memcgroup: fix zone isolation OOM
[linux-2.6.git] / mm / memcontrol.c
blob9793873d5a9035c5987c0e301298479e9b21a698
1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
20 #include <linux/res_counter.h>
21 #include <linux/memcontrol.h>
22 #include <linux/cgroup.h>
23 #include <linux/mm.h>
24 #include <linux/page-flags.h>
25 #include <linux/backing-dev.h>
26 #include <linux/bit_spinlock.h>
27 #include <linux/rcupdate.h>
28 #include <linux/swap.h>
29 #include <linux/spinlock.h>
30 #include <linux/fs.h>
32 #include <asm/uaccess.h>
34 struct cgroup_subsys mem_cgroup_subsys;
35 static const int MEM_CGROUP_RECLAIM_RETRIES = 5;
38 * The memory controller data structure. The memory controller controls both
39 * page cache and RSS per cgroup. We would eventually like to provide
40 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
41 * to help the administrator determine what knobs to tune.
43 * TODO: Add a water mark for the memory controller. Reclaim will begin when
44 * we hit the water mark. May be even add a low water mark, such that
45 * no reclaim occurs from a cgroup at it's low water mark, this is
46 * a feature that will be implemented much later in the future.
48 struct mem_cgroup {
49 struct cgroup_subsys_state css;
51 * the counter to account for memory usage
53 struct res_counter res;
55 * Per cgroup active and inactive list, similar to the
56 * per zone LRU lists.
57 * TODO: Consider making these lists per zone
59 struct list_head active_list;
60 struct list_head inactive_list;
62 * spin_lock to protect the per cgroup LRU
64 spinlock_t lru_lock;
65 unsigned long control_type; /* control RSS or RSS+Pagecache */
69 * We use the lower bit of the page->page_cgroup pointer as a bit spin
70 * lock. We need to ensure that page->page_cgroup is atleast two
71 * byte aligned (based on comments from Nick Piggin)
73 #define PAGE_CGROUP_LOCK_BIT 0x0
74 #define PAGE_CGROUP_LOCK (1 << PAGE_CGROUP_LOCK_BIT)
77 * A page_cgroup page is associated with every page descriptor. The
78 * page_cgroup helps us identify information about the cgroup
80 struct page_cgroup {
81 struct list_head lru; /* per cgroup LRU list */
82 struct page *page;
83 struct mem_cgroup *mem_cgroup;
84 atomic_t ref_cnt; /* Helpful when pages move b/w */
85 /* mapped and cached states */
88 enum {
89 MEM_CGROUP_TYPE_UNSPEC = 0,
90 MEM_CGROUP_TYPE_MAPPED,
91 MEM_CGROUP_TYPE_CACHED,
92 MEM_CGROUP_TYPE_ALL,
93 MEM_CGROUP_TYPE_MAX,
96 static struct mem_cgroup init_mem_cgroup;
98 static inline
99 struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
101 return container_of(cgroup_subsys_state(cont,
102 mem_cgroup_subsys_id), struct mem_cgroup,
103 css);
106 static inline
107 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
109 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
110 struct mem_cgroup, css);
113 void mm_init_cgroup(struct mm_struct *mm, struct task_struct *p)
115 struct mem_cgroup *mem;
117 mem = mem_cgroup_from_task(p);
118 css_get(&mem->css);
119 mm->mem_cgroup = mem;
122 void mm_free_cgroup(struct mm_struct *mm)
124 css_put(&mm->mem_cgroup->css);
127 static inline int page_cgroup_locked(struct page *page)
129 return bit_spin_is_locked(PAGE_CGROUP_LOCK_BIT,
130 &page->page_cgroup);
133 void page_assign_page_cgroup(struct page *page, struct page_cgroup *pc)
135 int locked;
138 * While resetting the page_cgroup we might not hold the
139 * page_cgroup lock. free_hot_cold_page() is an example
140 * of such a scenario
142 if (pc)
143 VM_BUG_ON(!page_cgroup_locked(page));
144 locked = (page->page_cgroup & PAGE_CGROUP_LOCK);
145 page->page_cgroup = ((unsigned long)pc | locked);
148 struct page_cgroup *page_get_page_cgroup(struct page *page)
150 return (struct page_cgroup *)
151 (page->page_cgroup & ~PAGE_CGROUP_LOCK);
154 static void __always_inline lock_page_cgroup(struct page *page)
156 bit_spin_lock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
157 VM_BUG_ON(!page_cgroup_locked(page));
160 static void __always_inline unlock_page_cgroup(struct page *page)
162 bit_spin_unlock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
166 * Tie new page_cgroup to struct page under lock_page_cgroup()
167 * This can fail if the page has been tied to a page_cgroup.
168 * If success, returns 0.
170 static inline int
171 page_cgroup_assign_new_page_cgroup(struct page *page, struct page_cgroup *pc)
173 int ret = 0;
175 lock_page_cgroup(page);
176 if (!page_get_page_cgroup(page))
177 page_assign_page_cgroup(page, pc);
178 else /* A page is tied to other pc. */
179 ret = 1;
180 unlock_page_cgroup(page);
181 return ret;
185 * Clear page->page_cgroup member under lock_page_cgroup().
186 * If given "pc" value is different from one page->page_cgroup,
187 * page->cgroup is not cleared.
188 * Returns a value of page->page_cgroup at lock taken.
189 * A can can detect failure of clearing by following
190 * clear_page_cgroup(page, pc) == pc
193 static inline struct page_cgroup *
194 clear_page_cgroup(struct page *page, struct page_cgroup *pc)
196 struct page_cgroup *ret;
197 /* lock and clear */
198 lock_page_cgroup(page);
199 ret = page_get_page_cgroup(page);
200 if (likely(ret == pc))
201 page_assign_page_cgroup(page, NULL);
202 unlock_page_cgroup(page);
203 return ret;
207 static void __mem_cgroup_move_lists(struct page_cgroup *pc, bool active)
209 if (active)
210 list_move(&pc->lru, &pc->mem_cgroup->active_list);
211 else
212 list_move(&pc->lru, &pc->mem_cgroup->inactive_list);
215 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
217 int ret;
219 task_lock(task);
220 ret = task->mm && mm_cgroup(task->mm) == mem;
221 task_unlock(task);
222 return ret;
226 * This routine assumes that the appropriate zone's lru lock is already held
228 void mem_cgroup_move_lists(struct page_cgroup *pc, bool active)
230 struct mem_cgroup *mem;
231 if (!pc)
232 return;
234 mem = pc->mem_cgroup;
236 spin_lock(&mem->lru_lock);
237 __mem_cgroup_move_lists(pc, active);
238 spin_unlock(&mem->lru_lock);
241 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
242 struct list_head *dst,
243 unsigned long *scanned, int order,
244 int mode, struct zone *z,
245 struct mem_cgroup *mem_cont,
246 int active)
248 unsigned long nr_taken = 0;
249 struct page *page;
250 unsigned long scan;
251 LIST_HEAD(pc_list);
252 struct list_head *src;
253 struct page_cgroup *pc, *tmp;
255 if (active)
256 src = &mem_cont->active_list;
257 else
258 src = &mem_cont->inactive_list;
260 spin_lock(&mem_cont->lru_lock);
261 scan = 0;
262 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
263 if (scan >= nr_to_scan)
264 break;
265 page = pc->page;
266 VM_BUG_ON(!pc);
268 if (unlikely(!PageLRU(page)))
269 continue;
271 if (PageActive(page) && !active) {
272 __mem_cgroup_move_lists(pc, true);
273 continue;
275 if (!PageActive(page) && active) {
276 __mem_cgroup_move_lists(pc, false);
277 continue;
281 * Reclaim, per zone
282 * TODO: make the active/inactive lists per zone
284 if (page_zone(page) != z)
285 continue;
287 scan++;
288 list_move(&pc->lru, &pc_list);
290 if (__isolate_lru_page(page, mode) == 0) {
291 list_move(&page->lru, dst);
292 nr_taken++;
296 list_splice(&pc_list, src);
297 spin_unlock(&mem_cont->lru_lock);
299 *scanned = scan;
300 return nr_taken;
304 * Charge the memory controller for page usage.
305 * Return
306 * 0 if the charge was successful
307 * < 0 if the cgroup is over its limit
309 int mem_cgroup_charge(struct page *page, struct mm_struct *mm,
310 gfp_t gfp_mask)
312 struct mem_cgroup *mem;
313 struct page_cgroup *pc;
314 unsigned long flags;
315 unsigned long nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
318 * Should page_cgroup's go to their own slab?
319 * One could optimize the performance of the charging routine
320 * by saving a bit in the page_flags and using it as a lock
321 * to see if the cgroup page already has a page_cgroup associated
322 * with it
324 retry:
325 lock_page_cgroup(page);
326 pc = page_get_page_cgroup(page);
328 * The page_cgroup exists and the page has already been accounted
330 if (pc) {
331 if (unlikely(!atomic_inc_not_zero(&pc->ref_cnt))) {
332 /* this page is under being uncharged ? */
333 unlock_page_cgroup(page);
334 cpu_relax();
335 goto retry;
336 } else {
337 unlock_page_cgroup(page);
338 goto done;
342 unlock_page_cgroup(page);
344 pc = kzalloc(sizeof(struct page_cgroup), gfp_mask);
345 if (pc == NULL)
346 goto err;
348 rcu_read_lock();
350 * We always charge the cgroup the mm_struct belongs to
351 * the mm_struct's mem_cgroup changes on task migration if the
352 * thread group leader migrates. It's possible that mm is not
353 * set, if so charge the init_mm (happens for pagecache usage).
355 if (!mm)
356 mm = &init_mm;
358 mem = rcu_dereference(mm->mem_cgroup);
360 * For every charge from the cgroup, increment reference
361 * count
363 css_get(&mem->css);
364 rcu_read_unlock();
367 * If we created the page_cgroup, we should free it on exceeding
368 * the cgroup limit.
370 while (res_counter_charge(&mem->res, PAGE_SIZE)) {
371 bool is_atomic = gfp_mask & GFP_ATOMIC;
373 * We cannot reclaim under GFP_ATOMIC, fail the charge
375 if (is_atomic)
376 goto noreclaim;
378 if (try_to_free_mem_cgroup_pages(mem, gfp_mask))
379 continue;
382 * try_to_free_mem_cgroup_pages() might not give us a full
383 * picture of reclaim. Some pages are reclaimed and might be
384 * moved to swap cache or just unmapped from the cgroup.
385 * Check the limit again to see if the reclaim reduced the
386 * current usage of the cgroup before giving up
388 if (res_counter_check_under_limit(&mem->res))
389 continue;
391 * Since we control both RSS and cache, we end up with a
392 * very interesting scenario where we end up reclaiming
393 * memory (essentially RSS), since the memory is pushed
394 * to swap cache, we eventually end up adding those
395 * pages back to our list. Hence we give ourselves a
396 * few chances before we fail
398 else if (nr_retries--) {
399 congestion_wait(WRITE, HZ/10);
400 continue;
402 noreclaim:
403 css_put(&mem->css);
404 if (!is_atomic)
405 mem_cgroup_out_of_memory(mem, GFP_KERNEL);
406 goto free_pc;
409 atomic_set(&pc->ref_cnt, 1);
410 pc->mem_cgroup = mem;
411 pc->page = page;
412 if (page_cgroup_assign_new_page_cgroup(page, pc)) {
414 * an another charge is added to this page already.
415 * we do take lock_page_cgroup(page) again and read
416 * page->cgroup, increment refcnt.... just retry is OK.
418 res_counter_uncharge(&mem->res, PAGE_SIZE);
419 css_put(&mem->css);
420 kfree(pc);
421 goto retry;
424 spin_lock_irqsave(&mem->lru_lock, flags);
425 list_add(&pc->lru, &mem->active_list);
426 spin_unlock_irqrestore(&mem->lru_lock, flags);
428 done:
429 return 0;
430 free_pc:
431 kfree(pc);
432 err:
433 return -ENOMEM;
437 * See if the cached pages should be charged at all?
439 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
440 gfp_t gfp_mask)
442 struct mem_cgroup *mem;
443 if (!mm)
444 mm = &init_mm;
446 mem = rcu_dereference(mm->mem_cgroup);
447 if (mem->control_type == MEM_CGROUP_TYPE_ALL)
448 return mem_cgroup_charge(page, mm, gfp_mask);
449 else
450 return 0;
454 * Uncharging is always a welcome operation, we never complain, simply
455 * uncharge.
457 void mem_cgroup_uncharge(struct page_cgroup *pc)
459 struct mem_cgroup *mem;
460 struct page *page;
461 unsigned long flags;
464 * This can handle cases when a page is not charged at all and we
465 * are switching between handling the control_type.
467 if (!pc)
468 return;
470 if (atomic_dec_and_test(&pc->ref_cnt)) {
471 page = pc->page;
473 * get page->cgroup and clear it under lock.
475 if (clear_page_cgroup(page, pc) == pc) {
476 mem = pc->mem_cgroup;
477 css_put(&mem->css);
478 res_counter_uncharge(&mem->res, PAGE_SIZE);
479 spin_lock_irqsave(&mem->lru_lock, flags);
480 list_del_init(&pc->lru);
481 spin_unlock_irqrestore(&mem->lru_lock, flags);
482 kfree(pc);
483 } else {
485 * Note:This will be removed when force-empty patch is
486 * applied. just show warning here.
488 printk(KERN_ERR "Race in mem_cgroup_uncharge() ?");
489 dump_stack();
494 * Returns non-zero if a page (under migration) has valid page_cgroup member.
495 * Refcnt of page_cgroup is incremented.
498 int mem_cgroup_prepare_migration(struct page *page)
500 struct page_cgroup *pc;
501 int ret = 0;
502 lock_page_cgroup(page);
503 pc = page_get_page_cgroup(page);
504 if (pc && atomic_inc_not_zero(&pc->ref_cnt))
505 ret = 1;
506 unlock_page_cgroup(page);
507 return ret;
510 void mem_cgroup_end_migration(struct page *page)
512 struct page_cgroup *pc = page_get_page_cgroup(page);
513 mem_cgroup_uncharge(pc);
516 * We know both *page* and *newpage* are now not-on-LRU and Pg_locked.
517 * And no race with uncharge() routines because page_cgroup for *page*
518 * has extra one reference by mem_cgroup_prepare_migration.
521 void mem_cgroup_page_migration(struct page *page, struct page *newpage)
523 struct page_cgroup *pc;
524 retry:
525 pc = page_get_page_cgroup(page);
526 if (!pc)
527 return;
528 if (clear_page_cgroup(page, pc) != pc)
529 goto retry;
530 pc->page = newpage;
531 lock_page_cgroup(newpage);
532 page_assign_page_cgroup(newpage, pc);
533 unlock_page_cgroup(newpage);
534 return;
537 int mem_cgroup_write_strategy(char *buf, unsigned long long *tmp)
539 *tmp = memparse(buf, &buf);
540 if (*buf != '\0')
541 return -EINVAL;
544 * Round up the value to the closest page size
546 *tmp = ((*tmp + PAGE_SIZE - 1) >> PAGE_SHIFT) << PAGE_SHIFT;
547 return 0;
550 static ssize_t mem_cgroup_read(struct cgroup *cont,
551 struct cftype *cft, struct file *file,
552 char __user *userbuf, size_t nbytes, loff_t *ppos)
554 return res_counter_read(&mem_cgroup_from_cont(cont)->res,
555 cft->private, userbuf, nbytes, ppos,
556 NULL);
559 static ssize_t mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
560 struct file *file, const char __user *userbuf,
561 size_t nbytes, loff_t *ppos)
563 return res_counter_write(&mem_cgroup_from_cont(cont)->res,
564 cft->private, userbuf, nbytes, ppos,
565 mem_cgroup_write_strategy);
568 static ssize_t mem_control_type_write(struct cgroup *cont,
569 struct cftype *cft, struct file *file,
570 const char __user *userbuf,
571 size_t nbytes, loff_t *pos)
573 int ret;
574 char *buf, *end;
575 unsigned long tmp;
576 struct mem_cgroup *mem;
578 mem = mem_cgroup_from_cont(cont);
579 buf = kmalloc(nbytes + 1, GFP_KERNEL);
580 ret = -ENOMEM;
581 if (buf == NULL)
582 goto out;
584 buf[nbytes] = 0;
585 ret = -EFAULT;
586 if (copy_from_user(buf, userbuf, nbytes))
587 goto out_free;
589 ret = -EINVAL;
590 tmp = simple_strtoul(buf, &end, 10);
591 if (*end != '\0')
592 goto out_free;
594 if (tmp <= MEM_CGROUP_TYPE_UNSPEC || tmp >= MEM_CGROUP_TYPE_MAX)
595 goto out_free;
597 mem->control_type = tmp;
598 ret = nbytes;
599 out_free:
600 kfree(buf);
601 out:
602 return ret;
605 static ssize_t mem_control_type_read(struct cgroup *cont,
606 struct cftype *cft,
607 struct file *file, char __user *userbuf,
608 size_t nbytes, loff_t *ppos)
610 unsigned long val;
611 char buf[64], *s;
612 struct mem_cgroup *mem;
614 mem = mem_cgroup_from_cont(cont);
615 s = buf;
616 val = mem->control_type;
617 s += sprintf(s, "%lu\n", val);
618 return simple_read_from_buffer((void __user *)userbuf, nbytes,
619 ppos, buf, s - buf);
622 static struct cftype mem_cgroup_files[] = {
624 .name = "usage_in_bytes",
625 .private = RES_USAGE,
626 .read = mem_cgroup_read,
629 .name = "limit_in_bytes",
630 .private = RES_LIMIT,
631 .write = mem_cgroup_write,
632 .read = mem_cgroup_read,
635 .name = "failcnt",
636 .private = RES_FAILCNT,
637 .read = mem_cgroup_read,
640 .name = "control_type",
641 .write = mem_control_type_write,
642 .read = mem_control_type_read,
646 static struct mem_cgroup init_mem_cgroup;
648 static struct cgroup_subsys_state *
649 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
651 struct mem_cgroup *mem;
653 if (unlikely((cont->parent) == NULL)) {
654 mem = &init_mem_cgroup;
655 init_mm.mem_cgroup = mem;
656 } else
657 mem = kzalloc(sizeof(struct mem_cgroup), GFP_KERNEL);
659 if (mem == NULL)
660 return NULL;
662 res_counter_init(&mem->res);
663 INIT_LIST_HEAD(&mem->active_list);
664 INIT_LIST_HEAD(&mem->inactive_list);
665 spin_lock_init(&mem->lru_lock);
666 mem->control_type = MEM_CGROUP_TYPE_ALL;
667 return &mem->css;
670 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
671 struct cgroup *cont)
673 kfree(mem_cgroup_from_cont(cont));
676 static int mem_cgroup_populate(struct cgroup_subsys *ss,
677 struct cgroup *cont)
679 return cgroup_add_files(cont, ss, mem_cgroup_files,
680 ARRAY_SIZE(mem_cgroup_files));
683 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
684 struct cgroup *cont,
685 struct cgroup *old_cont,
686 struct task_struct *p)
688 struct mm_struct *mm;
689 struct mem_cgroup *mem, *old_mem;
691 mm = get_task_mm(p);
692 if (mm == NULL)
693 return;
695 mem = mem_cgroup_from_cont(cont);
696 old_mem = mem_cgroup_from_cont(old_cont);
698 if (mem == old_mem)
699 goto out;
702 * Only thread group leaders are allowed to migrate, the mm_struct is
703 * in effect owned by the leader
705 if (p->tgid != p->pid)
706 goto out;
708 css_get(&mem->css);
709 rcu_assign_pointer(mm->mem_cgroup, mem);
710 css_put(&old_mem->css);
712 out:
713 mmput(mm);
714 return;
717 struct cgroup_subsys mem_cgroup_subsys = {
718 .name = "memory",
719 .subsys_id = mem_cgroup_subsys_id,
720 .create = mem_cgroup_create,
721 .destroy = mem_cgroup_destroy,
722 .populate = mem_cgroup_populate,
723 .attach = mem_cgroup_move_task,
724 .early_init = 1,