parisc: switch to compat_functions of io_setup, io_getevents and io_submit
[linux-2.6.git] / mm / huge_memory.c
blobe2f7f5aaaafb77c848dcb21fcdc8168cdcf8d860
1 /*
2 * Copyright (C) 2009 Red Hat, Inc.
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/highmem.h>
11 #include <linux/hugetlb.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/rmap.h>
14 #include <linux/swap.h>
15 #include <linux/shrinker.h>
16 #include <linux/mm_inline.h>
17 #include <linux/kthread.h>
18 #include <linux/khugepaged.h>
19 #include <linux/freezer.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/migrate.h>
23 #include <linux/hashtable.h>
25 #include <asm/tlb.h>
26 #include <asm/pgalloc.h>
27 #include "internal.h"
30 * By default transparent hugepage support is enabled for all mappings
31 * and khugepaged scans all mappings. Defrag is only invoked by
32 * khugepaged hugepage allocations and by page faults inside
33 * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
34 * allocations.
36 unsigned long transparent_hugepage_flags __read_mostly =
37 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
38 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
39 #endif
40 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
41 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
42 #endif
43 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
44 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
45 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
47 /* default scan 8*512 pte (or vmas) every 30 second */
48 static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
49 static unsigned int khugepaged_pages_collapsed;
50 static unsigned int khugepaged_full_scans;
51 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
52 /* during fragmentation poll the hugepage allocator once every minute */
53 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
54 static struct task_struct *khugepaged_thread __read_mostly;
55 static DEFINE_MUTEX(khugepaged_mutex);
56 static DEFINE_SPINLOCK(khugepaged_mm_lock);
57 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
59 * default collapse hugepages if there is at least one pte mapped like
60 * it would have happened if the vma was large enough during page
61 * fault.
63 static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
65 static int khugepaged(void *none);
66 static int khugepaged_slab_init(void);
68 #define MM_SLOTS_HASH_BITS 10
69 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
71 static struct kmem_cache *mm_slot_cache __read_mostly;
73 /**
74 * struct mm_slot - hash lookup from mm to mm_slot
75 * @hash: hash collision list
76 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
77 * @mm: the mm that this information is valid for
79 struct mm_slot {
80 struct hlist_node hash;
81 struct list_head mm_node;
82 struct mm_struct *mm;
85 /**
86 * struct khugepaged_scan - cursor for scanning
87 * @mm_head: the head of the mm list to scan
88 * @mm_slot: the current mm_slot we are scanning
89 * @address: the next address inside that to be scanned
91 * There is only the one khugepaged_scan instance of this cursor structure.
93 struct khugepaged_scan {
94 struct list_head mm_head;
95 struct mm_slot *mm_slot;
96 unsigned long address;
98 static struct khugepaged_scan khugepaged_scan = {
99 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
103 static int set_recommended_min_free_kbytes(void)
105 struct zone *zone;
106 int nr_zones = 0;
107 unsigned long recommended_min;
109 if (!khugepaged_enabled())
110 return 0;
112 for_each_populated_zone(zone)
113 nr_zones++;
115 /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
116 recommended_min = pageblock_nr_pages * nr_zones * 2;
119 * Make sure that on average at least two pageblocks are almost free
120 * of another type, one for a migratetype to fall back to and a
121 * second to avoid subsequent fallbacks of other types There are 3
122 * MIGRATE_TYPES we care about.
124 recommended_min += pageblock_nr_pages * nr_zones *
125 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
127 /* don't ever allow to reserve more than 5% of the lowmem */
128 recommended_min = min(recommended_min,
129 (unsigned long) nr_free_buffer_pages() / 20);
130 recommended_min <<= (PAGE_SHIFT-10);
132 if (recommended_min > min_free_kbytes)
133 min_free_kbytes = recommended_min;
134 setup_per_zone_wmarks();
135 return 0;
137 late_initcall(set_recommended_min_free_kbytes);
139 static int start_khugepaged(void)
141 int err = 0;
142 if (khugepaged_enabled()) {
143 if (!khugepaged_thread)
144 khugepaged_thread = kthread_run(khugepaged, NULL,
145 "khugepaged");
146 if (unlikely(IS_ERR(khugepaged_thread))) {
147 printk(KERN_ERR
148 "khugepaged: kthread_run(khugepaged) failed\n");
149 err = PTR_ERR(khugepaged_thread);
150 khugepaged_thread = NULL;
153 if (!list_empty(&khugepaged_scan.mm_head))
154 wake_up_interruptible(&khugepaged_wait);
156 set_recommended_min_free_kbytes();
157 } else if (khugepaged_thread) {
158 kthread_stop(khugepaged_thread);
159 khugepaged_thread = NULL;
162 return err;
165 static atomic_t huge_zero_refcount;
166 static unsigned long huge_zero_pfn __read_mostly;
168 static inline bool is_huge_zero_pfn(unsigned long pfn)
170 unsigned long zero_pfn = ACCESS_ONCE(huge_zero_pfn);
171 return zero_pfn && pfn == zero_pfn;
174 static inline bool is_huge_zero_pmd(pmd_t pmd)
176 return is_huge_zero_pfn(pmd_pfn(pmd));
179 static unsigned long get_huge_zero_page(void)
181 struct page *zero_page;
182 retry:
183 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
184 return ACCESS_ONCE(huge_zero_pfn);
186 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
187 HPAGE_PMD_ORDER);
188 if (!zero_page) {
189 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
190 return 0;
192 count_vm_event(THP_ZERO_PAGE_ALLOC);
193 preempt_disable();
194 if (cmpxchg(&huge_zero_pfn, 0, page_to_pfn(zero_page))) {
195 preempt_enable();
196 __free_page(zero_page);
197 goto retry;
200 /* We take additional reference here. It will be put back by shrinker */
201 atomic_set(&huge_zero_refcount, 2);
202 preempt_enable();
203 return ACCESS_ONCE(huge_zero_pfn);
206 static void put_huge_zero_page(void)
209 * Counter should never go to zero here. Only shrinker can put
210 * last reference.
212 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
215 static int shrink_huge_zero_page(struct shrinker *shrink,
216 struct shrink_control *sc)
218 if (!sc->nr_to_scan)
219 /* we can free zero page only if last reference remains */
220 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
222 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
223 unsigned long zero_pfn = xchg(&huge_zero_pfn, 0);
224 BUG_ON(zero_pfn == 0);
225 __free_page(__pfn_to_page(zero_pfn));
228 return 0;
231 static struct shrinker huge_zero_page_shrinker = {
232 .shrink = shrink_huge_zero_page,
233 .seeks = DEFAULT_SEEKS,
236 #ifdef CONFIG_SYSFS
238 static ssize_t double_flag_show(struct kobject *kobj,
239 struct kobj_attribute *attr, char *buf,
240 enum transparent_hugepage_flag enabled,
241 enum transparent_hugepage_flag req_madv)
243 if (test_bit(enabled, &transparent_hugepage_flags)) {
244 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
245 return sprintf(buf, "[always] madvise never\n");
246 } else if (test_bit(req_madv, &transparent_hugepage_flags))
247 return sprintf(buf, "always [madvise] never\n");
248 else
249 return sprintf(buf, "always madvise [never]\n");
251 static ssize_t double_flag_store(struct kobject *kobj,
252 struct kobj_attribute *attr,
253 const char *buf, size_t count,
254 enum transparent_hugepage_flag enabled,
255 enum transparent_hugepage_flag req_madv)
257 if (!memcmp("always", buf,
258 min(sizeof("always")-1, count))) {
259 set_bit(enabled, &transparent_hugepage_flags);
260 clear_bit(req_madv, &transparent_hugepage_flags);
261 } else if (!memcmp("madvise", buf,
262 min(sizeof("madvise")-1, count))) {
263 clear_bit(enabled, &transparent_hugepage_flags);
264 set_bit(req_madv, &transparent_hugepage_flags);
265 } else if (!memcmp("never", buf,
266 min(sizeof("never")-1, count))) {
267 clear_bit(enabled, &transparent_hugepage_flags);
268 clear_bit(req_madv, &transparent_hugepage_flags);
269 } else
270 return -EINVAL;
272 return count;
275 static ssize_t enabled_show(struct kobject *kobj,
276 struct kobj_attribute *attr, char *buf)
278 return double_flag_show(kobj, attr, buf,
279 TRANSPARENT_HUGEPAGE_FLAG,
280 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
282 static ssize_t enabled_store(struct kobject *kobj,
283 struct kobj_attribute *attr,
284 const char *buf, size_t count)
286 ssize_t ret;
288 ret = double_flag_store(kobj, attr, buf, count,
289 TRANSPARENT_HUGEPAGE_FLAG,
290 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
292 if (ret > 0) {
293 int err;
295 mutex_lock(&khugepaged_mutex);
296 err = start_khugepaged();
297 mutex_unlock(&khugepaged_mutex);
299 if (err)
300 ret = err;
303 return ret;
305 static struct kobj_attribute enabled_attr =
306 __ATTR(enabled, 0644, enabled_show, enabled_store);
308 static ssize_t single_flag_show(struct kobject *kobj,
309 struct kobj_attribute *attr, char *buf,
310 enum transparent_hugepage_flag flag)
312 return sprintf(buf, "%d\n",
313 !!test_bit(flag, &transparent_hugepage_flags));
316 static ssize_t single_flag_store(struct kobject *kobj,
317 struct kobj_attribute *attr,
318 const char *buf, size_t count,
319 enum transparent_hugepage_flag flag)
321 unsigned long value;
322 int ret;
324 ret = kstrtoul(buf, 10, &value);
325 if (ret < 0)
326 return ret;
327 if (value > 1)
328 return -EINVAL;
330 if (value)
331 set_bit(flag, &transparent_hugepage_flags);
332 else
333 clear_bit(flag, &transparent_hugepage_flags);
335 return count;
339 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
340 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
341 * memory just to allocate one more hugepage.
343 static ssize_t defrag_show(struct kobject *kobj,
344 struct kobj_attribute *attr, char *buf)
346 return double_flag_show(kobj, attr, buf,
347 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
348 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
350 static ssize_t defrag_store(struct kobject *kobj,
351 struct kobj_attribute *attr,
352 const char *buf, size_t count)
354 return double_flag_store(kobj, attr, buf, count,
355 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
356 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
358 static struct kobj_attribute defrag_attr =
359 __ATTR(defrag, 0644, defrag_show, defrag_store);
361 static ssize_t use_zero_page_show(struct kobject *kobj,
362 struct kobj_attribute *attr, char *buf)
364 return single_flag_show(kobj, attr, buf,
365 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
367 static ssize_t use_zero_page_store(struct kobject *kobj,
368 struct kobj_attribute *attr, const char *buf, size_t count)
370 return single_flag_store(kobj, attr, buf, count,
371 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
373 static struct kobj_attribute use_zero_page_attr =
374 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
375 #ifdef CONFIG_DEBUG_VM
376 static ssize_t debug_cow_show(struct kobject *kobj,
377 struct kobj_attribute *attr, char *buf)
379 return single_flag_show(kobj, attr, buf,
380 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
382 static ssize_t debug_cow_store(struct kobject *kobj,
383 struct kobj_attribute *attr,
384 const char *buf, size_t count)
386 return single_flag_store(kobj, attr, buf, count,
387 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
389 static struct kobj_attribute debug_cow_attr =
390 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
391 #endif /* CONFIG_DEBUG_VM */
393 static struct attribute *hugepage_attr[] = {
394 &enabled_attr.attr,
395 &defrag_attr.attr,
396 &use_zero_page_attr.attr,
397 #ifdef CONFIG_DEBUG_VM
398 &debug_cow_attr.attr,
399 #endif
400 NULL,
403 static struct attribute_group hugepage_attr_group = {
404 .attrs = hugepage_attr,
407 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
408 struct kobj_attribute *attr,
409 char *buf)
411 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
414 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
415 struct kobj_attribute *attr,
416 const char *buf, size_t count)
418 unsigned long msecs;
419 int err;
421 err = strict_strtoul(buf, 10, &msecs);
422 if (err || msecs > UINT_MAX)
423 return -EINVAL;
425 khugepaged_scan_sleep_millisecs = msecs;
426 wake_up_interruptible(&khugepaged_wait);
428 return count;
430 static struct kobj_attribute scan_sleep_millisecs_attr =
431 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
432 scan_sleep_millisecs_store);
434 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
435 struct kobj_attribute *attr,
436 char *buf)
438 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
441 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
442 struct kobj_attribute *attr,
443 const char *buf, size_t count)
445 unsigned long msecs;
446 int err;
448 err = strict_strtoul(buf, 10, &msecs);
449 if (err || msecs > UINT_MAX)
450 return -EINVAL;
452 khugepaged_alloc_sleep_millisecs = msecs;
453 wake_up_interruptible(&khugepaged_wait);
455 return count;
457 static struct kobj_attribute alloc_sleep_millisecs_attr =
458 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
459 alloc_sleep_millisecs_store);
461 static ssize_t pages_to_scan_show(struct kobject *kobj,
462 struct kobj_attribute *attr,
463 char *buf)
465 return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
467 static ssize_t pages_to_scan_store(struct kobject *kobj,
468 struct kobj_attribute *attr,
469 const char *buf, size_t count)
471 int err;
472 unsigned long pages;
474 err = strict_strtoul(buf, 10, &pages);
475 if (err || !pages || pages > UINT_MAX)
476 return -EINVAL;
478 khugepaged_pages_to_scan = pages;
480 return count;
482 static struct kobj_attribute pages_to_scan_attr =
483 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
484 pages_to_scan_store);
486 static ssize_t pages_collapsed_show(struct kobject *kobj,
487 struct kobj_attribute *attr,
488 char *buf)
490 return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
492 static struct kobj_attribute pages_collapsed_attr =
493 __ATTR_RO(pages_collapsed);
495 static ssize_t full_scans_show(struct kobject *kobj,
496 struct kobj_attribute *attr,
497 char *buf)
499 return sprintf(buf, "%u\n", khugepaged_full_scans);
501 static struct kobj_attribute full_scans_attr =
502 __ATTR_RO(full_scans);
504 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
505 struct kobj_attribute *attr, char *buf)
507 return single_flag_show(kobj, attr, buf,
508 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
510 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
511 struct kobj_attribute *attr,
512 const char *buf, size_t count)
514 return single_flag_store(kobj, attr, buf, count,
515 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
517 static struct kobj_attribute khugepaged_defrag_attr =
518 __ATTR(defrag, 0644, khugepaged_defrag_show,
519 khugepaged_defrag_store);
522 * max_ptes_none controls if khugepaged should collapse hugepages over
523 * any unmapped ptes in turn potentially increasing the memory
524 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
525 * reduce the available free memory in the system as it
526 * runs. Increasing max_ptes_none will instead potentially reduce the
527 * free memory in the system during the khugepaged scan.
529 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
530 struct kobj_attribute *attr,
531 char *buf)
533 return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
535 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
536 struct kobj_attribute *attr,
537 const char *buf, size_t count)
539 int err;
540 unsigned long max_ptes_none;
542 err = strict_strtoul(buf, 10, &max_ptes_none);
543 if (err || max_ptes_none > HPAGE_PMD_NR-1)
544 return -EINVAL;
546 khugepaged_max_ptes_none = max_ptes_none;
548 return count;
550 static struct kobj_attribute khugepaged_max_ptes_none_attr =
551 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
552 khugepaged_max_ptes_none_store);
554 static struct attribute *khugepaged_attr[] = {
555 &khugepaged_defrag_attr.attr,
556 &khugepaged_max_ptes_none_attr.attr,
557 &pages_to_scan_attr.attr,
558 &pages_collapsed_attr.attr,
559 &full_scans_attr.attr,
560 &scan_sleep_millisecs_attr.attr,
561 &alloc_sleep_millisecs_attr.attr,
562 NULL,
565 static struct attribute_group khugepaged_attr_group = {
566 .attrs = khugepaged_attr,
567 .name = "khugepaged",
570 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
572 int err;
574 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
575 if (unlikely(!*hugepage_kobj)) {
576 printk(KERN_ERR "hugepage: failed to create transparent hugepage kobject\n");
577 return -ENOMEM;
580 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
581 if (err) {
582 printk(KERN_ERR "hugepage: failed to register transparent hugepage group\n");
583 goto delete_obj;
586 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
587 if (err) {
588 printk(KERN_ERR "hugepage: failed to register transparent hugepage group\n");
589 goto remove_hp_group;
592 return 0;
594 remove_hp_group:
595 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
596 delete_obj:
597 kobject_put(*hugepage_kobj);
598 return err;
601 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
603 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
604 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
605 kobject_put(hugepage_kobj);
607 #else
608 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
610 return 0;
613 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
616 #endif /* CONFIG_SYSFS */
618 static int __init hugepage_init(void)
620 int err;
621 struct kobject *hugepage_kobj;
623 if (!has_transparent_hugepage()) {
624 transparent_hugepage_flags = 0;
625 return -EINVAL;
628 err = hugepage_init_sysfs(&hugepage_kobj);
629 if (err)
630 return err;
632 err = khugepaged_slab_init();
633 if (err)
634 goto out;
636 register_shrinker(&huge_zero_page_shrinker);
639 * By default disable transparent hugepages on smaller systems,
640 * where the extra memory used could hurt more than TLB overhead
641 * is likely to save. The admin can still enable it through /sys.
643 if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
644 transparent_hugepage_flags = 0;
646 start_khugepaged();
648 return 0;
649 out:
650 hugepage_exit_sysfs(hugepage_kobj);
651 return err;
653 module_init(hugepage_init)
655 static int __init setup_transparent_hugepage(char *str)
657 int ret = 0;
658 if (!str)
659 goto out;
660 if (!strcmp(str, "always")) {
661 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
662 &transparent_hugepage_flags);
663 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
664 &transparent_hugepage_flags);
665 ret = 1;
666 } else if (!strcmp(str, "madvise")) {
667 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
668 &transparent_hugepage_flags);
669 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
670 &transparent_hugepage_flags);
671 ret = 1;
672 } else if (!strcmp(str, "never")) {
673 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
674 &transparent_hugepage_flags);
675 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
676 &transparent_hugepage_flags);
677 ret = 1;
679 out:
680 if (!ret)
681 printk(KERN_WARNING
682 "transparent_hugepage= cannot parse, ignored\n");
683 return ret;
685 __setup("transparent_hugepage=", setup_transparent_hugepage);
687 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
689 if (likely(vma->vm_flags & VM_WRITE))
690 pmd = pmd_mkwrite(pmd);
691 return pmd;
694 static inline pmd_t mk_huge_pmd(struct page *page, struct vm_area_struct *vma)
696 pmd_t entry;
697 entry = mk_pmd(page, vma->vm_page_prot);
698 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
699 entry = pmd_mkhuge(entry);
700 return entry;
703 static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
704 struct vm_area_struct *vma,
705 unsigned long haddr, pmd_t *pmd,
706 struct page *page)
708 pgtable_t pgtable;
710 VM_BUG_ON(!PageCompound(page));
711 pgtable = pte_alloc_one(mm, haddr);
712 if (unlikely(!pgtable))
713 return VM_FAULT_OOM;
715 clear_huge_page(page, haddr, HPAGE_PMD_NR);
716 __SetPageUptodate(page);
718 spin_lock(&mm->page_table_lock);
719 if (unlikely(!pmd_none(*pmd))) {
720 spin_unlock(&mm->page_table_lock);
721 mem_cgroup_uncharge_page(page);
722 put_page(page);
723 pte_free(mm, pgtable);
724 } else {
725 pmd_t entry;
726 entry = mk_huge_pmd(page, vma);
728 * The spinlocking to take the lru_lock inside
729 * page_add_new_anon_rmap() acts as a full memory
730 * barrier to be sure clear_huge_page writes become
731 * visible after the set_pmd_at() write.
733 page_add_new_anon_rmap(page, vma, haddr);
734 set_pmd_at(mm, haddr, pmd, entry);
735 pgtable_trans_huge_deposit(mm, pgtable);
736 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
737 mm->nr_ptes++;
738 spin_unlock(&mm->page_table_lock);
741 return 0;
744 static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
746 return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
749 static inline struct page *alloc_hugepage_vma(int defrag,
750 struct vm_area_struct *vma,
751 unsigned long haddr, int nd,
752 gfp_t extra_gfp)
754 return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
755 HPAGE_PMD_ORDER, vma, haddr, nd);
758 #ifndef CONFIG_NUMA
759 static inline struct page *alloc_hugepage(int defrag)
761 return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
762 HPAGE_PMD_ORDER);
764 #endif
766 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
767 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
768 unsigned long zero_pfn)
770 pmd_t entry;
771 if (!pmd_none(*pmd))
772 return false;
773 entry = pfn_pmd(zero_pfn, vma->vm_page_prot);
774 entry = pmd_wrprotect(entry);
775 entry = pmd_mkhuge(entry);
776 set_pmd_at(mm, haddr, pmd, entry);
777 pgtable_trans_huge_deposit(mm, pgtable);
778 mm->nr_ptes++;
779 return true;
782 int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
783 unsigned long address, pmd_t *pmd,
784 unsigned int flags)
786 struct page *page;
787 unsigned long haddr = address & HPAGE_PMD_MASK;
788 pte_t *pte;
790 if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) {
791 if (unlikely(anon_vma_prepare(vma)))
792 return VM_FAULT_OOM;
793 if (unlikely(khugepaged_enter(vma)))
794 return VM_FAULT_OOM;
795 if (!(flags & FAULT_FLAG_WRITE) &&
796 transparent_hugepage_use_zero_page()) {
797 pgtable_t pgtable;
798 unsigned long zero_pfn;
799 bool set;
800 pgtable = pte_alloc_one(mm, haddr);
801 if (unlikely(!pgtable))
802 return VM_FAULT_OOM;
803 zero_pfn = get_huge_zero_page();
804 if (unlikely(!zero_pfn)) {
805 pte_free(mm, pgtable);
806 count_vm_event(THP_FAULT_FALLBACK);
807 goto out;
809 spin_lock(&mm->page_table_lock);
810 set = set_huge_zero_page(pgtable, mm, vma, haddr, pmd,
811 zero_pfn);
812 spin_unlock(&mm->page_table_lock);
813 if (!set) {
814 pte_free(mm, pgtable);
815 put_huge_zero_page();
817 return 0;
819 page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
820 vma, haddr, numa_node_id(), 0);
821 if (unlikely(!page)) {
822 count_vm_event(THP_FAULT_FALLBACK);
823 goto out;
825 count_vm_event(THP_FAULT_ALLOC);
826 if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
827 put_page(page);
828 goto out;
830 if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd,
831 page))) {
832 mem_cgroup_uncharge_page(page);
833 put_page(page);
834 goto out;
837 return 0;
839 out:
841 * Use __pte_alloc instead of pte_alloc_map, because we can't
842 * run pte_offset_map on the pmd, if an huge pmd could
843 * materialize from under us from a different thread.
845 if (unlikely(pmd_none(*pmd)) &&
846 unlikely(__pte_alloc(mm, vma, pmd, address)))
847 return VM_FAULT_OOM;
848 /* if an huge pmd materialized from under us just retry later */
849 if (unlikely(pmd_trans_huge(*pmd)))
850 return 0;
852 * A regular pmd is established and it can't morph into a huge pmd
853 * from under us anymore at this point because we hold the mmap_sem
854 * read mode and khugepaged takes it in write mode. So now it's
855 * safe to run pte_offset_map().
857 pte = pte_offset_map(pmd, address);
858 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
861 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
862 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
863 struct vm_area_struct *vma)
865 struct page *src_page;
866 pmd_t pmd;
867 pgtable_t pgtable;
868 int ret;
870 ret = -ENOMEM;
871 pgtable = pte_alloc_one(dst_mm, addr);
872 if (unlikely(!pgtable))
873 goto out;
875 spin_lock(&dst_mm->page_table_lock);
876 spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
878 ret = -EAGAIN;
879 pmd = *src_pmd;
880 if (unlikely(!pmd_trans_huge(pmd))) {
881 pte_free(dst_mm, pgtable);
882 goto out_unlock;
885 * mm->page_table_lock is enough to be sure that huge zero pmd is not
886 * under splitting since we don't split the page itself, only pmd to
887 * a page table.
889 if (is_huge_zero_pmd(pmd)) {
890 unsigned long zero_pfn;
891 bool set;
893 * get_huge_zero_page() will never allocate a new page here,
894 * since we already have a zero page to copy. It just takes a
895 * reference.
897 zero_pfn = get_huge_zero_page();
898 set = set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
899 zero_pfn);
900 BUG_ON(!set); /* unexpected !pmd_none(dst_pmd) */
901 ret = 0;
902 goto out_unlock;
904 if (unlikely(pmd_trans_splitting(pmd))) {
905 /* split huge page running from under us */
906 spin_unlock(&src_mm->page_table_lock);
907 spin_unlock(&dst_mm->page_table_lock);
908 pte_free(dst_mm, pgtable);
910 wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
911 goto out;
913 src_page = pmd_page(pmd);
914 VM_BUG_ON(!PageHead(src_page));
915 get_page(src_page);
916 page_dup_rmap(src_page);
917 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
919 pmdp_set_wrprotect(src_mm, addr, src_pmd);
920 pmd = pmd_mkold(pmd_wrprotect(pmd));
921 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
922 pgtable_trans_huge_deposit(dst_mm, pgtable);
923 dst_mm->nr_ptes++;
925 ret = 0;
926 out_unlock:
927 spin_unlock(&src_mm->page_table_lock);
928 spin_unlock(&dst_mm->page_table_lock);
929 out:
930 return ret;
933 void huge_pmd_set_accessed(struct mm_struct *mm,
934 struct vm_area_struct *vma,
935 unsigned long address,
936 pmd_t *pmd, pmd_t orig_pmd,
937 int dirty)
939 pmd_t entry;
940 unsigned long haddr;
942 spin_lock(&mm->page_table_lock);
943 if (unlikely(!pmd_same(*pmd, orig_pmd)))
944 goto unlock;
946 entry = pmd_mkyoung(orig_pmd);
947 haddr = address & HPAGE_PMD_MASK;
948 if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
949 update_mmu_cache_pmd(vma, address, pmd);
951 unlock:
952 spin_unlock(&mm->page_table_lock);
955 static int do_huge_pmd_wp_zero_page_fallback(struct mm_struct *mm,
956 struct vm_area_struct *vma, unsigned long address,
957 pmd_t *pmd, pmd_t orig_pmd, unsigned long haddr)
959 pgtable_t pgtable;
960 pmd_t _pmd;
961 struct page *page;
962 int i, ret = 0;
963 unsigned long mmun_start; /* For mmu_notifiers */
964 unsigned long mmun_end; /* For mmu_notifiers */
966 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
967 if (!page) {
968 ret |= VM_FAULT_OOM;
969 goto out;
972 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
973 put_page(page);
974 ret |= VM_FAULT_OOM;
975 goto out;
978 clear_user_highpage(page, address);
979 __SetPageUptodate(page);
981 mmun_start = haddr;
982 mmun_end = haddr + HPAGE_PMD_SIZE;
983 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
985 spin_lock(&mm->page_table_lock);
986 if (unlikely(!pmd_same(*pmd, orig_pmd)))
987 goto out_free_page;
989 pmdp_clear_flush(vma, haddr, pmd);
990 /* leave pmd empty until pte is filled */
992 pgtable = pgtable_trans_huge_withdraw(mm);
993 pmd_populate(mm, &_pmd, pgtable);
995 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
996 pte_t *pte, entry;
997 if (haddr == (address & PAGE_MASK)) {
998 entry = mk_pte(page, vma->vm_page_prot);
999 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1000 page_add_new_anon_rmap(page, vma, haddr);
1001 } else {
1002 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
1003 entry = pte_mkspecial(entry);
1005 pte = pte_offset_map(&_pmd, haddr);
1006 VM_BUG_ON(!pte_none(*pte));
1007 set_pte_at(mm, haddr, pte, entry);
1008 pte_unmap(pte);
1010 smp_wmb(); /* make pte visible before pmd */
1011 pmd_populate(mm, pmd, pgtable);
1012 spin_unlock(&mm->page_table_lock);
1013 put_huge_zero_page();
1014 inc_mm_counter(mm, MM_ANONPAGES);
1016 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1018 ret |= VM_FAULT_WRITE;
1019 out:
1020 return ret;
1021 out_free_page:
1022 spin_unlock(&mm->page_table_lock);
1023 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1024 mem_cgroup_uncharge_page(page);
1025 put_page(page);
1026 goto out;
1029 static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
1030 struct vm_area_struct *vma,
1031 unsigned long address,
1032 pmd_t *pmd, pmd_t orig_pmd,
1033 struct page *page,
1034 unsigned long haddr)
1036 pgtable_t pgtable;
1037 pmd_t _pmd;
1038 int ret = 0, i;
1039 struct page **pages;
1040 unsigned long mmun_start; /* For mmu_notifiers */
1041 unsigned long mmun_end; /* For mmu_notifiers */
1043 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1044 GFP_KERNEL);
1045 if (unlikely(!pages)) {
1046 ret |= VM_FAULT_OOM;
1047 goto out;
1050 for (i = 0; i < HPAGE_PMD_NR; i++) {
1051 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
1052 __GFP_OTHER_NODE,
1053 vma, address, page_to_nid(page));
1054 if (unlikely(!pages[i] ||
1055 mem_cgroup_newpage_charge(pages[i], mm,
1056 GFP_KERNEL))) {
1057 if (pages[i])
1058 put_page(pages[i]);
1059 mem_cgroup_uncharge_start();
1060 while (--i >= 0) {
1061 mem_cgroup_uncharge_page(pages[i]);
1062 put_page(pages[i]);
1064 mem_cgroup_uncharge_end();
1065 kfree(pages);
1066 ret |= VM_FAULT_OOM;
1067 goto out;
1071 for (i = 0; i < HPAGE_PMD_NR; i++) {
1072 copy_user_highpage(pages[i], page + i,
1073 haddr + PAGE_SIZE * i, vma);
1074 __SetPageUptodate(pages[i]);
1075 cond_resched();
1078 mmun_start = haddr;
1079 mmun_end = haddr + HPAGE_PMD_SIZE;
1080 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1082 spin_lock(&mm->page_table_lock);
1083 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1084 goto out_free_pages;
1085 VM_BUG_ON(!PageHead(page));
1087 pmdp_clear_flush(vma, haddr, pmd);
1088 /* leave pmd empty until pte is filled */
1090 pgtable = pgtable_trans_huge_withdraw(mm);
1091 pmd_populate(mm, &_pmd, pgtable);
1093 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1094 pte_t *pte, entry;
1095 entry = mk_pte(pages[i], vma->vm_page_prot);
1096 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1097 page_add_new_anon_rmap(pages[i], vma, haddr);
1098 pte = pte_offset_map(&_pmd, haddr);
1099 VM_BUG_ON(!pte_none(*pte));
1100 set_pte_at(mm, haddr, pte, entry);
1101 pte_unmap(pte);
1103 kfree(pages);
1105 smp_wmb(); /* make pte visible before pmd */
1106 pmd_populate(mm, pmd, pgtable);
1107 page_remove_rmap(page);
1108 spin_unlock(&mm->page_table_lock);
1110 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1112 ret |= VM_FAULT_WRITE;
1113 put_page(page);
1115 out:
1116 return ret;
1118 out_free_pages:
1119 spin_unlock(&mm->page_table_lock);
1120 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1121 mem_cgroup_uncharge_start();
1122 for (i = 0; i < HPAGE_PMD_NR; i++) {
1123 mem_cgroup_uncharge_page(pages[i]);
1124 put_page(pages[i]);
1126 mem_cgroup_uncharge_end();
1127 kfree(pages);
1128 goto out;
1131 int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1132 unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
1134 int ret = 0;
1135 struct page *page = NULL, *new_page;
1136 unsigned long haddr;
1137 unsigned long mmun_start; /* For mmu_notifiers */
1138 unsigned long mmun_end; /* For mmu_notifiers */
1140 VM_BUG_ON(!vma->anon_vma);
1141 haddr = address & HPAGE_PMD_MASK;
1142 if (is_huge_zero_pmd(orig_pmd))
1143 goto alloc;
1144 spin_lock(&mm->page_table_lock);
1145 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1146 goto out_unlock;
1148 page = pmd_page(orig_pmd);
1149 VM_BUG_ON(!PageCompound(page) || !PageHead(page));
1150 if (page_mapcount(page) == 1) {
1151 pmd_t entry;
1152 entry = pmd_mkyoung(orig_pmd);
1153 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1154 if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
1155 update_mmu_cache_pmd(vma, address, pmd);
1156 ret |= VM_FAULT_WRITE;
1157 goto out_unlock;
1159 get_page(page);
1160 spin_unlock(&mm->page_table_lock);
1161 alloc:
1162 if (transparent_hugepage_enabled(vma) &&
1163 !transparent_hugepage_debug_cow())
1164 new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
1165 vma, haddr, numa_node_id(), 0);
1166 else
1167 new_page = NULL;
1169 if (unlikely(!new_page)) {
1170 count_vm_event(THP_FAULT_FALLBACK);
1171 if (is_huge_zero_pmd(orig_pmd)) {
1172 ret = do_huge_pmd_wp_zero_page_fallback(mm, vma,
1173 address, pmd, orig_pmd, haddr);
1174 } else {
1175 ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
1176 pmd, orig_pmd, page, haddr);
1177 if (ret & VM_FAULT_OOM)
1178 split_huge_page(page);
1179 put_page(page);
1181 goto out;
1183 count_vm_event(THP_FAULT_ALLOC);
1185 if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
1186 put_page(new_page);
1187 if (page) {
1188 split_huge_page(page);
1189 put_page(page);
1191 ret |= VM_FAULT_OOM;
1192 goto out;
1195 if (is_huge_zero_pmd(orig_pmd))
1196 clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1197 else
1198 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1199 __SetPageUptodate(new_page);
1201 mmun_start = haddr;
1202 mmun_end = haddr + HPAGE_PMD_SIZE;
1203 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1205 spin_lock(&mm->page_table_lock);
1206 if (page)
1207 put_page(page);
1208 if (unlikely(!pmd_same(*pmd, orig_pmd))) {
1209 spin_unlock(&mm->page_table_lock);
1210 mem_cgroup_uncharge_page(new_page);
1211 put_page(new_page);
1212 goto out_mn;
1213 } else {
1214 pmd_t entry;
1215 entry = mk_huge_pmd(new_page, vma);
1216 pmdp_clear_flush(vma, haddr, pmd);
1217 page_add_new_anon_rmap(new_page, vma, haddr);
1218 set_pmd_at(mm, haddr, pmd, entry);
1219 update_mmu_cache_pmd(vma, address, pmd);
1220 if (is_huge_zero_pmd(orig_pmd)) {
1221 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
1222 put_huge_zero_page();
1223 } else {
1224 VM_BUG_ON(!PageHead(page));
1225 page_remove_rmap(page);
1226 put_page(page);
1228 ret |= VM_FAULT_WRITE;
1230 spin_unlock(&mm->page_table_lock);
1231 out_mn:
1232 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1233 out:
1234 return ret;
1235 out_unlock:
1236 spin_unlock(&mm->page_table_lock);
1237 return ret;
1240 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1241 unsigned long addr,
1242 pmd_t *pmd,
1243 unsigned int flags)
1245 struct mm_struct *mm = vma->vm_mm;
1246 struct page *page = NULL;
1248 assert_spin_locked(&mm->page_table_lock);
1250 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1251 goto out;
1253 /* Avoid dumping huge zero page */
1254 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1255 return ERR_PTR(-EFAULT);
1257 page = pmd_page(*pmd);
1258 VM_BUG_ON(!PageHead(page));
1259 if (flags & FOLL_TOUCH) {
1260 pmd_t _pmd;
1262 * We should set the dirty bit only for FOLL_WRITE but
1263 * for now the dirty bit in the pmd is meaningless.
1264 * And if the dirty bit will become meaningful and
1265 * we'll only set it with FOLL_WRITE, an atomic
1266 * set_bit will be required on the pmd to set the
1267 * young bit, instead of the current set_pmd_at.
1269 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1270 set_pmd_at(mm, addr & HPAGE_PMD_MASK, pmd, _pmd);
1272 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1273 if (page->mapping && trylock_page(page)) {
1274 lru_add_drain();
1275 if (page->mapping)
1276 mlock_vma_page(page);
1277 unlock_page(page);
1280 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1281 VM_BUG_ON(!PageCompound(page));
1282 if (flags & FOLL_GET)
1283 get_page_foll(page);
1285 out:
1286 return page;
1289 /* NUMA hinting page fault entry point for trans huge pmds */
1290 int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
1291 unsigned long addr, pmd_t pmd, pmd_t *pmdp)
1293 struct page *page;
1294 unsigned long haddr = addr & HPAGE_PMD_MASK;
1295 int target_nid;
1296 int current_nid = -1;
1297 bool migrated;
1299 spin_lock(&mm->page_table_lock);
1300 if (unlikely(!pmd_same(pmd, *pmdp)))
1301 goto out_unlock;
1303 page = pmd_page(pmd);
1304 get_page(page);
1305 current_nid = page_to_nid(page);
1306 count_vm_numa_event(NUMA_HINT_FAULTS);
1307 if (current_nid == numa_node_id())
1308 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1310 target_nid = mpol_misplaced(page, vma, haddr);
1311 if (target_nid == -1) {
1312 put_page(page);
1313 goto clear_pmdnuma;
1316 /* Acquire the page lock to serialise THP migrations */
1317 spin_unlock(&mm->page_table_lock);
1318 lock_page(page);
1320 /* Confirm the PTE did not while locked */
1321 spin_lock(&mm->page_table_lock);
1322 if (unlikely(!pmd_same(pmd, *pmdp))) {
1323 unlock_page(page);
1324 put_page(page);
1325 goto out_unlock;
1327 spin_unlock(&mm->page_table_lock);
1329 /* Migrate the THP to the requested node */
1330 migrated = migrate_misplaced_transhuge_page(mm, vma,
1331 pmdp, pmd, addr, page, target_nid);
1332 if (!migrated)
1333 goto check_same;
1335 task_numa_fault(target_nid, HPAGE_PMD_NR, true);
1336 return 0;
1338 check_same:
1339 spin_lock(&mm->page_table_lock);
1340 if (unlikely(!pmd_same(pmd, *pmdp)))
1341 goto out_unlock;
1342 clear_pmdnuma:
1343 pmd = pmd_mknonnuma(pmd);
1344 set_pmd_at(mm, haddr, pmdp, pmd);
1345 VM_BUG_ON(pmd_numa(*pmdp));
1346 update_mmu_cache_pmd(vma, addr, pmdp);
1347 out_unlock:
1348 spin_unlock(&mm->page_table_lock);
1349 if (current_nid != -1)
1350 task_numa_fault(current_nid, HPAGE_PMD_NR, false);
1351 return 0;
1354 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1355 pmd_t *pmd, unsigned long addr)
1357 int ret = 0;
1359 if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1360 struct page *page;
1361 pgtable_t pgtable;
1362 pmd_t orig_pmd;
1363 pgtable = pgtable_trans_huge_withdraw(tlb->mm);
1364 orig_pmd = pmdp_get_and_clear(tlb->mm, addr, pmd);
1365 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1366 if (is_huge_zero_pmd(orig_pmd)) {
1367 tlb->mm->nr_ptes--;
1368 spin_unlock(&tlb->mm->page_table_lock);
1369 put_huge_zero_page();
1370 } else {
1371 page = pmd_page(orig_pmd);
1372 page_remove_rmap(page);
1373 VM_BUG_ON(page_mapcount(page) < 0);
1374 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1375 VM_BUG_ON(!PageHead(page));
1376 tlb->mm->nr_ptes--;
1377 spin_unlock(&tlb->mm->page_table_lock);
1378 tlb_remove_page(tlb, page);
1380 pte_free(tlb->mm, pgtable);
1381 ret = 1;
1383 return ret;
1386 int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1387 unsigned long addr, unsigned long end,
1388 unsigned char *vec)
1390 int ret = 0;
1392 if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1394 * All logical pages in the range are present
1395 * if backed by a huge page.
1397 spin_unlock(&vma->vm_mm->page_table_lock);
1398 memset(vec, 1, (end - addr) >> PAGE_SHIFT);
1399 ret = 1;
1402 return ret;
1405 int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1406 unsigned long old_addr,
1407 unsigned long new_addr, unsigned long old_end,
1408 pmd_t *old_pmd, pmd_t *new_pmd)
1410 int ret = 0;
1411 pmd_t pmd;
1413 struct mm_struct *mm = vma->vm_mm;
1415 if ((old_addr & ~HPAGE_PMD_MASK) ||
1416 (new_addr & ~HPAGE_PMD_MASK) ||
1417 old_end - old_addr < HPAGE_PMD_SIZE ||
1418 (new_vma->vm_flags & VM_NOHUGEPAGE))
1419 goto out;
1422 * The destination pmd shouldn't be established, free_pgtables()
1423 * should have release it.
1425 if (WARN_ON(!pmd_none(*new_pmd))) {
1426 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1427 goto out;
1430 ret = __pmd_trans_huge_lock(old_pmd, vma);
1431 if (ret == 1) {
1432 pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
1433 VM_BUG_ON(!pmd_none(*new_pmd));
1434 set_pmd_at(mm, new_addr, new_pmd, pmd);
1435 spin_unlock(&mm->page_table_lock);
1437 out:
1438 return ret;
1441 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1442 unsigned long addr, pgprot_t newprot, int prot_numa)
1444 struct mm_struct *mm = vma->vm_mm;
1445 int ret = 0;
1447 if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1448 pmd_t entry;
1449 entry = pmdp_get_and_clear(mm, addr, pmd);
1450 if (!prot_numa) {
1451 entry = pmd_modify(entry, newprot);
1452 BUG_ON(pmd_write(entry));
1453 } else {
1454 struct page *page = pmd_page(*pmd);
1456 /* only check non-shared pages */
1457 if (page_mapcount(page) == 1 &&
1458 !pmd_numa(*pmd)) {
1459 entry = pmd_mknuma(entry);
1462 set_pmd_at(mm, addr, pmd, entry);
1463 spin_unlock(&vma->vm_mm->page_table_lock);
1464 ret = 1;
1467 return ret;
1471 * Returns 1 if a given pmd maps a stable (not under splitting) thp.
1472 * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
1474 * Note that if it returns 1, this routine returns without unlocking page
1475 * table locks. So callers must unlock them.
1477 int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1479 spin_lock(&vma->vm_mm->page_table_lock);
1480 if (likely(pmd_trans_huge(*pmd))) {
1481 if (unlikely(pmd_trans_splitting(*pmd))) {
1482 spin_unlock(&vma->vm_mm->page_table_lock);
1483 wait_split_huge_page(vma->anon_vma, pmd);
1484 return -1;
1485 } else {
1486 /* Thp mapped by 'pmd' is stable, so we can
1487 * handle it as it is. */
1488 return 1;
1491 spin_unlock(&vma->vm_mm->page_table_lock);
1492 return 0;
1495 pmd_t *page_check_address_pmd(struct page *page,
1496 struct mm_struct *mm,
1497 unsigned long address,
1498 enum page_check_address_pmd_flag flag)
1500 pmd_t *pmd, *ret = NULL;
1502 if (address & ~HPAGE_PMD_MASK)
1503 goto out;
1505 pmd = mm_find_pmd(mm, address);
1506 if (!pmd)
1507 goto out;
1508 if (pmd_none(*pmd))
1509 goto out;
1510 if (pmd_page(*pmd) != page)
1511 goto out;
1513 * split_vma() may create temporary aliased mappings. There is
1514 * no risk as long as all huge pmd are found and have their
1515 * splitting bit set before __split_huge_page_refcount
1516 * runs. Finding the same huge pmd more than once during the
1517 * same rmap walk is not a problem.
1519 if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1520 pmd_trans_splitting(*pmd))
1521 goto out;
1522 if (pmd_trans_huge(*pmd)) {
1523 VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1524 !pmd_trans_splitting(*pmd));
1525 ret = pmd;
1527 out:
1528 return ret;
1531 static int __split_huge_page_splitting(struct page *page,
1532 struct vm_area_struct *vma,
1533 unsigned long address)
1535 struct mm_struct *mm = vma->vm_mm;
1536 pmd_t *pmd;
1537 int ret = 0;
1538 /* For mmu_notifiers */
1539 const unsigned long mmun_start = address;
1540 const unsigned long mmun_end = address + HPAGE_PMD_SIZE;
1542 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1543 spin_lock(&mm->page_table_lock);
1544 pmd = page_check_address_pmd(page, mm, address,
1545 PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
1546 if (pmd) {
1548 * We can't temporarily set the pmd to null in order
1549 * to split it, the pmd must remain marked huge at all
1550 * times or the VM won't take the pmd_trans_huge paths
1551 * and it won't wait on the anon_vma->root->rwsem to
1552 * serialize against split_huge_page*.
1554 pmdp_splitting_flush(vma, address, pmd);
1555 ret = 1;
1557 spin_unlock(&mm->page_table_lock);
1558 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1560 return ret;
1563 static void __split_huge_page_refcount(struct page *page)
1565 int i;
1566 struct zone *zone = page_zone(page);
1567 struct lruvec *lruvec;
1568 int tail_count = 0;
1570 /* prevent PageLRU to go away from under us, and freeze lru stats */
1571 spin_lock_irq(&zone->lru_lock);
1572 lruvec = mem_cgroup_page_lruvec(page, zone);
1574 compound_lock(page);
1575 /* complete memcg works before add pages to LRU */
1576 mem_cgroup_split_huge_fixup(page);
1578 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
1579 struct page *page_tail = page + i;
1581 /* tail_page->_mapcount cannot change */
1582 BUG_ON(page_mapcount(page_tail) < 0);
1583 tail_count += page_mapcount(page_tail);
1584 /* check for overflow */
1585 BUG_ON(tail_count < 0);
1586 BUG_ON(atomic_read(&page_tail->_count) != 0);
1588 * tail_page->_count is zero and not changing from
1589 * under us. But get_page_unless_zero() may be running
1590 * from under us on the tail_page. If we used
1591 * atomic_set() below instead of atomic_add(), we
1592 * would then run atomic_set() concurrently with
1593 * get_page_unless_zero(), and atomic_set() is
1594 * implemented in C not using locked ops. spin_unlock
1595 * on x86 sometime uses locked ops because of PPro
1596 * errata 66, 92, so unless somebody can guarantee
1597 * atomic_set() here would be safe on all archs (and
1598 * not only on x86), it's safer to use atomic_add().
1600 atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
1601 &page_tail->_count);
1603 /* after clearing PageTail the gup refcount can be released */
1604 smp_mb();
1607 * retain hwpoison flag of the poisoned tail page:
1608 * fix for the unsuitable process killed on Guest Machine(KVM)
1609 * by the memory-failure.
1611 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
1612 page_tail->flags |= (page->flags &
1613 ((1L << PG_referenced) |
1614 (1L << PG_swapbacked) |
1615 (1L << PG_mlocked) |
1616 (1L << PG_uptodate)));
1617 page_tail->flags |= (1L << PG_dirty);
1619 /* clear PageTail before overwriting first_page */
1620 smp_wmb();
1623 * __split_huge_page_splitting() already set the
1624 * splitting bit in all pmd that could map this
1625 * hugepage, that will ensure no CPU can alter the
1626 * mapcount on the head page. The mapcount is only
1627 * accounted in the head page and it has to be
1628 * transferred to all tail pages in the below code. So
1629 * for this code to be safe, the split the mapcount
1630 * can't change. But that doesn't mean userland can't
1631 * keep changing and reading the page contents while
1632 * we transfer the mapcount, so the pmd splitting
1633 * status is achieved setting a reserved bit in the
1634 * pmd, not by clearing the present bit.
1636 page_tail->_mapcount = page->_mapcount;
1638 BUG_ON(page_tail->mapping);
1639 page_tail->mapping = page->mapping;
1641 page_tail->index = page->index + i;
1642 page_nid_xchg_last(page_tail, page_nid_last(page));
1644 BUG_ON(!PageAnon(page_tail));
1645 BUG_ON(!PageUptodate(page_tail));
1646 BUG_ON(!PageDirty(page_tail));
1647 BUG_ON(!PageSwapBacked(page_tail));
1649 lru_add_page_tail(page, page_tail, lruvec);
1651 atomic_sub(tail_count, &page->_count);
1652 BUG_ON(atomic_read(&page->_count) <= 0);
1654 __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
1655 __mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR);
1657 ClearPageCompound(page);
1658 compound_unlock(page);
1659 spin_unlock_irq(&zone->lru_lock);
1661 for (i = 1; i < HPAGE_PMD_NR; i++) {
1662 struct page *page_tail = page + i;
1663 BUG_ON(page_count(page_tail) <= 0);
1665 * Tail pages may be freed if there wasn't any mapping
1666 * like if add_to_swap() is running on a lru page that
1667 * had its mapping zapped. And freeing these pages
1668 * requires taking the lru_lock so we do the put_page
1669 * of the tail pages after the split is complete.
1671 put_page(page_tail);
1675 * Only the head page (now become a regular page) is required
1676 * to be pinned by the caller.
1678 BUG_ON(page_count(page) <= 0);
1681 static int __split_huge_page_map(struct page *page,
1682 struct vm_area_struct *vma,
1683 unsigned long address)
1685 struct mm_struct *mm = vma->vm_mm;
1686 pmd_t *pmd, _pmd;
1687 int ret = 0, i;
1688 pgtable_t pgtable;
1689 unsigned long haddr;
1691 spin_lock(&mm->page_table_lock);
1692 pmd = page_check_address_pmd(page, mm, address,
1693 PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
1694 if (pmd) {
1695 pgtable = pgtable_trans_huge_withdraw(mm);
1696 pmd_populate(mm, &_pmd, pgtable);
1698 haddr = address;
1699 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1700 pte_t *pte, entry;
1701 BUG_ON(PageCompound(page+i));
1702 entry = mk_pte(page + i, vma->vm_page_prot);
1703 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1704 if (!pmd_write(*pmd))
1705 entry = pte_wrprotect(entry);
1706 else
1707 BUG_ON(page_mapcount(page) != 1);
1708 if (!pmd_young(*pmd))
1709 entry = pte_mkold(entry);
1710 if (pmd_numa(*pmd))
1711 entry = pte_mknuma(entry);
1712 pte = pte_offset_map(&_pmd, haddr);
1713 BUG_ON(!pte_none(*pte));
1714 set_pte_at(mm, haddr, pte, entry);
1715 pte_unmap(pte);
1718 smp_wmb(); /* make pte visible before pmd */
1720 * Up to this point the pmd is present and huge and
1721 * userland has the whole access to the hugepage
1722 * during the split (which happens in place). If we
1723 * overwrite the pmd with the not-huge version
1724 * pointing to the pte here (which of course we could
1725 * if all CPUs were bug free), userland could trigger
1726 * a small page size TLB miss on the small sized TLB
1727 * while the hugepage TLB entry is still established
1728 * in the huge TLB. Some CPU doesn't like that. See
1729 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1730 * Erratum 383 on page 93. Intel should be safe but is
1731 * also warns that it's only safe if the permission
1732 * and cache attributes of the two entries loaded in
1733 * the two TLB is identical (which should be the case
1734 * here). But it is generally safer to never allow
1735 * small and huge TLB entries for the same virtual
1736 * address to be loaded simultaneously. So instead of
1737 * doing "pmd_populate(); flush_tlb_range();" we first
1738 * mark the current pmd notpresent (atomically because
1739 * here the pmd_trans_huge and pmd_trans_splitting
1740 * must remain set at all times on the pmd until the
1741 * split is complete for this pmd), then we flush the
1742 * SMP TLB and finally we write the non-huge version
1743 * of the pmd entry with pmd_populate.
1745 pmdp_invalidate(vma, address, pmd);
1746 pmd_populate(mm, pmd, pgtable);
1747 ret = 1;
1749 spin_unlock(&mm->page_table_lock);
1751 return ret;
1754 /* must be called with anon_vma->root->rwsem held */
1755 static void __split_huge_page(struct page *page,
1756 struct anon_vma *anon_vma)
1758 int mapcount, mapcount2;
1759 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1760 struct anon_vma_chain *avc;
1762 BUG_ON(!PageHead(page));
1763 BUG_ON(PageTail(page));
1765 mapcount = 0;
1766 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1767 struct vm_area_struct *vma = avc->vma;
1768 unsigned long addr = vma_address(page, vma);
1769 BUG_ON(is_vma_temporary_stack(vma));
1770 mapcount += __split_huge_page_splitting(page, vma, addr);
1773 * It is critical that new vmas are added to the tail of the
1774 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1775 * and establishes a child pmd before
1776 * __split_huge_page_splitting() freezes the parent pmd (so if
1777 * we fail to prevent copy_huge_pmd() from running until the
1778 * whole __split_huge_page() is complete), we will still see
1779 * the newly established pmd of the child later during the
1780 * walk, to be able to set it as pmd_trans_splitting too.
1782 if (mapcount != page_mapcount(page))
1783 printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1784 mapcount, page_mapcount(page));
1785 BUG_ON(mapcount != page_mapcount(page));
1787 __split_huge_page_refcount(page);
1789 mapcount2 = 0;
1790 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1791 struct vm_area_struct *vma = avc->vma;
1792 unsigned long addr = vma_address(page, vma);
1793 BUG_ON(is_vma_temporary_stack(vma));
1794 mapcount2 += __split_huge_page_map(page, vma, addr);
1796 if (mapcount != mapcount2)
1797 printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
1798 mapcount, mapcount2, page_mapcount(page));
1799 BUG_ON(mapcount != mapcount2);
1802 int split_huge_page(struct page *page)
1804 struct anon_vma *anon_vma;
1805 int ret = 1;
1807 BUG_ON(is_huge_zero_pfn(page_to_pfn(page)));
1808 BUG_ON(!PageAnon(page));
1811 * The caller does not necessarily hold an mmap_sem that would prevent
1812 * the anon_vma disappearing so we first we take a reference to it
1813 * and then lock the anon_vma for write. This is similar to
1814 * page_lock_anon_vma_read except the write lock is taken to serialise
1815 * against parallel split or collapse operations.
1817 anon_vma = page_get_anon_vma(page);
1818 if (!anon_vma)
1819 goto out;
1820 anon_vma_lock_write(anon_vma);
1822 ret = 0;
1823 if (!PageCompound(page))
1824 goto out_unlock;
1826 BUG_ON(!PageSwapBacked(page));
1827 __split_huge_page(page, anon_vma);
1828 count_vm_event(THP_SPLIT);
1830 BUG_ON(PageCompound(page));
1831 out_unlock:
1832 anon_vma_unlock_write(anon_vma);
1833 put_anon_vma(anon_vma);
1834 out:
1835 return ret;
1838 #define VM_NO_THP (VM_SPECIAL|VM_MIXEDMAP|VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
1840 int hugepage_madvise(struct vm_area_struct *vma,
1841 unsigned long *vm_flags, int advice)
1843 struct mm_struct *mm = vma->vm_mm;
1845 switch (advice) {
1846 case MADV_HUGEPAGE:
1848 * Be somewhat over-protective like KSM for now!
1850 if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
1851 return -EINVAL;
1852 if (mm->def_flags & VM_NOHUGEPAGE)
1853 return -EINVAL;
1854 *vm_flags &= ~VM_NOHUGEPAGE;
1855 *vm_flags |= VM_HUGEPAGE;
1857 * If the vma become good for khugepaged to scan,
1858 * register it here without waiting a page fault that
1859 * may not happen any time soon.
1861 if (unlikely(khugepaged_enter_vma_merge(vma)))
1862 return -ENOMEM;
1863 break;
1864 case MADV_NOHUGEPAGE:
1866 * Be somewhat over-protective like KSM for now!
1868 if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
1869 return -EINVAL;
1870 *vm_flags &= ~VM_HUGEPAGE;
1871 *vm_flags |= VM_NOHUGEPAGE;
1873 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1874 * this vma even if we leave the mm registered in khugepaged if
1875 * it got registered before VM_NOHUGEPAGE was set.
1877 break;
1880 return 0;
1883 static int __init khugepaged_slab_init(void)
1885 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1886 sizeof(struct mm_slot),
1887 __alignof__(struct mm_slot), 0, NULL);
1888 if (!mm_slot_cache)
1889 return -ENOMEM;
1891 return 0;
1894 static inline struct mm_slot *alloc_mm_slot(void)
1896 if (!mm_slot_cache) /* initialization failed */
1897 return NULL;
1898 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1901 static inline void free_mm_slot(struct mm_slot *mm_slot)
1903 kmem_cache_free(mm_slot_cache, mm_slot);
1906 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1908 struct mm_slot *mm_slot;
1910 hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
1911 if (mm == mm_slot->mm)
1912 return mm_slot;
1914 return NULL;
1917 static void insert_to_mm_slots_hash(struct mm_struct *mm,
1918 struct mm_slot *mm_slot)
1920 mm_slot->mm = mm;
1921 hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
1924 static inline int khugepaged_test_exit(struct mm_struct *mm)
1926 return atomic_read(&mm->mm_users) == 0;
1929 int __khugepaged_enter(struct mm_struct *mm)
1931 struct mm_slot *mm_slot;
1932 int wakeup;
1934 mm_slot = alloc_mm_slot();
1935 if (!mm_slot)
1936 return -ENOMEM;
1938 /* __khugepaged_exit() must not run from under us */
1939 VM_BUG_ON(khugepaged_test_exit(mm));
1940 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1941 free_mm_slot(mm_slot);
1942 return 0;
1945 spin_lock(&khugepaged_mm_lock);
1946 insert_to_mm_slots_hash(mm, mm_slot);
1948 * Insert just behind the scanning cursor, to let the area settle
1949 * down a little.
1951 wakeup = list_empty(&khugepaged_scan.mm_head);
1952 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1953 spin_unlock(&khugepaged_mm_lock);
1955 atomic_inc(&mm->mm_count);
1956 if (wakeup)
1957 wake_up_interruptible(&khugepaged_wait);
1959 return 0;
1962 int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
1964 unsigned long hstart, hend;
1965 if (!vma->anon_vma)
1967 * Not yet faulted in so we will register later in the
1968 * page fault if needed.
1970 return 0;
1971 if (vma->vm_ops)
1972 /* khugepaged not yet working on file or special mappings */
1973 return 0;
1974 VM_BUG_ON(vma->vm_flags & VM_NO_THP);
1975 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1976 hend = vma->vm_end & HPAGE_PMD_MASK;
1977 if (hstart < hend)
1978 return khugepaged_enter(vma);
1979 return 0;
1982 void __khugepaged_exit(struct mm_struct *mm)
1984 struct mm_slot *mm_slot;
1985 int free = 0;
1987 spin_lock(&khugepaged_mm_lock);
1988 mm_slot = get_mm_slot(mm);
1989 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
1990 hash_del(&mm_slot->hash);
1991 list_del(&mm_slot->mm_node);
1992 free = 1;
1994 spin_unlock(&khugepaged_mm_lock);
1996 if (free) {
1997 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1998 free_mm_slot(mm_slot);
1999 mmdrop(mm);
2000 } else if (mm_slot) {
2002 * This is required to serialize against
2003 * khugepaged_test_exit() (which is guaranteed to run
2004 * under mmap sem read mode). Stop here (after we
2005 * return all pagetables will be destroyed) until
2006 * khugepaged has finished working on the pagetables
2007 * under the mmap_sem.
2009 down_write(&mm->mmap_sem);
2010 up_write(&mm->mmap_sem);
2014 static void release_pte_page(struct page *page)
2016 /* 0 stands for page_is_file_cache(page) == false */
2017 dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
2018 unlock_page(page);
2019 putback_lru_page(page);
2022 static void release_pte_pages(pte_t *pte, pte_t *_pte)
2024 while (--_pte >= pte) {
2025 pte_t pteval = *_pte;
2026 if (!pte_none(pteval))
2027 release_pte_page(pte_page(pteval));
2031 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
2032 unsigned long address,
2033 pte_t *pte)
2035 struct page *page;
2036 pte_t *_pte;
2037 int referenced = 0, none = 0;
2038 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
2039 _pte++, address += PAGE_SIZE) {
2040 pte_t pteval = *_pte;
2041 if (pte_none(pteval)) {
2042 if (++none <= khugepaged_max_ptes_none)
2043 continue;
2044 else
2045 goto out;
2047 if (!pte_present(pteval) || !pte_write(pteval))
2048 goto out;
2049 page = vm_normal_page(vma, address, pteval);
2050 if (unlikely(!page))
2051 goto out;
2053 VM_BUG_ON(PageCompound(page));
2054 BUG_ON(!PageAnon(page));
2055 VM_BUG_ON(!PageSwapBacked(page));
2057 /* cannot use mapcount: can't collapse if there's a gup pin */
2058 if (page_count(page) != 1)
2059 goto out;
2061 * We can do it before isolate_lru_page because the
2062 * page can't be freed from under us. NOTE: PG_lock
2063 * is needed to serialize against split_huge_page
2064 * when invoked from the VM.
2066 if (!trylock_page(page))
2067 goto out;
2069 * Isolate the page to avoid collapsing an hugepage
2070 * currently in use by the VM.
2072 if (isolate_lru_page(page)) {
2073 unlock_page(page);
2074 goto out;
2076 /* 0 stands for page_is_file_cache(page) == false */
2077 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
2078 VM_BUG_ON(!PageLocked(page));
2079 VM_BUG_ON(PageLRU(page));
2081 /* If there is no mapped pte young don't collapse the page */
2082 if (pte_young(pteval) || PageReferenced(page) ||
2083 mmu_notifier_test_young(vma->vm_mm, address))
2084 referenced = 1;
2086 if (likely(referenced))
2087 return 1;
2088 out:
2089 release_pte_pages(pte, _pte);
2090 return 0;
2093 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
2094 struct vm_area_struct *vma,
2095 unsigned long address,
2096 spinlock_t *ptl)
2098 pte_t *_pte;
2099 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
2100 pte_t pteval = *_pte;
2101 struct page *src_page;
2103 if (pte_none(pteval)) {
2104 clear_user_highpage(page, address);
2105 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
2106 } else {
2107 src_page = pte_page(pteval);
2108 copy_user_highpage(page, src_page, address, vma);
2109 VM_BUG_ON(page_mapcount(src_page) != 1);
2110 release_pte_page(src_page);
2112 * ptl mostly unnecessary, but preempt has to
2113 * be disabled to update the per-cpu stats
2114 * inside page_remove_rmap().
2116 spin_lock(ptl);
2118 * paravirt calls inside pte_clear here are
2119 * superfluous.
2121 pte_clear(vma->vm_mm, address, _pte);
2122 page_remove_rmap(src_page);
2123 spin_unlock(ptl);
2124 free_page_and_swap_cache(src_page);
2127 address += PAGE_SIZE;
2128 page++;
2132 static void khugepaged_alloc_sleep(void)
2134 wait_event_freezable_timeout(khugepaged_wait, false,
2135 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2138 #ifdef CONFIG_NUMA
2139 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2141 if (IS_ERR(*hpage)) {
2142 if (!*wait)
2143 return false;
2145 *wait = false;
2146 *hpage = NULL;
2147 khugepaged_alloc_sleep();
2148 } else if (*hpage) {
2149 put_page(*hpage);
2150 *hpage = NULL;
2153 return true;
2156 static struct page
2157 *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2158 struct vm_area_struct *vma, unsigned long address,
2159 int node)
2161 VM_BUG_ON(*hpage);
2163 * Allocate the page while the vma is still valid and under
2164 * the mmap_sem read mode so there is no memory allocation
2165 * later when we take the mmap_sem in write mode. This is more
2166 * friendly behavior (OTOH it may actually hide bugs) to
2167 * filesystems in userland with daemons allocating memory in
2168 * the userland I/O paths. Allocating memory with the
2169 * mmap_sem in read mode is good idea also to allow greater
2170 * scalability.
2172 *hpage = alloc_hugepage_vma(khugepaged_defrag(), vma, address,
2173 node, __GFP_OTHER_NODE);
2176 * After allocating the hugepage, release the mmap_sem read lock in
2177 * preparation for taking it in write mode.
2179 up_read(&mm->mmap_sem);
2180 if (unlikely(!*hpage)) {
2181 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2182 *hpage = ERR_PTR(-ENOMEM);
2183 return NULL;
2186 count_vm_event(THP_COLLAPSE_ALLOC);
2187 return *hpage;
2189 #else
2190 static struct page *khugepaged_alloc_hugepage(bool *wait)
2192 struct page *hpage;
2194 do {
2195 hpage = alloc_hugepage(khugepaged_defrag());
2196 if (!hpage) {
2197 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2198 if (!*wait)
2199 return NULL;
2201 *wait = false;
2202 khugepaged_alloc_sleep();
2203 } else
2204 count_vm_event(THP_COLLAPSE_ALLOC);
2205 } while (unlikely(!hpage) && likely(khugepaged_enabled()));
2207 return hpage;
2210 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2212 if (!*hpage)
2213 *hpage = khugepaged_alloc_hugepage(wait);
2215 if (unlikely(!*hpage))
2216 return false;
2218 return true;
2221 static struct page
2222 *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2223 struct vm_area_struct *vma, unsigned long address,
2224 int node)
2226 up_read(&mm->mmap_sem);
2227 VM_BUG_ON(!*hpage);
2228 return *hpage;
2230 #endif
2232 static bool hugepage_vma_check(struct vm_area_struct *vma)
2234 if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2235 (vma->vm_flags & VM_NOHUGEPAGE))
2236 return false;
2238 if (!vma->anon_vma || vma->vm_ops)
2239 return false;
2240 if (is_vma_temporary_stack(vma))
2241 return false;
2242 VM_BUG_ON(vma->vm_flags & VM_NO_THP);
2243 return true;
2246 static void collapse_huge_page(struct mm_struct *mm,
2247 unsigned long address,
2248 struct page **hpage,
2249 struct vm_area_struct *vma,
2250 int node)
2252 pmd_t *pmd, _pmd;
2253 pte_t *pte;
2254 pgtable_t pgtable;
2255 struct page *new_page;
2256 spinlock_t *ptl;
2257 int isolated;
2258 unsigned long hstart, hend;
2259 unsigned long mmun_start; /* For mmu_notifiers */
2260 unsigned long mmun_end; /* For mmu_notifiers */
2262 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2264 /* release the mmap_sem read lock. */
2265 new_page = khugepaged_alloc_page(hpage, mm, vma, address, node);
2266 if (!new_page)
2267 return;
2269 if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)))
2270 return;
2273 * Prevent all access to pagetables with the exception of
2274 * gup_fast later hanlded by the ptep_clear_flush and the VM
2275 * handled by the anon_vma lock + PG_lock.
2277 down_write(&mm->mmap_sem);
2278 if (unlikely(khugepaged_test_exit(mm)))
2279 goto out;
2281 vma = find_vma(mm, address);
2282 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2283 hend = vma->vm_end & HPAGE_PMD_MASK;
2284 if (address < hstart || address + HPAGE_PMD_SIZE > hend)
2285 goto out;
2286 if (!hugepage_vma_check(vma))
2287 goto out;
2288 pmd = mm_find_pmd(mm, address);
2289 if (!pmd)
2290 goto out;
2291 if (pmd_trans_huge(*pmd))
2292 goto out;
2294 anon_vma_lock_write(vma->anon_vma);
2296 pte = pte_offset_map(pmd, address);
2297 ptl = pte_lockptr(mm, pmd);
2299 mmun_start = address;
2300 mmun_end = address + HPAGE_PMD_SIZE;
2301 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2302 spin_lock(&mm->page_table_lock); /* probably unnecessary */
2304 * After this gup_fast can't run anymore. This also removes
2305 * any huge TLB entry from the CPU so we won't allow
2306 * huge and small TLB entries for the same virtual address
2307 * to avoid the risk of CPU bugs in that area.
2309 _pmd = pmdp_clear_flush(vma, address, pmd);
2310 spin_unlock(&mm->page_table_lock);
2311 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2313 spin_lock(ptl);
2314 isolated = __collapse_huge_page_isolate(vma, address, pte);
2315 spin_unlock(ptl);
2317 if (unlikely(!isolated)) {
2318 pte_unmap(pte);
2319 spin_lock(&mm->page_table_lock);
2320 BUG_ON(!pmd_none(*pmd));
2321 set_pmd_at(mm, address, pmd, _pmd);
2322 spin_unlock(&mm->page_table_lock);
2323 anon_vma_unlock_write(vma->anon_vma);
2324 goto out;
2328 * All pages are isolated and locked so anon_vma rmap
2329 * can't run anymore.
2331 anon_vma_unlock_write(vma->anon_vma);
2333 __collapse_huge_page_copy(pte, new_page, vma, address, ptl);
2334 pte_unmap(pte);
2335 __SetPageUptodate(new_page);
2336 pgtable = pmd_pgtable(_pmd);
2338 _pmd = mk_huge_pmd(new_page, vma);
2341 * spin_lock() below is not the equivalent of smp_wmb(), so
2342 * this is needed to avoid the copy_huge_page writes to become
2343 * visible after the set_pmd_at() write.
2345 smp_wmb();
2347 spin_lock(&mm->page_table_lock);
2348 BUG_ON(!pmd_none(*pmd));
2349 page_add_new_anon_rmap(new_page, vma, address);
2350 set_pmd_at(mm, address, pmd, _pmd);
2351 update_mmu_cache_pmd(vma, address, pmd);
2352 pgtable_trans_huge_deposit(mm, pgtable);
2353 spin_unlock(&mm->page_table_lock);
2355 *hpage = NULL;
2357 khugepaged_pages_collapsed++;
2358 out_up_write:
2359 up_write(&mm->mmap_sem);
2360 return;
2362 out:
2363 mem_cgroup_uncharge_page(new_page);
2364 goto out_up_write;
2367 static int khugepaged_scan_pmd(struct mm_struct *mm,
2368 struct vm_area_struct *vma,
2369 unsigned long address,
2370 struct page **hpage)
2372 pmd_t *pmd;
2373 pte_t *pte, *_pte;
2374 int ret = 0, referenced = 0, none = 0;
2375 struct page *page;
2376 unsigned long _address;
2377 spinlock_t *ptl;
2378 int node = NUMA_NO_NODE;
2380 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2382 pmd = mm_find_pmd(mm, address);
2383 if (!pmd)
2384 goto out;
2385 if (pmd_trans_huge(*pmd))
2386 goto out;
2388 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2389 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2390 _pte++, _address += PAGE_SIZE) {
2391 pte_t pteval = *_pte;
2392 if (pte_none(pteval)) {
2393 if (++none <= khugepaged_max_ptes_none)
2394 continue;
2395 else
2396 goto out_unmap;
2398 if (!pte_present(pteval) || !pte_write(pteval))
2399 goto out_unmap;
2400 page = vm_normal_page(vma, _address, pteval);
2401 if (unlikely(!page))
2402 goto out_unmap;
2404 * Chose the node of the first page. This could
2405 * be more sophisticated and look at more pages,
2406 * but isn't for now.
2408 if (node == NUMA_NO_NODE)
2409 node = page_to_nid(page);
2410 VM_BUG_ON(PageCompound(page));
2411 if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
2412 goto out_unmap;
2413 /* cannot use mapcount: can't collapse if there's a gup pin */
2414 if (page_count(page) != 1)
2415 goto out_unmap;
2416 if (pte_young(pteval) || PageReferenced(page) ||
2417 mmu_notifier_test_young(vma->vm_mm, address))
2418 referenced = 1;
2420 if (referenced)
2421 ret = 1;
2422 out_unmap:
2423 pte_unmap_unlock(pte, ptl);
2424 if (ret)
2425 /* collapse_huge_page will return with the mmap_sem released */
2426 collapse_huge_page(mm, address, hpage, vma, node);
2427 out:
2428 return ret;
2431 static void collect_mm_slot(struct mm_slot *mm_slot)
2433 struct mm_struct *mm = mm_slot->mm;
2435 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2437 if (khugepaged_test_exit(mm)) {
2438 /* free mm_slot */
2439 hash_del(&mm_slot->hash);
2440 list_del(&mm_slot->mm_node);
2443 * Not strictly needed because the mm exited already.
2445 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2448 /* khugepaged_mm_lock actually not necessary for the below */
2449 free_mm_slot(mm_slot);
2450 mmdrop(mm);
2454 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2455 struct page **hpage)
2456 __releases(&khugepaged_mm_lock)
2457 __acquires(&khugepaged_mm_lock)
2459 struct mm_slot *mm_slot;
2460 struct mm_struct *mm;
2461 struct vm_area_struct *vma;
2462 int progress = 0;
2464 VM_BUG_ON(!pages);
2465 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2467 if (khugepaged_scan.mm_slot)
2468 mm_slot = khugepaged_scan.mm_slot;
2469 else {
2470 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2471 struct mm_slot, mm_node);
2472 khugepaged_scan.address = 0;
2473 khugepaged_scan.mm_slot = mm_slot;
2475 spin_unlock(&khugepaged_mm_lock);
2477 mm = mm_slot->mm;
2478 down_read(&mm->mmap_sem);
2479 if (unlikely(khugepaged_test_exit(mm)))
2480 vma = NULL;
2481 else
2482 vma = find_vma(mm, khugepaged_scan.address);
2484 progress++;
2485 for (; vma; vma = vma->vm_next) {
2486 unsigned long hstart, hend;
2488 cond_resched();
2489 if (unlikely(khugepaged_test_exit(mm))) {
2490 progress++;
2491 break;
2493 if (!hugepage_vma_check(vma)) {
2494 skip:
2495 progress++;
2496 continue;
2498 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2499 hend = vma->vm_end & HPAGE_PMD_MASK;
2500 if (hstart >= hend)
2501 goto skip;
2502 if (khugepaged_scan.address > hend)
2503 goto skip;
2504 if (khugepaged_scan.address < hstart)
2505 khugepaged_scan.address = hstart;
2506 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2508 while (khugepaged_scan.address < hend) {
2509 int ret;
2510 cond_resched();
2511 if (unlikely(khugepaged_test_exit(mm)))
2512 goto breakouterloop;
2514 VM_BUG_ON(khugepaged_scan.address < hstart ||
2515 khugepaged_scan.address + HPAGE_PMD_SIZE >
2516 hend);
2517 ret = khugepaged_scan_pmd(mm, vma,
2518 khugepaged_scan.address,
2519 hpage);
2520 /* move to next address */
2521 khugepaged_scan.address += HPAGE_PMD_SIZE;
2522 progress += HPAGE_PMD_NR;
2523 if (ret)
2524 /* we released mmap_sem so break loop */
2525 goto breakouterloop_mmap_sem;
2526 if (progress >= pages)
2527 goto breakouterloop;
2530 breakouterloop:
2531 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2532 breakouterloop_mmap_sem:
2534 spin_lock(&khugepaged_mm_lock);
2535 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2537 * Release the current mm_slot if this mm is about to die, or
2538 * if we scanned all vmas of this mm.
2540 if (khugepaged_test_exit(mm) || !vma) {
2542 * Make sure that if mm_users is reaching zero while
2543 * khugepaged runs here, khugepaged_exit will find
2544 * mm_slot not pointing to the exiting mm.
2546 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2547 khugepaged_scan.mm_slot = list_entry(
2548 mm_slot->mm_node.next,
2549 struct mm_slot, mm_node);
2550 khugepaged_scan.address = 0;
2551 } else {
2552 khugepaged_scan.mm_slot = NULL;
2553 khugepaged_full_scans++;
2556 collect_mm_slot(mm_slot);
2559 return progress;
2562 static int khugepaged_has_work(void)
2564 return !list_empty(&khugepaged_scan.mm_head) &&
2565 khugepaged_enabled();
2568 static int khugepaged_wait_event(void)
2570 return !list_empty(&khugepaged_scan.mm_head) ||
2571 kthread_should_stop();
2574 static void khugepaged_do_scan(void)
2576 struct page *hpage = NULL;
2577 unsigned int progress = 0, pass_through_head = 0;
2578 unsigned int pages = khugepaged_pages_to_scan;
2579 bool wait = true;
2581 barrier(); /* write khugepaged_pages_to_scan to local stack */
2583 while (progress < pages) {
2584 if (!khugepaged_prealloc_page(&hpage, &wait))
2585 break;
2587 cond_resched();
2589 if (unlikely(kthread_should_stop() || freezing(current)))
2590 break;
2592 spin_lock(&khugepaged_mm_lock);
2593 if (!khugepaged_scan.mm_slot)
2594 pass_through_head++;
2595 if (khugepaged_has_work() &&
2596 pass_through_head < 2)
2597 progress += khugepaged_scan_mm_slot(pages - progress,
2598 &hpage);
2599 else
2600 progress = pages;
2601 spin_unlock(&khugepaged_mm_lock);
2604 if (!IS_ERR_OR_NULL(hpage))
2605 put_page(hpage);
2608 static void khugepaged_wait_work(void)
2610 try_to_freeze();
2612 if (khugepaged_has_work()) {
2613 if (!khugepaged_scan_sleep_millisecs)
2614 return;
2616 wait_event_freezable_timeout(khugepaged_wait,
2617 kthread_should_stop(),
2618 msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2619 return;
2622 if (khugepaged_enabled())
2623 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2626 static int khugepaged(void *none)
2628 struct mm_slot *mm_slot;
2630 set_freezable();
2631 set_user_nice(current, 19);
2633 while (!kthread_should_stop()) {
2634 khugepaged_do_scan();
2635 khugepaged_wait_work();
2638 spin_lock(&khugepaged_mm_lock);
2639 mm_slot = khugepaged_scan.mm_slot;
2640 khugepaged_scan.mm_slot = NULL;
2641 if (mm_slot)
2642 collect_mm_slot(mm_slot);
2643 spin_unlock(&khugepaged_mm_lock);
2644 return 0;
2647 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2648 unsigned long haddr, pmd_t *pmd)
2650 struct mm_struct *mm = vma->vm_mm;
2651 pgtable_t pgtable;
2652 pmd_t _pmd;
2653 int i;
2655 pmdp_clear_flush(vma, haddr, pmd);
2656 /* leave pmd empty until pte is filled */
2658 pgtable = pgtable_trans_huge_withdraw(mm);
2659 pmd_populate(mm, &_pmd, pgtable);
2661 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2662 pte_t *pte, entry;
2663 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2664 entry = pte_mkspecial(entry);
2665 pte = pte_offset_map(&_pmd, haddr);
2666 VM_BUG_ON(!pte_none(*pte));
2667 set_pte_at(mm, haddr, pte, entry);
2668 pte_unmap(pte);
2670 smp_wmb(); /* make pte visible before pmd */
2671 pmd_populate(mm, pmd, pgtable);
2672 put_huge_zero_page();
2675 void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address,
2676 pmd_t *pmd)
2678 struct page *page;
2679 struct mm_struct *mm = vma->vm_mm;
2680 unsigned long haddr = address & HPAGE_PMD_MASK;
2681 unsigned long mmun_start; /* For mmu_notifiers */
2682 unsigned long mmun_end; /* For mmu_notifiers */
2684 BUG_ON(vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE);
2686 mmun_start = haddr;
2687 mmun_end = haddr + HPAGE_PMD_SIZE;
2688 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2689 spin_lock(&mm->page_table_lock);
2690 if (unlikely(!pmd_trans_huge(*pmd))) {
2691 spin_unlock(&mm->page_table_lock);
2692 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2693 return;
2695 if (is_huge_zero_pmd(*pmd)) {
2696 __split_huge_zero_page_pmd(vma, haddr, pmd);
2697 spin_unlock(&mm->page_table_lock);
2698 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2699 return;
2701 page = pmd_page(*pmd);
2702 VM_BUG_ON(!page_count(page));
2703 get_page(page);
2704 spin_unlock(&mm->page_table_lock);
2705 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2707 split_huge_page(page);
2709 put_page(page);
2710 BUG_ON(pmd_trans_huge(*pmd));
2713 void split_huge_page_pmd_mm(struct mm_struct *mm, unsigned long address,
2714 pmd_t *pmd)
2716 struct vm_area_struct *vma;
2718 vma = find_vma(mm, address);
2719 BUG_ON(vma == NULL);
2720 split_huge_page_pmd(vma, address, pmd);
2723 static void split_huge_page_address(struct mm_struct *mm,
2724 unsigned long address)
2726 pmd_t *pmd;
2728 VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2730 pmd = mm_find_pmd(mm, address);
2731 if (!pmd)
2732 return;
2734 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2735 * materialize from under us.
2737 split_huge_page_pmd_mm(mm, address, pmd);
2740 void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2741 unsigned long start,
2742 unsigned long end,
2743 long adjust_next)
2746 * If the new start address isn't hpage aligned and it could
2747 * previously contain an hugepage: check if we need to split
2748 * an huge pmd.
2750 if (start & ~HPAGE_PMD_MASK &&
2751 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2752 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2753 split_huge_page_address(vma->vm_mm, start);
2756 * If the new end address isn't hpage aligned and it could
2757 * previously contain an hugepage: check if we need to split
2758 * an huge pmd.
2760 if (end & ~HPAGE_PMD_MASK &&
2761 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2762 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2763 split_huge_page_address(vma->vm_mm, end);
2766 * If we're also updating the vma->vm_next->vm_start, if the new
2767 * vm_next->vm_start isn't page aligned and it could previously
2768 * contain an hugepage: check if we need to split an huge pmd.
2770 if (adjust_next > 0) {
2771 struct vm_area_struct *next = vma->vm_next;
2772 unsigned long nstart = next->vm_start;
2773 nstart += adjust_next << PAGE_SHIFT;
2774 if (nstart & ~HPAGE_PMD_MASK &&
2775 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2776 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2777 split_huge_page_address(next->vm_mm, nstart);