fs/exec.c:de_thread(): use change_pid() rather than detach_pid/attach_pid
[linux-2.6.git] / mm / memcontrol.c
blob2e851f453814529d0a3e032e9e5e1dd009a4b34a
1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
28 #include <linux/res_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/mm.h>
32 #include <linux/hugetlb.h>
33 #include <linux/pagemap.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/sort.h>
49 #include <linux/fs.h>
50 #include <linux/seq_file.h>
51 #include <linux/vmalloc.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/page_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include "internal.h"
58 #include <net/sock.h>
59 #include <net/ip.h>
60 #include <net/tcp_memcontrol.h>
62 #include <asm/uaccess.h>
64 #include <trace/events/vmscan.h>
66 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
67 EXPORT_SYMBOL(mem_cgroup_subsys);
69 #define MEM_CGROUP_RECLAIM_RETRIES 5
70 static struct mem_cgroup *root_mem_cgroup __read_mostly;
72 #ifdef CONFIG_MEMCG_SWAP
73 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
74 int do_swap_account __read_mostly;
76 /* for remember boot option*/
77 #ifdef CONFIG_MEMCG_SWAP_ENABLED
78 static int really_do_swap_account __initdata = 1;
79 #else
80 static int really_do_swap_account __initdata = 0;
81 #endif
83 #else
84 #define do_swap_account 0
85 #endif
89 * Statistics for memory cgroup.
91 enum mem_cgroup_stat_index {
93 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
95 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
96 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
97 MEM_CGROUP_STAT_RSS_HUGE, /* # of pages charged as anon huge */
98 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
99 MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
100 MEM_CGROUP_STAT_NSTATS,
103 static const char * const mem_cgroup_stat_names[] = {
104 "cache",
105 "rss",
106 "rss_huge",
107 "mapped_file",
108 "swap",
111 enum mem_cgroup_events_index {
112 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
113 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
114 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
115 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
116 MEM_CGROUP_EVENTS_NSTATS,
119 static const char * const mem_cgroup_events_names[] = {
120 "pgpgin",
121 "pgpgout",
122 "pgfault",
123 "pgmajfault",
126 static const char * const mem_cgroup_lru_names[] = {
127 "inactive_anon",
128 "active_anon",
129 "inactive_file",
130 "active_file",
131 "unevictable",
135 * Per memcg event counter is incremented at every pagein/pageout. With THP,
136 * it will be incremated by the number of pages. This counter is used for
137 * for trigger some periodic events. This is straightforward and better
138 * than using jiffies etc. to handle periodic memcg event.
140 enum mem_cgroup_events_target {
141 MEM_CGROUP_TARGET_THRESH,
142 MEM_CGROUP_TARGET_SOFTLIMIT,
143 MEM_CGROUP_TARGET_NUMAINFO,
144 MEM_CGROUP_NTARGETS,
146 #define THRESHOLDS_EVENTS_TARGET 128
147 #define SOFTLIMIT_EVENTS_TARGET 1024
148 #define NUMAINFO_EVENTS_TARGET 1024
150 struct mem_cgroup_stat_cpu {
151 long count[MEM_CGROUP_STAT_NSTATS];
152 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
153 unsigned long nr_page_events;
154 unsigned long targets[MEM_CGROUP_NTARGETS];
157 struct mem_cgroup_reclaim_iter {
159 * last scanned hierarchy member. Valid only if last_dead_count
160 * matches memcg->dead_count of the hierarchy root group.
162 struct mem_cgroup *last_visited;
163 unsigned long last_dead_count;
165 /* scan generation, increased every round-trip */
166 unsigned int generation;
170 * per-zone information in memory controller.
172 struct mem_cgroup_per_zone {
173 struct lruvec lruvec;
174 unsigned long lru_size[NR_LRU_LISTS];
176 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
178 struct rb_node tree_node; /* RB tree node */
179 unsigned long long usage_in_excess;/* Set to the value by which */
180 /* the soft limit is exceeded*/
181 bool on_tree;
182 struct mem_cgroup *memcg; /* Back pointer, we cannot */
183 /* use container_of */
186 struct mem_cgroup_per_node {
187 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
190 struct mem_cgroup_lru_info {
191 struct mem_cgroup_per_node *nodeinfo[0];
195 * Cgroups above their limits are maintained in a RB-Tree, independent of
196 * their hierarchy representation
199 struct mem_cgroup_tree_per_zone {
200 struct rb_root rb_root;
201 spinlock_t lock;
204 struct mem_cgroup_tree_per_node {
205 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
208 struct mem_cgroup_tree {
209 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
212 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
214 struct mem_cgroup_threshold {
215 struct eventfd_ctx *eventfd;
216 u64 threshold;
219 /* For threshold */
220 struct mem_cgroup_threshold_ary {
221 /* An array index points to threshold just below or equal to usage. */
222 int current_threshold;
223 /* Size of entries[] */
224 unsigned int size;
225 /* Array of thresholds */
226 struct mem_cgroup_threshold entries[0];
229 struct mem_cgroup_thresholds {
230 /* Primary thresholds array */
231 struct mem_cgroup_threshold_ary *primary;
233 * Spare threshold array.
234 * This is needed to make mem_cgroup_unregister_event() "never fail".
235 * It must be able to store at least primary->size - 1 entries.
237 struct mem_cgroup_threshold_ary *spare;
240 /* for OOM */
241 struct mem_cgroup_eventfd_list {
242 struct list_head list;
243 struct eventfd_ctx *eventfd;
246 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
247 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
250 * The memory controller data structure. The memory controller controls both
251 * page cache and RSS per cgroup. We would eventually like to provide
252 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
253 * to help the administrator determine what knobs to tune.
255 * TODO: Add a water mark for the memory controller. Reclaim will begin when
256 * we hit the water mark. May be even add a low water mark, such that
257 * no reclaim occurs from a cgroup at it's low water mark, this is
258 * a feature that will be implemented much later in the future.
260 struct mem_cgroup {
261 struct cgroup_subsys_state css;
263 * the counter to account for memory usage
265 struct res_counter res;
267 /* vmpressure notifications */
268 struct vmpressure vmpressure;
270 union {
272 * the counter to account for mem+swap usage.
274 struct res_counter memsw;
277 * rcu_freeing is used only when freeing struct mem_cgroup,
278 * so put it into a union to avoid wasting more memory.
279 * It must be disjoint from the css field. It could be
280 * in a union with the res field, but res plays a much
281 * larger part in mem_cgroup life than memsw, and might
282 * be of interest, even at time of free, when debugging.
283 * So share rcu_head with the less interesting memsw.
285 struct rcu_head rcu_freeing;
287 * We also need some space for a worker in deferred freeing.
288 * By the time we call it, rcu_freeing is no longer in use.
290 struct work_struct work_freeing;
294 * the counter to account for kernel memory usage.
296 struct res_counter kmem;
298 * Should the accounting and control be hierarchical, per subtree?
300 bool use_hierarchy;
301 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
303 bool oom_lock;
304 atomic_t under_oom;
306 atomic_t refcnt;
308 int swappiness;
309 /* OOM-Killer disable */
310 int oom_kill_disable;
312 /* set when res.limit == memsw.limit */
313 bool memsw_is_minimum;
315 /* protect arrays of thresholds */
316 struct mutex thresholds_lock;
318 /* thresholds for memory usage. RCU-protected */
319 struct mem_cgroup_thresholds thresholds;
321 /* thresholds for mem+swap usage. RCU-protected */
322 struct mem_cgroup_thresholds memsw_thresholds;
324 /* For oom notifier event fd */
325 struct list_head oom_notify;
328 * Should we move charges of a task when a task is moved into this
329 * mem_cgroup ? And what type of charges should we move ?
331 unsigned long move_charge_at_immigrate;
333 * set > 0 if pages under this cgroup are moving to other cgroup.
335 atomic_t moving_account;
336 /* taken only while moving_account > 0 */
337 spinlock_t move_lock;
339 * percpu counter.
341 struct mem_cgroup_stat_cpu __percpu *stat;
343 * used when a cpu is offlined or other synchronizations
344 * See mem_cgroup_read_stat().
346 struct mem_cgroup_stat_cpu nocpu_base;
347 spinlock_t pcp_counter_lock;
349 atomic_t dead_count;
350 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
351 struct tcp_memcontrol tcp_mem;
352 #endif
353 #if defined(CONFIG_MEMCG_KMEM)
354 /* analogous to slab_common's slab_caches list. per-memcg */
355 struct list_head memcg_slab_caches;
356 /* Not a spinlock, we can take a lot of time walking the list */
357 struct mutex slab_caches_mutex;
358 /* Index in the kmem_cache->memcg_params->memcg_caches array */
359 int kmemcg_id;
360 #endif
362 int last_scanned_node;
363 #if MAX_NUMNODES > 1
364 nodemask_t scan_nodes;
365 atomic_t numainfo_events;
366 atomic_t numainfo_updating;
367 #endif
370 * Per cgroup active and inactive list, similar to the
371 * per zone LRU lists.
373 * WARNING: This has to be the last element of the struct. Don't
374 * add new fields after this point.
376 struct mem_cgroup_lru_info info;
379 static size_t memcg_size(void)
381 return sizeof(struct mem_cgroup) +
382 nr_node_ids * sizeof(struct mem_cgroup_per_node);
385 /* internal only representation about the status of kmem accounting. */
386 enum {
387 KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
388 KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
389 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
392 /* We account when limit is on, but only after call sites are patched */
393 #define KMEM_ACCOUNTED_MASK \
394 ((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
396 #ifdef CONFIG_MEMCG_KMEM
397 static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
399 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
402 static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
404 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
407 static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
409 set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
412 static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
414 clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
417 static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
419 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
420 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
423 static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
425 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
426 &memcg->kmem_account_flags);
428 #endif
430 /* Stuffs for move charges at task migration. */
432 * Types of charges to be moved. "move_charge_at_immitgrate" and
433 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
435 enum move_type {
436 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
437 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
438 NR_MOVE_TYPE,
441 /* "mc" and its members are protected by cgroup_mutex */
442 static struct move_charge_struct {
443 spinlock_t lock; /* for from, to */
444 struct mem_cgroup *from;
445 struct mem_cgroup *to;
446 unsigned long immigrate_flags;
447 unsigned long precharge;
448 unsigned long moved_charge;
449 unsigned long moved_swap;
450 struct task_struct *moving_task; /* a task moving charges */
451 wait_queue_head_t waitq; /* a waitq for other context */
452 } mc = {
453 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
454 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
457 static bool move_anon(void)
459 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
462 static bool move_file(void)
464 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
468 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
469 * limit reclaim to prevent infinite loops, if they ever occur.
471 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
472 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
474 enum charge_type {
475 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
476 MEM_CGROUP_CHARGE_TYPE_ANON,
477 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
478 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
479 NR_CHARGE_TYPE,
482 /* for encoding cft->private value on file */
483 enum res_type {
484 _MEM,
485 _MEMSWAP,
486 _OOM_TYPE,
487 _KMEM,
490 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
491 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
492 #define MEMFILE_ATTR(val) ((val) & 0xffff)
493 /* Used for OOM nofiier */
494 #define OOM_CONTROL (0)
497 * Reclaim flags for mem_cgroup_hierarchical_reclaim
499 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
500 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
501 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
502 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
505 * The memcg_create_mutex will be held whenever a new cgroup is created.
506 * As a consequence, any change that needs to protect against new child cgroups
507 * appearing has to hold it as well.
509 static DEFINE_MUTEX(memcg_create_mutex);
511 static void mem_cgroup_get(struct mem_cgroup *memcg);
512 static void mem_cgroup_put(struct mem_cgroup *memcg);
514 static inline
515 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
517 return container_of(s, struct mem_cgroup, css);
520 /* Some nice accessors for the vmpressure. */
521 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
523 if (!memcg)
524 memcg = root_mem_cgroup;
525 return &memcg->vmpressure;
528 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
530 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
533 struct vmpressure *css_to_vmpressure(struct cgroup_subsys_state *css)
535 return &mem_cgroup_from_css(css)->vmpressure;
538 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
540 return (memcg == root_mem_cgroup);
543 /* Writing them here to avoid exposing memcg's inner layout */
544 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
546 void sock_update_memcg(struct sock *sk)
548 if (mem_cgroup_sockets_enabled) {
549 struct mem_cgroup *memcg;
550 struct cg_proto *cg_proto;
552 BUG_ON(!sk->sk_prot->proto_cgroup);
554 /* Socket cloning can throw us here with sk_cgrp already
555 * filled. It won't however, necessarily happen from
556 * process context. So the test for root memcg given
557 * the current task's memcg won't help us in this case.
559 * Respecting the original socket's memcg is a better
560 * decision in this case.
562 if (sk->sk_cgrp) {
563 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
564 mem_cgroup_get(sk->sk_cgrp->memcg);
565 return;
568 rcu_read_lock();
569 memcg = mem_cgroup_from_task(current);
570 cg_proto = sk->sk_prot->proto_cgroup(memcg);
571 if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) {
572 mem_cgroup_get(memcg);
573 sk->sk_cgrp = cg_proto;
575 rcu_read_unlock();
578 EXPORT_SYMBOL(sock_update_memcg);
580 void sock_release_memcg(struct sock *sk)
582 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
583 struct mem_cgroup *memcg;
584 WARN_ON(!sk->sk_cgrp->memcg);
585 memcg = sk->sk_cgrp->memcg;
586 mem_cgroup_put(memcg);
590 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
592 if (!memcg || mem_cgroup_is_root(memcg))
593 return NULL;
595 return &memcg->tcp_mem.cg_proto;
597 EXPORT_SYMBOL(tcp_proto_cgroup);
599 static void disarm_sock_keys(struct mem_cgroup *memcg)
601 if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
602 return;
603 static_key_slow_dec(&memcg_socket_limit_enabled);
605 #else
606 static void disarm_sock_keys(struct mem_cgroup *memcg)
609 #endif
611 #ifdef CONFIG_MEMCG_KMEM
613 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
614 * There are two main reasons for not using the css_id for this:
615 * 1) this works better in sparse environments, where we have a lot of memcgs,
616 * but only a few kmem-limited. Or also, if we have, for instance, 200
617 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
618 * 200 entry array for that.
620 * 2) In order not to violate the cgroup API, we would like to do all memory
621 * allocation in ->create(). At that point, we haven't yet allocated the
622 * css_id. Having a separate index prevents us from messing with the cgroup
623 * core for this
625 * The current size of the caches array is stored in
626 * memcg_limited_groups_array_size. It will double each time we have to
627 * increase it.
629 static DEFINE_IDA(kmem_limited_groups);
630 int memcg_limited_groups_array_size;
633 * MIN_SIZE is different than 1, because we would like to avoid going through
634 * the alloc/free process all the time. In a small machine, 4 kmem-limited
635 * cgroups is a reasonable guess. In the future, it could be a parameter or
636 * tunable, but that is strictly not necessary.
638 * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
639 * this constant directly from cgroup, but it is understandable that this is
640 * better kept as an internal representation in cgroup.c. In any case, the
641 * css_id space is not getting any smaller, and we don't have to necessarily
642 * increase ours as well if it increases.
644 #define MEMCG_CACHES_MIN_SIZE 4
645 #define MEMCG_CACHES_MAX_SIZE 65535
648 * A lot of the calls to the cache allocation functions are expected to be
649 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
650 * conditional to this static branch, we'll have to allow modules that does
651 * kmem_cache_alloc and the such to see this symbol as well
653 struct static_key memcg_kmem_enabled_key;
654 EXPORT_SYMBOL(memcg_kmem_enabled_key);
656 static void disarm_kmem_keys(struct mem_cgroup *memcg)
658 if (memcg_kmem_is_active(memcg)) {
659 static_key_slow_dec(&memcg_kmem_enabled_key);
660 ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
663 * This check can't live in kmem destruction function,
664 * since the charges will outlive the cgroup
666 WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
668 #else
669 static void disarm_kmem_keys(struct mem_cgroup *memcg)
672 #endif /* CONFIG_MEMCG_KMEM */
674 static void disarm_static_keys(struct mem_cgroup *memcg)
676 disarm_sock_keys(memcg);
677 disarm_kmem_keys(memcg);
680 static void drain_all_stock_async(struct mem_cgroup *memcg);
682 static struct mem_cgroup_per_zone *
683 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
685 VM_BUG_ON((unsigned)nid >= nr_node_ids);
686 return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
689 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
691 return &memcg->css;
694 static struct mem_cgroup_per_zone *
695 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
697 int nid = page_to_nid(page);
698 int zid = page_zonenum(page);
700 return mem_cgroup_zoneinfo(memcg, nid, zid);
703 static struct mem_cgroup_tree_per_zone *
704 soft_limit_tree_node_zone(int nid, int zid)
706 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
709 static struct mem_cgroup_tree_per_zone *
710 soft_limit_tree_from_page(struct page *page)
712 int nid = page_to_nid(page);
713 int zid = page_zonenum(page);
715 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
718 static void
719 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
720 struct mem_cgroup_per_zone *mz,
721 struct mem_cgroup_tree_per_zone *mctz,
722 unsigned long long new_usage_in_excess)
724 struct rb_node **p = &mctz->rb_root.rb_node;
725 struct rb_node *parent = NULL;
726 struct mem_cgroup_per_zone *mz_node;
728 if (mz->on_tree)
729 return;
731 mz->usage_in_excess = new_usage_in_excess;
732 if (!mz->usage_in_excess)
733 return;
734 while (*p) {
735 parent = *p;
736 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
737 tree_node);
738 if (mz->usage_in_excess < mz_node->usage_in_excess)
739 p = &(*p)->rb_left;
741 * We can't avoid mem cgroups that are over their soft
742 * limit by the same amount
744 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
745 p = &(*p)->rb_right;
747 rb_link_node(&mz->tree_node, parent, p);
748 rb_insert_color(&mz->tree_node, &mctz->rb_root);
749 mz->on_tree = true;
752 static void
753 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
754 struct mem_cgroup_per_zone *mz,
755 struct mem_cgroup_tree_per_zone *mctz)
757 if (!mz->on_tree)
758 return;
759 rb_erase(&mz->tree_node, &mctz->rb_root);
760 mz->on_tree = false;
763 static void
764 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
765 struct mem_cgroup_per_zone *mz,
766 struct mem_cgroup_tree_per_zone *mctz)
768 spin_lock(&mctz->lock);
769 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
770 spin_unlock(&mctz->lock);
774 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
776 unsigned long long excess;
777 struct mem_cgroup_per_zone *mz;
778 struct mem_cgroup_tree_per_zone *mctz;
779 int nid = page_to_nid(page);
780 int zid = page_zonenum(page);
781 mctz = soft_limit_tree_from_page(page);
784 * Necessary to update all ancestors when hierarchy is used.
785 * because their event counter is not touched.
787 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
788 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
789 excess = res_counter_soft_limit_excess(&memcg->res);
791 * We have to update the tree if mz is on RB-tree or
792 * mem is over its softlimit.
794 if (excess || mz->on_tree) {
795 spin_lock(&mctz->lock);
796 /* if on-tree, remove it */
797 if (mz->on_tree)
798 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
800 * Insert again. mz->usage_in_excess will be updated.
801 * If excess is 0, no tree ops.
803 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
804 spin_unlock(&mctz->lock);
809 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
811 int node, zone;
812 struct mem_cgroup_per_zone *mz;
813 struct mem_cgroup_tree_per_zone *mctz;
815 for_each_node(node) {
816 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
817 mz = mem_cgroup_zoneinfo(memcg, node, zone);
818 mctz = soft_limit_tree_node_zone(node, zone);
819 mem_cgroup_remove_exceeded(memcg, mz, mctz);
824 static struct mem_cgroup_per_zone *
825 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
827 struct rb_node *rightmost = NULL;
828 struct mem_cgroup_per_zone *mz;
830 retry:
831 mz = NULL;
832 rightmost = rb_last(&mctz->rb_root);
833 if (!rightmost)
834 goto done; /* Nothing to reclaim from */
836 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
838 * Remove the node now but someone else can add it back,
839 * we will to add it back at the end of reclaim to its correct
840 * position in the tree.
842 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
843 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
844 !css_tryget(&mz->memcg->css))
845 goto retry;
846 done:
847 return mz;
850 static struct mem_cgroup_per_zone *
851 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
853 struct mem_cgroup_per_zone *mz;
855 spin_lock(&mctz->lock);
856 mz = __mem_cgroup_largest_soft_limit_node(mctz);
857 spin_unlock(&mctz->lock);
858 return mz;
862 * Implementation Note: reading percpu statistics for memcg.
864 * Both of vmstat[] and percpu_counter has threshold and do periodic
865 * synchronization to implement "quick" read. There are trade-off between
866 * reading cost and precision of value. Then, we may have a chance to implement
867 * a periodic synchronizion of counter in memcg's counter.
869 * But this _read() function is used for user interface now. The user accounts
870 * memory usage by memory cgroup and he _always_ requires exact value because
871 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
872 * have to visit all online cpus and make sum. So, for now, unnecessary
873 * synchronization is not implemented. (just implemented for cpu hotplug)
875 * If there are kernel internal actions which can make use of some not-exact
876 * value, and reading all cpu value can be performance bottleneck in some
877 * common workload, threashold and synchonization as vmstat[] should be
878 * implemented.
880 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
881 enum mem_cgroup_stat_index idx)
883 long val = 0;
884 int cpu;
886 get_online_cpus();
887 for_each_online_cpu(cpu)
888 val += per_cpu(memcg->stat->count[idx], cpu);
889 #ifdef CONFIG_HOTPLUG_CPU
890 spin_lock(&memcg->pcp_counter_lock);
891 val += memcg->nocpu_base.count[idx];
892 spin_unlock(&memcg->pcp_counter_lock);
893 #endif
894 put_online_cpus();
895 return val;
898 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
899 bool charge)
901 int val = (charge) ? 1 : -1;
902 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
905 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
906 enum mem_cgroup_events_index idx)
908 unsigned long val = 0;
909 int cpu;
911 for_each_online_cpu(cpu)
912 val += per_cpu(memcg->stat->events[idx], cpu);
913 #ifdef CONFIG_HOTPLUG_CPU
914 spin_lock(&memcg->pcp_counter_lock);
915 val += memcg->nocpu_base.events[idx];
916 spin_unlock(&memcg->pcp_counter_lock);
917 #endif
918 return val;
921 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
922 struct page *page,
923 bool anon, int nr_pages)
925 preempt_disable();
928 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
929 * counted as CACHE even if it's on ANON LRU.
931 if (anon)
932 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
933 nr_pages);
934 else
935 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
936 nr_pages);
938 if (PageTransHuge(page))
939 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
940 nr_pages);
942 /* pagein of a big page is an event. So, ignore page size */
943 if (nr_pages > 0)
944 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
945 else {
946 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
947 nr_pages = -nr_pages; /* for event */
950 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
952 preempt_enable();
955 unsigned long
956 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
958 struct mem_cgroup_per_zone *mz;
960 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
961 return mz->lru_size[lru];
964 static unsigned long
965 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
966 unsigned int lru_mask)
968 struct mem_cgroup_per_zone *mz;
969 enum lru_list lru;
970 unsigned long ret = 0;
972 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
974 for_each_lru(lru) {
975 if (BIT(lru) & lru_mask)
976 ret += mz->lru_size[lru];
978 return ret;
981 static unsigned long
982 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
983 int nid, unsigned int lru_mask)
985 u64 total = 0;
986 int zid;
988 for (zid = 0; zid < MAX_NR_ZONES; zid++)
989 total += mem_cgroup_zone_nr_lru_pages(memcg,
990 nid, zid, lru_mask);
992 return total;
995 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
996 unsigned int lru_mask)
998 int nid;
999 u64 total = 0;
1001 for_each_node_state(nid, N_MEMORY)
1002 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
1003 return total;
1006 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
1007 enum mem_cgroup_events_target target)
1009 unsigned long val, next;
1011 val = __this_cpu_read(memcg->stat->nr_page_events);
1012 next = __this_cpu_read(memcg->stat->targets[target]);
1013 /* from time_after() in jiffies.h */
1014 if ((long)next - (long)val < 0) {
1015 switch (target) {
1016 case MEM_CGROUP_TARGET_THRESH:
1017 next = val + THRESHOLDS_EVENTS_TARGET;
1018 break;
1019 case MEM_CGROUP_TARGET_SOFTLIMIT:
1020 next = val + SOFTLIMIT_EVENTS_TARGET;
1021 break;
1022 case MEM_CGROUP_TARGET_NUMAINFO:
1023 next = val + NUMAINFO_EVENTS_TARGET;
1024 break;
1025 default:
1026 break;
1028 __this_cpu_write(memcg->stat->targets[target], next);
1029 return true;
1031 return false;
1035 * Check events in order.
1038 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
1040 preempt_disable();
1041 /* threshold event is triggered in finer grain than soft limit */
1042 if (unlikely(mem_cgroup_event_ratelimit(memcg,
1043 MEM_CGROUP_TARGET_THRESH))) {
1044 bool do_softlimit;
1045 bool do_numainfo __maybe_unused;
1047 do_softlimit = mem_cgroup_event_ratelimit(memcg,
1048 MEM_CGROUP_TARGET_SOFTLIMIT);
1049 #if MAX_NUMNODES > 1
1050 do_numainfo = mem_cgroup_event_ratelimit(memcg,
1051 MEM_CGROUP_TARGET_NUMAINFO);
1052 #endif
1053 preempt_enable();
1055 mem_cgroup_threshold(memcg);
1056 if (unlikely(do_softlimit))
1057 mem_cgroup_update_tree(memcg, page);
1058 #if MAX_NUMNODES > 1
1059 if (unlikely(do_numainfo))
1060 atomic_inc(&memcg->numainfo_events);
1061 #endif
1062 } else
1063 preempt_enable();
1066 struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
1068 return mem_cgroup_from_css(
1069 cgroup_subsys_state(cont, mem_cgroup_subsys_id));
1072 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1075 * mm_update_next_owner() may clear mm->owner to NULL
1076 * if it races with swapoff, page migration, etc.
1077 * So this can be called with p == NULL.
1079 if (unlikely(!p))
1080 return NULL;
1082 return mem_cgroup_from_css(task_subsys_state(p, mem_cgroup_subsys_id));
1085 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
1087 struct mem_cgroup *memcg = NULL;
1089 if (!mm)
1090 return NULL;
1092 * Because we have no locks, mm->owner's may be being moved to other
1093 * cgroup. We use css_tryget() here even if this looks
1094 * pessimistic (rather than adding locks here).
1096 rcu_read_lock();
1097 do {
1098 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1099 if (unlikely(!memcg))
1100 break;
1101 } while (!css_tryget(&memcg->css));
1102 rcu_read_unlock();
1103 return memcg;
1107 * Returns a next (in a pre-order walk) alive memcg (with elevated css
1108 * ref. count) or NULL if the whole root's subtree has been visited.
1110 * helper function to be used by mem_cgroup_iter
1112 static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
1113 struct mem_cgroup *last_visited)
1115 struct cgroup *prev_cgroup, *next_cgroup;
1118 * Root is not visited by cgroup iterators so it needs an
1119 * explicit visit.
1121 if (!last_visited)
1122 return root;
1124 prev_cgroup = (last_visited == root) ? NULL
1125 : last_visited->css.cgroup;
1126 skip_node:
1127 next_cgroup = cgroup_next_descendant_pre(
1128 prev_cgroup, root->css.cgroup);
1131 * Even if we found a group we have to make sure it is
1132 * alive. css && !memcg means that the groups should be
1133 * skipped and we should continue the tree walk.
1134 * last_visited css is safe to use because it is
1135 * protected by css_get and the tree walk is rcu safe.
1137 if (next_cgroup) {
1138 struct mem_cgroup *mem = mem_cgroup_from_cont(
1139 next_cgroup);
1140 if (css_tryget(&mem->css))
1141 return mem;
1142 else {
1143 prev_cgroup = next_cgroup;
1144 goto skip_node;
1148 return NULL;
1151 static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
1154 * When a group in the hierarchy below root is destroyed, the
1155 * hierarchy iterator can no longer be trusted since it might
1156 * have pointed to the destroyed group. Invalidate it.
1158 atomic_inc(&root->dead_count);
1161 static struct mem_cgroup *
1162 mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
1163 struct mem_cgroup *root,
1164 int *sequence)
1166 struct mem_cgroup *position = NULL;
1168 * A cgroup destruction happens in two stages: offlining and
1169 * release. They are separated by a RCU grace period.
1171 * If the iterator is valid, we may still race with an
1172 * offlining. The RCU lock ensures the object won't be
1173 * released, tryget will fail if we lost the race.
1175 *sequence = atomic_read(&root->dead_count);
1176 if (iter->last_dead_count == *sequence) {
1177 smp_rmb();
1178 position = iter->last_visited;
1179 if (position && !css_tryget(&position->css))
1180 position = NULL;
1182 return position;
1185 static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
1186 struct mem_cgroup *last_visited,
1187 struct mem_cgroup *new_position,
1188 int sequence)
1190 if (last_visited)
1191 css_put(&last_visited->css);
1193 * We store the sequence count from the time @last_visited was
1194 * loaded successfully instead of rereading it here so that we
1195 * don't lose destruction events in between. We could have
1196 * raced with the destruction of @new_position after all.
1198 iter->last_visited = new_position;
1199 smp_wmb();
1200 iter->last_dead_count = sequence;
1204 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1205 * @root: hierarchy root
1206 * @prev: previously returned memcg, NULL on first invocation
1207 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1209 * Returns references to children of the hierarchy below @root, or
1210 * @root itself, or %NULL after a full round-trip.
1212 * Caller must pass the return value in @prev on subsequent
1213 * invocations for reference counting, or use mem_cgroup_iter_break()
1214 * to cancel a hierarchy walk before the round-trip is complete.
1216 * Reclaimers can specify a zone and a priority level in @reclaim to
1217 * divide up the memcgs in the hierarchy among all concurrent
1218 * reclaimers operating on the same zone and priority.
1220 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1221 struct mem_cgroup *prev,
1222 struct mem_cgroup_reclaim_cookie *reclaim)
1224 struct mem_cgroup *memcg = NULL;
1225 struct mem_cgroup *last_visited = NULL;
1227 if (mem_cgroup_disabled())
1228 return NULL;
1230 if (!root)
1231 root = root_mem_cgroup;
1233 if (prev && !reclaim)
1234 last_visited = prev;
1236 if (!root->use_hierarchy && root != root_mem_cgroup) {
1237 if (prev)
1238 goto out_css_put;
1239 return root;
1242 rcu_read_lock();
1243 while (!memcg) {
1244 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1245 int uninitialized_var(seq);
1247 if (reclaim) {
1248 int nid = zone_to_nid(reclaim->zone);
1249 int zid = zone_idx(reclaim->zone);
1250 struct mem_cgroup_per_zone *mz;
1252 mz = mem_cgroup_zoneinfo(root, nid, zid);
1253 iter = &mz->reclaim_iter[reclaim->priority];
1254 if (prev && reclaim->generation != iter->generation) {
1255 iter->last_visited = NULL;
1256 goto out_unlock;
1259 last_visited = mem_cgroup_iter_load(iter, root, &seq);
1262 memcg = __mem_cgroup_iter_next(root, last_visited);
1264 if (reclaim) {
1265 mem_cgroup_iter_update(iter, last_visited, memcg, seq);
1267 if (!memcg)
1268 iter->generation++;
1269 else if (!prev && memcg)
1270 reclaim->generation = iter->generation;
1273 if (prev && !memcg)
1274 goto out_unlock;
1276 out_unlock:
1277 rcu_read_unlock();
1278 out_css_put:
1279 if (prev && prev != root)
1280 css_put(&prev->css);
1282 return memcg;
1286 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1287 * @root: hierarchy root
1288 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1290 void mem_cgroup_iter_break(struct mem_cgroup *root,
1291 struct mem_cgroup *prev)
1293 if (!root)
1294 root = root_mem_cgroup;
1295 if (prev && prev != root)
1296 css_put(&prev->css);
1300 * Iteration constructs for visiting all cgroups (under a tree). If
1301 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1302 * be used for reference counting.
1304 #define for_each_mem_cgroup_tree(iter, root) \
1305 for (iter = mem_cgroup_iter(root, NULL, NULL); \
1306 iter != NULL; \
1307 iter = mem_cgroup_iter(root, iter, NULL))
1309 #define for_each_mem_cgroup(iter) \
1310 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1311 iter != NULL; \
1312 iter = mem_cgroup_iter(NULL, iter, NULL))
1314 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1316 struct mem_cgroup *memcg;
1318 rcu_read_lock();
1319 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1320 if (unlikely(!memcg))
1321 goto out;
1323 switch (idx) {
1324 case PGFAULT:
1325 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1326 break;
1327 case PGMAJFAULT:
1328 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1329 break;
1330 default:
1331 BUG();
1333 out:
1334 rcu_read_unlock();
1336 EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1339 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1340 * @zone: zone of the wanted lruvec
1341 * @memcg: memcg of the wanted lruvec
1343 * Returns the lru list vector holding pages for the given @zone and
1344 * @mem. This can be the global zone lruvec, if the memory controller
1345 * is disabled.
1347 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1348 struct mem_cgroup *memcg)
1350 struct mem_cgroup_per_zone *mz;
1351 struct lruvec *lruvec;
1353 if (mem_cgroup_disabled()) {
1354 lruvec = &zone->lruvec;
1355 goto out;
1358 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1359 lruvec = &mz->lruvec;
1360 out:
1362 * Since a node can be onlined after the mem_cgroup was created,
1363 * we have to be prepared to initialize lruvec->zone here;
1364 * and if offlined then reonlined, we need to reinitialize it.
1366 if (unlikely(lruvec->zone != zone))
1367 lruvec->zone = zone;
1368 return lruvec;
1372 * Following LRU functions are allowed to be used without PCG_LOCK.
1373 * Operations are called by routine of global LRU independently from memcg.
1374 * What we have to take care of here is validness of pc->mem_cgroup.
1376 * Changes to pc->mem_cgroup happens when
1377 * 1. charge
1378 * 2. moving account
1379 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1380 * It is added to LRU before charge.
1381 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1382 * When moving account, the page is not on LRU. It's isolated.
1386 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1387 * @page: the page
1388 * @zone: zone of the page
1390 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1392 struct mem_cgroup_per_zone *mz;
1393 struct mem_cgroup *memcg;
1394 struct page_cgroup *pc;
1395 struct lruvec *lruvec;
1397 if (mem_cgroup_disabled()) {
1398 lruvec = &zone->lruvec;
1399 goto out;
1402 pc = lookup_page_cgroup(page);
1403 memcg = pc->mem_cgroup;
1406 * Surreptitiously switch any uncharged offlist page to root:
1407 * an uncharged page off lru does nothing to secure
1408 * its former mem_cgroup from sudden removal.
1410 * Our caller holds lru_lock, and PageCgroupUsed is updated
1411 * under page_cgroup lock: between them, they make all uses
1412 * of pc->mem_cgroup safe.
1414 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1415 pc->mem_cgroup = memcg = root_mem_cgroup;
1417 mz = page_cgroup_zoneinfo(memcg, page);
1418 lruvec = &mz->lruvec;
1419 out:
1421 * Since a node can be onlined after the mem_cgroup was created,
1422 * we have to be prepared to initialize lruvec->zone here;
1423 * and if offlined then reonlined, we need to reinitialize it.
1425 if (unlikely(lruvec->zone != zone))
1426 lruvec->zone = zone;
1427 return lruvec;
1431 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1432 * @lruvec: mem_cgroup per zone lru vector
1433 * @lru: index of lru list the page is sitting on
1434 * @nr_pages: positive when adding or negative when removing
1436 * This function must be called when a page is added to or removed from an
1437 * lru list.
1439 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1440 int nr_pages)
1442 struct mem_cgroup_per_zone *mz;
1443 unsigned long *lru_size;
1445 if (mem_cgroup_disabled())
1446 return;
1448 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1449 lru_size = mz->lru_size + lru;
1450 *lru_size += nr_pages;
1451 VM_BUG_ON((long)(*lru_size) < 0);
1455 * Checks whether given mem is same or in the root_mem_cgroup's
1456 * hierarchy subtree
1458 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1459 struct mem_cgroup *memcg)
1461 if (root_memcg == memcg)
1462 return true;
1463 if (!root_memcg->use_hierarchy || !memcg)
1464 return false;
1465 return css_is_ancestor(&memcg->css, &root_memcg->css);
1468 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1469 struct mem_cgroup *memcg)
1471 bool ret;
1473 rcu_read_lock();
1474 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1475 rcu_read_unlock();
1476 return ret;
1479 bool task_in_mem_cgroup(struct task_struct *task,
1480 const struct mem_cgroup *memcg)
1482 struct mem_cgroup *curr = NULL;
1483 struct task_struct *p;
1484 bool ret;
1486 p = find_lock_task_mm(task);
1487 if (p) {
1488 curr = try_get_mem_cgroup_from_mm(p->mm);
1489 task_unlock(p);
1490 } else {
1492 * All threads may have already detached their mm's, but the oom
1493 * killer still needs to detect if they have already been oom
1494 * killed to prevent needlessly killing additional tasks.
1496 rcu_read_lock();
1497 curr = mem_cgroup_from_task(task);
1498 if (curr)
1499 css_get(&curr->css);
1500 rcu_read_unlock();
1502 if (!curr)
1503 return false;
1505 * We should check use_hierarchy of "memcg" not "curr". Because checking
1506 * use_hierarchy of "curr" here make this function true if hierarchy is
1507 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1508 * hierarchy(even if use_hierarchy is disabled in "memcg").
1510 ret = mem_cgroup_same_or_subtree(memcg, curr);
1511 css_put(&curr->css);
1512 return ret;
1515 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1517 unsigned long inactive_ratio;
1518 unsigned long inactive;
1519 unsigned long active;
1520 unsigned long gb;
1522 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1523 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1525 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1526 if (gb)
1527 inactive_ratio = int_sqrt(10 * gb);
1528 else
1529 inactive_ratio = 1;
1531 return inactive * inactive_ratio < active;
1534 #define mem_cgroup_from_res_counter(counter, member) \
1535 container_of(counter, struct mem_cgroup, member)
1538 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1539 * @memcg: the memory cgroup
1541 * Returns the maximum amount of memory @mem can be charged with, in
1542 * pages.
1544 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1546 unsigned long long margin;
1548 margin = res_counter_margin(&memcg->res);
1549 if (do_swap_account)
1550 margin = min(margin, res_counter_margin(&memcg->memsw));
1551 return margin >> PAGE_SHIFT;
1554 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1556 struct cgroup *cgrp = memcg->css.cgroup;
1558 /* root ? */
1559 if (cgrp->parent == NULL)
1560 return vm_swappiness;
1562 return memcg->swappiness;
1566 * memcg->moving_account is used for checking possibility that some thread is
1567 * calling move_account(). When a thread on CPU-A starts moving pages under
1568 * a memcg, other threads should check memcg->moving_account under
1569 * rcu_read_lock(), like this:
1571 * CPU-A CPU-B
1572 * rcu_read_lock()
1573 * memcg->moving_account+1 if (memcg->mocing_account)
1574 * take heavy locks.
1575 * synchronize_rcu() update something.
1576 * rcu_read_unlock()
1577 * start move here.
1580 /* for quick checking without looking up memcg */
1581 atomic_t memcg_moving __read_mostly;
1583 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1585 atomic_inc(&memcg_moving);
1586 atomic_inc(&memcg->moving_account);
1587 synchronize_rcu();
1590 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1593 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1594 * We check NULL in callee rather than caller.
1596 if (memcg) {
1597 atomic_dec(&memcg_moving);
1598 atomic_dec(&memcg->moving_account);
1603 * 2 routines for checking "mem" is under move_account() or not.
1605 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1606 * is used for avoiding races in accounting. If true,
1607 * pc->mem_cgroup may be overwritten.
1609 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1610 * under hierarchy of moving cgroups. This is for
1611 * waiting at hith-memory prressure caused by "move".
1614 static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1616 VM_BUG_ON(!rcu_read_lock_held());
1617 return atomic_read(&memcg->moving_account) > 0;
1620 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1622 struct mem_cgroup *from;
1623 struct mem_cgroup *to;
1624 bool ret = false;
1626 * Unlike task_move routines, we access mc.to, mc.from not under
1627 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1629 spin_lock(&mc.lock);
1630 from = mc.from;
1631 to = mc.to;
1632 if (!from)
1633 goto unlock;
1635 ret = mem_cgroup_same_or_subtree(memcg, from)
1636 || mem_cgroup_same_or_subtree(memcg, to);
1637 unlock:
1638 spin_unlock(&mc.lock);
1639 return ret;
1642 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1644 if (mc.moving_task && current != mc.moving_task) {
1645 if (mem_cgroup_under_move(memcg)) {
1646 DEFINE_WAIT(wait);
1647 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1648 /* moving charge context might have finished. */
1649 if (mc.moving_task)
1650 schedule();
1651 finish_wait(&mc.waitq, &wait);
1652 return true;
1655 return false;
1659 * Take this lock when
1660 * - a code tries to modify page's memcg while it's USED.
1661 * - a code tries to modify page state accounting in a memcg.
1662 * see mem_cgroup_stolen(), too.
1664 static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1665 unsigned long *flags)
1667 spin_lock_irqsave(&memcg->move_lock, *flags);
1670 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1671 unsigned long *flags)
1673 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1676 #define K(x) ((x) << (PAGE_SHIFT-10))
1678 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1679 * @memcg: The memory cgroup that went over limit
1680 * @p: Task that is going to be killed
1682 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1683 * enabled
1685 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1687 struct cgroup *task_cgrp;
1688 struct cgroup *mem_cgrp;
1690 * Need a buffer in BSS, can't rely on allocations. The code relies
1691 * on the assumption that OOM is serialized for memory controller.
1692 * If this assumption is broken, revisit this code.
1694 static char memcg_name[PATH_MAX];
1695 int ret;
1696 struct mem_cgroup *iter;
1697 unsigned int i;
1699 if (!p)
1700 return;
1702 rcu_read_lock();
1704 mem_cgrp = memcg->css.cgroup;
1705 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1707 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1708 if (ret < 0) {
1710 * Unfortunately, we are unable to convert to a useful name
1711 * But we'll still print out the usage information
1713 rcu_read_unlock();
1714 goto done;
1716 rcu_read_unlock();
1718 pr_info("Task in %s killed", memcg_name);
1720 rcu_read_lock();
1721 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1722 if (ret < 0) {
1723 rcu_read_unlock();
1724 goto done;
1726 rcu_read_unlock();
1729 * Continues from above, so we don't need an KERN_ level
1731 pr_cont(" as a result of limit of %s\n", memcg_name);
1732 done:
1734 pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1735 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1736 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1737 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1738 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1739 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1740 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1741 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1742 pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1743 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1744 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1745 res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1747 for_each_mem_cgroup_tree(iter, memcg) {
1748 pr_info("Memory cgroup stats");
1750 rcu_read_lock();
1751 ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
1752 if (!ret)
1753 pr_cont(" for %s", memcg_name);
1754 rcu_read_unlock();
1755 pr_cont(":");
1757 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1758 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1759 continue;
1760 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1761 K(mem_cgroup_read_stat(iter, i)));
1764 for (i = 0; i < NR_LRU_LISTS; i++)
1765 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1766 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1768 pr_cont("\n");
1773 * This function returns the number of memcg under hierarchy tree. Returns
1774 * 1(self count) if no children.
1776 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1778 int num = 0;
1779 struct mem_cgroup *iter;
1781 for_each_mem_cgroup_tree(iter, memcg)
1782 num++;
1783 return num;
1787 * Return the memory (and swap, if configured) limit for a memcg.
1789 static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1791 u64 limit;
1793 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1796 * Do not consider swap space if we cannot swap due to swappiness
1798 if (mem_cgroup_swappiness(memcg)) {
1799 u64 memsw;
1801 limit += total_swap_pages << PAGE_SHIFT;
1802 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1805 * If memsw is finite and limits the amount of swap space
1806 * available to this memcg, return that limit.
1808 limit = min(limit, memsw);
1811 return limit;
1814 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1815 int order)
1817 struct mem_cgroup *iter;
1818 unsigned long chosen_points = 0;
1819 unsigned long totalpages;
1820 unsigned int points = 0;
1821 struct task_struct *chosen = NULL;
1824 * If current has a pending SIGKILL or is exiting, then automatically
1825 * select it. The goal is to allow it to allocate so that it may
1826 * quickly exit and free its memory.
1828 if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1829 set_thread_flag(TIF_MEMDIE);
1830 return;
1833 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1834 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1835 for_each_mem_cgroup_tree(iter, memcg) {
1836 struct cgroup *cgroup = iter->css.cgroup;
1837 struct cgroup_iter it;
1838 struct task_struct *task;
1840 cgroup_iter_start(cgroup, &it);
1841 while ((task = cgroup_iter_next(cgroup, &it))) {
1842 switch (oom_scan_process_thread(task, totalpages, NULL,
1843 false)) {
1844 case OOM_SCAN_SELECT:
1845 if (chosen)
1846 put_task_struct(chosen);
1847 chosen = task;
1848 chosen_points = ULONG_MAX;
1849 get_task_struct(chosen);
1850 /* fall through */
1851 case OOM_SCAN_CONTINUE:
1852 continue;
1853 case OOM_SCAN_ABORT:
1854 cgroup_iter_end(cgroup, &it);
1855 mem_cgroup_iter_break(memcg, iter);
1856 if (chosen)
1857 put_task_struct(chosen);
1858 return;
1859 case OOM_SCAN_OK:
1860 break;
1862 points = oom_badness(task, memcg, NULL, totalpages);
1863 if (points > chosen_points) {
1864 if (chosen)
1865 put_task_struct(chosen);
1866 chosen = task;
1867 chosen_points = points;
1868 get_task_struct(chosen);
1871 cgroup_iter_end(cgroup, &it);
1874 if (!chosen)
1875 return;
1876 points = chosen_points * 1000 / totalpages;
1877 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1878 NULL, "Memory cgroup out of memory");
1881 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1882 gfp_t gfp_mask,
1883 unsigned long flags)
1885 unsigned long total = 0;
1886 bool noswap = false;
1887 int loop;
1889 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1890 noswap = true;
1891 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1892 noswap = true;
1894 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1895 if (loop)
1896 drain_all_stock_async(memcg);
1897 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1899 * Allow limit shrinkers, which are triggered directly
1900 * by userspace, to catch signals and stop reclaim
1901 * after minimal progress, regardless of the margin.
1903 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1904 break;
1905 if (mem_cgroup_margin(memcg))
1906 break;
1908 * If nothing was reclaimed after two attempts, there
1909 * may be no reclaimable pages in this hierarchy.
1911 if (loop && !total)
1912 break;
1914 return total;
1918 * test_mem_cgroup_node_reclaimable
1919 * @memcg: the target memcg
1920 * @nid: the node ID to be checked.
1921 * @noswap : specify true here if the user wants flle only information.
1923 * This function returns whether the specified memcg contains any
1924 * reclaimable pages on a node. Returns true if there are any reclaimable
1925 * pages in the node.
1927 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1928 int nid, bool noswap)
1930 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1931 return true;
1932 if (noswap || !total_swap_pages)
1933 return false;
1934 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1935 return true;
1936 return false;
1939 #if MAX_NUMNODES > 1
1942 * Always updating the nodemask is not very good - even if we have an empty
1943 * list or the wrong list here, we can start from some node and traverse all
1944 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1947 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1949 int nid;
1951 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1952 * pagein/pageout changes since the last update.
1954 if (!atomic_read(&memcg->numainfo_events))
1955 return;
1956 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1957 return;
1959 /* make a nodemask where this memcg uses memory from */
1960 memcg->scan_nodes = node_states[N_MEMORY];
1962 for_each_node_mask(nid, node_states[N_MEMORY]) {
1964 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1965 node_clear(nid, memcg->scan_nodes);
1968 atomic_set(&memcg->numainfo_events, 0);
1969 atomic_set(&memcg->numainfo_updating, 0);
1973 * Selecting a node where we start reclaim from. Because what we need is just
1974 * reducing usage counter, start from anywhere is O,K. Considering
1975 * memory reclaim from current node, there are pros. and cons.
1977 * Freeing memory from current node means freeing memory from a node which
1978 * we'll use or we've used. So, it may make LRU bad. And if several threads
1979 * hit limits, it will see a contention on a node. But freeing from remote
1980 * node means more costs for memory reclaim because of memory latency.
1982 * Now, we use round-robin. Better algorithm is welcomed.
1984 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1986 int node;
1988 mem_cgroup_may_update_nodemask(memcg);
1989 node = memcg->last_scanned_node;
1991 node = next_node(node, memcg->scan_nodes);
1992 if (node == MAX_NUMNODES)
1993 node = first_node(memcg->scan_nodes);
1995 * We call this when we hit limit, not when pages are added to LRU.
1996 * No LRU may hold pages because all pages are UNEVICTABLE or
1997 * memcg is too small and all pages are not on LRU. In that case,
1998 * we use curret node.
2000 if (unlikely(node == MAX_NUMNODES))
2001 node = numa_node_id();
2003 memcg->last_scanned_node = node;
2004 return node;
2008 * Check all nodes whether it contains reclaimable pages or not.
2009 * For quick scan, we make use of scan_nodes. This will allow us to skip
2010 * unused nodes. But scan_nodes is lazily updated and may not cotain
2011 * enough new information. We need to do double check.
2013 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
2015 int nid;
2018 * quick check...making use of scan_node.
2019 * We can skip unused nodes.
2021 if (!nodes_empty(memcg->scan_nodes)) {
2022 for (nid = first_node(memcg->scan_nodes);
2023 nid < MAX_NUMNODES;
2024 nid = next_node(nid, memcg->scan_nodes)) {
2026 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
2027 return true;
2031 * Check rest of nodes.
2033 for_each_node_state(nid, N_MEMORY) {
2034 if (node_isset(nid, memcg->scan_nodes))
2035 continue;
2036 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
2037 return true;
2039 return false;
2042 #else
2043 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
2045 return 0;
2048 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
2050 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
2052 #endif
2054 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
2055 struct zone *zone,
2056 gfp_t gfp_mask,
2057 unsigned long *total_scanned)
2059 struct mem_cgroup *victim = NULL;
2060 int total = 0;
2061 int loop = 0;
2062 unsigned long excess;
2063 unsigned long nr_scanned;
2064 struct mem_cgroup_reclaim_cookie reclaim = {
2065 .zone = zone,
2066 .priority = 0,
2069 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
2071 while (1) {
2072 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
2073 if (!victim) {
2074 loop++;
2075 if (loop >= 2) {
2077 * If we have not been able to reclaim
2078 * anything, it might because there are
2079 * no reclaimable pages under this hierarchy
2081 if (!total)
2082 break;
2084 * We want to do more targeted reclaim.
2085 * excess >> 2 is not to excessive so as to
2086 * reclaim too much, nor too less that we keep
2087 * coming back to reclaim from this cgroup
2089 if (total >= (excess >> 2) ||
2090 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
2091 break;
2093 continue;
2095 if (!mem_cgroup_reclaimable(victim, false))
2096 continue;
2097 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
2098 zone, &nr_scanned);
2099 *total_scanned += nr_scanned;
2100 if (!res_counter_soft_limit_excess(&root_memcg->res))
2101 break;
2103 mem_cgroup_iter_break(root_memcg, victim);
2104 return total;
2108 * Check OOM-Killer is already running under our hierarchy.
2109 * If someone is running, return false.
2110 * Has to be called with memcg_oom_lock
2112 static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
2114 struct mem_cgroup *iter, *failed = NULL;
2116 for_each_mem_cgroup_tree(iter, memcg) {
2117 if (iter->oom_lock) {
2119 * this subtree of our hierarchy is already locked
2120 * so we cannot give a lock.
2122 failed = iter;
2123 mem_cgroup_iter_break(memcg, iter);
2124 break;
2125 } else
2126 iter->oom_lock = true;
2129 if (!failed)
2130 return true;
2133 * OK, we failed to lock the whole subtree so we have to clean up
2134 * what we set up to the failing subtree
2136 for_each_mem_cgroup_tree(iter, memcg) {
2137 if (iter == failed) {
2138 mem_cgroup_iter_break(memcg, iter);
2139 break;
2141 iter->oom_lock = false;
2143 return false;
2147 * Has to be called with memcg_oom_lock
2149 static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2151 struct mem_cgroup *iter;
2153 for_each_mem_cgroup_tree(iter, memcg)
2154 iter->oom_lock = false;
2155 return 0;
2158 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2160 struct mem_cgroup *iter;
2162 for_each_mem_cgroup_tree(iter, memcg)
2163 atomic_inc(&iter->under_oom);
2166 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2168 struct mem_cgroup *iter;
2171 * When a new child is created while the hierarchy is under oom,
2172 * mem_cgroup_oom_lock() may not be called. We have to use
2173 * atomic_add_unless() here.
2175 for_each_mem_cgroup_tree(iter, memcg)
2176 atomic_add_unless(&iter->under_oom, -1, 0);
2179 static DEFINE_SPINLOCK(memcg_oom_lock);
2180 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2182 struct oom_wait_info {
2183 struct mem_cgroup *memcg;
2184 wait_queue_t wait;
2187 static int memcg_oom_wake_function(wait_queue_t *wait,
2188 unsigned mode, int sync, void *arg)
2190 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2191 struct mem_cgroup *oom_wait_memcg;
2192 struct oom_wait_info *oom_wait_info;
2194 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2195 oom_wait_memcg = oom_wait_info->memcg;
2198 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
2199 * Then we can use css_is_ancestor without taking care of RCU.
2201 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2202 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
2203 return 0;
2204 return autoremove_wake_function(wait, mode, sync, arg);
2207 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
2209 /* for filtering, pass "memcg" as argument. */
2210 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
2213 static void memcg_oom_recover(struct mem_cgroup *memcg)
2215 if (memcg && atomic_read(&memcg->under_oom))
2216 memcg_wakeup_oom(memcg);
2220 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
2222 static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
2223 int order)
2225 struct oom_wait_info owait;
2226 bool locked, need_to_kill;
2228 owait.memcg = memcg;
2229 owait.wait.flags = 0;
2230 owait.wait.func = memcg_oom_wake_function;
2231 owait.wait.private = current;
2232 INIT_LIST_HEAD(&owait.wait.task_list);
2233 need_to_kill = true;
2234 mem_cgroup_mark_under_oom(memcg);
2236 /* At first, try to OOM lock hierarchy under memcg.*/
2237 spin_lock(&memcg_oom_lock);
2238 locked = mem_cgroup_oom_lock(memcg);
2240 * Even if signal_pending(), we can't quit charge() loop without
2241 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
2242 * under OOM is always welcomed, use TASK_KILLABLE here.
2244 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2245 if (!locked || memcg->oom_kill_disable)
2246 need_to_kill = false;
2247 if (locked)
2248 mem_cgroup_oom_notify(memcg);
2249 spin_unlock(&memcg_oom_lock);
2251 if (need_to_kill) {
2252 finish_wait(&memcg_oom_waitq, &owait.wait);
2253 mem_cgroup_out_of_memory(memcg, mask, order);
2254 } else {
2255 schedule();
2256 finish_wait(&memcg_oom_waitq, &owait.wait);
2258 spin_lock(&memcg_oom_lock);
2259 if (locked)
2260 mem_cgroup_oom_unlock(memcg);
2261 memcg_wakeup_oom(memcg);
2262 spin_unlock(&memcg_oom_lock);
2264 mem_cgroup_unmark_under_oom(memcg);
2266 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
2267 return false;
2268 /* Give chance to dying process */
2269 schedule_timeout_uninterruptible(1);
2270 return true;
2274 * Currently used to update mapped file statistics, but the routine can be
2275 * generalized to update other statistics as well.
2277 * Notes: Race condition
2279 * We usually use page_cgroup_lock() for accessing page_cgroup member but
2280 * it tends to be costly. But considering some conditions, we doesn't need
2281 * to do so _always_.
2283 * Considering "charge", lock_page_cgroup() is not required because all
2284 * file-stat operations happen after a page is attached to radix-tree. There
2285 * are no race with "charge".
2287 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2288 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2289 * if there are race with "uncharge". Statistics itself is properly handled
2290 * by flags.
2292 * Considering "move", this is an only case we see a race. To make the race
2293 * small, we check mm->moving_account and detect there are possibility of race
2294 * If there is, we take a lock.
2297 void __mem_cgroup_begin_update_page_stat(struct page *page,
2298 bool *locked, unsigned long *flags)
2300 struct mem_cgroup *memcg;
2301 struct page_cgroup *pc;
2303 pc = lookup_page_cgroup(page);
2304 again:
2305 memcg = pc->mem_cgroup;
2306 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2307 return;
2309 * If this memory cgroup is not under account moving, we don't
2310 * need to take move_lock_mem_cgroup(). Because we already hold
2311 * rcu_read_lock(), any calls to move_account will be delayed until
2312 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2314 if (!mem_cgroup_stolen(memcg))
2315 return;
2317 move_lock_mem_cgroup(memcg, flags);
2318 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2319 move_unlock_mem_cgroup(memcg, flags);
2320 goto again;
2322 *locked = true;
2325 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2327 struct page_cgroup *pc = lookup_page_cgroup(page);
2330 * It's guaranteed that pc->mem_cgroup never changes while
2331 * lock is held because a routine modifies pc->mem_cgroup
2332 * should take move_lock_mem_cgroup().
2334 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2337 void mem_cgroup_update_page_stat(struct page *page,
2338 enum mem_cgroup_page_stat_item idx, int val)
2340 struct mem_cgroup *memcg;
2341 struct page_cgroup *pc = lookup_page_cgroup(page);
2342 unsigned long uninitialized_var(flags);
2344 if (mem_cgroup_disabled())
2345 return;
2347 memcg = pc->mem_cgroup;
2348 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2349 return;
2351 switch (idx) {
2352 case MEMCG_NR_FILE_MAPPED:
2353 idx = MEM_CGROUP_STAT_FILE_MAPPED;
2354 break;
2355 default:
2356 BUG();
2359 this_cpu_add(memcg->stat->count[idx], val);
2363 * size of first charge trial. "32" comes from vmscan.c's magic value.
2364 * TODO: maybe necessary to use big numbers in big irons.
2366 #define CHARGE_BATCH 32U
2367 struct memcg_stock_pcp {
2368 struct mem_cgroup *cached; /* this never be root cgroup */
2369 unsigned int nr_pages;
2370 struct work_struct work;
2371 unsigned long flags;
2372 #define FLUSHING_CACHED_CHARGE 0
2374 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2375 static DEFINE_MUTEX(percpu_charge_mutex);
2378 * consume_stock: Try to consume stocked charge on this cpu.
2379 * @memcg: memcg to consume from.
2380 * @nr_pages: how many pages to charge.
2382 * The charges will only happen if @memcg matches the current cpu's memcg
2383 * stock, and at least @nr_pages are available in that stock. Failure to
2384 * service an allocation will refill the stock.
2386 * returns true if successful, false otherwise.
2388 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2390 struct memcg_stock_pcp *stock;
2391 bool ret = true;
2393 if (nr_pages > CHARGE_BATCH)
2394 return false;
2396 stock = &get_cpu_var(memcg_stock);
2397 if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2398 stock->nr_pages -= nr_pages;
2399 else /* need to call res_counter_charge */
2400 ret = false;
2401 put_cpu_var(memcg_stock);
2402 return ret;
2406 * Returns stocks cached in percpu to res_counter and reset cached information.
2408 static void drain_stock(struct memcg_stock_pcp *stock)
2410 struct mem_cgroup *old = stock->cached;
2412 if (stock->nr_pages) {
2413 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2415 res_counter_uncharge(&old->res, bytes);
2416 if (do_swap_account)
2417 res_counter_uncharge(&old->memsw, bytes);
2418 stock->nr_pages = 0;
2420 stock->cached = NULL;
2424 * This must be called under preempt disabled or must be called by
2425 * a thread which is pinned to local cpu.
2427 static void drain_local_stock(struct work_struct *dummy)
2429 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2430 drain_stock(stock);
2431 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2434 static void __init memcg_stock_init(void)
2436 int cpu;
2438 for_each_possible_cpu(cpu) {
2439 struct memcg_stock_pcp *stock =
2440 &per_cpu(memcg_stock, cpu);
2441 INIT_WORK(&stock->work, drain_local_stock);
2446 * Cache charges(val) which is from res_counter, to local per_cpu area.
2447 * This will be consumed by consume_stock() function, later.
2449 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2451 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2453 if (stock->cached != memcg) { /* reset if necessary */
2454 drain_stock(stock);
2455 stock->cached = memcg;
2457 stock->nr_pages += nr_pages;
2458 put_cpu_var(memcg_stock);
2462 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2463 * of the hierarchy under it. sync flag says whether we should block
2464 * until the work is done.
2466 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2468 int cpu, curcpu;
2470 /* Notify other cpus that system-wide "drain" is running */
2471 get_online_cpus();
2472 curcpu = get_cpu();
2473 for_each_online_cpu(cpu) {
2474 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2475 struct mem_cgroup *memcg;
2477 memcg = stock->cached;
2478 if (!memcg || !stock->nr_pages)
2479 continue;
2480 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2481 continue;
2482 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2483 if (cpu == curcpu)
2484 drain_local_stock(&stock->work);
2485 else
2486 schedule_work_on(cpu, &stock->work);
2489 put_cpu();
2491 if (!sync)
2492 goto out;
2494 for_each_online_cpu(cpu) {
2495 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2496 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2497 flush_work(&stock->work);
2499 out:
2500 put_online_cpus();
2504 * Tries to drain stocked charges in other cpus. This function is asynchronous
2505 * and just put a work per cpu for draining localy on each cpu. Caller can
2506 * expects some charges will be back to res_counter later but cannot wait for
2507 * it.
2509 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2512 * If someone calls draining, avoid adding more kworker runs.
2514 if (!mutex_trylock(&percpu_charge_mutex))
2515 return;
2516 drain_all_stock(root_memcg, false);
2517 mutex_unlock(&percpu_charge_mutex);
2520 /* This is a synchronous drain interface. */
2521 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2523 /* called when force_empty is called */
2524 mutex_lock(&percpu_charge_mutex);
2525 drain_all_stock(root_memcg, true);
2526 mutex_unlock(&percpu_charge_mutex);
2530 * This function drains percpu counter value from DEAD cpu and
2531 * move it to local cpu. Note that this function can be preempted.
2533 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2535 int i;
2537 spin_lock(&memcg->pcp_counter_lock);
2538 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2539 long x = per_cpu(memcg->stat->count[i], cpu);
2541 per_cpu(memcg->stat->count[i], cpu) = 0;
2542 memcg->nocpu_base.count[i] += x;
2544 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2545 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2547 per_cpu(memcg->stat->events[i], cpu) = 0;
2548 memcg->nocpu_base.events[i] += x;
2550 spin_unlock(&memcg->pcp_counter_lock);
2553 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2554 unsigned long action,
2555 void *hcpu)
2557 int cpu = (unsigned long)hcpu;
2558 struct memcg_stock_pcp *stock;
2559 struct mem_cgroup *iter;
2561 if (action == CPU_ONLINE)
2562 return NOTIFY_OK;
2564 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2565 return NOTIFY_OK;
2567 for_each_mem_cgroup(iter)
2568 mem_cgroup_drain_pcp_counter(iter, cpu);
2570 stock = &per_cpu(memcg_stock, cpu);
2571 drain_stock(stock);
2572 return NOTIFY_OK;
2576 /* See __mem_cgroup_try_charge() for details */
2577 enum {
2578 CHARGE_OK, /* success */
2579 CHARGE_RETRY, /* need to retry but retry is not bad */
2580 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2581 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2582 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2585 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2586 unsigned int nr_pages, unsigned int min_pages,
2587 bool oom_check)
2589 unsigned long csize = nr_pages * PAGE_SIZE;
2590 struct mem_cgroup *mem_over_limit;
2591 struct res_counter *fail_res;
2592 unsigned long flags = 0;
2593 int ret;
2595 ret = res_counter_charge(&memcg->res, csize, &fail_res);
2597 if (likely(!ret)) {
2598 if (!do_swap_account)
2599 return CHARGE_OK;
2600 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2601 if (likely(!ret))
2602 return CHARGE_OK;
2604 res_counter_uncharge(&memcg->res, csize);
2605 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2606 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2607 } else
2608 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2610 * Never reclaim on behalf of optional batching, retry with a
2611 * single page instead.
2613 if (nr_pages > min_pages)
2614 return CHARGE_RETRY;
2616 if (!(gfp_mask & __GFP_WAIT))
2617 return CHARGE_WOULDBLOCK;
2619 if (gfp_mask & __GFP_NORETRY)
2620 return CHARGE_NOMEM;
2622 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2623 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2624 return CHARGE_RETRY;
2626 * Even though the limit is exceeded at this point, reclaim
2627 * may have been able to free some pages. Retry the charge
2628 * before killing the task.
2630 * Only for regular pages, though: huge pages are rather
2631 * unlikely to succeed so close to the limit, and we fall back
2632 * to regular pages anyway in case of failure.
2634 if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2635 return CHARGE_RETRY;
2638 * At task move, charge accounts can be doubly counted. So, it's
2639 * better to wait until the end of task_move if something is going on.
2641 if (mem_cgroup_wait_acct_move(mem_over_limit))
2642 return CHARGE_RETRY;
2644 /* If we don't need to call oom-killer at el, return immediately */
2645 if (!oom_check)
2646 return CHARGE_NOMEM;
2647 /* check OOM */
2648 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2649 return CHARGE_OOM_DIE;
2651 return CHARGE_RETRY;
2655 * __mem_cgroup_try_charge() does
2656 * 1. detect memcg to be charged against from passed *mm and *ptr,
2657 * 2. update res_counter
2658 * 3. call memory reclaim if necessary.
2660 * In some special case, if the task is fatal, fatal_signal_pending() or
2661 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2662 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2663 * as possible without any hazards. 2: all pages should have a valid
2664 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2665 * pointer, that is treated as a charge to root_mem_cgroup.
2667 * So __mem_cgroup_try_charge() will return
2668 * 0 ... on success, filling *ptr with a valid memcg pointer.
2669 * -ENOMEM ... charge failure because of resource limits.
2670 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2672 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2673 * the oom-killer can be invoked.
2675 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2676 gfp_t gfp_mask,
2677 unsigned int nr_pages,
2678 struct mem_cgroup **ptr,
2679 bool oom)
2681 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2682 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2683 struct mem_cgroup *memcg = NULL;
2684 int ret;
2687 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2688 * in system level. So, allow to go ahead dying process in addition to
2689 * MEMDIE process.
2691 if (unlikely(test_thread_flag(TIF_MEMDIE)
2692 || fatal_signal_pending(current)))
2693 goto bypass;
2696 * We always charge the cgroup the mm_struct belongs to.
2697 * The mm_struct's mem_cgroup changes on task migration if the
2698 * thread group leader migrates. It's possible that mm is not
2699 * set, if so charge the root memcg (happens for pagecache usage).
2701 if (!*ptr && !mm)
2702 *ptr = root_mem_cgroup;
2703 again:
2704 if (*ptr) { /* css should be a valid one */
2705 memcg = *ptr;
2706 if (mem_cgroup_is_root(memcg))
2707 goto done;
2708 if (consume_stock(memcg, nr_pages))
2709 goto done;
2710 css_get(&memcg->css);
2711 } else {
2712 struct task_struct *p;
2714 rcu_read_lock();
2715 p = rcu_dereference(mm->owner);
2717 * Because we don't have task_lock(), "p" can exit.
2718 * In that case, "memcg" can point to root or p can be NULL with
2719 * race with swapoff. Then, we have small risk of mis-accouning.
2720 * But such kind of mis-account by race always happens because
2721 * we don't have cgroup_mutex(). It's overkill and we allo that
2722 * small race, here.
2723 * (*) swapoff at el will charge against mm-struct not against
2724 * task-struct. So, mm->owner can be NULL.
2726 memcg = mem_cgroup_from_task(p);
2727 if (!memcg)
2728 memcg = root_mem_cgroup;
2729 if (mem_cgroup_is_root(memcg)) {
2730 rcu_read_unlock();
2731 goto done;
2733 if (consume_stock(memcg, nr_pages)) {
2735 * It seems dagerous to access memcg without css_get().
2736 * But considering how consume_stok works, it's not
2737 * necessary. If consume_stock success, some charges
2738 * from this memcg are cached on this cpu. So, we
2739 * don't need to call css_get()/css_tryget() before
2740 * calling consume_stock().
2742 rcu_read_unlock();
2743 goto done;
2745 /* after here, we may be blocked. we need to get refcnt */
2746 if (!css_tryget(&memcg->css)) {
2747 rcu_read_unlock();
2748 goto again;
2750 rcu_read_unlock();
2753 do {
2754 bool oom_check;
2756 /* If killed, bypass charge */
2757 if (fatal_signal_pending(current)) {
2758 css_put(&memcg->css);
2759 goto bypass;
2762 oom_check = false;
2763 if (oom && !nr_oom_retries) {
2764 oom_check = true;
2765 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2768 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, nr_pages,
2769 oom_check);
2770 switch (ret) {
2771 case CHARGE_OK:
2772 break;
2773 case CHARGE_RETRY: /* not in OOM situation but retry */
2774 batch = nr_pages;
2775 css_put(&memcg->css);
2776 memcg = NULL;
2777 goto again;
2778 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2779 css_put(&memcg->css);
2780 goto nomem;
2781 case CHARGE_NOMEM: /* OOM routine works */
2782 if (!oom) {
2783 css_put(&memcg->css);
2784 goto nomem;
2786 /* If oom, we never return -ENOMEM */
2787 nr_oom_retries--;
2788 break;
2789 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2790 css_put(&memcg->css);
2791 goto bypass;
2793 } while (ret != CHARGE_OK);
2795 if (batch > nr_pages)
2796 refill_stock(memcg, batch - nr_pages);
2797 css_put(&memcg->css);
2798 done:
2799 *ptr = memcg;
2800 return 0;
2801 nomem:
2802 *ptr = NULL;
2803 return -ENOMEM;
2804 bypass:
2805 *ptr = root_mem_cgroup;
2806 return -EINTR;
2810 * Somemtimes we have to undo a charge we got by try_charge().
2811 * This function is for that and do uncharge, put css's refcnt.
2812 * gotten by try_charge().
2814 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2815 unsigned int nr_pages)
2817 if (!mem_cgroup_is_root(memcg)) {
2818 unsigned long bytes = nr_pages * PAGE_SIZE;
2820 res_counter_uncharge(&memcg->res, bytes);
2821 if (do_swap_account)
2822 res_counter_uncharge(&memcg->memsw, bytes);
2827 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2828 * This is useful when moving usage to parent cgroup.
2830 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2831 unsigned int nr_pages)
2833 unsigned long bytes = nr_pages * PAGE_SIZE;
2835 if (mem_cgroup_is_root(memcg))
2836 return;
2838 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2839 if (do_swap_account)
2840 res_counter_uncharge_until(&memcg->memsw,
2841 memcg->memsw.parent, bytes);
2845 * A helper function to get mem_cgroup from ID. must be called under
2846 * rcu_read_lock(). The caller is responsible for calling css_tryget if
2847 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2848 * called against removed memcg.)
2850 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2852 struct cgroup_subsys_state *css;
2854 /* ID 0 is unused ID */
2855 if (!id)
2856 return NULL;
2857 css = css_lookup(&mem_cgroup_subsys, id);
2858 if (!css)
2859 return NULL;
2860 return mem_cgroup_from_css(css);
2863 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2865 struct mem_cgroup *memcg = NULL;
2866 struct page_cgroup *pc;
2867 unsigned short id;
2868 swp_entry_t ent;
2870 VM_BUG_ON(!PageLocked(page));
2872 pc = lookup_page_cgroup(page);
2873 lock_page_cgroup(pc);
2874 if (PageCgroupUsed(pc)) {
2875 memcg = pc->mem_cgroup;
2876 if (memcg && !css_tryget(&memcg->css))
2877 memcg = NULL;
2878 } else if (PageSwapCache(page)) {
2879 ent.val = page_private(page);
2880 id = lookup_swap_cgroup_id(ent);
2881 rcu_read_lock();
2882 memcg = mem_cgroup_lookup(id);
2883 if (memcg && !css_tryget(&memcg->css))
2884 memcg = NULL;
2885 rcu_read_unlock();
2887 unlock_page_cgroup(pc);
2888 return memcg;
2891 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2892 struct page *page,
2893 unsigned int nr_pages,
2894 enum charge_type ctype,
2895 bool lrucare)
2897 struct page_cgroup *pc = lookup_page_cgroup(page);
2898 struct zone *uninitialized_var(zone);
2899 struct lruvec *lruvec;
2900 bool was_on_lru = false;
2901 bool anon;
2903 lock_page_cgroup(pc);
2904 VM_BUG_ON(PageCgroupUsed(pc));
2906 * we don't need page_cgroup_lock about tail pages, becase they are not
2907 * accessed by any other context at this point.
2911 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2912 * may already be on some other mem_cgroup's LRU. Take care of it.
2914 if (lrucare) {
2915 zone = page_zone(page);
2916 spin_lock_irq(&zone->lru_lock);
2917 if (PageLRU(page)) {
2918 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2919 ClearPageLRU(page);
2920 del_page_from_lru_list(page, lruvec, page_lru(page));
2921 was_on_lru = true;
2925 pc->mem_cgroup = memcg;
2927 * We access a page_cgroup asynchronously without lock_page_cgroup().
2928 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2929 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2930 * before USED bit, we need memory barrier here.
2931 * See mem_cgroup_add_lru_list(), etc.
2933 smp_wmb();
2934 SetPageCgroupUsed(pc);
2936 if (lrucare) {
2937 if (was_on_lru) {
2938 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2939 VM_BUG_ON(PageLRU(page));
2940 SetPageLRU(page);
2941 add_page_to_lru_list(page, lruvec, page_lru(page));
2943 spin_unlock_irq(&zone->lru_lock);
2946 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2947 anon = true;
2948 else
2949 anon = false;
2951 mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
2952 unlock_page_cgroup(pc);
2955 * "charge_statistics" updated event counter. Then, check it.
2956 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2957 * if they exceeds softlimit.
2959 memcg_check_events(memcg, page);
2962 static DEFINE_MUTEX(set_limit_mutex);
2964 #ifdef CONFIG_MEMCG_KMEM
2965 static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
2967 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
2968 (memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
2972 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2973 * in the memcg_cache_params struct.
2975 static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2977 struct kmem_cache *cachep;
2979 VM_BUG_ON(p->is_root_cache);
2980 cachep = p->root_cache;
2981 return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)];
2984 #ifdef CONFIG_SLABINFO
2985 static int mem_cgroup_slabinfo_read(struct cgroup *cont, struct cftype *cft,
2986 struct seq_file *m)
2988 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
2989 struct memcg_cache_params *params;
2991 if (!memcg_can_account_kmem(memcg))
2992 return -EIO;
2994 print_slabinfo_header(m);
2996 mutex_lock(&memcg->slab_caches_mutex);
2997 list_for_each_entry(params, &memcg->memcg_slab_caches, list)
2998 cache_show(memcg_params_to_cache(params), m);
2999 mutex_unlock(&memcg->slab_caches_mutex);
3001 return 0;
3003 #endif
3005 static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
3007 struct res_counter *fail_res;
3008 struct mem_cgroup *_memcg;
3009 int ret = 0;
3010 bool may_oom;
3012 ret = res_counter_charge(&memcg->kmem, size, &fail_res);
3013 if (ret)
3014 return ret;
3017 * Conditions under which we can wait for the oom_killer. Those are
3018 * the same conditions tested by the core page allocator
3020 may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);
3022 _memcg = memcg;
3023 ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
3024 &_memcg, may_oom);
3026 if (ret == -EINTR) {
3028 * __mem_cgroup_try_charge() chosed to bypass to root due to
3029 * OOM kill or fatal signal. Since our only options are to
3030 * either fail the allocation or charge it to this cgroup, do
3031 * it as a temporary condition. But we can't fail. From a
3032 * kmem/slab perspective, the cache has already been selected,
3033 * by mem_cgroup_kmem_get_cache(), so it is too late to change
3034 * our minds.
3036 * This condition will only trigger if the task entered
3037 * memcg_charge_kmem in a sane state, but was OOM-killed during
3038 * __mem_cgroup_try_charge() above. Tasks that were already
3039 * dying when the allocation triggers should have been already
3040 * directed to the root cgroup in memcontrol.h
3042 res_counter_charge_nofail(&memcg->res, size, &fail_res);
3043 if (do_swap_account)
3044 res_counter_charge_nofail(&memcg->memsw, size,
3045 &fail_res);
3046 ret = 0;
3047 } else if (ret)
3048 res_counter_uncharge(&memcg->kmem, size);
3050 return ret;
3053 static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
3055 res_counter_uncharge(&memcg->res, size);
3056 if (do_swap_account)
3057 res_counter_uncharge(&memcg->memsw, size);
3059 /* Not down to 0 */
3060 if (res_counter_uncharge(&memcg->kmem, size))
3061 return;
3063 if (memcg_kmem_test_and_clear_dead(memcg))
3064 mem_cgroup_put(memcg);
3067 void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
3069 if (!memcg)
3070 return;
3072 mutex_lock(&memcg->slab_caches_mutex);
3073 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
3074 mutex_unlock(&memcg->slab_caches_mutex);
3078 * helper for acessing a memcg's index. It will be used as an index in the
3079 * child cache array in kmem_cache, and also to derive its name. This function
3080 * will return -1 when this is not a kmem-limited memcg.
3082 int memcg_cache_id(struct mem_cgroup *memcg)
3084 return memcg ? memcg->kmemcg_id : -1;
3088 * This ends up being protected by the set_limit mutex, during normal
3089 * operation, because that is its main call site.
3091 * But when we create a new cache, we can call this as well if its parent
3092 * is kmem-limited. That will have to hold set_limit_mutex as well.
3094 int memcg_update_cache_sizes(struct mem_cgroup *memcg)
3096 int num, ret;
3098 num = ida_simple_get(&kmem_limited_groups,
3099 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
3100 if (num < 0)
3101 return num;
3103 * After this point, kmem_accounted (that we test atomically in
3104 * the beginning of this conditional), is no longer 0. This
3105 * guarantees only one process will set the following boolean
3106 * to true. We don't need test_and_set because we're protected
3107 * by the set_limit_mutex anyway.
3109 memcg_kmem_set_activated(memcg);
3111 ret = memcg_update_all_caches(num+1);
3112 if (ret) {
3113 ida_simple_remove(&kmem_limited_groups, num);
3114 memcg_kmem_clear_activated(memcg);
3115 return ret;
3118 memcg->kmemcg_id = num;
3119 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
3120 mutex_init(&memcg->slab_caches_mutex);
3121 return 0;
3124 static size_t memcg_caches_array_size(int num_groups)
3126 ssize_t size;
3127 if (num_groups <= 0)
3128 return 0;
3130 size = 2 * num_groups;
3131 if (size < MEMCG_CACHES_MIN_SIZE)
3132 size = MEMCG_CACHES_MIN_SIZE;
3133 else if (size > MEMCG_CACHES_MAX_SIZE)
3134 size = MEMCG_CACHES_MAX_SIZE;
3136 return size;
3140 * We should update the current array size iff all caches updates succeed. This
3141 * can only be done from the slab side. The slab mutex needs to be held when
3142 * calling this.
3144 void memcg_update_array_size(int num)
3146 if (num > memcg_limited_groups_array_size)
3147 memcg_limited_groups_array_size = memcg_caches_array_size(num);
3150 static void kmem_cache_destroy_work_func(struct work_struct *w);
3152 int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
3154 struct memcg_cache_params *cur_params = s->memcg_params;
3156 VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache);
3158 if (num_groups > memcg_limited_groups_array_size) {
3159 int i;
3160 ssize_t size = memcg_caches_array_size(num_groups);
3162 size *= sizeof(void *);
3163 size += sizeof(struct memcg_cache_params);
3165 s->memcg_params = kzalloc(size, GFP_KERNEL);
3166 if (!s->memcg_params) {
3167 s->memcg_params = cur_params;
3168 return -ENOMEM;
3171 s->memcg_params->is_root_cache = true;
3174 * There is the chance it will be bigger than
3175 * memcg_limited_groups_array_size, if we failed an allocation
3176 * in a cache, in which case all caches updated before it, will
3177 * have a bigger array.
3179 * But if that is the case, the data after
3180 * memcg_limited_groups_array_size is certainly unused
3182 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3183 if (!cur_params->memcg_caches[i])
3184 continue;
3185 s->memcg_params->memcg_caches[i] =
3186 cur_params->memcg_caches[i];
3190 * Ideally, we would wait until all caches succeed, and only
3191 * then free the old one. But this is not worth the extra
3192 * pointer per-cache we'd have to have for this.
3194 * It is not a big deal if some caches are left with a size
3195 * bigger than the others. And all updates will reset this
3196 * anyway.
3198 kfree(cur_params);
3200 return 0;
3203 int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
3204 struct kmem_cache *root_cache)
3206 size_t size = sizeof(struct memcg_cache_params);
3208 if (!memcg_kmem_enabled())
3209 return 0;
3211 if (!memcg)
3212 size += memcg_limited_groups_array_size * sizeof(void *);
3214 s->memcg_params = kzalloc(size, GFP_KERNEL);
3215 if (!s->memcg_params)
3216 return -ENOMEM;
3218 INIT_WORK(&s->memcg_params->destroy,
3219 kmem_cache_destroy_work_func);
3220 if (memcg) {
3221 s->memcg_params->memcg = memcg;
3222 s->memcg_params->root_cache = root_cache;
3223 } else
3224 s->memcg_params->is_root_cache = true;
3226 return 0;
3229 void memcg_release_cache(struct kmem_cache *s)
3231 struct kmem_cache *root;
3232 struct mem_cgroup *memcg;
3233 int id;
3236 * This happens, for instance, when a root cache goes away before we
3237 * add any memcg.
3239 if (!s->memcg_params)
3240 return;
3242 if (s->memcg_params->is_root_cache)
3243 goto out;
3245 memcg = s->memcg_params->memcg;
3246 id = memcg_cache_id(memcg);
3248 root = s->memcg_params->root_cache;
3249 root->memcg_params->memcg_caches[id] = NULL;
3251 mutex_lock(&memcg->slab_caches_mutex);
3252 list_del(&s->memcg_params->list);
3253 mutex_unlock(&memcg->slab_caches_mutex);
3255 mem_cgroup_put(memcg);
3256 out:
3257 kfree(s->memcg_params);
3261 * During the creation a new cache, we need to disable our accounting mechanism
3262 * altogether. This is true even if we are not creating, but rather just
3263 * enqueing new caches to be created.
3265 * This is because that process will trigger allocations; some visible, like
3266 * explicit kmallocs to auxiliary data structures, name strings and internal
3267 * cache structures; some well concealed, like INIT_WORK() that can allocate
3268 * objects during debug.
3270 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3271 * to it. This may not be a bounded recursion: since the first cache creation
3272 * failed to complete (waiting on the allocation), we'll just try to create the
3273 * cache again, failing at the same point.
3275 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3276 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3277 * inside the following two functions.
3279 static inline void memcg_stop_kmem_account(void)
3281 VM_BUG_ON(!current->mm);
3282 current->memcg_kmem_skip_account++;
3285 static inline void memcg_resume_kmem_account(void)
3287 VM_BUG_ON(!current->mm);
3288 current->memcg_kmem_skip_account--;
3291 static void kmem_cache_destroy_work_func(struct work_struct *w)
3293 struct kmem_cache *cachep;
3294 struct memcg_cache_params *p;
3296 p = container_of(w, struct memcg_cache_params, destroy);
3298 cachep = memcg_params_to_cache(p);
3301 * If we get down to 0 after shrink, we could delete right away.
3302 * However, memcg_release_pages() already puts us back in the workqueue
3303 * in that case. If we proceed deleting, we'll get a dangling
3304 * reference, and removing the object from the workqueue in that case
3305 * is unnecessary complication. We are not a fast path.
3307 * Note that this case is fundamentally different from racing with
3308 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
3309 * kmem_cache_shrink, not only we would be reinserting a dead cache
3310 * into the queue, but doing so from inside the worker racing to
3311 * destroy it.
3313 * So if we aren't down to zero, we'll just schedule a worker and try
3314 * again
3316 if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
3317 kmem_cache_shrink(cachep);
3318 if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
3319 return;
3320 } else
3321 kmem_cache_destroy(cachep);
3324 void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
3326 if (!cachep->memcg_params->dead)
3327 return;
3330 * There are many ways in which we can get here.
3332 * We can get to a memory-pressure situation while the delayed work is
3333 * still pending to run. The vmscan shrinkers can then release all
3334 * cache memory and get us to destruction. If this is the case, we'll
3335 * be executed twice, which is a bug (the second time will execute over
3336 * bogus data). In this case, cancelling the work should be fine.
3338 * But we can also get here from the worker itself, if
3339 * kmem_cache_shrink is enough to shake all the remaining objects and
3340 * get the page count to 0. In this case, we'll deadlock if we try to
3341 * cancel the work (the worker runs with an internal lock held, which
3342 * is the same lock we would hold for cancel_work_sync().)
3344 * Since we can't possibly know who got us here, just refrain from
3345 * running if there is already work pending
3347 if (work_pending(&cachep->memcg_params->destroy))
3348 return;
3350 * We have to defer the actual destroying to a workqueue, because
3351 * we might currently be in a context that cannot sleep.
3353 schedule_work(&cachep->memcg_params->destroy);
3357 * This lock protects updaters, not readers. We want readers to be as fast as
3358 * they can, and they will either see NULL or a valid cache value. Our model
3359 * allow them to see NULL, in which case the root memcg will be selected.
3361 * We need this lock because multiple allocations to the same cache from a non
3362 * will span more than one worker. Only one of them can create the cache.
3364 static DEFINE_MUTEX(memcg_cache_mutex);
3367 * Called with memcg_cache_mutex held
3369 static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
3370 struct kmem_cache *s)
3372 struct kmem_cache *new;
3373 static char *tmp_name = NULL;
3375 lockdep_assert_held(&memcg_cache_mutex);
3378 * kmem_cache_create_memcg duplicates the given name and
3379 * cgroup_name for this name requires RCU context.
3380 * This static temporary buffer is used to prevent from
3381 * pointless shortliving allocation.
3383 if (!tmp_name) {
3384 tmp_name = kmalloc(PATH_MAX, GFP_KERNEL);
3385 if (!tmp_name)
3386 return NULL;
3389 rcu_read_lock();
3390 snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name,
3391 memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup));
3392 rcu_read_unlock();
3394 new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align,
3395 (s->flags & ~SLAB_PANIC), s->ctor, s);
3397 if (new)
3398 new->allocflags |= __GFP_KMEMCG;
3400 return new;
3403 static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
3404 struct kmem_cache *cachep)
3406 struct kmem_cache *new_cachep;
3407 int idx;
3409 BUG_ON(!memcg_can_account_kmem(memcg));
3411 idx = memcg_cache_id(memcg);
3413 mutex_lock(&memcg_cache_mutex);
3414 new_cachep = cachep->memcg_params->memcg_caches[idx];
3415 if (new_cachep)
3416 goto out;
3418 new_cachep = kmem_cache_dup(memcg, cachep);
3419 if (new_cachep == NULL) {
3420 new_cachep = cachep;
3421 goto out;
3424 mem_cgroup_get(memcg);
3425 atomic_set(&new_cachep->memcg_params->nr_pages , 0);
3427 cachep->memcg_params->memcg_caches[idx] = new_cachep;
3429 * the readers won't lock, make sure everybody sees the updated value,
3430 * so they won't put stuff in the queue again for no reason
3432 wmb();
3433 out:
3434 mutex_unlock(&memcg_cache_mutex);
3435 return new_cachep;
3438 void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
3440 struct kmem_cache *c;
3441 int i;
3443 if (!s->memcg_params)
3444 return;
3445 if (!s->memcg_params->is_root_cache)
3446 return;
3449 * If the cache is being destroyed, we trust that there is no one else
3450 * requesting objects from it. Even if there are, the sanity checks in
3451 * kmem_cache_destroy should caught this ill-case.
3453 * Still, we don't want anyone else freeing memcg_caches under our
3454 * noses, which can happen if a new memcg comes to life. As usual,
3455 * we'll take the set_limit_mutex to protect ourselves against this.
3457 mutex_lock(&set_limit_mutex);
3458 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3459 c = s->memcg_params->memcg_caches[i];
3460 if (!c)
3461 continue;
3464 * We will now manually delete the caches, so to avoid races
3465 * we need to cancel all pending destruction workers and
3466 * proceed with destruction ourselves.
3468 * kmem_cache_destroy() will call kmem_cache_shrink internally,
3469 * and that could spawn the workers again: it is likely that
3470 * the cache still have active pages until this very moment.
3471 * This would lead us back to mem_cgroup_destroy_cache.
3473 * But that will not execute at all if the "dead" flag is not
3474 * set, so flip it down to guarantee we are in control.
3476 c->memcg_params->dead = false;
3477 cancel_work_sync(&c->memcg_params->destroy);
3478 kmem_cache_destroy(c);
3480 mutex_unlock(&set_limit_mutex);
3483 struct create_work {
3484 struct mem_cgroup *memcg;
3485 struct kmem_cache *cachep;
3486 struct work_struct work;
3489 static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3491 struct kmem_cache *cachep;
3492 struct memcg_cache_params *params;
3494 if (!memcg_kmem_is_active(memcg))
3495 return;
3497 mutex_lock(&memcg->slab_caches_mutex);
3498 list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
3499 cachep = memcg_params_to_cache(params);
3500 cachep->memcg_params->dead = true;
3501 schedule_work(&cachep->memcg_params->destroy);
3503 mutex_unlock(&memcg->slab_caches_mutex);
3506 static void memcg_create_cache_work_func(struct work_struct *w)
3508 struct create_work *cw;
3510 cw = container_of(w, struct create_work, work);
3511 memcg_create_kmem_cache(cw->memcg, cw->cachep);
3512 /* Drop the reference gotten when we enqueued. */
3513 css_put(&cw->memcg->css);
3514 kfree(cw);
3518 * Enqueue the creation of a per-memcg kmem_cache.
3520 static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3521 struct kmem_cache *cachep)
3523 struct create_work *cw;
3525 cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
3526 if (cw == NULL) {
3527 css_put(&memcg->css);
3528 return;
3531 cw->memcg = memcg;
3532 cw->cachep = cachep;
3534 INIT_WORK(&cw->work, memcg_create_cache_work_func);
3535 schedule_work(&cw->work);
3538 static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3539 struct kmem_cache *cachep)
3542 * We need to stop accounting when we kmalloc, because if the
3543 * corresponding kmalloc cache is not yet created, the first allocation
3544 * in __memcg_create_cache_enqueue will recurse.
3546 * However, it is better to enclose the whole function. Depending on
3547 * the debugging options enabled, INIT_WORK(), for instance, can
3548 * trigger an allocation. This too, will make us recurse. Because at
3549 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3550 * the safest choice is to do it like this, wrapping the whole function.
3552 memcg_stop_kmem_account();
3553 __memcg_create_cache_enqueue(memcg, cachep);
3554 memcg_resume_kmem_account();
3557 * Return the kmem_cache we're supposed to use for a slab allocation.
3558 * We try to use the current memcg's version of the cache.
3560 * If the cache does not exist yet, if we are the first user of it,
3561 * we either create it immediately, if possible, or create it asynchronously
3562 * in a workqueue.
3563 * In the latter case, we will let the current allocation go through with
3564 * the original cache.
3566 * Can't be called in interrupt context or from kernel threads.
3567 * This function needs to be called with rcu_read_lock() held.
3569 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3570 gfp_t gfp)
3572 struct mem_cgroup *memcg;
3573 int idx;
3575 VM_BUG_ON(!cachep->memcg_params);
3576 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3578 if (!current->mm || current->memcg_kmem_skip_account)
3579 return cachep;
3581 rcu_read_lock();
3582 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
3584 if (!memcg_can_account_kmem(memcg))
3585 goto out;
3587 idx = memcg_cache_id(memcg);
3590 * barrier to mare sure we're always seeing the up to date value. The
3591 * code updating memcg_caches will issue a write barrier to match this.
3593 read_barrier_depends();
3594 if (likely(cachep->memcg_params->memcg_caches[idx])) {
3595 cachep = cachep->memcg_params->memcg_caches[idx];
3596 goto out;
3599 /* The corresponding put will be done in the workqueue. */
3600 if (!css_tryget(&memcg->css))
3601 goto out;
3602 rcu_read_unlock();
3605 * If we are in a safe context (can wait, and not in interrupt
3606 * context), we could be be predictable and return right away.
3607 * This would guarantee that the allocation being performed
3608 * already belongs in the new cache.
3610 * However, there are some clashes that can arrive from locking.
3611 * For instance, because we acquire the slab_mutex while doing
3612 * kmem_cache_dup, this means no further allocation could happen
3613 * with the slab_mutex held.
3615 * Also, because cache creation issue get_online_cpus(), this
3616 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
3617 * that ends up reversed during cpu hotplug. (cpuset allocates
3618 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
3619 * better to defer everything.
3621 memcg_create_cache_enqueue(memcg, cachep);
3622 return cachep;
3623 out:
3624 rcu_read_unlock();
3625 return cachep;
3627 EXPORT_SYMBOL(__memcg_kmem_get_cache);
3630 * We need to verify if the allocation against current->mm->owner's memcg is
3631 * possible for the given order. But the page is not allocated yet, so we'll
3632 * need a further commit step to do the final arrangements.
3634 * It is possible for the task to switch cgroups in this mean time, so at
3635 * commit time, we can't rely on task conversion any longer. We'll then use
3636 * the handle argument to return to the caller which cgroup we should commit
3637 * against. We could also return the memcg directly and avoid the pointer
3638 * passing, but a boolean return value gives better semantics considering
3639 * the compiled-out case as well.
3641 * Returning true means the allocation is possible.
3643 bool
3644 __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3646 struct mem_cgroup *memcg;
3647 int ret;
3649 *_memcg = NULL;
3650 memcg = try_get_mem_cgroup_from_mm(current->mm);
3653 * very rare case described in mem_cgroup_from_task. Unfortunately there
3654 * isn't much we can do without complicating this too much, and it would
3655 * be gfp-dependent anyway. Just let it go
3657 if (unlikely(!memcg))
3658 return true;
3660 if (!memcg_can_account_kmem(memcg)) {
3661 css_put(&memcg->css);
3662 return true;
3665 ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3666 if (!ret)
3667 *_memcg = memcg;
3669 css_put(&memcg->css);
3670 return (ret == 0);
3673 void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3674 int order)
3676 struct page_cgroup *pc;
3678 VM_BUG_ON(mem_cgroup_is_root(memcg));
3680 /* The page allocation failed. Revert */
3681 if (!page) {
3682 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3683 return;
3686 pc = lookup_page_cgroup(page);
3687 lock_page_cgroup(pc);
3688 pc->mem_cgroup = memcg;
3689 SetPageCgroupUsed(pc);
3690 unlock_page_cgroup(pc);
3693 void __memcg_kmem_uncharge_pages(struct page *page, int order)
3695 struct mem_cgroup *memcg = NULL;
3696 struct page_cgroup *pc;
3699 pc = lookup_page_cgroup(page);
3701 * Fast unlocked return. Theoretically might have changed, have to
3702 * check again after locking.
3704 if (!PageCgroupUsed(pc))
3705 return;
3707 lock_page_cgroup(pc);
3708 if (PageCgroupUsed(pc)) {
3709 memcg = pc->mem_cgroup;
3710 ClearPageCgroupUsed(pc);
3712 unlock_page_cgroup(pc);
3715 * We trust that only if there is a memcg associated with the page, it
3716 * is a valid allocation
3718 if (!memcg)
3719 return;
3721 VM_BUG_ON(mem_cgroup_is_root(memcg));
3722 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3724 #else
3725 static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3728 #endif /* CONFIG_MEMCG_KMEM */
3730 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3732 #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3734 * Because tail pages are not marked as "used", set it. We're under
3735 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3736 * charge/uncharge will be never happen and move_account() is done under
3737 * compound_lock(), so we don't have to take care of races.
3739 void mem_cgroup_split_huge_fixup(struct page *head)
3741 struct page_cgroup *head_pc = lookup_page_cgroup(head);
3742 struct page_cgroup *pc;
3743 struct mem_cgroup *memcg;
3744 int i;
3746 if (mem_cgroup_disabled())
3747 return;
3749 memcg = head_pc->mem_cgroup;
3750 for (i = 1; i < HPAGE_PMD_NR; i++) {
3751 pc = head_pc + i;
3752 pc->mem_cgroup = memcg;
3753 smp_wmb();/* see __commit_charge() */
3754 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
3756 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3757 HPAGE_PMD_NR);
3759 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3762 * mem_cgroup_move_account - move account of the page
3763 * @page: the page
3764 * @nr_pages: number of regular pages (>1 for huge pages)
3765 * @pc: page_cgroup of the page.
3766 * @from: mem_cgroup which the page is moved from.
3767 * @to: mem_cgroup which the page is moved to. @from != @to.
3769 * The caller must confirm following.
3770 * - page is not on LRU (isolate_page() is useful.)
3771 * - compound_lock is held when nr_pages > 1
3773 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3774 * from old cgroup.
3776 static int mem_cgroup_move_account(struct page *page,
3777 unsigned int nr_pages,
3778 struct page_cgroup *pc,
3779 struct mem_cgroup *from,
3780 struct mem_cgroup *to)
3782 unsigned long flags;
3783 int ret;
3784 bool anon = PageAnon(page);
3786 VM_BUG_ON(from == to);
3787 VM_BUG_ON(PageLRU(page));
3789 * The page is isolated from LRU. So, collapse function
3790 * will not handle this page. But page splitting can happen.
3791 * Do this check under compound_page_lock(). The caller should
3792 * hold it.
3794 ret = -EBUSY;
3795 if (nr_pages > 1 && !PageTransHuge(page))
3796 goto out;
3798 lock_page_cgroup(pc);
3800 ret = -EINVAL;
3801 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3802 goto unlock;
3804 move_lock_mem_cgroup(from, &flags);
3806 if (!anon && page_mapped(page)) {
3807 /* Update mapped_file data for mem_cgroup */
3808 preempt_disable();
3809 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
3810 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
3811 preempt_enable();
3813 mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
3815 /* caller should have done css_get */
3816 pc->mem_cgroup = to;
3817 mem_cgroup_charge_statistics(to, page, anon, nr_pages);
3818 move_unlock_mem_cgroup(from, &flags);
3819 ret = 0;
3820 unlock:
3821 unlock_page_cgroup(pc);
3823 * check events
3825 memcg_check_events(to, page);
3826 memcg_check_events(from, page);
3827 out:
3828 return ret;
3832 * mem_cgroup_move_parent - moves page to the parent group
3833 * @page: the page to move
3834 * @pc: page_cgroup of the page
3835 * @child: page's cgroup
3837 * move charges to its parent or the root cgroup if the group has no
3838 * parent (aka use_hierarchy==0).
3839 * Although this might fail (get_page_unless_zero, isolate_lru_page or
3840 * mem_cgroup_move_account fails) the failure is always temporary and
3841 * it signals a race with a page removal/uncharge or migration. In the
3842 * first case the page is on the way out and it will vanish from the LRU
3843 * on the next attempt and the call should be retried later.
3844 * Isolation from the LRU fails only if page has been isolated from
3845 * the LRU since we looked at it and that usually means either global
3846 * reclaim or migration going on. The page will either get back to the
3847 * LRU or vanish.
3848 * Finaly mem_cgroup_move_account fails only if the page got uncharged
3849 * (!PageCgroupUsed) or moved to a different group. The page will
3850 * disappear in the next attempt.
3852 static int mem_cgroup_move_parent(struct page *page,
3853 struct page_cgroup *pc,
3854 struct mem_cgroup *child)
3856 struct mem_cgroup *parent;
3857 unsigned int nr_pages;
3858 unsigned long uninitialized_var(flags);
3859 int ret;
3861 VM_BUG_ON(mem_cgroup_is_root(child));
3863 ret = -EBUSY;
3864 if (!get_page_unless_zero(page))
3865 goto out;
3866 if (isolate_lru_page(page))
3867 goto put;
3869 nr_pages = hpage_nr_pages(page);
3871 parent = parent_mem_cgroup(child);
3873 * If no parent, move charges to root cgroup.
3875 if (!parent)
3876 parent = root_mem_cgroup;
3878 if (nr_pages > 1) {
3879 VM_BUG_ON(!PageTransHuge(page));
3880 flags = compound_lock_irqsave(page);
3883 ret = mem_cgroup_move_account(page, nr_pages,
3884 pc, child, parent);
3885 if (!ret)
3886 __mem_cgroup_cancel_local_charge(child, nr_pages);
3888 if (nr_pages > 1)
3889 compound_unlock_irqrestore(page, flags);
3890 putback_lru_page(page);
3891 put:
3892 put_page(page);
3893 out:
3894 return ret;
3898 * Charge the memory controller for page usage.
3899 * Return
3900 * 0 if the charge was successful
3901 * < 0 if the cgroup is over its limit
3903 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
3904 gfp_t gfp_mask, enum charge_type ctype)
3906 struct mem_cgroup *memcg = NULL;
3907 unsigned int nr_pages = 1;
3908 bool oom = true;
3909 int ret;
3911 if (PageTransHuge(page)) {
3912 nr_pages <<= compound_order(page);
3913 VM_BUG_ON(!PageTransHuge(page));
3915 * Never OOM-kill a process for a huge page. The
3916 * fault handler will fall back to regular pages.
3918 oom = false;
3921 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
3922 if (ret == -ENOMEM)
3923 return ret;
3924 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
3925 return 0;
3928 int mem_cgroup_newpage_charge(struct page *page,
3929 struct mm_struct *mm, gfp_t gfp_mask)
3931 if (mem_cgroup_disabled())
3932 return 0;
3933 VM_BUG_ON(page_mapped(page));
3934 VM_BUG_ON(page->mapping && !PageAnon(page));
3935 VM_BUG_ON(!mm);
3936 return mem_cgroup_charge_common(page, mm, gfp_mask,
3937 MEM_CGROUP_CHARGE_TYPE_ANON);
3941 * While swap-in, try_charge -> commit or cancel, the page is locked.
3942 * And when try_charge() successfully returns, one refcnt to memcg without
3943 * struct page_cgroup is acquired. This refcnt will be consumed by
3944 * "commit()" or removed by "cancel()"
3946 static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
3947 struct page *page,
3948 gfp_t mask,
3949 struct mem_cgroup **memcgp)
3951 struct mem_cgroup *memcg;
3952 struct page_cgroup *pc;
3953 int ret;
3955 pc = lookup_page_cgroup(page);
3957 * Every swap fault against a single page tries to charge the
3958 * page, bail as early as possible. shmem_unuse() encounters
3959 * already charged pages, too. The USED bit is protected by
3960 * the page lock, which serializes swap cache removal, which
3961 * in turn serializes uncharging.
3963 if (PageCgroupUsed(pc))
3964 return 0;
3965 if (!do_swap_account)
3966 goto charge_cur_mm;
3967 memcg = try_get_mem_cgroup_from_page(page);
3968 if (!memcg)
3969 goto charge_cur_mm;
3970 *memcgp = memcg;
3971 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
3972 css_put(&memcg->css);
3973 if (ret == -EINTR)
3974 ret = 0;
3975 return ret;
3976 charge_cur_mm:
3977 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
3978 if (ret == -EINTR)
3979 ret = 0;
3980 return ret;
3983 int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
3984 gfp_t gfp_mask, struct mem_cgroup **memcgp)
3986 *memcgp = NULL;
3987 if (mem_cgroup_disabled())
3988 return 0;
3990 * A racing thread's fault, or swapoff, may have already
3991 * updated the pte, and even removed page from swap cache: in
3992 * those cases unuse_pte()'s pte_same() test will fail; but
3993 * there's also a KSM case which does need to charge the page.
3995 if (!PageSwapCache(page)) {
3996 int ret;
3998 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
3999 if (ret == -EINTR)
4000 ret = 0;
4001 return ret;
4003 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
4006 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
4008 if (mem_cgroup_disabled())
4009 return;
4010 if (!memcg)
4011 return;
4012 __mem_cgroup_cancel_charge(memcg, 1);
4015 static void
4016 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
4017 enum charge_type ctype)
4019 if (mem_cgroup_disabled())
4020 return;
4021 if (!memcg)
4022 return;
4024 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
4026 * Now swap is on-memory. This means this page may be
4027 * counted both as mem and swap....double count.
4028 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
4029 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
4030 * may call delete_from_swap_cache() before reach here.
4032 if (do_swap_account && PageSwapCache(page)) {
4033 swp_entry_t ent = {.val = page_private(page)};
4034 mem_cgroup_uncharge_swap(ent);
4038 void mem_cgroup_commit_charge_swapin(struct page *page,
4039 struct mem_cgroup *memcg)
4041 __mem_cgroup_commit_charge_swapin(page, memcg,
4042 MEM_CGROUP_CHARGE_TYPE_ANON);
4045 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
4046 gfp_t gfp_mask)
4048 struct mem_cgroup *memcg = NULL;
4049 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4050 int ret;
4052 if (mem_cgroup_disabled())
4053 return 0;
4054 if (PageCompound(page))
4055 return 0;
4057 if (!PageSwapCache(page))
4058 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
4059 else { /* page is swapcache/shmem */
4060 ret = __mem_cgroup_try_charge_swapin(mm, page,
4061 gfp_mask, &memcg);
4062 if (!ret)
4063 __mem_cgroup_commit_charge_swapin(page, memcg, type);
4065 return ret;
4068 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
4069 unsigned int nr_pages,
4070 const enum charge_type ctype)
4072 struct memcg_batch_info *batch = NULL;
4073 bool uncharge_memsw = true;
4075 /* If swapout, usage of swap doesn't decrease */
4076 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
4077 uncharge_memsw = false;
4079 batch = &current->memcg_batch;
4081 * In usual, we do css_get() when we remember memcg pointer.
4082 * But in this case, we keep res->usage until end of a series of
4083 * uncharges. Then, it's ok to ignore memcg's refcnt.
4085 if (!batch->memcg)
4086 batch->memcg = memcg;
4088 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
4089 * In those cases, all pages freed continuously can be expected to be in
4090 * the same cgroup and we have chance to coalesce uncharges.
4091 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
4092 * because we want to do uncharge as soon as possible.
4095 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
4096 goto direct_uncharge;
4098 if (nr_pages > 1)
4099 goto direct_uncharge;
4102 * In typical case, batch->memcg == mem. This means we can
4103 * merge a series of uncharges to an uncharge of res_counter.
4104 * If not, we uncharge res_counter ony by one.
4106 if (batch->memcg != memcg)
4107 goto direct_uncharge;
4108 /* remember freed charge and uncharge it later */
4109 batch->nr_pages++;
4110 if (uncharge_memsw)
4111 batch->memsw_nr_pages++;
4112 return;
4113 direct_uncharge:
4114 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
4115 if (uncharge_memsw)
4116 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
4117 if (unlikely(batch->memcg != memcg))
4118 memcg_oom_recover(memcg);
4122 * uncharge if !page_mapped(page)
4124 static struct mem_cgroup *
4125 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
4126 bool end_migration)
4128 struct mem_cgroup *memcg = NULL;
4129 unsigned int nr_pages = 1;
4130 struct page_cgroup *pc;
4131 bool anon;
4133 if (mem_cgroup_disabled())
4134 return NULL;
4136 if (PageTransHuge(page)) {
4137 nr_pages <<= compound_order(page);
4138 VM_BUG_ON(!PageTransHuge(page));
4141 * Check if our page_cgroup is valid
4143 pc = lookup_page_cgroup(page);
4144 if (unlikely(!PageCgroupUsed(pc)))
4145 return NULL;
4147 lock_page_cgroup(pc);
4149 memcg = pc->mem_cgroup;
4151 if (!PageCgroupUsed(pc))
4152 goto unlock_out;
4154 anon = PageAnon(page);
4156 switch (ctype) {
4157 case MEM_CGROUP_CHARGE_TYPE_ANON:
4159 * Generally PageAnon tells if it's the anon statistics to be
4160 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
4161 * used before page reached the stage of being marked PageAnon.
4163 anon = true;
4164 /* fallthrough */
4165 case MEM_CGROUP_CHARGE_TYPE_DROP:
4166 /* See mem_cgroup_prepare_migration() */
4167 if (page_mapped(page))
4168 goto unlock_out;
4170 * Pages under migration may not be uncharged. But
4171 * end_migration() /must/ be the one uncharging the
4172 * unused post-migration page and so it has to call
4173 * here with the migration bit still set. See the
4174 * res_counter handling below.
4176 if (!end_migration && PageCgroupMigration(pc))
4177 goto unlock_out;
4178 break;
4179 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
4180 if (!PageAnon(page)) { /* Shared memory */
4181 if (page->mapping && !page_is_file_cache(page))
4182 goto unlock_out;
4183 } else if (page_mapped(page)) /* Anon */
4184 goto unlock_out;
4185 break;
4186 default:
4187 break;
4190 mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
4192 ClearPageCgroupUsed(pc);
4194 * pc->mem_cgroup is not cleared here. It will be accessed when it's
4195 * freed from LRU. This is safe because uncharged page is expected not
4196 * to be reused (freed soon). Exception is SwapCache, it's handled by
4197 * special functions.
4200 unlock_page_cgroup(pc);
4202 * even after unlock, we have memcg->res.usage here and this memcg
4203 * will never be freed.
4205 memcg_check_events(memcg, page);
4206 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
4207 mem_cgroup_swap_statistics(memcg, true);
4208 mem_cgroup_get(memcg);
4211 * Migration does not charge the res_counter for the
4212 * replacement page, so leave it alone when phasing out the
4213 * page that is unused after the migration.
4215 if (!end_migration && !mem_cgroup_is_root(memcg))
4216 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
4218 return memcg;
4220 unlock_out:
4221 unlock_page_cgroup(pc);
4222 return NULL;
4225 void mem_cgroup_uncharge_page(struct page *page)
4227 /* early check. */
4228 if (page_mapped(page))
4229 return;
4230 VM_BUG_ON(page->mapping && !PageAnon(page));
4232 * If the page is in swap cache, uncharge should be deferred
4233 * to the swap path, which also properly accounts swap usage
4234 * and handles memcg lifetime.
4236 * Note that this check is not stable and reclaim may add the
4237 * page to swap cache at any time after this. However, if the
4238 * page is not in swap cache by the time page->mapcount hits
4239 * 0, there won't be any page table references to the swap
4240 * slot, and reclaim will free it and not actually write the
4241 * page to disk.
4243 if (PageSwapCache(page))
4244 return;
4245 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4248 void mem_cgroup_uncharge_cache_page(struct page *page)
4250 VM_BUG_ON(page_mapped(page));
4251 VM_BUG_ON(page->mapping);
4252 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4256 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
4257 * In that cases, pages are freed continuously and we can expect pages
4258 * are in the same memcg. All these calls itself limits the number of
4259 * pages freed at once, then uncharge_start/end() is called properly.
4260 * This may be called prural(2) times in a context,
4263 void mem_cgroup_uncharge_start(void)
4265 current->memcg_batch.do_batch++;
4266 /* We can do nest. */
4267 if (current->memcg_batch.do_batch == 1) {
4268 current->memcg_batch.memcg = NULL;
4269 current->memcg_batch.nr_pages = 0;
4270 current->memcg_batch.memsw_nr_pages = 0;
4274 void mem_cgroup_uncharge_end(void)
4276 struct memcg_batch_info *batch = &current->memcg_batch;
4278 if (!batch->do_batch)
4279 return;
4281 batch->do_batch--;
4282 if (batch->do_batch) /* If stacked, do nothing. */
4283 return;
4285 if (!batch->memcg)
4286 return;
4288 * This "batch->memcg" is valid without any css_get/put etc...
4289 * bacause we hide charges behind us.
4291 if (batch->nr_pages)
4292 res_counter_uncharge(&batch->memcg->res,
4293 batch->nr_pages * PAGE_SIZE);
4294 if (batch->memsw_nr_pages)
4295 res_counter_uncharge(&batch->memcg->memsw,
4296 batch->memsw_nr_pages * PAGE_SIZE);
4297 memcg_oom_recover(batch->memcg);
4298 /* forget this pointer (for sanity check) */
4299 batch->memcg = NULL;
4302 #ifdef CONFIG_SWAP
4304 * called after __delete_from_swap_cache() and drop "page" account.
4305 * memcg information is recorded to swap_cgroup of "ent"
4307 void
4308 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4310 struct mem_cgroup *memcg;
4311 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
4313 if (!swapout) /* this was a swap cache but the swap is unused ! */
4314 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
4316 memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4319 * record memcg information, if swapout && memcg != NULL,
4320 * mem_cgroup_get() was called in uncharge().
4322 if (do_swap_account && swapout && memcg)
4323 swap_cgroup_record(ent, css_id(&memcg->css));
4325 #endif
4327 #ifdef CONFIG_MEMCG_SWAP
4329 * called from swap_entry_free(). remove record in swap_cgroup and
4330 * uncharge "memsw" account.
4332 void mem_cgroup_uncharge_swap(swp_entry_t ent)
4334 struct mem_cgroup *memcg;
4335 unsigned short id;
4337 if (!do_swap_account)
4338 return;
4340 id = swap_cgroup_record(ent, 0);
4341 rcu_read_lock();
4342 memcg = mem_cgroup_lookup(id);
4343 if (memcg) {
4345 * We uncharge this because swap is freed.
4346 * This memcg can be obsolete one. We avoid calling css_tryget
4348 if (!mem_cgroup_is_root(memcg))
4349 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4350 mem_cgroup_swap_statistics(memcg, false);
4351 mem_cgroup_put(memcg);
4353 rcu_read_unlock();
4357 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
4358 * @entry: swap entry to be moved
4359 * @from: mem_cgroup which the entry is moved from
4360 * @to: mem_cgroup which the entry is moved to
4362 * It succeeds only when the swap_cgroup's record for this entry is the same
4363 * as the mem_cgroup's id of @from.
4365 * Returns 0 on success, -EINVAL on failure.
4367 * The caller must have charged to @to, IOW, called res_counter_charge() about
4368 * both res and memsw, and called css_get().
4370 static int mem_cgroup_move_swap_account(swp_entry_t entry,
4371 struct mem_cgroup *from, struct mem_cgroup *to)
4373 unsigned short old_id, new_id;
4375 old_id = css_id(&from->css);
4376 new_id = css_id(&to->css);
4378 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
4379 mem_cgroup_swap_statistics(from, false);
4380 mem_cgroup_swap_statistics(to, true);
4382 * This function is only called from task migration context now.
4383 * It postpones res_counter and refcount handling till the end
4384 * of task migration(mem_cgroup_clear_mc()) for performance
4385 * improvement. But we cannot postpone mem_cgroup_get(to)
4386 * because if the process that has been moved to @to does
4387 * swap-in, the refcount of @to might be decreased to 0.
4389 mem_cgroup_get(to);
4390 return 0;
4392 return -EINVAL;
4394 #else
4395 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4396 struct mem_cgroup *from, struct mem_cgroup *to)
4398 return -EINVAL;
4400 #endif
4403 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
4404 * page belongs to.
4406 void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
4407 struct mem_cgroup **memcgp)
4409 struct mem_cgroup *memcg = NULL;
4410 unsigned int nr_pages = 1;
4411 struct page_cgroup *pc;
4412 enum charge_type ctype;
4414 *memcgp = NULL;
4416 if (mem_cgroup_disabled())
4417 return;
4419 if (PageTransHuge(page))
4420 nr_pages <<= compound_order(page);
4422 pc = lookup_page_cgroup(page);
4423 lock_page_cgroup(pc);
4424 if (PageCgroupUsed(pc)) {
4425 memcg = pc->mem_cgroup;
4426 css_get(&memcg->css);
4428 * At migrating an anonymous page, its mapcount goes down
4429 * to 0 and uncharge() will be called. But, even if it's fully
4430 * unmapped, migration may fail and this page has to be
4431 * charged again. We set MIGRATION flag here and delay uncharge
4432 * until end_migration() is called
4434 * Corner Case Thinking
4435 * A)
4436 * When the old page was mapped as Anon and it's unmap-and-freed
4437 * while migration was ongoing.
4438 * If unmap finds the old page, uncharge() of it will be delayed
4439 * until end_migration(). If unmap finds a new page, it's
4440 * uncharged when it make mapcount to be 1->0. If unmap code
4441 * finds swap_migration_entry, the new page will not be mapped
4442 * and end_migration() will find it(mapcount==0).
4444 * B)
4445 * When the old page was mapped but migraion fails, the kernel
4446 * remaps it. A charge for it is kept by MIGRATION flag even
4447 * if mapcount goes down to 0. We can do remap successfully
4448 * without charging it again.
4450 * C)
4451 * The "old" page is under lock_page() until the end of
4452 * migration, so, the old page itself will not be swapped-out.
4453 * If the new page is swapped out before end_migraton, our
4454 * hook to usual swap-out path will catch the event.
4456 if (PageAnon(page))
4457 SetPageCgroupMigration(pc);
4459 unlock_page_cgroup(pc);
4461 * If the page is not charged at this point,
4462 * we return here.
4464 if (!memcg)
4465 return;
4467 *memcgp = memcg;
4469 * We charge new page before it's used/mapped. So, even if unlock_page()
4470 * is called before end_migration, we can catch all events on this new
4471 * page. In the case new page is migrated but not remapped, new page's
4472 * mapcount will be finally 0 and we call uncharge in end_migration().
4474 if (PageAnon(page))
4475 ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4476 else
4477 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4479 * The page is committed to the memcg, but it's not actually
4480 * charged to the res_counter since we plan on replacing the
4481 * old one and only one page is going to be left afterwards.
4483 __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4486 /* remove redundant charge if migration failed*/
4487 void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4488 struct page *oldpage, struct page *newpage, bool migration_ok)
4490 struct page *used, *unused;
4491 struct page_cgroup *pc;
4492 bool anon;
4494 if (!memcg)
4495 return;
4497 if (!migration_ok) {
4498 used = oldpage;
4499 unused = newpage;
4500 } else {
4501 used = newpage;
4502 unused = oldpage;
4504 anon = PageAnon(used);
4505 __mem_cgroup_uncharge_common(unused,
4506 anon ? MEM_CGROUP_CHARGE_TYPE_ANON
4507 : MEM_CGROUP_CHARGE_TYPE_CACHE,
4508 true);
4509 css_put(&memcg->css);
4511 * We disallowed uncharge of pages under migration because mapcount
4512 * of the page goes down to zero, temporarly.
4513 * Clear the flag and check the page should be charged.
4515 pc = lookup_page_cgroup(oldpage);
4516 lock_page_cgroup(pc);
4517 ClearPageCgroupMigration(pc);
4518 unlock_page_cgroup(pc);
4521 * If a page is a file cache, radix-tree replacement is very atomic
4522 * and we can skip this check. When it was an Anon page, its mapcount
4523 * goes down to 0. But because we added MIGRATION flage, it's not
4524 * uncharged yet. There are several case but page->mapcount check
4525 * and USED bit check in mem_cgroup_uncharge_page() will do enough
4526 * check. (see prepare_charge() also)
4528 if (anon)
4529 mem_cgroup_uncharge_page(used);
4533 * At replace page cache, newpage is not under any memcg but it's on
4534 * LRU. So, this function doesn't touch res_counter but handles LRU
4535 * in correct way. Both pages are locked so we cannot race with uncharge.
4537 void mem_cgroup_replace_page_cache(struct page *oldpage,
4538 struct page *newpage)
4540 struct mem_cgroup *memcg = NULL;
4541 struct page_cgroup *pc;
4542 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4544 if (mem_cgroup_disabled())
4545 return;
4547 pc = lookup_page_cgroup(oldpage);
4548 /* fix accounting on old pages */
4549 lock_page_cgroup(pc);
4550 if (PageCgroupUsed(pc)) {
4551 memcg = pc->mem_cgroup;
4552 mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
4553 ClearPageCgroupUsed(pc);
4555 unlock_page_cgroup(pc);
4558 * When called from shmem_replace_page(), in some cases the
4559 * oldpage has already been charged, and in some cases not.
4561 if (!memcg)
4562 return;
4564 * Even if newpage->mapping was NULL before starting replacement,
4565 * the newpage may be on LRU(or pagevec for LRU) already. We lock
4566 * LRU while we overwrite pc->mem_cgroup.
4568 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4571 #ifdef CONFIG_DEBUG_VM
4572 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
4574 struct page_cgroup *pc;
4576 pc = lookup_page_cgroup(page);
4578 * Can be NULL while feeding pages into the page allocator for
4579 * the first time, i.e. during boot or memory hotplug;
4580 * or when mem_cgroup_disabled().
4582 if (likely(pc) && PageCgroupUsed(pc))
4583 return pc;
4584 return NULL;
4587 bool mem_cgroup_bad_page_check(struct page *page)
4589 if (mem_cgroup_disabled())
4590 return false;
4592 return lookup_page_cgroup_used(page) != NULL;
4595 void mem_cgroup_print_bad_page(struct page *page)
4597 struct page_cgroup *pc;
4599 pc = lookup_page_cgroup_used(page);
4600 if (pc) {
4601 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4602 pc, pc->flags, pc->mem_cgroup);
4605 #endif
4607 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4608 unsigned long long val)
4610 int retry_count;
4611 u64 memswlimit, memlimit;
4612 int ret = 0;
4613 int children = mem_cgroup_count_children(memcg);
4614 u64 curusage, oldusage;
4615 int enlarge;
4618 * For keeping hierarchical_reclaim simple, how long we should retry
4619 * is depends on callers. We set our retry-count to be function
4620 * of # of children which we should visit in this loop.
4622 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
4624 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4626 enlarge = 0;
4627 while (retry_count) {
4628 if (signal_pending(current)) {
4629 ret = -EINTR;
4630 break;
4633 * Rather than hide all in some function, I do this in
4634 * open coded manner. You see what this really does.
4635 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4637 mutex_lock(&set_limit_mutex);
4638 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4639 if (memswlimit < val) {
4640 ret = -EINVAL;
4641 mutex_unlock(&set_limit_mutex);
4642 break;
4645 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4646 if (memlimit < val)
4647 enlarge = 1;
4649 ret = res_counter_set_limit(&memcg->res, val);
4650 if (!ret) {
4651 if (memswlimit == val)
4652 memcg->memsw_is_minimum = true;
4653 else
4654 memcg->memsw_is_minimum = false;
4656 mutex_unlock(&set_limit_mutex);
4658 if (!ret)
4659 break;
4661 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4662 MEM_CGROUP_RECLAIM_SHRINK);
4663 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4664 /* Usage is reduced ? */
4665 if (curusage >= oldusage)
4666 retry_count--;
4667 else
4668 oldusage = curusage;
4670 if (!ret && enlarge)
4671 memcg_oom_recover(memcg);
4673 return ret;
4676 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
4677 unsigned long long val)
4679 int retry_count;
4680 u64 memlimit, memswlimit, oldusage, curusage;
4681 int children = mem_cgroup_count_children(memcg);
4682 int ret = -EBUSY;
4683 int enlarge = 0;
4685 /* see mem_cgroup_resize_res_limit */
4686 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
4687 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4688 while (retry_count) {
4689 if (signal_pending(current)) {
4690 ret = -EINTR;
4691 break;
4694 * Rather than hide all in some function, I do this in
4695 * open coded manner. You see what this really does.
4696 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4698 mutex_lock(&set_limit_mutex);
4699 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4700 if (memlimit > val) {
4701 ret = -EINVAL;
4702 mutex_unlock(&set_limit_mutex);
4703 break;
4705 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4706 if (memswlimit < val)
4707 enlarge = 1;
4708 ret = res_counter_set_limit(&memcg->memsw, val);
4709 if (!ret) {
4710 if (memlimit == val)
4711 memcg->memsw_is_minimum = true;
4712 else
4713 memcg->memsw_is_minimum = false;
4715 mutex_unlock(&set_limit_mutex);
4717 if (!ret)
4718 break;
4720 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4721 MEM_CGROUP_RECLAIM_NOSWAP |
4722 MEM_CGROUP_RECLAIM_SHRINK);
4723 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4724 /* Usage is reduced ? */
4725 if (curusage >= oldusage)
4726 retry_count--;
4727 else
4728 oldusage = curusage;
4730 if (!ret && enlarge)
4731 memcg_oom_recover(memcg);
4732 return ret;
4735 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
4736 gfp_t gfp_mask,
4737 unsigned long *total_scanned)
4739 unsigned long nr_reclaimed = 0;
4740 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
4741 unsigned long reclaimed;
4742 int loop = 0;
4743 struct mem_cgroup_tree_per_zone *mctz;
4744 unsigned long long excess;
4745 unsigned long nr_scanned;
4747 if (order > 0)
4748 return 0;
4750 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4752 * This loop can run a while, specially if mem_cgroup's continuously
4753 * keep exceeding their soft limit and putting the system under
4754 * pressure
4756 do {
4757 if (next_mz)
4758 mz = next_mz;
4759 else
4760 mz = mem_cgroup_largest_soft_limit_node(mctz);
4761 if (!mz)
4762 break;
4764 nr_scanned = 0;
4765 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
4766 gfp_mask, &nr_scanned);
4767 nr_reclaimed += reclaimed;
4768 *total_scanned += nr_scanned;
4769 spin_lock(&mctz->lock);
4772 * If we failed to reclaim anything from this memory cgroup
4773 * it is time to move on to the next cgroup
4775 next_mz = NULL;
4776 if (!reclaimed) {
4777 do {
4779 * Loop until we find yet another one.
4781 * By the time we get the soft_limit lock
4782 * again, someone might have aded the
4783 * group back on the RB tree. Iterate to
4784 * make sure we get a different mem.
4785 * mem_cgroup_largest_soft_limit_node returns
4786 * NULL if no other cgroup is present on
4787 * the tree
4789 next_mz =
4790 __mem_cgroup_largest_soft_limit_node(mctz);
4791 if (next_mz == mz)
4792 css_put(&next_mz->memcg->css);
4793 else /* next_mz == NULL or other memcg */
4794 break;
4795 } while (1);
4797 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
4798 excess = res_counter_soft_limit_excess(&mz->memcg->res);
4800 * One school of thought says that we should not add
4801 * back the node to the tree if reclaim returns 0.
4802 * But our reclaim could return 0, simply because due
4803 * to priority we are exposing a smaller subset of
4804 * memory to reclaim from. Consider this as a longer
4805 * term TODO.
4807 /* If excess == 0, no tree ops */
4808 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4809 spin_unlock(&mctz->lock);
4810 css_put(&mz->memcg->css);
4811 loop++;
4813 * Could not reclaim anything and there are no more
4814 * mem cgroups to try or we seem to be looping without
4815 * reclaiming anything.
4817 if (!nr_reclaimed &&
4818 (next_mz == NULL ||
4819 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
4820 break;
4821 } while (!nr_reclaimed);
4822 if (next_mz)
4823 css_put(&next_mz->memcg->css);
4824 return nr_reclaimed;
4828 * mem_cgroup_force_empty_list - clears LRU of a group
4829 * @memcg: group to clear
4830 * @node: NUMA node
4831 * @zid: zone id
4832 * @lru: lru to to clear
4834 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
4835 * reclaim the pages page themselves - pages are moved to the parent (or root)
4836 * group.
4838 static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
4839 int node, int zid, enum lru_list lru)
4841 struct lruvec *lruvec;
4842 unsigned long flags;
4843 struct list_head *list;
4844 struct page *busy;
4845 struct zone *zone;
4847 zone = &NODE_DATA(node)->node_zones[zid];
4848 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
4849 list = &lruvec->lists[lru];
4851 busy = NULL;
4852 do {
4853 struct page_cgroup *pc;
4854 struct page *page;
4856 spin_lock_irqsave(&zone->lru_lock, flags);
4857 if (list_empty(list)) {
4858 spin_unlock_irqrestore(&zone->lru_lock, flags);
4859 break;
4861 page = list_entry(list->prev, struct page, lru);
4862 if (busy == page) {
4863 list_move(&page->lru, list);
4864 busy = NULL;
4865 spin_unlock_irqrestore(&zone->lru_lock, flags);
4866 continue;
4868 spin_unlock_irqrestore(&zone->lru_lock, flags);
4870 pc = lookup_page_cgroup(page);
4872 if (mem_cgroup_move_parent(page, pc, memcg)) {
4873 /* found lock contention or "pc" is obsolete. */
4874 busy = page;
4875 cond_resched();
4876 } else
4877 busy = NULL;
4878 } while (!list_empty(list));
4882 * make mem_cgroup's charge to be 0 if there is no task by moving
4883 * all the charges and pages to the parent.
4884 * This enables deleting this mem_cgroup.
4886 * Caller is responsible for holding css reference on the memcg.
4888 static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4890 int node, zid;
4891 u64 usage;
4893 do {
4894 /* This is for making all *used* pages to be on LRU. */
4895 lru_add_drain_all();
4896 drain_all_stock_sync(memcg);
4897 mem_cgroup_start_move(memcg);
4898 for_each_node_state(node, N_MEMORY) {
4899 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4900 enum lru_list lru;
4901 for_each_lru(lru) {
4902 mem_cgroup_force_empty_list(memcg,
4903 node, zid, lru);
4907 mem_cgroup_end_move(memcg);
4908 memcg_oom_recover(memcg);
4909 cond_resched();
4912 * Kernel memory may not necessarily be trackable to a specific
4913 * process. So they are not migrated, and therefore we can't
4914 * expect their value to drop to 0 here.
4915 * Having res filled up with kmem only is enough.
4917 * This is a safety check because mem_cgroup_force_empty_list
4918 * could have raced with mem_cgroup_replace_page_cache callers
4919 * so the lru seemed empty but the page could have been added
4920 * right after the check. RES_USAGE should be safe as we always
4921 * charge before adding to the LRU.
4923 usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
4924 res_counter_read_u64(&memcg->kmem, RES_USAGE);
4925 } while (usage > 0);
4929 * This mainly exists for tests during the setting of set of use_hierarchy.
4930 * Since this is the very setting we are changing, the current hierarchy value
4931 * is meaningless
4933 static inline bool __memcg_has_children(struct mem_cgroup *memcg)
4935 struct cgroup *pos;
4937 /* bounce at first found */
4938 cgroup_for_each_child(pos, memcg->css.cgroup)
4939 return true;
4940 return false;
4944 * Must be called with memcg_create_mutex held, unless the cgroup is guaranteed
4945 * to be already dead (as in mem_cgroup_force_empty, for instance). This is
4946 * from mem_cgroup_count_children(), in the sense that we don't really care how
4947 * many children we have; we only need to know if we have any. It also counts
4948 * any memcg without hierarchy as infertile.
4950 static inline bool memcg_has_children(struct mem_cgroup *memcg)
4952 return memcg->use_hierarchy && __memcg_has_children(memcg);
4956 * Reclaims as many pages from the given memcg as possible and moves
4957 * the rest to the parent.
4959 * Caller is responsible for holding css reference for memcg.
4961 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
4963 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
4964 struct cgroup *cgrp = memcg->css.cgroup;
4966 /* returns EBUSY if there is a task or if we come here twice. */
4967 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
4968 return -EBUSY;
4970 /* we call try-to-free pages for make this cgroup empty */
4971 lru_add_drain_all();
4972 /* try to free all pages in this cgroup */
4973 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
4974 int progress;
4976 if (signal_pending(current))
4977 return -EINTR;
4979 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
4980 false);
4981 if (!progress) {
4982 nr_retries--;
4983 /* maybe some writeback is necessary */
4984 congestion_wait(BLK_RW_ASYNC, HZ/10);
4988 lru_add_drain();
4989 mem_cgroup_reparent_charges(memcg);
4991 return 0;
4994 static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
4996 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4997 int ret;
4999 if (mem_cgroup_is_root(memcg))
5000 return -EINVAL;
5001 css_get(&memcg->css);
5002 ret = mem_cgroup_force_empty(memcg);
5003 css_put(&memcg->css);
5005 return ret;
5009 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
5011 return mem_cgroup_from_cont(cont)->use_hierarchy;
5014 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
5015 u64 val)
5017 int retval = 0;
5018 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5019 struct cgroup *parent = cont->parent;
5020 struct mem_cgroup *parent_memcg = NULL;
5022 if (parent)
5023 parent_memcg = mem_cgroup_from_cont(parent);
5025 mutex_lock(&memcg_create_mutex);
5027 if (memcg->use_hierarchy == val)
5028 goto out;
5031 * If parent's use_hierarchy is set, we can't make any modifications
5032 * in the child subtrees. If it is unset, then the change can
5033 * occur, provided the current cgroup has no children.
5035 * For the root cgroup, parent_mem is NULL, we allow value to be
5036 * set if there are no children.
5038 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
5039 (val == 1 || val == 0)) {
5040 if (!__memcg_has_children(memcg))
5041 memcg->use_hierarchy = val;
5042 else
5043 retval = -EBUSY;
5044 } else
5045 retval = -EINVAL;
5047 out:
5048 mutex_unlock(&memcg_create_mutex);
5050 return retval;
5054 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
5055 enum mem_cgroup_stat_index idx)
5057 struct mem_cgroup *iter;
5058 long val = 0;
5060 /* Per-cpu values can be negative, use a signed accumulator */
5061 for_each_mem_cgroup_tree(iter, memcg)
5062 val += mem_cgroup_read_stat(iter, idx);
5064 if (val < 0) /* race ? */
5065 val = 0;
5066 return val;
5069 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
5071 u64 val;
5073 if (!mem_cgroup_is_root(memcg)) {
5074 if (!swap)
5075 return res_counter_read_u64(&memcg->res, RES_USAGE);
5076 else
5077 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
5081 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
5082 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
5084 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
5085 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
5087 if (swap)
5088 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
5090 return val << PAGE_SHIFT;
5093 static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
5094 struct file *file, char __user *buf,
5095 size_t nbytes, loff_t *ppos)
5097 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5098 char str[64];
5099 u64 val;
5100 int name, len;
5101 enum res_type type;
5103 type = MEMFILE_TYPE(cft->private);
5104 name = MEMFILE_ATTR(cft->private);
5106 switch (type) {
5107 case _MEM:
5108 if (name == RES_USAGE)
5109 val = mem_cgroup_usage(memcg, false);
5110 else
5111 val = res_counter_read_u64(&memcg->res, name);
5112 break;
5113 case _MEMSWAP:
5114 if (name == RES_USAGE)
5115 val = mem_cgroup_usage(memcg, true);
5116 else
5117 val = res_counter_read_u64(&memcg->memsw, name);
5118 break;
5119 case _KMEM:
5120 val = res_counter_read_u64(&memcg->kmem, name);
5121 break;
5122 default:
5123 BUG();
5126 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
5127 return simple_read_from_buffer(buf, nbytes, ppos, str, len);
5130 static int memcg_update_kmem_limit(struct cgroup *cont, u64 val)
5132 int ret = -EINVAL;
5133 #ifdef CONFIG_MEMCG_KMEM
5134 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5136 * For simplicity, we won't allow this to be disabled. It also can't
5137 * be changed if the cgroup has children already, or if tasks had
5138 * already joined.
5140 * If tasks join before we set the limit, a person looking at
5141 * kmem.usage_in_bytes will have no way to determine when it took
5142 * place, which makes the value quite meaningless.
5144 * After it first became limited, changes in the value of the limit are
5145 * of course permitted.
5147 mutex_lock(&memcg_create_mutex);
5148 mutex_lock(&set_limit_mutex);
5149 if (!memcg->kmem_account_flags && val != RESOURCE_MAX) {
5150 if (cgroup_task_count(cont) || memcg_has_children(memcg)) {
5151 ret = -EBUSY;
5152 goto out;
5154 ret = res_counter_set_limit(&memcg->kmem, val);
5155 VM_BUG_ON(ret);
5157 ret = memcg_update_cache_sizes(memcg);
5158 if (ret) {
5159 res_counter_set_limit(&memcg->kmem, RESOURCE_MAX);
5160 goto out;
5162 static_key_slow_inc(&memcg_kmem_enabled_key);
5164 * setting the active bit after the inc will guarantee no one
5165 * starts accounting before all call sites are patched
5167 memcg_kmem_set_active(memcg);
5170 * kmem charges can outlive the cgroup. In the case of slab
5171 * pages, for instance, a page contain objects from various
5172 * processes, so it is unfeasible to migrate them away. We
5173 * need to reference count the memcg because of that.
5175 mem_cgroup_get(memcg);
5176 } else
5177 ret = res_counter_set_limit(&memcg->kmem, val);
5178 out:
5179 mutex_unlock(&set_limit_mutex);
5180 mutex_unlock(&memcg_create_mutex);
5181 #endif
5182 return ret;
5185 #ifdef CONFIG_MEMCG_KMEM
5186 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
5188 int ret = 0;
5189 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5190 if (!parent)
5191 goto out;
5193 memcg->kmem_account_flags = parent->kmem_account_flags;
5195 * When that happen, we need to disable the static branch only on those
5196 * memcgs that enabled it. To achieve this, we would be forced to
5197 * complicate the code by keeping track of which memcgs were the ones
5198 * that actually enabled limits, and which ones got it from its
5199 * parents.
5201 * It is a lot simpler just to do static_key_slow_inc() on every child
5202 * that is accounted.
5204 if (!memcg_kmem_is_active(memcg))
5205 goto out;
5208 * destroy(), called if we fail, will issue static_key_slow_inc() and
5209 * mem_cgroup_put() if kmem is enabled. We have to either call them
5210 * unconditionally, or clear the KMEM_ACTIVE flag. I personally find
5211 * this more consistent, since it always leads to the same destroy path
5213 mem_cgroup_get(memcg);
5214 static_key_slow_inc(&memcg_kmem_enabled_key);
5216 mutex_lock(&set_limit_mutex);
5217 ret = memcg_update_cache_sizes(memcg);
5218 mutex_unlock(&set_limit_mutex);
5219 out:
5220 return ret;
5222 #endif /* CONFIG_MEMCG_KMEM */
5225 * The user of this function is...
5226 * RES_LIMIT.
5228 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
5229 const char *buffer)
5231 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5232 enum res_type type;
5233 int name;
5234 unsigned long long val;
5235 int ret;
5237 type = MEMFILE_TYPE(cft->private);
5238 name = MEMFILE_ATTR(cft->private);
5240 switch (name) {
5241 case RES_LIMIT:
5242 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
5243 ret = -EINVAL;
5244 break;
5246 /* This function does all necessary parse...reuse it */
5247 ret = res_counter_memparse_write_strategy(buffer, &val);
5248 if (ret)
5249 break;
5250 if (type == _MEM)
5251 ret = mem_cgroup_resize_limit(memcg, val);
5252 else if (type == _MEMSWAP)
5253 ret = mem_cgroup_resize_memsw_limit(memcg, val);
5254 else if (type == _KMEM)
5255 ret = memcg_update_kmem_limit(cont, val);
5256 else
5257 return -EINVAL;
5258 break;
5259 case RES_SOFT_LIMIT:
5260 ret = res_counter_memparse_write_strategy(buffer, &val);
5261 if (ret)
5262 break;
5264 * For memsw, soft limits are hard to implement in terms
5265 * of semantics, for now, we support soft limits for
5266 * control without swap
5268 if (type == _MEM)
5269 ret = res_counter_set_soft_limit(&memcg->res, val);
5270 else
5271 ret = -EINVAL;
5272 break;
5273 default:
5274 ret = -EINVAL; /* should be BUG() ? */
5275 break;
5277 return ret;
5280 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
5281 unsigned long long *mem_limit, unsigned long long *memsw_limit)
5283 struct cgroup *cgroup;
5284 unsigned long long min_limit, min_memsw_limit, tmp;
5286 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
5287 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5288 cgroup = memcg->css.cgroup;
5289 if (!memcg->use_hierarchy)
5290 goto out;
5292 while (cgroup->parent) {
5293 cgroup = cgroup->parent;
5294 memcg = mem_cgroup_from_cont(cgroup);
5295 if (!memcg->use_hierarchy)
5296 break;
5297 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
5298 min_limit = min(min_limit, tmp);
5299 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5300 min_memsw_limit = min(min_memsw_limit, tmp);
5302 out:
5303 *mem_limit = min_limit;
5304 *memsw_limit = min_memsw_limit;
5307 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
5309 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5310 int name;
5311 enum res_type type;
5313 type = MEMFILE_TYPE(event);
5314 name = MEMFILE_ATTR(event);
5316 switch (name) {
5317 case RES_MAX_USAGE:
5318 if (type == _MEM)
5319 res_counter_reset_max(&memcg->res);
5320 else if (type == _MEMSWAP)
5321 res_counter_reset_max(&memcg->memsw);
5322 else if (type == _KMEM)
5323 res_counter_reset_max(&memcg->kmem);
5324 else
5325 return -EINVAL;
5326 break;
5327 case RES_FAILCNT:
5328 if (type == _MEM)
5329 res_counter_reset_failcnt(&memcg->res);
5330 else if (type == _MEMSWAP)
5331 res_counter_reset_failcnt(&memcg->memsw);
5332 else if (type == _KMEM)
5333 res_counter_reset_failcnt(&memcg->kmem);
5334 else
5335 return -EINVAL;
5336 break;
5339 return 0;
5342 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
5343 struct cftype *cft)
5345 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
5348 #ifdef CONFIG_MMU
5349 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
5350 struct cftype *cft, u64 val)
5352 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5354 if (val >= (1 << NR_MOVE_TYPE))
5355 return -EINVAL;
5358 * No kind of locking is needed in here, because ->can_attach() will
5359 * check this value once in the beginning of the process, and then carry
5360 * on with stale data. This means that changes to this value will only
5361 * affect task migrations starting after the change.
5363 memcg->move_charge_at_immigrate = val;
5364 return 0;
5366 #else
5367 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
5368 struct cftype *cft, u64 val)
5370 return -ENOSYS;
5372 #endif
5374 #ifdef CONFIG_NUMA
5375 static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft,
5376 struct seq_file *m)
5378 int nid;
5379 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
5380 unsigned long node_nr;
5381 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5383 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
5384 seq_printf(m, "total=%lu", total_nr);
5385 for_each_node_state(nid, N_MEMORY) {
5386 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
5387 seq_printf(m, " N%d=%lu", nid, node_nr);
5389 seq_putc(m, '\n');
5391 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
5392 seq_printf(m, "file=%lu", file_nr);
5393 for_each_node_state(nid, N_MEMORY) {
5394 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5395 LRU_ALL_FILE);
5396 seq_printf(m, " N%d=%lu", nid, node_nr);
5398 seq_putc(m, '\n');
5400 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
5401 seq_printf(m, "anon=%lu", anon_nr);
5402 for_each_node_state(nid, N_MEMORY) {
5403 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5404 LRU_ALL_ANON);
5405 seq_printf(m, " N%d=%lu", nid, node_nr);
5407 seq_putc(m, '\n');
5409 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
5410 seq_printf(m, "unevictable=%lu", unevictable_nr);
5411 for_each_node_state(nid, N_MEMORY) {
5412 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5413 BIT(LRU_UNEVICTABLE));
5414 seq_printf(m, " N%d=%lu", nid, node_nr);
5416 seq_putc(m, '\n');
5417 return 0;
5419 #endif /* CONFIG_NUMA */
5421 static inline void mem_cgroup_lru_names_not_uptodate(void)
5423 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
5426 static int memcg_stat_show(struct cgroup *cont, struct cftype *cft,
5427 struct seq_file *m)
5429 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5430 struct mem_cgroup *mi;
5431 unsigned int i;
5433 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5434 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5435 continue;
5436 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
5437 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5440 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
5441 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
5442 mem_cgroup_read_events(memcg, i));
5444 for (i = 0; i < NR_LRU_LISTS; i++)
5445 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
5446 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
5448 /* Hierarchical information */
5450 unsigned long long limit, memsw_limit;
5451 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5452 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5453 if (do_swap_account)
5454 seq_printf(m, "hierarchical_memsw_limit %llu\n",
5455 memsw_limit);
5458 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5459 long long val = 0;
5461 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5462 continue;
5463 for_each_mem_cgroup_tree(mi, memcg)
5464 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
5465 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
5468 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
5469 unsigned long long val = 0;
5471 for_each_mem_cgroup_tree(mi, memcg)
5472 val += mem_cgroup_read_events(mi, i);
5473 seq_printf(m, "total_%s %llu\n",
5474 mem_cgroup_events_names[i], val);
5477 for (i = 0; i < NR_LRU_LISTS; i++) {
5478 unsigned long long val = 0;
5480 for_each_mem_cgroup_tree(mi, memcg)
5481 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
5482 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5485 #ifdef CONFIG_DEBUG_VM
5487 int nid, zid;
5488 struct mem_cgroup_per_zone *mz;
5489 struct zone_reclaim_stat *rstat;
5490 unsigned long recent_rotated[2] = {0, 0};
5491 unsigned long recent_scanned[2] = {0, 0};
5493 for_each_online_node(nid)
5494 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5495 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
5496 rstat = &mz->lruvec.reclaim_stat;
5498 recent_rotated[0] += rstat->recent_rotated[0];
5499 recent_rotated[1] += rstat->recent_rotated[1];
5500 recent_scanned[0] += rstat->recent_scanned[0];
5501 recent_scanned[1] += rstat->recent_scanned[1];
5503 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
5504 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
5505 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
5506 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
5508 #endif
5510 return 0;
5513 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
5515 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5517 return mem_cgroup_swappiness(memcg);
5520 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
5521 u64 val)
5523 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5524 struct mem_cgroup *parent;
5526 if (val > 100)
5527 return -EINVAL;
5529 if (cgrp->parent == NULL)
5530 return -EINVAL;
5532 parent = mem_cgroup_from_cont(cgrp->parent);
5534 mutex_lock(&memcg_create_mutex);
5536 /* If under hierarchy, only empty-root can set this value */
5537 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5538 mutex_unlock(&memcg_create_mutex);
5539 return -EINVAL;
5542 memcg->swappiness = val;
5544 mutex_unlock(&memcg_create_mutex);
5546 return 0;
5549 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
5551 struct mem_cgroup_threshold_ary *t;
5552 u64 usage;
5553 int i;
5555 rcu_read_lock();
5556 if (!swap)
5557 t = rcu_dereference(memcg->thresholds.primary);
5558 else
5559 t = rcu_dereference(memcg->memsw_thresholds.primary);
5561 if (!t)
5562 goto unlock;
5564 usage = mem_cgroup_usage(memcg, swap);
5567 * current_threshold points to threshold just below or equal to usage.
5568 * If it's not true, a threshold was crossed after last
5569 * call of __mem_cgroup_threshold().
5571 i = t->current_threshold;
5574 * Iterate backward over array of thresholds starting from
5575 * current_threshold and check if a threshold is crossed.
5576 * If none of thresholds below usage is crossed, we read
5577 * only one element of the array here.
5579 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
5580 eventfd_signal(t->entries[i].eventfd, 1);
5582 /* i = current_threshold + 1 */
5583 i++;
5586 * Iterate forward over array of thresholds starting from
5587 * current_threshold+1 and check if a threshold is crossed.
5588 * If none of thresholds above usage is crossed, we read
5589 * only one element of the array here.
5591 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
5592 eventfd_signal(t->entries[i].eventfd, 1);
5594 /* Update current_threshold */
5595 t->current_threshold = i - 1;
5596 unlock:
5597 rcu_read_unlock();
5600 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
5602 while (memcg) {
5603 __mem_cgroup_threshold(memcg, false);
5604 if (do_swap_account)
5605 __mem_cgroup_threshold(memcg, true);
5607 memcg = parent_mem_cgroup(memcg);
5611 static int compare_thresholds(const void *a, const void *b)
5613 const struct mem_cgroup_threshold *_a = a;
5614 const struct mem_cgroup_threshold *_b = b;
5616 return _a->threshold - _b->threshold;
5619 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
5621 struct mem_cgroup_eventfd_list *ev;
5623 list_for_each_entry(ev, &memcg->oom_notify, list)
5624 eventfd_signal(ev->eventfd, 1);
5625 return 0;
5628 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
5630 struct mem_cgroup *iter;
5632 for_each_mem_cgroup_tree(iter, memcg)
5633 mem_cgroup_oom_notify_cb(iter);
5636 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
5637 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5639 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5640 struct mem_cgroup_thresholds *thresholds;
5641 struct mem_cgroup_threshold_ary *new;
5642 enum res_type type = MEMFILE_TYPE(cft->private);
5643 u64 threshold, usage;
5644 int i, size, ret;
5646 ret = res_counter_memparse_write_strategy(args, &threshold);
5647 if (ret)
5648 return ret;
5650 mutex_lock(&memcg->thresholds_lock);
5652 if (type == _MEM)
5653 thresholds = &memcg->thresholds;
5654 else if (type == _MEMSWAP)
5655 thresholds = &memcg->memsw_thresholds;
5656 else
5657 BUG();
5659 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5661 /* Check if a threshold crossed before adding a new one */
5662 if (thresholds->primary)
5663 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5665 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5667 /* Allocate memory for new array of thresholds */
5668 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5669 GFP_KERNEL);
5670 if (!new) {
5671 ret = -ENOMEM;
5672 goto unlock;
5674 new->size = size;
5676 /* Copy thresholds (if any) to new array */
5677 if (thresholds->primary) {
5678 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5679 sizeof(struct mem_cgroup_threshold));
5682 /* Add new threshold */
5683 new->entries[size - 1].eventfd = eventfd;
5684 new->entries[size - 1].threshold = threshold;
5686 /* Sort thresholds. Registering of new threshold isn't time-critical */
5687 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5688 compare_thresholds, NULL);
5690 /* Find current threshold */
5691 new->current_threshold = -1;
5692 for (i = 0; i < size; i++) {
5693 if (new->entries[i].threshold <= usage) {
5695 * new->current_threshold will not be used until
5696 * rcu_assign_pointer(), so it's safe to increment
5697 * it here.
5699 ++new->current_threshold;
5700 } else
5701 break;
5704 /* Free old spare buffer and save old primary buffer as spare */
5705 kfree(thresholds->spare);
5706 thresholds->spare = thresholds->primary;
5708 rcu_assign_pointer(thresholds->primary, new);
5710 /* To be sure that nobody uses thresholds */
5711 synchronize_rcu();
5713 unlock:
5714 mutex_unlock(&memcg->thresholds_lock);
5716 return ret;
5719 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
5720 struct cftype *cft, struct eventfd_ctx *eventfd)
5722 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5723 struct mem_cgroup_thresholds *thresholds;
5724 struct mem_cgroup_threshold_ary *new;
5725 enum res_type type = MEMFILE_TYPE(cft->private);
5726 u64 usage;
5727 int i, j, size;
5729 mutex_lock(&memcg->thresholds_lock);
5730 if (type == _MEM)
5731 thresholds = &memcg->thresholds;
5732 else if (type == _MEMSWAP)
5733 thresholds = &memcg->memsw_thresholds;
5734 else
5735 BUG();
5737 if (!thresholds->primary)
5738 goto unlock;
5740 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5742 /* Check if a threshold crossed before removing */
5743 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5745 /* Calculate new number of threshold */
5746 size = 0;
5747 for (i = 0; i < thresholds->primary->size; i++) {
5748 if (thresholds->primary->entries[i].eventfd != eventfd)
5749 size++;
5752 new = thresholds->spare;
5754 /* Set thresholds array to NULL if we don't have thresholds */
5755 if (!size) {
5756 kfree(new);
5757 new = NULL;
5758 goto swap_buffers;
5761 new->size = size;
5763 /* Copy thresholds and find current threshold */
5764 new->current_threshold = -1;
5765 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
5766 if (thresholds->primary->entries[i].eventfd == eventfd)
5767 continue;
5769 new->entries[j] = thresholds->primary->entries[i];
5770 if (new->entries[j].threshold <= usage) {
5772 * new->current_threshold will not be used
5773 * until rcu_assign_pointer(), so it's safe to increment
5774 * it here.
5776 ++new->current_threshold;
5778 j++;
5781 swap_buffers:
5782 /* Swap primary and spare array */
5783 thresholds->spare = thresholds->primary;
5784 /* If all events are unregistered, free the spare array */
5785 if (!new) {
5786 kfree(thresholds->spare);
5787 thresholds->spare = NULL;
5790 rcu_assign_pointer(thresholds->primary, new);
5792 /* To be sure that nobody uses thresholds */
5793 synchronize_rcu();
5794 unlock:
5795 mutex_unlock(&memcg->thresholds_lock);
5798 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
5799 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5801 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5802 struct mem_cgroup_eventfd_list *event;
5803 enum res_type type = MEMFILE_TYPE(cft->private);
5805 BUG_ON(type != _OOM_TYPE);
5806 event = kmalloc(sizeof(*event), GFP_KERNEL);
5807 if (!event)
5808 return -ENOMEM;
5810 spin_lock(&memcg_oom_lock);
5812 event->eventfd = eventfd;
5813 list_add(&event->list, &memcg->oom_notify);
5815 /* already in OOM ? */
5816 if (atomic_read(&memcg->under_oom))
5817 eventfd_signal(eventfd, 1);
5818 spin_unlock(&memcg_oom_lock);
5820 return 0;
5823 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
5824 struct cftype *cft, struct eventfd_ctx *eventfd)
5826 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5827 struct mem_cgroup_eventfd_list *ev, *tmp;
5828 enum res_type type = MEMFILE_TYPE(cft->private);
5830 BUG_ON(type != _OOM_TYPE);
5832 spin_lock(&memcg_oom_lock);
5834 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
5835 if (ev->eventfd == eventfd) {
5836 list_del(&ev->list);
5837 kfree(ev);
5841 spin_unlock(&memcg_oom_lock);
5844 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
5845 struct cftype *cft, struct cgroup_map_cb *cb)
5847 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5849 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
5851 if (atomic_read(&memcg->under_oom))
5852 cb->fill(cb, "under_oom", 1);
5853 else
5854 cb->fill(cb, "under_oom", 0);
5855 return 0;
5858 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
5859 struct cftype *cft, u64 val)
5861 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5862 struct mem_cgroup *parent;
5864 /* cannot set to root cgroup and only 0 and 1 are allowed */
5865 if (!cgrp->parent || !((val == 0) || (val == 1)))
5866 return -EINVAL;
5868 parent = mem_cgroup_from_cont(cgrp->parent);
5870 mutex_lock(&memcg_create_mutex);
5871 /* oom-kill-disable is a flag for subhierarchy. */
5872 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5873 mutex_unlock(&memcg_create_mutex);
5874 return -EINVAL;
5876 memcg->oom_kill_disable = val;
5877 if (!val)
5878 memcg_oom_recover(memcg);
5879 mutex_unlock(&memcg_create_mutex);
5880 return 0;
5883 #ifdef CONFIG_MEMCG_KMEM
5884 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5886 int ret;
5888 memcg->kmemcg_id = -1;
5889 ret = memcg_propagate_kmem(memcg);
5890 if (ret)
5891 return ret;
5893 return mem_cgroup_sockets_init(memcg, ss);
5896 static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
5898 mem_cgroup_sockets_destroy(memcg);
5900 memcg_kmem_mark_dead(memcg);
5902 if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
5903 return;
5906 * Charges already down to 0, undo mem_cgroup_get() done in the charge
5907 * path here, being careful not to race with memcg_uncharge_kmem: it is
5908 * possible that the charges went down to 0 between mark_dead and the
5909 * res_counter read, so in that case, we don't need the put
5911 if (memcg_kmem_test_and_clear_dead(memcg))
5912 mem_cgroup_put(memcg);
5914 #else
5915 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5917 return 0;
5920 static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
5923 #endif
5925 static struct cftype mem_cgroup_files[] = {
5927 .name = "usage_in_bytes",
5928 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5929 .read = mem_cgroup_read,
5930 .register_event = mem_cgroup_usage_register_event,
5931 .unregister_event = mem_cgroup_usage_unregister_event,
5934 .name = "max_usage_in_bytes",
5935 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5936 .trigger = mem_cgroup_reset,
5937 .read = mem_cgroup_read,
5940 .name = "limit_in_bytes",
5941 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5942 .write_string = mem_cgroup_write,
5943 .read = mem_cgroup_read,
5946 .name = "soft_limit_in_bytes",
5947 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5948 .write_string = mem_cgroup_write,
5949 .read = mem_cgroup_read,
5952 .name = "failcnt",
5953 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5954 .trigger = mem_cgroup_reset,
5955 .read = mem_cgroup_read,
5958 .name = "stat",
5959 .read_seq_string = memcg_stat_show,
5962 .name = "force_empty",
5963 .trigger = mem_cgroup_force_empty_write,
5966 .name = "use_hierarchy",
5967 .flags = CFTYPE_INSANE,
5968 .write_u64 = mem_cgroup_hierarchy_write,
5969 .read_u64 = mem_cgroup_hierarchy_read,
5972 .name = "swappiness",
5973 .read_u64 = mem_cgroup_swappiness_read,
5974 .write_u64 = mem_cgroup_swappiness_write,
5977 .name = "move_charge_at_immigrate",
5978 .read_u64 = mem_cgroup_move_charge_read,
5979 .write_u64 = mem_cgroup_move_charge_write,
5982 .name = "oom_control",
5983 .read_map = mem_cgroup_oom_control_read,
5984 .write_u64 = mem_cgroup_oom_control_write,
5985 .register_event = mem_cgroup_oom_register_event,
5986 .unregister_event = mem_cgroup_oom_unregister_event,
5987 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
5990 .name = "pressure_level",
5991 .register_event = vmpressure_register_event,
5992 .unregister_event = vmpressure_unregister_event,
5994 #ifdef CONFIG_NUMA
5996 .name = "numa_stat",
5997 .read_seq_string = memcg_numa_stat_show,
5999 #endif
6000 #ifdef CONFIG_MEMCG_KMEM
6002 .name = "kmem.limit_in_bytes",
6003 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
6004 .write_string = mem_cgroup_write,
6005 .read = mem_cgroup_read,
6008 .name = "kmem.usage_in_bytes",
6009 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
6010 .read = mem_cgroup_read,
6013 .name = "kmem.failcnt",
6014 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6015 .trigger = mem_cgroup_reset,
6016 .read = mem_cgroup_read,
6019 .name = "kmem.max_usage_in_bytes",
6020 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6021 .trigger = mem_cgroup_reset,
6022 .read = mem_cgroup_read,
6024 #ifdef CONFIG_SLABINFO
6026 .name = "kmem.slabinfo",
6027 .read_seq_string = mem_cgroup_slabinfo_read,
6029 #endif
6030 #endif
6031 { }, /* terminate */
6034 #ifdef CONFIG_MEMCG_SWAP
6035 static struct cftype memsw_cgroup_files[] = {
6037 .name = "memsw.usage_in_bytes",
6038 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6039 .read = mem_cgroup_read,
6040 .register_event = mem_cgroup_usage_register_event,
6041 .unregister_event = mem_cgroup_usage_unregister_event,
6044 .name = "memsw.max_usage_in_bytes",
6045 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6046 .trigger = mem_cgroup_reset,
6047 .read = mem_cgroup_read,
6050 .name = "memsw.limit_in_bytes",
6051 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6052 .write_string = mem_cgroup_write,
6053 .read = mem_cgroup_read,
6056 .name = "memsw.failcnt",
6057 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6058 .trigger = mem_cgroup_reset,
6059 .read = mem_cgroup_read,
6061 { }, /* terminate */
6063 #endif
6064 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6066 struct mem_cgroup_per_node *pn;
6067 struct mem_cgroup_per_zone *mz;
6068 int zone, tmp = node;
6070 * This routine is called against possible nodes.
6071 * But it's BUG to call kmalloc() against offline node.
6073 * TODO: this routine can waste much memory for nodes which will
6074 * never be onlined. It's better to use memory hotplug callback
6075 * function.
6077 if (!node_state(node, N_NORMAL_MEMORY))
6078 tmp = -1;
6079 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6080 if (!pn)
6081 return 1;
6083 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6084 mz = &pn->zoneinfo[zone];
6085 lruvec_init(&mz->lruvec);
6086 mz->usage_in_excess = 0;
6087 mz->on_tree = false;
6088 mz->memcg = memcg;
6090 memcg->info.nodeinfo[node] = pn;
6091 return 0;
6094 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6096 kfree(memcg->info.nodeinfo[node]);
6099 static struct mem_cgroup *mem_cgroup_alloc(void)
6101 struct mem_cgroup *memcg;
6102 size_t size = memcg_size();
6104 /* Can be very big if nr_node_ids is very big */
6105 if (size < PAGE_SIZE)
6106 memcg = kzalloc(size, GFP_KERNEL);
6107 else
6108 memcg = vzalloc(size);
6110 if (!memcg)
6111 return NULL;
6113 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
6114 if (!memcg->stat)
6115 goto out_free;
6116 spin_lock_init(&memcg->pcp_counter_lock);
6117 return memcg;
6119 out_free:
6120 if (size < PAGE_SIZE)
6121 kfree(memcg);
6122 else
6123 vfree(memcg);
6124 return NULL;
6128 * At destroying mem_cgroup, references from swap_cgroup can remain.
6129 * (scanning all at force_empty is too costly...)
6131 * Instead of clearing all references at force_empty, we remember
6132 * the number of reference from swap_cgroup and free mem_cgroup when
6133 * it goes down to 0.
6135 * Removal of cgroup itself succeeds regardless of refs from swap.
6138 static void __mem_cgroup_free(struct mem_cgroup *memcg)
6140 int node;
6141 size_t size = memcg_size();
6143 mem_cgroup_remove_from_trees(memcg);
6144 free_css_id(&mem_cgroup_subsys, &memcg->css);
6146 for_each_node(node)
6147 free_mem_cgroup_per_zone_info(memcg, node);
6149 free_percpu(memcg->stat);
6152 * We need to make sure that (at least for now), the jump label
6153 * destruction code runs outside of the cgroup lock. This is because
6154 * get_online_cpus(), which is called from the static_branch update,
6155 * can't be called inside the cgroup_lock. cpusets are the ones
6156 * enforcing this dependency, so if they ever change, we might as well.
6158 * schedule_work() will guarantee this happens. Be careful if you need
6159 * to move this code around, and make sure it is outside
6160 * the cgroup_lock.
6162 disarm_static_keys(memcg);
6163 if (size < PAGE_SIZE)
6164 kfree(memcg);
6165 else
6166 vfree(memcg);
6171 * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU,
6172 * but in process context. The work_freeing structure is overlaid
6173 * on the rcu_freeing structure, which itself is overlaid on memsw.
6175 static void free_work(struct work_struct *work)
6177 struct mem_cgroup *memcg;
6179 memcg = container_of(work, struct mem_cgroup, work_freeing);
6180 __mem_cgroup_free(memcg);
6183 static void free_rcu(struct rcu_head *rcu_head)
6185 struct mem_cgroup *memcg;
6187 memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
6188 INIT_WORK(&memcg->work_freeing, free_work);
6189 schedule_work(&memcg->work_freeing);
6192 static void mem_cgroup_get(struct mem_cgroup *memcg)
6194 atomic_inc(&memcg->refcnt);
6197 static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
6199 if (atomic_sub_and_test(count, &memcg->refcnt)) {
6200 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
6201 call_rcu(&memcg->rcu_freeing, free_rcu);
6202 if (parent)
6203 mem_cgroup_put(parent);
6207 static void mem_cgroup_put(struct mem_cgroup *memcg)
6209 __mem_cgroup_put(memcg, 1);
6213 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
6215 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
6217 if (!memcg->res.parent)
6218 return NULL;
6219 return mem_cgroup_from_res_counter(memcg->res.parent, res);
6221 EXPORT_SYMBOL(parent_mem_cgroup);
6223 static void __init mem_cgroup_soft_limit_tree_init(void)
6225 struct mem_cgroup_tree_per_node *rtpn;
6226 struct mem_cgroup_tree_per_zone *rtpz;
6227 int tmp, node, zone;
6229 for_each_node(node) {
6230 tmp = node;
6231 if (!node_state(node, N_NORMAL_MEMORY))
6232 tmp = -1;
6233 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
6234 BUG_ON(!rtpn);
6236 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6238 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6239 rtpz = &rtpn->rb_tree_per_zone[zone];
6240 rtpz->rb_root = RB_ROOT;
6241 spin_lock_init(&rtpz->lock);
6246 static struct cgroup_subsys_state * __ref
6247 mem_cgroup_css_alloc(struct cgroup *cont)
6249 struct mem_cgroup *memcg;
6250 long error = -ENOMEM;
6251 int node;
6253 memcg = mem_cgroup_alloc();
6254 if (!memcg)
6255 return ERR_PTR(error);
6257 for_each_node(node)
6258 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6259 goto free_out;
6261 /* root ? */
6262 if (cont->parent == NULL) {
6263 root_mem_cgroup = memcg;
6264 res_counter_init(&memcg->res, NULL);
6265 res_counter_init(&memcg->memsw, NULL);
6266 res_counter_init(&memcg->kmem, NULL);
6269 memcg->last_scanned_node = MAX_NUMNODES;
6270 INIT_LIST_HEAD(&memcg->oom_notify);
6271 atomic_set(&memcg->refcnt, 1);
6272 memcg->move_charge_at_immigrate = 0;
6273 mutex_init(&memcg->thresholds_lock);
6274 spin_lock_init(&memcg->move_lock);
6275 vmpressure_init(&memcg->vmpressure);
6277 return &memcg->css;
6279 free_out:
6280 __mem_cgroup_free(memcg);
6281 return ERR_PTR(error);
6284 static int
6285 mem_cgroup_css_online(struct cgroup *cont)
6287 struct mem_cgroup *memcg, *parent;
6288 int error = 0;
6290 if (!cont->parent)
6291 return 0;
6293 mutex_lock(&memcg_create_mutex);
6294 memcg = mem_cgroup_from_cont(cont);
6295 parent = mem_cgroup_from_cont(cont->parent);
6297 memcg->use_hierarchy = parent->use_hierarchy;
6298 memcg->oom_kill_disable = parent->oom_kill_disable;
6299 memcg->swappiness = mem_cgroup_swappiness(parent);
6301 if (parent->use_hierarchy) {
6302 res_counter_init(&memcg->res, &parent->res);
6303 res_counter_init(&memcg->memsw, &parent->memsw);
6304 res_counter_init(&memcg->kmem, &parent->kmem);
6307 * We increment refcnt of the parent to ensure that we can
6308 * safely access it on res_counter_charge/uncharge.
6309 * This refcnt will be decremented when freeing this
6310 * mem_cgroup(see mem_cgroup_put).
6312 mem_cgroup_get(parent);
6313 } else {
6314 res_counter_init(&memcg->res, NULL);
6315 res_counter_init(&memcg->memsw, NULL);
6316 res_counter_init(&memcg->kmem, NULL);
6318 * Deeper hierachy with use_hierarchy == false doesn't make
6319 * much sense so let cgroup subsystem know about this
6320 * unfortunate state in our controller.
6322 if (parent != root_mem_cgroup)
6323 mem_cgroup_subsys.broken_hierarchy = true;
6326 error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
6327 mutex_unlock(&memcg_create_mutex);
6328 if (error) {
6330 * We call put now because our (and parent's) refcnts
6331 * are already in place. mem_cgroup_put() will internally
6332 * call __mem_cgroup_free, so return directly
6334 mem_cgroup_put(memcg);
6335 if (parent->use_hierarchy)
6336 mem_cgroup_put(parent);
6338 return error;
6342 * Announce all parents that a group from their hierarchy is gone.
6344 static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
6346 struct mem_cgroup *parent = memcg;
6348 while ((parent = parent_mem_cgroup(parent)))
6349 mem_cgroup_iter_invalidate(parent);
6352 * if the root memcg is not hierarchical we have to check it
6353 * explicitely.
6355 if (!root_mem_cgroup->use_hierarchy)
6356 mem_cgroup_iter_invalidate(root_mem_cgroup);
6359 static void mem_cgroup_css_offline(struct cgroup *cont)
6361 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
6363 mem_cgroup_invalidate_reclaim_iterators(memcg);
6364 mem_cgroup_reparent_charges(memcg);
6365 mem_cgroup_destroy_all_caches(memcg);
6368 static void mem_cgroup_css_free(struct cgroup *cont)
6370 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
6372 kmem_cgroup_destroy(memcg);
6374 mem_cgroup_put(memcg);
6377 #ifdef CONFIG_MMU
6378 /* Handlers for move charge at task migration. */
6379 #define PRECHARGE_COUNT_AT_ONCE 256
6380 static int mem_cgroup_do_precharge(unsigned long count)
6382 int ret = 0;
6383 int batch_count = PRECHARGE_COUNT_AT_ONCE;
6384 struct mem_cgroup *memcg = mc.to;
6386 if (mem_cgroup_is_root(memcg)) {
6387 mc.precharge += count;
6388 /* we don't need css_get for root */
6389 return ret;
6391 /* try to charge at once */
6392 if (count > 1) {
6393 struct res_counter *dummy;
6395 * "memcg" cannot be under rmdir() because we've already checked
6396 * by cgroup_lock_live_cgroup() that it is not removed and we
6397 * are still under the same cgroup_mutex. So we can postpone
6398 * css_get().
6400 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6401 goto one_by_one;
6402 if (do_swap_account && res_counter_charge(&memcg->memsw,
6403 PAGE_SIZE * count, &dummy)) {
6404 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6405 goto one_by_one;
6407 mc.precharge += count;
6408 return ret;
6410 one_by_one:
6411 /* fall back to one by one charge */
6412 while (count--) {
6413 if (signal_pending(current)) {
6414 ret = -EINTR;
6415 break;
6417 if (!batch_count--) {
6418 batch_count = PRECHARGE_COUNT_AT_ONCE;
6419 cond_resched();
6421 ret = __mem_cgroup_try_charge(NULL,
6422 GFP_KERNEL, 1, &memcg, false);
6423 if (ret)
6424 /* mem_cgroup_clear_mc() will do uncharge later */
6425 return ret;
6426 mc.precharge++;
6428 return ret;
6432 * get_mctgt_type - get target type of moving charge
6433 * @vma: the vma the pte to be checked belongs
6434 * @addr: the address corresponding to the pte to be checked
6435 * @ptent: the pte to be checked
6436 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6438 * Returns
6439 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
6440 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
6441 * move charge. if @target is not NULL, the page is stored in target->page
6442 * with extra refcnt got(Callers should handle it).
6443 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
6444 * target for charge migration. if @target is not NULL, the entry is stored
6445 * in target->ent.
6447 * Called with pte lock held.
6449 union mc_target {
6450 struct page *page;
6451 swp_entry_t ent;
6454 enum mc_target_type {
6455 MC_TARGET_NONE = 0,
6456 MC_TARGET_PAGE,
6457 MC_TARGET_SWAP,
6460 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
6461 unsigned long addr, pte_t ptent)
6463 struct page *page = vm_normal_page(vma, addr, ptent);
6465 if (!page || !page_mapped(page))
6466 return NULL;
6467 if (PageAnon(page)) {
6468 /* we don't move shared anon */
6469 if (!move_anon())
6470 return NULL;
6471 } else if (!move_file())
6472 /* we ignore mapcount for file pages */
6473 return NULL;
6474 if (!get_page_unless_zero(page))
6475 return NULL;
6477 return page;
6480 #ifdef CONFIG_SWAP
6481 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6482 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6484 struct page *page = NULL;
6485 swp_entry_t ent = pte_to_swp_entry(ptent);
6487 if (!move_anon() || non_swap_entry(ent))
6488 return NULL;
6490 * Because lookup_swap_cache() updates some statistics counter,
6491 * we call find_get_page() with swapper_space directly.
6493 page = find_get_page(swap_address_space(ent), ent.val);
6494 if (do_swap_account)
6495 entry->val = ent.val;
6497 return page;
6499 #else
6500 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6501 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6503 return NULL;
6505 #endif
6507 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
6508 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6510 struct page *page = NULL;
6511 struct address_space *mapping;
6512 pgoff_t pgoff;
6514 if (!vma->vm_file) /* anonymous vma */
6515 return NULL;
6516 if (!move_file())
6517 return NULL;
6519 mapping = vma->vm_file->f_mapping;
6520 if (pte_none(ptent))
6521 pgoff = linear_page_index(vma, addr);
6522 else /* pte_file(ptent) is true */
6523 pgoff = pte_to_pgoff(ptent);
6525 /* page is moved even if it's not RSS of this task(page-faulted). */
6526 page = find_get_page(mapping, pgoff);
6528 #ifdef CONFIG_SWAP
6529 /* shmem/tmpfs may report page out on swap: account for that too. */
6530 if (radix_tree_exceptional_entry(page)) {
6531 swp_entry_t swap = radix_to_swp_entry(page);
6532 if (do_swap_account)
6533 *entry = swap;
6534 page = find_get_page(swap_address_space(swap), swap.val);
6536 #endif
6537 return page;
6540 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
6541 unsigned long addr, pte_t ptent, union mc_target *target)
6543 struct page *page = NULL;
6544 struct page_cgroup *pc;
6545 enum mc_target_type ret = MC_TARGET_NONE;
6546 swp_entry_t ent = { .val = 0 };
6548 if (pte_present(ptent))
6549 page = mc_handle_present_pte(vma, addr, ptent);
6550 else if (is_swap_pte(ptent))
6551 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6552 else if (pte_none(ptent) || pte_file(ptent))
6553 page = mc_handle_file_pte(vma, addr, ptent, &ent);
6555 if (!page && !ent.val)
6556 return ret;
6557 if (page) {
6558 pc = lookup_page_cgroup(page);
6560 * Do only loose check w/o page_cgroup lock.
6561 * mem_cgroup_move_account() checks the pc is valid or not under
6562 * the lock.
6564 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6565 ret = MC_TARGET_PAGE;
6566 if (target)
6567 target->page = page;
6569 if (!ret || !target)
6570 put_page(page);
6572 /* There is a swap entry and a page doesn't exist or isn't charged */
6573 if (ent.val && !ret &&
6574 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
6575 ret = MC_TARGET_SWAP;
6576 if (target)
6577 target->ent = ent;
6579 return ret;
6582 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6584 * We don't consider swapping or file mapped pages because THP does not
6585 * support them for now.
6586 * Caller should make sure that pmd_trans_huge(pmd) is true.
6588 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6589 unsigned long addr, pmd_t pmd, union mc_target *target)
6591 struct page *page = NULL;
6592 struct page_cgroup *pc;
6593 enum mc_target_type ret = MC_TARGET_NONE;
6595 page = pmd_page(pmd);
6596 VM_BUG_ON(!page || !PageHead(page));
6597 if (!move_anon())
6598 return ret;
6599 pc = lookup_page_cgroup(page);
6600 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6601 ret = MC_TARGET_PAGE;
6602 if (target) {
6603 get_page(page);
6604 target->page = page;
6607 return ret;
6609 #else
6610 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6611 unsigned long addr, pmd_t pmd, union mc_target *target)
6613 return MC_TARGET_NONE;
6615 #endif
6617 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6618 unsigned long addr, unsigned long end,
6619 struct mm_walk *walk)
6621 struct vm_area_struct *vma = walk->private;
6622 pte_t *pte;
6623 spinlock_t *ptl;
6625 if (pmd_trans_huge_lock(pmd, vma) == 1) {
6626 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6627 mc.precharge += HPAGE_PMD_NR;
6628 spin_unlock(&vma->vm_mm->page_table_lock);
6629 return 0;
6632 if (pmd_trans_unstable(pmd))
6633 return 0;
6634 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6635 for (; addr != end; pte++, addr += PAGE_SIZE)
6636 if (get_mctgt_type(vma, addr, *pte, NULL))
6637 mc.precharge++; /* increment precharge temporarily */
6638 pte_unmap_unlock(pte - 1, ptl);
6639 cond_resched();
6641 return 0;
6644 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6646 unsigned long precharge;
6647 struct vm_area_struct *vma;
6649 down_read(&mm->mmap_sem);
6650 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6651 struct mm_walk mem_cgroup_count_precharge_walk = {
6652 .pmd_entry = mem_cgroup_count_precharge_pte_range,
6653 .mm = mm,
6654 .private = vma,
6656 if (is_vm_hugetlb_page(vma))
6657 continue;
6658 walk_page_range(vma->vm_start, vma->vm_end,
6659 &mem_cgroup_count_precharge_walk);
6661 up_read(&mm->mmap_sem);
6663 precharge = mc.precharge;
6664 mc.precharge = 0;
6666 return precharge;
6669 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6671 unsigned long precharge = mem_cgroup_count_precharge(mm);
6673 VM_BUG_ON(mc.moving_task);
6674 mc.moving_task = current;
6675 return mem_cgroup_do_precharge(precharge);
6678 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6679 static void __mem_cgroup_clear_mc(void)
6681 struct mem_cgroup *from = mc.from;
6682 struct mem_cgroup *to = mc.to;
6684 /* we must uncharge all the leftover precharges from mc.to */
6685 if (mc.precharge) {
6686 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
6687 mc.precharge = 0;
6690 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6691 * we must uncharge here.
6693 if (mc.moved_charge) {
6694 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6695 mc.moved_charge = 0;
6697 /* we must fixup refcnts and charges */
6698 if (mc.moved_swap) {
6699 /* uncharge swap account from the old cgroup */
6700 if (!mem_cgroup_is_root(mc.from))
6701 res_counter_uncharge(&mc.from->memsw,
6702 PAGE_SIZE * mc.moved_swap);
6703 __mem_cgroup_put(mc.from, mc.moved_swap);
6705 if (!mem_cgroup_is_root(mc.to)) {
6707 * we charged both to->res and to->memsw, so we should
6708 * uncharge to->res.
6710 res_counter_uncharge(&mc.to->res,
6711 PAGE_SIZE * mc.moved_swap);
6713 /* we've already done mem_cgroup_get(mc.to) */
6714 mc.moved_swap = 0;
6716 memcg_oom_recover(from);
6717 memcg_oom_recover(to);
6718 wake_up_all(&mc.waitq);
6721 static void mem_cgroup_clear_mc(void)
6723 struct mem_cgroup *from = mc.from;
6726 * we must clear moving_task before waking up waiters at the end of
6727 * task migration.
6729 mc.moving_task = NULL;
6730 __mem_cgroup_clear_mc();
6731 spin_lock(&mc.lock);
6732 mc.from = NULL;
6733 mc.to = NULL;
6734 spin_unlock(&mc.lock);
6735 mem_cgroup_end_move(from);
6738 static int mem_cgroup_can_attach(struct cgroup *cgroup,
6739 struct cgroup_taskset *tset)
6741 struct task_struct *p = cgroup_taskset_first(tset);
6742 int ret = 0;
6743 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
6744 unsigned long move_charge_at_immigrate;
6747 * We are now commited to this value whatever it is. Changes in this
6748 * tunable will only affect upcoming migrations, not the current one.
6749 * So we need to save it, and keep it going.
6751 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
6752 if (move_charge_at_immigrate) {
6753 struct mm_struct *mm;
6754 struct mem_cgroup *from = mem_cgroup_from_task(p);
6756 VM_BUG_ON(from == memcg);
6758 mm = get_task_mm(p);
6759 if (!mm)
6760 return 0;
6761 /* We move charges only when we move a owner of the mm */
6762 if (mm->owner == p) {
6763 VM_BUG_ON(mc.from);
6764 VM_BUG_ON(mc.to);
6765 VM_BUG_ON(mc.precharge);
6766 VM_BUG_ON(mc.moved_charge);
6767 VM_BUG_ON(mc.moved_swap);
6768 mem_cgroup_start_move(from);
6769 spin_lock(&mc.lock);
6770 mc.from = from;
6771 mc.to = memcg;
6772 mc.immigrate_flags = move_charge_at_immigrate;
6773 spin_unlock(&mc.lock);
6774 /* We set mc.moving_task later */
6776 ret = mem_cgroup_precharge_mc(mm);
6777 if (ret)
6778 mem_cgroup_clear_mc();
6780 mmput(mm);
6782 return ret;
6785 static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
6786 struct cgroup_taskset *tset)
6788 mem_cgroup_clear_mc();
6791 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6792 unsigned long addr, unsigned long end,
6793 struct mm_walk *walk)
6795 int ret = 0;
6796 struct vm_area_struct *vma = walk->private;
6797 pte_t *pte;
6798 spinlock_t *ptl;
6799 enum mc_target_type target_type;
6800 union mc_target target;
6801 struct page *page;
6802 struct page_cgroup *pc;
6805 * We don't take compound_lock() here but no race with splitting thp
6806 * happens because:
6807 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
6808 * under splitting, which means there's no concurrent thp split,
6809 * - if another thread runs into split_huge_page() just after we
6810 * entered this if-block, the thread must wait for page table lock
6811 * to be unlocked in __split_huge_page_splitting(), where the main
6812 * part of thp split is not executed yet.
6814 if (pmd_trans_huge_lock(pmd, vma) == 1) {
6815 if (mc.precharge < HPAGE_PMD_NR) {
6816 spin_unlock(&vma->vm_mm->page_table_lock);
6817 return 0;
6819 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6820 if (target_type == MC_TARGET_PAGE) {
6821 page = target.page;
6822 if (!isolate_lru_page(page)) {
6823 pc = lookup_page_cgroup(page);
6824 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
6825 pc, mc.from, mc.to)) {
6826 mc.precharge -= HPAGE_PMD_NR;
6827 mc.moved_charge += HPAGE_PMD_NR;
6829 putback_lru_page(page);
6831 put_page(page);
6833 spin_unlock(&vma->vm_mm->page_table_lock);
6834 return 0;
6837 if (pmd_trans_unstable(pmd))
6838 return 0;
6839 retry:
6840 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6841 for (; addr != end; addr += PAGE_SIZE) {
6842 pte_t ptent = *(pte++);
6843 swp_entry_t ent;
6845 if (!mc.precharge)
6846 break;
6848 switch (get_mctgt_type(vma, addr, ptent, &target)) {
6849 case MC_TARGET_PAGE:
6850 page = target.page;
6851 if (isolate_lru_page(page))
6852 goto put;
6853 pc = lookup_page_cgroup(page);
6854 if (!mem_cgroup_move_account(page, 1, pc,
6855 mc.from, mc.to)) {
6856 mc.precharge--;
6857 /* we uncharge from mc.from later. */
6858 mc.moved_charge++;
6860 putback_lru_page(page);
6861 put: /* get_mctgt_type() gets the page */
6862 put_page(page);
6863 break;
6864 case MC_TARGET_SWAP:
6865 ent = target.ent;
6866 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6867 mc.precharge--;
6868 /* we fixup refcnts and charges later. */
6869 mc.moved_swap++;
6871 break;
6872 default:
6873 break;
6876 pte_unmap_unlock(pte - 1, ptl);
6877 cond_resched();
6879 if (addr != end) {
6881 * We have consumed all precharges we got in can_attach().
6882 * We try charge one by one, but don't do any additional
6883 * charges to mc.to if we have failed in charge once in attach()
6884 * phase.
6886 ret = mem_cgroup_do_precharge(1);
6887 if (!ret)
6888 goto retry;
6891 return ret;
6894 static void mem_cgroup_move_charge(struct mm_struct *mm)
6896 struct vm_area_struct *vma;
6898 lru_add_drain_all();
6899 retry:
6900 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
6902 * Someone who are holding the mmap_sem might be waiting in
6903 * waitq. So we cancel all extra charges, wake up all waiters,
6904 * and retry. Because we cancel precharges, we might not be able
6905 * to move enough charges, but moving charge is a best-effort
6906 * feature anyway, so it wouldn't be a big problem.
6908 __mem_cgroup_clear_mc();
6909 cond_resched();
6910 goto retry;
6912 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6913 int ret;
6914 struct mm_walk mem_cgroup_move_charge_walk = {
6915 .pmd_entry = mem_cgroup_move_charge_pte_range,
6916 .mm = mm,
6917 .private = vma,
6919 if (is_vm_hugetlb_page(vma))
6920 continue;
6921 ret = walk_page_range(vma->vm_start, vma->vm_end,
6922 &mem_cgroup_move_charge_walk);
6923 if (ret)
6925 * means we have consumed all precharges and failed in
6926 * doing additional charge. Just abandon here.
6928 break;
6930 up_read(&mm->mmap_sem);
6933 static void mem_cgroup_move_task(struct cgroup *cont,
6934 struct cgroup_taskset *tset)
6936 struct task_struct *p = cgroup_taskset_first(tset);
6937 struct mm_struct *mm = get_task_mm(p);
6939 if (mm) {
6940 if (mc.to)
6941 mem_cgroup_move_charge(mm);
6942 mmput(mm);
6944 if (mc.to)
6945 mem_cgroup_clear_mc();
6947 #else /* !CONFIG_MMU */
6948 static int mem_cgroup_can_attach(struct cgroup *cgroup,
6949 struct cgroup_taskset *tset)
6951 return 0;
6953 static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
6954 struct cgroup_taskset *tset)
6957 static void mem_cgroup_move_task(struct cgroup *cont,
6958 struct cgroup_taskset *tset)
6961 #endif
6964 * Cgroup retains root cgroups across [un]mount cycles making it necessary
6965 * to verify sane_behavior flag on each mount attempt.
6967 static void mem_cgroup_bind(struct cgroup *root)
6970 * use_hierarchy is forced with sane_behavior. cgroup core
6971 * guarantees that @root doesn't have any children, so turning it
6972 * on for the root memcg is enough.
6974 if (cgroup_sane_behavior(root))
6975 mem_cgroup_from_cont(root)->use_hierarchy = true;
6978 struct cgroup_subsys mem_cgroup_subsys = {
6979 .name = "memory",
6980 .subsys_id = mem_cgroup_subsys_id,
6981 .css_alloc = mem_cgroup_css_alloc,
6982 .css_online = mem_cgroup_css_online,
6983 .css_offline = mem_cgroup_css_offline,
6984 .css_free = mem_cgroup_css_free,
6985 .can_attach = mem_cgroup_can_attach,
6986 .cancel_attach = mem_cgroup_cancel_attach,
6987 .attach = mem_cgroup_move_task,
6988 .bind = mem_cgroup_bind,
6989 .base_cftypes = mem_cgroup_files,
6990 .early_init = 0,
6991 .use_id = 1,
6994 #ifdef CONFIG_MEMCG_SWAP
6995 static int __init enable_swap_account(char *s)
6997 /* consider enabled if no parameter or 1 is given */
6998 if (!strcmp(s, "1"))
6999 really_do_swap_account = 1;
7000 else if (!strcmp(s, "0"))
7001 really_do_swap_account = 0;
7002 return 1;
7004 __setup("swapaccount=", enable_swap_account);
7006 static void __init memsw_file_init(void)
7008 WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
7011 static void __init enable_swap_cgroup(void)
7013 if (!mem_cgroup_disabled() && really_do_swap_account) {
7014 do_swap_account = 1;
7015 memsw_file_init();
7019 #else
7020 static void __init enable_swap_cgroup(void)
7023 #endif
7026 * subsys_initcall() for memory controller.
7028 * Some parts like hotcpu_notifier() have to be initialized from this context
7029 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
7030 * everything that doesn't depend on a specific mem_cgroup structure should
7031 * be initialized from here.
7033 static int __init mem_cgroup_init(void)
7035 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
7036 enable_swap_cgroup();
7037 mem_cgroup_soft_limit_tree_init();
7038 memcg_stock_init();
7039 return 0;
7041 subsys_initcall(mem_cgroup_init);