attr_group
);
604 sysfs_remove_group(hugepage_kobj
, &hugepage_attr_group
);
605 kobject_put(hugepage_kobj
);
608 static inline int hugepage_init_sysfs(struct kobject
**hugepage_kobj
)
613 static inline void hugepage_exit_sysfs(struct kobject
*hugepage_kobj
)
616 #endif /* CONFIG_SYSFS */
618 static int __init
hugepage_init(void)
621 struct kobject
*hugepage_kobj
;
623 if (!has_transparent_hugepage()) {
624 transparent_hugepage_flags
= 0;
628 err
= hugepage_init_sysfs(&hugepage_kobj
);
632 err
= khugepaged_slab_init();
636 register_shrinker(&huge_zero_page_shrinker
);
639 * By default disable transparent hugepages on smaller systems,
640 * where the extra memory used could hurt more than TLB overhead
641 * is likely to save. The admin can still enable it through /sys.
643 if (totalram_pages
< (512 << (20 - PAGE_SHIFT
)))
644 transparent_hugepage_flags
= 0;
650 hugepage_exit_sysfs(hugepage_kobj
);
653 module_init(hugepage_init
)
655 static int __init
setup_transparent_hugepage(char *str
)
660 if (!strcmp(str
, "always")) {
661 set_bit(TRANSPARENT_HUGEPAGE_FLAG
,
662 &transparent_hugepage_flags
);
663 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
,
664 &transparent_hugepage_flags
);
666 } else if (!strcmp(str
, "madvise")) {
667 clear_bit(TRANSPARENT_HUGEPAGE_FLAG
,
668 &transparent_hugepage_flags
);
669 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
,
670 &transparent_hugepage_flags
);
672 } else if (!strcmp(str
, "never")) {
673 clear_bit(TRANSPARENT_HUGEPAGE_FLAG
,
674 &transparent_hugepage_flags
);
675 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
,
676 &transparent_hugepage_flags
);
682 "transparent_hugepage= cannot parse, ignored\n");
685 __setup("transparent_hugepage=", setup_transparent_hugepage
);
687 pmd_t
maybe_pmd_mkwrite(pmd_t pmd
, struct vm_area_struct
*vma
)
689 if (likely(vma
->vm_flags
& VM_WRITE
))
690 pmd
= pmd_mkwrite(pmd
);
694 static inline pmd_t
mk_huge_pmd(struct page
*page
, struct vm_area_struct
*vma
)
697 entry
= mk_pmd(page
, vma
->vm_page_prot
);
698 entry
= maybe_pmd_mkwrite(pmd_mkdirty(entry
), vma
);
699 entry
= pmd_mkhuge(entry
);
703 static int __do_huge_pmd_anonymous_page(struct mm_struct
*mm
,
704 struct vm_area_struct
*vma
,
705 unsigned long haddr
, pmd_t
*pmd
,
710 VM_BUG_ON(!PageCompound(page
));
711 pgtable
= pte_alloc_one(mm
, haddr
);
712 if (unlikely(!pgtable
))
715 clear_huge_page(page
, haddr
, HPAGE_PMD_NR
);
716 __SetPageUptodate(page
);
718 spin_lock(&mm
->page_table_lock
);
719 if (unlikely(!pmd_none(*pmd
))) {
720 spin_unlock(&mm
->page_table_lock
);
721 mem_cgroup_uncharge_page(page
);
723 pte_free(mm
, pgtable
);
726 entry
= mk_huge_pmd(page
, vma
);
728 * The spinlocking to take the lru_lock inside
729 * page_add_new_anon_rmap() acts as a full memory
730 * barrier to be sure clear_huge_page writes become
731 * visible after the set_pmd_at() write.
733 page_add_new_anon_rmap(page
, vma
, haddr
);
734 set_pmd_at(mm
, haddr
, pmd
, entry
);
735 pgtable_trans_huge_deposit(mm
, pgtable
);
736 add_mm_counter(mm
, MM_ANONPAGES
, HPAGE_PMD_NR
);
738 spin_unlock(&mm
->page_table_lock
);
744 static inline gfp_t
alloc_hugepage_gfpmask(int defrag
, gfp_t extra_gfp
)
746 return (GFP_TRANSHUGE
& ~(defrag
? 0 : __GFP_WAIT
)) | extra_gfp
;
749 static inline struct page
*alloc_hugepage_vma(int defrag
,
750 struct vm_area_struct
*vma
,
751 unsigned long haddr
, int nd
,
754 return alloc_pages_vma(alloc_hugepage_gfpmask(defrag
, extra_gfp
),
755 HPAGE_PMD_ORDER
, vma
, haddr
, nd
);
759 static inline struct page
*alloc_hugepage(int defrag
)
761 return alloc_pages(alloc_hugepage_gfpmask(defrag
, 0),
766 static bool set_huge_zero_page(pgtable_t pgtable
, struct mm_struct
*mm
,
767 struct vm_area_struct
*vma
, unsigned long haddr
, pmd_t
*pmd
,
768 unsigned long zero_pfn
)
773 entry
= pfn_pmd(zero_pfn
, vma
->vm_page_prot
);
774 entry
= pmd_wrprotect(entry
);
775 entry
= pmd_mkhuge(entry
);
776 set_pmd_at(mm
, haddr
, pmd
, entry
);
777 pgtable_trans_huge_deposit(mm
, pgtable
);
782 int do_huge_pmd_anonymous_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
783 unsigned long address
, pmd_t
*pmd
,
787 unsigned long haddr
= address
& HPAGE_PMD_MASK
;
790 if (haddr
>= vma
->vm_start
&& haddr
+ HPAGE_PMD_SIZE
<= vma
->vm_end
) {
791 if (unlikely(anon_vma_prepare(vma
)))
793 if (unlikely(khugepaged_enter(vma
)))
795 if (!(flags
& FAULT_FLAG_WRITE
) &&
796 transparent_hugepage_use_zero_page()) {
798 unsigned long zero_pfn
;
800 pgtable
= pte_alloc_one(mm
, haddr
);
801 if (unlikely(!pgtable
))
803 zero_pfn
= get_huge_zero_page();
804 if (unlikely(!zero_pfn
)) {
805 pte_free(mm
, pgtable
);
806 count_vm_event(THP_FAULT_FALLBACK
);
809 spin_lock(&mm
->page_table_lock
);
810 set
= set_huge_zero_page(pgtable
, mm
, vma
, haddr
, pmd
,
812 spin_unlock(&mm
->page_table_lock
);
814 pte_free(mm
, pgtable
);
815 put_huge_zero_page();
819 page
= alloc_hugepage_vma(transparent_hugepage_defrag(vma
),
820 vma
, haddr
, numa_node_id(), 0);
821 if (unlikely(!page
)) {
822 count_vm_event(THP_FAULT_FALLBACK
);
825 count_vm_event(THP_FAULT_ALLOC
);
826 if (unlikely(mem_cgroup_newpage_charge(page
, mm
, GFP_KERNEL
))) {
830 if (unlikely(__do_huge_pmd_anonymous_page(mm
, vma
, haddr
, pmd
,
832 mem_cgroup_uncharge_page(page
);
841 * Use __pte_alloc instead of pte_alloc_map, because we can't
842 * run pte_offset_map on the pmd, if an huge pmd could
843 * materialize from under us from a different thread.
845 if (unlikely(pmd_none(*pmd
)) &&
846 unlikely(__pte_alloc(mm
, vma
, pmd
, address
)))
848 /* if an huge pmd materialized from under us just retry later */
849 if (unlikely(pmd_trans_huge(*pmd
)))
852 * A regular pmd is established and it can't morph into a huge pmd
853 * from under us anymore at this point because we hold the mmap_sem
854 * read mode and khugepaged takes it in write mode. So now it's
855 * safe to run pte_offset_map().
857 pte
= pte_offset_map(pmd
, address
);
858 return handle_pte_fault(mm
, vma
, address
, pte
, pmd
, flags
);
861 int copy_huge_pmd(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
862 pmd_t
*dst_pmd
, pmd_t
*src_pmd
, unsigned long addr
,
863 struct vm_area_struct
*vma
)
865 struct page
*src_page
;
871 pgtable
= pte_alloc_one(dst_mm
, addr
);
872 if (unlikely(!pgtable
))
875 spin_lock(&dst_mm
->page_table_lock
);
876 spin_lock_nested(&src_mm
->page_table_lock
, SINGLE_DEPTH_NESTING
);
880 if (unlikely(!pmd_trans_huge(pmd
))) {
881 pte_free(dst_mm
, pgtable
);
885 * mm->page_table_lock is enough to be sure that huge zero pmd is not
886 * under splitting since we don't split the page itself, only pmd to
889 if (is_huge_zero_pmd(pmd
)) {
890 unsigned long zero_pfn
;
893 * get_huge_zero_page() will never allocate a new page here,
894 * since we already have a zero page to copy. It just takes a
897 zero_pfn
= get_huge_zero_page();
898 set
= set_huge_zero_page(pgtable
, dst_mm
, vma
, addr
, dst_pmd
,
900 BUG_ON(!set
); /* unexpected !pmd_none(dst_pmd) */
904 if (unlikely(pmd_trans_splitting(pmd
))) {
905 /* split huge page running from under us */
906 spin_unlock(&src_mm
->page_table_lock
);
907 spin_unlock(&dst_mm
->page_table_lock
);
908 pte_free(dst_mm
, pgtable
);
910 wait_split_huge_page(vma
->anon_vma
, src_pmd
); /* src_vma */
913 src_page
= pmd_page(pmd
);
914 VM_BUG_ON(!PageHead(src_page
));
916 page_dup_rmap(src_page
);
917 add_mm_counter(dst_mm
, MM_ANONPAGES
, HPAGE_PMD_NR
);
919 pmdp_set_wrprotect(src_mm
, addr
, src_pmd
);
920 pmd
= pmd_mkold(pmd_wrprotect(pmd
));
921 set_pmd_at(dst_mm
, addr
, dst_pmd
, pmd
);
922 pgtable_trans_huge_deposit(dst_mm
, pgtable
);
927 spin_unlock(&src_mm
->page_table_lock
);
928 spin_unlock(&dst_mm
->page_table_lock
);
933 void huge_pmd_set_accessed(struct mm_struct
*mm
,
934 struct vm_area_struct
*vma
,
935 unsigned long address
,
936 pmd_t
*pmd
, pmd_t orig_pmd
,
942 spin_lock(&mm
->page_table_lock
);
943 if (unlikely(!pmd_same(*pmd
, orig_pmd
)))
946 entry
= pmd_mkyoung(orig_pmd
);
947 haddr
= address
& HPAGE_PMD_MASK
;
948 if (pmdp_set_access_flags(vma
, haddr
, pmd
, entry
, dirty
))
949 update_mmu_cache_pmd(vma
, address
, pmd
);
952 spin_unlock(&mm
->page_table_lock
);
955 static int do_huge_pmd_wp_zero_page_fallback(struct mm_struct
*mm
,
956 struct vm_area_struct
*vma
, unsigned long address
,
957 pmd_t
*pmd
, pmd_t orig_pmd
, unsigned long haddr
)
963 unsigned long mmun_start
; /* For mmu_notifiers */
964 unsigned long mmun_end
; /* For mmu_notifiers */
966 page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
, address
);
972 if (mem_cgroup_newpage_charge(page
, mm
, GFP_KERNEL
)) {
978 clear_user_highpage(page
, address
);
979 __SetPageUptodate(page
);
982 mmun_end
= haddr
+ HPAGE_PMD_SIZE
;
983 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
985 spin_lock(&mm
->page_table_lock
);
986 if (unlikely(!pmd_same(*pmd
, orig_pmd
)))
989 pmdp_clear_flush(vma
, haddr
, pmd
);
990 /* leave pmd empty until pte is filled */
992 pgtable
= pgtable_trans_huge_withdraw(mm
);
993 pmd_populate(mm
, &_pmd
, pgtable
);
995 for (i
= 0; i
< HPAGE_PMD_NR
; i
++, haddr
+= PAGE_SIZE
) {
997 if (haddr
== (address
& PAGE_MASK
)) {
998 entry
= mk_pte(page
, vma
->vm_page_prot
);
999 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
1000 page_add_new_anon_rmap(page
, vma
, haddr
);
1002 entry
= pfn_pte(my_zero_pfn(haddr
), vma
->vm_page_prot
);
1003 entry
= pte_mkspecial(entry
);
1005 pte
= pte_offset_map(&_pmd
, haddr
);
1006 VM_BUG_ON(!pte_none(*pte
));
1007 set_pte_at(mm
, haddr
, pte
, entry
);
1010 smp_wmb(); /* make pte visible before pmd */
1011 pmd_populate(mm
, pmd
, pgtable
);
1012 spin_unlock(&mm
->page_table_lock
);
1013 put_huge_zero_page();
1014 inc_mm_counter(mm
, MM_ANONPAGES
);
1016 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
1018 ret
|= VM_FAULT_WRITE
;
1022 spin_unlock(&mm
->page_table_lock
);
1023 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
1024 mem_cgroup_uncharge_page(page
);
1029 static int do_huge_pmd_wp_page_fallback(struct mm_struct
*mm
,
1030 struct vm_area_struct
*vma
,
1031 unsigned long address
,
1032 pmd_t
*pmd
, pmd_t orig_pmd
,
1034 unsigned long haddr
)
1039 struct page
**pages
;
1040 unsigned long mmun_start
; /* For mmu_notifiers */
1041 unsigned long mmun_end
; /* For mmu_notifiers */
1043 pages
= kmalloc(sizeof(struct page
*) * HPAGE_PMD_NR
,
1045 if (unlikely(!pages
)) {
1046 ret
|= VM_FAULT_OOM
;
1050 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
1051 pages
[i
] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE
|
1053 vma
, address
, page_to_nid(page
));
1054 if (unlikely(!pages
[i
] ||
1055 mem_cgroup_newpage_charge(pages
[i
], mm
,
1059 mem_cgroup_uncharge_start();
1061 mem_cgroup_uncharge_page(pages
[i
]);
1064 mem_cgroup_uncharge_end();
1066 ret
|= VM_FAULT_OOM
;
1071 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
1072 copy_user_highpage(pages
[i
], page
+ i
,
1073 haddr
+ PAGE_SIZE
* i
, vma
);
1074 __SetPageUptodate(pages
[i
]);
1079 mmun_end
= haddr
+ HPAGE_PMD_SIZE
;
1080 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
1082 spin_lock(&mm
->page_table_lock
);
1083 if (unlikely(!pmd_same(*pmd
, orig_pmd
)))
1084 goto out_free_pages
;
1085 VM_BUG_ON(!PageHead(page
));
1087 pmdp_clear_flush(vma
, haddr
, pmd
);
1088 /* leave pmd empty until pte is filled */
1090 pgtable
= pgtable_trans_huge_withdraw(mm
);
1091 pmd_populate(mm
, &_pmd
, pgtable
);
1093 for (i
= 0; i
< HPAGE_PMD_NR
; i
++, haddr
+= PAGE_SIZE
) {
1095 entry
= mk_pte(pages
[i
], vma
->vm_page_prot
);
1096 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
1097 page_add_new_anon_rmap(pages
[i
], vma
, haddr
);
1098 pte
= pte_offset_map(&_pmd
, haddr
);
1099 VM_BUG_ON(!pte_none(*pte
));
1100 set_pte_at(mm
, haddr
, pte
, entry
);
1105 smp_wmb(); /* make pte visible before pmd */
1106 pmd_populate(mm
, pmd
, pgtable
);
1107 page_remove_rmap(page
);
1108 spin_unlock(&mm
->page_table_lock
);
1110 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
1112 ret
|= VM_FAULT_WRITE
;
1119 spin_unlock(&mm
->page_table_lock
);
1120 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
1121 mem_cgroup_uncharge_start();
1122 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
1123 mem_cgroup_uncharge_page(pages
[i
]);
1126 mem_cgroup_uncharge_end();
1131 int do_huge_pmd_wp_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
1132 unsigned long address
, pmd_t
*pmd
, pmd_t orig_pmd
)
1135 struct page
*page
= NULL
, *new_page
;
1136 unsigned long haddr
;
1137 unsigned long mmun_start
; /* For mmu_notifiers */
1138 unsigned long mmun_end
; /* For mmu_notifiers */
1140 VM_BUG_ON(!vma
->anon_vma
);
1141 haddr
= address
& HPAGE_PMD_MASK
;
1142 if (is_huge_zero_pmd(orig_pmd
))
1144 spin_lock(&mm
->page_table_lock
);
1145 if (unlikely(!pmd_same(*pmd
, orig_pmd
)))
1148 page
= pmd_page(orig_pmd
);
1149 VM_BUG_ON(!PageCompound(page
) || !PageHead(page
));
1150 if (page_mapcount(page
) == 1) {
1152 entry
= pmd_mkyoung(orig_pmd
);
1153 entry
= maybe_pmd_mkwrite(pmd_mkdirty(entry
), vma
);
1154 if (pmdp_set_access_flags(vma
, haddr
, pmd
, entry
, 1))
1155 update_mmu_cache_pmd(vma
, address
, pmd
);
1156 ret
|= VM_FAULT_WRITE
;
1160 spin_unlock(&mm
->page_table_lock
);
1162 if (transparent_hugepage_enabled(vma
) &&
1163 !transparent_hugepage_debug_cow())
1164 new_page
= alloc_hugepage_vma(transparent_hugepage_defrag(vma
),
1165 vma
, haddr
, numa_node_id(), 0);
1169 if (unlikely(!new_page
)) {
1170 count_vm_event(THP_FAULT_FALLBACK
);
1171 if (is_huge_zero_pmd(orig_pmd
)) {
1172 ret
= do_huge_pmd_wp_zero_page_fallback(mm
, vma
,
1173 address
, pmd
, orig_pmd
, haddr
);
1175 ret
= do_huge_pmd_wp_page_fallback(mm
, vma
, address
,
1176 pmd
, orig_pmd
, page
, haddr
);
1177 if (ret
& VM_FAULT_OOM
)
1178 split_huge_page(page
);
1183 count_vm_event(THP_FAULT_ALLOC
);
1185 if (unlikely(mem_cgroup_newpage_charge(new_page
, mm
, GFP_KERNEL
))) {
1188 split_huge_page(page
);
1191 ret
|= VM_FAULT_OOM
;
1195 if (is_huge_zero_pmd(orig_pmd
))
1196 clear_huge_page(new_page
, haddr
, HPAGE_PMD_NR
);
1198 copy_user_huge_page(new_page
, page
, haddr
, vma
, HPAGE_PMD_NR
);
1199 __SetPageUptodate(new_page
);
1202 mmun_end
= haddr
+ HPAGE_PMD_SIZE
;
1203 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
1205 spin_lock(&mm
->page_table_lock
);
1208 if (unlikely(!pmd_same(*pmd
, orig_pmd
))) {
1209 spin_unlock(&mm
->page_table_lock
);
1210 mem_cgroup_uncharge_page(new_page
);
1215 entry
= mk_huge_pmd(new_page
, vma
);
1216 pmdp_clear_flush(vma
, haddr
, pmd
);
1217 page_add_new_anon_rmap(new_page
, vma
, haddr
);
1218 set_pmd_at(mm
, haddr
, pmd
, entry
);
1219 update_mmu_cache_pmd(vma
, address
, pmd
);
1220 if (is_huge_zero_pmd(orig_pmd
)) {
1221 add_mm_counter(mm
, MM_ANONPAGES
, HPAGE_PMD_NR
);
1222 put_huge_zero_page();
1224 VM_BUG_ON(!PageHead(page
));
1225 page_remove_rmap(page
);
1228 ret
|= VM_FAULT_WRITE
;
1230 spin_unlock(&mm
->page_table_lock
);
1232 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
1236 spin_unlock(&mm
->page_table_lock
);
1240 struct page
*follow_trans_huge_pmd(struct vm_area_struct
*vma
,
1245 struct mm_struct
*mm
= vma
->vm_mm
;
1246 struct page
*page
= NULL
;
1248 assert_spin_locked(&mm
->page_table_lock
);
1250 if (flags
& FOLL_WRITE
&& !pmd_write(*pmd
))
1253 /* Avoid dumping huge zero page */
1254 if ((flags
& FOLL_DUMP
) && is_huge_zero_pmd(*pmd
))
1255 return ERR_PTR(-EFAULT
);
1257 page
= pmd_page(*pmd
);
1258 VM_BUG_ON(!PageHead(page
));
1259 if (flags
& FOLL_TOUCH
) {
1262 * We should set the dirty bit only for FOLL_WRITE but
1263 * for now the dirty bit in the pmd is meaningless.
1264 * And if the dirty bit will become meaningful and
1265 * we'll only set it with FOLL_WRITE, an atomic
1266 * set_bit will be required on the pmd to set the
1267 * young bit, instead of the current set_pmd_at.
1269 _pmd
= pmd_mkyoung(pmd_mkdirty(*pmd
));
1270 set_pmd_at(mm
, addr
& HPAGE_PMD_MASK
, pmd
, _pmd
);
1272 if ((flags
& FOLL_MLOCK
) && (vma
->vm_flags
& VM_LOCKED
)) {
1273 if (page
->mapping
&& trylock_page(page
)) {
1276 mlock_vma_page(page
);
1280 page
+= (addr
& ~HPAGE_PMD_MASK
) >> PAGE_SHIFT
;
1281 VM_BUG_ON(!PageCompound(page
));
1282 if (flags
& FOLL_GET
)
1283 get_page_foll(page
);
1289 /* NUMA hinting page fault entry point for trans huge pmds */
1290 int do_huge_pmd_numa_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
1291 unsigned long addr
, pmd_t pmd
, pmd_t
*pmdp
)
1294 unsigned long haddr
= addr
& HPAGE_PMD_MASK
;
1296 int current_nid
= -1;
1299 spin_lock(&mm
->page_table_lock
);
1300 if (unlikely(!pmd_same(pmd
, *pmdp
)))
1303 page
= pmd_page(pmd
);
1305 current_nid
= page_to_nid(page
);
1306 count_vm_numa_event(NUMA_HINT_FAULTS
);
1307 if (current_nid
== numa_node_id())
1308 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL
);
1310 target_nid
= mpol_misplaced(page
, vma
, haddr
);
1311 if (target_nid
== -1) {
1316 /* Acquire the page lock to serialise THP migrations */
1317 spin_unlock(&mm
->page_table_lock
);
1320 /* Confirm the PTE did not while locked */
1321 spin_lock(&mm
->page_table_lock
);
1322 if (unlikely(!pmd_same(pmd
, *pmdp
))) {
1327 spin_unlock(&mm
->page_table_lock
);
1329 /* Migrate the THP to the requested node */
1330 migrated
= migrate_misplaced_transhuge_page(mm
, vma
,
1331 pmdp
, pmd
, addr
, page
, target_nid
);
1335 task_numa_fault(target_nid
, HPAGE_PMD_NR
, true);
1339 spin_lock(&mm
->page_table_lock
);
1340 if (unlikely(!pmd_same(pmd
, *pmdp
)))
1343 pmd
= pmd_mknonnuma(pmd
);
1344 set_pmd_at(mm
, haddr
, pmdp
, pmd
);
1345 VM_BUG_ON(pmd_numa(*pmdp
));
1346 update_mmu_cache_pmd(vma
, addr
, pmdp
);
1348 spin_unlock(&mm
->page_table_lock
);
1349 if (current_nid
!= -1)
1350 task_numa_fault(current_nid
, HPAGE_PMD_NR
, false);
1354 int zap_huge_pmd(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
1355 pmd_t
*pmd
, unsigned long addr
)
1359 if (__pmd_trans_huge_lock(pmd
, vma
) == 1) {
1363 pgtable
= pgtable_trans_huge_withdraw(tlb
->mm
);
1364 orig_pmd
= pmdp_get_and_clear(tlb
->mm
, addr
, pmd
);
1365 tlb_remove_pmd_tlb_entry(tlb
, pmd
, addr
);
1366 if (is_huge_zero_pmd(orig_pmd
)) {
1368 spin_unlock(&tlb
->mm
->page_table_lock
);
1369 put_huge_zero_page();
1371 page
= pmd_page(orig_pmd
);
1372 page_remove_rmap(page
);
1373 VM_BUG_ON(page_mapcount(page
) < 0);
1374 add_mm_counter(tlb
->mm
, MM_ANONPAGES
, -HPAGE_PMD_NR
);
1375 VM_BUG_ON(!PageHead(page
));
1377 spin_unlock(&tlb
->mm
->page_table_lock
);
1378 tlb_remove_page(tlb
, page
);
1380 pte_free(tlb
->mm
, pgtable
);
1386 int mincore_huge_pmd(struct vm_area_struct
*vma
, pmd_t
*pmd
,
1387 unsigned long addr
, unsigned long end
,
1392 if (__pmd_trans_huge_lock(pmd
, vma
) == 1) {
1394 * All logical pages in the range are present
1395 * if backed by a huge page.
1397 spin_unlock(&vma
->vm_mm
->page_table_lock
);
1398 memset(vec
, 1, (end
- addr
) >> PAGE_SHIFT
);
1405 int move_huge_pmd(struct vm_area_struct
*vma
, struct vm_area_struct
*new_vma
,
1406 unsigned long old_addr
,
1407 unsigned long new_addr
, unsigned long old_end
,
1408 pmd_t
*old_pmd
, pmd_t
*new_pmd
)
1413 struct mm_struct
*mm
= vma
->vm_mm
;
1415 if ((old_addr
& ~HPAGE_PMD_MASK
) ||
1416 (new_addr
& ~HPAGE_PMD_MASK
) ||
1417 old_end
- old_addr
< HPAGE_PMD_SIZE
||
1418 (new_vma
->vm_flags
& VM_NOHUGEPAGE
))
1422 * The destination pmd shouldn't be established, free_pgtables()
1423 * should have release it.
1425 if (WARN_ON(!pmd_none(*new_pmd
))) {
1426 VM_BUG_ON(pmd_trans_huge(*new_pmd
));
1430 ret
= __pmd_trans_huge_lock(old_pmd
, vma
);
1432 pmd
= pmdp_get_and_clear(mm
, old_addr
, old_pmd
);
1433 VM_BUG_ON(!pmd_none(*new_pmd
));
1434 set_pmd_at(mm
, new_addr
, new_pmd
, pmd
);
1435 spin_unlock(&mm
->page_table_lock
);
1441 int change_huge_pmd(struct vm_area_struct
*vma
, pmd_t
*pmd
,
1442 unsigned long addr
, pgprot_t newprot
, int prot_numa
)
1444 struct mm_struct
*mm
= vma
->vm_mm
;
1447 if (__pmd_trans_huge_lock(pmd
, vma
) == 1) {
1449 entry
= pmdp_get_and_clear(mm
, addr
, pmd
);
1451 entry
= pmd_modify(entry
, newprot
);
1452 BUG_ON(pmd_write(entry
));
1454 struct page
*page
= pmd_page(*pmd
);
1456 /* only check non-shared pages */
1457 if (page_mapcount(page
) == 1 &&
1459 entry
= pmd_mknuma(entry
);
1462 set_pmd_at(mm
, addr
, pmd
, entry
);
1463 spin_unlock(&vma
->vm_mm
->page_table_lock
);
1471 * Returns 1 if a given pmd maps a stable (not under splitting) thp.
1472 * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
1474 * Note that if it returns 1, this routine returns without unlocking page
1475 * table locks. So callers must unlock them.
1477 int __pmd_trans_huge_lock(pmd_t
*pmd
, struct vm_area_struct
*vma
)
1479 spin_lock(&vma
->vm_mm
->page_table_lock
);
1480 if (likely(pmd_trans_huge(*pmd
))) {
1481 if (unlikely(pmd_trans_splitting(*pmd
))) {
1482 spin_unlock(&vma
->vm_mm
->page_table_lock
);
1483 wait_split_huge_page(vma
->anon_vma
, pmd
);
1486 /* Thp mapped by 'pmd' is stable, so we can
1487 * handle it as it is. */
1491 spin_unlock(&vma
->vm_mm
->page_table_lock
);
1495 pmd_t
*page_check_address_pmd(struct page
*page
,
1496 struct mm_struct
*mm
,
1497 unsigned long address
,
1498 enum page_check_address_pmd_flag flag
)
1500 pmd_t
*pmd
, *ret
= NULL
;
1502 if (address
& ~HPAGE_PMD_MASK
)
1505 pmd
= mm_find_pmd(mm
, address
);
1510 if (pmd_page(*pmd
) != page
)
1513 * split_vma() may create temporary aliased mappings. There is
1514 * no risk as long as all huge pmd are found and have their
1515 * splitting bit set before __split_huge_page_refcount
1516 * runs. Finding the same huge pmd more than once during the
1517 * same rmap walk is not a problem.
1519 if (flag
== PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG
&&
1520 pmd_trans_splitting(*pmd
))
1522 if (pmd_trans_huge(*pmd
)) {
1523 VM_BUG_ON(flag
== PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG
&&
1524 !pmd_trans_splitting(*pmd
));
1531 static int __split_huge_page_splitting(struct page
*page
,
1532 struct vm_area_struct
*vma
,
1533 unsigned long address
)
1535 struct mm_struct
*mm
= vma
->vm_mm
;
1538 /* For mmu_notifiers */
1539 const unsigned long mmun_start
= address
;
1540 const unsigned long mmun_end
= address
+ HPAGE_PMD_SIZE
;
1542 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
1543 spin_lock(&mm
->page_table_lock
);
1544 pmd
= page_check_address_pmd(page
, mm
, address
,
1545 PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG
);
1548 * We can't temporarily set the pmd to null in order
1549 * to split it, the pmd must remain marked huge at all
1550 * times or the VM won't take the pmd_trans_huge paths
1551 * and it won't wait on the anon_vma->root->rwsem to
1552 * serialize against split_huge_page*.
1554 pmdp_splitting_flush(vma
, address
, pmd
);
1557 spin_unlock(&mm
->page_table_lock
);
1558 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
1563 static void __split_huge_page_refcount(struct page
*page
)
1566 struct zone
*zone
= page_zone(page
);
1567 struct lruvec
*lruvec
;
1570 /* prevent PageLRU to go away from under us, and freeze lru stats */
1571 spin_lock_irq(&zone
->lru_lock
);
1572 lruvec
= mem_cgroup_page_lruvec(page
, zone
);
1574 compound_lock(page
);
1575 /* complete memcg works before add pages to LRU */
1576 mem_cgroup_split_huge_fixup(page
);
1578 for (i
= HPAGE_PMD_NR
- 1; i
>= 1; i
--) {
1579 struct page
*page_tail
= page
+ i
;
1581 /* tail_page->_mapcount cannot change */
1582 BUG_ON(page_mapcount(page_tail
) < 0);
1583 tail_count
+= page_mapcount(page_tail
);
1584 /* check for overflow */
1585 BUG_ON(tail_count
< 0);
1586 BUG_ON(atomic_read(&page_tail
->_count
) != 0);
1588 * tail_page->_count is zero and not changing from
1589 * under us. But get_page_unless_zero() may be running
1590 * from under us on the tail_page. If we used
1591 * atomic_set() below instead of atomic_add(), we
1592 * would then run atomic_set() concurrently with
1593 * get_page_unless_zero(), and atomic_set() is
1594 * implemented in C not using locked ops. spin_unlock
1595 * on x86 sometime uses locked ops because of PPro
1596 * errata 66, 92, so unless somebody can guarantee
1597 * atomic_set() here would be safe on all archs (and
1598 * not only on x86), it's safer to use atomic_add().
1600 atomic_add(page_mapcount(page
) + page_mapcount(page_tail
) + 1,
1601 &page_tail
->_count
);
1603 /* after clearing PageTail the gup refcount can be released */
1607 * retain hwpoison flag of the poisoned tail page:
1608 * fix for the unsuitable process killed on Guest Machine(KVM)
1609 * by the memory-failure.
1611 page_tail
->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
| __PG_HWPOISON
;
1612 page_tail
->flags
|= (page
->flags
&
1613 ((1L << PG_referenced
) |
1614 (1L << PG_swapbacked
) |
1615 (1L << PG_mlocked
) |
1616 (1L << PG_uptodate
)));
1617 page_tail
->flags
|= (1L << PG_dirty
);
1619 /* clear PageTail before overwriting first_page */
1623 * __split_huge_page_splitting() already set the
1624 * splitting bit in all pmd that could map this
1625 * hugepage, that will ensure no CPU can alter the
1626 * mapcount on the head page. The mapcount is only
1627 * accounted in the head page and it has to be
1628 * transferred to all tail pages in the below code. So
1629 * for this code to be safe, the split the mapcount
1630 * can't change. But that doesn't mean userland can't
1631 * keep changing and reading the page contents while
1632 * we transfer the mapcount, so the pmd splitting
1633 * status is achieved setting a reserved bit in the
1634 * pmd, not by clearing the present bit.
1636 page_tail
->_mapcount
= page
->_mapcount
;
1638 BUG_ON(page_tail
->mapping
);
1639 page_tail
->mapping
= page
->mapping
;
1641 page_tail
->index
= page
->index
+ i
;
1642 page_nid_xchg_last(page_tail
, page_nid_last(page
));
1644 BUG_ON(!PageAnon(page_tail
));
1645 BUG_ON(!PageUptodate(page_tail
));
1646 BUG_ON(!PageDirty(page_tail
));
1647 BUG_ON(!PageSwapBacked(page_tail
));
1649 lru_add_page_tail(page
, page_tail
, lruvec
);
1651 atomic_sub(tail_count
, &page
->_count
);
1652 BUG_ON(atomic_read(&page
->_count
) <= 0);
1654 __mod_zone_page_state(zone
, NR_ANON_TRANSPARENT_HUGEPAGES
, -1);
1655 __mod_zone_page_state(zone
, NR_ANON_PAGES
, HPAGE_PMD_NR
);
1657 ClearPageCompound(page
);
1658 compound_unlock(page
);
1659 spin_unlock_irq(&zone
->lru_lock
);
1661 for (i
= 1; i
< HPAGE_PMD_NR
; i
++) {
1662 struct page
*page_tail
= page
+ i
;
1663 BUG_ON(page_count(page_tail
) <= 0);
1665 * Tail pages may be freed if there wasn't any mapping
1666 * like if add_to_swap() is running on a lru page that
1667 * had its mapping zapped. And freeing these pages
1668 * requires taking the lru_lock so we do the put_page
1669 * of the tail pages after the split is complete.
1671 put_page(page_tail
);
1675 * Only the head page (now become a regular page) is required
1676 * to be pinned by the caller.
1678 BUG_ON(page_count(page
) <= 0);
1681 static int __split_huge_page_map(struct page
*page
,
1682 struct vm_area_struct
*vma
,
1683 unsigned long address
)
1685 struct mm_struct
*mm
= vma
->vm_mm
;
1689 unsigned long haddr
;
1691 spin_lock(&mm
->page_table_lock
);
1692 pmd
= page_check_address_pmd(page
, mm
, address
,
1693 PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG
);
1695 pgtable
= pgtable_trans_huge_withdraw(mm
);
1696 pmd_populate(mm
, &_pmd
, pgtable
);
1699 for (i
= 0; i
< HPAGE_PMD_NR
; i
++, haddr
+= PAGE_SIZE
) {
1701 BUG_ON(PageCompound(page
+i
));
1702 entry
= mk_pte(page
+ i
, vma
->vm_page_prot
);
1703 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
1704 if (!pmd_write(*pmd
))
1705 entry
= pte_wrprotect(entry
);
1707 BUG_ON(page_mapcount(page
) != 1);
1708 if (!pmd_young(*pmd
))
1709 entry
= pte_mkold(entry
);
1711 entry
= pte_mknuma(entry
);
1712 pte
= pte_offset_map(&_pmd
, haddr
);
1713 BUG_ON(!pte_none(*pte
));
1714 set_pte_at(mm
, haddr
, pte
, entry
);
1718 smp_wmb(); /* make pte visible before pmd */
1720 * Up to this point the pmd is present and huge and
1721 * userland has the whole access to the hugepage
1722 * during the split (which happens in place). If we
1723 * overwrite the pmd with the not-huge version
1724 * pointing to the pte here (which of course we could
1725 * if all CPUs were bug free), userland could trigger
1726 * a small page size TLB miss on the small sized TLB
1727 * while the hugepage TLB entry is still established
1728 * in the huge TLB. Some CPU doesn't like that. See
1729 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1730 * Erratum 383 on page 93. Intel should be safe but is
1731 * also warns that it's only safe if the permission
1732 * and cache attributes of the two entries loaded in
1733 * the two TLB is identical (which should be the case
1734 * here). But it is generally safer to never allow
1735 * small and huge TLB entries for the same virtual
1736 * address to be loaded simultaneously. So instead of
1737 * doing "pmd_populate(); flush_tlb_range();" we first
1738 * mark the current pmd notpresent (atomically because
1739 * here the pmd_trans_huge and pmd_trans_splitting
1740 * must remain set at all times on the pmd until the
1741 * split is complete for this pmd), then we flush the
1742 * SMP TLB and finally we write the non-huge version
1743 * of the pmd entry with pmd_populate.
1745 pmdp_invalidate(vma
, address
, pmd
);
1746 pmd_populate(mm
, pmd
, pgtable
);
1749 spin_unlock(&mm
->page_table_lock
);
1754 /* must be called with anon_vma->root->rwsem held */
1755 static void __split_huge_page(struct page
*page
,
1756 struct anon_vma
*anon_vma
)
1758 int mapcount
, mapcount2
;
1759 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
1760 struct anon_vma_chain
*avc
;
1762 BUG_ON(!PageHead(page
));
1763 BUG_ON(PageTail(page
));
1766 anon_vma_interval_tree_foreach(avc
, &anon_vma
->rb_root
, pgoff
, pgoff
) {
1767 struct vm_area_struct
*vma
= avc
->vma
;
1768 unsigned long addr
= vma_address(page
, vma
);
1769 BUG_ON(is_vma_temporary_stack(vma
));
1770 mapcount
+= __split_huge_page_splitting(page
, vma
, addr
);
1773 * It is critical that new vmas are added to the tail of the
1774 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1775 * and establishes a child pmd before
1776 * __split_huge_page_splitting() freezes the parent pmd (so if
1777 * we fail to prevent copy_huge_pmd() from running until the
1778 * whole __split_huge_page() is complete), we will still see
1779 * the newly established pmd of the child later during the
1780 * walk, to be able to set it as pmd_trans_splitting too.
1782 if (mapcount
!= page_mapcount(page
))
1783 printk(KERN_ERR
"mapcount %d page_mapcount %d\n",
1784 mapcount
, page_mapcount(page
));
1785 BUG_ON(mapcount
!= page_mapcount(page
));
1787 __split_huge_page_refcount(page
);
1790 anon_vma_interval_tree_foreach(avc
, &anon_vma
->rb_root
, pgoff
, pgoff
) {
1791 struct vm_area_struct
*vma
= avc
->vma
;
1792 unsigned long addr
= vma_address(page
, vma
);
1793 BUG_ON(is_vma_temporary_stack(vma
));
1794 mapcount2
+= __split_huge_page_map(page
, vma
, addr
);
1796 if (mapcount
!= mapcount2
)
1797 printk(KERN_ERR
"mapcount %d mapcount2 %d page_mapcount %d\n",
1798 mapcount
, mapcount2
, page_mapcount(page
));
1799 BUG_ON(mapcount
!= mapcount2
);
1802 int split_huge_page(struct page
*page
)
1804 struct anon_vma
*anon_vma
;
1807 BUG_ON(is_huge_zero_pfn(page_to_pfn(page
)));
1808 BUG_ON(!PageAnon(page
));
1811 * The caller does not necessarily hold an mmap_sem that would prevent
1812 * the anon_vma disappearing so we first we take a reference to it
1813 * and then lock the anon_vma for write. This is similar to
1814 * page_lock_anon_vma_read except the write lock is taken to serialise
1815 * against parallel split or collapse operations.
1817 anon_vma
= page_get_anon_vma(page
);
1820 anon_vma_lock_write(anon_vma
);
1823 if (!PageCompound(page
))
1826 BUG_ON(!PageSwapBacked(page
));
1827 __split_huge_page(page
, anon_vma
);
1828 count_vm_event(THP_SPLIT
);
1830 BUG_ON(PageCompound(page
));
1832 anon_vma_unlock_write(anon_vma
);
1833 put_anon_vma(anon_vma
);
1838 #define VM_NO_THP (VM_SPECIAL|VM_MIXEDMAP|VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
1840 int hugepage_madvise(struct vm_area_struct
*vma
,
1841 unsigned long *vm_flags
, int advice
)
1843 struct mm_struct
*mm
= vma
->vm_mm
;
1848 * Be somewhat over-protective like KSM for now!
1850 if (*vm_flags
& (VM_HUGEPAGE
| VM_NO_THP
))
1852 if (mm
->def_flags
& VM_NOHUGEPAGE
)
1854 *vm_flags
&= ~VM_NOHUGEPAGE
;
1855 *vm_flags
|= VM_HUGEPAGE
;
1857 * If the vma become good for khugepaged to scan,
1858 * register it here without waiting a page fault that
1859 * may not happen any time soon.
1861 if (unlikely(khugepaged_enter_vma_merge(vma
)))
1864 case MADV_NOHUGEPAGE
:
1866 * Be somewhat over-protective like KSM for now!
1868 if (*vm_flags
& (VM_NOHUGEPAGE
| VM_NO_THP
))
1870 *vm_flags
&= ~VM_HUGEPAGE
;
1871 *vm_flags
|= VM_NOHUGEPAGE
;
1873 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1874 * this vma even if we leave the mm registered in khugepaged if
1875 * it got registered before VM_NOHUGEPAGE was set.
1883 static int __init
khugepaged_slab_init(void)
1885 mm_slot_cache
= kmem_cache_create("khugepaged_mm_slot",
1886 sizeof(struct mm_slot
),
1887 __alignof__(struct mm_slot
), 0, NULL
);
1894 static inline struct mm_slot
*alloc_mm_slot(void)
1896 if (!mm_slot_cache
) /* initialization failed */
1898 return kmem_cache_zalloc(mm_slot_cache
, GFP_KERNEL
);
1901 static inline void free_mm_slot(struct mm_slot
*mm_slot
)
1903 kmem_cache_free(mm_slot_cache
, mm_slot
);
1906 static struct mm_slot
*get_mm_slot(struct mm_struct
*mm
)
1908 struct mm_slot
*mm_slot
;
1910 hash_for_each_possible(mm_slots_hash
, mm_slot
, hash
, (unsigned long)mm
)
1911 if (mm
== mm_slot
->mm
)
1917 static void insert_to_mm_slots_hash(struct mm_struct
*mm
,
1918 struct mm_slot
*mm_slot
)
1921 hash_add(mm_slots_hash
, &mm_slot
->hash
, (long)mm
);
1924 static inline int khugepaged_test_exit(struct mm_struct
*mm
)
1926 return atomic_read(&mm
->mm_users
) == 0;
1929 int __khugepaged_enter(struct mm_struct
*mm
)
1931 struct mm_slot
*mm_slot
;
1934 mm_slot
= alloc_mm_slot();
1938 /* __khugepaged_exit() must not run from under us */
1939 VM_BUG_ON(khugepaged_test_exit(mm
));
1940 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE
, &mm
->flags
))) {
1941 free_mm_slot(mm_slot
);
1945 spin_lock(&khugepaged_mm_lock
);
1946 insert_to_mm_slots_hash(mm
, mm_slot
);
1948 * Insert just behind the scanning cursor, to let the area settle
1951 wakeup
= list_empty(&khugepaged_scan
.mm_head
);
1952 list_add_tail(&mm_slot
->mm_node
, &khugepaged_scan
.mm_head
);
1953 spin_unlock(&khugepaged_mm_lock
);
1955 atomic_inc(&mm
->mm_count
);
1957 wake_up_interruptible(&khugepaged_wait
);
1962 int khugepaged_enter_vma_merge(struct vm_area_struct
*vma
)
1964 unsigned long hstart
, hend
;
1967 * Not yet faulted in so we will register later in the
1968 * page fault if needed.
1972 /* khugepaged not yet working on file or special mappings */
1974 VM_BUG_ON(vma
->vm_flags
& VM_NO_THP
);
1975 hstart
= (vma
->vm_start
+ ~HPAGE_PMD_MASK
) & HPAGE_PMD_MASK
;
1976 hend
= vma
->vm_end
& HPAGE_PMD_MASK
;
1978 return khugepaged_enter(vma
);
1982 void __khugepaged_exit(struct mm_struct
*mm
)
1984 struct mm_slot
*mm_slot
;
1987 spin_lock(&khugepaged_mm_lock
);
1988 mm_slot
= get_mm_slot(mm
);
1989 if (mm_slot
&& khugepaged_scan
.mm_slot
!= mm_slot
) {
1990 hash_del(&mm_slot
->hash
);
1991 list_del(&mm_slot
->mm_node
);
1994 spin_unlock(&khugepaged_mm_lock
);
1997 clear_bit(MMF_VM_HUGEPAGE
, &mm
->flags
);
1998 free_mm_slot(mm_slot
);
2000 } else if (mm_slot
) {
2002 * This is required to serialize against
2003 * khugepaged_test_exit() (which is guaranteed to run
2004 * under mmap sem read mode). Stop here (after we
2005 * return all pagetables will be destroyed) until
2006 * khugepaged has finished working on the pagetables
2007 * under the mmap_sem.
2009 down_write(&mm
->mmap_sem
);
2010 up_write(&mm
->mmap_sem
);
2014 static void release_pte_page(struct page
*page
)
2016 /* 0 stands for page_is_file_cache(page) == false */
2017 dec_zone_page_state(page
, NR_ISOLATED_ANON
+ 0);
2019 putback_lru_page(page
);
2022 static void release_pte_pages(pte_t
*pte
, pte_t
*_pte
)
2024 while (--_pte
>= pte
) {
2025 pte_t pteval
= *_pte
;
2026 if (!pte_none(pteval
))
2027 release_pte_page(pte_page(pteval
));
2031 static int __collapse_huge_page_isolate(struct vm_area_struct
*vma
,
2032 unsigned long address
,
2037 int referenced
= 0, none
= 0;
2038 for (_pte
= pte
; _pte
< pte
+HPAGE_PMD_NR
;
2039 _pte
++, address
+= PAGE_SIZE
) {
2040 pte_t pteval
= *_pte
;
2041 if (pte_none(pteval
)) {
2042 if (++none
<= khugepaged_max_ptes_none
)
2047 if (!pte_present(pteval
) || !pte_write(pteval
))
2049 page
= vm_normal_page(vma
, address
, pteval
);
2050 if (unlikely(!page
))
2053 VM_BUG_ON(PageCompound(page
));
2054 BUG_ON(!PageAnon(page
));
2055 VM_BUG_ON(!PageSwapBacked(page
));
2057 /* cannot use mapcount: can't collapse if there's a gup pin */
2058 if (page_count(page
) != 1)
2061 * We can do it before isolate_lru_page because the
2062 * page can't be freed from under us. NOTE: PG_lock
2063 * is needed to serialize against split_huge_page
2064 * when invoked from the VM.
2066 if (!trylock_page(page
))
2069 * Isolate the page to avoid collapsing an hugepage
2070 * currently in use by the VM.
2072 if (isolate_lru_page(page
)) {
2076 /* 0 stands for page_is_file_cache(page) == false */
2077 inc_zone_page_state(page
, NR_ISOLATED_ANON
+ 0);
2078 VM_BUG_ON(!PageLocked(page
));
2079 VM_BUG_ON(PageLRU(page
));
2081 /* If there is no mapped pte young don't collapse the page */
2082 if (pte_young(pteval
) || PageReferenced(page
) ||
2083 mmu_notifier_test_young(vma
->vm_mm
, address
))
2086 if (likely(referenced
))
2089 release_pte_pages(pte
, _pte
);
2093 static void __collapse_huge_page_copy(pte_t
*pte
, struct page
*page
,
2094 struct vm_area_struct
*vma
,
2095 unsigned long address
,
2099 for (_pte
= pte
; _pte
< pte
+HPAGE_PMD_NR
; _pte
++) {
2100 pte_t pteval
= *_pte
;
2101 struct page
*src_page
;
2103 if (pte_none(pteval
)) {
2104 clear_user_highpage(page
, address
);
2105 add_mm_counter(vma
->vm_mm
, MM_ANONPAGES
, 1);
2107 src_page
= pte_page(pteval
);
2108 copy_user_highpage(page
, src_page
, address
, vma
);
2109 VM_BUG_ON(page_mapcount(src_page
) != 1);
2110 release_pte_page(src_page
);
2112 * ptl mostly unnecessary, but preempt has to
2113 * be disabled to update the per-cpu stats
2114 * inside page_remove_rmap().
2118 * paravirt calls inside pte_clear here are
2121 pte_clear(vma
->vm_mm
, address
, _pte
);
2122 page_remove_rmap(src_page
);
2124 free_page_and_swap_cache(src_page
);
2127 address
+= PAGE_SIZE
;
2132 static void khugepaged_alloc_sleep(void)
2134 wait_event_freezable_timeout(khugepaged_wait
, false,
2135 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs
));
2139 static bool khugepaged_prealloc_page(struct page
**hpage
, bool *wait
)
2141 if (IS_ERR(*hpage
)) {
2147 khugepaged_alloc_sleep();
2148 } else if (*hpage
) {
2157 *khugepaged_alloc_page(struct page
**hpage
, struct mm_struct
*mm
,
2158 struct vm_area_struct
*vma
, unsigned long address
,
2163 * Allocate the page while the vma is still valid and under
2164 * the mmap_sem read mode so there is no memory allocation
2165 * later when we take the mmap_sem in write mode. This is more
2166 * friendly behavior (OTOH it may actually hide bugs) to
2167 * filesystems in userland with daemons allocating memory in
2168 * the userland I/O paths. Allocating memory with the
2169 * mmap_sem in read mode is good idea also to allow greater
2172 *hpage
= alloc_hugepage_vma(khugepaged_defrag(), vma
, address
,
2173 node
, __GFP_OTHER_NODE
);
2176 * After allocating the hugepage, release the mmap_sem read lock in
2177 * preparation for taking it in write mode.
2179 up_read(&mm
->mmap_sem
);
2180 if (unlikely(!*hpage
)) {
2181 count_vm_event(THP_COLLAPSE_ALLOC_FAILED
);
2182 *hpage
= ERR_PTR(-ENOMEM
);
2186 count_vm_event(THP_COLLAPSE_ALLOC
);
2190 static struct page
*khugepaged_alloc_hugepage(bool *wait
)
2195 hpage
= alloc_hugepage(khugepaged_defrag());
2197 count_vm_event(THP_COLLAPSE_ALLOC_FAILED
);
2202 khugepaged_alloc_sleep();
2204 count_vm_event(THP_COLLAPSE_ALLOC
);
2205 } while (unlikely(!hpage
) && likely(khugepaged_enabled()));
2210 static bool khugepaged_prealloc_page(struct page
**hpage
, bool *wait
)
2213 *hpage
= khugepaged_alloc_hugepage(wait
);
2215 if (unlikely(!*hpage
))
2222 *khugepaged_alloc_page(struct page
**hpage
, struct mm_struct
*mm
,
2223 struct vm_area_struct
*vma
, unsigned long address
,
2226 up_read(&mm
->mmap_sem
);
2232 static bool hugepage_vma_check(struct vm_area_struct
*vma
)
2234 if ((!(vma
->vm_flags
& VM_HUGEPAGE
) && !khugepaged_always()) ||
2235 (vma
->vm_flags
& VM_NOHUGEPAGE
))
2238 if (!vma
->anon_vma
|| vma
->vm_ops
)
2240 if (is_vma_temporary_stack(vma
))
2242 VM_BUG_ON(vma
->vm_flags
& VM_NO_THP
);
2246 static void collapse_huge_page(struct mm_struct
*mm
,
2247 unsigned long address
,
2248 struct page
**hpage
,
2249 struct vm_area_struct
*vma
,
2255 struct page
*new_page
;
2258 unsigned long hstart
, hend
;
2259 unsigned long mmun_start
; /* For mmu_notifiers */
2260 unsigned long mmun_end
; /* For mmu_notifiers */
2262 VM_BUG_ON(address
& ~HPAGE_PMD_MASK
);
2264 /* release the mmap_sem read lock. */
2265 new_page
= khugepaged_alloc_page(hpage
, mm
, vma
, address
, node
);
2269 if (unlikely(mem_cgroup_newpage_charge(new_page
, mm
, GFP_KERNEL
)))
2273 * Prevent all access to pagetables with the exception of
2274 * gup_fast later hanlded by the ptep_clear_flush and the VM
2275 * handled by the anon_vma lock + PG_lock.
2277 down_write(&mm
->mmap_sem
);
2278 if (unlikely(khugepaged_test_exit(mm
)))
2281 vma
= find_vma(mm
, address
);
2282 hstart
= (vma
->vm_start
+ ~HPAGE_PMD_MASK
) & HPAGE_PMD_MASK
;
2283 hend
= vma
->vm_end
& HPAGE_PMD_MASK
;
2284 if (address
< hstart
|| address
+ HPAGE_PMD_SIZE
> hend
)
2286 if (!hugepage_vma_check(vma
))
2288 pmd
= mm_find_pmd(mm
, address
);
2291 if (pmd_trans_huge(*pmd
))
2294 anon_vma_lock_write(vma
->anon_vma
);
2296 pte
= pte_offset_map(pmd
, address
);
2297 ptl
= pte_lockptr(mm
, pmd
);
2299 mmun_start
= address
;
2300 mmun_end
= address
+ HPAGE_PMD_SIZE
;
2301 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
2302 spin_lock(&mm
->page_table_lock
); /* probably unnecessary */
2304 * After this gup_fast can't run anymore. This also removes
2305 * any huge TLB entry from the CPU so we won't allow
2306 * huge and small TLB entries for the same virtual address
2307 * to avoid the risk of CPU bugs in that area.
2309 _pmd
= pmdp_clear_flush(vma
, address
, pmd
);
2310 spin_unlock(&mm
->page_table_lock
);
2311 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
2314 isolated
= __collapse_huge_page_isolate(vma
, address
, pte
);
2317 if (unlikely(!isolated
)) {
2319 spin_lock(&mm
->page_table_lock
);
2320 BUG_ON(!pmd_none(*pmd
));
2321 set_pmd_at(mm
, address
, pmd
, _pmd
);
2322 spin_unlock(&mm
->page_table_lock
);
2323 anon_vma_unlock_write(vma
->anon_vma
);
2328 * All pages are isolated and locked so anon_vma rmap
2329 * can't run anymore.
2331 anon_vma_unlock_write(vma
->anon_vma
);
2333 __collapse_huge_page_copy(pte
, new_page
, vma
, address
, ptl
);
2335 __SetPageUptodate(new_page
);
2336 pgtable
= pmd_pgtable(_pmd
);
2338 _pmd
= mk_huge_pmd(new_page
, vma
);
2341 * spin_lock() below is not the equivalent of smp_wmb(), so
2342 * this is needed to avoid the copy_huge_page writes to become
2343 * visible after the set_pmd_at() write.
2347 spin_lock(&mm
->page_table_lock
);
2348 BUG_ON(!pmd_none(*pmd
));
2349 page_add_new_anon_rmap(new_page
, vma
, address
);
2350 set_pmd_at(mm
, address
, pmd
, _pmd
);
2351 update_mmu_cache_pmd(vma
, address
, pmd
);
2352 pgtable_trans_huge_deposit(mm
, pgtable
);
2353 spin_unlock(&mm
->page_table_lock
);
2357 khugepaged_pages_collapsed
++;
2359 up_write(&mm
->mmap_sem
);
2363 mem_cgroup_uncharge_page(new_page
);
2367 static int khugepaged_scan_pmd(struct mm_struct
*mm
,
2368 struct vm_area_struct
*vma
,
2369 unsigned long address
,
2370 struct page
**hpage
)
2374 int ret
= 0, referenced
= 0, none
= 0;
2376 unsigned long _address
;
2378 int node
= NUMA_NO_NODE
;
2380 VM_BUG_ON(address
& ~HPAGE_PMD_MASK
);
2382 pmd
= mm_find_pmd(mm
, address
);
2385 if (pmd_trans_huge(*pmd
))
2388 pte
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2389 for (_address
= address
, _pte
= pte
; _pte
< pte
+HPAGE_PMD_NR
;
2390 _pte
++, _address
+= PAGE_SIZE
) {
2391 pte_t pteval
= *_pte
;
2392 if (pte_none(pteval
)) {
2393 if (++none
<= khugepaged_max_ptes_none
)
2398 if (!pte_present(pteval
) || !pte_write(pteval
))
2400 page
= vm_normal_page(vma
, _address
, pteval
);
2401 if (unlikely(!page
))
2404 * Chose the node of the first page. This could
2405 * be more sophisticated and look at more pages,
2406 * but isn't for now.
2408 if (node
== NUMA_NO_NODE
)
2409 node
= page_to_nid(page
);
2410 VM_BUG_ON(PageCompound(page
));
2411 if (!PageLRU(page
) || PageLocked(page
) || !PageAnon(page
))
2413 /* cannot use mapcount: can't collapse if there's a gup pin */
2414 if (page_count(page
) != 1)
2416 if (pte_young(pteval
) || PageReferenced(page
) ||
2417 mmu_notifier_test_young(vma
->vm_mm
, address
))
2423 pte_unmap_unlock(pte
, ptl
);
2425 /* collapse_huge_page will return with the mmap_sem released */
2426 collapse_huge_page(mm
, address
, hpage
, vma
, node
);
2431 static void collect_mm_slot(struct mm_slot
*mm_slot
)
2433 struct mm_struct
*mm
= mm_slot
->mm
;
2435 VM_BUG_ON(NR_CPUS
!= 1 && !spin_is_locked(&khugepaged_mm_lock
));
2437 if (khugepaged_test_exit(mm
)) {
2439 hash_del(&mm_slot
->hash
);
2440 list_del(&mm_slot
->mm_node
);
2443 * Not strictly needed because the mm exited already.
2445 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2448 /* khugepaged_mm_lock actually not necessary for the below */
2449 free_mm_slot(mm_slot
);
2454 static unsigned int khugepaged_scan_mm_slot(unsigned int pages
,
2455 struct page
**hpage
)
2456 __releases(&khugepaged_mm_lock
)
2457 __acquires(&khugepaged_mm_lock
)
2459 struct mm_slot
*mm_slot
;
2460 struct mm_struct
*mm
;
2461 struct vm_area_struct
*vma
;
2465 VM_BUG_ON(NR_CPUS
!= 1 && !spin_is_locked(&khugepaged_mm_lock
));
2467 if (khugepaged_scan
.mm_slot
)
2468 mm_slot
= khugepaged_scan
.mm_slot
;
2470 mm_slot
= list_entry(khugepaged_scan
.mm_head
.next
,
2471 struct mm_slot
, mm_node
);
2472 khugepaged_scan
.address
= 0;
2473 khugepaged_scan
.mm_slot
= mm_slot
;
2475 spin_unlock(&khugepaged_mm_lock
);
2478 down_read(&mm
->mmap_sem
);
2479 if (unlikely(khugepaged_test_exit(mm
)))
2482 vma
= find_vma(mm
, khugepaged_scan
.address
);
2485 for (; vma
; vma
= vma
->vm_next
) {
2486 unsigned long hstart
, hend
;
2489 if (unlikely(khugepaged_test_exit(mm
))) {
2493 if (!hugepage_vma_check(vma
)) {
2498 hstart
= (vma
->vm_start
+ ~HPAGE_PMD_MASK
) & HPAGE_PMD_MASK
;
2499 hend
= vma
->vm_end
& HPAGE_PMD_MASK
;
2502 if (khugepaged_scan
.address
> hend
)
2504 if (khugepaged_scan
.address
< hstart
)
2505 khugepaged_scan
.address
= hstart
;
2506 VM_BUG_ON(khugepaged_scan
.address
& ~HPAGE_PMD_MASK
);
2508 while (khugepaged_scan
.address
< hend
) {
2511 if (unlikely(khugepaged_test_exit(mm
)))
2512 goto breakouterloop
;
2514 VM_BUG_ON(khugepaged_scan
.address
< hstart
||
2515 khugepaged_scan
.address
+ HPAGE_PMD_SIZE
>
2517 ret
= khugepaged_scan_pmd(mm
, vma
,
2518 khugepaged_scan
.address
,
2520 /* move to next address */
2521 khugepaged_scan
.address
+= HPAGE_PMD_SIZE
;
2522 progress
+= HPAGE_PMD_NR
;
2524 /* we released mmap_sem so break loop */
2525 goto breakouterloop_mmap_sem
;
2526 if (progress
>= pages
)
2527 goto breakouterloop
;
2531 up_read(&mm
->mmap_sem
); /* exit_mmap will destroy ptes after this */
2532 breakouterloop_mmap_sem
:
2534 spin_lock(&khugepaged_mm_lock
);
2535 VM_BUG_ON(khugepaged_scan
.mm_slot
!= mm_slot
);
2537 * Release the current mm_slot if this mm is about to die, or
2538 * if we scanned all vmas of this mm.
2540 if (khugepaged_test_exit(mm
) || !vma
) {
2542 * Make sure that if mm_users is reaching zero while
2543 * khugepaged runs here, khugepaged_exit will find
2544 * mm_slot not pointing to the exiting mm.
2546 if (mm_slot
->mm_node
.next
!= &khugepaged_scan
.mm_head
) {
2547 khugepaged_scan
.mm_slot
= list_entry(
2548 mm_slot
->mm_node
.next
,
2549 struct mm_slot
, mm_node
);
2550 khugepaged_scan
.address
= 0;
2552 khugepaged_scan
.mm_slot
= NULL
;
2553 khugepaged_full_scans
++;
2556 collect_mm_slot(mm_slot
);
2562 static int khugepaged_has_work(void)
2564 return !list_empty(&khugepaged_scan
.mm_head
) &&
2565 khugepaged_enabled();
2568 static int khugepaged_wait_event(void)
2570 return !list_empty(&khugepaged_scan
.mm_head
) ||
2571 kthread_should_stop();
2574 static void khugepaged_do_scan(void)
2576 struct page
*hpage
= NULL
;
2577 unsigned int progress
= 0, pass_through_head
= 0;
2578 unsigned int pages
= khugepaged_pages_to_scan
;
2581 barrier(); /* write khugepaged_pages_to_scan to local stack */
2583 while (progress
< pages
) {
2584 if (!khugepaged_prealloc_page(&hpage
, &wait
))
2589 if (unlikely(kthread_should_stop() || freezing(current
)))
2592 spin_lock(&khugepaged_mm_lock
);
2593 if (!khugepaged_scan
.mm_slot
)
2594 pass_through_head
++;
2595 if (khugepaged_has_work() &&
2596 pass_through_head
< 2)
2597 progress
+= khugepaged_scan_mm_slot(pages
- progress
,
2601 spin_unlock(&khugepaged_mm_lock
);
2604 if (!IS_ERR_OR_NULL(hpage
))
2608 static void khugepaged_wait_work(void)
2612 if (khugepaged_has_work()) {
2613 if (!khugepaged_scan_sleep_millisecs
)
2616 wait_event_freezable_timeout(khugepaged_wait
,
2617 kthread_should_stop(),
2618 msecs_to_jiffies(khugepaged_scan_sleep_millisecs
));
2622 if (khugepaged_enabled())
2623 wait_event_freezable(khugepaged_wait
, khugepaged_wait_event());
2626 static int khugepaged(void *none
)
2628 struct mm_slot
*mm_slot
;
2631 set_user_nice(current
, 19);
2633 while (!kthread_should_stop()) {
2634 khugepaged_do_scan();
2635 khugepaged_wait_work();
2638 spin_lock(&khugepaged_mm_lock
);
2639 mm_slot
= khugepaged_scan
.mm_slot
;
2640 khugepaged_scan
.mm_slot
= NULL
;
2642 collect_mm_slot(mm_slot
);
2643 spin_unlock(&khugepaged_mm_lock
);
2647 static void __split_huge_zero_page_pmd(struct vm_area_struct
*vma
,
2648 unsigned long haddr
, pmd_t
*pmd
)
2650 struct mm_struct
*mm
= vma
->vm_mm
;
2655 pmdp_clear_flush(vma
, haddr
, pmd
);
2656 /* leave pmd empty until pte is filled */
2658 pgtable
= pgtable_trans_huge_withdraw(mm
);
2659 pmd_populate(mm
, &_pmd
, pgtable
);
2661 for (i
= 0; i
< HPAGE_PMD_NR
; i
++, haddr
+= PAGE_SIZE
) {
2663 entry
= pfn_pte(my_zero_pfn(haddr
), vma
->vm_page_prot
);
2664 entry
= pte_mkspecial(entry
);
2665 pte
= pte_offset_map(&_pmd
, haddr
);
2666 VM_BUG_ON(!pte_none(*pte
));
2667 set_pte_at(mm
, haddr
, pte
, entry
);
2670 smp_wmb(); /* make pte visible before pmd */
2671 pmd_populate(mm
, pmd
, pgtable
);
2672 put_huge_zero_page();
2675 void __split_huge_page_pmd(struct vm_area_struct
*vma
, unsigned long address
,
2679 struct mm_struct
*mm
= vma
->vm_mm
;
2680 unsigned long haddr
= address
& HPAGE_PMD_MASK
;
2681 unsigned long mmun_start
; /* For mmu_notifiers */
2682 unsigned long mmun_end
; /* For mmu_notifiers */
2684 BUG_ON(vma
->vm_start
> haddr
|| vma
->vm_end
< haddr
+ HPAGE_PMD_SIZE
);
2687 mmun_end
= haddr
+ HPAGE_PMD_SIZE
;
2688 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
2689 spin_lock(&mm
->page_table_lock
);
2690 if (unlikely(!pmd_trans_huge(*pmd
))) {
2691 spin_unlock(&mm
->page_table_lock
);
2692 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
2695 if (is_huge_zero_pmd(*pmd
)) {
2696 __split_huge_zero_page_pmd(vma
, haddr
, pmd
);
2697 spin_unlock(&mm
->page_table_lock
);
2698 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
2701 page
= pmd_page(*pmd
);
2702 VM_BUG_ON(!page_count(page
));
2704 spin_unlock(&mm
->page_table_lock
);
2705 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
2707 split_huge_page(page
);
2710 BUG_ON(pmd_trans_huge(*pmd
));
2713 void split_huge_page_pmd_mm(struct mm_struct
*mm
, unsigned long address
,
2716 struct vm_area_struct
*vma
;
2718 vma
= find_vma(mm
, address
);
2719 BUG_ON(vma
== NULL
);
2720 split_huge_page_pmd(vma
, address
, pmd
);
2723 static void split_huge_page_address(struct mm_struct
*mm
,
2724 unsigned long address
)
2728 VM_BUG_ON(!(address
& ~HPAGE_PMD_MASK
));
2730 pmd
= mm_find_pmd(mm
, address
);
2734 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2735 * materialize from under us.
2737 split_huge_page_pmd_mm(mm
, address
, pmd
);
2740 void __vma_adjust_trans_huge(struct vm_area_struct
*vma
,
2741 unsigned long start
,
2746 * If the new start address isn't hpage aligned and it could
2747 * previously contain an hugepage: check if we need to split
2750 if (start
& ~HPAGE_PMD_MASK
&&
2751 (start
& HPAGE_PMD_MASK
) >= vma
->vm_start
&&
2752 (start
& HPAGE_PMD_MASK
) + HPAGE_PMD_SIZE
<= vma
->vm_end
)
2753 split_huge_page_address(vma
->vm_mm
, start
);
2756 * If the new end address isn't hpage aligned and it could
2757 * previously contain an hugepage: check if we need to split
2760 if (end
& ~HPAGE_PMD_MASK
&&
2761 (end
& HPAGE_PMD_MASK
) >= vma
->vm_start
&&
2762 (end
& HPAGE_PMD_MASK
) + HPAGE_PMD_SIZE
<= vma
->vm_end
)
2763 split_huge_page_address(vma
->vm_mm
, end
);
2766 * If we're also updating the vma->vm_next->vm_start, if the new
2767 * vm_next->vm_start isn't page aligned and it could previously
2768 * contain an hugepage: check if we need to split an huge pmd.
2770 if (adjust_next
> 0) {
2771 struct vm_area_struct
*next
= vma
->vm_next
;
2772 unsigned long nstart
= next
->vm_start
;
2773 nstart
+= adjust_next
<< PAGE_SHIFT
;
2774 if (nstart
& ~HPAGE_PMD_MASK
&&
2775 (nstart
& HPAGE_PMD_MASK
) >= next
->vm_start
&&
2776 (nstart
& HPAGE_PMD_MASK
) + HPAGE_PMD_SIZE
<= next
->vm_end
)
2777 split_huge_page_address(next
->vm_mm
, nstart
);