1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
28 #include <linux/res_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
32 #include <linux/hugetlb.h>
33 #include <linux/pagemap.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/sort.h>
50 #include <linux/seq_file.h>
51 #include <linux/vmalloc.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/page_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
60 #include <net/tcp_memcontrol.h>
62 #include <asm/uaccess.h>
64 #include <trace/events/vmscan.h>
66 struct cgroup_subsys mem_cgroup_subsys __read_mostly
;
67 EXPORT_SYMBOL(mem_cgroup_subsys
);
69 #define MEM_CGROUP_RECLAIM_RETRIES 5
70 static struct mem_cgroup
*root_mem_cgroup __read_mostly
;
72 #ifdef CONFIG_MEMCG_SWAP
73 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
74 int do_swap_account __read_mostly
;
76 /* for remember boot option*/
77 #ifdef CONFIG_MEMCG_SWAP_ENABLED
78 static int really_do_swap_account __initdata
= 1;
80 static int really_do_swap_account __initdata
= 0;
84 #define do_swap_account 0
89 * Statistics for memory cgroup.
91 enum mem_cgroup_stat_index
{
93 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
95 MEM_CGROUP_STAT_CACHE
, /* # of pages charged as cache */
96 MEM_CGROUP_STAT_RSS
, /* # of pages charged as anon rss */
97 MEM_CGROUP_STAT_RSS_HUGE
, /* # of pages charged as anon huge */
98 MEM_CGROUP_STAT_FILE_MAPPED
, /* # of pages charged as file rss */
99 MEM_CGROUP_STAT_SWAP
, /* # of pages, swapped out */
100 MEM_CGROUP_STAT_NSTATS
,
103 static const char * const mem_cgroup_stat_names
[] = {
111 enum mem_cgroup_events_index
{
112 MEM_CGROUP_EVENTS_PGPGIN
, /* # of pages paged in */
113 MEM_CGROUP_EVENTS_PGPGOUT
, /* # of pages paged out */
114 MEM_CGROUP_EVENTS_PGFAULT
, /* # of page-faults */
115 MEM_CGROUP_EVENTS_PGMAJFAULT
, /* # of major page-faults */
116 MEM_CGROUP_EVENTS_NSTATS
,
119 static const char * const mem_cgroup_events_names
[] = {
126 static const char * const mem_cgroup_lru_names
[] = {
135 * Per memcg event counter is incremented at every pagein/pageout. With THP,
136 * it will be incremated by the number of pages. This counter is used for
137 * for trigger some periodic events. This is straightforward and better
138 * than using jiffies etc. to handle periodic memcg event.
140 enum mem_cgroup_events_target
{
141 MEM_CGROUP_TARGET_THRESH
,
142 MEM_CGROUP_TARGET_SOFTLIMIT
,
143 MEM_CGROUP_TARGET_NUMAINFO
,
146 #define THRESHOLDS_EVENTS_TARGET 128
147 #define SOFTLIMIT_EVENTS_TARGET 1024
148 #define NUMAINFO_EVENTS_TARGET 1024
150 struct mem_cgroup_stat_cpu
{
151 long count
[MEM_CGROUP_STAT_NSTATS
];
152 unsigned long events
[MEM_CGROUP_EVENTS_NSTATS
];
153 unsigned long nr_page_events
;
154 unsigned long targets
[MEM_CGROUP_NTARGETS
];
157 struct mem_cgroup_reclaim_iter
{
159 * last scanned hierarchy member. Valid only if last_dead_count
160 * matches memcg->dead_count of the hierarchy root group.
162 struct mem_cgroup
*last_visited
;
163 unsigned long last_dead_count
;
165 /* scan generation, increased every round-trip */
166 unsigned int generation
;
170 * per-zone information in memory controller.
172 struct mem_cgroup_per_zone
{
173 struct lruvec lruvec
;
174 unsigned long lru_size
[NR_LRU_LISTS
];
176 struct mem_cgroup_reclaim_iter reclaim_iter
[DEF_PRIORITY
+ 1];
178 struct rb_node tree_node
; /* RB tree node */
179 unsigned long long usage_in_excess
;/* Set to the value by which */
180 /* the soft limit is exceeded*/
182 struct mem_cgroup
*memcg
; /* Back pointer, we cannot */
183 /* use container_of */
186 struct mem_cgroup_per_node
{
187 struct mem_cgroup_per_zone zoneinfo
[MAX_NR_ZONES
];
190 struct mem_cgroup_lru_info
{
191 struct mem_cgroup_per_node
*nodeinfo
[0];
195 * Cgroups above their limits are maintained in a RB-Tree, independent of
196 * their hierarchy representation
199 struct mem_cgroup_tree_per_zone
{
200 struct rb_root rb_root
;
204 struct mem_cgroup_tree_per_node
{
205 struct mem_cgroup_tree_per_zone rb_tree_per_zone
[MAX_NR_ZONES
];
208 struct mem_cgroup_tree
{
209 struct mem_cgroup_tree_per_node
*rb_tree_per_node
[MAX_NUMNODES
];
212 static struct mem_cgroup_tree soft_limit_tree __read_mostly
;
214 struct mem_cgroup_threshold
{
215 struct eventfd_ctx
*eventfd
;
220 struct mem_cgroup_threshold_ary
{
221 /* An array index points to threshold just below or equal to usage. */
222 int current_threshold
;
223 /* Size of entries[] */
225 /* Array of thresholds */
226 struct mem_cgroup_threshold entries
[0];
229 struct mem_cgroup_thresholds
{
230 /* Primary thresholds array */
231 struct mem_cgroup_threshold_ary
*primary
;
233 * Spare threshold array.
234 * This is needed to make mem_cgroup_unregister_event() "never fail".
235 * It must be able to store at least primary->size - 1 entries.
237 struct mem_cgroup_threshold_ary
*spare
;
241 struct mem_cgroup_eventfd_list
{
242 struct list_head list
;
243 struct eventfd_ctx
*eventfd
;
246 static void mem_cgroup_threshold(struct mem_cgroup
*memcg
);
247 static void mem_cgroup_oom_notify(struct mem_cgroup
*memcg
);
250 * The memory controller data structure. The memory controller controls both
251 * page cache and RSS per cgroup. We would eventually like to provide
252 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
253 * to help the administrator determine what knobs to tune.
255 * TODO: Add a water mark for the memory controller. Reclaim will begin when
256 * we hit the water mark. May be even add a low water mark, such that
257 * no reclaim occurs from a cgroup at it's low water mark, this is
258 * a feature that will be implemented much later in the future.
261 struct cgroup_subsys_state css
;
263 * the counter to account for memory usage
265 struct res_counter res
;
267 /* vmpressure notifications */
268 struct vmpressure vmpressure
;
272 * the counter to account for mem+swap usage.
274 struct res_counter memsw
;
277 * rcu_freeing is used only when freeing struct mem_cgroup,
278 * so put it into a union to avoid wasting more memory.
279 * It must be disjoint from the css field. It could be
280 * in a union with the res field, but res plays a much
281 * larger part in mem_cgroup life than memsw, and might
282 * be of interest, even at time of free, when debugging.
283 * So share rcu_head with the less interesting memsw.
285 struct rcu_head rcu_freeing
;
287 * We also need some space for a worker in deferred freeing.
288 * By the time we call it, rcu_freeing is no longer in use.
290 struct work_struct work_freeing
;
294 * the counter to account for kernel memory usage.
296 struct res_counter kmem
;
298 * Should the accounting and control be hierarchical, per subtree?
301 unsigned long kmem_account_flags
; /* See KMEM_ACCOUNTED_*, below */
309 /* OOM-Killer disable */
310 int oom_kill_disable
;
312 /* set when res.limit == memsw.limit */
313 bool memsw_is_minimum
;
315 /* protect arrays of thresholds */
316 struct mutex thresholds_lock
;
318 /* thresholds for memory usage. RCU-protected */
319 struct mem_cgroup_thresholds thresholds
;
321 /* thresholds for mem+swap usage. RCU-protected */
322 struct mem_cgroup_thresholds memsw_thresholds
;
324 /* For oom notifier event fd */
325 struct list_head oom_notify
;
328 * Should we move charges of a task when a task is moved into this
329 * mem_cgroup ? And what type of charges should we move ?
331 unsigned long move_charge_at_immigrate
;
333 * set > 0 if pages under this cgroup are moving to other cgroup.
335 atomic_t moving_account
;
336 /* taken only while moving_account > 0 */
337 spinlock_t move_lock
;
341 struct mem_cgroup_stat_cpu __percpu
*stat
;
343 * used when a cpu is offlined or other synchronizations
344 * See mem_cgroup_read_stat().
346 struct mem_cgroup_stat_cpu nocpu_base
;
347 spinlock_t pcp_counter_lock
;
350 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
351 struct tcp_memcontrol tcp_mem
;
353 #if defined(CONFIG_MEMCG_KMEM)
354 /* analogous to slab_common's slab_caches list. per-memcg */
355 struct list_head memcg_slab_caches
;
356 /* Not a spinlock, we can take a lot of time walking the list */
357 struct mutex slab_caches_mutex
;
358 /* Index in the kmem_cache->memcg_params->memcg_caches array */
362 int last_scanned_node
;
364 nodemask_t scan_nodes
;
365 atomic_t numainfo_events
;
366 atomic_t numainfo_updating
;
370 * Per cgroup active and inactive list, similar to the
371 * per zone LRU lists.
373 * WARNING: This has to be the last element of the struct. Don't
374 * add new fields after this point.
376 struct mem_cgroup_lru_info info
;
379 static size_t memcg_size(void)
381 return sizeof(struct mem_cgroup
) +
382 nr_node_ids
* sizeof(struct mem_cgroup_per_node
);
385 /* internal only representation about the status of kmem accounting. */
387 KMEM_ACCOUNTED_ACTIVE
= 0, /* accounted by this cgroup itself */
388 KMEM_ACCOUNTED_ACTIVATED
, /* static key enabled. */
389 KMEM_ACCOUNTED_DEAD
, /* dead memcg with pending kmem charges */
392 /* We account when limit is on, but only after call sites are patched */
393 #define KMEM_ACCOUNTED_MASK \
394 ((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
396 #ifdef CONFIG_MEMCG_KMEM
397 static inline void memcg_kmem_set_active(struct mem_cgroup
*memcg
)
399 set_bit(KMEM_ACCOUNTED_ACTIVE
, &memcg
->kmem_account_flags
);
402 static bool memcg_kmem_is_active(struct mem_cgroup
*memcg
)
404 return test_bit(KMEM_ACCOUNTED_ACTIVE
, &memcg
->kmem_account_flags
);
407 static void memcg_kmem_set_activated(struct mem_cgroup
*memcg
)
409 set_bit(KMEM_ACCOUNTED_ACTIVATED
, &memcg
->kmem_account_flags
);
412 static void memcg_kmem_clear_activated(struct mem_cgroup
*memcg
)
414 clear_bit(KMEM_ACCOUNTED_ACTIVATED
, &memcg
->kmem_account_flags
);
417 static void memcg_kmem_mark_dead(struct mem_cgroup
*memcg
)
419 if (test_bit(KMEM_ACCOUNTED_ACTIVE
, &memcg
->kmem_account_flags
))
420 set_bit(KMEM_ACCOUNTED_DEAD
, &memcg
->kmem_account_flags
);
423 static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup
*memcg
)
425 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD
,
426 &memcg
->kmem_account_flags
);
430 /* Stuffs for move charges at task migration. */
432 * Types of charges to be moved. "move_charge_at_immitgrate" and
433 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
436 MOVE_CHARGE_TYPE_ANON
, /* private anonymous page and swap of it */
437 MOVE_CHARGE_TYPE_FILE
, /* file page(including tmpfs) and swap of it */
441 /* "mc" and its members are protected by cgroup_mutex */
442 static struct move_charge_struct
{
443 spinlock_t lock
; /* for from, to */
444 struct mem_cgroup
*from
;
445 struct mem_cgroup
*to
;
446 unsigned long immigrate_flags
;
447 unsigned long precharge
;
448 unsigned long moved_charge
;
449 unsigned long moved_swap
;
450 struct task_struct
*moving_task
; /* a task moving charges */
451 wait_queue_head_t waitq
; /* a waitq for other context */
453 .lock
= __SPIN_LOCK_UNLOCKED(mc
.lock
),
454 .waitq
= __WAIT_QUEUE_HEAD_INITIALIZER(mc
.waitq
),
457 static bool move_anon(void)
459 return test_bit(MOVE_CHARGE_TYPE_ANON
, &mc
.immigrate_flags
);
462 static bool move_file(void)
464 return test_bit(MOVE_CHARGE_TYPE_FILE
, &mc
.immigrate_flags
);
468 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
469 * limit reclaim to prevent infinite loops, if they ever occur.
471 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
472 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
475 MEM_CGROUP_CHARGE_TYPE_CACHE
= 0,
476 MEM_CGROUP_CHARGE_TYPE_ANON
,
477 MEM_CGROUP_CHARGE_TYPE_SWAPOUT
, /* for accounting swapcache */
478 MEM_CGROUP_CHARGE_TYPE_DROP
, /* a page was unused swap cache */
482 /* for encoding cft->private value on file */
490 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
491 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
492 #define MEMFILE_ATTR(val) ((val) & 0xffff)
493 /* Used for OOM nofiier */
494 #define OOM_CONTROL (0)
497 * Reclaim flags for mem_cgroup_hierarchical_reclaim
499 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
500 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
501 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
502 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
505 * The memcg_create_mutex will be held whenever a new cgroup is created.
506 * As a consequence, any change that needs to protect against new child cgroups
507 * appearing has to hold it as well.
509 static DEFINE_MUTEX(memcg_create_mutex
);
511 static void mem_cgroup_get(struct mem_cgroup
*memcg
);
512 static void mem_cgroup_put(struct mem_cgroup
*memcg
);
515 struct mem_cgroup
*mem_cgroup_from_css(struct cgroup_subsys_state
*s
)
517 return container_of(s
, struct mem_cgroup
, css
);
520 /* Some nice accessors for the vmpressure. */
521 struct vmpressure
*memcg_to_vmpressure(struct mem_cgroup
*memcg
)
524 memcg
= root_mem_cgroup
;
525 return &memcg
->vmpressure
;
528 struct cgroup_subsys_state
*vmpressure_to_css(struct vmpressure
*vmpr
)
530 return &container_of(vmpr
, struct mem_cgroup
, vmpressure
)->css
;
533 struct vmpressure
*css_to_vmpressure(struct cgroup_subsys_state
*css
)
535 return &mem_cgroup_from_css(css
)->vmpressure
;
538 static inline bool mem_cgroup_is_root(struct mem_cgroup
*memcg
)
540 return (memcg
== root_mem_cgroup
);
543 /* Writing them here to avoid exposing memcg's inner layout */
544 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
546 void sock_update_memcg(struct sock
*sk
)
548 if (mem_cgroup_sockets_enabled
) {
549 struct mem_cgroup
*memcg
;
550 struct cg_proto
*cg_proto
;
552 BUG_ON(!sk
->sk_prot
->proto_cgroup
);
554 /* Socket cloning can throw us here with sk_cgrp already
555 * filled. It won't however, necessarily happen from
556 * process context. So the test for root memcg given
557 * the current task's memcg won't help us in this case.
559 * Respecting the original socket's memcg is a better
560 * decision in this case.
563 BUG_ON(mem_cgroup_is_root(sk
->sk_cgrp
->memcg
));
564 mem_cgroup_get(sk
->sk_cgrp
->memcg
);
569 memcg
= mem_cgroup_from_task(current
);
570 cg_proto
= sk
->sk_prot
->proto_cgroup(memcg
);
571 if (!mem_cgroup_is_root(memcg
) && memcg_proto_active(cg_proto
)) {
572 mem_cgroup_get(memcg
);
573 sk
->sk_cgrp
= cg_proto
;
578 EXPORT_SYMBOL(sock_update_memcg
);
580 void sock_release_memcg(struct sock
*sk
)
582 if (mem_cgroup_sockets_enabled
&& sk
->sk_cgrp
) {
583 struct mem_cgroup
*memcg
;
584 WARN_ON(!sk
->sk_cgrp
->memcg
);
585 memcg
= sk
->sk_cgrp
->memcg
;
586 mem_cgroup_put(memcg
);
590 struct cg_proto
*tcp_proto_cgroup(struct mem_cgroup
*memcg
)
592 if (!memcg
|| mem_cgroup_is_root(memcg
))
595 return &memcg
->tcp_mem
.cg_proto
;
597 EXPORT_SYMBOL(tcp_proto_cgroup
);
599 static void disarm_sock_keys(struct mem_cgroup
*memcg
)
601 if (!memcg_proto_activated(&memcg
->tcp_mem
.cg_proto
))
603 static_key_slow_dec(&memcg_socket_limit_enabled
);
606 static void disarm_sock_keys(struct mem_cgroup
*memcg
)
611 #ifdef CONFIG_MEMCG_KMEM
613 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
614 * There are two main reasons for not using the css_id for this:
615 * 1) this works better in sparse environments, where we have a lot of memcgs,
616 * but only a few kmem-limited. Or also, if we have, for instance, 200
617 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
618 * 200 entry array for that.
620 * 2) In order not to violate the cgroup API, we would like to do all memory
621 * allocation in ->create(). At that point, we haven't yet allocated the
622 * css_id. Having a separate index prevents us from messing with the cgroup
625 * The current size of the caches array is stored in
626 * memcg_limited_groups_array_size. It will double each time we have to
629 static DEFINE_IDA(kmem_limited_groups
);
630 int memcg_limited_groups_array_size
;
633 * MIN_SIZE is different than 1, because we would like to avoid going through
634 * the alloc/free process all the time. In a small machine, 4 kmem-limited
635 * cgroups is a reasonable guess. In the future, it could be a parameter or
636 * tunable, but that is strictly not necessary.
638 * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
639 * this constant directly from cgroup, but it is understandable that this is
640 * better kept as an internal representation in cgroup.c. In any case, the
641 * css_id space is not getting any smaller, and we don't have to necessarily
642 * increase ours as well if it increases.
644 #define MEMCG_CACHES_MIN_SIZE 4
645 #define MEMCG_CACHES_MAX_SIZE 65535
648 * A lot of the calls to the cache allocation functions are expected to be
649 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
650 * conditional to this static branch, we'll have to allow modules that does
651 * kmem_cache_alloc and the such to see this symbol as well
653 struct static_key memcg_kmem_enabled_key
;
654 EXPORT_SYMBOL(memcg_kmem_enabled_key
);
656 static void disarm_kmem_keys(struct mem_cgroup
*memcg
)
658 if (memcg_kmem_is_active(memcg
)) {
659 static_key_slow_dec(&memcg_kmem_enabled_key
);
660 ida_simple_remove(&kmem_limited_groups
, memcg
->kmemcg_id
);
663 * This check can't live in kmem destruction function,
664 * since the charges will outlive the cgroup
666 WARN_ON(res_counter_read_u64(&memcg
->kmem
, RES_USAGE
) != 0);
669 static void disarm_kmem_keys(struct mem_cgroup
*memcg
)
672 #endif /* CONFIG_MEMCG_KMEM */
674 static void disarm_static_keys(struct mem_cgroup
*memcg
)
676 disarm_sock_keys(memcg
);
677 disarm_kmem_keys(memcg
);
680 static void drain_all_stock_async(struct mem_cgroup
*memcg
);
682 static struct mem_cgroup_per_zone
*
683 mem_cgroup_zoneinfo(struct mem_cgroup
*memcg
, int nid
, int zid
)
685 VM_BUG_ON((unsigned)nid
>= nr_node_ids
);
686 return &memcg
->info
.nodeinfo
[nid
]->zoneinfo
[zid
];
689 struct cgroup_subsys_state
*mem_cgroup_css(struct mem_cgroup
*memcg
)
694 static struct mem_cgroup_per_zone
*
695 page_cgroup_zoneinfo(struct mem_cgroup
*memcg
, struct page
*page
)
697 int nid
= page_to_nid(page
);
698 int zid
= page_zonenum(page
);
700 return mem_cgroup_zoneinfo(memcg
, nid
, zid
);
703 static struct mem_cgroup_tree_per_zone
*
704 soft_limit_tree_node_zone(int nid
, int zid
)
706 return &soft_limit_tree
.rb_tree_per_node
[nid
]->rb_tree_per_zone
[zid
];
709 static struct mem_cgroup_tree_per_zone
*
710 soft_limit_tree_from_page(struct page
*page
)
712 int nid
= page_to_nid(page
);
713 int zid
= page_zonenum(page
);
715 return &soft_limit_tree
.rb_tree_per_node
[nid
]->rb_tree_per_zone
[zid
];
719 __mem_cgroup_insert_exceeded(struct mem_cgroup
*memcg
,
720 struct mem_cgroup_per_zone
*mz
,
721 struct mem_cgroup_tree_per_zone
*mctz
,
722 unsigned long long new_usage_in_excess
)
724 struct rb_node
**p
= &mctz
->rb_root
.rb_node
;
725 struct rb_node
*parent
= NULL
;
726 struct mem_cgroup_per_zone
*mz_node
;
731 mz
->usage_in_excess
= new_usage_in_excess
;
732 if (!mz
->usage_in_excess
)
736 mz_node
= rb_entry(parent
, struct mem_cgroup_per_zone
,
738 if (mz
->usage_in_excess
< mz_node
->usage_in_excess
)
741 * We can't avoid mem cgroups that are over their soft
742 * limit by the same amount
744 else if (mz
->usage_in_excess
>= mz_node
->usage_in_excess
)
747 rb_link_node(&mz
->tree_node
, parent
, p
);
748 rb_insert_color(&mz
->tree_node
, &mctz
->rb_root
);
753 __mem_cgroup_remove_exceeded(struct mem_cgroup
*memcg
,
754 struct mem_cgroup_per_zone
*mz
,
755 struct mem_cgroup_tree_per_zone
*mctz
)
759 rb_erase(&mz
->tree_node
, &mctz
->rb_root
);
764 mem_cgroup_remove_exceeded(struct mem_cgroup
*memcg
,
765 struct mem_cgroup_per_zone
*mz
,
766 struct mem_cgroup_tree_per_zone
*mctz
)
768 spin_lock(&mctz
->lock
);
769 __mem_cgroup_remove_exceeded(memcg
, mz
, mctz
);
770 spin_unlock(&mctz
->lock
);
774 static void mem_cgroup_update_tree(struct mem_cgroup
*memcg
, struct page
*page
)
776 unsigned long long excess
;
777 struct mem_cgroup_per_zone
*mz
;
778 struct mem_cgroup_tree_per_zone
*mctz
;
779 int nid
= page_to_nid(page
);
780 int zid
= page_zonenum(page
);
781 mctz
= soft_limit_tree_from_page(page
);
784 * Necessary to update all ancestors when hierarchy is used.
785 * because their event counter is not touched.
787 for (; memcg
; memcg
= parent_mem_cgroup(memcg
)) {
788 mz
= mem_cgroup_zoneinfo(memcg
, nid
, zid
);
789 excess
= res_counter_soft_limit_excess(&memcg
->res
);
791 * We have to update the tree if mz is on RB-tree or
792 * mem is over its softlimit.
794 if (excess
|| mz
->on_tree
) {
795 spin_lock(&mctz
->lock
);
796 /* if on-tree, remove it */
798 __mem_cgroup_remove_exceeded(memcg
, mz
, mctz
);
800 * Insert again. mz->usage_in_excess will be updated.
801 * If excess is 0, no tree ops.
803 __mem_cgroup_insert_exceeded(memcg
, mz
, mctz
, excess
);
804 spin_unlock(&mctz
->lock
);
809 static void mem_cgroup_remove_from_trees(struct mem_cgroup
*memcg
)
812 struct mem_cgroup_per_zone
*mz
;
813 struct mem_cgroup_tree_per_zone
*mctz
;
815 for_each_node(node
) {
816 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
817 mz
= mem_cgroup_zoneinfo(memcg
, node
, zone
);
818 mctz
= soft_limit_tree_node_zone(node
, zone
);
819 mem_cgroup_remove_exceeded(memcg
, mz
, mctz
);
824 static struct mem_cgroup_per_zone
*
825 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone
*mctz
)
827 struct rb_node
*rightmost
= NULL
;
828 struct mem_cgroup_per_zone
*mz
;
832 rightmost
= rb_last(&mctz
->rb_root
);
834 goto done
; /* Nothing to reclaim from */
836 mz
= rb_entry(rightmost
, struct mem_cgroup_per_zone
, tree_node
);
838 * Remove the node now but someone else can add it back,
839 * we will to add it back at the end of reclaim to its correct
840 * position in the tree.
842 __mem_cgroup_remove_exceeded(mz
->memcg
, mz
, mctz
);
843 if (!res_counter_soft_limit_excess(&mz
->memcg
->res
) ||
844 !css_tryget(&mz
->memcg
->css
))
850 static struct mem_cgroup_per_zone
*
851 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone
*mctz
)
853 struct mem_cgroup_per_zone
*mz
;
855 spin_lock(&mctz
->lock
);
856 mz
= __mem_cgroup_largest_soft_limit_node(mctz
);
857 spin_unlock(&mctz
->lock
);
862 * Implementation Note: reading percpu statistics for memcg.
864 * Both of vmstat[] and percpu_counter has threshold and do periodic
865 * synchronization to implement "quick" read. There are trade-off between
866 * reading cost and precision of value. Then, we may have a chance to implement
867 * a periodic synchronizion of counter in memcg's counter.
869 * But this _read() function is used for user interface now. The user accounts
870 * memory usage by memory cgroup and he _always_ requires exact value because
871 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
872 * have to visit all online cpus and make sum. So, for now, unnecessary
873 * synchronization is not implemented. (just implemented for cpu hotplug)
875 * If there are kernel internal actions which can make use of some not-exact
876 * value, and reading all cpu value can be performance bottleneck in some
877 * common workload, threashold and synchonization as vmstat[] should be
880 static long mem_cgroup_read_stat(struct mem_cgroup
*memcg
,
881 enum mem_cgroup_stat_index idx
)
887 for_each_online_cpu(cpu
)
888 val
+= per_cpu(memcg
->stat
->count
[idx
], cpu
);
889 #ifdef CONFIG_HOTPLUG_CPU
890 spin_lock(&memcg
->pcp_counter_lock
);
891 val
+= memcg
->nocpu_base
.count
[idx
];
892 spin_unlock(&memcg
->pcp_counter_lock
);
898 static void mem_cgroup_swap_statistics(struct mem_cgroup
*memcg
,
901 int val
= (charge
) ? 1 : -1;
902 this_cpu_add(memcg
->stat
->count
[MEM_CGROUP_STAT_SWAP
], val
);
905 static unsigned long mem_cgroup_read_events(struct mem_cgroup
*memcg
,
906 enum mem_cgroup_events_index idx
)
908 unsigned long val
= 0;
911 for_each_online_cpu(cpu
)
912 val
+= per_cpu(memcg
->stat
->events
[idx
], cpu
);
913 #ifdef CONFIG_HOTPLUG_CPU
914 spin_lock(&memcg
->pcp_counter_lock
);
915 val
+= memcg
->nocpu_base
.events
[idx
];
916 spin_unlock(&memcg
->pcp_counter_lock
);
921 static void mem_cgroup_charge_statistics(struct mem_cgroup
*memcg
,
923 bool anon
, int nr_pages
)
928 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
929 * counted as CACHE even if it's on ANON LRU.
932 __this_cpu_add(memcg
->stat
->count
[MEM_CGROUP_STAT_RSS
],
935 __this_cpu_add(memcg
->stat
->count
[MEM_CGROUP_STAT_CACHE
],
938 if (PageTransHuge(page
))
939 __this_cpu_add(memcg
->stat
->count
[MEM_CGROUP_STAT_RSS_HUGE
],
942 /* pagein of a big page is an event. So, ignore page size */
944 __this_cpu_inc(memcg
->stat
->events
[MEM_CGROUP_EVENTS_PGPGIN
]);
946 __this_cpu_inc(memcg
->stat
->events
[MEM_CGROUP_EVENTS_PGPGOUT
]);
947 nr_pages
= -nr_pages
; /* for event */
950 __this_cpu_add(memcg
->stat
->nr_page_events
, nr_pages
);
956 mem_cgroup_get_lru_size(struct lruvec
*lruvec
, enum lru_list lru
)
958 struct mem_cgroup_per_zone
*mz
;
960 mz
= container_of(lruvec
, struct mem_cgroup_per_zone
, lruvec
);
961 return mz
->lru_size
[lru
];
965 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup
*memcg
, int nid
, int zid
,
966 unsigned int lru_mask
)
968 struct mem_cgroup_per_zone
*mz
;
970 unsigned long ret
= 0;
972 mz
= mem_cgroup_zoneinfo(memcg
, nid
, zid
);
975 if (BIT(lru
) & lru_mask
)
976 ret
+= mz
->lru_size
[lru
];
982 mem_cgroup_node_nr_lru_pages(struct mem_cgroup
*memcg
,
983 int nid
, unsigned int lru_mask
)
988 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++)
989 total
+= mem_cgroup_zone_nr_lru_pages(memcg
,
995 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup
*memcg
,
996 unsigned int lru_mask
)
1001 for_each_node_state(nid
, N_MEMORY
)
1002 total
+= mem_cgroup_node_nr_lru_pages(memcg
, nid
, lru_mask
);
1006 static bool mem_cgroup_event_ratelimit(struct mem_cgroup
*memcg
,
1007 enum mem_cgroup_events_target target
)
1009 unsigned long val
, next
;
1011 val
= __this_cpu_read(memcg
->stat
->nr_page_events
);
1012 next
= __this_cpu_read(memcg
->stat
->targets
[target
]);
1013 /* from time_after() in jiffies.h */
1014 if ((long)next
- (long)val
< 0) {
1016 case MEM_CGROUP_TARGET_THRESH
:
1017 next
= val
+ THRESHOLDS_EVENTS_TARGET
;
1019 case MEM_CGROUP_TARGET_SOFTLIMIT
:
1020 next
= val
+ SOFTLIMIT_EVENTS_TARGET
;
1022 case MEM_CGROUP_TARGET_NUMAINFO
:
1023 next
= val
+ NUMAINFO_EVENTS_TARGET
;
1028 __this_cpu_write(memcg
->stat
->targets
[target
], next
);
1035 * Check events in order.
1038 static void memcg_check_events(struct mem_cgroup
*memcg
, struct page
*page
)
1041 /* threshold event is triggered in finer grain than soft limit */
1042 if (unlikely(mem_cgroup_event_ratelimit(memcg
,
1043 MEM_CGROUP_TARGET_THRESH
))) {
1045 bool do_numainfo __maybe_unused
;
1047 do_softlimit
= mem_cgroup_event_ratelimit(memcg
,
1048 MEM_CGROUP_TARGET_SOFTLIMIT
);
1049 #if MAX_NUMNODES > 1
1050 do_numainfo
= mem_cgroup_event_ratelimit(memcg
,
1051 MEM_CGROUP_TARGET_NUMAINFO
);
1055 mem_cgroup_threshold(memcg
);
1056 if (unlikely(do_softlimit
))
1057 mem_cgroup_update_tree(memcg
, page
);
1058 #if MAX_NUMNODES > 1
1059 if (unlikely(do_numainfo
))
1060 atomic_inc(&memcg
->numainfo_events
);
1066 struct mem_cgroup
*mem_cgroup_from_cont(struct cgroup
*cont
)
1068 return mem_cgroup_from_css(
1069 cgroup_subsys_state(cont
, mem_cgroup_subsys_id
));
1072 struct mem_cgroup
*mem_cgroup_from_task(struct task_struct
*p
)
1075 * mm_update_next_owner() may clear mm->owner to NULL
1076 * if it races with swapoff, page migration, etc.
1077 * So this can be called with p == NULL.
1082 return mem_cgroup_from_css(task_subsys_state(p
, mem_cgroup_subsys_id
));
1085 struct mem_cgroup
*try_get_mem_cgroup_from_mm(struct mm_struct
*mm
)
1087 struct mem_cgroup
*memcg
= NULL
;
1092 * Because we have no locks, mm->owner's may be being moved to other
1093 * cgroup. We use css_tryget() here even if this looks
1094 * pessimistic (rather than adding locks here).
1098 memcg
= mem_cgroup_from_task(rcu_dereference(mm
->owner
));
1099 if (unlikely(!memcg
))
1101 } while (!css_tryget(&memcg
->css
));
1107 * Returns a next (in a pre-order walk) alive memcg (with elevated css
1108 * ref. count) or NULL if the whole root's subtree has been visited.
1110 * helper function to be used by mem_cgroup_iter
1112 static struct mem_cgroup
*__mem_cgroup_iter_next(struct mem_cgroup
*root
,
1113 struct mem_cgroup
*last_visited
)
1115 struct cgroup
*prev_cgroup
, *next_cgroup
;
1118 * Root is not visited by cgroup iterators so it needs an
1124 prev_cgroup
= (last_visited
== root
) ? NULL
1125 : last_visited
->css
.cgroup
;
1127 next_cgroup
= cgroup_next_descendant_pre(
1128 prev_cgroup
, root
->css
.cgroup
);
1131 * Even if we found a group we have to make sure it is
1132 * alive. css && !memcg means that the groups should be
1133 * skipped and we should continue the tree walk.
1134 * last_visited css is safe to use because it is
1135 * protected by css_get and the tree walk is rcu safe.
1138 struct mem_cgroup
*mem
= mem_cgroup_from_cont(
1140 if (css_tryget(&mem
->css
))
1143 prev_cgroup
= next_cgroup
;
1151 static void mem_cgroup_iter_invalidate(struct mem_cgroup
*root
)
1154 * When a group in the hierarchy below root is destroyed, the
1155 * hierarchy iterator can no longer be trusted since it might
1156 * have pointed to the destroyed group. Invalidate it.
1158 atomic_inc(&root
->dead_count
);
1161 static struct mem_cgroup
*
1162 mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter
*iter
,
1163 struct mem_cgroup
*root
,
1166 struct mem_cgroup
*position
= NULL
;
1168 * A cgroup destruction happens in two stages: offlining and
1169 * release. They are separated by a RCU grace period.
1171 * If the iterator is valid, we may still race with an
1172 * offlining. The RCU lock ensures the object won't be
1173 * released, tryget will fail if we lost the race.
1175 *sequence
= atomic_read(&root
->dead_count
);
1176 if (iter
->last_dead_count
== *sequence
) {
1178 position
= iter
->last_visited
;
1179 if (position
&& !css_tryget(&position
->css
))
1185 static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter
*iter
,
1186 struct mem_cgroup
*last_visited
,
1187 struct mem_cgroup
*new_position
,
1191 css_put(&last_visited
->css
);
1193 * We store the sequence count from the time @last_visited was
1194 * loaded successfully instead of rereading it here so that we
1195 * don't lose destruction events in between. We could have
1196 * raced with the destruction of @new_position after all.
1198 iter
->last_visited
= new_position
;
1200 iter
->last_dead_count
= sequence
;
1204 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1205 * @root: hierarchy root
1206 * @prev: previously returned memcg, NULL on first invocation
1207 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1209 * Returns references to children of the hierarchy below @root, or
1210 * @root itself, or %NULL after a full round-trip.
1212 * Caller must pass the return value in @prev on subsequent
1213 * invocations for reference counting, or use mem_cgroup_iter_break()
1214 * to cancel a hierarchy walk before the round-trip is complete.
1216 * Reclaimers can specify a zone and a priority level in @reclaim to
1217 * divide up the memcgs in the hierarchy among all concurrent
1218 * reclaimers operating on the same zone and priority.
1220 struct mem_cgroup
*mem_cgroup_iter(struct mem_cgroup
*root
,
1221 struct mem_cgroup
*prev
,
1222 struct mem_cgroup_reclaim_cookie
*reclaim
)
1224 struct mem_cgroup
*memcg
= NULL
;
1225 struct mem_cgroup
*last_visited
= NULL
;
1227 if (mem_cgroup_disabled())
1231 root
= root_mem_cgroup
;
1233 if (prev
&& !reclaim
)
1234 last_visited
= prev
;
1236 if (!root
->use_hierarchy
&& root
!= root_mem_cgroup
) {
1244 struct mem_cgroup_reclaim_iter
*uninitialized_var(iter
);
1245 int uninitialized_var(seq
);
1248 int nid
= zone_to_nid(reclaim
->zone
);
1249 int zid
= zone_idx(reclaim
->zone
);
1250 struct mem_cgroup_per_zone
*mz
;
1252 mz
= mem_cgroup_zoneinfo(root
, nid
, zid
);
1253 iter
= &mz
->reclaim_iter
[reclaim
->priority
];
1254 if (prev
&& reclaim
->generation
!= iter
->generation
) {
1255 iter
->last_visited
= NULL
;
1259 last_visited
= mem_cgroup_iter_load(iter
, root
, &seq
);
1262 memcg
= __mem_cgroup_iter_next(root
, last_visited
);
1265 mem_cgroup_iter_update(iter
, last_visited
, memcg
, seq
);
1269 else if (!prev
&& memcg
)
1270 reclaim
->generation
= iter
->generation
;
1279 if (prev
&& prev
!= root
)
1280 css_put(&prev
->css
);
1286 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1287 * @root: hierarchy root
1288 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1290 void mem_cgroup_iter_break(struct mem_cgroup
*root
,
1291 struct mem_cgroup
*prev
)
1294 root
= root_mem_cgroup
;
1295 if (prev
&& prev
!= root
)
1296 css_put(&prev
->css
);
1300 * Iteration constructs for visiting all cgroups (under a tree). If
1301 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1302 * be used for reference counting.
1304 #define for_each_mem_cgroup_tree(iter, root) \
1305 for (iter = mem_cgroup_iter(root, NULL, NULL); \
1307 iter = mem_cgroup_iter(root, iter, NULL))
1309 #define for_each_mem_cgroup(iter) \
1310 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1312 iter = mem_cgroup_iter(NULL, iter, NULL))
1314 void __mem_cgroup_count_vm_event(struct mm_struct
*mm
, enum vm_event_item idx
)
1316 struct mem_cgroup
*memcg
;
1319 memcg
= mem_cgroup_from_task(rcu_dereference(mm
->owner
));
1320 if (unlikely(!memcg
))
1325 this_cpu_inc(memcg
->stat
->events
[MEM_CGROUP_EVENTS_PGFAULT
]);
1328 this_cpu_inc(memcg
->stat
->events
[MEM_CGROUP_EVENTS_PGMAJFAULT
]);
1336 EXPORT_SYMBOL(__mem_cgroup_count_vm_event
);
1339 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1340 * @zone: zone of the wanted lruvec
1341 * @memcg: memcg of the wanted lruvec
1343 * Returns the lru list vector holding pages for the given @zone and
1344 * @mem. This can be the global zone lruvec, if the memory controller
1347 struct lruvec
*mem_cgroup_zone_lruvec(struct zone
*zone
,
1348 struct mem_cgroup
*memcg
)
1350 struct mem_cgroup_per_zone
*mz
;
1351 struct lruvec
*lruvec
;
1353 if (mem_cgroup_disabled()) {
1354 lruvec
= &zone
->lruvec
;
1358 mz
= mem_cgroup_zoneinfo(memcg
, zone_to_nid(zone
), zone_idx(zone
));
1359 lruvec
= &mz
->lruvec
;
1362 * Since a node can be onlined after the mem_cgroup was created,
1363 * we have to be prepared to initialize lruvec->zone here;
1364 * and if offlined then reonlined, we need to reinitialize it.
1366 if (unlikely(lruvec
->zone
!= zone
))
1367 lruvec
->zone
= zone
;
1372 * Following LRU functions are allowed to be used without PCG_LOCK.
1373 * Operations are called by routine of global LRU independently from memcg.
1374 * What we have to take care of here is validness of pc->mem_cgroup.
1376 * Changes to pc->mem_cgroup happens when
1379 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1380 * It is added to LRU before charge.
1381 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1382 * When moving account, the page is not on LRU. It's isolated.
1386 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1388 * @zone: zone of the page
1390 struct lruvec
*mem_cgroup_page_lruvec(struct page
*page
, struct zone
*zone
)
1392 struct mem_cgroup_per_zone
*mz
;
1393 struct mem_cgroup
*memcg
;
1394 struct page_cgroup
*pc
;
1395 struct lruvec
*lruvec
;
1397 if (mem_cgroup_disabled()) {
1398 lruvec
= &zone
->lruvec
;
1402 pc
= lookup_page_cgroup(page
);
1403 memcg
= pc
->mem_cgroup
;
1406 * Surreptitiously switch any uncharged offlist page to root:
1407 * an uncharged page off lru does nothing to secure
1408 * its former mem_cgroup from sudden removal.
1410 * Our caller holds lru_lock, and PageCgroupUsed is updated
1411 * under page_cgroup lock: between them, they make all uses
1412 * of pc->mem_cgroup safe.
1414 if (!PageLRU(page
) && !PageCgroupUsed(pc
) && memcg
!= root_mem_cgroup
)
1415 pc
->mem_cgroup
= memcg
= root_mem_cgroup
;
1417 mz
= page_cgroup_zoneinfo(memcg
, page
);
1418 lruvec
= &mz
->lruvec
;
1421 * Since a node can be onlined after the mem_cgroup was created,
1422 * we have to be prepared to initialize lruvec->zone here;
1423 * and if offlined then reonlined, we need to reinitialize it.
1425 if (unlikely(lruvec
->zone
!= zone
))
1426 lruvec
->zone
= zone
;
1431 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1432 * @lruvec: mem_cgroup per zone lru vector
1433 * @lru: index of lru list the page is sitting on
1434 * @nr_pages: positive when adding or negative when removing
1436 * This function must be called when a page is added to or removed from an
1439 void mem_cgroup_update_lru_size(struct lruvec
*lruvec
, enum lru_list lru
,
1442 struct mem_cgroup_per_zone
*mz
;
1443 unsigned long *lru_size
;
1445 if (mem_cgroup_disabled())
1448 mz
= container_of(lruvec
, struct mem_cgroup_per_zone
, lruvec
);
1449 lru_size
= mz
->lru_size
+ lru
;
1450 *lru_size
+= nr_pages
;
1451 VM_BUG_ON((long)(*lru_size
) < 0);
1455 * Checks whether given mem is same or in the root_mem_cgroup's
1458 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup
*root_memcg
,
1459 struct mem_cgroup
*memcg
)
1461 if (root_memcg
== memcg
)
1463 if (!root_memcg
->use_hierarchy
|| !memcg
)
1465 return css_is_ancestor(&memcg
->css
, &root_memcg
->css
);
1468 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup
*root_memcg
,
1469 struct mem_cgroup
*memcg
)
1474 ret
= __mem_cgroup_same_or_subtree(root_memcg
, memcg
);
1479 bool task_in_mem_cgroup(struct task_struct
*task
,
1480 const struct mem_cgroup
*memcg
)
1482 struct mem_cgroup
*curr
= NULL
;
1483 struct task_struct
*p
;
1486 p
= find_lock_task_mm(task
);
1488 curr
= try_get_mem_cgroup_from_mm(p
->mm
);
1492 * All threads may have already detached their mm's, but the oom
1493 * killer still needs to detect if they have already been oom
1494 * killed to prevent needlessly killing additional tasks.
1497 curr
= mem_cgroup_from_task(task
);
1499 css_get(&curr
->css
);
1505 * We should check use_hierarchy of "memcg" not "curr". Because checking
1506 * use_hierarchy of "curr" here make this function true if hierarchy is
1507 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1508 * hierarchy(even if use_hierarchy is disabled in "memcg").
1510 ret
= mem_cgroup_same_or_subtree(memcg
, curr
);
1511 css_put(&curr
->css
);
1515 int mem_cgroup_inactive_anon_is_low(struct lruvec
*lruvec
)
1517 unsigned long inactive_ratio
;
1518 unsigned long inactive
;
1519 unsigned long active
;
1522 inactive
= mem_cgroup_get_lru_size(lruvec
, LRU_INACTIVE_ANON
);
1523 active
= mem_cgroup_get_lru_size(lruvec
, LRU_ACTIVE_ANON
);
1525 gb
= (inactive
+ active
) >> (30 - PAGE_SHIFT
);
1527 inactive_ratio
= int_sqrt(10 * gb
);
1531 return inactive
* inactive_ratio
< active
;
1534 #define mem_cgroup_from_res_counter(counter, member) \
1535 container_of(counter, struct mem_cgroup, member)
1538 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1539 * @memcg: the memory cgroup
1541 * Returns the maximum amount of memory @mem can be charged with, in
1544 static unsigned long mem_cgroup_margin(struct mem_cgroup
*memcg
)
1546 unsigned long long margin
;
1548 margin
= res_counter_margin(&memcg
->res
);
1549 if (do_swap_account
)
1550 margin
= min(margin
, res_counter_margin(&memcg
->memsw
));
1551 return margin
>> PAGE_SHIFT
;
1554 int mem_cgroup_swappiness(struct mem_cgroup
*memcg
)
1556 struct cgroup
*cgrp
= memcg
->css
.cgroup
;
1559 if (cgrp
->parent
== NULL
)
1560 return vm_swappiness
;
1562 return memcg
->swappiness
;
1566 * memcg->moving_account is used for checking possibility that some thread is
1567 * calling move_account(). When a thread on CPU-A starts moving pages under
1568 * a memcg, other threads should check memcg->moving_account under
1569 * rcu_read_lock(), like this:
1573 * memcg->moving_account+1 if (memcg->mocing_account)
1575 * synchronize_rcu() update something.
1580 /* for quick checking without looking up memcg */
1581 atomic_t memcg_moving __read_mostly
;
1583 static void mem_cgroup_start_move(struct mem_cgroup
*memcg
)
1585 atomic_inc(&memcg_moving
);
1586 atomic_inc(&memcg
->moving_account
);
1590 static void mem_cgroup_end_move(struct mem_cgroup
*memcg
)
1593 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1594 * We check NULL in callee rather than caller.
1597 atomic_dec(&memcg_moving
);
1598 atomic_dec(&memcg
->moving_account
);
1603 * 2 routines for checking "mem" is under move_account() or not.
1605 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1606 * is used for avoiding races in accounting. If true,
1607 * pc->mem_cgroup may be overwritten.
1609 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1610 * under hierarchy of moving cgroups. This is for
1611 * waiting at hith-memory prressure caused by "move".
1614 static bool mem_cgroup_stolen(struct mem_cgroup
*memcg
)
1616 VM_BUG_ON(!rcu_read_lock_held());
1617 return atomic_read(&memcg
->moving_account
) > 0;
1620 static bool mem_cgroup_under_move(struct mem_cgroup
*memcg
)
1622 struct mem_cgroup
*from
;
1623 struct mem_cgroup
*to
;
1626 * Unlike task_move routines, we access mc.to, mc.from not under
1627 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1629 spin_lock(&mc
.lock
);
1635 ret
= mem_cgroup_same_or_subtree(memcg
, from
)
1636 || mem_cgroup_same_or_subtree(memcg
, to
);
1638 spin_unlock(&mc
.lock
);
1642 static bool mem_cgroup_wait_acct_move(struct mem_cgroup
*memcg
)
1644 if (mc
.moving_task
&& current
!= mc
.moving_task
) {
1645 if (mem_cgroup_under_move(memcg
)) {
1647 prepare_to_wait(&mc
.waitq
, &wait
, TASK_INTERRUPTIBLE
);
1648 /* moving charge context might have finished. */
1651 finish_wait(&mc
.waitq
, &wait
);
1659 * Take this lock when
1660 * - a code tries to modify page's memcg while it's USED.
1661 * - a code tries to modify page state accounting in a memcg.
1662 * see mem_cgroup_stolen(), too.
1664 static void move_lock_mem_cgroup(struct mem_cgroup
*memcg
,
1665 unsigned long *flags
)
1667 spin_lock_irqsave(&memcg
->move_lock
, *flags
);
1670 static void move_unlock_mem_cgroup(struct mem_cgroup
*memcg
,
1671 unsigned long *flags
)
1673 spin_unlock_irqrestore(&memcg
->move_lock
, *flags
);
1676 #define K(x) ((x) << (PAGE_SHIFT-10))
1678 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1679 * @memcg: The memory cgroup that went over limit
1680 * @p: Task that is going to be killed
1682 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1685 void mem_cgroup_print_oom_info(struct mem_cgroup
*memcg
, struct task_struct
*p
)
1687 struct cgroup
*task_cgrp
;
1688 struct cgroup
*mem_cgrp
;
1690 * Need a buffer in BSS, can't rely on allocations. The code relies
1691 * on the assumption that OOM is serialized for memory controller.
1692 * If this assumption is broken, revisit this code.
1694 static char memcg_name
[PATH_MAX
];
1696 struct mem_cgroup
*iter
;
1704 mem_cgrp
= memcg
->css
.cgroup
;
1705 task_cgrp
= task_cgroup(p
, mem_cgroup_subsys_id
);
1707 ret
= cgroup_path(task_cgrp
, memcg_name
, PATH_MAX
);
1710 * Unfortunately, we are unable to convert to a useful name
1711 * But we'll still print out the usage information
1718 pr_info("Task in %s killed", memcg_name
);
1721 ret
= cgroup_path(mem_cgrp
, memcg_name
, PATH_MAX
);
1729 * Continues from above, so we don't need an KERN_ level
1731 pr_cont(" as a result of limit of %s\n", memcg_name
);
1734 pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1735 res_counter_read_u64(&memcg
->res
, RES_USAGE
) >> 10,
1736 res_counter_read_u64(&memcg
->res
, RES_LIMIT
) >> 10,
1737 res_counter_read_u64(&memcg
->res
, RES_FAILCNT
));
1738 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1739 res_counter_read_u64(&memcg
->memsw
, RES_USAGE
) >> 10,
1740 res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
) >> 10,
1741 res_counter_read_u64(&memcg
->memsw
, RES_FAILCNT
));
1742 pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1743 res_counter_read_u64(&memcg
->kmem
, RES_USAGE
) >> 10,
1744 res_counter_read_u64(&memcg
->kmem
, RES_LIMIT
) >> 10,
1745 res_counter_read_u64(&memcg
->kmem
, RES_FAILCNT
));
1747 for_each_mem_cgroup_tree(iter
, memcg
) {
1748 pr_info("Memory cgroup stats");
1751 ret
= cgroup_path(iter
->css
.cgroup
, memcg_name
, PATH_MAX
);
1753 pr_cont(" for %s", memcg_name
);
1757 for (i
= 0; i
< MEM_CGROUP_STAT_NSTATS
; i
++) {
1758 if (i
== MEM_CGROUP_STAT_SWAP
&& !do_swap_account
)
1760 pr_cont(" %s:%ldKB", mem_cgroup_stat_names
[i
],
1761 K(mem_cgroup_read_stat(iter
, i
)));
1764 for (i
= 0; i
< NR_LRU_LISTS
; i
++)
1765 pr_cont(" %s:%luKB", mem_cgroup_lru_names
[i
],
1766 K(mem_cgroup_nr_lru_pages(iter
, BIT(i
))));
1773 * This function returns the number of memcg under hierarchy tree. Returns
1774 * 1(self count) if no children.
1776 static int mem_cgroup_count_children(struct mem_cgroup
*memcg
)
1779 struct mem_cgroup
*iter
;
1781 for_each_mem_cgroup_tree(iter
, memcg
)
1787 * Return the memory (and swap, if configured) limit for a memcg.
1789 static u64
mem_cgroup_get_limit(struct mem_cgroup
*memcg
)
1793 limit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
1796 * Do not consider swap space if we cannot swap due to swappiness
1798 if (mem_cgroup_swappiness(memcg
)) {
1801 limit
+= total_swap_pages
<< PAGE_SHIFT
;
1802 memsw
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
1805 * If memsw is finite and limits the amount of swap space
1806 * available to this memcg, return that limit.
1808 limit
= min(limit
, memsw
);
1814 static void mem_cgroup_out_of_memory(struct mem_cgroup
*memcg
, gfp_t gfp_mask
,
1817 struct mem_cgroup
*iter
;
1818 unsigned long chosen_points
= 0;
1819 unsigned long totalpages
;
1820 unsigned int points
= 0;
1821 struct task_struct
*chosen
= NULL
;
1824 * If current has a pending SIGKILL or is exiting, then automatically
1825 * select it. The goal is to allow it to allocate so that it may
1826 * quickly exit and free its memory.
1828 if (fatal_signal_pending(current
) || current
->flags
& PF_EXITING
) {
1829 set_thread_flag(TIF_MEMDIE
);
1833 check_panic_on_oom(CONSTRAINT_MEMCG
, gfp_mask
, order
, NULL
);
1834 totalpages
= mem_cgroup_get_limit(memcg
) >> PAGE_SHIFT
? : 1;
1835 for_each_mem_cgroup_tree(iter
, memcg
) {
1836 struct cgroup
*cgroup
= iter
->css
.cgroup
;
1837 struct cgroup_iter it
;
1838 struct task_struct
*task
;
1840 cgroup_iter_start(cgroup
, &it
);
1841 while ((task
= cgroup_iter_next(cgroup
, &it
))) {
1842 switch (oom_scan_process_thread(task
, totalpages
, NULL
,
1844 case OOM_SCAN_SELECT
:
1846 put_task_struct(chosen
);
1848 chosen_points
= ULONG_MAX
;
1849 get_task_struct(chosen
);
1851 case OOM_SCAN_CONTINUE
:
1853 case OOM_SCAN_ABORT
:
1854 cgroup_iter_end(cgroup
, &it
);
1855 mem_cgroup_iter_break(memcg
, iter
);
1857 put_task_struct(chosen
);
1862 points
= oom_badness(task
, memcg
, NULL
, totalpages
);
1863 if (points
> chosen_points
) {
1865 put_task_struct(chosen
);
1867 chosen_points
= points
;
1868 get_task_struct(chosen
);
1871 cgroup_iter_end(cgroup
, &it
);
1876 points
= chosen_points
* 1000 / totalpages
;
1877 oom_kill_process(chosen
, gfp_mask
, order
, points
, totalpages
, memcg
,
1878 NULL
, "Memory cgroup out of memory");
1881 static unsigned long mem_cgroup_reclaim(struct mem_cgroup
*memcg
,
1883 unsigned long flags
)
1885 unsigned long total
= 0;
1886 bool noswap
= false;
1889 if (flags
& MEM_CGROUP_RECLAIM_NOSWAP
)
1891 if (!(flags
& MEM_CGROUP_RECLAIM_SHRINK
) && memcg
->memsw_is_minimum
)
1894 for (loop
= 0; loop
< MEM_CGROUP_MAX_RECLAIM_LOOPS
; loop
++) {
1896 drain_all_stock_async(memcg
);
1897 total
+= try_to_free_mem_cgroup_pages(memcg
, gfp_mask
, noswap
);
1899 * Allow limit shrinkers, which are triggered directly
1900 * by userspace, to catch signals and stop reclaim
1901 * after minimal progress, regardless of the margin.
1903 if (total
&& (flags
& MEM_CGROUP_RECLAIM_SHRINK
))
1905 if (mem_cgroup_margin(memcg
))
1908 * If nothing was reclaimed after two attempts, there
1909 * may be no reclaimable pages in this hierarchy.
1918 * test_mem_cgroup_node_reclaimable
1919 * @memcg: the target memcg
1920 * @nid: the node ID to be checked.
1921 * @noswap : specify true here if the user wants flle only information.
1923 * This function returns whether the specified memcg contains any
1924 * reclaimable pages on a node. Returns true if there are any reclaimable
1925 * pages in the node.
1927 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup
*memcg
,
1928 int nid
, bool noswap
)
1930 if (mem_cgroup_node_nr_lru_pages(memcg
, nid
, LRU_ALL_FILE
))
1932 if (noswap
|| !total_swap_pages
)
1934 if (mem_cgroup_node_nr_lru_pages(memcg
, nid
, LRU_ALL_ANON
))
1939 #if MAX_NUMNODES > 1
1942 * Always updating the nodemask is not very good - even if we have an empty
1943 * list or the wrong list here, we can start from some node and traverse all
1944 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1947 static void mem_cgroup_may_update_nodemask(struct mem_cgroup
*memcg
)
1951 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1952 * pagein/pageout changes since the last update.
1954 if (!atomic_read(&memcg
->numainfo_events
))
1956 if (atomic_inc_return(&memcg
->numainfo_updating
) > 1)
1959 /* make a nodemask where this memcg uses memory from */
1960 memcg
->scan_nodes
= node_states
[N_MEMORY
];
1962 for_each_node_mask(nid
, node_states
[N_MEMORY
]) {
1964 if (!test_mem_cgroup_node_reclaimable(memcg
, nid
, false))
1965 node_clear(nid
, memcg
->scan_nodes
);
1968 atomic_set(&memcg
->numainfo_events
, 0);
1969 atomic_set(&memcg
->numainfo_updating
, 0);
1973 * Selecting a node where we start reclaim from. Because what we need is just
1974 * reducing usage counter, start from anywhere is O,K. Considering
1975 * memory reclaim from current node, there are pros. and cons.
1977 * Freeing memory from current node means freeing memory from a node which
1978 * we'll use or we've used. So, it may make LRU bad. And if several threads
1979 * hit limits, it will see a contention on a node. But freeing from remote
1980 * node means more costs for memory reclaim because of memory latency.
1982 * Now, we use round-robin. Better algorithm is welcomed.
1984 int mem_cgroup_select_victim_node(struct mem_cgroup
*memcg
)
1988 mem_cgroup_may_update_nodemask(memcg
);
1989 node
= memcg
->last_scanned_node
;
1991 node
= next_node(node
, memcg
->scan_nodes
);
1992 if (node
== MAX_NUMNODES
)
1993 node
= first_node(memcg
->scan_nodes
);
1995 * We call this when we hit limit, not when pages are added to LRU.
1996 * No LRU may hold pages because all pages are UNEVICTABLE or
1997 * memcg is too small and all pages are not on LRU. In that case,
1998 * we use curret node.
2000 if (unlikely(node
== MAX_NUMNODES
))
2001 node
= numa_node_id();
2003 memcg
->last_scanned_node
= node
;
2008 * Check all nodes whether it contains reclaimable pages or not.
2009 * For quick scan, we make use of scan_nodes. This will allow us to skip
2010 * unused nodes. But scan_nodes is lazily updated and may not cotain
2011 * enough new information. We need to do double check.
2013 static bool mem_cgroup_reclaimable(struct mem_cgroup
*memcg
, bool noswap
)
2018 * quick check...making use of scan_node.
2019 * We can skip unused nodes.
2021 if (!nodes_empty(memcg
->scan_nodes
)) {
2022 for (nid
= first_node(memcg
->scan_nodes
);
2024 nid
= next_node(nid
, memcg
->scan_nodes
)) {
2026 if (test_mem_cgroup_node_reclaimable(memcg
, nid
, noswap
))
2031 * Check rest of nodes.
2033 for_each_node_state(nid
, N_MEMORY
) {
2034 if (node_isset(nid
, memcg
->scan_nodes
))
2036 if (test_mem_cgroup_node_reclaimable(memcg
, nid
, noswap
))
2043 int mem_cgroup_select_victim_node(struct mem_cgroup
*memcg
)
2048 static bool mem_cgroup_reclaimable(struct mem_cgroup
*memcg
, bool noswap
)
2050 return test_mem_cgroup_node_reclaimable(memcg
, 0, noswap
);
2054 static int mem_cgroup_soft_reclaim(struct mem_cgroup
*root_memcg
,
2057 unsigned long *total_scanned
)
2059 struct mem_cgroup
*victim
= NULL
;
2062 unsigned long excess
;
2063 unsigned long nr_scanned
;
2064 struct mem_cgroup_reclaim_cookie reclaim
= {
2069 excess
= res_counter_soft_limit_excess(&root_memcg
->res
) >> PAGE_SHIFT
;
2072 victim
= mem_cgroup_iter(root_memcg
, victim
, &reclaim
);
2077 * If we have not been able to reclaim
2078 * anything, it might because there are
2079 * no reclaimable pages under this hierarchy
2084 * We want to do more targeted reclaim.
2085 * excess >> 2 is not to excessive so as to
2086 * reclaim too much, nor too less that we keep
2087 * coming back to reclaim from this cgroup
2089 if (total
>= (excess
>> 2) ||
2090 (loop
> MEM_CGROUP_MAX_RECLAIM_LOOPS
))
2095 if (!mem_cgroup_reclaimable(victim
, false))
2097 total
+= mem_cgroup_shrink_node_zone(victim
, gfp_mask
, false,
2099 *total_scanned
+= nr_scanned
;
2100 if (!res_counter_soft_limit_excess(&root_memcg
->res
))
2103 mem_cgroup_iter_break(root_memcg
, victim
);
2108 * Check OOM-Killer is already running under our hierarchy.
2109 * If someone is running, return false.
2110 * Has to be called with memcg_oom_lock
2112 static bool mem_cgroup_oom_lock(struct mem_cgroup
*memcg
)
2114 struct mem_cgroup
*iter
, *failed
= NULL
;
2116 for_each_mem_cgroup_tree(iter
, memcg
) {
2117 if (iter
->oom_lock
) {
2119 * this subtree of our hierarchy is already locked
2120 * so we cannot give a lock.
2123 mem_cgroup_iter_break(memcg
, iter
);
2126 iter
->oom_lock
= true;
2133 * OK, we failed to lock the whole subtree so we have to clean up
2134 * what we set up to the failing subtree
2136 for_each_mem_cgroup_tree(iter
, memcg
) {
2137 if (iter
== failed
) {
2138 mem_cgroup_iter_break(memcg
, iter
);
2141 iter
->oom_lock
= false;
2147 * Has to be called with memcg_oom_lock
2149 static int mem_cgroup_oom_unlock(struct mem_cgroup
*memcg
)
2151 struct mem_cgroup
*iter
;
2153 for_each_mem_cgroup_tree(iter
, memcg
)
2154 iter
->oom_lock
= false;
2158 static void mem_cgroup_mark_under_oom(struct mem_cgroup
*memcg
)
2160 struct mem_cgroup
*iter
;
2162 for_each_mem_cgroup_tree(iter
, memcg
)
2163 atomic_inc(&iter
->under_oom
);
2166 static void mem_cgroup_unmark_under_oom(struct mem_cgroup
*memcg
)
2168 struct mem_cgroup
*iter
;
2171 * When a new child is created while the hierarchy is under oom,
2172 * mem_cgroup_oom_lock() may not be called. We have to use
2173 * atomic_add_unless() here.
2175 for_each_mem_cgroup_tree(iter
, memcg
)
2176 atomic_add_unless(&iter
->under_oom
, -1, 0);
2179 static DEFINE_SPINLOCK(memcg_oom_lock
);
2180 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq
);
2182 struct oom_wait_info
{
2183 struct mem_cgroup
*memcg
;
2187 static int memcg_oom_wake_function(wait_queue_t
*wait
,
2188 unsigned mode
, int sync
, void *arg
)
2190 struct mem_cgroup
*wake_memcg
= (struct mem_cgroup
*)arg
;
2191 struct mem_cgroup
*oom_wait_memcg
;
2192 struct oom_wait_info
*oom_wait_info
;
2194 oom_wait_info
= container_of(wait
, struct oom_wait_info
, wait
);
2195 oom_wait_memcg
= oom_wait_info
->memcg
;
2198 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
2199 * Then we can use css_is_ancestor without taking care of RCU.
2201 if (!mem_cgroup_same_or_subtree(oom_wait_memcg
, wake_memcg
)
2202 && !mem_cgroup_same_or_subtree(wake_memcg
, oom_wait_memcg
))
2204 return autoremove_wake_function(wait
, mode
, sync
, arg
);
2207 static void memcg_wakeup_oom(struct mem_cgroup
*memcg
)
2209 /* for filtering, pass "memcg" as argument. */
2210 __wake_up(&memcg_oom_waitq
, TASK_NORMAL
, 0, memcg
);
2213 static void memcg_oom_recover(struct mem_cgroup
*memcg
)
2215 if (memcg
&& atomic_read(&memcg
->under_oom
))
2216 memcg_wakeup_oom(memcg
);
2220 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
2222 static bool mem_cgroup_handle_oom(struct mem_cgroup
*memcg
, gfp_t mask
,
2225 struct oom_wait_info owait
;
2226 bool locked
, need_to_kill
;
2228 owait
.memcg
= memcg
;
2229 owait
.wait
.flags
= 0;
2230 owait
.wait
.func
= memcg_oom_wake_function
;
2231 owait
.wait
.private = current
;
2232 INIT_LIST_HEAD(&owait
.wait
.task_list
);
2233 need_to_kill
= true;
2234 mem_cgroup_mark_under_oom(memcg
);
2236 /* At first, try to OOM lock hierarchy under memcg.*/
2237 spin_lock(&memcg_oom_lock
);
2238 locked
= mem_cgroup_oom_lock(memcg
);
2240 * Even if signal_pending(), we can't quit charge() loop without
2241 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
2242 * under OOM is always welcomed, use TASK_KILLABLE here.
2244 prepare_to_wait(&memcg_oom_waitq
, &owait
.wait
, TASK_KILLABLE
);
2245 if (!locked
|| memcg
->oom_kill_disable
)
2246 need_to_kill
= false;
2248 mem_cgroup_oom_notify(memcg
);
2249 spin_unlock(&memcg_oom_lock
);
2252 finish_wait(&memcg_oom_waitq
, &owait
.wait
);
2253 mem_cgroup_out_of_memory(memcg
, mask
, order
);
2256 finish_wait(&memcg_oom_waitq
, &owait
.wait
);
2258 spin_lock(&memcg_oom_lock
);
2260 mem_cgroup_oom_unlock(memcg
);
2261 memcg_wakeup_oom(memcg
);
2262 spin_unlock(&memcg_oom_lock
);
2264 mem_cgroup_unmark_under_oom(memcg
);
2266 if (test_thread_flag(TIF_MEMDIE
) || fatal_signal_pending(current
))
2268 /* Give chance to dying process */
2269 schedule_timeout_uninterruptible(1);
2274 * Currently used to update mapped file statistics, but the routine can be
2275 * generalized to update other statistics as well.
2277 * Notes: Race condition
2279 * We usually use page_cgroup_lock() for accessing page_cgroup member but
2280 * it tends to be costly. But considering some conditions, we doesn't need
2281 * to do so _always_.
2283 * Considering "charge", lock_page_cgroup() is not required because all
2284 * file-stat operations happen after a page is attached to radix-tree. There
2285 * are no race with "charge".
2287 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2288 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2289 * if there are race with "uncharge". Statistics itself is properly handled
2292 * Considering "move", this is an only case we see a race. To make the race
2293 * small, we check mm->moving_account and detect there are possibility of race
2294 * If there is, we take a lock.
2297 void __mem_cgroup_begin_update_page_stat(struct page
*page
,
2298 bool *locked
, unsigned long *flags
)
2300 struct mem_cgroup
*memcg
;
2301 struct page_cgroup
*pc
;
2303 pc
= lookup_page_cgroup(page
);
2305 memcg
= pc
->mem_cgroup
;
2306 if (unlikely(!memcg
|| !PageCgroupUsed(pc
)))
2309 * If this memory cgroup is not under account moving, we don't
2310 * need to take move_lock_mem_cgroup(). Because we already hold
2311 * rcu_read_lock(), any calls to move_account will be delayed until
2312 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2314 if (!mem_cgroup_stolen(memcg
))
2317 move_lock_mem_cgroup(memcg
, flags
);
2318 if (memcg
!= pc
->mem_cgroup
|| !PageCgroupUsed(pc
)) {
2319 move_unlock_mem_cgroup(memcg
, flags
);
2325 void __mem_cgroup_end_update_page_stat(struct page
*page
, unsigned long *flags
)
2327 struct page_cgroup
*pc
= lookup_page_cgroup(page
);
2330 * It's guaranteed that pc->mem_cgroup never changes while
2331 * lock is held because a routine modifies pc->mem_cgroup
2332 * should take move_lock_mem_cgroup().
2334 move_unlock_mem_cgroup(pc
->mem_cgroup
, flags
);
2337 void mem_cgroup_update_page_stat(struct page
*page
,
2338 enum mem_cgroup_page_stat_item idx
, int val
)
2340 struct mem_cgroup
*memcg
;
2341 struct page_cgroup
*pc
= lookup_page_cgroup(page
);
2342 unsigned long uninitialized_var(flags
);
2344 if (mem_cgroup_disabled())
2347 memcg
= pc
->mem_cgroup
;
2348 if (unlikely(!memcg
|| !PageCgroupUsed(pc
)))
2352 case MEMCG_NR_FILE_MAPPED
:
2353 idx
= MEM_CGROUP_STAT_FILE_MAPPED
;
2359 this_cpu_add(memcg
->stat
->count
[idx
], val
);
2363 * size of first charge trial. "32" comes from vmscan.c's magic value.
2364 * TODO: maybe necessary to use big numbers in big irons.
2366 #define CHARGE_BATCH 32U
2367 struct memcg_stock_pcp
{
2368 struct mem_cgroup
*cached
; /* this never be root cgroup */
2369 unsigned int nr_pages
;
2370 struct work_struct work
;
2371 unsigned long flags
;
2372 #define FLUSHING_CACHED_CHARGE 0
2374 static DEFINE_PER_CPU(struct memcg_stock_pcp
, memcg_stock
);
2375 static DEFINE_MUTEX(percpu_charge_mutex
);
2378 * consume_stock: Try to consume stocked charge on this cpu.
2379 * @memcg: memcg to consume from.
2380 * @nr_pages: how many pages to charge.
2382 * The charges will only happen if @memcg matches the current cpu's memcg
2383 * stock, and at least @nr_pages are available in that stock. Failure to
2384 * service an allocation will refill the stock.
2386 * returns true if successful, false otherwise.
2388 static bool consume_stock(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
2390 struct memcg_stock_pcp
*stock
;
2393 if (nr_pages
> CHARGE_BATCH
)
2396 stock
= &get_cpu_var(memcg_stock
);
2397 if (memcg
== stock
->cached
&& stock
->nr_pages
>= nr_pages
)
2398 stock
->nr_pages
-= nr_pages
;
2399 else /* need to call res_counter_charge */
2401 put_cpu_var(memcg_stock
);
2406 * Returns stocks cached in percpu to res_counter and reset cached information.
2408 static void drain_stock(struct memcg_stock_pcp
*stock
)
2410 struct mem_cgroup
*old
= stock
->cached
;
2412 if (stock
->nr_pages
) {
2413 unsigned long bytes
= stock
->nr_pages
* PAGE_SIZE
;
2415 res_counter_uncharge(&old
->res
, bytes
);
2416 if (do_swap_account
)
2417 res_counter_uncharge(&old
->memsw
, bytes
);
2418 stock
->nr_pages
= 0;
2420 stock
->cached
= NULL
;
2424 * This must be called under preempt disabled or must be called by
2425 * a thread which is pinned to local cpu.
2427 static void drain_local_stock(struct work_struct
*dummy
)
2429 struct memcg_stock_pcp
*stock
= &__get_cpu_var(memcg_stock
);
2431 clear_bit(FLUSHING_CACHED_CHARGE
, &stock
->flags
);
2434 static void __init
memcg_stock_init(void)
2438 for_each_possible_cpu(cpu
) {
2439 struct memcg_stock_pcp
*stock
=
2440 &per_cpu(memcg_stock
, cpu
);
2441 INIT_WORK(&stock
->work
, drain_local_stock
);
2446 * Cache charges(val) which is from res_counter, to local per_cpu area.
2447 * This will be consumed by consume_stock() function, later.
2449 static void refill_stock(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
2451 struct memcg_stock_pcp
*stock
= &get_cpu_var(memcg_stock
);
2453 if (stock
->cached
!= memcg
) { /* reset if necessary */
2455 stock
->cached
= memcg
;
2457 stock
->nr_pages
+= nr_pages
;
2458 put_cpu_var(memcg_stock
);
2462 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2463 * of the hierarchy under it. sync flag says whether we should block
2464 * until the work is done.
2466 static void drain_all_stock(struct mem_cgroup
*root_memcg
, bool sync
)
2470 /* Notify other cpus that system-wide "drain" is running */
2473 for_each_online_cpu(cpu
) {
2474 struct memcg_stock_pcp
*stock
= &per_cpu(memcg_stock
, cpu
);
2475 struct mem_cgroup
*memcg
;
2477 memcg
= stock
->cached
;
2478 if (!memcg
|| !stock
->nr_pages
)
2480 if (!mem_cgroup_same_or_subtree(root_memcg
, memcg
))
2482 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE
, &stock
->flags
)) {
2484 drain_local_stock(&stock
->work
);
2486 schedule_work_on(cpu
, &stock
->work
);
2494 for_each_online_cpu(cpu
) {
2495 struct memcg_stock_pcp
*stock
= &per_cpu(memcg_stock
, cpu
);
2496 if (test_bit(FLUSHING_CACHED_CHARGE
, &stock
->flags
))
2497 flush_work(&stock
->work
);
2504 * Tries to drain stocked charges in other cpus. This function is asynchronous
2505 * and just put a work per cpu for draining localy on each cpu. Caller can
2506 * expects some charges will be back to res_counter later but cannot wait for
2509 static void drain_all_stock_async(struct mem_cgroup
*root_memcg
)
2512 * If someone calls draining, avoid adding more kworker runs.
2514 if (!mutex_trylock(&percpu_charge_mutex
))
2516 drain_all_stock(root_memcg
, false);
2517 mutex_unlock(&percpu_charge_mutex
);
2520 /* This is a synchronous drain interface. */
2521 static void drain_all_stock_sync(struct mem_cgroup
*root_memcg
)
2523 /* called when force_empty is called */
2524 mutex_lock(&percpu_charge_mutex
);
2525 drain_all_stock(root_memcg
, true);
2526 mutex_unlock(&percpu_charge_mutex
);
2530 * This function drains percpu counter value from DEAD cpu and
2531 * move it to local cpu. Note that this function can be preempted.
2533 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup
*memcg
, int cpu
)
2537 spin_lock(&memcg
->pcp_counter_lock
);
2538 for (i
= 0; i
< MEM_CGROUP_STAT_NSTATS
; i
++) {
2539 long x
= per_cpu(memcg
->stat
->count
[i
], cpu
);
2541 per_cpu(memcg
->stat
->count
[i
], cpu
) = 0;
2542 memcg
->nocpu_base
.count
[i
] += x
;
2544 for (i
= 0; i
< MEM_CGROUP_EVENTS_NSTATS
; i
++) {
2545 unsigned long x
= per_cpu(memcg
->stat
->events
[i
], cpu
);
2547 per_cpu(memcg
->stat
->events
[i
], cpu
) = 0;
2548 memcg
->nocpu_base
.events
[i
] += x
;
2550 spin_unlock(&memcg
->pcp_counter_lock
);
2553 static int __cpuinit
memcg_cpu_hotplug_callback(struct notifier_block
*nb
,
2554 unsigned long action
,
2557 int cpu
= (unsigned long)hcpu
;
2558 struct memcg_stock_pcp
*stock
;
2559 struct mem_cgroup
*iter
;
2561 if (action
== CPU_ONLINE
)
2564 if (action
!= CPU_DEAD
&& action
!= CPU_DEAD_FROZEN
)
2567 for_each_mem_cgroup(iter
)
2568 mem_cgroup_drain_pcp_counter(iter
, cpu
);
2570 stock
= &per_cpu(memcg_stock
, cpu
);
2576 /* See __mem_cgroup_try_charge() for details */
2578 CHARGE_OK
, /* success */
2579 CHARGE_RETRY
, /* need to retry but retry is not bad */
2580 CHARGE_NOMEM
, /* we can't do more. return -ENOMEM */
2581 CHARGE_WOULDBLOCK
, /* GFP_WAIT wasn't set and no enough res. */
2582 CHARGE_OOM_DIE
, /* the current is killed because of OOM */
2585 static int mem_cgroup_do_charge(struct mem_cgroup
*memcg
, gfp_t gfp_mask
,
2586 unsigned int nr_pages
, unsigned int min_pages
,
2589 unsigned long csize
= nr_pages
* PAGE_SIZE
;
2590 struct mem_cgroup
*mem_over_limit
;
2591 struct res_counter
*fail_res
;
2592 unsigned long flags
= 0;
2595 ret
= res_counter_charge(&memcg
->res
, csize
, &fail_res
);
2598 if (!do_swap_account
)
2600 ret
= res_counter_charge(&memcg
->memsw
, csize
, &fail_res
);
2604 res_counter_uncharge(&memcg
->res
, csize
);
2605 mem_over_limit
= mem_cgroup_from_res_counter(fail_res
, memsw
);
2606 flags
|= MEM_CGROUP_RECLAIM_NOSWAP
;
2608 mem_over_limit
= mem_cgroup_from_res_counter(fail_res
, res
);
2610 * Never reclaim on behalf of optional batching, retry with a
2611 * single page instead.
2613 if (nr_pages
> min_pages
)
2614 return CHARGE_RETRY
;
2616 if (!(gfp_mask
& __GFP_WAIT
))
2617 return CHARGE_WOULDBLOCK
;
2619 if (gfp_mask
& __GFP_NORETRY
)
2620 return CHARGE_NOMEM
;
2622 ret
= mem_cgroup_reclaim(mem_over_limit
, gfp_mask
, flags
);
2623 if (mem_cgroup_margin(mem_over_limit
) >= nr_pages
)
2624 return CHARGE_RETRY
;
2626 * Even though the limit is exceeded at this point, reclaim
2627 * may have been able to free some pages. Retry the charge
2628 * before killing the task.
2630 * Only for regular pages, though: huge pages are rather
2631 * unlikely to succeed so close to the limit, and we fall back
2632 * to regular pages anyway in case of failure.
2634 if (nr_pages
<= (1 << PAGE_ALLOC_COSTLY_ORDER
) && ret
)
2635 return CHARGE_RETRY
;
2638 * At task move, charge accounts can be doubly counted. So, it's
2639 * better to wait until the end of task_move if something is going on.
2641 if (mem_cgroup_wait_acct_move(mem_over_limit
))
2642 return CHARGE_RETRY
;
2644 /* If we don't need to call oom-killer at el, return immediately */
2646 return CHARGE_NOMEM
;
2648 if (!mem_cgroup_handle_oom(mem_over_limit
, gfp_mask
, get_order(csize
)))
2649 return CHARGE_OOM_DIE
;
2651 return CHARGE_RETRY
;
2655 * __mem_cgroup_try_charge() does
2656 * 1. detect memcg to be charged against from passed *mm and *ptr,
2657 * 2. update res_counter
2658 * 3. call memory reclaim if necessary.
2660 * In some special case, if the task is fatal, fatal_signal_pending() or
2661 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2662 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2663 * as possible without any hazards. 2: all pages should have a valid
2664 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2665 * pointer, that is treated as a charge to root_mem_cgroup.
2667 * So __mem_cgroup_try_charge() will return
2668 * 0 ... on success, filling *ptr with a valid memcg pointer.
2669 * -ENOMEM ... charge failure because of resource limits.
2670 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2672 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2673 * the oom-killer can be invoked.
2675 static int __mem_cgroup_try_charge(struct mm_struct
*mm
,
2677 unsigned int nr_pages
,
2678 struct mem_cgroup
**ptr
,
2681 unsigned int batch
= max(CHARGE_BATCH
, nr_pages
);
2682 int nr_oom_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
2683 struct mem_cgroup
*memcg
= NULL
;
2687 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2688 * in system level. So, allow to go ahead dying process in addition to
2691 if (unlikely(test_thread_flag(TIF_MEMDIE
)
2692 || fatal_signal_pending(current
)))
2696 * We always charge the cgroup the mm_struct belongs to.
2697 * The mm_struct's mem_cgroup changes on task migration if the
2698 * thread group leader migrates. It's possible that mm is not
2699 * set, if so charge the root memcg (happens for pagecache usage).
2702 *ptr
= root_mem_cgroup
;
2704 if (*ptr
) { /* css should be a valid one */
2706 if (mem_cgroup_is_root(memcg
))
2708 if (consume_stock(memcg
, nr_pages
))
2710 css_get(&memcg
->css
);
2712 struct task_struct
*p
;
2715 p
= rcu_dereference(mm
->owner
);
2717 * Because we don't have task_lock(), "p" can exit.
2718 * In that case, "memcg" can point to root or p can be NULL with
2719 * race with swapoff. Then, we have small risk of mis-accouning.
2720 * But such kind of mis-account by race always happens because
2721 * we don't have cgroup_mutex(). It's overkill and we allo that
2723 * (*) swapoff at el will charge against mm-struct not against
2724 * task-struct. So, mm->owner can be NULL.
2726 memcg
= mem_cgroup_from_task(p
);
2728 memcg
= root_mem_cgroup
;
2729 if (mem_cgroup_is_root(memcg
)) {
2733 if (consume_stock(memcg
, nr_pages
)) {
2735 * It seems dagerous to access memcg without css_get().
2736 * But considering how consume_stok works, it's not
2737 * necessary. If consume_stock success, some charges
2738 * from this memcg are cached on this cpu. So, we
2739 * don't need to call css_get()/css_tryget() before
2740 * calling consume_stock().
2745 /* after here, we may be blocked. we need to get refcnt */
2746 if (!css_tryget(&memcg
->css
)) {
2756 /* If killed, bypass charge */
2757 if (fatal_signal_pending(current
)) {
2758 css_put(&memcg
->css
);
2763 if (oom
&& !nr_oom_retries
) {
2765 nr_oom_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
2768 ret
= mem_cgroup_do_charge(memcg
, gfp_mask
, batch
, nr_pages
,
2773 case CHARGE_RETRY
: /* not in OOM situation but retry */
2775 css_put(&memcg
->css
);
2778 case CHARGE_WOULDBLOCK
: /* !__GFP_WAIT */
2779 css_put(&memcg
->css
);
2781 case CHARGE_NOMEM
: /* OOM routine works */
2783 css_put(&memcg
->css
);
2786 /* If oom, we never return -ENOMEM */
2789 case CHARGE_OOM_DIE
: /* Killed by OOM Killer */
2790 css_put(&memcg
->css
);
2793 } while (ret
!= CHARGE_OK
);
2795 if (batch
> nr_pages
)
2796 refill_stock(memcg
, batch
- nr_pages
);
2797 css_put(&memcg
->css
);
2805 *ptr
= root_mem_cgroup
;
2810 * Somemtimes we have to undo a charge we got by try_charge().
2811 * This function is for that and do uncharge, put css's refcnt.
2812 * gotten by try_charge().
2814 static void __mem_cgroup_cancel_charge(struct mem_cgroup
*memcg
,
2815 unsigned int nr_pages
)
2817 if (!mem_cgroup_is_root(memcg
)) {
2818 unsigned long bytes
= nr_pages
* PAGE_SIZE
;
2820 res_counter_uncharge(&memcg
->res
, bytes
);
2821 if (do_swap_account
)
2822 res_counter_uncharge(&memcg
->memsw
, bytes
);
2827 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2828 * This is useful when moving usage to parent cgroup.
2830 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup
*memcg
,
2831 unsigned int nr_pages
)
2833 unsigned long bytes
= nr_pages
* PAGE_SIZE
;
2835 if (mem_cgroup_is_root(memcg
))
2838 res_counter_uncharge_until(&memcg
->res
, memcg
->res
.parent
, bytes
);
2839 if (do_swap_account
)
2840 res_counter_uncharge_until(&memcg
->memsw
,
2841 memcg
->memsw
.parent
, bytes
);
2845 * A helper function to get mem_cgroup from ID. must be called under
2846 * rcu_read_lock(). The caller is responsible for calling css_tryget if
2847 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2848 * called against removed memcg.)
2850 static struct mem_cgroup
*mem_cgroup_lookup(unsigned short id
)
2852 struct cgroup_subsys_state
*css
;
2854 /* ID 0 is unused ID */
2857 css
= css_lookup(&mem_cgroup_subsys
, id
);
2860 return mem_cgroup_from_css(css
);
2863 struct mem_cgroup
*try_get_mem_cgroup_from_page(struct page
*page
)
2865 struct mem_cgroup
*memcg
= NULL
;
2866 struct page_cgroup
*pc
;
2870 VM_BUG_ON(!PageLocked(page
));
2872 pc
= lookup_page_cgroup(page
);
2873 lock_page_cgroup(pc
);
2874 if (PageCgroupUsed(pc
)) {
2875 memcg
= pc
->mem_cgroup
;
2876 if (memcg
&& !css_tryget(&memcg
->css
))
2878 } else if (PageSwapCache(page
)) {
2879 ent
.val
= page_private(page
);
2880 id
= lookup_swap_cgroup_id(ent
);
2882 memcg
= mem_cgroup_lookup(id
);
2883 if (memcg
&& !css_tryget(&memcg
->css
))
2887 unlock_page_cgroup(pc
);
2891 static void __mem_cgroup_commit_charge(struct mem_cgroup
*memcg
,
2893 unsigned int nr_pages
,
2894 enum charge_type ctype
,
2897 struct page_cgroup
*pc
= lookup_page_cgroup(page
);
2898 struct zone
*uninitialized_var(zone
);
2899 struct lruvec
*lruvec
;
2900 bool was_on_lru
= false;
2903 lock_page_cgroup(pc
);
2904 VM_BUG_ON(PageCgroupUsed(pc
));
2906 * we don't need page_cgroup_lock about tail pages, becase they are not
2907 * accessed by any other context at this point.
2911 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2912 * may already be on some other mem_cgroup's LRU. Take care of it.
2915 zone
= page_zone(page
);
2916 spin_lock_irq(&zone
->lru_lock
);
2917 if (PageLRU(page
)) {
2918 lruvec
= mem_cgroup_zone_lruvec(zone
, pc
->mem_cgroup
);
2920 del_page_from_lru_list(page
, lruvec
, page_lru(page
));
2925 pc
->mem_cgroup
= memcg
;
2927 * We access a page_cgroup asynchronously without lock_page_cgroup().
2928 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2929 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2930 * before USED bit, we need memory barrier here.
2931 * See mem_cgroup_add_lru_list(), etc.
2934 SetPageCgroupUsed(pc
);
2938 lruvec
= mem_cgroup_zone_lruvec(zone
, pc
->mem_cgroup
);
2939 VM_BUG_ON(PageLRU(page
));
2941 add_page_to_lru_list(page
, lruvec
, page_lru(page
));
2943 spin_unlock_irq(&zone
->lru_lock
);
2946 if (ctype
== MEM_CGROUP_CHARGE_TYPE_ANON
)
2951 mem_cgroup_charge_statistics(memcg
, page
, anon
, nr_pages
);
2952 unlock_page_cgroup(pc
);
2955 * "charge_statistics" updated event counter. Then, check it.
2956 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2957 * if they exceeds softlimit.
2959 memcg_check_events(memcg
, page
);
2962 static DEFINE_MUTEX(set_limit_mutex
);
2964 #ifdef CONFIG_MEMCG_KMEM
2965 static inline bool memcg_can_account_kmem(struct mem_cgroup
*memcg
)
2967 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg
) &&
2968 (memcg
->kmem_account_flags
& KMEM_ACCOUNTED_MASK
);
2972 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2973 * in the memcg_cache_params struct.
2975 static struct kmem_cache
*memcg_params_to_cache(struct memcg_cache_params
*p
)
2977 struct kmem_cache
*cachep
;
2979 VM_BUG_ON(p
->is_root_cache
);
2980 cachep
= p
->root_cache
;
2981 return cachep
->memcg_params
->memcg_caches
[memcg_cache_id(p
->memcg
)];
2984 #ifdef CONFIG_SLABINFO
2985 static int mem_cgroup_slabinfo_read(struct cgroup
*cont
, struct cftype
*cft
,
2988 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cont
);
2989 struct memcg_cache_params
*params
;
2991 if (!memcg_can_account_kmem(memcg
))
2994 print_slabinfo_header(m
);
2996 mutex_lock(&memcg
->slab_caches_mutex
);
2997 list_for_each_entry(params
, &memcg
->memcg_slab_caches
, list
)
2998 cache_show(memcg_params_to_cache(params
), m
);
2999 mutex_unlock(&memcg
->slab_caches_mutex
);
3005 static int memcg_charge_kmem(struct mem_cgroup
*memcg
, gfp_t gfp
, u64 size
)
3007 struct res_counter
*fail_res
;
3008 struct mem_cgroup
*_memcg
;
3012 ret
= res_counter_charge(&memcg
->kmem
, size
, &fail_res
);
3017 * Conditions under which we can wait for the oom_killer. Those are
3018 * the same conditions tested by the core page allocator
3020 may_oom
= (gfp
& __GFP_FS
) && !(gfp
& __GFP_NORETRY
);
3023 ret
= __mem_cgroup_try_charge(NULL
, gfp
, size
>> PAGE_SHIFT
,
3026 if (ret
== -EINTR
) {
3028 * __mem_cgroup_try_charge() chosed to bypass to root due to
3029 * OOM kill or fatal signal. Since our only options are to
3030 * either fail the allocation or charge it to this cgroup, do
3031 * it as a temporary condition. But we can't fail. From a
3032 * kmem/slab perspective, the cache has already been selected,
3033 * by mem_cgroup_kmem_get_cache(), so it is too late to change
3036 * This condition will only trigger if the task entered
3037 * memcg_charge_kmem in a sane state, but was OOM-killed during
3038 * __mem_cgroup_try_charge() above. Tasks that were already
3039 * dying when the allocation triggers should have been already
3040 * directed to the root cgroup in memcontrol.h
3042 res_counter_charge_nofail(&memcg
->res
, size
, &fail_res
);
3043 if (do_swap_account
)
3044 res_counter_charge_nofail(&memcg
->memsw
, size
,
3048 res_counter_uncharge(&memcg
->kmem
, size
);
3053 static void memcg_uncharge_kmem(struct mem_cgroup
*memcg
, u64 size
)
3055 res_counter_uncharge(&memcg
->res
, size
);
3056 if (do_swap_account
)
3057 res_counter_uncharge(&memcg
->memsw
, size
);
3060 if (res_counter_uncharge(&memcg
->kmem
, size
))
3063 if (memcg_kmem_test_and_clear_dead(memcg
))
3064 mem_cgroup_put(memcg
);
3067 void memcg_cache_list_add(struct mem_cgroup
*memcg
, struct kmem_cache
*cachep
)
3072 mutex_lock(&memcg
->slab_caches_mutex
);
3073 list_add(&cachep
->memcg_params
->list
, &memcg
->memcg_slab_caches
);
3074 mutex_unlock(&memcg
->slab_caches_mutex
);
3078 * helper for acessing a memcg's index. It will be used as an index in the
3079 * child cache array in kmem_cache, and also to derive its name. This function
3080 * will return -1 when this is not a kmem-limited memcg.
3082 int memcg_cache_id(struct mem_cgroup
*memcg
)
3084 return memcg
? memcg
->kmemcg_id
: -1;
3088 * This ends up being protected by the set_limit mutex, during normal
3089 * operation, because that is its main call site.
3091 * But when we create a new cache, we can call this as well if its parent
3092 * is kmem-limited. That will have to hold set_limit_mutex as well.
3094 int memcg_update_cache_sizes(struct mem_cgroup
*memcg
)
3098 num
= ida_simple_get(&kmem_limited_groups
,
3099 0, MEMCG_CACHES_MAX_SIZE
, GFP_KERNEL
);
3103 * After this point, kmem_accounted (that we test atomically in
3104 * the beginning of this conditional), is no longer 0. This
3105 * guarantees only one process will set the following boolean
3106 * to true. We don't need test_and_set because we're protected
3107 * by the set_limit_mutex anyway.
3109 memcg_kmem_set_activated(memcg
);
3111 ret
= memcg_update_all_caches(num
+1);
3113 ida_simple_remove(&kmem_limited_groups
, num
);
3114 memcg_kmem_clear_activated(memcg
);
3118 memcg
->kmemcg_id
= num
;
3119 INIT_LIST_HEAD(&memcg
->memcg_slab_caches
);
3120 mutex_init(&memcg
->slab_caches_mutex
);
3124 static size_t memcg_caches_array_size(int num_groups
)
3127 if (num_groups
<= 0)
3130 size
= 2 * num_groups
;
3131 if (size
< MEMCG_CACHES_MIN_SIZE
)
3132 size
= MEMCG_CACHES_MIN_SIZE
;
3133 else if (size
> MEMCG_CACHES_MAX_SIZE
)
3134 size
= MEMCG_CACHES_MAX_SIZE
;
3140 * We should update the current array size iff all caches updates succeed. This
3141 * can only be done from the slab side. The slab mutex needs to be held when
3144 void memcg_update_array_size(int num
)
3146 if (num
> memcg_limited_groups_array_size
)
3147 memcg_limited_groups_array_size
= memcg_caches_array_size(num
);
3150 static void kmem_cache_destroy_work_func(struct work_struct
*w
);
3152 int memcg_update_cache_size(struct kmem_cache
*s
, int num_groups
)
3154 struct memcg_cache_params
*cur_params
= s
->memcg_params
;
3156 VM_BUG_ON(s
->memcg_params
&& !s
->memcg_params
->is_root_cache
);
3158 if (num_groups
> memcg_limited_groups_array_size
) {
3160 ssize_t size
= memcg_caches_array_size(num_groups
);
3162 size
*= sizeof(void *);
3163 size
+= sizeof(struct memcg_cache_params
);
3165 s
->memcg_params
= kzalloc(size
, GFP_KERNEL
);
3166 if (!s
->memcg_params
) {
3167 s
->memcg_params
= cur_params
;
3171 s
->memcg_params
->is_root_cache
= true;
3174 * There is the chance it will be bigger than
3175 * memcg_limited_groups_array_size, if we failed an allocation
3176 * in a cache, in which case all caches updated before it, will
3177 * have a bigger array.
3179 * But if that is the case, the data after
3180 * memcg_limited_groups_array_size is certainly unused
3182 for (i
= 0; i
< memcg_limited_groups_array_size
; i
++) {
3183 if (!cur_params
->memcg_caches
[i
])
3185 s
->memcg_params
->memcg_caches
[i
] =
3186 cur_params
->memcg_caches
[i
];
3190 * Ideally, we would wait until all caches succeed, and only
3191 * then free the old one. But this is not worth the extra
3192 * pointer per-cache we'd have to have for this.
3194 * It is not a big deal if some caches are left with a size
3195 * bigger than the others. And all updates will reset this
3203 int memcg_register_cache(struct mem_cgroup
*memcg
, struct kmem_cache
*s
,
3204 struct kmem_cache
*root_cache
)
3206 size_t size
= sizeof(struct memcg_cache_params
);
3208 if (!memcg_kmem_enabled())
3212 size
+= memcg_limited_groups_array_size
* sizeof(void *);
3214 s
->memcg_params
= kzalloc(size
, GFP_KERNEL
);
3215 if (!s
->memcg_params
)
3218 INIT_WORK(&s
->memcg_params
->destroy
,
3219 kmem_cache_destroy_work_func
);
3221 s
->memcg_params
->memcg
= memcg
;
3222 s
->memcg_params
->root_cache
= root_cache
;
3224 s
->memcg_params
->is_root_cache
= true;
3229 void memcg_release_cache(struct kmem_cache
*s
)
3231 struct kmem_cache
*root
;
3232 struct mem_cgroup
*memcg
;
3236 * This happens, for instance, when a root cache goes away before we
3239 if (!s
->memcg_params
)
3242 if (s
->memcg_params
->is_root_cache
)
3245 memcg
= s
->memcg_params
->memcg
;
3246 id
= memcg_cache_id(memcg
);
3248 root
= s
->memcg_params
->root_cache
;
3249 root
->memcg_params
->memcg_caches
[id
] = NULL
;
3251 mutex_lock(&memcg
->slab_caches_mutex
);
3252 list_del(&s
->memcg_params
->list
);
3253 mutex_unlock(&memcg
->slab_caches_mutex
);
3255 mem_cgroup_put(memcg
);
3257 kfree(s
->memcg_params
);
3261 * During the creation a new cache, we need to disable our accounting mechanism
3262 * altogether. This is true even if we are not creating, but rather just
3263 * enqueing new caches to be created.
3265 * This is because that process will trigger allocations; some visible, like
3266 * explicit kmallocs to auxiliary data structures, name strings and internal
3267 * cache structures; some well concealed, like INIT_WORK() that can allocate
3268 * objects during debug.
3270 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3271 * to it. This may not be a bounded recursion: since the first cache creation
3272 * failed to complete (waiting on the allocation), we'll just try to create the
3273 * cache again, failing at the same point.
3275 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3276 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3277 * inside the following two functions.
3279 static inline void memcg_stop_kmem_account(void)
3281 VM_BUG_ON(!current
->mm
);
3282 current
->memcg_kmem_skip_account
++;
3285 static inline void memcg_resume_kmem_account(void)
3287 VM_BUG_ON(!current
->mm
);
3288 current
->memcg_kmem_skip_account
--;
3291 static void kmem_cache_destroy_work_func(struct work_struct
*w
)
3293 struct kmem_cache
*cachep
;
3294 struct memcg_cache_params
*p
;
3296 p
= container_of(w
, struct memcg_cache_params
, destroy
);
3298 cachep
= memcg_params_to_cache(p
);
3301 * If we get down to 0 after shrink, we could delete right away.
3302 * However, memcg_release_pages() already puts us back in the workqueue
3303 * in that case. If we proceed deleting, we'll get a dangling
3304 * reference, and removing the object from the workqueue in that case
3305 * is unnecessary complication. We are not a fast path.
3307 * Note that this case is fundamentally different from racing with
3308 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
3309 * kmem_cache_shrink, not only we would be reinserting a dead cache
3310 * into the queue, but doing so from inside the worker racing to
3313 * So if we aren't down to zero, we'll just schedule a worker and try
3316 if (atomic_read(&cachep
->memcg_params
->nr_pages
) != 0) {
3317 kmem_cache_shrink(cachep
);
3318 if (atomic_read(&cachep
->memcg_params
->nr_pages
) == 0)
3321 kmem_cache_destroy(cachep
);
3324 void mem_cgroup_destroy_cache(struct kmem_cache
*cachep
)
3326 if (!cachep
->memcg_params
->dead
)
3330 * There are many ways in which we can get here.
3332 * We can get to a memory-pressure situation while the delayed work is
3333 * still pending to run. The vmscan shrinkers can then release all
3334 * cache memory and get us to destruction. If this is the case, we'll
3335 * be executed twice, which is a bug (the second time will execute over
3336 * bogus data). In this case, cancelling the work should be fine.
3338 * But we can also get here from the worker itself, if
3339 * kmem_cache_shrink is enough to shake all the remaining objects and
3340 * get the page count to 0. In this case, we'll deadlock if we try to
3341 * cancel the work (the worker runs with an internal lock held, which
3342 * is the same lock we would hold for cancel_work_sync().)
3344 * Since we can't possibly know who got us here, just refrain from
3345 * running if there is already work pending
3347 if (work_pending(&cachep
->memcg_params
->destroy
))
3350 * We have to defer the actual destroying to a workqueue, because
3351 * we might currently be in a context that cannot sleep.
3353 schedule_work(&cachep
->memcg_params
->destroy
);
3357 * This lock protects updaters, not readers. We want readers to be as fast as
3358 * they can, and they will either see NULL or a valid cache value. Our model
3359 * allow them to see NULL, in which case the root memcg will be selected.
3361 * We need this lock because multiple allocations to the same cache from a non
3362 * will span more than one worker. Only one of them can create the cache.
3364 static DEFINE_MUTEX(memcg_cache_mutex
);
3367 * Called with memcg_cache_mutex held
3369 static struct kmem_cache
*kmem_cache_dup(struct mem_cgroup
*memcg
,
3370 struct kmem_cache
*s
)
3372 struct kmem_cache
*new;
3373 static char *tmp_name
= NULL
;
3375 lockdep_assert_held(&memcg_cache_mutex
);
3378 * kmem_cache_create_memcg duplicates the given name and
3379 * cgroup_name for this name requires RCU context.
3380 * This static temporary buffer is used to prevent from
3381 * pointless shortliving allocation.
3384 tmp_name
= kmalloc(PATH_MAX
, GFP_KERNEL
);
3390 snprintf(tmp_name
, PATH_MAX
, "%s(%d:%s)", s
->name
,
3391 memcg_cache_id(memcg
), cgroup_name(memcg
->css
.cgroup
));
3394 new = kmem_cache_create_memcg(memcg
, tmp_name
, s
->object_size
, s
->align
,
3395 (s
->flags
& ~SLAB_PANIC
), s
->ctor
, s
);
3398 new->allocflags
|= __GFP_KMEMCG
;
3403 static struct kmem_cache
*memcg_create_kmem_cache(struct mem_cgroup
*memcg
,
3404 struct kmem_cache
*cachep
)
3406 struct kmem_cache
*new_cachep
;
3409 BUG_ON(!memcg_can_account_kmem(memcg
));
3411 idx
= memcg_cache_id(memcg
);
3413 mutex_lock(&memcg_cache_mutex
);
3414 new_cachep
= cachep
->memcg_params
->memcg_caches
[idx
];
3418 new_cachep
= kmem_cache_dup(memcg
, cachep
);
3419 if (new_cachep
== NULL
) {
3420 new_cachep
= cachep
;
3424 mem_cgroup_get(memcg
);
3425 atomic_set(&new_cachep
->memcg_params
->nr_pages
, 0);
3427 cachep
->memcg_params
->memcg_caches
[idx
] = new_cachep
;
3429 * the readers won't lock, make sure everybody sees the updated value,
3430 * so they won't put stuff in the queue again for no reason
3434 mutex_unlock(&memcg_cache_mutex
);
3438 void kmem_cache_destroy_memcg_children(struct kmem_cache
*s
)
3440 struct kmem_cache
*c
;
3443 if (!s
->memcg_params
)
3445 if (!s
->memcg_params
->is_root_cache
)
3449 * If the cache is being destroyed, we trust that there is no one else
3450 * requesting objects from it. Even if there are, the sanity checks in
3451 * kmem_cache_destroy should caught this ill-case.
3453 * Still, we don't want anyone else freeing memcg_caches under our
3454 * noses, which can happen if a new memcg comes to life. As usual,
3455 * we'll take the set_limit_mutex to protect ourselves against this.
3457 mutex_lock(&set_limit_mutex
);
3458 for (i
= 0; i
< memcg_limited_groups_array_size
; i
++) {
3459 c
= s
->memcg_params
->memcg_caches
[i
];
3464 * We will now manually delete the caches, so to avoid races
3465 * we need to cancel all pending destruction workers and
3466 * proceed with destruction ourselves.
3468 * kmem_cache_destroy() will call kmem_cache_shrink internally,
3469 * and that could spawn the workers again: it is likely that
3470 * the cache still have active pages until this very moment.
3471 * This would lead us back to mem_cgroup_destroy_cache.
3473 * But that will not execute at all if the "dead" flag is not
3474 * set, so flip it down to guarantee we are in control.
3476 c
->memcg_params
->dead
= false;
3477 cancel_work_sync(&c
->memcg_params
->destroy
);
3478 kmem_cache_destroy(c
);
3480 mutex_unlock(&set_limit_mutex
);
3483 struct create_work
{
3484 struct mem_cgroup
*memcg
;
3485 struct kmem_cache
*cachep
;
3486 struct work_struct work
;
3489 static void mem_cgroup_destroy_all_caches(struct mem_cgroup
*memcg
)
3491 struct kmem_cache
*cachep
;
3492 struct memcg_cache_params
*params
;
3494 if (!memcg_kmem_is_active(memcg
))
3497 mutex_lock(&memcg
->slab_caches_mutex
);
3498 list_for_each_entry(params
, &memcg
->memcg_slab_caches
, list
) {
3499 cachep
= memcg_params_to_cache(params
);
3500 cachep
->memcg_params
->dead
= true;
3501 schedule_work(&cachep
->memcg_params
->destroy
);
3503 mutex_unlock(&memcg
->slab_caches_mutex
);
3506 static void memcg_create_cache_work_func(struct work_struct
*w
)
3508 struct create_work
*cw
;
3510 cw
= container_of(w
, struct create_work
, work
);
3511 memcg_create_kmem_cache(cw
->memcg
, cw
->cachep
);
3512 /* Drop the reference gotten when we enqueued. */
3513 css_put(&cw
->memcg
->css
);
3518 * Enqueue the creation of a per-memcg kmem_cache.
3520 static void __memcg_create_cache_enqueue(struct mem_cgroup
*memcg
,
3521 struct kmem_cache
*cachep
)
3523 struct create_work
*cw
;
3525 cw
= kmalloc(sizeof(struct create_work
), GFP_NOWAIT
);
3527 css_put(&memcg
->css
);
3532 cw
->cachep
= cachep
;
3534 INIT_WORK(&cw
->work
, memcg_create_cache_work_func
);
3535 schedule_work(&cw
->work
);
3538 static void memcg_create_cache_enqueue(struct mem_cgroup
*memcg
,
3539 struct kmem_cache
*cachep
)
3542 * We need to stop accounting when we kmalloc, because if the
3543 * corresponding kmalloc cache is not yet created, the first allocation
3544 * in __memcg_create_cache_enqueue will recurse.
3546 * However, it is better to enclose the whole function. Depending on
3547 * the debugging options enabled, INIT_WORK(), for instance, can
3548 * trigger an allocation. This too, will make us recurse. Because at
3549 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3550 * the safest choice is to do it like this, wrapping the whole function.
3552 memcg_stop_kmem_account();
3553 __memcg_create_cache_enqueue(memcg
, cachep
);
3554 memcg_resume_kmem_account();
3557 * Return the kmem_cache we're supposed to use for a slab allocation.
3558 * We try to use the current memcg's version of the cache.
3560 * If the cache does not exist yet, if we are the first user of it,
3561 * we either create it immediately, if possible, or create it asynchronously
3563 * In the latter case, we will let the current allocation go through with
3564 * the original cache.
3566 * Can't be called in interrupt context or from kernel threads.
3567 * This function needs to be called with rcu_read_lock() held.
3569 struct kmem_cache
*__memcg_kmem_get_cache(struct kmem_cache
*cachep
,
3572 struct mem_cgroup
*memcg
;
3575 VM_BUG_ON(!cachep
->memcg_params
);
3576 VM_BUG_ON(!cachep
->memcg_params
->is_root_cache
);
3578 if (!current
->mm
|| current
->memcg_kmem_skip_account
)
3582 memcg
= mem_cgroup_from_task(rcu_dereference(current
->mm
->owner
));
3584 if (!memcg_can_account_kmem(memcg
))
3587 idx
= memcg_cache_id(memcg
);
3590 * barrier to mare sure we're always seeing the up to date value. The
3591 * code updating memcg_caches will issue a write barrier to match this.
3593 read_barrier_depends();
3594 if (likely(cachep
->memcg_params
->memcg_caches
[idx
])) {
3595 cachep
= cachep
->memcg_params
->memcg_caches
[idx
];
3599 /* The corresponding put will be done in the workqueue. */
3600 if (!css_tryget(&memcg
->css
))
3605 * If we are in a safe context (can wait, and not in interrupt
3606 * context), we could be be predictable and return right away.
3607 * This would guarantee that the allocation being performed
3608 * already belongs in the new cache.
3610 * However, there are some clashes that can arrive from locking.
3611 * For instance, because we acquire the slab_mutex while doing
3612 * kmem_cache_dup, this means no further allocation could happen
3613 * with the slab_mutex held.
3615 * Also, because cache creation issue get_online_cpus(), this
3616 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
3617 * that ends up reversed during cpu hotplug. (cpuset allocates
3618 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
3619 * better to defer everything.
3621 memcg_create_cache_enqueue(memcg
, cachep
);
3627 EXPORT_SYMBOL(__memcg_kmem_get_cache
);
3630 * We need to verify if the allocation against current->mm->owner's memcg is
3631 * possible for the given order. But the page is not allocated yet, so we'll
3632 * need a further commit step to do the final arrangements.
3634 * It is possible for the task to switch cgroups in this mean time, so at
3635 * commit time, we can't rely on task conversion any longer. We'll then use
3636 * the handle argument to return to the caller which cgroup we should commit
3637 * against. We could also return the memcg directly and avoid the pointer
3638 * passing, but a boolean return value gives better semantics considering
3639 * the compiled-out case as well.
3641 * Returning true means the allocation is possible.
3644 __memcg_kmem_newpage_charge(gfp_t gfp
, struct mem_cgroup
**_memcg
, int order
)
3646 struct mem_cgroup
*memcg
;
3650 memcg
= try_get_mem_cgroup_from_mm(current
->mm
);
3653 * very rare case described in mem_cgroup_from_task. Unfortunately there
3654 * isn't much we can do without complicating this too much, and it would
3655 * be gfp-dependent anyway. Just let it go
3657 if (unlikely(!memcg
))
3660 if (!memcg_can_account_kmem(memcg
)) {
3661 css_put(&memcg
->css
);
3665 ret
= memcg_charge_kmem(memcg
, gfp
, PAGE_SIZE
<< order
);
3669 css_put(&memcg
->css
);
3673 void __memcg_kmem_commit_charge(struct page
*page
, struct mem_cgroup
*memcg
,
3676 struct page_cgroup
*pc
;
3678 VM_BUG_ON(mem_cgroup_is_root(memcg
));
3680 /* The page allocation failed. Revert */
3682 memcg_uncharge_kmem(memcg
, PAGE_SIZE
<< order
);
3686 pc
= lookup_page_cgroup(page
);
3687 lock_page_cgroup(pc
);
3688 pc
->mem_cgroup
= memcg
;
3689 SetPageCgroupUsed(pc
);
3690 unlock_page_cgroup(pc
);
3693 void __memcg_kmem_uncharge_pages(struct page
*page
, int order
)
3695 struct mem_cgroup
*memcg
= NULL
;
3696 struct page_cgroup
*pc
;
3699 pc
= lookup_page_cgroup(page
);
3701 * Fast unlocked return. Theoretically might have changed, have to
3702 * check again after locking.
3704 if (!PageCgroupUsed(pc
))
3707 lock_page_cgroup(pc
);
3708 if (PageCgroupUsed(pc
)) {
3709 memcg
= pc
->mem_cgroup
;
3710 ClearPageCgroupUsed(pc
);
3712 unlock_page_cgroup(pc
);
3715 * We trust that only if there is a memcg associated with the page, it
3716 * is a valid allocation
3721 VM_BUG_ON(mem_cgroup_is_root(memcg
));
3722 memcg_uncharge_kmem(memcg
, PAGE_SIZE
<< order
);
3725 static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup
*memcg
)
3728 #endif /* CONFIG_MEMCG_KMEM */
3730 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3732 #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3734 * Because tail pages are not marked as "used", set it. We're under
3735 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3736 * charge/uncharge will be never happen and move_account() is done under
3737 * compound_lock(), so we don't have to take care of races.
3739 void mem_cgroup_split_huge_fixup(struct page
*head
)
3741 struct page_cgroup
*head_pc
= lookup_page_cgroup(head
);
3742 struct page_cgroup
*pc
;
3743 struct mem_cgroup
*memcg
;
3746 if (mem_cgroup_disabled())
3749 memcg
= head_pc
->mem_cgroup
;
3750 for (i
= 1; i
< HPAGE_PMD_NR
; i
++) {
3752 pc
->mem_cgroup
= memcg
;
3753 smp_wmb();/* see __commit_charge() */
3754 pc
->flags
= head_pc
->flags
& ~PCGF_NOCOPY_AT_SPLIT
;
3756 __this_cpu_sub(memcg
->stat
->count
[MEM_CGROUP_STAT_RSS_HUGE
],
3759 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3762 * mem_cgroup_move_account - move account of the page
3764 * @nr_pages: number of regular pages (>1 for huge pages)
3765 * @pc: page_cgroup of the page.
3766 * @from: mem_cgroup which the page is moved from.
3767 * @to: mem_cgroup which the page is moved to. @from != @to.
3769 * The caller must confirm following.
3770 * - page is not on LRU (isolate_page() is useful.)
3771 * - compound_lock is held when nr_pages > 1
3773 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3776 static int mem_cgroup_move_account(struct page
*page
,
3777 unsigned int nr_pages
,
3778 struct page_cgroup
*pc
,
3779 struct mem_cgroup
*from
,
3780 struct mem_cgroup
*to
)
3782 unsigned long flags
;
3784 bool anon
= PageAnon(page
);
3786 VM_BUG_ON(from
== to
);
3787 VM_BUG_ON(PageLRU(page
));
3789 * The page is isolated from LRU. So, collapse function
3790 * will not handle this page. But page splitting can happen.
3791 * Do this check under compound_page_lock(). The caller should
3795 if (nr_pages
> 1 && !PageTransHuge(page
))
3798 lock_page_cgroup(pc
);
3801 if (!PageCgroupUsed(pc
) || pc
->mem_cgroup
!= from
)
3804 move_lock_mem_cgroup(from
, &flags
);
3806 if (!anon
&& page_mapped(page
)) {
3807 /* Update mapped_file data for mem_cgroup */
3809 __this_cpu_dec(from
->stat
->count
[MEM_CGROUP_STAT_FILE_MAPPED
]);
3810 __this_cpu_inc(to
->stat
->count
[MEM_CGROUP_STAT_FILE_MAPPED
]);
3813 mem_cgroup_charge_statistics(from
, page
, anon
, -nr_pages
);
3815 /* caller should have done css_get */
3816 pc
->mem_cgroup
= to
;
3817 mem_cgroup_charge_statistics(to
, page
, anon
, nr_pages
);
3818 move_unlock_mem_cgroup(from
, &flags
);
3821 unlock_page_cgroup(pc
);
3825 memcg_check_events(to
, page
);
3826 memcg_check_events(from
, page
);
3832 * mem_cgroup_move_parent - moves page to the parent group
3833 * @page: the page to move
3834 * @pc: page_cgroup of the page
3835 * @child: page's cgroup
3837 * move charges to its parent or the root cgroup if the group has no
3838 * parent (aka use_hierarchy==0).
3839 * Although this might fail (get_page_unless_zero, isolate_lru_page or
3840 * mem_cgroup_move_account fails) the failure is always temporary and
3841 * it signals a race with a page removal/uncharge or migration. In the
3842 * first case the page is on the way out and it will vanish from the LRU
3843 * on the next attempt and the call should be retried later.
3844 * Isolation from the LRU fails only if page has been isolated from
3845 * the LRU since we looked at it and that usually means either global
3846 * reclaim or migration going on. The page will either get back to the
3848 * Finaly mem_cgroup_move_account fails only if the page got uncharged
3849 * (!PageCgroupUsed) or moved to a different group. The page will
3850 * disappear in the next attempt.
3852 static int mem_cgroup_move_parent(struct page
*page
,
3853 struct page_cgroup
*pc
,
3854 struct mem_cgroup
*child
)
3856 struct mem_cgroup
*parent
;
3857 unsigned int nr_pages
;
3858 unsigned long uninitialized_var(flags
);
3861 VM_BUG_ON(mem_cgroup_is_root(child
));
3864 if (!get_page_unless_zero(page
))
3866 if (isolate_lru_page(page
))
3869 nr_pages
= hpage_nr_pages(page
);
3871 parent
= parent_mem_cgroup(child
);
3873 * If no parent, move charges to root cgroup.
3876 parent
= root_mem_cgroup
;
3879 VM_BUG_ON(!PageTransHuge(page
));
3880 flags
= compound_lock_irqsave(page
);
3883 ret
= mem_cgroup_move_account(page
, nr_pages
,
3886 __mem_cgroup_cancel_local_charge(child
, nr_pages
);
3889 compound_unlock_irqrestore(page
, flags
);
3890 putback_lru_page(page
);
3898 * Charge the memory controller for page usage.
3900 * 0 if the charge was successful
3901 * < 0 if the cgroup is over its limit
3903 static int mem_cgroup_charge_common(struct page
*page
, struct mm_struct
*mm
,
3904 gfp_t gfp_mask
, enum charge_type ctype
)
3906 struct mem_cgroup
*memcg
= NULL
;
3907 unsigned int nr_pages
= 1;
3911 if (PageTransHuge(page
)) {
3912 nr_pages
<<= compound_order(page
);
3913 VM_BUG_ON(!PageTransHuge(page
));
3915 * Never OOM-kill a process for a huge page. The
3916 * fault handler will fall back to regular pages.
3921 ret
= __mem_cgroup_try_charge(mm
, gfp_mask
, nr_pages
, &memcg
, oom
);
3924 __mem_cgroup_commit_charge(memcg
, page
, nr_pages
, ctype
, false);
3928 int mem_cgroup_newpage_charge(struct page
*page
,
3929 struct mm_struct
*mm
, gfp_t gfp_mask
)
3931 if (mem_cgroup_disabled())
3933 VM_BUG_ON(page_mapped(page
));
3934 VM_BUG_ON(page
->mapping
&& !PageAnon(page
));
3936 return mem_cgroup_charge_common(page
, mm
, gfp_mask
,
3937 MEM_CGROUP_CHARGE_TYPE_ANON
);
3941 * While swap-in, try_charge -> commit or cancel, the page is locked.
3942 * And when try_charge() successfully returns, one refcnt to memcg without
3943 * struct page_cgroup is acquired. This refcnt will be consumed by
3944 * "commit()" or removed by "cancel()"
3946 static int __mem_cgroup_try_charge_swapin(struct mm_struct
*mm
,
3949 struct mem_cgroup
**memcgp
)
3951 struct mem_cgroup
*memcg
;
3952 struct page_cgroup
*pc
;
3955 pc
= lookup_page_cgroup(page
);
3957 * Every swap fault against a single page tries to charge the
3958 * page, bail as early as possible. shmem_unuse() encounters
3959 * already charged pages, too. The USED bit is protected by
3960 * the page lock, which serializes swap cache removal, which
3961 * in turn serializes uncharging.
3963 if (PageCgroupUsed(pc
))
3965 if (!do_swap_account
)
3967 memcg
= try_get_mem_cgroup_from_page(page
);
3971 ret
= __mem_cgroup_try_charge(NULL
, mask
, 1, memcgp
, true);
3972 css_put(&memcg
->css
);
3977 ret
= __mem_cgroup_try_charge(mm
, mask
, 1, memcgp
, true);
3983 int mem_cgroup_try_charge_swapin(struct mm_struct
*mm
, struct page
*page
,
3984 gfp_t gfp_mask
, struct mem_cgroup
**memcgp
)
3987 if (mem_cgroup_disabled())
3990 * A racing thread's fault, or swapoff, may have already
3991 * updated the pte, and even removed page from swap cache: in
3992 * those cases unuse_pte()'s pte_same() test will fail; but
3993 * there's also a KSM case which does need to charge the page.
3995 if (!PageSwapCache(page
)) {
3998 ret
= __mem_cgroup_try_charge(mm
, gfp_mask
, 1, memcgp
, true);
4003 return __mem_cgroup_try_charge_swapin(mm
, page
, gfp_mask
, memcgp
);
4006 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup
*memcg
)
4008 if (mem_cgroup_disabled())
4012 __mem_cgroup_cancel_charge(memcg
, 1);
4016 __mem_cgroup_commit_charge_swapin(struct page
*page
, struct mem_cgroup
*memcg
,
4017 enum charge_type ctype
)
4019 if (mem_cgroup_disabled())
4024 __mem_cgroup_commit_charge(memcg
, page
, 1, ctype
, true);
4026 * Now swap is on-memory. This means this page may be
4027 * counted both as mem and swap....double count.
4028 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
4029 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
4030 * may call delete_from_swap_cache() before reach here.
4032 if (do_swap_account
&& PageSwapCache(page
)) {
4033 swp_entry_t ent
= {.val
= page_private(page
)};
4034 mem_cgroup_uncharge_swap(ent
);
4038 void mem_cgroup_commit_charge_swapin(struct page
*page
,
4039 struct mem_cgroup
*memcg
)
4041 __mem_cgroup_commit_charge_swapin(page
, memcg
,
4042 MEM_CGROUP_CHARGE_TYPE_ANON
);
4045 int mem_cgroup_cache_charge(struct page
*page
, struct mm_struct
*mm
,
4048 struct mem_cgroup
*memcg
= NULL
;
4049 enum charge_type type
= MEM_CGROUP_CHARGE_TYPE_CACHE
;
4052 if (mem_cgroup_disabled())
4054 if (PageCompound(page
))
4057 if (!PageSwapCache(page
))
4058 ret
= mem_cgroup_charge_common(page
, mm
, gfp_mask
, type
);
4059 else { /* page is swapcache/shmem */
4060 ret
= __mem_cgroup_try_charge_swapin(mm
, page
,
4063 __mem_cgroup_commit_charge_swapin(page
, memcg
, type
);
4068 static void mem_cgroup_do_uncharge(struct mem_cgroup
*memcg
,
4069 unsigned int nr_pages
,
4070 const enum charge_type ctype
)
4072 struct memcg_batch_info
*batch
= NULL
;
4073 bool uncharge_memsw
= true;
4075 /* If swapout, usage of swap doesn't decrease */
4076 if (!do_swap_account
|| ctype
== MEM_CGROUP_CHARGE_TYPE_SWAPOUT
)
4077 uncharge_memsw
= false;
4079 batch
= ¤t
->memcg_batch
;
4081 * In usual, we do css_get() when we remember memcg pointer.
4082 * But in this case, we keep res->usage until end of a series of
4083 * uncharges. Then, it's ok to ignore memcg's refcnt.
4086 batch
->memcg
= memcg
;
4088 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
4089 * In those cases, all pages freed continuously can be expected to be in
4090 * the same cgroup and we have chance to coalesce uncharges.
4091 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
4092 * because we want to do uncharge as soon as possible.
4095 if (!batch
->do_batch
|| test_thread_flag(TIF_MEMDIE
))
4096 goto direct_uncharge
;
4099 goto direct_uncharge
;
4102 * In typical case, batch->memcg == mem. This means we can
4103 * merge a series of uncharges to an uncharge of res_counter.
4104 * If not, we uncharge res_counter ony by one.
4106 if (batch
->memcg
!= memcg
)
4107 goto direct_uncharge
;
4108 /* remember freed charge and uncharge it later */
4111 batch
->memsw_nr_pages
++;
4114 res_counter_uncharge(&memcg
->res
, nr_pages
* PAGE_SIZE
);
4116 res_counter_uncharge(&memcg
->memsw
, nr_pages
* PAGE_SIZE
);
4117 if (unlikely(batch
->memcg
!= memcg
))
4118 memcg_oom_recover(memcg
);
4122 * uncharge if !page_mapped(page)
4124 static struct mem_cgroup
*
4125 __mem_cgroup_uncharge_common(struct page
*page
, enum charge_type ctype
,
4128 struct mem_cgroup
*memcg
= NULL
;
4129 unsigned int nr_pages
= 1;
4130 struct page_cgroup
*pc
;
4133 if (mem_cgroup_disabled())
4136 if (PageTransHuge(page
)) {
4137 nr_pages
<<= compound_order(page
);
4138 VM_BUG_ON(!PageTransHuge(page
));
4141 * Check if our page_cgroup is valid
4143 pc
= lookup_page_cgroup(page
);
4144 if (unlikely(!PageCgroupUsed(pc
)))
4147 lock_page_cgroup(pc
);
4149 memcg
= pc
->mem_cgroup
;
4151 if (!PageCgroupUsed(pc
))
4154 anon
= PageAnon(page
);
4157 case MEM_CGROUP_CHARGE_TYPE_ANON
:
4159 * Generally PageAnon tells if it's the anon statistics to be
4160 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
4161 * used before page reached the stage of being marked PageAnon.
4165 case MEM_CGROUP_CHARGE_TYPE_DROP
:
4166 /* See mem_cgroup_prepare_migration() */
4167 if (page_mapped(page
))
4170 * Pages under migration may not be uncharged. But
4171 * end_migration() /must/ be the one uncharging the
4172 * unused post-migration page and so it has to call
4173 * here with the migration bit still set. See the
4174 * res_counter handling below.
4176 if (!end_migration
&& PageCgroupMigration(pc
))
4179 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT
:
4180 if (!PageAnon(page
)) { /* Shared memory */
4181 if (page
->mapping
&& !page_is_file_cache(page
))
4183 } else if (page_mapped(page
)) /* Anon */
4190 mem_cgroup_charge_statistics(memcg
, page
, anon
, -nr_pages
);
4192 ClearPageCgroupUsed(pc
);
4194 * pc->mem_cgroup is not cleared here. It will be accessed when it's
4195 * freed from LRU. This is safe because uncharged page is expected not
4196 * to be reused (freed soon). Exception is SwapCache, it's handled by
4197 * special functions.
4200 unlock_page_cgroup(pc
);
4202 * even after unlock, we have memcg->res.usage here and this memcg
4203 * will never be freed.
4205 memcg_check_events(memcg
, page
);
4206 if (do_swap_account
&& ctype
== MEM_CGROUP_CHARGE_TYPE_SWAPOUT
) {
4207 mem_cgroup_swap_statistics(memcg
, true);
4208 mem_cgroup_get(memcg
);
4211 * Migration does not charge the res_counter for the
4212 * replacement page, so leave it alone when phasing out the
4213 * page that is unused after the migration.
4215 if (!end_migration
&& !mem_cgroup_is_root(memcg
))
4216 mem_cgroup_do_uncharge(memcg
, nr_pages
, ctype
);
4221 unlock_page_cgroup(pc
);
4225 void mem_cgroup_uncharge_page(struct page
*page
)
4228 if (page_mapped(page
))
4230 VM_BUG_ON(page
->mapping
&& !PageAnon(page
));
4232 * If the page is in swap cache, uncharge should be deferred
4233 * to the swap path, which also properly accounts swap usage
4234 * and handles memcg lifetime.
4236 * Note that this check is not stable and reclaim may add the
4237 * page to swap cache at any time after this. However, if the
4238 * page is not in swap cache by the time page->mapcount hits
4239 * 0, there won't be any page table references to the swap
4240 * slot, and reclaim will free it and not actually write the
4243 if (PageSwapCache(page
))
4245 __mem_cgroup_uncharge_common(page
, MEM_CGROUP_CHARGE_TYPE_ANON
, false);
4248 void mem_cgroup_uncharge_cache_page(struct page
*page
)
4250 VM_BUG_ON(page_mapped(page
));
4251 VM_BUG_ON(page
->mapping
);
4252 __mem_cgroup_uncharge_common(page
, MEM_CGROUP_CHARGE_TYPE_CACHE
, false);
4256 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
4257 * In that cases, pages are freed continuously and we can expect pages
4258 * are in the same memcg. All these calls itself limits the number of
4259 * pages freed at once, then uncharge_start/end() is called properly.
4260 * This may be called prural(2) times in a context,
4263 void mem_cgroup_uncharge_start(void)
4265 current
->memcg_batch
.do_batch
++;
4266 /* We can do nest. */
4267 if (current
->memcg_batch
.do_batch
== 1) {
4268 current
->memcg_batch
.memcg
= NULL
;
4269 current
->memcg_batch
.nr_pages
= 0;
4270 current
->memcg_batch
.memsw_nr_pages
= 0;
4274 void mem_cgroup_uncharge_end(void)
4276 struct memcg_batch_info
*batch
= ¤t
->memcg_batch
;
4278 if (!batch
->do_batch
)
4282 if (batch
->do_batch
) /* If stacked, do nothing. */
4288 * This "batch->memcg" is valid without any css_get/put etc...
4289 * bacause we hide charges behind us.
4291 if (batch
->nr_pages
)
4292 res_counter_uncharge(&batch
->memcg
->res
,
4293 batch
->nr_pages
* PAGE_SIZE
);
4294 if (batch
->memsw_nr_pages
)
4295 res_counter_uncharge(&batch
->memcg
->memsw
,
4296 batch
->memsw_nr_pages
* PAGE_SIZE
);
4297 memcg_oom_recover(batch
->memcg
);
4298 /* forget this pointer (for sanity check) */
4299 batch
->memcg
= NULL
;
4304 * called after __delete_from_swap_cache() and drop "page" account.
4305 * memcg information is recorded to swap_cgroup of "ent"
4308 mem_cgroup_uncharge_swapcache(struct page
*page
, swp_entry_t ent
, bool swapout
)
4310 struct mem_cgroup
*memcg
;
4311 int ctype
= MEM_CGROUP_CHARGE_TYPE_SWAPOUT
;
4313 if (!swapout
) /* this was a swap cache but the swap is unused ! */
4314 ctype
= MEM_CGROUP_CHARGE_TYPE_DROP
;
4316 memcg
= __mem_cgroup_uncharge_common(page
, ctype
, false);
4319 * record memcg information, if swapout && memcg != NULL,
4320 * mem_cgroup_get() was called in uncharge().
4322 if (do_swap_account
&& swapout
&& memcg
)
4323 swap_cgroup_record(ent
, css_id(&memcg
->css
));
4327 #ifdef CONFIG_MEMCG_SWAP
4329 * called from swap_entry_free(). remove record in swap_cgroup and
4330 * uncharge "memsw" account.
4332 void mem_cgroup_uncharge_swap(swp_entry_t ent
)
4334 struct mem_cgroup
*memcg
;
4337 if (!do_swap_account
)
4340 id
= swap_cgroup_record(ent
, 0);
4342 memcg
= mem_cgroup_lookup(id
);
4345 * We uncharge this because swap is freed.
4346 * This memcg can be obsolete one. We avoid calling css_tryget
4348 if (!mem_cgroup_is_root(memcg
))
4349 res_counter_uncharge(&memcg
->memsw
, PAGE_SIZE
);
4350 mem_cgroup_swap_statistics(memcg
, false);
4351 mem_cgroup_put(memcg
);
4357 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
4358 * @entry: swap entry to be moved
4359 * @from: mem_cgroup which the entry is moved from
4360 * @to: mem_cgroup which the entry is moved to
4362 * It succeeds only when the swap_cgroup's record for this entry is the same
4363 * as the mem_cgroup's id of @from.
4365 * Returns 0 on success, -EINVAL on failure.
4367 * The caller must have charged to @to, IOW, called res_counter_charge() about
4368 * both res and memsw, and called css_get().
4370 static int mem_cgroup_move_swap_account(swp_entry_t entry
,
4371 struct mem_cgroup
*from
, struct mem_cgroup
*to
)
4373 unsigned short old_id
, new_id
;
4375 old_id
= css_id(&from
->css
);
4376 new_id
= css_id(&to
->css
);
4378 if (swap_cgroup_cmpxchg(entry
, old_id
, new_id
) == old_id
) {
4379 mem_cgroup_swap_statistics(from
, false);
4380 mem_cgroup_swap_statistics(to
, true);
4382 * This function is only called from task migration context now.
4383 * It postpones res_counter and refcount handling till the end
4384 * of task migration(mem_cgroup_clear_mc()) for performance
4385 * improvement. But we cannot postpone mem_cgroup_get(to)
4386 * because if the process that has been moved to @to does
4387 * swap-in, the refcount of @to might be decreased to 0.
4395 static inline int mem_cgroup_move_swap_account(swp_entry_t entry
,
4396 struct mem_cgroup
*from
, struct mem_cgroup
*to
)
4403 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
4406 void mem_cgroup_prepare_migration(struct page
*page
, struct page
*newpage
,
4407 struct mem_cgroup
**memcgp
)
4409 struct mem_cgroup
*memcg
= NULL
;
4410 unsigned int nr_pages
= 1;
4411 struct page_cgroup
*pc
;
4412 enum charge_type ctype
;
4416 if (mem_cgroup_disabled())
4419 if (PageTransHuge(page
))
4420 nr_pages
<<= compound_order(page
);
4422 pc
= lookup_page_cgroup(page
);
4423 lock_page_cgroup(pc
);
4424 if (PageCgroupUsed(pc
)) {
4425 memcg
= pc
->mem_cgroup
;
4426 css_get(&memcg
->css
);
4428 * At migrating an anonymous page, its mapcount goes down
4429 * to 0 and uncharge() will be called. But, even if it's fully
4430 * unmapped, migration may fail and this page has to be
4431 * charged again. We set MIGRATION flag here and delay uncharge
4432 * until end_migration() is called
4434 * Corner Case Thinking
4436 * When the old page was mapped as Anon and it's unmap-and-freed
4437 * while migration was ongoing.
4438 * If unmap finds the old page, uncharge() of it will be delayed
4439 * until end_migration(). If unmap finds a new page, it's
4440 * uncharged when it make mapcount to be 1->0. If unmap code
4441 * finds swap_migration_entry, the new page will not be mapped
4442 * and end_migration() will find it(mapcount==0).
4445 * When the old page was mapped but migraion fails, the kernel
4446 * remaps it. A charge for it is kept by MIGRATION flag even
4447 * if mapcount goes down to 0. We can do remap successfully
4448 * without charging it again.
4451 * The "old" page is under lock_page() until the end of
4452 * migration, so, the old page itself will not be swapped-out.
4453 * If the new page is swapped out before end_migraton, our
4454 * hook to usual swap-out path will catch the event.
4457 SetPageCgroupMigration(pc
);
4459 unlock_page_cgroup(pc
);
4461 * If the page is not charged at this point,
4469 * We charge new page before it's used/mapped. So, even if unlock_page()
4470 * is called before end_migration, we can catch all events on this new
4471 * page. In the case new page is migrated but not remapped, new page's
4472 * mapcount will be finally 0 and we call uncharge in end_migration().
4475 ctype
= MEM_CGROUP_CHARGE_TYPE_ANON
;
4477 ctype
= MEM_CGROUP_CHARGE_TYPE_CACHE
;
4479 * The page is committed to the memcg, but it's not actually
4480 * charged to the res_counter since we plan on replacing the
4481 * old one and only one page is going to be left afterwards.
4483 __mem_cgroup_commit_charge(memcg
, newpage
, nr_pages
, ctype
, false);
4486 /* remove redundant charge if migration failed*/
4487 void mem_cgroup_end_migration(struct mem_cgroup
*memcg
,
4488 struct page
*oldpage
, struct page
*newpage
, bool migration_ok
)
4490 struct page
*used
, *unused
;
4491 struct page_cgroup
*pc
;
4497 if (!migration_ok
) {
4504 anon
= PageAnon(used
);
4505 __mem_cgroup_uncharge_common(unused
,
4506 anon
? MEM_CGROUP_CHARGE_TYPE_ANON
4507 : MEM_CGROUP_CHARGE_TYPE_CACHE
,
4509 css_put(&memcg
->css
);
4511 * We disallowed uncharge of pages under migration because mapcount
4512 * of the page goes down to zero, temporarly.
4513 * Clear the flag and check the page should be charged.
4515 pc
= lookup_page_cgroup(oldpage
);
4516 lock_page_cgroup(pc
);
4517 ClearPageCgroupMigration(pc
);
4518 unlock_page_cgroup(pc
);
4521 * If a page is a file cache, radix-tree replacement is very atomic
4522 * and we can skip this check. When it was an Anon page, its mapcount
4523 * goes down to 0. But because we added MIGRATION flage, it's not
4524 * uncharged yet. There are several case but page->mapcount check
4525 * and USED bit check in mem_cgroup_uncharge_page() will do enough
4526 * check. (see prepare_charge() also)
4529 mem_cgroup_uncharge_page(used
);
4533 * At replace page cache, newpage is not under any memcg but it's on
4534 * LRU. So, this function doesn't touch res_counter but handles LRU
4535 * in correct way. Both pages are locked so we cannot race with uncharge.
4537 void mem_cgroup_replace_page_cache(struct page
*oldpage
,
4538 struct page
*newpage
)
4540 struct mem_cgroup
*memcg
= NULL
;
4541 struct page_cgroup
*pc
;
4542 enum charge_type type
= MEM_CGROUP_CHARGE_TYPE_CACHE
;
4544 if (mem_cgroup_disabled())
4547 pc
= lookup_page_cgroup(oldpage
);
4548 /* fix accounting on old pages */
4549 lock_page_cgroup(pc
);
4550 if (PageCgroupUsed(pc
)) {
4551 memcg
= pc
->mem_cgroup
;
4552 mem_cgroup_charge_statistics(memcg
, oldpage
, false, -1);
4553 ClearPageCgroupUsed(pc
);
4555 unlock_page_cgroup(pc
);
4558 * When called from shmem_replace_page(), in some cases the
4559 * oldpage has already been charged, and in some cases not.
4564 * Even if newpage->mapping was NULL before starting replacement,
4565 * the newpage may be on LRU(or pagevec for LRU) already. We lock
4566 * LRU while we overwrite pc->mem_cgroup.
4568 __mem_cgroup_commit_charge(memcg
, newpage
, 1, type
, true);
4571 #ifdef CONFIG_DEBUG_VM
4572 static struct page_cgroup
*lookup_page_cgroup_used(struct page
*page
)
4574 struct page_cgroup
*pc
;
4576 pc
= lookup_page_cgroup(page
);
4578 * Can be NULL while feeding pages into the page allocator for
4579 * the first time, i.e. during boot or memory hotplug;
4580 * or when mem_cgroup_disabled().
4582 if (likely(pc
) && PageCgroupUsed(pc
))
4587 bool mem_cgroup_bad_page_check(struct page
*page
)
4589 if (mem_cgroup_disabled())
4592 return lookup_page_cgroup_used(page
) != NULL
;
4595 void mem_cgroup_print_bad_page(struct page
*page
)
4597 struct page_cgroup
*pc
;
4599 pc
= lookup_page_cgroup_used(page
);
4601 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4602 pc
, pc
->flags
, pc
->mem_cgroup
);
4607 static int mem_cgroup_resize_limit(struct mem_cgroup
*memcg
,
4608 unsigned long long val
)
4611 u64 memswlimit
, memlimit
;
4613 int children
= mem_cgroup_count_children(memcg
);
4614 u64 curusage
, oldusage
;
4618 * For keeping hierarchical_reclaim simple, how long we should retry
4619 * is depends on callers. We set our retry-count to be function
4620 * of # of children which we should visit in this loop.
4622 retry_count
= MEM_CGROUP_RECLAIM_RETRIES
* children
;
4624 oldusage
= res_counter_read_u64(&memcg
->res
, RES_USAGE
);
4627 while (retry_count
) {
4628 if (signal_pending(current
)) {
4633 * Rather than hide all in some function, I do this in
4634 * open coded manner. You see what this really does.
4635 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4637 mutex_lock(&set_limit_mutex
);
4638 memswlimit
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
4639 if (memswlimit
< val
) {
4641 mutex_unlock(&set_limit_mutex
);
4645 memlimit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
4649 ret
= res_counter_set_limit(&memcg
->res
, val
);
4651 if (memswlimit
== val
)
4652 memcg
->memsw_is_minimum
= true;
4654 memcg
->memsw_is_minimum
= false;
4656 mutex_unlock(&set_limit_mutex
);
4661 mem_cgroup_reclaim(memcg
, GFP_KERNEL
,
4662 MEM_CGROUP_RECLAIM_SHRINK
);
4663 curusage
= res_counter_read_u64(&memcg
->res
, RES_USAGE
);
4664 /* Usage is reduced ? */
4665 if (curusage
>= oldusage
)
4668 oldusage
= curusage
;
4670 if (!ret
&& enlarge
)
4671 memcg_oom_recover(memcg
);
4676 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup
*memcg
,
4677 unsigned long long val
)
4680 u64 memlimit
, memswlimit
, oldusage
, curusage
;
4681 int children
= mem_cgroup_count_children(memcg
);
4685 /* see mem_cgroup_resize_res_limit */
4686 retry_count
= children
* MEM_CGROUP_RECLAIM_RETRIES
;
4687 oldusage
= res_counter_read_u64(&memcg
->memsw
, RES_USAGE
);
4688 while (retry_count
) {
4689 if (signal_pending(current
)) {
4694 * Rather than hide all in some function, I do this in
4695 * open coded manner. You see what this really does.
4696 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4698 mutex_lock(&set_limit_mutex
);
4699 memlimit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
4700 if (memlimit
> val
) {
4702 mutex_unlock(&set_limit_mutex
);
4705 memswlimit
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
4706 if (memswlimit
< val
)
4708 ret
= res_counter_set_limit(&memcg
->memsw
, val
);
4710 if (memlimit
== val
)
4711 memcg
->memsw_is_minimum
= true;
4713 memcg
->memsw_is_minimum
= false;
4715 mutex_unlock(&set_limit_mutex
);
4720 mem_cgroup_reclaim(memcg
, GFP_KERNEL
,
4721 MEM_CGROUP_RECLAIM_NOSWAP
|
4722 MEM_CGROUP_RECLAIM_SHRINK
);
4723 curusage
= res_counter_read_u64(&memcg
->memsw
, RES_USAGE
);
4724 /* Usage is reduced ? */
4725 if (curusage
>= oldusage
)
4728 oldusage
= curusage
;
4730 if (!ret
&& enlarge
)
4731 memcg_oom_recover(memcg
);
4735 unsigned long mem_cgroup_soft_limit_reclaim(struct zone
*zone
, int order
,
4737 unsigned long *total_scanned
)
4739 unsigned long nr_reclaimed
= 0;
4740 struct mem_cgroup_per_zone
*mz
, *next_mz
= NULL
;
4741 unsigned long reclaimed
;
4743 struct mem_cgroup_tree_per_zone
*mctz
;
4744 unsigned long long excess
;
4745 unsigned long nr_scanned
;
4750 mctz
= soft_limit_tree_node_zone(zone_to_nid(zone
), zone_idx(zone
));
4752 * This loop can run a while, specially if mem_cgroup's continuously
4753 * keep exceeding their soft limit and putting the system under
4760 mz
= mem_cgroup_largest_soft_limit_node(mctz
);
4765 reclaimed
= mem_cgroup_soft_reclaim(mz
->memcg
, zone
,
4766 gfp_mask
, &nr_scanned
);
4767 nr_reclaimed
+= reclaimed
;
4768 *total_scanned
+= nr_scanned
;
4769 spin_lock(&mctz
->lock
);
4772 * If we failed to reclaim anything from this memory cgroup
4773 * it is time to move on to the next cgroup
4779 * Loop until we find yet another one.
4781 * By the time we get the soft_limit lock
4782 * again, someone might have aded the
4783 * group back on the RB tree. Iterate to
4784 * make sure we get a different mem.
4785 * mem_cgroup_largest_soft_limit_node returns
4786 * NULL if no other cgroup is present on
4790 __mem_cgroup_largest_soft_limit_node(mctz
);
4792 css_put(&next_mz
->memcg
->css
);
4793 else /* next_mz == NULL or other memcg */
4797 __mem_cgroup_remove_exceeded(mz
->memcg
, mz
, mctz
);
4798 excess
= res_counter_soft_limit_excess(&mz
->memcg
->res
);
4800 * One school of thought says that we should not add
4801 * back the node to the tree if reclaim returns 0.
4802 * But our reclaim could return 0, simply because due
4803 * to priority we are exposing a smaller subset of
4804 * memory to reclaim from. Consider this as a longer
4807 /* If excess == 0, no tree ops */
4808 __mem_cgroup_insert_exceeded(mz
->memcg
, mz
, mctz
, excess
);
4809 spin_unlock(&mctz
->lock
);
4810 css_put(&mz
->memcg
->css
);
4813 * Could not reclaim anything and there are no more
4814 * mem cgroups to try or we seem to be looping without
4815 * reclaiming anything.
4817 if (!nr_reclaimed
&&
4819 loop
> MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS
))
4821 } while (!nr_reclaimed
);
4823 css_put(&next_mz
->memcg
->css
);
4824 return nr_reclaimed
;
4828 * mem_cgroup_force_empty_list - clears LRU of a group
4829 * @memcg: group to clear
4832 * @lru: lru to to clear
4834 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
4835 * reclaim the pages page themselves - pages are moved to the parent (or root)
4838 static void mem_cgroup_force_empty_list(struct mem_cgroup
*memcg
,
4839 int node
, int zid
, enum lru_list lru
)
4841 struct lruvec
*lruvec
;
4842 unsigned long flags
;
4843 struct list_head
*list
;
4847 zone
= &NODE_DATA(node
)->node_zones
[zid
];
4848 lruvec
= mem_cgroup_zone_lruvec(zone
, memcg
);
4849 list
= &lruvec
->lists
[lru
];
4853 struct page_cgroup
*pc
;
4856 spin_lock_irqsave(&zone
->lru_lock
, flags
);
4857 if (list_empty(list
)) {
4858 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
4861 page
= list_entry(list
->prev
, struct page
, lru
);
4863 list_move(&page
->lru
, list
);
4865 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
4868 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
4870 pc
= lookup_page_cgroup(page
);
4872 if (mem_cgroup_move_parent(page
, pc
, memcg
)) {
4873 /* found lock contention or "pc" is obsolete. */
4878 } while (!list_empty(list
));
4882 * make mem_cgroup's charge to be 0 if there is no task by moving
4883 * all the charges and pages to the parent.
4884 * This enables deleting this mem_cgroup.
4886 * Caller is responsible for holding css reference on the memcg.
4888 static void mem_cgroup_reparent_charges(struct mem_cgroup
*memcg
)
4894 /* This is for making all *used* pages to be on LRU. */
4895 lru_add_drain_all();
4896 drain_all_stock_sync(memcg
);
4897 mem_cgroup_start_move(memcg
);
4898 for_each_node_state(node
, N_MEMORY
) {
4899 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
4902 mem_cgroup_force_empty_list(memcg
,
4907 mem_cgroup_end_move(memcg
);
4908 memcg_oom_recover(memcg
);
4912 * Kernel memory may not necessarily be trackable to a specific
4913 * process. So they are not migrated, and therefore we can't
4914 * expect their value to drop to 0 here.
4915 * Having res filled up with kmem only is enough.
4917 * This is a safety check because mem_cgroup_force_empty_list
4918 * could have raced with mem_cgroup_replace_page_cache callers
4919 * so the lru seemed empty but the page could have been added
4920 * right after the check. RES_USAGE should be safe as we always
4921 * charge before adding to the LRU.
4923 usage
= res_counter_read_u64(&memcg
->res
, RES_USAGE
) -
4924 res_counter_read_u64(&memcg
->kmem
, RES_USAGE
);
4925 } while (usage
> 0);
4929 * This mainly exists for tests during the setting of set of use_hierarchy.
4930 * Since this is the very setting we are changing, the current hierarchy value
4933 static inline bool __memcg_has_children(struct mem_cgroup
*memcg
)
4937 /* bounce at first found */
4938 cgroup_for_each_child(pos
, memcg
->css
.cgroup
)
4944 * Must be called with memcg_create_mutex held, unless the cgroup is guaranteed
4945 * to be already dead (as in mem_cgroup_force_empty, for instance). This is
4946 * from mem_cgroup_count_children(), in the sense that we don't really care how
4947 * many children we have; we only need to know if we have any. It also counts
4948 * any memcg without hierarchy as infertile.
4950 static inline bool memcg_has_children(struct mem_cgroup
*memcg
)
4952 return memcg
->use_hierarchy
&& __memcg_has_children(memcg
);
4956 * Reclaims as many pages from the given memcg as possible and moves
4957 * the rest to the parent.
4959 * Caller is responsible for holding css reference for memcg.
4961 static int mem_cgroup_force_empty(struct mem_cgroup
*memcg
)
4963 int nr_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
4964 struct cgroup
*cgrp
= memcg
->css
.cgroup
;
4966 /* returns EBUSY if there is a task or if we come here twice. */
4967 if (cgroup_task_count(cgrp
) || !list_empty(&cgrp
->children
))
4970 /* we call try-to-free pages for make this cgroup empty */
4971 lru_add_drain_all();
4972 /* try to free all pages in this cgroup */
4973 while (nr_retries
&& res_counter_read_u64(&memcg
->res
, RES_USAGE
) > 0) {
4976 if (signal_pending(current
))
4979 progress
= try_to_free_mem_cgroup_pages(memcg
, GFP_KERNEL
,
4983 /* maybe some writeback is necessary */
4984 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
4989 mem_cgroup_reparent_charges(memcg
);
4994 static int mem_cgroup_force_empty_write(struct cgroup
*cont
, unsigned int event
)
4996 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cont
);
4999 if (mem_cgroup_is_root(memcg
))
5001 css_get(&memcg
->css
);
5002 ret
= mem_cgroup_force_empty(memcg
);
5003 css_put(&memcg
->css
);
5009 static u64
mem_cgroup_hierarchy_read(struct cgroup
*cont
, struct cftype
*cft
)
5011 return mem_cgroup_from_cont(cont
)->use_hierarchy
;
5014 static int mem_cgroup_hierarchy_write(struct cgroup
*cont
, struct cftype
*cft
,
5018 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cont
);
5019 struct cgroup
*parent
= cont
->parent
;
5020 struct mem_cgroup
*parent_memcg
= NULL
;
5023 parent_memcg
= mem_cgroup_from_cont(parent
);
5025 mutex_lock(&memcg_create_mutex
);
5027 if (memcg
->use_hierarchy
== val
)
5031 * If parent's use_hierarchy is set, we can't make any modifications
5032 * in the child subtrees. If it is unset, then the change can
5033 * occur, provided the current cgroup has no children.
5035 * For the root cgroup, parent_mem is NULL, we allow value to be
5036 * set if there are no children.
5038 if ((!parent_memcg
|| !parent_memcg
->use_hierarchy
) &&
5039 (val
== 1 || val
== 0)) {
5040 if (!__memcg_has_children(memcg
))
5041 memcg
->use_hierarchy
= val
;
5048 mutex_unlock(&memcg_create_mutex
);
5054 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup
*memcg
,
5055 enum mem_cgroup_stat_index idx
)
5057 struct mem_cgroup
*iter
;
5060 /* Per-cpu values can be negative, use a signed accumulator */
5061 for_each_mem_cgroup_tree(iter
, memcg
)
5062 val
+= mem_cgroup_read_stat(iter
, idx
);
5064 if (val
< 0) /* race ? */
5069 static inline u64
mem_cgroup_usage(struct mem_cgroup
*memcg
, bool swap
)
5073 if (!mem_cgroup_is_root(memcg
)) {
5075 return res_counter_read_u64(&memcg
->res
, RES_USAGE
);
5077 return res_counter_read_u64(&memcg
->memsw
, RES_USAGE
);
5081 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
5082 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
5084 val
= mem_cgroup_recursive_stat(memcg
, MEM_CGROUP_STAT_CACHE
);
5085 val
+= mem_cgroup_recursive_stat(memcg
, MEM_CGROUP_STAT_RSS
);
5088 val
+= mem_cgroup_recursive_stat(memcg
, MEM_CGROUP_STAT_SWAP
);
5090 return val
<< PAGE_SHIFT
;
5093 static ssize_t
mem_cgroup_read(struct cgroup
*cont
, struct cftype
*cft
,
5094 struct file
*file
, char __user
*buf
,
5095 size_t nbytes
, loff_t
*ppos
)
5097 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cont
);
5103 type
= MEMFILE_TYPE(cft
->private);
5104 name
= MEMFILE_ATTR(cft
->private);
5108 if (name
== RES_USAGE
)
5109 val
= mem_cgroup_usage(memcg
, false);
5111 val
= res_counter_read_u64(&memcg
->res
, name
);
5114 if (name
== RES_USAGE
)
5115 val
= mem_cgroup_usage(memcg
, true);
5117 val
= res_counter_read_u64(&memcg
->memsw
, name
);
5120 val
= res_counter_read_u64(&memcg
->kmem
, name
);
5126 len
= scnprintf(str
, sizeof(str
), "%llu\n", (unsigned long long)val
);
5127 return simple_read_from_buffer(buf
, nbytes
, ppos
, str
, len
);
5130 static int memcg_update_kmem_limit(struct cgroup
*cont
, u64 val
)
5133 #ifdef CONFIG_MEMCG_KMEM
5134 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cont
);
5136 * For simplicity, we won't allow this to be disabled. It also can't
5137 * be changed if the cgroup has children already, or if tasks had
5140 * If tasks join before we set the limit, a person looking at
5141 * kmem.usage_in_bytes will have no way to determine when it took
5142 * place, which makes the value quite meaningless.
5144 * After it first became limited, changes in the value of the limit are
5145 * of course permitted.
5147 mutex_lock(&memcg_create_mutex
);
5148 mutex_lock(&set_limit_mutex
);
5149 if (!memcg
->kmem_account_flags
&& val
!= RESOURCE_MAX
) {
5150 if (cgroup_task_count(cont
) || memcg_has_children(memcg
)) {
5154 ret
= res_counter_set_limit(&memcg
->kmem
, val
);
5157 ret
= memcg_update_cache_sizes(memcg
);
5159 res_counter_set_limit(&memcg
->kmem
, RESOURCE_MAX
);
5162 static_key_slow_inc(&memcg_kmem_enabled_key
);
5164 * setting the active bit after the inc will guarantee no one
5165 * starts accounting before all call sites are patched
5167 memcg_kmem_set_active(memcg
);
5170 * kmem charges can outlive the cgroup. In the case of slab
5171 * pages, for instance, a page contain objects from various
5172 * processes, so it is unfeasible to migrate them away. We
5173 * need to reference count the memcg because of that.
5175 mem_cgroup_get(memcg
);
5177 ret
= res_counter_set_limit(&memcg
->kmem
, val
);
5179 mutex_unlock(&set_limit_mutex
);
5180 mutex_unlock(&memcg_create_mutex
);
5185 #ifdef CONFIG_MEMCG_KMEM
5186 static int memcg_propagate_kmem(struct mem_cgroup
*memcg
)
5189 struct mem_cgroup
*parent
= parent_mem_cgroup(memcg
);
5193 memcg
->kmem_account_flags
= parent
->kmem_account_flags
;
5195 * When that happen, we need to disable the static branch only on those
5196 * memcgs that enabled it. To achieve this, we would be forced to
5197 * complicate the code by keeping track of which memcgs were the ones
5198 * that actually enabled limits, and which ones got it from its
5201 * It is a lot simpler just to do static_key_slow_inc() on every child
5202 * that is accounted.
5204 if (!memcg_kmem_is_active(memcg
))
5208 * destroy(), called if we fail, will issue static_key_slow_inc() and
5209 * mem_cgroup_put() if kmem is enabled. We have to either call them
5210 * unconditionally, or clear the KMEM_ACTIVE flag. I personally find
5211 * this more consistent, since it always leads to the same destroy path
5213 mem_cgroup_get(memcg
);
5214 static_key_slow_inc(&memcg_kmem_enabled_key
);
5216 mutex_lock(&set_limit_mutex
);
5217 ret
= memcg_update_cache_sizes(memcg
);
5218 mutex_unlock(&set_limit_mutex
);
5222 #endif /* CONFIG_MEMCG_KMEM */
5225 * The user of this function is...
5228 static int mem_cgroup_write(struct cgroup
*cont
, struct cftype
*cft
,
5231 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cont
);
5234 unsigned long long val
;
5237 type
= MEMFILE_TYPE(cft
->private);
5238 name
= MEMFILE_ATTR(cft
->private);
5242 if (mem_cgroup_is_root(memcg
)) { /* Can't set limit on root */
5246 /* This function does all necessary parse...reuse it */
5247 ret
= res_counter_memparse_write_strategy(buffer
, &val
);
5251 ret
= mem_cgroup_resize_limit(memcg
, val
);
5252 else if (type
== _MEMSWAP
)
5253 ret
= mem_cgroup_resize_memsw_limit(memcg
, val
);
5254 else if (type
== _KMEM
)
5255 ret
= memcg_update_kmem_limit(cont
, val
);
5259 case RES_SOFT_LIMIT
:
5260 ret
= res_counter_memparse_write_strategy(buffer
, &val
);
5264 * For memsw, soft limits are hard to implement in terms
5265 * of semantics, for now, we support soft limits for
5266 * control without swap
5269 ret
= res_counter_set_soft_limit(&memcg
->res
, val
);
5274 ret
= -EINVAL
; /* should be BUG() ? */
5280 static void memcg_get_hierarchical_limit(struct mem_cgroup
*memcg
,
5281 unsigned long long *mem_limit
, unsigned long long *memsw_limit
)
5283 struct cgroup
*cgroup
;
5284 unsigned long long min_limit
, min_memsw_limit
, tmp
;
5286 min_limit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
5287 min_memsw_limit
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
5288 cgroup
= memcg
->css
.cgroup
;
5289 if (!memcg
->use_hierarchy
)
5292 while (cgroup
->parent
) {
5293 cgroup
= cgroup
->parent
;
5294 memcg
= mem_cgroup_from_cont(cgroup
);
5295 if (!memcg
->use_hierarchy
)
5297 tmp
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
5298 min_limit
= min(min_limit
, tmp
);
5299 tmp
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
5300 min_memsw_limit
= min(min_memsw_limit
, tmp
);
5303 *mem_limit
= min_limit
;
5304 *memsw_limit
= min_memsw_limit
;
5307 static int mem_cgroup_reset(struct cgroup
*cont
, unsigned int event
)
5309 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cont
);
5313 type
= MEMFILE_TYPE(event
);
5314 name
= MEMFILE_ATTR(event
);
5319 res_counter_reset_max(&memcg
->res
);
5320 else if (type
== _MEMSWAP
)
5321 res_counter_reset_max(&memcg
->memsw
);
5322 else if (type
== _KMEM
)
5323 res_counter_reset_max(&memcg
->kmem
);
5329 res_counter_reset_failcnt(&memcg
->res
);
5330 else if (type
== _MEMSWAP
)
5331 res_counter_reset_failcnt(&memcg
->memsw
);
5332 else if (type
== _KMEM
)
5333 res_counter_reset_failcnt(&memcg
->kmem
);
5342 static u64
mem_cgroup_move_charge_read(struct cgroup
*cgrp
,
5345 return mem_cgroup_from_cont(cgrp
)->move_charge_at_immigrate
;
5349 static int mem_cgroup_move_charge_write(struct cgroup
*cgrp
,
5350 struct cftype
*cft
, u64 val
)
5352 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
5354 if (val
>= (1 << NR_MOVE_TYPE
))
5358 * No kind of locking is needed in here, because ->can_attach() will
5359 * check this value once in the beginning of the process, and then carry
5360 * on with stale data. This means that changes to this value will only
5361 * affect task migrations starting after the change.
5363 memcg
->move_charge_at_immigrate
= val
;
5367 static int mem_cgroup_move_charge_write(struct cgroup
*cgrp
,
5368 struct cftype
*cft
, u64 val
)
5375 static int memcg_numa_stat_show(struct cgroup
*cont
, struct cftype
*cft
,
5379 unsigned long total_nr
, file_nr
, anon_nr
, unevictable_nr
;
5380 unsigned long node_nr
;
5381 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cont
);
5383 total_nr
= mem_cgroup_nr_lru_pages(memcg
, LRU_ALL
);
5384 seq_printf(m
, "total=%lu", total_nr
);
5385 for_each_node_state(nid
, N_MEMORY
) {
5386 node_nr
= mem_cgroup_node_nr_lru_pages(memcg
, nid
, LRU_ALL
);
5387 seq_printf(m
, " N%d=%lu", nid
, node_nr
);
5391 file_nr
= mem_cgroup_nr_lru_pages(memcg
, LRU_ALL_FILE
);
5392 seq_printf(m
, "file=%lu", file_nr
);
5393 for_each_node_state(nid
, N_MEMORY
) {
5394 node_nr
= mem_cgroup_node_nr_lru_pages(memcg
, nid
,
5396 seq_printf(m
, " N%d=%lu", nid
, node_nr
);
5400 anon_nr
= mem_cgroup_nr_lru_pages(memcg
, LRU_ALL_ANON
);
5401 seq_printf(m
, "anon=%lu", anon_nr
);
5402 for_each_node_state(nid
, N_MEMORY
) {
5403 node_nr
= mem_cgroup_node_nr_lru_pages(memcg
, nid
,
5405 seq_printf(m
, " N%d=%lu", nid
, node_nr
);
5409 unevictable_nr
= mem_cgroup_nr_lru_pages(memcg
, BIT(LRU_UNEVICTABLE
));
5410 seq_printf(m
, "unevictable=%lu", unevictable_nr
);
5411 for_each_node_state(nid
, N_MEMORY
) {
5412 node_nr
= mem_cgroup_node_nr_lru_pages(memcg
, nid
,
5413 BIT(LRU_UNEVICTABLE
));
5414 seq_printf(m
, " N%d=%lu", nid
, node_nr
);
5419 #endif /* CONFIG_NUMA */
5421 static inline void mem_cgroup_lru_names_not_uptodate(void)
5423 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names
) != NR_LRU_LISTS
);
5426 static int memcg_stat_show(struct cgroup
*cont
, struct cftype
*cft
,
5429 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cont
);
5430 struct mem_cgroup
*mi
;
5433 for (i
= 0; i
< MEM_CGROUP_STAT_NSTATS
; i
++) {
5434 if (i
== MEM_CGROUP_STAT_SWAP
&& !do_swap_account
)
5436 seq_printf(m
, "%s %ld\n", mem_cgroup_stat_names
[i
],
5437 mem_cgroup_read_stat(memcg
, i
) * PAGE_SIZE
);
5440 for (i
= 0; i
< MEM_CGROUP_EVENTS_NSTATS
; i
++)
5441 seq_printf(m
, "%s %lu\n", mem_cgroup_events_names
[i
],
5442 mem_cgroup_read_events(memcg
, i
));
5444 for (i
= 0; i
< NR_LRU_LISTS
; i
++)
5445 seq_printf(m
, "%s %lu\n", mem_cgroup_lru_names
[i
],
5446 mem_cgroup_nr_lru_pages(memcg
, BIT(i
)) * PAGE_SIZE
);
5448 /* Hierarchical information */
5450 unsigned long long limit
, memsw_limit
;
5451 memcg_get_hierarchical_limit(memcg
, &limit
, &memsw_limit
);
5452 seq_printf(m
, "hierarchical_memory_limit %llu\n", limit
);
5453 if (do_swap_account
)
5454 seq_printf(m
, "hierarchical_memsw_limit %llu\n",
5458 for (i
= 0; i
< MEM_CGROUP_STAT_NSTATS
; i
++) {
5461 if (i
== MEM_CGROUP_STAT_SWAP
&& !do_swap_account
)
5463 for_each_mem_cgroup_tree(mi
, memcg
)
5464 val
+= mem_cgroup_read_stat(mi
, i
) * PAGE_SIZE
;
5465 seq_printf(m
, "total_%s %lld\n", mem_cgroup_stat_names
[i
], val
);
5468 for (i
= 0; i
< MEM_CGROUP_EVENTS_NSTATS
; i
++) {
5469 unsigned long long val
= 0;
5471 for_each_mem_cgroup_tree(mi
, memcg
)
5472 val
+= mem_cgroup_read_events(mi
, i
);
5473 seq_printf(m
, "total_%s %llu\n",
5474 mem_cgroup_events_names
[i
], val
);
5477 for (i
= 0; i
< NR_LRU_LISTS
; i
++) {
5478 unsigned long long val
= 0;
5480 for_each_mem_cgroup_tree(mi
, memcg
)
5481 val
+= mem_cgroup_nr_lru_pages(mi
, BIT(i
)) * PAGE_SIZE
;
5482 seq_printf(m
, "total_%s %llu\n", mem_cgroup_lru_names
[i
], val
);
5485 #ifdef CONFIG_DEBUG_VM
5488 struct mem_cgroup_per_zone
*mz
;
5489 struct zone_reclaim_stat
*rstat
;
5490 unsigned long recent_rotated
[2] = {0, 0};
5491 unsigned long recent_scanned
[2] = {0, 0};
5493 for_each_online_node(nid
)
5494 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
5495 mz
= mem_cgroup_zoneinfo(memcg
, nid
, zid
);
5496 rstat
= &mz
->lruvec
.reclaim_stat
;
5498 recent_rotated
[0] += rstat
->recent_rotated
[0];
5499 recent_rotated
[1] += rstat
->recent_rotated
[1];
5500 recent_scanned
[0] += rstat
->recent_scanned
[0];
5501 recent_scanned
[1] += rstat
->recent_scanned
[1];
5503 seq_printf(m
, "recent_rotated_anon %lu\n", recent_rotated
[0]);
5504 seq_printf(m
, "recent_rotated_file %lu\n", recent_rotated
[1]);
5505 seq_printf(m
, "recent_scanned_anon %lu\n", recent_scanned
[0]);
5506 seq_printf(m
, "recent_scanned_file %lu\n", recent_scanned
[1]);
5513 static u64
mem_cgroup_swappiness_read(struct cgroup
*cgrp
, struct cftype
*cft
)
5515 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
5517 return mem_cgroup_swappiness(memcg
);
5520 static int mem_cgroup_swappiness_write(struct cgroup
*cgrp
, struct cftype
*cft
,
5523 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
5524 struct mem_cgroup
*parent
;
5529 if (cgrp
->parent
== NULL
)
5532 parent
= mem_cgroup_from_cont(cgrp
->parent
);
5534 mutex_lock(&memcg_create_mutex
);
5536 /* If under hierarchy, only empty-root can set this value */
5537 if ((parent
->use_hierarchy
) || memcg_has_children(memcg
)) {
5538 mutex_unlock(&memcg_create_mutex
);
5542 memcg
->swappiness
= val
;
5544 mutex_unlock(&memcg_create_mutex
);
5549 static void __mem_cgroup_threshold(struct mem_cgroup
*memcg
, bool swap
)
5551 struct mem_cgroup_threshold_ary
*t
;
5557 t
= rcu_dereference(memcg
->thresholds
.primary
);
5559 t
= rcu_dereference(memcg
->memsw_thresholds
.primary
);
5564 usage
= mem_cgroup_usage(memcg
, swap
);
5567 * current_threshold points to threshold just below or equal to usage.
5568 * If it's not true, a threshold was crossed after last
5569 * call of __mem_cgroup_threshold().
5571 i
= t
->current_threshold
;
5574 * Iterate backward over array of thresholds starting from
5575 * current_threshold and check if a threshold is crossed.
5576 * If none of thresholds below usage is crossed, we read
5577 * only one element of the array here.
5579 for (; i
>= 0 && unlikely(t
->entries
[i
].threshold
> usage
); i
--)
5580 eventfd_signal(t
->entries
[i
].eventfd
, 1);
5582 /* i = current_threshold + 1 */
5586 * Iterate forward over array of thresholds starting from
5587 * current_threshold+1 and check if a threshold is crossed.
5588 * If none of thresholds above usage is crossed, we read
5589 * only one element of the array here.
5591 for (; i
< t
->size
&& unlikely(t
->entries
[i
].threshold
<= usage
); i
++)
5592 eventfd_signal(t
->entries
[i
].eventfd
, 1);
5594 /* Update current_threshold */
5595 t
->current_threshold
= i
- 1;
5600 static void mem_cgroup_threshold(struct mem_cgroup
*memcg
)
5603 __mem_cgroup_threshold(memcg
, false);
5604 if (do_swap_account
)
5605 __mem_cgroup_threshold(memcg
, true);
5607 memcg
= parent_mem_cgroup(memcg
);
5611 static int compare_thresholds(const void *a
, const void *b
)
5613 const struct mem_cgroup_threshold
*_a
= a
;
5614 const struct mem_cgroup_threshold
*_b
= b
;
5616 return _a
->threshold
- _b
->threshold
;
5619 static int mem_cgroup_oom_notify_cb(struct mem_cgroup
*memcg
)
5621 struct mem_cgroup_eventfd_list
*ev
;
5623 list_for_each_entry(ev
, &memcg
->oom_notify
, list
)
5624 eventfd_signal(ev
->eventfd
, 1);
5628 static void mem_cgroup_oom_notify(struct mem_cgroup
*memcg
)
5630 struct mem_cgroup
*iter
;
5632 for_each_mem_cgroup_tree(iter
, memcg
)
5633 mem_cgroup_oom_notify_cb(iter
);
5636 static int mem_cgroup_usage_register_event(struct cgroup
*cgrp
,
5637 struct cftype
*cft
, struct eventfd_ctx
*eventfd
, const char *args
)
5639 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
5640 struct mem_cgroup_thresholds
*thresholds
;
5641 struct mem_cgroup_threshold_ary
*new;
5642 enum res_type type
= MEMFILE_TYPE(cft
->private);
5643 u64 threshold
, usage
;
5646 ret
= res_counter_memparse_write_strategy(args
, &threshold
);
5650 mutex_lock(&memcg
->thresholds_lock
);
5653 thresholds
= &memcg
->thresholds
;
5654 else if (type
== _MEMSWAP
)
5655 thresholds
= &memcg
->memsw_thresholds
;
5659 usage
= mem_cgroup_usage(memcg
, type
== _MEMSWAP
);
5661 /* Check if a threshold crossed before adding a new one */
5662 if (thresholds
->primary
)
5663 __mem_cgroup_threshold(memcg
, type
== _MEMSWAP
);
5665 size
= thresholds
->primary
? thresholds
->primary
->size
+ 1 : 1;
5667 /* Allocate memory for new array of thresholds */
5668 new = kmalloc(sizeof(*new) + size
* sizeof(struct mem_cgroup_threshold
),
5676 /* Copy thresholds (if any) to new array */
5677 if (thresholds
->primary
) {
5678 memcpy(new->entries
, thresholds
->primary
->entries
, (size
- 1) *
5679 sizeof(struct mem_cgroup_threshold
));
5682 /* Add new threshold */
5683 new->entries
[size
- 1].eventfd
= eventfd
;
5684 new->entries
[size
- 1].threshold
= threshold
;
5686 /* Sort thresholds. Registering of new threshold isn't time-critical */
5687 sort(new->entries
, size
, sizeof(struct mem_cgroup_threshold
),
5688 compare_thresholds
, NULL
);
5690 /* Find current threshold */
5691 new->current_threshold
= -1;
5692 for (i
= 0; i
< size
; i
++) {
5693 if (new->entries
[i
].threshold
<= usage
) {
5695 * new->current_threshold will not be used until
5696 * rcu_assign_pointer(), so it's safe to increment
5699 ++new->current_threshold
;
5704 /* Free old spare buffer and save old primary buffer as spare */
5705 kfree(thresholds
->spare
);
5706 thresholds
->spare
= thresholds
->primary
;
5708 rcu_assign_pointer(thresholds
->primary
, new);
5710 /* To be sure that nobody uses thresholds */
5714 mutex_unlock(&memcg
->thresholds_lock
);
5719 static void mem_cgroup_usage_unregister_event(struct cgroup
*cgrp
,
5720 struct cftype
*cft
, struct eventfd_ctx
*eventfd
)
5722 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
5723 struct mem_cgroup_thresholds
*thresholds
;
5724 struct mem_cgroup_threshold_ary
*new;
5725 enum res_type type
= MEMFILE_TYPE(cft
->private);
5729 mutex_lock(&memcg
->thresholds_lock
);
5731 thresholds
= &memcg
->thresholds
;
5732 else if (type
== _MEMSWAP
)
5733 thresholds
= &memcg
->memsw_thresholds
;
5737 if (!thresholds
->primary
)
5740 usage
= mem_cgroup_usage(memcg
, type
== _MEMSWAP
);
5742 /* Check if a threshold crossed before removing */
5743 __mem_cgroup_threshold(memcg
, type
== _MEMSWAP
);
5745 /* Calculate new number of threshold */
5747 for (i
= 0; i
< thresholds
->primary
->size
; i
++) {
5748 if (thresholds
->primary
->entries
[i
].eventfd
!= eventfd
)
5752 new = thresholds
->spare
;
5754 /* Set thresholds array to NULL if we don't have thresholds */
5763 /* Copy thresholds and find current threshold */
5764 new->current_threshold
= -1;
5765 for (i
= 0, j
= 0; i
< thresholds
->primary
->size
; i
++) {
5766 if (thresholds
->primary
->entries
[i
].eventfd
== eventfd
)
5769 new->entries
[j
] = thresholds
->primary
->entries
[i
];
5770 if (new->entries
[j
].threshold
<= usage
) {
5772 * new->current_threshold will not be used
5773 * until rcu_assign_pointer(), so it's safe to increment
5776 ++new->current_threshold
;
5782 /* Swap primary and spare array */
5783 thresholds
->spare
= thresholds
->primary
;
5784 /* If all events are unregistered, free the spare array */
5786 kfree(thresholds
->spare
);
5787 thresholds
->spare
= NULL
;
5790 rcu_assign_pointer(thresholds
->primary
, new);
5792 /* To be sure that nobody uses thresholds */
5795 mutex_unlock(&memcg
->thresholds_lock
);
5798 static int mem_cgroup_oom_register_event(struct cgroup
*cgrp
,
5799 struct cftype
*cft
, struct eventfd_ctx
*eventfd
, const char *args
)
5801 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
5802 struct mem_cgroup_eventfd_list
*event
;
5803 enum res_type type
= MEMFILE_TYPE(cft
->private);
5805 BUG_ON(type
!= _OOM_TYPE
);
5806 event
= kmalloc(sizeof(*event
), GFP_KERNEL
);
5810 spin_lock(&memcg_oom_lock
);
5812 event
->eventfd
= eventfd
;
5813 list_add(&event
->list
, &memcg
->oom_notify
);
5815 /* already in OOM ? */
5816 if (atomic_read(&memcg
->under_oom
))
5817 eventfd_signal(eventfd
, 1);
5818 spin_unlock(&memcg_oom_lock
);
5823 static void mem_cgroup_oom_unregister_event(struct cgroup
*cgrp
,
5824 struct cftype
*cft
, struct eventfd_ctx
*eventfd
)
5826 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
5827 struct mem_cgroup_eventfd_list
*ev
, *tmp
;
5828 enum res_type type
= MEMFILE_TYPE(cft
->private);
5830 BUG_ON(type
!= _OOM_TYPE
);
5832 spin_lock(&memcg_oom_lock
);
5834 list_for_each_entry_safe(ev
, tmp
, &memcg
->oom_notify
, list
) {
5835 if (ev
->eventfd
== eventfd
) {
5836 list_del(&ev
->list
);
5841 spin_unlock(&memcg_oom_lock
);
5844 static int mem_cgroup_oom_control_read(struct cgroup
*cgrp
,
5845 struct cftype
*cft
, struct cgroup_map_cb
*cb
)
5847 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
5849 cb
->fill(cb
, "oom_kill_disable", memcg
->oom_kill_disable
);
5851 if (atomic_read(&memcg
->under_oom
))
5852 cb
->fill(cb
, "under_oom", 1);
5854 cb
->fill(cb
, "under_oom", 0);
5858 static int mem_cgroup_oom_control_write(struct cgroup
*cgrp
,
5859 struct cftype
*cft
, u64 val
)
5861 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
5862 struct mem_cgroup
*parent
;
5864 /* cannot set to root cgroup and only 0 and 1 are allowed */
5865 if (!cgrp
->parent
|| !((val
== 0) || (val
== 1)))
5868 parent
= mem_cgroup_from_cont(cgrp
->parent
);
5870 mutex_lock(&memcg_create_mutex
);
5871 /* oom-kill-disable is a flag for subhierarchy. */
5872 if ((parent
->use_hierarchy
) || memcg_has_children(memcg
)) {
5873 mutex_unlock(&memcg_create_mutex
);
5876 memcg
->oom_kill_disable
= val
;
5878 memcg_oom_recover(memcg
);
5879 mutex_unlock(&memcg_create_mutex
);
5883 #ifdef CONFIG_MEMCG_KMEM
5884 static int memcg_init_kmem(struct mem_cgroup
*memcg
, struct cgroup_subsys
*ss
)
5888 memcg
->kmemcg_id
= -1;
5889 ret
= memcg_propagate_kmem(memcg
);
5893 return mem_cgroup_sockets_init(memcg
, ss
);
5896 static void kmem_cgroup_destroy(struct mem_cgroup
*memcg
)
5898 mem_cgroup_sockets_destroy(memcg
);
5900 memcg_kmem_mark_dead(memcg
);
5902 if (res_counter_read_u64(&memcg
->kmem
, RES_USAGE
) != 0)
5906 * Charges already down to 0, undo mem_cgroup_get() done in the charge
5907 * path here, being careful not to race with memcg_uncharge_kmem: it is
5908 * possible that the charges went down to 0 between mark_dead and the
5909 * res_counter read, so in that case, we don't need the put
5911 if (memcg_kmem_test_and_clear_dead(memcg
))
5912 mem_cgroup_put(memcg
);
5915 static int memcg_init_kmem(struct mem_cgroup
*memcg
, struct cgroup_subsys
*ss
)
5920 static void kmem_cgroup_destroy(struct mem_cgroup
*memcg
)
5925 static struct cftype mem_cgroup_files
[] = {
5927 .name
= "usage_in_bytes",
5928 .private = MEMFILE_PRIVATE(_MEM
, RES_USAGE
),
5929 .read
= mem_cgroup_read
,
5930 .register_event
= mem_cgroup_usage_register_event
,
5931 .unregister_event
= mem_cgroup_usage_unregister_event
,
5934 .name
= "max_usage_in_bytes",
5935 .private = MEMFILE_PRIVATE(_MEM
, RES_MAX_USAGE
),
5936 .trigger
= mem_cgroup_reset
,
5937 .read
= mem_cgroup_read
,
5940 .name
= "limit_in_bytes",
5941 .private = MEMFILE_PRIVATE(_MEM
, RES_LIMIT
),
5942 .write_string
= mem_cgroup_write
,
5943 .read
= mem_cgroup_read
,
5946 .name
= "soft_limit_in_bytes",
5947 .private = MEMFILE_PRIVATE(_MEM
, RES_SOFT_LIMIT
),
5948 .write_string
= mem_cgroup_write
,
5949 .read
= mem_cgroup_read
,
5953 .private = MEMFILE_PRIVATE(_MEM
, RES_FAILCNT
),
5954 .trigger
= mem_cgroup_reset
,
5955 .read
= mem_cgroup_read
,
5959 .read_seq_string
= memcg_stat_show
,
5962 .name
= "force_empty",
5963 .trigger
= mem_cgroup_force_empty_write
,
5966 .name
= "use_hierarchy",
5967 .flags
= CFTYPE_INSANE
,
5968 .write_u64
= mem_cgroup_hierarchy_write
,
5969 .read_u64
= mem_cgroup_hierarchy_read
,
5972 .name
= "swappiness",
5973 .read_u64
= mem_cgroup_swappiness_read
,
5974 .write_u64
= mem_cgroup_swappiness_write
,
5977 .name
= "move_charge_at_immigrate",
5978 .read_u64
= mem_cgroup_move_charge_read
,
5979 .write_u64
= mem_cgroup_move_charge_write
,
5982 .name
= "oom_control",
5983 .read_map
= mem_cgroup_oom_control_read
,
5984 .write_u64
= mem_cgroup_oom_control_write
,
5985 .register_event
= mem_cgroup_oom_register_event
,
5986 .unregister_event
= mem_cgroup_oom_unregister_event
,
5987 .private = MEMFILE_PRIVATE(_OOM_TYPE
, OOM_CONTROL
),
5990 .name
= "pressure_level",
5991 .register_event
= vmpressure_register_event
,
5992 .unregister_event
= vmpressure_unregister_event
,
5996 .name
= "numa_stat",
5997 .read_seq_string
= memcg_numa_stat_show
,
6000 #ifdef CONFIG_MEMCG_KMEM
6002 .name
= "kmem.limit_in_bytes",
6003 .private = MEMFILE_PRIVATE(_KMEM
, RES_LIMIT
),
6004 .write_string
= mem_cgroup_write
,
6005 .read
= mem_cgroup_read
,
6008 .name
= "kmem.usage_in_bytes",
6009 .private = MEMFILE_PRIVATE(_KMEM
, RES_USAGE
),
6010 .read
= mem_cgroup_read
,
6013 .name
= "kmem.failcnt",
6014 .private = MEMFILE_PRIVATE(_KMEM
, RES_FAILCNT
),
6015 .trigger
= mem_cgroup_reset
,
6016 .read
= mem_cgroup_read
,
6019 .name
= "kmem.max_usage_in_bytes",
6020 .private = MEMFILE_PRIVATE(_KMEM
, RES_MAX_USAGE
),
6021 .trigger
= mem_cgroup_reset
,
6022 .read
= mem_cgroup_read
,
6024 #ifdef CONFIG_SLABINFO
6026 .name
= "kmem.slabinfo",
6027 .read_seq_string
= mem_cgroup_slabinfo_read
,
6031 { }, /* terminate */
6034 #ifdef CONFIG_MEMCG_SWAP
6035 static struct cftype memsw_cgroup_files
[] = {
6037 .name
= "memsw.usage_in_bytes",
6038 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_USAGE
),
6039 .read
= mem_cgroup_read
,
6040 .register_event
= mem_cgroup_usage_register_event
,
6041 .unregister_event
= mem_cgroup_usage_unregister_event
,
6044 .name
= "memsw.max_usage_in_bytes",
6045 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_MAX_USAGE
),
6046 .trigger
= mem_cgroup_reset
,
6047 .read
= mem_cgroup_read
,
6050 .name
= "memsw.limit_in_bytes",
6051 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_LIMIT
),
6052 .write_string
= mem_cgroup_write
,
6053 .read
= mem_cgroup_read
,
6056 .name
= "memsw.failcnt",
6057 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_FAILCNT
),
6058 .trigger
= mem_cgroup_reset
,
6059 .read
= mem_cgroup_read
,
6061 { }, /* terminate */
6064 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup
*memcg
, int node
)
6066 struct mem_cgroup_per_node
*pn
;
6067 struct mem_cgroup_per_zone
*mz
;
6068 int zone
, tmp
= node
;
6070 * This routine is called against possible nodes.
6071 * But it's BUG to call kmalloc() against offline node.
6073 * TODO: this routine can waste much memory for nodes which will
6074 * never be onlined. It's better to use memory hotplug callback
6077 if (!node_state(node
, N_NORMAL_MEMORY
))
6079 pn
= kzalloc_node(sizeof(*pn
), GFP_KERNEL
, tmp
);
6083 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
6084 mz
= &pn
->zoneinfo
[zone
];
6085 lruvec_init(&mz
->lruvec
);
6086 mz
->usage_in_excess
= 0;
6087 mz
->on_tree
= false;
6090 memcg
->info
.nodeinfo
[node
] = pn
;
6094 static void free_mem_cgroup_per_zone_info(struct mem_cgroup
*memcg
, int node
)
6096 kfree(memcg
->info
.nodeinfo
[node
]);
6099 static struct mem_cgroup
*mem_cgroup_alloc(void)
6101 struct mem_cgroup
*memcg
;
6102 size_t size
= memcg_size();
6104 /* Can be very big if nr_node_ids is very big */
6105 if (size
< PAGE_SIZE
)
6106 memcg
= kzalloc(size
, GFP_KERNEL
);
6108 memcg
= vzalloc(size
);
6113 memcg
->stat
= alloc_percpu(struct mem_cgroup_stat_cpu
);
6116 spin_lock_init(&memcg
->pcp_counter_lock
);
6120 if (size
< PAGE_SIZE
)
6128 * At destroying mem_cgroup, references from swap_cgroup can remain.
6129 * (scanning all at force_empty is too costly...)
6131 * Instead of clearing all references at force_empty, we remember
6132 * the number of reference from swap_cgroup and free mem_cgroup when
6133 * it goes down to 0.
6135 * Removal of cgroup itself succeeds regardless of refs from swap.
6138 static void __mem_cgroup_free(struct mem_cgroup
*memcg
)
6141 size_t size
= memcg_size();
6143 mem_cgroup_remove_from_trees(memcg
);
6144 free_css_id(&mem_cgroup_subsys
, &memcg
->css
);
6147 free_mem_cgroup_per_zone_info(memcg
, node
);
6149 free_percpu(memcg
->stat
);
6152 * We need to make sure that (at least for now), the jump label
6153 * destruction code runs outside of the cgroup lock. This is because
6154 * get_online_cpus(), which is called from the static_branch update,
6155 * can't be called inside the cgroup_lock. cpusets are the ones
6156 * enforcing this dependency, so if they ever change, we might as well.
6158 * schedule_work() will guarantee this happens. Be careful if you need
6159 * to move this code around, and make sure it is outside
6162 disarm_static_keys(memcg
);
6163 if (size
< PAGE_SIZE
)
6171 * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU,
6172 * but in process context. The work_freeing structure is overlaid
6173 * on the rcu_freeing structure, which itself is overlaid on memsw.
6175 static void free_work(struct work_struct
*work
)
6177 struct mem_cgroup
*memcg
;
6179 memcg
= container_of(work
, struct mem_cgroup
, work_freeing
);
6180 __mem_cgroup_free(memcg
);
6183 static void free_rcu(struct rcu_head
*rcu_head
)
6185 struct mem_cgroup
*memcg
;
6187 memcg
= container_of(rcu_head
, struct mem_cgroup
, rcu_freeing
);
6188 INIT_WORK(&memcg
->work_freeing
, free_work
);
6189 schedule_work(&memcg
->work_freeing
);
6192 static void mem_cgroup_get(struct mem_cgroup
*memcg
)
6194 atomic_inc(&memcg
->refcnt
);
6197 static void __mem_cgroup_put(struct mem_cgroup
*memcg
, int count
)
6199 if (atomic_sub_and_test(count
, &memcg
->refcnt
)) {
6200 struct mem_cgroup
*parent
= parent_mem_cgroup(memcg
);
6201 call_rcu(&memcg
->rcu_freeing
, free_rcu
);
6203 mem_cgroup_put(parent
);
6207 static void mem_cgroup_put(struct mem_cgroup
*memcg
)
6209 __mem_cgroup_put(memcg
, 1);
6213 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
6215 struct mem_cgroup
*parent_mem_cgroup(struct mem_cgroup
*memcg
)
6217 if (!memcg
->res
.parent
)
6219 return mem_cgroup_from_res_counter(memcg
->res
.parent
, res
);
6221 EXPORT_SYMBOL(parent_mem_cgroup
);
6223 static void __init
mem_cgroup_soft_limit_tree_init(void)
6225 struct mem_cgroup_tree_per_node
*rtpn
;
6226 struct mem_cgroup_tree_per_zone
*rtpz
;
6227 int tmp
, node
, zone
;
6229 for_each_node(node
) {
6231 if (!node_state(node
, N_NORMAL_MEMORY
))
6233 rtpn
= kzalloc_node(sizeof(*rtpn
), GFP_KERNEL
, tmp
);
6236 soft_limit_tree
.rb_tree_per_node
[node
] = rtpn
;
6238 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
6239 rtpz
= &rtpn
->rb_tree_per_zone
[zone
];
6240 rtpz
->rb_root
= RB_ROOT
;
6241 spin_lock_init(&rtpz
->lock
);
6246 static struct cgroup_subsys_state
* __ref
6247 mem_cgroup_css_alloc(struct cgroup
*cont
)
6249 struct mem_cgroup
*memcg
;
6250 long error
= -ENOMEM
;
6253 memcg
= mem_cgroup_alloc();
6255 return ERR_PTR(error
);
6258 if (alloc_mem_cgroup_per_zone_info(memcg
, node
))
6262 if (cont
->parent
== NULL
) {
6263 root_mem_cgroup
= memcg
;
6264 res_counter_init(&memcg
->res
, NULL
);
6265 res_counter_init(&memcg
->memsw
, NULL
);
6266 res_counter_init(&memcg
->kmem
, NULL
);
6269 memcg
->last_scanned_node
= MAX_NUMNODES
;
6270 INIT_LIST_HEAD(&memcg
->oom_notify
);
6271 atomic_set(&memcg
->refcnt
, 1);
6272 memcg
->move_charge_at_immigrate
= 0;
6273 mutex_init(&memcg
->thresholds_lock
);
6274 spin_lock_init(&memcg
->move_lock
);
6275 vmpressure_init(&memcg
->vmpressure
);
6280 __mem_cgroup_free(memcg
);
6281 return ERR_PTR(error
);
6285 mem_cgroup_css_online(struct cgroup
*cont
)
6287 struct mem_cgroup
*memcg
, *parent
;
6293 mutex_lock(&memcg_create_mutex
);
6294 memcg
= mem_cgroup_from_cont(cont
);
6295 parent
= mem_cgroup_from_cont(cont
->parent
);
6297 memcg
->use_hierarchy
= parent
->use_hierarchy
;
6298 memcg
->oom_kill_disable
= parent
->oom_kill_disable
;
6299 memcg
->swappiness
= mem_cgroup_swappiness(parent
);
6301 if (parent
->use_hierarchy
) {
6302 res_counter_init(&memcg
->res
, &parent
->res
);
6303 res_counter_init(&memcg
->memsw
, &parent
->memsw
);
6304 res_counter_init(&memcg
->kmem
, &parent
->kmem
);
6307 * We increment refcnt of the parent to ensure that we can
6308 * safely access it on res_counter_charge/uncharge.
6309 * This refcnt will be decremented when freeing this
6310 * mem_cgroup(see mem_cgroup_put).
6312 mem_cgroup_get(parent
);
6314 res_counter_init(&memcg
->res
, NULL
);
6315 res_counter_init(&memcg
->memsw
, NULL
);
6316 res_counter_init(&memcg
->kmem
, NULL
);
6318 * Deeper hierachy with use_hierarchy == false doesn't make
6319 * much sense so let cgroup subsystem know about this
6320 * unfortunate state in our controller.
6322 if (parent
!= root_mem_cgroup
)
6323 mem_cgroup_subsys
.broken_hierarchy
= true;
6326 error
= memcg_init_kmem(memcg
, &mem_cgroup_subsys
);
6327 mutex_unlock(&memcg_create_mutex
);
6330 * We call put now because our (and parent's) refcnts
6331 * are already in place. mem_cgroup_put() will internally
6332 * call __mem_cgroup_free, so return directly
6334 mem_cgroup_put(memcg
);
6335 if (parent
->use_hierarchy
)
6336 mem_cgroup_put(parent
);
6342 * Announce all parents that a group from their hierarchy is gone.
6344 static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup
*memcg
)
6346 struct mem_cgroup
*parent
= memcg
;
6348 while ((parent
= parent_mem_cgroup(parent
)))
6349 mem_cgroup_iter_invalidate(parent
);
6352 * if the root memcg is not hierarchical we have to check it
6355 if (!root_mem_cgroup
->use_hierarchy
)
6356 mem_cgroup_iter_invalidate(root_mem_cgroup
);
6359 static void mem_cgroup_css_offline(struct cgroup
*cont
)
6361 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cont
);
6363 mem_cgroup_invalidate_reclaim_iterators(memcg
);
6364 mem_cgroup_reparent_charges(memcg
);
6365 mem_cgroup_destroy_all_caches(memcg
);
6368 static void mem_cgroup_css_free(struct cgroup
*cont
)
6370 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cont
);
6372 kmem_cgroup_destroy(memcg
);
6374 mem_cgroup_put(memcg
);
6378 /* Handlers for move charge at task migration. */
6379 #define PRECHARGE_COUNT_AT_ONCE 256
6380 static int mem_cgroup_do_precharge(unsigned long count
)
6383 int batch_count
= PRECHARGE_COUNT_AT_ONCE
;
6384 struct mem_cgroup
*memcg
= mc
.to
;
6386 if (mem_cgroup_is_root(memcg
)) {
6387 mc
.precharge
+= count
;
6388 /* we don't need css_get for root */
6391 /* try to charge at once */
6393 struct res_counter
*dummy
;
6395 * "memcg" cannot be under rmdir() because we've already checked
6396 * by cgroup_lock_live_cgroup() that it is not removed and we
6397 * are still under the same cgroup_mutex. So we can postpone
6400 if (res_counter_charge(&memcg
->res
, PAGE_SIZE
* count
, &dummy
))
6402 if (do_swap_account
&& res_counter_charge(&memcg
->memsw
,
6403 PAGE_SIZE
* count
, &dummy
)) {
6404 res_counter_uncharge(&memcg
->res
, PAGE_SIZE
* count
);
6407 mc
.precharge
+= count
;
6411 /* fall back to one by one charge */
6413 if (signal_pending(current
)) {
6417 if (!batch_count
--) {
6418 batch_count
= PRECHARGE_COUNT_AT_ONCE
;
6421 ret
= __mem_cgroup_try_charge(NULL
,
6422 GFP_KERNEL
, 1, &memcg
, false);
6424 /* mem_cgroup_clear_mc() will do uncharge later */
6432 * get_mctgt_type - get target type of moving charge
6433 * @vma: the vma the pte to be checked belongs
6434 * @addr: the address corresponding to the pte to be checked
6435 * @ptent: the pte to be checked
6436 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6439 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
6440 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
6441 * move charge. if @target is not NULL, the page is stored in target->page
6442 * with extra refcnt got(Callers should handle it).
6443 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
6444 * target for charge migration. if @target is not NULL, the entry is stored
6447 * Called with pte lock held.
6454 enum mc_target_type
{
6460 static struct page
*mc_handle_present_pte(struct vm_area_struct
*vma
,
6461 unsigned long addr
, pte_t ptent
)
6463 struct page
*page
= vm_normal_page(vma
, addr
, ptent
);
6465 if (!page
|| !page_mapped(page
))
6467 if (PageAnon(page
)) {
6468 /* we don't move shared anon */
6471 } else if (!move_file())
6472 /* we ignore mapcount for file pages */
6474 if (!get_page_unless_zero(page
))
6481 static struct page
*mc_handle_swap_pte(struct vm_area_struct
*vma
,
6482 unsigned long addr
, pte_t ptent
, swp_entry_t
*entry
)
6484 struct page
*page
= NULL
;
6485 swp_entry_t ent
= pte_to_swp_entry(ptent
);
6487 if (!move_anon() || non_swap_entry(ent
))
6490 * Because lookup_swap_cache() updates some statistics counter,
6491 * we call find_get_page() with swapper_space directly.
6493 page
= find_get_page(swap_address_space(ent
), ent
.val
);
6494 if (do_swap_account
)
6495 entry
->val
= ent
.val
;
6500 static struct page
*mc_handle_swap_pte(struct vm_area_struct
*vma
,
6501 unsigned long addr
, pte_t ptent
, swp_entry_t
*entry
)
6507 static struct page
*mc_handle_file_pte(struct vm_area_struct
*vma
,
6508 unsigned long addr
, pte_t ptent
, swp_entry_t
*entry
)
6510 struct page
*page
= NULL
;
6511 struct address_space
*mapping
;
6514 if (!vma
->vm_file
) /* anonymous vma */
6519 mapping
= vma
->vm_file
->f_mapping
;
6520 if (pte_none(ptent
))
6521 pgoff
= linear_page_index(vma
, addr
);
6522 else /* pte_file(ptent) is true */
6523 pgoff
= pte_to_pgoff(ptent
);
6525 /* page is moved even if it's not RSS of this task(page-faulted). */
6526 page
= find_get_page(mapping
, pgoff
);
6529 /* shmem/tmpfs may report page out on swap: account for that too. */
6530 if (radix_tree_exceptional_entry(page
)) {
6531 swp_entry_t swap
= radix_to_swp_entry(page
);
6532 if (do_swap_account
)
6534 page
= find_get_page(swap_address_space(swap
), swap
.val
);
6540 static enum mc_target_type
get_mctgt_type(struct vm_area_struct
*vma
,
6541 unsigned long addr
, pte_t ptent
, union mc_target
*target
)
6543 struct page
*page
= NULL
;
6544 struct page_cgroup
*pc
;
6545 enum mc_target_type ret
= MC_TARGET_NONE
;
6546 swp_entry_t ent
= { .val
= 0 };
6548 if (pte_present(ptent
))
6549 page
= mc_handle_present_pte(vma
, addr
, ptent
);
6550 else if (is_swap_pte(ptent
))
6551 page
= mc_handle_swap_pte(vma
, addr
, ptent
, &ent
);
6552 else if (pte_none(ptent
) || pte_file(ptent
))
6553 page
= mc_handle_file_pte(vma
, addr
, ptent
, &ent
);
6555 if (!page
&& !ent
.val
)
6558 pc
= lookup_page_cgroup(page
);
6560 * Do only loose check w/o page_cgroup lock.
6561 * mem_cgroup_move_account() checks the pc is valid or not under
6564 if (PageCgroupUsed(pc
) && pc
->mem_cgroup
== mc
.from
) {
6565 ret
= MC_TARGET_PAGE
;
6567 target
->page
= page
;
6569 if (!ret
|| !target
)
6572 /* There is a swap entry and a page doesn't exist or isn't charged */
6573 if (ent
.val
&& !ret
&&
6574 css_id(&mc
.from
->css
) == lookup_swap_cgroup_id(ent
)) {
6575 ret
= MC_TARGET_SWAP
;
6582 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6584 * We don't consider swapping or file mapped pages because THP does not
6585 * support them for now.
6586 * Caller should make sure that pmd_trans_huge(pmd) is true.
6588 static enum mc_target_type
get_mctgt_type_thp(struct vm_area_struct
*vma
,
6589 unsigned long addr
, pmd_t pmd
, union mc_target
*target
)
6591 struct page
*page
= NULL
;
6592 struct page_cgroup
*pc
;
6593 enum mc_target_type ret
= MC_TARGET_NONE
;
6595 page
= pmd_page(pmd
);
6596 VM_BUG_ON(!page
|| !PageHead(page
));
6599 pc
= lookup_page_cgroup(page
);
6600 if (PageCgroupUsed(pc
) && pc
->mem_cgroup
== mc
.from
) {
6601 ret
= MC_TARGET_PAGE
;
6604 target
->page
= page
;
6610 static inline enum mc_target_type
get_mctgt_type_thp(struct vm_area_struct
*vma
,
6611 unsigned long addr
, pmd_t pmd
, union mc_target
*target
)
6613 return MC_TARGET_NONE
;
6617 static int mem_cgroup_count_precharge_pte_range(pmd_t
*pmd
,
6618 unsigned long addr
, unsigned long end
,
6619 struct mm_walk
*walk
)
6621 struct vm_area_struct
*vma
= walk
->private;
6625 if (pmd_trans_huge_lock(pmd
, vma
) == 1) {
6626 if (get_mctgt_type_thp(vma
, addr
, *pmd
, NULL
) == MC_TARGET_PAGE
)
6627 mc
.precharge
+= HPAGE_PMD_NR
;
6628 spin_unlock(&vma
->vm_mm
->page_table_lock
);
6632 if (pmd_trans_unstable(pmd
))
6634 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
6635 for (; addr
!= end
; pte
++, addr
+= PAGE_SIZE
)
6636 if (get_mctgt_type(vma
, addr
, *pte
, NULL
))
6637 mc
.precharge
++; /* increment precharge temporarily */
6638 pte_unmap_unlock(pte
- 1, ptl
);
6644 static unsigned long mem_cgroup_count_precharge(struct mm_struct
*mm
)
6646 unsigned long precharge
;
6647 struct vm_area_struct
*vma
;
6649 down_read(&mm
->mmap_sem
);
6650 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
6651 struct mm_walk mem_cgroup_count_precharge_walk
= {
6652 .pmd_entry
= mem_cgroup_count_precharge_pte_range
,
6656 if (is_vm_hugetlb_page(vma
))
6658 walk_page_range(vma
->vm_start
, vma
->vm_end
,
6659 &mem_cgroup_count_precharge_walk
);
6661 up_read(&mm
->mmap_sem
);
6663 precharge
= mc
.precharge
;
6669 static int mem_cgroup_precharge_mc(struct mm_struct
*mm
)
6671 unsigned long precharge
= mem_cgroup_count_precharge(mm
);
6673 VM_BUG_ON(mc
.moving_task
);
6674 mc
.moving_task
= current
;
6675 return mem_cgroup_do_precharge(precharge
);
6678 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6679 static void __mem_cgroup_clear_mc(void)
6681 struct mem_cgroup
*from
= mc
.from
;
6682 struct mem_cgroup
*to
= mc
.to
;
6684 /* we must uncharge all the leftover precharges from mc.to */
6686 __mem_cgroup_cancel_charge(mc
.to
, mc
.precharge
);
6690 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6691 * we must uncharge here.
6693 if (mc
.moved_charge
) {
6694 __mem_cgroup_cancel_charge(mc
.from
, mc
.moved_charge
);
6695 mc
.moved_charge
= 0;
6697 /* we must fixup refcnts and charges */
6698 if (mc
.moved_swap
) {
6699 /* uncharge swap account from the old cgroup */
6700 if (!mem_cgroup_is_root(mc
.from
))
6701 res_counter_uncharge(&mc
.from
->memsw
,
6702 PAGE_SIZE
* mc
.moved_swap
);
6703 __mem_cgroup_put(mc
.from
, mc
.moved_swap
);
6705 if (!mem_cgroup_is_root(mc
.to
)) {
6707 * we charged both to->res and to->memsw, so we should
6710 res_counter_uncharge(&mc
.to
->res
,
6711 PAGE_SIZE
* mc
.moved_swap
);
6713 /* we've already done mem_cgroup_get(mc.to) */
6716 memcg_oom_recover(from
);
6717 memcg_oom_recover(to
);
6718 wake_up_all(&mc
.waitq
);
6721 static void mem_cgroup_clear_mc(void)
6723 struct mem_cgroup
*from
= mc
.from
;
6726 * we must clear moving_task before waking up waiters at the end of
6729 mc
.moving_task
= NULL
;
6730 __mem_cgroup_clear_mc();
6731 spin_lock(&mc
.lock
);
6734 spin_unlock(&mc
.lock
);
6735 mem_cgroup_end_move(from
);
6738 static int mem_cgroup_can_attach(struct cgroup
*cgroup
,
6739 struct cgroup_taskset
*tset
)
6741 struct task_struct
*p
= cgroup_taskset_first(tset
);
6743 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgroup
);
6744 unsigned long move_charge_at_immigrate
;
6747 * We are now commited to this value whatever it is. Changes in this
6748 * tunable will only affect upcoming migrations, not the current one.
6749 * So we need to save it, and keep it going.
6751 move_charge_at_immigrate
= memcg
->move_charge_at_immigrate
;
6752 if (move_charge_at_immigrate
) {
6753 struct mm_struct
*mm
;
6754 struct mem_cgroup
*from
= mem_cgroup_from_task(p
);
6756 VM_BUG_ON(from
== memcg
);
6758 mm
= get_task_mm(p
);
6761 /* We move charges only when we move a owner of the mm */
6762 if (mm
->owner
== p
) {
6765 VM_BUG_ON(mc
.precharge
);
6766 VM_BUG_ON(mc
.moved_charge
);
6767 VM_BUG_ON(mc
.moved_swap
);
6768 mem_cgroup_start_move(from
);
6769 spin_lock(&mc
.lock
);
6772 mc
.immigrate_flags
= move_charge_at_immigrate
;
6773 spin_unlock(&mc
.lock
);
6774 /* We set mc.moving_task later */
6776 ret
= mem_cgroup_precharge_mc(mm
);
6778 mem_cgroup_clear_mc();
6785 static void mem_cgroup_cancel_attach(struct cgroup
*cgroup
,
6786 struct cgroup_taskset
*tset
)
6788 mem_cgroup_clear_mc();
6791 static int mem_cgroup_move_charge_pte_range(pmd_t
*pmd
,
6792 unsigned long addr
, unsigned long end
,
6793 struct mm_walk
*walk
)
6796 struct vm_area_struct
*vma
= walk
->private;
6799 enum mc_target_type target_type
;
6800 union mc_target target
;
6802 struct page_cgroup
*pc
;
6805 * We don't take compound_lock() here but no race with splitting thp
6807 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
6808 * under splitting, which means there's no concurrent thp split,
6809 * - if another thread runs into split_huge_page() just after we
6810 * entered this if-block, the thread must wait for page table lock
6811 * to be unlocked in __split_huge_page_splitting(), where the main
6812 * part of thp split is not executed yet.
6814 if (pmd_trans_huge_lock(pmd
, vma
) == 1) {
6815 if (mc
.precharge
< HPAGE_PMD_NR
) {
6816 spin_unlock(&vma
->vm_mm
->page_table_lock
);
6819 target_type
= get_mctgt_type_thp(vma
, addr
, *pmd
, &target
);
6820 if (target_type
== MC_TARGET_PAGE
) {
6822 if (!isolate_lru_page(page
)) {
6823 pc
= lookup_page_cgroup(page
);
6824 if (!mem_cgroup_move_account(page
, HPAGE_PMD_NR
,
6825 pc
, mc
.from
, mc
.to
)) {
6826 mc
.precharge
-= HPAGE_PMD_NR
;
6827 mc
.moved_charge
+= HPAGE_PMD_NR
;
6829 putback_lru_page(page
);
6833 spin_unlock(&vma
->vm_mm
->page_table_lock
);
6837 if (pmd_trans_unstable(pmd
))
6840 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
6841 for (; addr
!= end
; addr
+= PAGE_SIZE
) {
6842 pte_t ptent
= *(pte
++);
6848 switch (get_mctgt_type(vma
, addr
, ptent
, &target
)) {
6849 case MC_TARGET_PAGE
:
6851 if (isolate_lru_page(page
))
6853 pc
= lookup_page_cgroup(page
);
6854 if (!mem_cgroup_move_account(page
, 1, pc
,
6857 /* we uncharge from mc.from later. */
6860 putback_lru_page(page
);
6861 put
: /* get_mctgt_type() gets the page */
6864 case MC_TARGET_SWAP
:
6866 if (!mem_cgroup_move_swap_account(ent
, mc
.from
, mc
.to
)) {
6868 /* we fixup refcnts and charges later. */
6876 pte_unmap_unlock(pte
- 1, ptl
);
6881 * We have consumed all precharges we got in can_attach().
6882 * We try charge one by one, but don't do any additional
6883 * charges to mc.to if we have failed in charge once in attach()
6886 ret
= mem_cgroup_do_precharge(1);
6894 static void mem_cgroup_move_charge(struct mm_struct
*mm
)
6896 struct vm_area_struct
*vma
;
6898 lru_add_drain_all();
6900 if (unlikely(!down_read_trylock(&mm
->mmap_sem
))) {
6902 * Someone who are holding the mmap_sem might be waiting in
6903 * waitq. So we cancel all extra charges, wake up all waiters,
6904 * and retry. Because we cancel precharges, we might not be able
6905 * to move enough charges, but moving charge is a best-effort
6906 * feature anyway, so it wouldn't be a big problem.
6908 __mem_cgroup_clear_mc();
6912 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
6914 struct mm_walk mem_cgroup_move_charge_walk
= {
6915 .pmd_entry
= mem_cgroup_move_charge_pte_range
,
6919 if (is_vm_hugetlb_page(vma
))
6921 ret
= walk_page_range(vma
->vm_start
, vma
->vm_end
,
6922 &mem_cgroup_move_charge_walk
);
6925 * means we have consumed all precharges and failed in
6926 * doing additional charge. Just abandon here.
6930 up_read(&mm
->mmap_sem
);
6933 static void mem_cgroup_move_task(struct cgroup
*cont
,
6934 struct cgroup_taskset
*tset
)
6936 struct task_struct
*p
= cgroup_taskset_first(tset
);
6937 struct mm_struct
*mm
= get_task_mm(p
);
6941 mem_cgroup_move_charge(mm
);
6945 mem_cgroup_clear_mc();
6947 #else /* !CONFIG_MMU */
6948 static int mem_cgroup_can_attach(struct cgroup
*cgroup
,
6949 struct cgroup_taskset
*tset
)
6953 static void mem_cgroup_cancel_attach(struct cgroup
*cgroup
,
6954 struct cgroup_taskset
*tset
)
6957 static void mem_cgroup_move_task(struct cgroup
*cont
,
6958 struct cgroup_taskset
*tset
)
6964 * Cgroup retains root cgroups across [un]mount cycles making it necessary
6965 * to verify sane_behavior flag on each mount attempt.
6967 static void mem_cgroup_bind(struct cgroup
*root
)
6970 * use_hierarchy is forced with sane_behavior. cgroup core
6971 * guarantees that @root doesn't have any children, so turning it
6972 * on for the root memcg is enough.
6974 if (cgroup_sane_behavior(root
))
6975 mem_cgroup_from_cont(root
)->use_hierarchy
= true;
6978 struct cgroup_subsys mem_cgroup_subsys
= {
6980 .subsys_id
= mem_cgroup_subsys_id
,
6981 .css_alloc
= mem_cgroup_css_alloc
,
6982 .css_online
= mem_cgroup_css_online
,
6983 .css_offline
= mem_cgroup_css_offline
,
6984 .css_free
= mem_cgroup_css_free
,
6985 .can_attach
= mem_cgroup_can_attach
,
6986 .cancel_attach
= mem_cgroup_cancel_attach
,
6987 .attach
= mem_cgroup_move_task
,
6988 .bind
= mem_cgroup_bind
,
6989 .base_cftypes
= mem_cgroup_files
,
6994 #ifdef CONFIG_MEMCG_SWAP
6995 static int __init
enable_swap_account(char *s
)
6997 /* consider enabled if no parameter or 1 is given */
6998 if (!strcmp(s
, "1"))
6999 really_do_swap_account
= 1;
7000 else if (!strcmp(s
, "0"))
7001 really_do_swap_account
= 0;
7004 __setup("swapaccount=", enable_swap_account
);
7006 static void __init
memsw_file_init(void)
7008 WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys
, memsw_cgroup_files
));
7011 static void __init
enable_swap_cgroup(void)
7013 if (!mem_cgroup_disabled() && really_do_swap_account
) {
7014 do_swap_account
= 1;
7020 static void __init
enable_swap_cgroup(void)
7026 * subsys_initcall() for memory controller.
7028 * Some parts like hotcpu_notifier() have to be initialized from this context
7029 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
7030 * everything that doesn't depend on a specific mem_cgroup structure should
7031 * be initialized from here.
7033 static int __init
mem_cgroup_init(void)
7035 hotcpu_notifier(memcg_cpu_hotplug_callback
, 0);
7036 enable_swap_cgroup();
7037 mem_cgroup_soft_limit_tree_init();
7041 subsys_initcall(mem_cgroup_init
);