1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
28 #include <linux/res_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
32 #include <linux/hugetlb.h>
33 #include <linux/pagemap.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/sort.h>
50 #include <linux/seq_file.h>
51 #include <linux/vmalloc.h>
52 #include <linux/mm_inline.h>
53 #include <linux/page_cgroup.h>
54 #include <linux/cpu.h>
55 #include <linux/oom.h>
59 #include <net/tcp_memcontrol.h>
61 #include <asm/uaccess.h>
63 #include <trace/events/vmscan.h>
65 struct cgroup_subsys mem_cgroup_subsys __read_mostly
;
66 EXPORT_SYMBOL(mem_cgroup_subsys
);
68 #define MEM_CGROUP_RECLAIM_RETRIES 5
69 static struct mem_cgroup
*root_mem_cgroup __read_mostly
;
71 #ifdef CONFIG_MEMCG_SWAP
72 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
73 int do_swap_account __read_mostly
;
75 /* for remember boot option*/
76 #ifdef CONFIG_MEMCG_SWAP_ENABLED
77 static int really_do_swap_account __initdata
= 1;
79 static int really_do_swap_account __initdata
= 0;
83 #define do_swap_account 0
88 * Statistics for memory cgroup.
90 enum mem_cgroup_stat_index
{
92 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
94 MEM_CGROUP_STAT_CACHE
, /* # of pages charged as cache */
95 MEM_CGROUP_STAT_RSS
, /* # of pages charged as anon rss */
96 MEM_CGROUP_STAT_FILE_MAPPED
, /* # of pages charged as file rss */
97 MEM_CGROUP_STAT_SWAP
, /* # of pages, swapped out */
98 MEM_CGROUP_STAT_NSTATS
,
101 static const char * const mem_cgroup_stat_names
[] = {
108 enum mem_cgroup_events_index
{
109 MEM_CGROUP_EVENTS_PGPGIN
, /* # of pages paged in */
110 MEM_CGROUP_EVENTS_PGPGOUT
, /* # of pages paged out */
111 MEM_CGROUP_EVENTS_PGFAULT
, /* # of page-faults */
112 MEM_CGROUP_EVENTS_PGMAJFAULT
, /* # of major page-faults */
113 MEM_CGROUP_EVENTS_NSTATS
,
116 static const char * const mem_cgroup_events_names
[] = {
124 * Per memcg event counter is incremented at every pagein/pageout. With THP,
125 * it will be incremated by the number of pages. This counter is used for
126 * for trigger some periodic events. This is straightforward and better
127 * than using jiffies etc. to handle periodic memcg event.
129 enum mem_cgroup_events_target
{
130 MEM_CGROUP_TARGET_THRESH
,
131 MEM_CGROUP_TARGET_SOFTLIMIT
,
132 MEM_CGROUP_TARGET_NUMAINFO
,
135 #define THRESHOLDS_EVENTS_TARGET 128
136 #define SOFTLIMIT_EVENTS_TARGET 1024
137 #define NUMAINFO_EVENTS_TARGET 1024
139 struct mem_cgroup_stat_cpu
{
140 long count
[MEM_CGROUP_STAT_NSTATS
];
141 unsigned long events
[MEM_CGROUP_EVENTS_NSTATS
];
142 unsigned long nr_page_events
;
143 unsigned long targets
[MEM_CGROUP_NTARGETS
];
146 struct mem_cgroup_reclaim_iter
{
147 /* css_id of the last scanned hierarchy member */
149 /* scan generation, increased every round-trip */
150 unsigned int generation
;
154 * per-zone information in memory controller.
156 struct mem_cgroup_per_zone
{
157 struct lruvec lruvec
;
158 unsigned long lru_size
[NR_LRU_LISTS
];
160 struct mem_cgroup_reclaim_iter reclaim_iter
[DEF_PRIORITY
+ 1];
162 struct rb_node tree_node
; /* RB tree node */
163 unsigned long long usage_in_excess
;/* Set to the value by which */
164 /* the soft limit is exceeded*/
166 struct mem_cgroup
*memcg
; /* Back pointer, we cannot */
167 /* use container_of */
170 struct mem_cgroup_per_node
{
171 struct mem_cgroup_per_zone zoneinfo
[MAX_NR_ZONES
];
174 struct mem_cgroup_lru_info
{
175 struct mem_cgroup_per_node
*nodeinfo
[MAX_NUMNODES
];
179 * Cgroups above their limits are maintained in a RB-Tree, independent of
180 * their hierarchy representation
183 struct mem_cgroup_tree_per_zone
{
184 struct rb_root rb_root
;
188 struct mem_cgroup_tree_per_node
{
189 struct mem_cgroup_tree_per_zone rb_tree_per_zone
[MAX_NR_ZONES
];
192 struct mem_cgroup_tree
{
193 struct mem_cgroup_tree_per_node
*rb_tree_per_node
[MAX_NUMNODES
];
196 static struct mem_cgroup_tree soft_limit_tree __read_mostly
;
198 struct mem_cgroup_threshold
{
199 struct eventfd_ctx
*eventfd
;
204 struct mem_cgroup_threshold_ary
{
205 /* An array index points to threshold just below or equal to usage. */
206 int current_threshold
;
207 /* Size of entries[] */
209 /* Array of thresholds */
210 struct mem_cgroup_threshold entries
[0];
213 struct mem_cgroup_thresholds
{
214 /* Primary thresholds array */
215 struct mem_cgroup_threshold_ary
*primary
;
217 * Spare threshold array.
218 * This is needed to make mem_cgroup_unregister_event() "never fail".
219 * It must be able to store at least primary->size - 1 entries.
221 struct mem_cgroup_threshold_ary
*spare
;
225 struct mem_cgroup_eventfd_list
{
226 struct list_head list
;
227 struct eventfd_ctx
*eventfd
;
230 static void mem_cgroup_threshold(struct mem_cgroup
*memcg
);
231 static void mem_cgroup_oom_notify(struct mem_cgroup
*memcg
);
234 * The memory controller data structure. The memory controller controls both
235 * page cache and RSS per cgroup. We would eventually like to provide
236 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
237 * to help the administrator determine what knobs to tune.
239 * TODO: Add a water mark for the memory controller. Reclaim will begin when
240 * we hit the water mark. May be even add a low water mark, such that
241 * no reclaim occurs from a cgroup at it's low water mark, this is
242 * a feature that will be implemented much later in the future.
245 struct cgroup_subsys_state css
;
247 * the counter to account for memory usage
249 struct res_counter res
;
253 * the counter to account for mem+swap usage.
255 struct res_counter memsw
;
258 * rcu_freeing is used only when freeing struct mem_cgroup,
259 * so put it into a union to avoid wasting more memory.
260 * It must be disjoint from the css field. It could be
261 * in a union with the res field, but res plays a much
262 * larger part in mem_cgroup life than memsw, and might
263 * be of interest, even at time of free, when debugging.
264 * So share rcu_head with the less interesting memsw.
266 struct rcu_head rcu_freeing
;
268 * We also need some space for a worker in deferred freeing.
269 * By the time we call it, rcu_freeing is no longer in use.
271 struct work_struct work_freeing
;
275 * the counter to account for kernel memory usage.
277 struct res_counter kmem
;
279 * Per cgroup active and inactive list, similar to the
280 * per zone LRU lists.
282 struct mem_cgroup_lru_info info
;
283 int last_scanned_node
;
285 nodemask_t scan_nodes
;
286 atomic_t numainfo_events
;
287 atomic_t numainfo_updating
;
290 * Should the accounting and control be hierarchical, per subtree?
293 unsigned long kmem_account_flags
; /* See KMEM_ACCOUNTED_*, below */
301 /* OOM-Killer disable */
302 int oom_kill_disable
;
304 /* set when res.limit == memsw.limit */
305 bool memsw_is_minimum
;
307 /* protect arrays of thresholds */
308 struct mutex thresholds_lock
;
310 /* thresholds for memory usage. RCU-protected */
311 struct mem_cgroup_thresholds thresholds
;
313 /* thresholds for mem+swap usage. RCU-protected */
314 struct mem_cgroup_thresholds memsw_thresholds
;
316 /* For oom notifier event fd */
317 struct list_head oom_notify
;
320 * Should we move charges of a task when a task is moved into this
321 * mem_cgroup ? And what type of charges should we move ?
323 unsigned long move_charge_at_immigrate
;
325 * set > 0 if pages under this cgroup are moving to other cgroup.
327 atomic_t moving_account
;
328 /* taken only while moving_account > 0 */
329 spinlock_t move_lock
;
333 struct mem_cgroup_stat_cpu __percpu
*stat
;
335 * used when a cpu is offlined or other synchronizations
336 * See mem_cgroup_read_stat().
338 struct mem_cgroup_stat_cpu nocpu_base
;
339 spinlock_t pcp_counter_lock
;
341 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
342 struct tcp_memcontrol tcp_mem
;
344 #if defined(CONFIG_MEMCG_KMEM)
345 /* analogous to slab_common's slab_caches list. per-memcg */
346 struct list_head memcg_slab_caches
;
347 /* Not a spinlock, we can take a lot of time walking the list */
348 struct mutex slab_caches_mutex
;
349 /* Index in the kmem_cache->memcg_params->memcg_caches array */
354 /* internal only representation about the status of kmem accounting. */
356 KMEM_ACCOUNTED_ACTIVE
= 0, /* accounted by this cgroup itself */
357 KMEM_ACCOUNTED_ACTIVATED
, /* static key enabled. */
358 KMEM_ACCOUNTED_DEAD
, /* dead memcg with pending kmem charges */
361 /* We account when limit is on, but only after call sites are patched */
362 #define KMEM_ACCOUNTED_MASK \
363 ((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
365 #ifdef CONFIG_MEMCG_KMEM
366 static inline void memcg_kmem_set_active(struct mem_cgroup
*memcg
)
368 set_bit(KMEM_ACCOUNTED_ACTIVE
, &memcg
->kmem_account_flags
);
371 static bool memcg_kmem_is_active(struct mem_cgroup
*memcg
)
373 return test_bit(KMEM_ACCOUNTED_ACTIVE
, &memcg
->kmem_account_flags
);
376 static void memcg_kmem_set_activated(struct mem_cgroup
*memcg
)
378 set_bit(KMEM_ACCOUNTED_ACTIVATED
, &memcg
->kmem_account_flags
);
381 static void memcg_kmem_clear_activated(struct mem_cgroup
*memcg
)
383 clear_bit(KMEM_ACCOUNTED_ACTIVATED
, &memcg
->kmem_account_flags
);
386 static void memcg_kmem_mark_dead(struct mem_cgroup
*memcg
)
388 if (test_bit(KMEM_ACCOUNTED_ACTIVE
, &memcg
->kmem_account_flags
))
389 set_bit(KMEM_ACCOUNTED_DEAD
, &memcg
->kmem_account_flags
);
392 static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup
*memcg
)
394 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD
,
395 &memcg
->kmem_account_flags
);
399 /* Stuffs for move charges at task migration. */
401 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
402 * left-shifted bitmap of these types.
405 MOVE_CHARGE_TYPE_ANON
, /* private anonymous page and swap of it */
406 MOVE_CHARGE_TYPE_FILE
, /* file page(including tmpfs) and swap of it */
410 /* "mc" and its members are protected by cgroup_mutex */
411 static struct move_charge_struct
{
412 spinlock_t lock
; /* for from, to */
413 struct mem_cgroup
*from
;
414 struct mem_cgroup
*to
;
415 unsigned long precharge
;
416 unsigned long moved_charge
;
417 unsigned long moved_swap
;
418 struct task_struct
*moving_task
; /* a task moving charges */
419 wait_queue_head_t waitq
; /* a waitq for other context */
421 .lock
= __SPIN_LOCK_UNLOCKED(mc
.lock
),
422 .waitq
= __WAIT_QUEUE_HEAD_INITIALIZER(mc
.waitq
),
425 static bool move_anon(void)
427 return test_bit(MOVE_CHARGE_TYPE_ANON
,
428 &mc
.to
->move_charge_at_immigrate
);
431 static bool move_file(void)
433 return test_bit(MOVE_CHARGE_TYPE_FILE
,
434 &mc
.to
->move_charge_at_immigrate
);
438 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
439 * limit reclaim to prevent infinite loops, if they ever occur.
441 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
442 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
445 MEM_CGROUP_CHARGE_TYPE_CACHE
= 0,
446 MEM_CGROUP_CHARGE_TYPE_ANON
,
447 MEM_CGROUP_CHARGE_TYPE_SWAPOUT
, /* for accounting swapcache */
448 MEM_CGROUP_CHARGE_TYPE_DROP
, /* a page was unused swap cache */
452 /* for encoding cft->private value on file */
460 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
461 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
462 #define MEMFILE_ATTR(val) ((val) & 0xffff)
463 /* Used for OOM nofiier */
464 #define OOM_CONTROL (0)
467 * Reclaim flags for mem_cgroup_hierarchical_reclaim
469 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
470 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
471 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
472 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
474 static void mem_cgroup_get(struct mem_cgroup
*memcg
);
475 static void mem_cgroup_put(struct mem_cgroup
*memcg
);
478 struct mem_cgroup
*mem_cgroup_from_css(struct cgroup_subsys_state
*s
)
480 return container_of(s
, struct mem_cgroup
, css
);
483 static inline bool mem_cgroup_is_root(struct mem_cgroup
*memcg
)
485 return (memcg
== root_mem_cgroup
);
488 /* Writing them here to avoid exposing memcg's inner layout */
489 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
491 void sock_update_memcg(struct sock
*sk
)
493 if (mem_cgroup_sockets_enabled
) {
494 struct mem_cgroup
*memcg
;
495 struct cg_proto
*cg_proto
;
497 BUG_ON(!sk
->sk_prot
->proto_cgroup
);
499 /* Socket cloning can throw us here with sk_cgrp already
500 * filled. It won't however, necessarily happen from
501 * process context. So the test for root memcg given
502 * the current task's memcg won't help us in this case.
504 * Respecting the original socket's memcg is a better
505 * decision in this case.
508 BUG_ON(mem_cgroup_is_root(sk
->sk_cgrp
->memcg
));
509 mem_cgroup_get(sk
->sk_cgrp
->memcg
);
514 memcg
= mem_cgroup_from_task(current
);
515 cg_proto
= sk
->sk_prot
->proto_cgroup(memcg
);
516 if (!mem_cgroup_is_root(memcg
) && memcg_proto_active(cg_proto
)) {
517 mem_cgroup_get(memcg
);
518 sk
->sk_cgrp
= cg_proto
;
523 EXPORT_SYMBOL(sock_update_memcg
);
525 void sock_release_memcg(struct sock
*sk
)
527 if (mem_cgroup_sockets_enabled
&& sk
->sk_cgrp
) {
528 struct mem_cgroup
*memcg
;
529 WARN_ON(!sk
->sk_cgrp
->memcg
);
530 memcg
= sk
->sk_cgrp
->memcg
;
531 mem_cgroup_put(memcg
);
535 struct cg_proto
*tcp_proto_cgroup(struct mem_cgroup
*memcg
)
537 if (!memcg
|| mem_cgroup_is_root(memcg
))
540 return &memcg
->tcp_mem
.cg_proto
;
542 EXPORT_SYMBOL(tcp_proto_cgroup
);
544 static void disarm_sock_keys(struct mem_cgroup
*memcg
)
546 if (!memcg_proto_activated(&memcg
->tcp_mem
.cg_proto
))
548 static_key_slow_dec(&memcg_socket_limit_enabled
);
551 static void disarm_sock_keys(struct mem_cgroup
*memcg
)
556 #ifdef CONFIG_MEMCG_KMEM
558 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
559 * There are two main reasons for not using the css_id for this:
560 * 1) this works better in sparse environments, where we have a lot of memcgs,
561 * but only a few kmem-limited. Or also, if we have, for instance, 200
562 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
563 * 200 entry array for that.
565 * 2) In order not to violate the cgroup API, we would like to do all memory
566 * allocation in ->create(). At that point, we haven't yet allocated the
567 * css_id. Having a separate index prevents us from messing with the cgroup
570 * The current size of the caches array is stored in
571 * memcg_limited_groups_array_size. It will double each time we have to
574 static DEFINE_IDA(kmem_limited_groups
);
575 int memcg_limited_groups_array_size
;
578 * MIN_SIZE is different than 1, because we would like to avoid going through
579 * the alloc/free process all the time. In a small machine, 4 kmem-limited
580 * cgroups is a reasonable guess. In the future, it could be a parameter or
581 * tunable, but that is strictly not necessary.
583 * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
584 * this constant directly from cgroup, but it is understandable that this is
585 * better kept as an internal representation in cgroup.c. In any case, the
586 * css_id space is not getting any smaller, and we don't have to necessarily
587 * increase ours as well if it increases.
589 #define MEMCG_CACHES_MIN_SIZE 4
590 #define MEMCG_CACHES_MAX_SIZE 65535
593 * A lot of the calls to the cache allocation functions are expected to be
594 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
595 * conditional to this static branch, we'll have to allow modules that does
596 * kmem_cache_alloc and the such to see this symbol as well
598 struct static_key memcg_kmem_enabled_key
;
599 EXPORT_SYMBOL(memcg_kmem_enabled_key
);
601 static void disarm_kmem_keys(struct mem_cgroup
*memcg
)
603 if (memcg_kmem_is_active(memcg
)) {
604 static_key_slow_dec(&memcg_kmem_enabled_key
);
605 ida_simple_remove(&kmem_limited_groups
, memcg
->kmemcg_id
);
608 * This check can't live in kmem destruction function,
609 * since the charges will outlive the cgroup
611 WARN_ON(res_counter_read_u64(&memcg
->kmem
, RES_USAGE
) != 0);
614 static void disarm_kmem_keys(struct mem_cgroup
*memcg
)
617 #endif /* CONFIG_MEMCG_KMEM */
619 static void disarm_static_keys(struct mem_cgroup
*memcg
)
621 disarm_sock_keys(memcg
);
622 disarm_kmem_keys(memcg
);
625 static void drain_all_stock_async(struct mem_cgroup
*memcg
);
627 static struct mem_cgroup_per_zone
*
628 mem_cgroup_zoneinfo(struct mem_cgroup
*memcg
, int nid
, int zid
)
630 return &memcg
->info
.nodeinfo
[nid
]->zoneinfo
[zid
];
633 struct cgroup_subsys_state
*mem_cgroup_css(struct mem_cgroup
*memcg
)
638 static struct mem_cgroup_per_zone
*
639 page_cgroup_zoneinfo(struct mem_cgroup
*memcg
, struct page
*page
)
641 int nid
= page_to_nid(page
);
642 int zid
= page_zonenum(page
);
644 return mem_cgroup_zoneinfo(memcg
, nid
, zid
);
647 static struct mem_cgroup_tree_per_zone
*
648 soft_limit_tree_node_zone(int nid
, int zid
)
650 return &soft_limit_tree
.rb_tree_per_node
[nid
]->rb_tree_per_zone
[zid
];
653 static struct mem_cgroup_tree_per_zone
*
654 soft_limit_tree_from_page(struct page
*page
)
656 int nid
= page_to_nid(page
);
657 int zid
= page_zonenum(page
);
659 return &soft_limit_tree
.rb_tree_per_node
[nid
]->rb_tree_per_zone
[zid
];
663 __mem_cgroup_insert_exceeded(struct mem_cgroup
*memcg
,
664 struct mem_cgroup_per_zone
*mz
,
665 struct mem_cgroup_tree_per_zone
*mctz
,
666 unsigned long long new_usage_in_excess
)
668 struct rb_node
**p
= &mctz
->rb_root
.rb_node
;
669 struct rb_node
*parent
= NULL
;
670 struct mem_cgroup_per_zone
*mz_node
;
675 mz
->usage_in_excess
= new_usage_in_excess
;
676 if (!mz
->usage_in_excess
)
680 mz_node
= rb_entry(parent
, struct mem_cgroup_per_zone
,
682 if (mz
->usage_in_excess
< mz_node
->usage_in_excess
)
685 * We can't avoid mem cgroups that are over their soft
686 * limit by the same amount
688 else if (mz
->usage_in_excess
>= mz_node
->usage_in_excess
)
691 rb_link_node(&mz
->tree_node
, parent
, p
);
692 rb_insert_color(&mz
->tree_node
, &mctz
->rb_root
);
697 __mem_cgroup_remove_exceeded(struct mem_cgroup
*memcg
,
698 struct mem_cgroup_per_zone
*mz
,
699 struct mem_cgroup_tree_per_zone
*mctz
)
703 rb_erase(&mz
->tree_node
, &mctz
->rb_root
);
708 mem_cgroup_remove_exceeded(struct mem_cgroup
*memcg
,
709 struct mem_cgroup_per_zone
*mz
,
710 struct mem_cgroup_tree_per_zone
*mctz
)
712 spin_lock(&mctz
->lock
);
713 __mem_cgroup_remove_exceeded(memcg
, mz
, mctz
);
714 spin_unlock(&mctz
->lock
);
718 static void mem_cgroup_update_tree(struct mem_cgroup
*memcg
, struct page
*page
)
720 unsigned long long excess
;
721 struct mem_cgroup_per_zone
*mz
;
722 struct mem_cgroup_tree_per_zone
*mctz
;
723 int nid
= page_to_nid(page
);
724 int zid
= page_zonenum(page
);
725 mctz
= soft_limit_tree_from_page(page
);
728 * Necessary to update all ancestors when hierarchy is used.
729 * because their event counter is not touched.
731 for (; memcg
; memcg
= parent_mem_cgroup(memcg
)) {
732 mz
= mem_cgroup_zoneinfo(memcg
, nid
, zid
);
733 excess
= res_counter_soft_limit_excess(&memcg
->res
);
735 * We have to update the tree if mz is on RB-tree or
736 * mem is over its softlimit.
738 if (excess
|| mz
->on_tree
) {
739 spin_lock(&mctz
->lock
);
740 /* if on-tree, remove it */
742 __mem_cgroup_remove_exceeded(memcg
, mz
, mctz
);
744 * Insert again. mz->usage_in_excess will be updated.
745 * If excess is 0, no tree ops.
747 __mem_cgroup_insert_exceeded(memcg
, mz
, mctz
, excess
);
748 spin_unlock(&mctz
->lock
);
753 static void mem_cgroup_remove_from_trees(struct mem_cgroup
*memcg
)
756 struct mem_cgroup_per_zone
*mz
;
757 struct mem_cgroup_tree_per_zone
*mctz
;
759 for_each_node(node
) {
760 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
761 mz
= mem_cgroup_zoneinfo(memcg
, node
, zone
);
762 mctz
= soft_limit_tree_node_zone(node
, zone
);
763 mem_cgroup_remove_exceeded(memcg
, mz
, mctz
);
768 static struct mem_cgroup_per_zone
*
769 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone
*mctz
)
771 struct rb_node
*rightmost
= NULL
;
772 struct mem_cgroup_per_zone
*mz
;
776 rightmost
= rb_last(&mctz
->rb_root
);
778 goto done
; /* Nothing to reclaim from */
780 mz
= rb_entry(rightmost
, struct mem_cgroup_per_zone
, tree_node
);
782 * Remove the node now but someone else can add it back,
783 * we will to add it back at the end of reclaim to its correct
784 * position in the tree.
786 __mem_cgroup_remove_exceeded(mz
->memcg
, mz
, mctz
);
787 if (!res_counter_soft_limit_excess(&mz
->memcg
->res
) ||
788 !css_tryget(&mz
->memcg
->css
))
794 static struct mem_cgroup_per_zone
*
795 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone
*mctz
)
797 struct mem_cgroup_per_zone
*mz
;
799 spin_lock(&mctz
->lock
);
800 mz
= __mem_cgroup_largest_soft_limit_node(mctz
);
801 spin_unlock(&mctz
->lock
);
806 * Implementation Note: reading percpu statistics for memcg.
808 * Both of vmstat[] and percpu_counter has threshold and do periodic
809 * synchronization to implement "quick" read. There are trade-off between
810 * reading cost and precision of value. Then, we may have a chance to implement
811 * a periodic synchronizion of counter in memcg's counter.
813 * But this _read() function is used for user interface now. The user accounts
814 * memory usage by memory cgroup and he _always_ requires exact value because
815 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
816 * have to visit all online cpus and make sum. So, for now, unnecessary
817 * synchronization is not implemented. (just implemented for cpu hotplug)
819 * If there are kernel internal actions which can make use of some not-exact
820 * value, and reading all cpu value can be performance bottleneck in some
821 * common workload, threashold and synchonization as vmstat[] should be
824 static long mem_cgroup_read_stat(struct mem_cgroup
*memcg
,
825 enum mem_cgroup_stat_index idx
)
831 for_each_online_cpu(cpu
)
832 val
+= per_cpu(memcg
->stat
->count
[idx
], cpu
);
833 #ifdef CONFIG_HOTPLUG_CPU
834 spin_lock(&memcg
->pcp_counter_lock
);
835 val
+= memcg
->nocpu_base
.count
[idx
];
836 spin_unlock(&memcg
->pcp_counter_lock
);
842 static void mem_cgroup_swap_statistics(struct mem_cgroup
*memcg
,
845 int val
= (charge
) ? 1 : -1;
846 this_cpu_add(memcg
->stat
->count
[MEM_CGROUP_STAT_SWAP
], val
);
849 static unsigned long mem_cgroup_read_events(struct mem_cgroup
*memcg
,
850 enum mem_cgroup_events_index idx
)
852 unsigned long val
= 0;
855 for_each_online_cpu(cpu
)
856 val
+= per_cpu(memcg
->stat
->events
[idx
], cpu
);
857 #ifdef CONFIG_HOTPLUG_CPU
858 spin_lock(&memcg
->pcp_counter_lock
);
859 val
+= memcg
->nocpu_base
.events
[idx
];
860 spin_unlock(&memcg
->pcp_counter_lock
);
865 static void mem_cgroup_charge_statistics(struct mem_cgroup
*memcg
,
866 bool anon
, int nr_pages
)
871 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
872 * counted as CACHE even if it's on ANON LRU.
875 __this_cpu_add(memcg
->stat
->count
[MEM_CGROUP_STAT_RSS
],
878 __this_cpu_add(memcg
->stat
->count
[MEM_CGROUP_STAT_CACHE
],
881 /* pagein of a big page is an event. So, ignore page size */
883 __this_cpu_inc(memcg
->stat
->events
[MEM_CGROUP_EVENTS_PGPGIN
]);
885 __this_cpu_inc(memcg
->stat
->events
[MEM_CGROUP_EVENTS_PGPGOUT
]);
886 nr_pages
= -nr_pages
; /* for event */
889 __this_cpu_add(memcg
->stat
->nr_page_events
, nr_pages
);
895 mem_cgroup_get_lru_size(struct lruvec
*lruvec
, enum lru_list lru
)
897 struct mem_cgroup_per_zone
*mz
;
899 mz
= container_of(lruvec
, struct mem_cgroup_per_zone
, lruvec
);
900 return mz
->lru_size
[lru
];
904 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup
*memcg
, int nid
, int zid
,
905 unsigned int lru_mask
)
907 struct mem_cgroup_per_zone
*mz
;
909 unsigned long ret
= 0;
911 mz
= mem_cgroup_zoneinfo(memcg
, nid
, zid
);
914 if (BIT(lru
) & lru_mask
)
915 ret
+= mz
->lru_size
[lru
];
921 mem_cgroup_node_nr_lru_pages(struct mem_cgroup
*memcg
,
922 int nid
, unsigned int lru_mask
)
927 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++)
928 total
+= mem_cgroup_zone_nr_lru_pages(memcg
,
934 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup
*memcg
,
935 unsigned int lru_mask
)
940 for_each_node_state(nid
, N_MEMORY
)
941 total
+= mem_cgroup_node_nr_lru_pages(memcg
, nid
, lru_mask
);
945 static bool mem_cgroup_event_ratelimit(struct mem_cgroup
*memcg
,
946 enum mem_cgroup_events_target target
)
948 unsigned long val
, next
;
950 val
= __this_cpu_read(memcg
->stat
->nr_page_events
);
951 next
= __this_cpu_read(memcg
->stat
->targets
[target
]);
952 /* from time_after() in jiffies.h */
953 if ((long)next
- (long)val
< 0) {
955 case MEM_CGROUP_TARGET_THRESH
:
956 next
= val
+ THRESHOLDS_EVENTS_TARGET
;
958 case MEM_CGROUP_TARGET_SOFTLIMIT
:
959 next
= val
+ SOFTLIMIT_EVENTS_TARGET
;
961 case MEM_CGROUP_TARGET_NUMAINFO
:
962 next
= val
+ NUMAINFO_EVENTS_TARGET
;
967 __this_cpu_write(memcg
->stat
->targets
[target
], next
);
974 * Check events in order.
977 static void memcg_check_events(struct mem_cgroup
*memcg
, struct page
*page
)
980 /* threshold event is triggered in finer grain than soft limit */
981 if (unlikely(mem_cgroup_event_ratelimit(memcg
,
982 MEM_CGROUP_TARGET_THRESH
))) {
984 bool do_numainfo __maybe_unused
;
986 do_softlimit
= mem_cgroup_event_ratelimit(memcg
,
987 MEM_CGROUP_TARGET_SOFTLIMIT
);
989 do_numainfo
= mem_cgroup_event_ratelimit(memcg
,
990 MEM_CGROUP_TARGET_NUMAINFO
);
994 mem_cgroup_threshold(memcg
);
995 if (unlikely(do_softlimit
))
996 mem_cgroup_update_tree(memcg
, page
);
998 if (unlikely(do_numainfo
))
999 atomic_inc(&memcg
->numainfo_events
);
1005 struct mem_cgroup
*mem_cgroup_from_cont(struct cgroup
*cont
)
1007 return mem_cgroup_from_css(
1008 cgroup_subsys_state(cont
, mem_cgroup_subsys_id
));
1011 struct mem_cgroup
*mem_cgroup_from_task(struct task_struct
*p
)
1014 * mm_update_next_owner() may clear mm->owner to NULL
1015 * if it races with swapoff, page migration, etc.
1016 * So this can be called with p == NULL.
1021 return mem_cgroup_from_css(task_subsys_state(p
, mem_cgroup_subsys_id
));
1024 struct mem_cgroup
*try_get_mem_cgroup_from_mm(struct mm_struct
*mm
)
1026 struct mem_cgroup
*memcg
= NULL
;
1031 * Because we have no locks, mm->owner's may be being moved to other
1032 * cgroup. We use css_tryget() here even if this looks
1033 * pessimistic (rather than adding locks here).
1037 memcg
= mem_cgroup_from_task(rcu_dereference(mm
->owner
));
1038 if (unlikely(!memcg
))
1040 } while (!css_tryget(&memcg
->css
));
1046 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1047 * @root: hierarchy root
1048 * @prev: previously returned memcg, NULL on first invocation
1049 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1051 * Returns references to children of the hierarchy below @root, or
1052 * @root itself, or %NULL after a full round-trip.
1054 * Caller must pass the return value in @prev on subsequent
1055 * invocations for reference counting, or use mem_cgroup_iter_break()
1056 * to cancel a hierarchy walk before the round-trip is complete.
1058 * Reclaimers can specify a zone and a priority level in @reclaim to
1059 * divide up the memcgs in the hierarchy among all concurrent
1060 * reclaimers operating on the same zone and priority.
1062 struct mem_cgroup
*mem_cgroup_iter(struct mem_cgroup
*root
,
1063 struct mem_cgroup
*prev
,
1064 struct mem_cgroup_reclaim_cookie
*reclaim
)
1066 struct mem_cgroup
*memcg
= NULL
;
1069 if (mem_cgroup_disabled())
1073 root
= root_mem_cgroup
;
1075 if (prev
&& !reclaim
)
1076 id
= css_id(&prev
->css
);
1078 if (prev
&& prev
!= root
)
1079 css_put(&prev
->css
);
1081 if (!root
->use_hierarchy
&& root
!= root_mem_cgroup
) {
1088 struct mem_cgroup_reclaim_iter
*uninitialized_var(iter
);
1089 struct cgroup_subsys_state
*css
;
1092 int nid
= zone_to_nid(reclaim
->zone
);
1093 int zid
= zone_idx(reclaim
->zone
);
1094 struct mem_cgroup_per_zone
*mz
;
1096 mz
= mem_cgroup_zoneinfo(root
, nid
, zid
);
1097 iter
= &mz
->reclaim_iter
[reclaim
->priority
];
1098 if (prev
&& reclaim
->generation
!= iter
->generation
)
1100 id
= iter
->position
;
1104 css
= css_get_next(&mem_cgroup_subsys
, id
+ 1, &root
->css
, &id
);
1106 if (css
== &root
->css
|| css_tryget(css
))
1107 memcg
= mem_cgroup_from_css(css
);
1113 iter
->position
= id
;
1116 else if (!prev
&& memcg
)
1117 reclaim
->generation
= iter
->generation
;
1127 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1128 * @root: hierarchy root
1129 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1131 void mem_cgroup_iter_break(struct mem_cgroup
*root
,
1132 struct mem_cgroup
*prev
)
1135 root
= root_mem_cgroup
;
1136 if (prev
&& prev
!= root
)
1137 css_put(&prev
->css
);
1141 * Iteration constructs for visiting all cgroups (under a tree). If
1142 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1143 * be used for reference counting.
1145 #define for_each_mem_cgroup_tree(iter, root) \
1146 for (iter = mem_cgroup_iter(root, NULL, NULL); \
1148 iter = mem_cgroup_iter(root, iter, NULL))
1150 #define for_each_mem_cgroup(iter) \
1151 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1153 iter = mem_cgroup_iter(NULL, iter, NULL))
1155 void __mem_cgroup_count_vm_event(struct mm_struct
*mm
, enum vm_event_item idx
)
1157 struct mem_cgroup
*memcg
;
1160 memcg
= mem_cgroup_from_task(rcu_dereference(mm
->owner
));
1161 if (unlikely(!memcg
))
1166 this_cpu_inc(memcg
->stat
->events
[MEM_CGROUP_EVENTS_PGFAULT
]);
1169 this_cpu_inc(memcg
->stat
->events
[MEM_CGROUP_EVENTS_PGMAJFAULT
]);
1177 EXPORT_SYMBOL(__mem_cgroup_count_vm_event
);
1180 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1181 * @zone: zone of the wanted lruvec
1182 * @memcg: memcg of the wanted lruvec
1184 * Returns the lru list vector holding pages for the given @zone and
1185 * @mem. This can be the global zone lruvec, if the memory controller
1188 struct lruvec
*mem_cgroup_zone_lruvec(struct zone
*zone
,
1189 struct mem_cgroup
*memcg
)
1191 struct mem_cgroup_per_zone
*mz
;
1192 struct lruvec
*lruvec
;
1194 if (mem_cgroup_disabled()) {
1195 lruvec
= &zone
->lruvec
;
1199 mz
= mem_cgroup_zoneinfo(memcg
, zone_to_nid(zone
), zone_idx(zone
));
1200 lruvec
= &mz
->lruvec
;
1203 * Since a node can be onlined after the mem_cgroup was created,
1204 * we have to be prepared to initialize lruvec->zone here;
1205 * and if offlined then reonlined, we need to reinitialize it.
1207 if (unlikely(lruvec
->zone
!= zone
))
1208 lruvec
->zone
= zone
;
1213 * Following LRU functions are allowed to be used without PCG_LOCK.
1214 * Operations are called by routine of global LRU independently from memcg.
1215 * What we have to take care of here is validness of pc->mem_cgroup.
1217 * Changes to pc->mem_cgroup happens when
1220 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1221 * It is added to LRU before charge.
1222 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1223 * When moving account, the page is not on LRU. It's isolated.
1227 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1229 * @zone: zone of the page
1231 struct lruvec
*mem_cgroup_page_lruvec(struct page
*page
, struct zone
*zone
)
1233 struct mem_cgroup_per_zone
*mz
;
1234 struct mem_cgroup
*memcg
;
1235 struct page_cgroup
*pc
;
1236 struct lruvec
*lruvec
;
1238 if (mem_cgroup_disabled()) {
1239 lruvec
= &zone
->lruvec
;
1243 pc
= lookup_page_cgroup(page
);
1244 memcg
= pc
->mem_cgroup
;
1247 * Surreptitiously switch any uncharged offlist page to root:
1248 * an uncharged page off lru does nothing to secure
1249 * its former mem_cgroup from sudden removal.
1251 * Our caller holds lru_lock, and PageCgroupUsed is updated
1252 * under page_cgroup lock: between them, they make all uses
1253 * of pc->mem_cgroup safe.
1255 if (!PageLRU(page
) && !PageCgroupUsed(pc
) && memcg
!= root_mem_cgroup
)
1256 pc
->mem_cgroup
= memcg
= root_mem_cgroup
;
1258 mz
= page_cgroup_zoneinfo(memcg
, page
);
1259 lruvec
= &mz
->lruvec
;
1262 * Since a node can be onlined after the mem_cgroup was created,
1263 * we have to be prepared to initialize lruvec->zone here;
1264 * and if offlined then reonlined, we need to reinitialize it.
1266 if (unlikely(lruvec
->zone
!= zone
))
1267 lruvec
->zone
= zone
;
1272 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1273 * @lruvec: mem_cgroup per zone lru vector
1274 * @lru: index of lru list the page is sitting on
1275 * @nr_pages: positive when adding or negative when removing
1277 * This function must be called when a page is added to or removed from an
1280 void mem_cgroup_update_lru_size(struct lruvec
*lruvec
, enum lru_list lru
,
1283 struct mem_cgroup_per_zone
*mz
;
1284 unsigned long *lru_size
;
1286 if (mem_cgroup_disabled())
1289 mz
= container_of(lruvec
, struct mem_cgroup_per_zone
, lruvec
);
1290 lru_size
= mz
->lru_size
+ lru
;
1291 *lru_size
+= nr_pages
;
1292 VM_BUG_ON((long)(*lru_size
) < 0);
1296 * Checks whether given mem is same or in the root_mem_cgroup's
1299 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup
*root_memcg
,
1300 struct mem_cgroup
*memcg
)
1302 if (root_memcg
== memcg
)
1304 if (!root_memcg
->use_hierarchy
|| !memcg
)
1306 return css_is_ancestor(&memcg
->css
, &root_memcg
->css
);
1309 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup
*root_memcg
,
1310 struct mem_cgroup
*memcg
)
1315 ret
= __mem_cgroup_same_or_subtree(root_memcg
, memcg
);
1320 int task_in_mem_cgroup(struct task_struct
*task
, const struct mem_cgroup
*memcg
)
1323 struct mem_cgroup
*curr
= NULL
;
1324 struct task_struct
*p
;
1326 p
= find_lock_task_mm(task
);
1328 curr
= try_get_mem_cgroup_from_mm(p
->mm
);
1332 * All threads may have already detached their mm's, but the oom
1333 * killer still needs to detect if they have already been oom
1334 * killed to prevent needlessly killing additional tasks.
1337 curr
= mem_cgroup_from_task(task
);
1339 css_get(&curr
->css
);
1345 * We should check use_hierarchy of "memcg" not "curr". Because checking
1346 * use_hierarchy of "curr" here make this function true if hierarchy is
1347 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1348 * hierarchy(even if use_hierarchy is disabled in "memcg").
1350 ret
= mem_cgroup_same_or_subtree(memcg
, curr
);
1351 css_put(&curr
->css
);
1355 int mem_cgroup_inactive_anon_is_low(struct lruvec
*lruvec
)
1357 unsigned long inactive_ratio
;
1358 unsigned long inactive
;
1359 unsigned long active
;
1362 inactive
= mem_cgroup_get_lru_size(lruvec
, LRU_INACTIVE_ANON
);
1363 active
= mem_cgroup_get_lru_size(lruvec
, LRU_ACTIVE_ANON
);
1365 gb
= (inactive
+ active
) >> (30 - PAGE_SHIFT
);
1367 inactive_ratio
= int_sqrt(10 * gb
);
1371 return inactive
* inactive_ratio
< active
;
1374 int mem_cgroup_inactive_file_is_low(struct lruvec
*lruvec
)
1376 unsigned long active
;
1377 unsigned long inactive
;
1379 inactive
= mem_cgroup_get_lru_size(lruvec
, LRU_INACTIVE_FILE
);
1380 active
= mem_cgroup_get_lru_size(lruvec
, LRU_ACTIVE_FILE
);
1382 return (active
> inactive
);
1385 #define mem_cgroup_from_res_counter(counter, member) \
1386 container_of(counter, struct mem_cgroup, member)
1389 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1390 * @memcg: the memory cgroup
1392 * Returns the maximum amount of memory @mem can be charged with, in
1395 static unsigned long mem_cgroup_margin(struct mem_cgroup
*memcg
)
1397 unsigned long long margin
;
1399 margin
= res_counter_margin(&memcg
->res
);
1400 if (do_swap_account
)
1401 margin
= min(margin
, res_counter_margin(&memcg
->memsw
));
1402 return margin
>> PAGE_SHIFT
;
1405 int mem_cgroup_swappiness(struct mem_cgroup
*memcg
)
1407 struct cgroup
*cgrp
= memcg
->css
.cgroup
;
1410 if (cgrp
->parent
== NULL
)
1411 return vm_swappiness
;
1413 return memcg
->swappiness
;
1417 * memcg->moving_account is used for checking possibility that some thread is
1418 * calling move_account(). When a thread on CPU-A starts moving pages under
1419 * a memcg, other threads should check memcg->moving_account under
1420 * rcu_read_lock(), like this:
1424 * memcg->moving_account+1 if (memcg->mocing_account)
1426 * synchronize_rcu() update something.
1431 /* for quick checking without looking up memcg */
1432 atomic_t memcg_moving __read_mostly
;
1434 static void mem_cgroup_start_move(struct mem_cgroup
*memcg
)
1436 atomic_inc(&memcg_moving
);
1437 atomic_inc(&memcg
->moving_account
);
1441 static void mem_cgroup_end_move(struct mem_cgroup
*memcg
)
1444 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1445 * We check NULL in callee rather than caller.
1448 atomic_dec(&memcg_moving
);
1449 atomic_dec(&memcg
->moving_account
);
1454 * 2 routines for checking "mem" is under move_account() or not.
1456 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1457 * is used for avoiding races in accounting. If true,
1458 * pc->mem_cgroup may be overwritten.
1460 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1461 * under hierarchy of moving cgroups. This is for
1462 * waiting at hith-memory prressure caused by "move".
1465 static bool mem_cgroup_stolen(struct mem_cgroup
*memcg
)
1467 VM_BUG_ON(!rcu_read_lock_held());
1468 return atomic_read(&memcg
->moving_account
) > 0;
1471 static bool mem_cgroup_under_move(struct mem_cgroup
*memcg
)
1473 struct mem_cgroup
*from
;
1474 struct mem_cgroup
*to
;
1477 * Unlike task_move routines, we access mc.to, mc.from not under
1478 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1480 spin_lock(&mc
.lock
);
1486 ret
= mem_cgroup_same_or_subtree(memcg
, from
)
1487 || mem_cgroup_same_or_subtree(memcg
, to
);
1489 spin_unlock(&mc
.lock
);
1493 static bool mem_cgroup_wait_acct_move(struct mem_cgroup
*memcg
)
1495 if (mc
.moving_task
&& current
!= mc
.moving_task
) {
1496 if (mem_cgroup_under_move(memcg
)) {
1498 prepare_to_wait(&mc
.waitq
, &wait
, TASK_INTERRUPTIBLE
);
1499 /* moving charge context might have finished. */
1502 finish_wait(&mc
.waitq
, &wait
);
1510 * Take this lock when
1511 * - a code tries to modify page's memcg while it's USED.
1512 * - a code tries to modify page state accounting in a memcg.
1513 * see mem_cgroup_stolen(), too.
1515 static void move_lock_mem_cgroup(struct mem_cgroup
*memcg
,
1516 unsigned long *flags
)
1518 spin_lock_irqsave(&memcg
->move_lock
, *flags
);
1521 static void move_unlock_mem_cgroup(struct mem_cgroup
*memcg
,
1522 unsigned long *flags
)
1524 spin_unlock_irqrestore(&memcg
->move_lock
, *flags
);
1528 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1529 * @memcg: The memory cgroup that went over limit
1530 * @p: Task that is going to be killed
1532 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1535 void mem_cgroup_print_oom_info(struct mem_cgroup
*memcg
, struct task_struct
*p
)
1537 struct cgroup
*task_cgrp
;
1538 struct cgroup
*mem_cgrp
;
1540 * Need a buffer in BSS, can't rely on allocations. The code relies
1541 * on the assumption that OOM is serialized for memory controller.
1542 * If this assumption is broken, revisit this code.
1544 static char memcg_name
[PATH_MAX
];
1552 mem_cgrp
= memcg
->css
.cgroup
;
1553 task_cgrp
= task_cgroup(p
, mem_cgroup_subsys_id
);
1555 ret
= cgroup_path(task_cgrp
, memcg_name
, PATH_MAX
);
1558 * Unfortunately, we are unable to convert to a useful name
1559 * But we'll still print out the usage information
1566 printk(KERN_INFO
"Task in %s killed", memcg_name
);
1569 ret
= cgroup_path(mem_cgrp
, memcg_name
, PATH_MAX
);
1577 * Continues from above, so we don't need an KERN_ level
1579 printk(KERN_CONT
" as a result of limit of %s\n", memcg_name
);
1582 printk(KERN_INFO
"memory: usage %llukB, limit %llukB, failcnt %llu\n",
1583 res_counter_read_u64(&memcg
->res
, RES_USAGE
) >> 10,
1584 res_counter_read_u64(&memcg
->res
, RES_LIMIT
) >> 10,
1585 res_counter_read_u64(&memcg
->res
, RES_FAILCNT
));
1586 printk(KERN_INFO
"memory+swap: usage %llukB, limit %llukB, "
1588 res_counter_read_u64(&memcg
->memsw
, RES_USAGE
) >> 10,
1589 res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
) >> 10,
1590 res_counter_read_u64(&memcg
->memsw
, RES_FAILCNT
));
1591 printk(KERN_INFO
"kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1592 res_counter_read_u64(&memcg
->kmem
, RES_USAGE
) >> 10,
1593 res_counter_read_u64(&memcg
->kmem
, RES_LIMIT
) >> 10,
1594 res_counter_read_u64(&memcg
->kmem
, RES_FAILCNT
));
1598 * This function returns the number of memcg under hierarchy tree. Returns
1599 * 1(self count) if no children.
1601 static int mem_cgroup_count_children(struct mem_cgroup
*memcg
)
1604 struct mem_cgroup
*iter
;
1606 for_each_mem_cgroup_tree(iter
, memcg
)
1612 * Return the memory (and swap, if configured) limit for a memcg.
1614 static u64
mem_cgroup_get_limit(struct mem_cgroup
*memcg
)
1618 limit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
1621 * Do not consider swap space if we cannot swap due to swappiness
1623 if (mem_cgroup_swappiness(memcg
)) {
1626 limit
+= total_swap_pages
<< PAGE_SHIFT
;
1627 memsw
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
1630 * If memsw is finite and limits the amount of swap space
1631 * available to this memcg, return that limit.
1633 limit
= min(limit
, memsw
);
1639 static void mem_cgroup_out_of_memory(struct mem_cgroup
*memcg
, gfp_t gfp_mask
,
1642 struct mem_cgroup
*iter
;
1643 unsigned long chosen_points
= 0;
1644 unsigned long totalpages
;
1645 unsigned int points
= 0;
1646 struct task_struct
*chosen
= NULL
;
1649 * If current has a pending SIGKILL, then automatically select it. The
1650 * goal is to allow it to allocate so that it may quickly exit and free
1653 if (fatal_signal_pending(current
)) {
1654 set_thread_flag(TIF_MEMDIE
);
1658 check_panic_on_oom(CONSTRAINT_MEMCG
, gfp_mask
, order
, NULL
);
1659 totalpages
= mem_cgroup_get_limit(memcg
) >> PAGE_SHIFT
? : 1;
1660 for_each_mem_cgroup_tree(iter
, memcg
) {
1661 struct cgroup
*cgroup
= iter
->css
.cgroup
;
1662 struct cgroup_iter it
;
1663 struct task_struct
*task
;
1665 cgroup_iter_start(cgroup
, &it
);
1666 while ((task
= cgroup_iter_next(cgroup
, &it
))) {
1667 switch (oom_scan_process_thread(task
, totalpages
, NULL
,
1669 case OOM_SCAN_SELECT
:
1671 put_task_struct(chosen
);
1673 chosen_points
= ULONG_MAX
;
1674 get_task_struct(chosen
);
1676 case OOM_SCAN_CONTINUE
:
1678 case OOM_SCAN_ABORT
:
1679 cgroup_iter_end(cgroup
, &it
);
1680 mem_cgroup_iter_break(memcg
, iter
);
1682 put_task_struct(chosen
);
1687 points
= oom_badness(task
, memcg
, NULL
, totalpages
);
1688 if (points
> chosen_points
) {
1690 put_task_struct(chosen
);
1692 chosen_points
= points
;
1693 get_task_struct(chosen
);
1696 cgroup_iter_end(cgroup
, &it
);
1701 points
= chosen_points
* 1000 / totalpages
;
1702 oom_kill_process(chosen
, gfp_mask
, order
, points
, totalpages
, memcg
,
1703 NULL
, "Memory cgroup out of memory");
1706 static unsigned long mem_cgroup_reclaim(struct mem_cgroup
*memcg
,
1708 unsigned long flags
)
1710 unsigned long total
= 0;
1711 bool noswap
= false;
1714 if (flags
& MEM_CGROUP_RECLAIM_NOSWAP
)
1716 if (!(flags
& MEM_CGROUP_RECLAIM_SHRINK
) && memcg
->memsw_is_minimum
)
1719 for (loop
= 0; loop
< MEM_CGROUP_MAX_RECLAIM_LOOPS
; loop
++) {
1721 drain_all_stock_async(memcg
);
1722 total
+= try_to_free_mem_cgroup_pages(memcg
, gfp_mask
, noswap
);
1724 * Allow limit shrinkers, which are triggered directly
1725 * by userspace, to catch signals and stop reclaim
1726 * after minimal progress, regardless of the margin.
1728 if (total
&& (flags
& MEM_CGROUP_RECLAIM_SHRINK
))
1730 if (mem_cgroup_margin(memcg
))
1733 * If nothing was reclaimed after two attempts, there
1734 * may be no reclaimable pages in this hierarchy.
1743 * test_mem_cgroup_node_reclaimable
1744 * @memcg: the target memcg
1745 * @nid: the node ID to be checked.
1746 * @noswap : specify true here if the user wants flle only information.
1748 * This function returns whether the specified memcg contains any
1749 * reclaimable pages on a node. Returns true if there are any reclaimable
1750 * pages in the node.
1752 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup
*memcg
,
1753 int nid
, bool noswap
)
1755 if (mem_cgroup_node_nr_lru_pages(memcg
, nid
, LRU_ALL_FILE
))
1757 if (noswap
|| !total_swap_pages
)
1759 if (mem_cgroup_node_nr_lru_pages(memcg
, nid
, LRU_ALL_ANON
))
1764 #if MAX_NUMNODES > 1
1767 * Always updating the nodemask is not very good - even if we have an empty
1768 * list or the wrong list here, we can start from some node and traverse all
1769 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1772 static void mem_cgroup_may_update_nodemask(struct mem_cgroup
*memcg
)
1776 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1777 * pagein/pageout changes since the last update.
1779 if (!atomic_read(&memcg
->numainfo_events
))
1781 if (atomic_inc_return(&memcg
->numainfo_updating
) > 1)
1784 /* make a nodemask where this memcg uses memory from */
1785 memcg
->scan_nodes
= node_states
[N_MEMORY
];
1787 for_each_node_mask(nid
, node_states
[N_MEMORY
]) {
1789 if (!test_mem_cgroup_node_reclaimable(memcg
, nid
, false))
1790 node_clear(nid
, memcg
->scan_nodes
);
1793 atomic_set(&memcg
->numainfo_events
, 0);
1794 atomic_set(&memcg
->numainfo_updating
, 0);
1798 * Selecting a node where we start reclaim from. Because what we need is just
1799 * reducing usage counter, start from anywhere is O,K. Considering
1800 * memory reclaim from current node, there are pros. and cons.
1802 * Freeing memory from current node means freeing memory from a node which
1803 * we'll use or we've used. So, it may make LRU bad. And if several threads
1804 * hit limits, it will see a contention on a node. But freeing from remote
1805 * node means more costs for memory reclaim because of memory latency.
1807 * Now, we use round-robin. Better algorithm is welcomed.
1809 int mem_cgroup_select_victim_node(struct mem_cgroup
*memcg
)
1813 mem_cgroup_may_update_nodemask(memcg
);
1814 node
= memcg
->last_scanned_node
;
1816 node
= next_node(node
, memcg
->scan_nodes
);
1817 if (node
== MAX_NUMNODES
)
1818 node
= first_node(memcg
->scan_nodes
);
1820 * We call this when we hit limit, not when pages are added to LRU.
1821 * No LRU may hold pages because all pages are UNEVICTABLE or
1822 * memcg is too small and all pages are not on LRU. In that case,
1823 * we use curret node.
1825 if (unlikely(node
== MAX_NUMNODES
))
1826 node
= numa_node_id();
1828 memcg
->last_scanned_node
= node
;
1833 * Check all nodes whether it contains reclaimable pages or not.
1834 * For quick scan, we make use of scan_nodes. This will allow us to skip
1835 * unused nodes. But scan_nodes is lazily updated and may not cotain
1836 * enough new information. We need to do double check.
1838 static bool mem_cgroup_reclaimable(struct mem_cgroup
*memcg
, bool noswap
)
1843 * quick check...making use of scan_node.
1844 * We can skip unused nodes.
1846 if (!nodes_empty(memcg
->scan_nodes
)) {
1847 for (nid
= first_node(memcg
->scan_nodes
);
1849 nid
= next_node(nid
, memcg
->scan_nodes
)) {
1851 if (test_mem_cgroup_node_reclaimable(memcg
, nid
, noswap
))
1856 * Check rest of nodes.
1858 for_each_node_state(nid
, N_MEMORY
) {
1859 if (node_isset(nid
, memcg
->scan_nodes
))
1861 if (test_mem_cgroup_node_reclaimable(memcg
, nid
, noswap
))
1868 int mem_cgroup_select_victim_node(struct mem_cgroup
*memcg
)
1873 static bool mem_cgroup_reclaimable(struct mem_cgroup
*memcg
, bool noswap
)
1875 return test_mem_cgroup_node_reclaimable(memcg
, 0, noswap
);
1879 static int mem_cgroup_soft_reclaim(struct mem_cgroup
*root_memcg
,
1882 unsigned long *total_scanned
)
1884 struct mem_cgroup
*victim
= NULL
;
1887 unsigned long excess
;
1888 unsigned long nr_scanned
;
1889 struct mem_cgroup_reclaim_cookie reclaim
= {
1894 excess
= res_counter_soft_limit_excess(&root_memcg
->res
) >> PAGE_SHIFT
;
1897 victim
= mem_cgroup_iter(root_memcg
, victim
, &reclaim
);
1902 * If we have not been able to reclaim
1903 * anything, it might because there are
1904 * no reclaimable pages under this hierarchy
1909 * We want to do more targeted reclaim.
1910 * excess >> 2 is not to excessive so as to
1911 * reclaim too much, nor too less that we keep
1912 * coming back to reclaim from this cgroup
1914 if (total
>= (excess
>> 2) ||
1915 (loop
> MEM_CGROUP_MAX_RECLAIM_LOOPS
))
1920 if (!mem_cgroup_reclaimable(victim
, false))
1922 total
+= mem_cgroup_shrink_node_zone(victim
, gfp_mask
, false,
1924 *total_scanned
+= nr_scanned
;
1925 if (!res_counter_soft_limit_excess(&root_memcg
->res
))
1928 mem_cgroup_iter_break(root_memcg
, victim
);
1933 * Check OOM-Killer is already running under our hierarchy.
1934 * If someone is running, return false.
1935 * Has to be called with memcg_oom_lock
1937 static bool mem_cgroup_oom_lock(struct mem_cgroup
*memcg
)
1939 struct mem_cgroup
*iter
, *failed
= NULL
;
1941 for_each_mem_cgroup_tree(iter
, memcg
) {
1942 if (iter
->oom_lock
) {
1944 * this subtree of our hierarchy is already locked
1945 * so we cannot give a lock.
1948 mem_cgroup_iter_break(memcg
, iter
);
1951 iter
->oom_lock
= true;
1958 * OK, we failed to lock the whole subtree so we have to clean up
1959 * what we set up to the failing subtree
1961 for_each_mem_cgroup_tree(iter
, memcg
) {
1962 if (iter
== failed
) {
1963 mem_cgroup_iter_break(memcg
, iter
);
1966 iter
->oom_lock
= false;
1972 * Has to be called with memcg_oom_lock
1974 static int mem_cgroup_oom_unlock(struct mem_cgroup
*memcg
)
1976 struct mem_cgroup
*iter
;
1978 for_each_mem_cgroup_tree(iter
, memcg
)
1979 iter
->oom_lock
= false;
1983 static void mem_cgroup_mark_under_oom(struct mem_cgroup
*memcg
)
1985 struct mem_cgroup
*iter
;
1987 for_each_mem_cgroup_tree(iter
, memcg
)
1988 atomic_inc(&iter
->under_oom
);
1991 static void mem_cgroup_unmark_under_oom(struct mem_cgroup
*memcg
)
1993 struct mem_cgroup
*iter
;
1996 * When a new child is created while the hierarchy is under oom,
1997 * mem_cgroup_oom_lock() may not be called. We have to use
1998 * atomic_add_unless() here.
2000 for_each_mem_cgroup_tree(iter
, memcg
)
2001 atomic_add_unless(&iter
->under_oom
, -1, 0);
2004 static DEFINE_SPINLOCK(memcg_oom_lock
);
2005 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq
);
2007 struct oom_wait_info
{
2008 struct mem_cgroup
*memcg
;
2012 static int memcg_oom_wake_function(wait_queue_t
*wait
,
2013 unsigned mode
, int sync
, void *arg
)
2015 struct mem_cgroup
*wake_memcg
= (struct mem_cgroup
*)arg
;
2016 struct mem_cgroup
*oom_wait_memcg
;
2017 struct oom_wait_info
*oom_wait_info
;
2019 oom_wait_info
= container_of(wait
, struct oom_wait_info
, wait
);
2020 oom_wait_memcg
= oom_wait_info
->memcg
;
2023 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
2024 * Then we can use css_is_ancestor without taking care of RCU.
2026 if (!mem_cgroup_same_or_subtree(oom_wait_memcg
, wake_memcg
)
2027 && !mem_cgroup_same_or_subtree(wake_memcg
, oom_wait_memcg
))
2029 return autoremove_wake_function(wait
, mode
, sync
, arg
);
2032 static void memcg_wakeup_oom(struct mem_cgroup
*memcg
)
2034 /* for filtering, pass "memcg" as argument. */
2035 __wake_up(&memcg_oom_waitq
, TASK_NORMAL
, 0, memcg
);
2038 static void memcg_oom_recover(struct mem_cgroup
*memcg
)
2040 if (memcg
&& atomic_read(&memcg
->under_oom
))
2041 memcg_wakeup_oom(memcg
);
2045 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
2047 static bool mem_cgroup_handle_oom(struct mem_cgroup
*memcg
, gfp_t mask
,
2050 struct oom_wait_info owait
;
2051 bool locked
, need_to_kill
;
2053 owait
.memcg
= memcg
;
2054 owait
.wait
.flags
= 0;
2055 owait
.wait
.func
= memcg_oom_wake_function
;
2056 owait
.wait
.private = current
;
2057 INIT_LIST_HEAD(&owait
.wait
.task_list
);
2058 need_to_kill
= true;
2059 mem_cgroup_mark_under_oom(memcg
);
2061 /* At first, try to OOM lock hierarchy under memcg.*/
2062 spin_lock(&memcg_oom_lock
);
2063 locked
= mem_cgroup_oom_lock(memcg
);
2065 * Even if signal_pending(), we can't quit charge() loop without
2066 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
2067 * under OOM is always welcomed, use TASK_KILLABLE here.
2069 prepare_to_wait(&memcg_oom_waitq
, &owait
.wait
, TASK_KILLABLE
);
2070 if (!locked
|| memcg
->oom_kill_disable
)
2071 need_to_kill
= false;
2073 mem_cgroup_oom_notify(memcg
);
2074 spin_unlock(&memcg_oom_lock
);
2077 finish_wait(&memcg_oom_waitq
, &owait
.wait
);
2078 mem_cgroup_out_of_memory(memcg
, mask
, order
);
2081 finish_wait(&memcg_oom_waitq
, &owait
.wait
);
2083 spin_lock(&memcg_oom_lock
);
2085 mem_cgroup_oom_unlock(memcg
);
2086 memcg_wakeup_oom(memcg
);
2087 spin_unlock(&memcg_oom_lock
);
2089 mem_cgroup_unmark_under_oom(memcg
);
2091 if (test_thread_flag(TIF_MEMDIE
) || fatal_signal_pending(current
))
2093 /* Give chance to dying process */
2094 schedule_timeout_uninterruptible(1);
2099 * Currently used to update mapped file statistics, but the routine can be
2100 * generalized to update other statistics as well.
2102 * Notes: Race condition
2104 * We usually use page_cgroup_lock() for accessing page_cgroup member but
2105 * it tends to be costly. But considering some conditions, we doesn't need
2106 * to do so _always_.
2108 * Considering "charge", lock_page_cgroup() is not required because all
2109 * file-stat operations happen after a page is attached to radix-tree. There
2110 * are no race with "charge".
2112 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2113 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2114 * if there are race with "uncharge". Statistics itself is properly handled
2117 * Considering "move", this is an only case we see a race. To make the race
2118 * small, we check mm->moving_account and detect there are possibility of race
2119 * If there is, we take a lock.
2122 void __mem_cgroup_begin_update_page_stat(struct page
*page
,
2123 bool *locked
, unsigned long *flags
)
2125 struct mem_cgroup
*memcg
;
2126 struct page_cgroup
*pc
;
2128 pc
= lookup_page_cgroup(page
);
2130 memcg
= pc
->mem_cgroup
;
2131 if (unlikely(!memcg
|| !PageCgroupUsed(pc
)))
2134 * If this memory cgroup is not under account moving, we don't
2135 * need to take move_lock_mem_cgroup(). Because we already hold
2136 * rcu_read_lock(), any calls to move_account will be delayed until
2137 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2139 if (!mem_cgroup_stolen(memcg
))
2142 move_lock_mem_cgroup(memcg
, flags
);
2143 if (memcg
!= pc
->mem_cgroup
|| !PageCgroupUsed(pc
)) {
2144 move_unlock_mem_cgroup(memcg
, flags
);
2150 void __mem_cgroup_end_update_page_stat(struct page
*page
, unsigned long *flags
)
2152 struct page_cgroup
*pc
= lookup_page_cgroup(page
);
2155 * It's guaranteed that pc->mem_cgroup never changes while
2156 * lock is held because a routine modifies pc->mem_cgroup
2157 * should take move_lock_mem_cgroup().
2159 move_unlock_mem_cgroup(pc
->mem_cgroup
, flags
);
2162 void mem_cgroup_update_page_stat(struct page
*page
,
2163 enum mem_cgroup_page_stat_item idx
, int val
)
2165 struct mem_cgroup
*memcg
;
2166 struct page_cgroup
*pc
= lookup_page_cgroup(page
);
2167 unsigned long uninitialized_var(flags
);
2169 if (mem_cgroup_disabled())
2172 memcg
= pc
->mem_cgroup
;
2173 if (unlikely(!memcg
|| !PageCgroupUsed(pc
)))
2177 case MEMCG_NR_FILE_MAPPED
:
2178 idx
= MEM_CGROUP_STAT_FILE_MAPPED
;
2184 this_cpu_add(memcg
->stat
->count
[idx
], val
);
2188 * size of first charge trial. "32" comes from vmscan.c's magic value.
2189 * TODO: maybe necessary to use big numbers in big irons.
2191 #define CHARGE_BATCH 32U
2192 struct memcg_stock_pcp
{
2193 struct mem_cgroup
*cached
; /* this never be root cgroup */
2194 unsigned int nr_pages
;
2195 struct work_struct work
;
2196 unsigned long flags
;
2197 #define FLUSHING_CACHED_CHARGE 0
2199 static DEFINE_PER_CPU(struct memcg_stock_pcp
, memcg_stock
);
2200 static DEFINE_MUTEX(percpu_charge_mutex
);
2203 * consume_stock: Try to consume stocked charge on this cpu.
2204 * @memcg: memcg to consume from.
2205 * @nr_pages: how many pages to charge.
2207 * The charges will only happen if @memcg matches the current cpu's memcg
2208 * stock, and at least @nr_pages are available in that stock. Failure to
2209 * service an allocation will refill the stock.
2211 * returns true if successful, false otherwise.
2213 static bool consume_stock(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
2215 struct memcg_stock_pcp
*stock
;
2218 if (nr_pages
> CHARGE_BATCH
)
2221 stock
= &get_cpu_var(memcg_stock
);
2222 if (memcg
== stock
->cached
&& stock
->nr_pages
>= nr_pages
)
2223 stock
->nr_pages
-= nr_pages
;
2224 else /* need to call res_counter_charge */
2226 put_cpu_var(memcg_stock
);
2231 * Returns stocks cached in percpu to res_counter and reset cached information.
2233 static void drain_stock(struct memcg_stock_pcp
*stock
)
2235 struct mem_cgroup
*old
= stock
->cached
;
2237 if (stock
->nr_pages
) {
2238 unsigned long bytes
= stock
->nr_pages
* PAGE_SIZE
;
2240 res_counter_uncharge(&old
->res
, bytes
);
2241 if (do_swap_account
)
2242 res_counter_uncharge(&old
->memsw
, bytes
);
2243 stock
->nr_pages
= 0;
2245 stock
->cached
= NULL
;
2249 * This must be called under preempt disabled or must be called by
2250 * a thread which is pinned to local cpu.
2252 static void drain_local_stock(struct work_struct
*dummy
)
2254 struct memcg_stock_pcp
*stock
= &__get_cpu_var(memcg_stock
);
2256 clear_bit(FLUSHING_CACHED_CHARGE
, &stock
->flags
);
2260 * Cache charges(val) which is from res_counter, to local per_cpu area.
2261 * This will be consumed by consume_stock() function, later.
2263 static void refill_stock(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
2265 struct memcg_stock_pcp
*stock
= &get_cpu_var(memcg_stock
);
2267 if (stock
->cached
!= memcg
) { /* reset if necessary */
2269 stock
->cached
= memcg
;
2271 stock
->nr_pages
+= nr_pages
;
2272 put_cpu_var(memcg_stock
);
2276 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2277 * of the hierarchy under it. sync flag says whether we should block
2278 * until the work is done.
2280 static void drain_all_stock(struct mem_cgroup
*root_memcg
, bool sync
)
2284 /* Notify other cpus that system-wide "drain" is running */
2287 for_each_online_cpu(cpu
) {
2288 struct memcg_stock_pcp
*stock
= &per_cpu(memcg_stock
, cpu
);
2289 struct mem_cgroup
*memcg
;
2291 memcg
= stock
->cached
;
2292 if (!memcg
|| !stock
->nr_pages
)
2294 if (!mem_cgroup_same_or_subtree(root_memcg
, memcg
))
2296 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE
, &stock
->flags
)) {
2298 drain_local_stock(&stock
->work
);
2300 schedule_work_on(cpu
, &stock
->work
);
2308 for_each_online_cpu(cpu
) {
2309 struct memcg_stock_pcp
*stock
= &per_cpu(memcg_stock
, cpu
);
2310 if (test_bit(FLUSHING_CACHED_CHARGE
, &stock
->flags
))
2311 flush_work(&stock
->work
);
2318 * Tries to drain stocked charges in other cpus. This function is asynchronous
2319 * and just put a work per cpu for draining localy on each cpu. Caller can
2320 * expects some charges will be back to res_counter later but cannot wait for
2323 static void drain_all_stock_async(struct mem_cgroup
*root_memcg
)
2326 * If someone calls draining, avoid adding more kworker runs.
2328 if (!mutex_trylock(&percpu_charge_mutex
))
2330 drain_all_stock(root_memcg
, false);
2331 mutex_unlock(&percpu_charge_mutex
);
2334 /* This is a synchronous drain interface. */
2335 static void drain_all_stock_sync(struct mem_cgroup
*root_memcg
)
2337 /* called when force_empty is called */
2338 mutex_lock(&percpu_charge_mutex
);
2339 drain_all_stock(root_memcg
, true);
2340 mutex_unlock(&percpu_charge_mutex
);
2344 * This function drains percpu counter value from DEAD cpu and
2345 * move it to local cpu. Note that this function can be preempted.
2347 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup
*memcg
, int cpu
)
2351 spin_lock(&memcg
->pcp_counter_lock
);
2352 for (i
= 0; i
< MEM_CGROUP_STAT_NSTATS
; i
++) {
2353 long x
= per_cpu(memcg
->stat
->count
[i
], cpu
);
2355 per_cpu(memcg
->stat
->count
[i
], cpu
) = 0;
2356 memcg
->nocpu_base
.count
[i
] += x
;
2358 for (i
= 0; i
< MEM_CGROUP_EVENTS_NSTATS
; i
++) {
2359 unsigned long x
= per_cpu(memcg
->stat
->events
[i
], cpu
);
2361 per_cpu(memcg
->stat
->events
[i
], cpu
) = 0;
2362 memcg
->nocpu_base
.events
[i
] += x
;
2364 spin_unlock(&memcg
->pcp_counter_lock
);
2367 static int __cpuinit
memcg_cpu_hotplug_callback(struct notifier_block
*nb
,
2368 unsigned long action
,
2371 int cpu
= (unsigned long)hcpu
;
2372 struct memcg_stock_pcp
*stock
;
2373 struct mem_cgroup
*iter
;
2375 if (action
== CPU_ONLINE
)
2378 if (action
!= CPU_DEAD
&& action
!= CPU_DEAD_FROZEN
)
2381 for_each_mem_cgroup(iter
)
2382 mem_cgroup_drain_pcp_counter(iter
, cpu
);
2384 stock
= &per_cpu(memcg_stock
, cpu
);
2390 /* See __mem_cgroup_try_charge() for details */
2392 CHARGE_OK
, /* success */
2393 CHARGE_RETRY
, /* need to retry but retry is not bad */
2394 CHARGE_NOMEM
, /* we can't do more. return -ENOMEM */
2395 CHARGE_WOULDBLOCK
, /* GFP_WAIT wasn't set and no enough res. */
2396 CHARGE_OOM_DIE
, /* the current is killed because of OOM */
2399 static int mem_cgroup_do_charge(struct mem_cgroup
*memcg
, gfp_t gfp_mask
,
2400 unsigned int nr_pages
, unsigned int min_pages
,
2403 unsigned long csize
= nr_pages
* PAGE_SIZE
;
2404 struct mem_cgroup
*mem_over_limit
;
2405 struct res_counter
*fail_res
;
2406 unsigned long flags
= 0;
2409 ret
= res_counter_charge(&memcg
->res
, csize
, &fail_res
);
2412 if (!do_swap_account
)
2414 ret
= res_counter_charge(&memcg
->memsw
, csize
, &fail_res
);
2418 res_counter_uncharge(&memcg
->res
, csize
);
2419 mem_over_limit
= mem_cgroup_from_res_counter(fail_res
, memsw
);
2420 flags
|= MEM_CGROUP_RECLAIM_NOSWAP
;
2422 mem_over_limit
= mem_cgroup_from_res_counter(fail_res
, res
);
2424 * Never reclaim on behalf of optional batching, retry with a
2425 * single page instead.
2427 if (nr_pages
> min_pages
)
2428 return CHARGE_RETRY
;
2430 if (!(gfp_mask
& __GFP_WAIT
))
2431 return CHARGE_WOULDBLOCK
;
2433 if (gfp_mask
& __GFP_NORETRY
)
2434 return CHARGE_NOMEM
;
2436 ret
= mem_cgroup_reclaim(mem_over_limit
, gfp_mask
, flags
);
2437 if (mem_cgroup_margin(mem_over_limit
) >= nr_pages
)
2438 return CHARGE_RETRY
;
2440 * Even though the limit is exceeded at this point, reclaim
2441 * may have been able to free some pages. Retry the charge
2442 * before killing the task.
2444 * Only for regular pages, though: huge pages are rather
2445 * unlikely to succeed so close to the limit, and we fall back
2446 * to regular pages anyway in case of failure.
2448 if (nr_pages
<= (1 << PAGE_ALLOC_COSTLY_ORDER
) && ret
)
2449 return CHARGE_RETRY
;
2452 * At task move, charge accounts can be doubly counted. So, it's
2453 * better to wait until the end of task_move if something is going on.
2455 if (mem_cgroup_wait_acct_move(mem_over_limit
))
2456 return CHARGE_RETRY
;
2458 /* If we don't need to call oom-killer at el, return immediately */
2460 return CHARGE_NOMEM
;
2462 if (!mem_cgroup_handle_oom(mem_over_limit
, gfp_mask
, get_order(csize
)))
2463 return CHARGE_OOM_DIE
;
2465 return CHARGE_RETRY
;
2469 * __mem_cgroup_try_charge() does
2470 * 1. detect memcg to be charged against from passed *mm and *ptr,
2471 * 2. update res_counter
2472 * 3. call memory reclaim if necessary.
2474 * In some special case, if the task is fatal, fatal_signal_pending() or
2475 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2476 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2477 * as possible without any hazards. 2: all pages should have a valid
2478 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2479 * pointer, that is treated as a charge to root_mem_cgroup.
2481 * So __mem_cgroup_try_charge() will return
2482 * 0 ... on success, filling *ptr with a valid memcg pointer.
2483 * -ENOMEM ... charge failure because of resource limits.
2484 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2486 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2487 * the oom-killer can be invoked.
2489 static int __mem_cgroup_try_charge(struct mm_struct
*mm
,
2491 unsigned int nr_pages
,
2492 struct mem_cgroup
**ptr
,
2495 unsigned int batch
= max(CHARGE_BATCH
, nr_pages
);
2496 int nr_oom_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
2497 struct mem_cgroup
*memcg
= NULL
;
2501 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2502 * in system level. So, allow to go ahead dying process in addition to
2505 if (unlikely(test_thread_flag(TIF_MEMDIE
)
2506 || fatal_signal_pending(current
)))
2510 * We always charge the cgroup the mm_struct belongs to.
2511 * The mm_struct's mem_cgroup changes on task migration if the
2512 * thread group leader migrates. It's possible that mm is not
2513 * set, if so charge the root memcg (happens for pagecache usage).
2516 *ptr
= root_mem_cgroup
;
2518 if (*ptr
) { /* css should be a valid one */
2520 if (mem_cgroup_is_root(memcg
))
2522 if (consume_stock(memcg
, nr_pages
))
2524 css_get(&memcg
->css
);
2526 struct task_struct
*p
;
2529 p
= rcu_dereference(mm
->owner
);
2531 * Because we don't have task_lock(), "p" can exit.
2532 * In that case, "memcg" can point to root or p can be NULL with
2533 * race with swapoff. Then, we have small risk of mis-accouning.
2534 * But such kind of mis-account by race always happens because
2535 * we don't have cgroup_mutex(). It's overkill and we allo that
2537 * (*) swapoff at el will charge against mm-struct not against
2538 * task-struct. So, mm->owner can be NULL.
2540 memcg
= mem_cgroup_from_task(p
);
2542 memcg
= root_mem_cgroup
;
2543 if (mem_cgroup_is_root(memcg
)) {
2547 if (consume_stock(memcg
, nr_pages
)) {
2549 * It seems dagerous to access memcg without css_get().
2550 * But considering how consume_stok works, it's not
2551 * necessary. If consume_stock success, some charges
2552 * from this memcg are cached on this cpu. So, we
2553 * don't need to call css_get()/css_tryget() before
2554 * calling consume_stock().
2559 /* after here, we may be blocked. we need to get refcnt */
2560 if (!css_tryget(&memcg
->css
)) {
2570 /* If killed, bypass charge */
2571 if (fatal_signal_pending(current
)) {
2572 css_put(&memcg
->css
);
2577 if (oom
&& !nr_oom_retries
) {
2579 nr_oom_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
2582 ret
= mem_cgroup_do_charge(memcg
, gfp_mask
, batch
, nr_pages
,
2587 case CHARGE_RETRY
: /* not in OOM situation but retry */
2589 css_put(&memcg
->css
);
2592 case CHARGE_WOULDBLOCK
: /* !__GFP_WAIT */
2593 css_put(&memcg
->css
);
2595 case CHARGE_NOMEM
: /* OOM routine works */
2597 css_put(&memcg
->css
);
2600 /* If oom, we never return -ENOMEM */
2603 case CHARGE_OOM_DIE
: /* Killed by OOM Killer */
2604 css_put(&memcg
->css
);
2607 } while (ret
!= CHARGE_OK
);
2609 if (batch
> nr_pages
)
2610 refill_stock(memcg
, batch
- nr_pages
);
2611 css_put(&memcg
->css
);
2619 *ptr
= root_mem_cgroup
;
2624 * Somemtimes we have to undo a charge we got by try_charge().
2625 * This function is for that and do uncharge, put css's refcnt.
2626 * gotten by try_charge().
2628 static void __mem_cgroup_cancel_charge(struct mem_cgroup
*memcg
,
2629 unsigned int nr_pages
)
2631 if (!mem_cgroup_is_root(memcg
)) {
2632 unsigned long bytes
= nr_pages
* PAGE_SIZE
;
2634 res_counter_uncharge(&memcg
->res
, bytes
);
2635 if (do_swap_account
)
2636 res_counter_uncharge(&memcg
->memsw
, bytes
);
2641 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2642 * This is useful when moving usage to parent cgroup.
2644 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup
*memcg
,
2645 unsigned int nr_pages
)
2647 unsigned long bytes
= nr_pages
* PAGE_SIZE
;
2649 if (mem_cgroup_is_root(memcg
))
2652 res_counter_uncharge_until(&memcg
->res
, memcg
->res
.parent
, bytes
);
2653 if (do_swap_account
)
2654 res_counter_uncharge_until(&memcg
->memsw
,
2655 memcg
->memsw
.parent
, bytes
);
2659 * A helper function to get mem_cgroup from ID. must be called under
2660 * rcu_read_lock(). The caller is responsible for calling css_tryget if
2661 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2662 * called against removed memcg.)
2664 static struct mem_cgroup
*mem_cgroup_lookup(unsigned short id
)
2666 struct cgroup_subsys_state
*css
;
2668 /* ID 0 is unused ID */
2671 css
= css_lookup(&mem_cgroup_subsys
, id
);
2674 return mem_cgroup_from_css(css
);
2677 struct mem_cgroup
*try_get_mem_cgroup_from_page(struct page
*page
)
2679 struct mem_cgroup
*memcg
= NULL
;
2680 struct page_cgroup
*pc
;
2684 VM_BUG_ON(!PageLocked(page
));
2686 pc
= lookup_page_cgroup(page
);
2687 lock_page_cgroup(pc
);
2688 if (PageCgroupUsed(pc
)) {
2689 memcg
= pc
->mem_cgroup
;
2690 if (memcg
&& !css_tryget(&memcg
->css
))
2692 } else if (PageSwapCache(page
)) {
2693 ent
.val
= page_private(page
);
2694 id
= lookup_swap_cgroup_id(ent
);
2696 memcg
= mem_cgroup_lookup(id
);
2697 if (memcg
&& !css_tryget(&memcg
->css
))
2701 unlock_page_cgroup(pc
);
2705 static void __mem_cgroup_commit_charge(struct mem_cgroup
*memcg
,
2707 unsigned int nr_pages
,
2708 enum charge_type ctype
,
2711 struct page_cgroup
*pc
= lookup_page_cgroup(page
);
2712 struct zone
*uninitialized_var(zone
);
2713 struct lruvec
*lruvec
;
2714 bool was_on_lru
= false;
2717 lock_page_cgroup(pc
);
2718 VM_BUG_ON(PageCgroupUsed(pc
));
2720 * we don't need page_cgroup_lock about tail pages, becase they are not
2721 * accessed by any other context at this point.
2725 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2726 * may already be on some other mem_cgroup's LRU. Take care of it.
2729 zone
= page_zone(page
);
2730 spin_lock_irq(&zone
->lru_lock
);
2731 if (PageLRU(page
)) {
2732 lruvec
= mem_cgroup_zone_lruvec(zone
, pc
->mem_cgroup
);
2734 del_page_from_lru_list(page
, lruvec
, page_lru(page
));
2739 pc
->mem_cgroup
= memcg
;
2741 * We access a page_cgroup asynchronously without lock_page_cgroup().
2742 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2743 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2744 * before USED bit, we need memory barrier here.
2745 * See mem_cgroup_add_lru_list(), etc.
2748 SetPageCgroupUsed(pc
);
2752 lruvec
= mem_cgroup_zone_lruvec(zone
, pc
->mem_cgroup
);
2753 VM_BUG_ON(PageLRU(page
));
2755 add_page_to_lru_list(page
, lruvec
, page_lru(page
));
2757 spin_unlock_irq(&zone
->lru_lock
);
2760 if (ctype
== MEM_CGROUP_CHARGE_TYPE_ANON
)
2765 mem_cgroup_charge_statistics(memcg
, anon
, nr_pages
);
2766 unlock_page_cgroup(pc
);
2769 * "charge_statistics" updated event counter. Then, check it.
2770 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2771 * if they exceeds softlimit.
2773 memcg_check_events(memcg
, page
);
2776 static DEFINE_MUTEX(set_limit_mutex
);
2778 #ifdef CONFIG_MEMCG_KMEM
2779 static inline bool memcg_can_account_kmem(struct mem_cgroup
*memcg
)
2781 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg
) &&
2782 (memcg
->kmem_account_flags
& KMEM_ACCOUNTED_MASK
);
2786 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2787 * in the memcg_cache_params struct.
2789 static struct kmem_cache
*memcg_params_to_cache(struct memcg_cache_params
*p
)
2791 struct kmem_cache
*cachep
;
2793 VM_BUG_ON(p
->is_root_cache
);
2794 cachep
= p
->root_cache
;
2795 return cachep
->memcg_params
->memcg_caches
[memcg_cache_id(p
->memcg
)];
2798 #ifdef CONFIG_SLABINFO
2799 static int mem_cgroup_slabinfo_read(struct cgroup
*cont
, struct cftype
*cft
,
2802 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cont
);
2803 struct memcg_cache_params
*params
;
2805 if (!memcg_can_account_kmem(memcg
))
2808 print_slabinfo_header(m
);
2810 mutex_lock(&memcg
->slab_caches_mutex
);
2811 list_for_each_entry(params
, &memcg
->memcg_slab_caches
, list
)
2812 cache_show(memcg_params_to_cache(params
), m
);
2813 mutex_unlock(&memcg
->slab_caches_mutex
);
2819 static int memcg_charge_kmem(struct mem_cgroup
*memcg
, gfp_t gfp
, u64 size
)
2821 struct res_counter
*fail_res
;
2822 struct mem_cgroup
*_memcg
;
2826 ret
= res_counter_charge(&memcg
->kmem
, size
, &fail_res
);
2831 * Conditions under which we can wait for the oom_killer. Those are
2832 * the same conditions tested by the core page allocator
2834 may_oom
= (gfp
& __GFP_FS
) && !(gfp
& __GFP_NORETRY
);
2837 ret
= __mem_cgroup_try_charge(NULL
, gfp
, size
>> PAGE_SHIFT
,
2840 if (ret
== -EINTR
) {
2842 * __mem_cgroup_try_charge() chosed to bypass to root due to
2843 * OOM kill or fatal signal. Since our only options are to
2844 * either fail the allocation or charge it to this cgroup, do
2845 * it as a temporary condition. But we can't fail. From a
2846 * kmem/slab perspective, the cache has already been selected,
2847 * by mem_cgroup_kmem_get_cache(), so it is too late to change
2850 * This condition will only trigger if the task entered
2851 * memcg_charge_kmem in a sane state, but was OOM-killed during
2852 * __mem_cgroup_try_charge() above. Tasks that were already
2853 * dying when the allocation triggers should have been already
2854 * directed to the root cgroup in memcontrol.h
2856 res_counter_charge_nofail(&memcg
->res
, size
, &fail_res
);
2857 if (do_swap_account
)
2858 res_counter_charge_nofail(&memcg
->memsw
, size
,
2862 res_counter_uncharge(&memcg
->kmem
, size
);
2867 static void memcg_uncharge_kmem(struct mem_cgroup
*memcg
, u64 size
)
2869 res_counter_uncharge(&memcg
->res
, size
);
2870 if (do_swap_account
)
2871 res_counter_uncharge(&memcg
->memsw
, size
);
2874 if (res_counter_uncharge(&memcg
->kmem
, size
))
2877 if (memcg_kmem_test_and_clear_dead(memcg
))
2878 mem_cgroup_put(memcg
);
2881 void memcg_cache_list_add(struct mem_cgroup
*memcg
, struct kmem_cache
*cachep
)
2886 mutex_lock(&memcg
->slab_caches_mutex
);
2887 list_add(&cachep
->memcg_params
->list
, &memcg
->memcg_slab_caches
);
2888 mutex_unlock(&memcg
->slab_caches_mutex
);
2892 * helper for acessing a memcg's index. It will be used as an index in the
2893 * child cache array in kmem_cache, and also to derive its name. This function
2894 * will return -1 when this is not a kmem-limited memcg.
2896 int memcg_cache_id(struct mem_cgroup
*memcg
)
2898 return memcg
? memcg
->kmemcg_id
: -1;
2902 * This ends up being protected by the set_limit mutex, during normal
2903 * operation, because that is its main call site.
2905 * But when we create a new cache, we can call this as well if its parent
2906 * is kmem-limited. That will have to hold set_limit_mutex as well.
2908 int memcg_update_cache_sizes(struct mem_cgroup
*memcg
)
2912 num
= ida_simple_get(&kmem_limited_groups
,
2913 0, MEMCG_CACHES_MAX_SIZE
, GFP_KERNEL
);
2917 * After this point, kmem_accounted (that we test atomically in
2918 * the beginning of this conditional), is no longer 0. This
2919 * guarantees only one process will set the following boolean
2920 * to true. We don't need test_and_set because we're protected
2921 * by the set_limit_mutex anyway.
2923 memcg_kmem_set_activated(memcg
);
2925 ret
= memcg_update_all_caches(num
+1);
2927 ida_simple_remove(&kmem_limited_groups
, num
);
2928 memcg_kmem_clear_activated(memcg
);
2932 memcg
->kmemcg_id
= num
;
2933 INIT_LIST_HEAD(&memcg
->memcg_slab_caches
);
2934 mutex_init(&memcg
->slab_caches_mutex
);
2938 static size_t memcg_caches_array_size(int num_groups
)
2941 if (num_groups
<= 0)
2944 size
= 2 * num_groups
;
2945 if (size
< MEMCG_CACHES_MIN_SIZE
)
2946 size
= MEMCG_CACHES_MIN_SIZE
;
2947 else if (size
> MEMCG_CACHES_MAX_SIZE
)
2948 size
= MEMCG_CACHES_MAX_SIZE
;
2954 * We should update the current array size iff all caches updates succeed. This
2955 * can only be done from the slab side. The slab mutex needs to be held when
2958 void memcg_update_array_size(int num
)
2960 if (num
> memcg_limited_groups_array_size
)
2961 memcg_limited_groups_array_size
= memcg_caches_array_size(num
);
2964 int memcg_update_cache_size(struct kmem_cache
*s
, int num_groups
)
2966 struct memcg_cache_params
*cur_params
= s
->memcg_params
;
2968 VM_BUG_ON(s
->memcg_params
&& !s
->memcg_params
->is_root_cache
);
2970 if (num_groups
> memcg_limited_groups_array_size
) {
2972 ssize_t size
= memcg_caches_array_size(num_groups
);
2974 size
*= sizeof(void *);
2975 size
+= sizeof(struct memcg_cache_params
);
2977 s
->memcg_params
= kzalloc(size
, GFP_KERNEL
);
2978 if (!s
->memcg_params
) {
2979 s
->memcg_params
= cur_params
;
2983 s
->memcg_params
->is_root_cache
= true;
2986 * There is the chance it will be bigger than
2987 * memcg_limited_groups_array_size, if we failed an allocation
2988 * in a cache, in which case all caches updated before it, will
2989 * have a bigger array.
2991 * But if that is the case, the data after
2992 * memcg_limited_groups_array_size is certainly unused
2994 for (i
= 0; i
< memcg_limited_groups_array_size
; i
++) {
2995 if (!cur_params
->memcg_caches
[i
])
2997 s
->memcg_params
->memcg_caches
[i
] =
2998 cur_params
->memcg_caches
[i
];
3002 * Ideally, we would wait until all caches succeed, and only
3003 * then free the old one. But this is not worth the extra
3004 * pointer per-cache we'd have to have for this.
3006 * It is not a big deal if some caches are left with a size
3007 * bigger than the others. And all updates will reset this
3015 int memcg_register_cache(struct mem_cgroup
*memcg
, struct kmem_cache
*s
,
3016 struct kmem_cache
*root_cache
)
3018 size_t size
= sizeof(struct memcg_cache_params
);
3020 if (!memcg_kmem_enabled())
3024 size
+= memcg_limited_groups_array_size
* sizeof(void *);
3026 s
->memcg_params
= kzalloc(size
, GFP_KERNEL
);
3027 if (!s
->memcg_params
)
3031 s
->memcg_params
->memcg
= memcg
;
3032 s
->memcg_params
->root_cache
= root_cache
;
3034 s
->memcg_params
->is_root_cache
= true;
3039 void memcg_release_cache(struct kmem_cache
*s
)
3041 struct kmem_cache
*root
;
3042 struct mem_cgroup
*memcg
;
3046 * This happens, for instance, when a root cache goes away before we
3049 if (!s
->memcg_params
)
3052 if (s
->memcg_params
->is_root_cache
)
3055 memcg
= s
->memcg_params
->memcg
;
3056 id
= memcg_cache_id(memcg
);
3058 root
= s
->memcg_params
->root_cache
;
3059 root
->memcg_params
->memcg_caches
[id
] = NULL
;
3060 mem_cgroup_put(memcg
);
3062 mutex_lock(&memcg
->slab_caches_mutex
);
3063 list_del(&s
->memcg_params
->list
);
3064 mutex_unlock(&memcg
->slab_caches_mutex
);
3067 kfree(s
->memcg_params
);
3071 * During the creation a new cache, we need to disable our accounting mechanism
3072 * altogether. This is true even if we are not creating, but rather just
3073 * enqueing new caches to be created.
3075 * This is because that process will trigger allocations; some visible, like
3076 * explicit kmallocs to auxiliary data structures, name strings and internal
3077 * cache structures; some well concealed, like INIT_WORK() that can allocate
3078 * objects during debug.
3080 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3081 * to it. This may not be a bounded recursion: since the first cache creation
3082 * failed to complete (waiting on the allocation), we'll just try to create the
3083 * cache again, failing at the same point.
3085 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3086 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3087 * inside the following two functions.
3089 static inline void memcg_stop_kmem_account(void)
3091 VM_BUG_ON(!current
->mm
);
3092 current
->memcg_kmem_skip_account
++;
3095 static inline void memcg_resume_kmem_account(void)
3097 VM_BUG_ON(!current
->mm
);
3098 current
->memcg_kmem_skip_account
--;
3101 static void kmem_cache_destroy_work_func(struct work_struct
*w
)
3103 struct kmem_cache
*cachep
;
3104 struct memcg_cache_params
*p
;
3106 p
= container_of(w
, struct memcg_cache_params
, destroy
);
3108 cachep
= memcg_params_to_cache(p
);
3111 * If we get down to 0 after shrink, we could delete right away.
3112 * However, memcg_release_pages() already puts us back in the workqueue
3113 * in that case. If we proceed deleting, we'll get a dangling
3114 * reference, and removing the object from the workqueue in that case
3115 * is unnecessary complication. We are not a fast path.
3117 * Note that this case is fundamentally different from racing with
3118 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
3119 * kmem_cache_shrink, not only we would be reinserting a dead cache
3120 * into the queue, but doing so from inside the worker racing to
3123 * So if we aren't down to zero, we'll just schedule a worker and try
3126 if (atomic_read(&cachep
->memcg_params
->nr_pages
) != 0) {
3127 kmem_cache_shrink(cachep
);
3128 if (atomic_read(&cachep
->memcg_params
->nr_pages
) == 0)
3131 kmem_cache_destroy(cachep
);
3134 void mem_cgroup_destroy_cache(struct kmem_cache
*cachep
)
3136 if (!cachep
->memcg_params
->dead
)
3140 * There are many ways in which we can get here.
3142 * We can get to a memory-pressure situation while the delayed work is
3143 * still pending to run. The vmscan shrinkers can then release all
3144 * cache memory and get us to destruction. If this is the case, we'll
3145 * be executed twice, which is a bug (the second time will execute over
3146 * bogus data). In this case, cancelling the work should be fine.
3148 * But we can also get here from the worker itself, if
3149 * kmem_cache_shrink is enough to shake all the remaining objects and
3150 * get the page count to 0. In this case, we'll deadlock if we try to
3151 * cancel the work (the worker runs with an internal lock held, which
3152 * is the same lock we would hold for cancel_work_sync().)
3154 * Since we can't possibly know who got us here, just refrain from
3155 * running if there is already work pending
3157 if (work_pending(&cachep
->memcg_params
->destroy
))
3160 * We have to defer the actual destroying to a workqueue, because
3161 * we might currently be in a context that cannot sleep.
3163 schedule_work(&cachep
->memcg_params
->destroy
);
3166 static char *memcg_cache_name(struct mem_cgroup
*memcg
, struct kmem_cache
*s
)
3169 struct dentry
*dentry
;
3172 dentry
= rcu_dereference(memcg
->css
.cgroup
->dentry
);
3175 BUG_ON(dentry
== NULL
);
3177 name
= kasprintf(GFP_KERNEL
, "%s(%d:%s)", s
->name
,
3178 memcg_cache_id(memcg
), dentry
->d_name
.name
);
3183 static struct kmem_cache
*kmem_cache_dup(struct mem_cgroup
*memcg
,
3184 struct kmem_cache
*s
)
3187 struct kmem_cache
*new;
3189 name
= memcg_cache_name(memcg
, s
);
3193 new = kmem_cache_create_memcg(memcg
, name
, s
->object_size
, s
->align
,
3194 (s
->flags
& ~SLAB_PANIC
), s
->ctor
, s
);
3197 new->allocflags
|= __GFP_KMEMCG
;
3204 * This lock protects updaters, not readers. We want readers to be as fast as
3205 * they can, and they will either see NULL or a valid cache value. Our model
3206 * allow them to see NULL, in which case the root memcg will be selected.
3208 * We need this lock because multiple allocations to the same cache from a non
3209 * will span more than one worker. Only one of them can create the cache.
3211 static DEFINE_MUTEX(memcg_cache_mutex
);
3212 static struct kmem_cache
*memcg_create_kmem_cache(struct mem_cgroup
*memcg
,
3213 struct kmem_cache
*cachep
)
3215 struct kmem_cache
*new_cachep
;
3218 BUG_ON(!memcg_can_account_kmem(memcg
));
3220 idx
= memcg_cache_id(memcg
);
3222 mutex_lock(&memcg_cache_mutex
);
3223 new_cachep
= cachep
->memcg_params
->memcg_caches
[idx
];
3227 new_cachep
= kmem_cache_dup(memcg
, cachep
);
3228 if (new_cachep
== NULL
) {
3229 new_cachep
= cachep
;
3233 mem_cgroup_get(memcg
);
3234 atomic_set(&new_cachep
->memcg_params
->nr_pages
, 0);
3236 cachep
->memcg_params
->memcg_caches
[idx
] = new_cachep
;
3238 * the readers won't lock, make sure everybody sees the updated value,
3239 * so they won't put stuff in the queue again for no reason
3243 mutex_unlock(&memcg_cache_mutex
);
3247 void kmem_cache_destroy_memcg_children(struct kmem_cache
*s
)
3249 struct kmem_cache
*c
;
3252 if (!s
->memcg_params
)
3254 if (!s
->memcg_params
->is_root_cache
)
3258 * If the cache is being destroyed, we trust that there is no one else
3259 * requesting objects from it. Even if there are, the sanity checks in
3260 * kmem_cache_destroy should caught this ill-case.
3262 * Still, we don't want anyone else freeing memcg_caches under our
3263 * noses, which can happen if a new memcg comes to life. As usual,
3264 * we'll take the set_limit_mutex to protect ourselves against this.
3266 mutex_lock(&set_limit_mutex
);
3267 for (i
= 0; i
< memcg_limited_groups_array_size
; i
++) {
3268 c
= s
->memcg_params
->memcg_caches
[i
];
3273 * We will now manually delete the caches, so to avoid races
3274 * we need to cancel all pending destruction workers and
3275 * proceed with destruction ourselves.
3277 * kmem_cache_destroy() will call kmem_cache_shrink internally,
3278 * and that could spawn the workers again: it is likely that
3279 * the cache still have active pages until this very moment.
3280 * This would lead us back to mem_cgroup_destroy_cache.
3282 * But that will not execute at all if the "dead" flag is not
3283 * set, so flip it down to guarantee we are in control.
3285 c
->memcg_params
->dead
= false;
3286 cancel_work_sync(&c
->memcg_params
->destroy
);
3287 kmem_cache_destroy(c
);
3289 mutex_unlock(&set_limit_mutex
);
3292 struct create_work
{
3293 struct mem_cgroup
*memcg
;
3294 struct kmem_cache
*cachep
;
3295 struct work_struct work
;
3298 static void mem_cgroup_destroy_all_caches(struct mem_cgroup
*memcg
)
3300 struct kmem_cache
*cachep
;
3301 struct memcg_cache_params
*params
;
3303 if (!memcg_kmem_is_active(memcg
))
3306 mutex_lock(&memcg
->slab_caches_mutex
);
3307 list_for_each_entry(params
, &memcg
->memcg_slab_caches
, list
) {
3308 cachep
= memcg_params_to_cache(params
);
3309 cachep
->memcg_params
->dead
= true;
3310 INIT_WORK(&cachep
->memcg_params
->destroy
,
3311 kmem_cache_destroy_work_func
);
3312 schedule_work(&cachep
->memcg_params
->destroy
);
3314 mutex_unlock(&memcg
->slab_caches_mutex
);
3317 static void memcg_create_cache_work_func(struct work_struct
*w
)
3319 struct create_work
*cw
;
3321 cw
= container_of(w
, struct create_work
, work
);
3322 memcg_create_kmem_cache(cw
->memcg
, cw
->cachep
);
3323 /* Drop the reference gotten when we enqueued. */
3324 css_put(&cw
->memcg
->css
);
3329 * Enqueue the creation of a per-memcg kmem_cache.
3330 * Called with rcu_read_lock.
3332 static void __memcg_create_cache_enqueue(struct mem_cgroup
*memcg
,
3333 struct kmem_cache
*cachep
)
3335 struct create_work
*cw
;
3337 cw
= kmalloc(sizeof(struct create_work
), GFP_NOWAIT
);
3341 /* The corresponding put will be done in the workqueue. */
3342 if (!css_tryget(&memcg
->css
)) {
3348 cw
->cachep
= cachep
;
3350 INIT_WORK(&cw
->work
, memcg_create_cache_work_func
);
3351 schedule_work(&cw
->work
);
3354 static void memcg_create_cache_enqueue(struct mem_cgroup
*memcg
,
3355 struct kmem_cache
*cachep
)
3358 * We need to stop accounting when we kmalloc, because if the
3359 * corresponding kmalloc cache is not yet created, the first allocation
3360 * in __memcg_create_cache_enqueue will recurse.
3362 * However, it is better to enclose the whole function. Depending on
3363 * the debugging options enabled, INIT_WORK(), for instance, can
3364 * trigger an allocation. This too, will make us recurse. Because at
3365 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3366 * the safest choice is to do it like this, wrapping the whole function.
3368 memcg_stop_kmem_account();
3369 __memcg_create_cache_enqueue(memcg
, cachep
);
3370 memcg_resume_kmem_account();
3373 * Return the kmem_cache we're supposed to use for a slab allocation.
3374 * We try to use the current memcg's version of the cache.
3376 * If the cache does not exist yet, if we are the first user of it,
3377 * we either create it immediately, if possible, or create it asynchronously
3379 * In the latter case, we will let the current allocation go through with
3380 * the original cache.
3382 * Can't be called in interrupt context or from kernel threads.
3383 * This function needs to be called with rcu_read_lock() held.
3385 struct kmem_cache
*__memcg_kmem_get_cache(struct kmem_cache
*cachep
,
3388 struct mem_cgroup
*memcg
;
3391 VM_BUG_ON(!cachep
->memcg_params
);
3392 VM_BUG_ON(!cachep
->memcg_params
->is_root_cache
);
3394 if (!current
->mm
|| current
->memcg_kmem_skip_account
)
3398 memcg
= mem_cgroup_from_task(rcu_dereference(current
->mm
->owner
));
3401 if (!memcg_can_account_kmem(memcg
))
3404 idx
= memcg_cache_id(memcg
);
3407 * barrier to mare sure we're always seeing the up to date value. The
3408 * code updating memcg_caches will issue a write barrier to match this.
3410 read_barrier_depends();
3411 if (unlikely(cachep
->memcg_params
->memcg_caches
[idx
] == NULL
)) {
3413 * If we are in a safe context (can wait, and not in interrupt
3414 * context), we could be be predictable and return right away.
3415 * This would guarantee that the allocation being performed
3416 * already belongs in the new cache.
3418 * However, there are some clashes that can arrive from locking.
3419 * For instance, because we acquire the slab_mutex while doing
3420 * kmem_cache_dup, this means no further allocation could happen
3421 * with the slab_mutex held.
3423 * Also, because cache creation issue get_online_cpus(), this
3424 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
3425 * that ends up reversed during cpu hotplug. (cpuset allocates
3426 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
3427 * better to defer everything.
3429 memcg_create_cache_enqueue(memcg
, cachep
);
3433 return cachep
->memcg_params
->memcg_caches
[idx
];
3435 EXPORT_SYMBOL(__memcg_kmem_get_cache
);
3438 * We need to verify if the allocation against current->mm->owner's memcg is
3439 * possible for the given order. But the page is not allocated yet, so we'll
3440 * need a further commit step to do the final arrangements.
3442 * It is possible for the task to switch cgroups in this mean time, so at
3443 * commit time, we can't rely on task conversion any longer. We'll then use
3444 * the handle argument to return to the caller which cgroup we should commit
3445 * against. We could also return the memcg directly and avoid the pointer
3446 * passing, but a boolean return value gives better semantics considering
3447 * the compiled-out case as well.
3449 * Returning true means the allocation is possible.
3452 __memcg_kmem_newpage_charge(gfp_t gfp
, struct mem_cgroup
**_memcg
, int order
)
3454 struct mem_cgroup
*memcg
;
3458 memcg
= try_get_mem_cgroup_from_mm(current
->mm
);
3461 * very rare case described in mem_cgroup_from_task. Unfortunately there
3462 * isn't much we can do without complicating this too much, and it would
3463 * be gfp-dependent anyway. Just let it go
3465 if (unlikely(!memcg
))
3468 if (!memcg_can_account_kmem(memcg
)) {
3469 css_put(&memcg
->css
);
3473 ret
= memcg_charge_kmem(memcg
, gfp
, PAGE_SIZE
<< order
);
3477 css_put(&memcg
->css
);
3481 void __memcg_kmem_commit_charge(struct page
*page
, struct mem_cgroup
*memcg
,
3484 struct page_cgroup
*pc
;
3486 VM_BUG_ON(mem_cgroup_is_root(memcg
));
3488 /* The page allocation failed. Revert */
3490 memcg_uncharge_kmem(memcg
, PAGE_SIZE
<< order
);
3494 pc
= lookup_page_cgroup(page
);
3495 lock_page_cgroup(pc
);
3496 pc
->mem_cgroup
= memcg
;
3497 SetPageCgroupUsed(pc
);
3498 unlock_page_cgroup(pc
);
3501 void __memcg_kmem_uncharge_pages(struct page
*page
, int order
)
3503 struct mem_cgroup
*memcg
= NULL
;
3504 struct page_cgroup
*pc
;
3507 pc
= lookup_page_cgroup(page
);
3509 * Fast unlocked return. Theoretically might have changed, have to
3510 * check again after locking.
3512 if (!PageCgroupUsed(pc
))
3515 lock_page_cgroup(pc
);
3516 if (PageCgroupUsed(pc
)) {
3517 memcg
= pc
->mem_cgroup
;
3518 ClearPageCgroupUsed(pc
);
3520 unlock_page_cgroup(pc
);
3523 * We trust that only if there is a memcg associated with the page, it
3524 * is a valid allocation
3529 VM_BUG_ON(mem_cgroup_is_root(memcg
));
3530 memcg_uncharge_kmem(memcg
, PAGE_SIZE
<< order
);
3533 static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup
*memcg
)
3536 #endif /* CONFIG_MEMCG_KMEM */
3538 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3540 #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3542 * Because tail pages are not marked as "used", set it. We're under
3543 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3544 * charge/uncharge will be never happen and move_account() is done under
3545 * compound_lock(), so we don't have to take care of races.
3547 void mem_cgroup_split_huge_fixup(struct page
*head
)
3549 struct page_cgroup
*head_pc
= lookup_page_cgroup(head
);
3550 struct page_cgroup
*pc
;
3553 if (mem_cgroup_disabled())
3555 for (i
= 1; i
< HPAGE_PMD_NR
; i
++) {
3557 pc
->mem_cgroup
= head_pc
->mem_cgroup
;
3558 smp_wmb();/* see __commit_charge() */
3559 pc
->flags
= head_pc
->flags
& ~PCGF_NOCOPY_AT_SPLIT
;
3562 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3565 * mem_cgroup_move_account - move account of the page
3567 * @nr_pages: number of regular pages (>1 for huge pages)
3568 * @pc: page_cgroup of the page.
3569 * @from: mem_cgroup which the page is moved from.
3570 * @to: mem_cgroup which the page is moved to. @from != @to.
3572 * The caller must confirm following.
3573 * - page is not on LRU (isolate_page() is useful.)
3574 * - compound_lock is held when nr_pages > 1
3576 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3579 static int mem_cgroup_move_account(struct page
*page
,
3580 unsigned int nr_pages
,
3581 struct page_cgroup
*pc
,
3582 struct mem_cgroup
*from
,
3583 struct mem_cgroup
*to
)
3585 unsigned long flags
;
3587 bool anon
= PageAnon(page
);
3589 VM_BUG_ON(from
== to
);
3590 VM_BUG_ON(PageLRU(page
));
3592 * The page is isolated from LRU. So, collapse function
3593 * will not handle this page. But page splitting can happen.
3594 * Do this check under compound_page_lock(). The caller should
3598 if (nr_pages
> 1 && !PageTransHuge(page
))
3601 lock_page_cgroup(pc
);
3604 if (!PageCgroupUsed(pc
) || pc
->mem_cgroup
!= from
)
3607 move_lock_mem_cgroup(from
, &flags
);
3609 if (!anon
&& page_mapped(page
)) {
3610 /* Update mapped_file data for mem_cgroup */
3612 __this_cpu_dec(from
->stat
->count
[MEM_CGROUP_STAT_FILE_MAPPED
]);
3613 __this_cpu_inc(to
->stat
->count
[MEM_CGROUP_STAT_FILE_MAPPED
]);
3616 mem_cgroup_charge_statistics(from
, anon
, -nr_pages
);
3618 /* caller should have done css_get */
3619 pc
->mem_cgroup
= to
;
3620 mem_cgroup_charge_statistics(to
, anon
, nr_pages
);
3621 move_unlock_mem_cgroup(from
, &flags
);
3624 unlock_page_cgroup(pc
);
3628 memcg_check_events(to
, page
);
3629 memcg_check_events(from
, page
);
3635 * mem_cgroup_move_parent - moves page to the parent group
3636 * @page: the page to move
3637 * @pc: page_cgroup of the page
3638 * @child: page's cgroup
3640 * move charges to its parent or the root cgroup if the group has no
3641 * parent (aka use_hierarchy==0).
3642 * Although this might fail (get_page_unless_zero, isolate_lru_page or
3643 * mem_cgroup_move_account fails) the failure is always temporary and
3644 * it signals a race with a page removal/uncharge or migration. In the
3645 * first case the page is on the way out and it will vanish from the LRU
3646 * on the next attempt and the call should be retried later.
3647 * Isolation from the LRU fails only if page has been isolated from
3648 * the LRU since we looked at it and that usually means either global
3649 * reclaim or migration going on. The page will either get back to the
3651 * Finaly mem_cgroup_move_account fails only if the page got uncharged
3652 * (!PageCgroupUsed) or moved to a different group. The page will
3653 * disappear in the next attempt.
3655 static int mem_cgroup_move_parent(struct page
*page
,
3656 struct page_cgroup
*pc
,
3657 struct mem_cgroup
*child
)
3659 struct mem_cgroup
*parent
;
3660 unsigned int nr_pages
;
3661 unsigned long uninitialized_var(flags
);
3664 VM_BUG_ON(mem_cgroup_is_root(child
));
3667 if (!get_page_unless_zero(page
))
3669 if (isolate_lru_page(page
))
3672 nr_pages
= hpage_nr_pages(page
);
3674 parent
= parent_mem_cgroup(child
);
3676 * If no parent, move charges to root cgroup.
3679 parent
= root_mem_cgroup
;
3682 VM_BUG_ON(!PageTransHuge(page
));
3683 flags
= compound_lock_irqsave(page
);
3686 ret
= mem_cgroup_move_account(page
, nr_pages
,
3689 __mem_cgroup_cancel_local_charge(child
, nr_pages
);
3692 compound_unlock_irqrestore(page
, flags
);
3693 putback_lru_page(page
);
3701 * Charge the memory controller for page usage.
3703 * 0 if the charge was successful
3704 * < 0 if the cgroup is over its limit
3706 static int mem_cgroup_charge_common(struct page
*page
, struct mm_struct
*mm
,
3707 gfp_t gfp_mask
, enum charge_type ctype
)
3709 struct mem_cgroup
*memcg
= NULL
;
3710 unsigned int nr_pages
= 1;
3714 if (PageTransHuge(page
)) {
3715 nr_pages
<<= compound_order(page
);
3716 VM_BUG_ON(!PageTransHuge(page
));
3718 * Never OOM-kill a process for a huge page. The
3719 * fault handler will fall back to regular pages.
3724 ret
= __mem_cgroup_try_charge(mm
, gfp_mask
, nr_pages
, &memcg
, oom
);
3727 __mem_cgroup_commit_charge(memcg
, page
, nr_pages
, ctype
, false);
3731 int mem_cgroup_newpage_charge(struct page
*page
,
3732 struct mm_struct
*mm
, gfp_t gfp_mask
)
3734 if (mem_cgroup_disabled())
3736 VM_BUG_ON(page_mapped(page
));
3737 VM_BUG_ON(page
->mapping
&& !PageAnon(page
));
3739 return mem_cgroup_charge_common(page
, mm
, gfp_mask
,
3740 MEM_CGROUP_CHARGE_TYPE_ANON
);
3744 * While swap-in, try_charge -> commit or cancel, the page is locked.
3745 * And when try_charge() successfully returns, one refcnt to memcg without
3746 * struct page_cgroup is acquired. This refcnt will be consumed by
3747 * "commit()" or removed by "cancel()"
3749 static int __mem_cgroup_try_charge_swapin(struct mm_struct
*mm
,
3752 struct mem_cgroup
**memcgp
)
3754 struct mem_cgroup
*memcg
;
3755 struct page_cgroup
*pc
;
3758 pc
= lookup_page_cgroup(page
);
3760 * Every swap fault against a single page tries to charge the
3761 * page, bail as early as possible. shmem_unuse() encounters
3762 * already charged pages, too. The USED bit is protected by
3763 * the page lock, which serializes swap cache removal, which
3764 * in turn serializes uncharging.
3766 if (PageCgroupUsed(pc
))
3768 if (!do_swap_account
)
3770 memcg
= try_get_mem_cgroup_from_page(page
);
3774 ret
= __mem_cgroup_try_charge(NULL
, mask
, 1, memcgp
, true);
3775 css_put(&memcg
->css
);
3780 ret
= __mem_cgroup_try_charge(mm
, mask
, 1, memcgp
, true);
3786 int mem_cgroup_try_charge_swapin(struct mm_struct
*mm
, struct page
*page
,
3787 gfp_t gfp_mask
, struct mem_cgroup
**memcgp
)
3790 if (mem_cgroup_disabled())
3793 * A racing thread's fault, or swapoff, may have already
3794 * updated the pte, and even removed page from swap cache: in
3795 * those cases unuse_pte()'s pte_same() test will fail; but
3796 * there's also a KSM case which does need to charge the page.
3798 if (!PageSwapCache(page
)) {
3801 ret
= __mem_cgroup_try_charge(mm
, gfp_mask
, 1, memcgp
, true);
3806 return __mem_cgroup_try_charge_swapin(mm
, page
, gfp_mask
, memcgp
);
3809 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup
*memcg
)
3811 if (mem_cgroup_disabled())
3815 __mem_cgroup_cancel_charge(memcg
, 1);
3819 __mem_cgroup_commit_charge_swapin(struct page
*page
, struct mem_cgroup
*memcg
,
3820 enum charge_type ctype
)
3822 if (mem_cgroup_disabled())
3827 __mem_cgroup_commit_charge(memcg
, page
, 1, ctype
, true);
3829 * Now swap is on-memory. This means this page may be
3830 * counted both as mem and swap....double count.
3831 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
3832 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
3833 * may call delete_from_swap_cache() before reach here.
3835 if (do_swap_account
&& PageSwapCache(page
)) {
3836 swp_entry_t ent
= {.val
= page_private(page
)};
3837 mem_cgroup_uncharge_swap(ent
);
3841 void mem_cgroup_commit_charge_swapin(struct page
*page
,
3842 struct mem_cgroup
*memcg
)
3844 __mem_cgroup_commit_charge_swapin(page
, memcg
,
3845 MEM_CGROUP_CHARGE_TYPE_ANON
);
3848 int mem_cgroup_cache_charge(struct page
*page
, struct mm_struct
*mm
,
3851 struct mem_cgroup
*memcg
= NULL
;
3852 enum charge_type type
= MEM_CGROUP_CHARGE_TYPE_CACHE
;
3855 if (mem_cgroup_disabled())
3857 if (PageCompound(page
))
3860 if (!PageSwapCache(page
))
3861 ret
= mem_cgroup_charge_common(page
, mm
, gfp_mask
, type
);
3862 else { /* page is swapcache/shmem */
3863 ret
= __mem_cgroup_try_charge_swapin(mm
, page
,
3866 __mem_cgroup_commit_charge_swapin(page
, memcg
, type
);
3871 static void mem_cgroup_do_uncharge(struct mem_cgroup
*memcg
,
3872 unsigned int nr_pages
,
3873 const enum charge_type ctype
)
3875 struct memcg_batch_info
*batch
= NULL
;
3876 bool uncharge_memsw
= true;
3878 /* If swapout, usage of swap doesn't decrease */
3879 if (!do_swap_account
|| ctype
== MEM_CGROUP_CHARGE_TYPE_SWAPOUT
)
3880 uncharge_memsw
= false;
3882 batch
= ¤t
->memcg_batch
;
3884 * In usual, we do css_get() when we remember memcg pointer.
3885 * But in this case, we keep res->usage until end of a series of
3886 * uncharges. Then, it's ok to ignore memcg's refcnt.
3889 batch
->memcg
= memcg
;
3891 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
3892 * In those cases, all pages freed continuously can be expected to be in
3893 * the same cgroup and we have chance to coalesce uncharges.
3894 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
3895 * because we want to do uncharge as soon as possible.
3898 if (!batch
->do_batch
|| test_thread_flag(TIF_MEMDIE
))
3899 goto direct_uncharge
;
3902 goto direct_uncharge
;
3905 * In typical case, batch->memcg == mem. This means we can
3906 * merge a series of uncharges to an uncharge of res_counter.
3907 * If not, we uncharge res_counter ony by one.
3909 if (batch
->memcg
!= memcg
)
3910 goto direct_uncharge
;
3911 /* remember freed charge and uncharge it later */
3914 batch
->memsw_nr_pages
++;
3917 res_counter_uncharge(&memcg
->res
, nr_pages
* PAGE_SIZE
);
3919 res_counter_uncharge(&memcg
->memsw
, nr_pages
* PAGE_SIZE
);
3920 if (unlikely(batch
->memcg
!= memcg
))
3921 memcg_oom_recover(memcg
);
3925 * uncharge if !page_mapped(page)
3927 static struct mem_cgroup
*
3928 __mem_cgroup_uncharge_common(struct page
*page
, enum charge_type ctype
,
3931 struct mem_cgroup
*memcg
= NULL
;
3932 unsigned int nr_pages
= 1;
3933 struct page_cgroup
*pc
;
3936 if (mem_cgroup_disabled())
3939 VM_BUG_ON(PageSwapCache(page
));
3941 if (PageTransHuge(page
)) {
3942 nr_pages
<<= compound_order(page
);
3943 VM_BUG_ON(!PageTransHuge(page
));
3946 * Check if our page_cgroup is valid
3948 pc
= lookup_page_cgroup(page
);
3949 if (unlikely(!PageCgroupUsed(pc
)))
3952 lock_page_cgroup(pc
);
3954 memcg
= pc
->mem_cgroup
;
3956 if (!PageCgroupUsed(pc
))
3959 anon
= PageAnon(page
);
3962 case MEM_CGROUP_CHARGE_TYPE_ANON
:
3964 * Generally PageAnon tells if it's the anon statistics to be
3965 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
3966 * used before page reached the stage of being marked PageAnon.
3970 case MEM_CGROUP_CHARGE_TYPE_DROP
:
3971 /* See mem_cgroup_prepare_migration() */
3972 if (page_mapped(page
))
3975 * Pages under migration may not be uncharged. But
3976 * end_migration() /must/ be the one uncharging the
3977 * unused post-migration page and so it has to call
3978 * here with the migration bit still set. See the
3979 * res_counter handling below.
3981 if (!end_migration
&& PageCgroupMigration(pc
))
3984 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT
:
3985 if (!PageAnon(page
)) { /* Shared memory */
3986 if (page
->mapping
&& !page_is_file_cache(page
))
3988 } else if (page_mapped(page
)) /* Anon */
3995 mem_cgroup_charge_statistics(memcg
, anon
, -nr_pages
);
3997 ClearPageCgroupUsed(pc
);
3999 * pc->mem_cgroup is not cleared here. It will be accessed when it's
4000 * freed from LRU. This is safe because uncharged page is expected not
4001 * to be reused (freed soon). Exception is SwapCache, it's handled by
4002 * special functions.
4005 unlock_page_cgroup(pc
);
4007 * even after unlock, we have memcg->res.usage here and this memcg
4008 * will never be freed.
4010 memcg_check_events(memcg
, page
);
4011 if (do_swap_account
&& ctype
== MEM_CGROUP_CHARGE_TYPE_SWAPOUT
) {
4012 mem_cgroup_swap_statistics(memcg
, true);
4013 mem_cgroup_get(memcg
);
4016 * Migration does not charge the res_counter for the
4017 * replacement page, so leave it alone when phasing out the
4018 * page that is unused after the migration.
4020 if (!end_migration
&& !mem_cgroup_is_root(memcg
))
4021 mem_cgroup_do_uncharge(memcg
, nr_pages
, ctype
);
4026 unlock_page_cgroup(pc
);
4030 void mem_cgroup_uncharge_page(struct page
*page
)
4033 if (page_mapped(page
))
4035 VM_BUG_ON(page
->mapping
&& !PageAnon(page
));
4036 if (PageSwapCache(page
))
4038 __mem_cgroup_uncharge_common(page
, MEM_CGROUP_CHARGE_TYPE_ANON
, false);
4041 void mem_cgroup_uncharge_cache_page(struct page
*page
)
4043 VM_BUG_ON(page_mapped(page
));
4044 VM_BUG_ON(page
->mapping
);
4045 __mem_cgroup_uncharge_common(page
, MEM_CGROUP_CHARGE_TYPE_CACHE
, false);
4049 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
4050 * In that cases, pages are freed continuously and we can expect pages
4051 * are in the same memcg. All these calls itself limits the number of
4052 * pages freed at once, then uncharge_start/end() is called properly.
4053 * This may be called prural(2) times in a context,
4056 void mem_cgroup_uncharge_start(void)
4058 current
->memcg_batch
.do_batch
++;
4059 /* We can do nest. */
4060 if (current
->memcg_batch
.do_batch
== 1) {
4061 current
->memcg_batch
.memcg
= NULL
;
4062 current
->memcg_batch
.nr_pages
= 0;
4063 current
->memcg_batch
.memsw_nr_pages
= 0;
4067 void mem_cgroup_uncharge_end(void)
4069 struct memcg_batch_info
*batch
= ¤t
->memcg_batch
;
4071 if (!batch
->do_batch
)
4075 if (batch
->do_batch
) /* If stacked, do nothing. */
4081 * This "batch->memcg" is valid without any css_get/put etc...
4082 * bacause we hide charges behind us.
4084 if (batch
->nr_pages
)
4085 res_counter_uncharge(&batch
->memcg
->res
,
4086 batch
->nr_pages
* PAGE_SIZE
);
4087 if (batch
->memsw_nr_pages
)
4088 res_counter_uncharge(&batch
->memcg
->memsw
,
4089 batch
->memsw_nr_pages
* PAGE_SIZE
);
4090 memcg_oom_recover(batch
->memcg
);
4091 /* forget this pointer (for sanity check) */
4092 batch
->memcg
= NULL
;
4097 * called after __delete_from_swap_cache() and drop "page" account.
4098 * memcg information is recorded to swap_cgroup of "ent"
4101 mem_cgroup_uncharge_swapcache(struct page
*page
, swp_entry_t ent
, bool swapout
)
4103 struct mem_cgroup
*memcg
;
4104 int ctype
= MEM_CGROUP_CHARGE_TYPE_SWAPOUT
;
4106 if (!swapout
) /* this was a swap cache but the swap is unused ! */
4107 ctype
= MEM_CGROUP_CHARGE_TYPE_DROP
;
4109 memcg
= __mem_cgroup_uncharge_common(page
, ctype
, false);
4112 * record memcg information, if swapout && memcg != NULL,
4113 * mem_cgroup_get() was called in uncharge().
4115 if (do_swap_account
&& swapout
&& memcg
)
4116 swap_cgroup_record(ent
, css_id(&memcg
->css
));
4120 #ifdef CONFIG_MEMCG_SWAP
4122 * called from swap_entry_free(). remove record in swap_cgroup and
4123 * uncharge "memsw" account.
4125 void mem_cgroup_uncharge_swap(swp_entry_t ent
)
4127 struct mem_cgroup
*memcg
;
4130 if (!do_swap_account
)
4133 id
= swap_cgroup_record(ent
, 0);
4135 memcg
= mem_cgroup_lookup(id
);
4138 * We uncharge this because swap is freed.
4139 * This memcg can be obsolete one. We avoid calling css_tryget
4141 if (!mem_cgroup_is_root(memcg
))
4142 res_counter_uncharge(&memcg
->memsw
, PAGE_SIZE
);
4143 mem_cgroup_swap_statistics(memcg
, false);
4144 mem_cgroup_put(memcg
);
4150 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
4151 * @entry: swap entry to be moved
4152 * @from: mem_cgroup which the entry is moved from
4153 * @to: mem_cgroup which the entry is moved to
4155 * It succeeds only when the swap_cgroup's record for this entry is the same
4156 * as the mem_cgroup's id of @from.
4158 * Returns 0 on success, -EINVAL on failure.
4160 * The caller must have charged to @to, IOW, called res_counter_charge() about
4161 * both res and memsw, and called css_get().
4163 static int mem_cgroup_move_swap_account(swp_entry_t entry
,
4164 struct mem_cgroup
*from
, struct mem_cgroup
*to
)
4166 unsigned short old_id
, new_id
;
4168 old_id
= css_id(&from
->css
);
4169 new_id
= css_id(&to
->css
);
4171 if (swap_cgroup_cmpxchg(entry
, old_id
, new_id
) == old_id
) {
4172 mem_cgroup_swap_statistics(from
, false);
4173 mem_cgroup_swap_statistics(to
, true);
4175 * This function is only called from task migration context now.
4176 * It postpones res_counter and refcount handling till the end
4177 * of task migration(mem_cgroup_clear_mc()) for performance
4178 * improvement. But we cannot postpone mem_cgroup_get(to)
4179 * because if the process that has been moved to @to does
4180 * swap-in, the refcount of @to might be decreased to 0.
4188 static inline int mem_cgroup_move_swap_account(swp_entry_t entry
,
4189 struct mem_cgroup
*from
, struct mem_cgroup
*to
)
4196 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
4199 void mem_cgroup_prepare_migration(struct page
*page
, struct page
*newpage
,
4200 struct mem_cgroup
**memcgp
)
4202 struct mem_cgroup
*memcg
= NULL
;
4203 unsigned int nr_pages
= 1;
4204 struct page_cgroup
*pc
;
4205 enum charge_type ctype
;
4209 if (mem_cgroup_disabled())
4212 if (PageTransHuge(page
))
4213 nr_pages
<<= compound_order(page
);
4215 pc
= lookup_page_cgroup(page
);
4216 lock_page_cgroup(pc
);
4217 if (PageCgroupUsed(pc
)) {
4218 memcg
= pc
->mem_cgroup
;
4219 css_get(&memcg
->css
);
4221 * At migrating an anonymous page, its mapcount goes down
4222 * to 0 and uncharge() will be called. But, even if it's fully
4223 * unmapped, migration may fail and this page has to be
4224 * charged again. We set MIGRATION flag here and delay uncharge
4225 * until end_migration() is called
4227 * Corner Case Thinking
4229 * When the old page was mapped as Anon and it's unmap-and-freed
4230 * while migration was ongoing.
4231 * If unmap finds the old page, uncharge() of it will be delayed
4232 * until end_migration(). If unmap finds a new page, it's
4233 * uncharged when it make mapcount to be 1->0. If unmap code
4234 * finds swap_migration_entry, the new page will not be mapped
4235 * and end_migration() will find it(mapcount==0).
4238 * When the old page was mapped but migraion fails, the kernel
4239 * remaps it. A charge for it is kept by MIGRATION flag even
4240 * if mapcount goes down to 0. We can do remap successfully
4241 * without charging it again.
4244 * The "old" page is under lock_page() until the end of
4245 * migration, so, the old page itself will not be swapped-out.
4246 * If the new page is swapped out before end_migraton, our
4247 * hook to usual swap-out path will catch the event.
4250 SetPageCgroupMigration(pc
);
4252 unlock_page_cgroup(pc
);
4254 * If the page is not charged at this point,
4262 * We charge new page before it's used/mapped. So, even if unlock_page()
4263 * is called before end_migration, we can catch all events on this new
4264 * page. In the case new page is migrated but not remapped, new page's
4265 * mapcount will be finally 0 and we call uncharge in end_migration().
4268 ctype
= MEM_CGROUP_CHARGE_TYPE_ANON
;
4270 ctype
= MEM_CGROUP_CHARGE_TYPE_CACHE
;
4272 * The page is committed to the memcg, but it's not actually
4273 * charged to the res_counter since we plan on replacing the
4274 * old one and only one page is going to be left afterwards.
4276 __mem_cgroup_commit_charge(memcg
, newpage
, nr_pages
, ctype
, false);
4279 /* remove redundant charge if migration failed*/
4280 void mem_cgroup_end_migration(struct mem_cgroup
*memcg
,
4281 struct page
*oldpage
, struct page
*newpage
, bool migration_ok
)
4283 struct page
*used
, *unused
;
4284 struct page_cgroup
*pc
;
4290 if (!migration_ok
) {
4297 anon
= PageAnon(used
);
4298 __mem_cgroup_uncharge_common(unused
,
4299 anon
? MEM_CGROUP_CHARGE_TYPE_ANON
4300 : MEM_CGROUP_CHARGE_TYPE_CACHE
,
4302 css_put(&memcg
->css
);
4304 * We disallowed uncharge of pages under migration because mapcount
4305 * of the page goes down to zero, temporarly.
4306 * Clear the flag and check the page should be charged.
4308 pc
= lookup_page_cgroup(oldpage
);
4309 lock_page_cgroup(pc
);
4310 ClearPageCgroupMigration(pc
);
4311 unlock_page_cgroup(pc
);
4314 * If a page is a file cache, radix-tree replacement is very atomic
4315 * and we can skip this check. When it was an Anon page, its mapcount
4316 * goes down to 0. But because we added MIGRATION flage, it's not
4317 * uncharged yet. There are several case but page->mapcount check
4318 * and USED bit check in mem_cgroup_uncharge_page() will do enough
4319 * check. (see prepare_charge() also)
4322 mem_cgroup_uncharge_page(used
);
4326 * At replace page cache, newpage is not under any memcg but it's on
4327 * LRU. So, this function doesn't touch res_counter but handles LRU
4328 * in correct way. Both pages are locked so we cannot race with uncharge.
4330 void mem_cgroup_replace_page_cache(struct page
*oldpage
,
4331 struct page
*newpage
)
4333 struct mem_cgroup
*memcg
= NULL
;
4334 struct page_cgroup
*pc
;
4335 enum charge_type type
= MEM_CGROUP_CHARGE_TYPE_CACHE
;
4337 if (mem_cgroup_disabled())
4340 pc
= lookup_page_cgroup(oldpage
);
4341 /* fix accounting on old pages */
4342 lock_page_cgroup(pc
);
4343 if (PageCgroupUsed(pc
)) {
4344 memcg
= pc
->mem_cgroup
;
4345 mem_cgroup_charge_statistics(memcg
, false, -1);
4346 ClearPageCgroupUsed(pc
);
4348 unlock_page_cgroup(pc
);
4351 * When called from shmem_replace_page(), in some cases the
4352 * oldpage has already been charged, and in some cases not.
4357 * Even if newpage->mapping was NULL before starting replacement,
4358 * the newpage may be on LRU(or pagevec for LRU) already. We lock
4359 * LRU while we overwrite pc->mem_cgroup.
4361 __mem_cgroup_commit_charge(memcg
, newpage
, 1, type
, true);
4364 #ifdef CONFIG_DEBUG_VM
4365 static struct page_cgroup
*lookup_page_cgroup_used(struct page
*page
)
4367 struct page_cgroup
*pc
;
4369 pc
= lookup_page_cgroup(page
);
4371 * Can be NULL while feeding pages into the page allocator for
4372 * the first time, i.e. during boot or memory hotplug;
4373 * or when mem_cgroup_disabled().
4375 if (likely(pc
) && PageCgroupUsed(pc
))
4380 bool mem_cgroup_bad_page_check(struct page
*page
)
4382 if (mem_cgroup_disabled())
4385 return lookup_page_cgroup_used(page
) != NULL
;
4388 void mem_cgroup_print_bad_page(struct page
*page
)
4390 struct page_cgroup
*pc
;
4392 pc
= lookup_page_cgroup_used(page
);
4394 printk(KERN_ALERT
"pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4395 pc
, pc
->flags
, pc
->mem_cgroup
);
4400 static int mem_cgroup_resize_limit(struct mem_cgroup
*memcg
,
4401 unsigned long long val
)
4404 u64 memswlimit
, memlimit
;
4406 int children
= mem_cgroup_count_children(memcg
);
4407 u64 curusage
, oldusage
;
4411 * For keeping hierarchical_reclaim simple, how long we should retry
4412 * is depends on callers. We set our retry-count to be function
4413 * of # of children which we should visit in this loop.
4415 retry_count
= MEM_CGROUP_RECLAIM_RETRIES
* children
;
4417 oldusage
= res_counter_read_u64(&memcg
->res
, RES_USAGE
);
4420 while (retry_count
) {
4421 if (signal_pending(current
)) {
4426 * Rather than hide all in some function, I do this in
4427 * open coded manner. You see what this really does.
4428 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4430 mutex_lock(&set_limit_mutex
);
4431 memswlimit
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
4432 if (memswlimit
< val
) {
4434 mutex_unlock(&set_limit_mutex
);
4438 memlimit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
4442 ret
= res_counter_set_limit(&memcg
->res
, val
);
4444 if (memswlimit
== val
)
4445 memcg
->memsw_is_minimum
= true;
4447 memcg
->memsw_is_minimum
= false;
4449 mutex_unlock(&set_limit_mutex
);
4454 mem_cgroup_reclaim(memcg
, GFP_KERNEL
,
4455 MEM_CGROUP_RECLAIM_SHRINK
);
4456 curusage
= res_counter_read_u64(&memcg
->res
, RES_USAGE
);
4457 /* Usage is reduced ? */
4458 if (curusage
>= oldusage
)
4461 oldusage
= curusage
;
4463 if (!ret
&& enlarge
)
4464 memcg_oom_recover(memcg
);
4469 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup
*memcg
,
4470 unsigned long long val
)
4473 u64 memlimit
, memswlimit
, oldusage
, curusage
;
4474 int children
= mem_cgroup_count_children(memcg
);
4478 /* see mem_cgroup_resize_res_limit */
4479 retry_count
= children
* MEM_CGROUP_RECLAIM_RETRIES
;
4480 oldusage
= res_counter_read_u64(&memcg
->memsw
, RES_USAGE
);
4481 while (retry_count
) {
4482 if (signal_pending(current
)) {
4487 * Rather than hide all in some function, I do this in
4488 * open coded manner. You see what this really does.
4489 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4491 mutex_lock(&set_limit_mutex
);
4492 memlimit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
4493 if (memlimit
> val
) {
4495 mutex_unlock(&set_limit_mutex
);
4498 memswlimit
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
4499 if (memswlimit
< val
)
4501 ret
= res_counter_set_limit(&memcg
->memsw
, val
);
4503 if (memlimit
== val
)
4504 memcg
->memsw_is_minimum
= true;
4506 memcg
->memsw_is_minimum
= false;
4508 mutex_unlock(&set_limit_mutex
);
4513 mem_cgroup_reclaim(memcg
, GFP_KERNEL
,
4514 MEM_CGROUP_RECLAIM_NOSWAP
|
4515 MEM_CGROUP_RECLAIM_SHRINK
);
4516 curusage
= res_counter_read_u64(&memcg
->memsw
, RES_USAGE
);
4517 /* Usage is reduced ? */
4518 if (curusage
>= oldusage
)
4521 oldusage
= curusage
;
4523 if (!ret
&& enlarge
)
4524 memcg_oom_recover(memcg
);
4528 unsigned long mem_cgroup_soft_limit_reclaim(struct zone
*zone
, int order
,
4530 unsigned long *total_scanned
)
4532 unsigned long nr_reclaimed
= 0;
4533 struct mem_cgroup_per_zone
*mz
, *next_mz
= NULL
;
4534 unsigned long reclaimed
;
4536 struct mem_cgroup_tree_per_zone
*mctz
;
4537 unsigned long long excess
;
4538 unsigned long nr_scanned
;
4543 mctz
= soft_limit_tree_node_zone(zone_to_nid(zone
), zone_idx(zone
));
4545 * This loop can run a while, specially if mem_cgroup's continuously
4546 * keep exceeding their soft limit and putting the system under
4553 mz
= mem_cgroup_largest_soft_limit_node(mctz
);
4558 reclaimed
= mem_cgroup_soft_reclaim(mz
->memcg
, zone
,
4559 gfp_mask
, &nr_scanned
);
4560 nr_reclaimed
+= reclaimed
;
4561 *total_scanned
+= nr_scanned
;
4562 spin_lock(&mctz
->lock
);
4565 * If we failed to reclaim anything from this memory cgroup
4566 * it is time to move on to the next cgroup
4572 * Loop until we find yet another one.
4574 * By the time we get the soft_limit lock
4575 * again, someone might have aded the
4576 * group back on the RB tree. Iterate to
4577 * make sure we get a different mem.
4578 * mem_cgroup_largest_soft_limit_node returns
4579 * NULL if no other cgroup is present on
4583 __mem_cgroup_largest_soft_limit_node(mctz
);
4585 css_put(&next_mz
->memcg
->css
);
4586 else /* next_mz == NULL or other memcg */
4590 __mem_cgroup_remove_exceeded(mz
->memcg
, mz
, mctz
);
4591 excess
= res_counter_soft_limit_excess(&mz
->memcg
->res
);
4593 * One school of thought says that we should not add
4594 * back the node to the tree if reclaim returns 0.
4595 * But our reclaim could return 0, simply because due
4596 * to priority we are exposing a smaller subset of
4597 * memory to reclaim from. Consider this as a longer
4600 /* If excess == 0, no tree ops */
4601 __mem_cgroup_insert_exceeded(mz
->memcg
, mz
, mctz
, excess
);
4602 spin_unlock(&mctz
->lock
);
4603 css_put(&mz
->memcg
->css
);
4606 * Could not reclaim anything and there are no more
4607 * mem cgroups to try or we seem to be looping without
4608 * reclaiming anything.
4610 if (!nr_reclaimed
&&
4612 loop
> MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS
))
4614 } while (!nr_reclaimed
);
4616 css_put(&next_mz
->memcg
->css
);
4617 return nr_reclaimed
;
4621 * mem_cgroup_force_empty_list - clears LRU of a group
4622 * @memcg: group to clear
4625 * @lru: lru to to clear
4627 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
4628 * reclaim the pages page themselves - pages are moved to the parent (or root)
4631 static void mem_cgroup_force_empty_list(struct mem_cgroup
*memcg
,
4632 int node
, int zid
, enum lru_list lru
)
4634 struct lruvec
*lruvec
;
4635 unsigned long flags
;
4636 struct list_head
*list
;
4640 zone
= &NODE_DATA(node
)->node_zones
[zid
];
4641 lruvec
= mem_cgroup_zone_lruvec(zone
, memcg
);
4642 list
= &lruvec
->lists
[lru
];
4646 struct page_cgroup
*pc
;
4649 spin_lock_irqsave(&zone
->lru_lock
, flags
);
4650 if (list_empty(list
)) {
4651 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
4654 page
= list_entry(list
->prev
, struct page
, lru
);
4656 list_move(&page
->lru
, list
);
4658 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
4661 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
4663 pc
= lookup_page_cgroup(page
);
4665 if (mem_cgroup_move_parent(page
, pc
, memcg
)) {
4666 /* found lock contention or "pc" is obsolete. */
4671 } while (!list_empty(list
));
4675 * make mem_cgroup's charge to be 0 if there is no task by moving
4676 * all the charges and pages to the parent.
4677 * This enables deleting this mem_cgroup.
4679 * Caller is responsible for holding css reference on the memcg.
4681 static void mem_cgroup_reparent_charges(struct mem_cgroup
*memcg
)
4687 /* This is for making all *used* pages to be on LRU. */
4688 lru_add_drain_all();
4689 drain_all_stock_sync(memcg
);
4690 mem_cgroup_start_move(memcg
);
4691 for_each_node_state(node
, N_MEMORY
) {
4692 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
4695 mem_cgroup_force_empty_list(memcg
,
4700 mem_cgroup_end_move(memcg
);
4701 memcg_oom_recover(memcg
);
4705 * Kernel memory may not necessarily be trackable to a specific
4706 * process. So they are not migrated, and therefore we can't
4707 * expect their value to drop to 0 here.
4708 * Having res filled up with kmem only is enough.
4710 * This is a safety check because mem_cgroup_force_empty_list
4711 * could have raced with mem_cgroup_replace_page_cache callers
4712 * so the lru seemed empty but the page could have been added
4713 * right after the check. RES_USAGE should be safe as we always
4714 * charge before adding to the LRU.
4716 usage
= res_counter_read_u64(&memcg
->res
, RES_USAGE
) -
4717 res_counter_read_u64(&memcg
->kmem
, RES_USAGE
);
4718 } while (usage
> 0);
4722 * Reclaims as many pages from the given memcg as possible and moves
4723 * the rest to the parent.
4725 * Caller is responsible for holding css reference for memcg.
4727 static int mem_cgroup_force_empty(struct mem_cgroup
*memcg
)
4729 int nr_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
4730 struct cgroup
*cgrp
= memcg
->css
.cgroup
;
4732 /* returns EBUSY if there is a task or if we come here twice. */
4733 if (cgroup_task_count(cgrp
) || !list_empty(&cgrp
->children
))
4736 /* we call try-to-free pages for make this cgroup empty */
4737 lru_add_drain_all();
4738 /* try to free all pages in this cgroup */
4739 while (nr_retries
&& res_counter_read_u64(&memcg
->res
, RES_USAGE
) > 0) {
4742 if (signal_pending(current
))
4745 progress
= try_to_free_mem_cgroup_pages(memcg
, GFP_KERNEL
,
4749 /* maybe some writeback is necessary */
4750 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
4755 mem_cgroup_reparent_charges(memcg
);
4760 static int mem_cgroup_force_empty_write(struct cgroup
*cont
, unsigned int event
)
4762 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cont
);
4765 if (mem_cgroup_is_root(memcg
))
4767 css_get(&memcg
->css
);
4768 ret
= mem_cgroup_force_empty(memcg
);
4769 css_put(&memcg
->css
);
4775 static u64
mem_cgroup_hierarchy_read(struct cgroup
*cont
, struct cftype
*cft
)
4777 return mem_cgroup_from_cont(cont
)->use_hierarchy
;
4780 static int mem_cgroup_hierarchy_write(struct cgroup
*cont
, struct cftype
*cft
,
4784 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cont
);
4785 struct cgroup
*parent
= cont
->parent
;
4786 struct mem_cgroup
*parent_memcg
= NULL
;
4789 parent_memcg
= mem_cgroup_from_cont(parent
);
4793 if (memcg
->use_hierarchy
== val
)
4797 * If parent's use_hierarchy is set, we can't make any modifications
4798 * in the child subtrees. If it is unset, then the change can
4799 * occur, provided the current cgroup has no children.
4801 * For the root cgroup, parent_mem is NULL, we allow value to be
4802 * set if there are no children.
4804 if ((!parent_memcg
|| !parent_memcg
->use_hierarchy
) &&
4805 (val
== 1 || val
== 0)) {
4806 if (list_empty(&cont
->children
))
4807 memcg
->use_hierarchy
= val
;
4820 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup
*memcg
,
4821 enum mem_cgroup_stat_index idx
)
4823 struct mem_cgroup
*iter
;
4826 /* Per-cpu values can be negative, use a signed accumulator */
4827 for_each_mem_cgroup_tree(iter
, memcg
)
4828 val
+= mem_cgroup_read_stat(iter
, idx
);
4830 if (val
< 0) /* race ? */
4835 static inline u64
mem_cgroup_usage(struct mem_cgroup
*memcg
, bool swap
)
4839 if (!mem_cgroup_is_root(memcg
)) {
4841 return res_counter_read_u64(&memcg
->res
, RES_USAGE
);
4843 return res_counter_read_u64(&memcg
->memsw
, RES_USAGE
);
4846 val
= mem_cgroup_recursive_stat(memcg
, MEM_CGROUP_STAT_CACHE
);
4847 val
+= mem_cgroup_recursive_stat(memcg
, MEM_CGROUP_STAT_RSS
);
4850 val
+= mem_cgroup_recursive_stat(memcg
, MEM_CGROUP_STAT_SWAP
);
4852 return val
<< PAGE_SHIFT
;
4855 static ssize_t
mem_cgroup_read(struct cgroup
*cont
, struct cftype
*cft
,
4856 struct file
*file
, char __user
*buf
,
4857 size_t nbytes
, loff_t
*ppos
)
4859 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cont
);
4865 type
= MEMFILE_TYPE(cft
->private);
4866 name
= MEMFILE_ATTR(cft
->private);
4868 if (!do_swap_account
&& type
== _MEMSWAP
)
4873 if (name
== RES_USAGE
)
4874 val
= mem_cgroup_usage(memcg
, false);
4876 val
= res_counter_read_u64(&memcg
->res
, name
);
4879 if (name
== RES_USAGE
)
4880 val
= mem_cgroup_usage(memcg
, true);
4882 val
= res_counter_read_u64(&memcg
->memsw
, name
);
4885 val
= res_counter_read_u64(&memcg
->kmem
, name
);
4891 len
= scnprintf(str
, sizeof(str
), "%llu\n", (unsigned long long)val
);
4892 return simple_read_from_buffer(buf
, nbytes
, ppos
, str
, len
);
4895 static int memcg_update_kmem_limit(struct cgroup
*cont
, u64 val
)
4898 #ifdef CONFIG_MEMCG_KMEM
4899 bool must_inc_static_branch
= false;
4901 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cont
);
4903 * For simplicity, we won't allow this to be disabled. It also can't
4904 * be changed if the cgroup has children already, or if tasks had
4907 * If tasks join before we set the limit, a person looking at
4908 * kmem.usage_in_bytes will have no way to determine when it took
4909 * place, which makes the value quite meaningless.
4911 * After it first became limited, changes in the value of the limit are
4912 * of course permitted.
4914 * Taking the cgroup_lock is really offensive, but it is so far the only
4915 * way to guarantee that no children will appear. There are plenty of
4916 * other offenders, and they should all go away. Fine grained locking
4917 * is probably the way to go here. When we are fully hierarchical, we
4918 * can also get rid of the use_hierarchy check.
4921 mutex_lock(&set_limit_mutex
);
4922 if (!memcg
->kmem_account_flags
&& val
!= RESOURCE_MAX
) {
4923 if (cgroup_task_count(cont
) || (memcg
->use_hierarchy
&&
4924 !list_empty(&cont
->children
))) {
4928 ret
= res_counter_set_limit(&memcg
->kmem
, val
);
4931 ret
= memcg_update_cache_sizes(memcg
);
4933 res_counter_set_limit(&memcg
->kmem
, RESOURCE_MAX
);
4936 must_inc_static_branch
= true;
4938 * kmem charges can outlive the cgroup. In the case of slab
4939 * pages, for instance, a page contain objects from various
4940 * processes, so it is unfeasible to migrate them away. We
4941 * need to reference count the memcg because of that.
4943 mem_cgroup_get(memcg
);
4945 ret
= res_counter_set_limit(&memcg
->kmem
, val
);
4947 mutex_unlock(&set_limit_mutex
);
4951 * We are by now familiar with the fact that we can't inc the static
4952 * branch inside cgroup_lock. See disarm functions for details. A
4953 * worker here is overkill, but also wrong: After the limit is set, we
4954 * must start accounting right away. Since this operation can't fail,
4955 * we can safely defer it to here - no rollback will be needed.
4957 * The boolean used to control this is also safe, because
4958 * KMEM_ACCOUNTED_ACTIVATED guarantees that only one process will be
4959 * able to set it to true;
4961 if (must_inc_static_branch
) {
4962 static_key_slow_inc(&memcg_kmem_enabled_key
);
4964 * setting the active bit after the inc will guarantee no one
4965 * starts accounting before all call sites are patched
4967 memcg_kmem_set_active(memcg
);
4974 static int memcg_propagate_kmem(struct mem_cgroup
*memcg
)
4977 struct mem_cgroup
*parent
= parent_mem_cgroup(memcg
);
4981 memcg
->kmem_account_flags
= parent
->kmem_account_flags
;
4982 #ifdef CONFIG_MEMCG_KMEM
4984 * When that happen, we need to disable the static branch only on those
4985 * memcgs that enabled it. To achieve this, we would be forced to
4986 * complicate the code by keeping track of which memcgs were the ones
4987 * that actually enabled limits, and which ones got it from its
4990 * It is a lot simpler just to do static_key_slow_inc() on every child
4991 * that is accounted.
4993 if (!memcg_kmem_is_active(memcg
))
4997 * destroy(), called if we fail, will issue static_key_slow_inc() and
4998 * mem_cgroup_put() if kmem is enabled. We have to either call them
4999 * unconditionally, or clear the KMEM_ACTIVE flag. I personally find
5000 * this more consistent, since it always leads to the same destroy path
5002 mem_cgroup_get(memcg
);
5003 static_key_slow_inc(&memcg_kmem_enabled_key
);
5005 mutex_lock(&set_limit_mutex
);
5006 ret
= memcg_update_cache_sizes(memcg
);
5007 mutex_unlock(&set_limit_mutex
);
5014 * The user of this function is...
5017 static int mem_cgroup_write(struct cgroup
*cont
, struct cftype
*cft
,
5020 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cont
);
5023 unsigned long long val
;
5026 type
= MEMFILE_TYPE(cft
->private);
5027 name
= MEMFILE_ATTR(cft
->private);
5029 if (!do_swap_account
&& type
== _MEMSWAP
)
5034 if (mem_cgroup_is_root(memcg
)) { /* Can't set limit on root */
5038 /* This function does all necessary parse...reuse it */
5039 ret
= res_counter_memparse_write_strategy(buffer
, &val
);
5043 ret
= mem_cgroup_resize_limit(memcg
, val
);
5044 else if (type
== _MEMSWAP
)
5045 ret
= mem_cgroup_resize_memsw_limit(memcg
, val
);
5046 else if (type
== _KMEM
)
5047 ret
= memcg_update_kmem_limit(cont
, val
);
5051 case RES_SOFT_LIMIT
:
5052 ret
= res_counter_memparse_write_strategy(buffer
, &val
);
5056 * For memsw, soft limits are hard to implement in terms
5057 * of semantics, for now, we support soft limits for
5058 * control without swap
5061 ret
= res_counter_set_soft_limit(&memcg
->res
, val
);
5066 ret
= -EINVAL
; /* should be BUG() ? */
5072 static void memcg_get_hierarchical_limit(struct mem_cgroup
*memcg
,
5073 unsigned long long *mem_limit
, unsigned long long *memsw_limit
)
5075 struct cgroup
*cgroup
;
5076 unsigned long long min_limit
, min_memsw_limit
, tmp
;
5078 min_limit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
5079 min_memsw_limit
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
5080 cgroup
= memcg
->css
.cgroup
;
5081 if (!memcg
->use_hierarchy
)
5084 while (cgroup
->parent
) {
5085 cgroup
= cgroup
->parent
;
5086 memcg
= mem_cgroup_from_cont(cgroup
);
5087 if (!memcg
->use_hierarchy
)
5089 tmp
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
5090 min_limit
= min(min_limit
, tmp
);
5091 tmp
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
5092 min_memsw_limit
= min(min_memsw_limit
, tmp
);
5095 *mem_limit
= min_limit
;
5096 *memsw_limit
= min_memsw_limit
;
5099 static int mem_cgroup_reset(struct cgroup
*cont
, unsigned int event
)
5101 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cont
);
5105 type
= MEMFILE_TYPE(event
);
5106 name
= MEMFILE_ATTR(event
);
5108 if (!do_swap_account
&& type
== _MEMSWAP
)
5114 res_counter_reset_max(&memcg
->res
);
5115 else if (type
== _MEMSWAP
)
5116 res_counter_reset_max(&memcg
->memsw
);
5117 else if (type
== _KMEM
)
5118 res_counter_reset_max(&memcg
->kmem
);
5124 res_counter_reset_failcnt(&memcg
->res
);
5125 else if (type
== _MEMSWAP
)
5126 res_counter_reset_failcnt(&memcg
->memsw
);
5127 else if (type
== _KMEM
)
5128 res_counter_reset_failcnt(&memcg
->kmem
);
5137 static u64
mem_cgroup_move_charge_read(struct cgroup
*cgrp
,
5140 return mem_cgroup_from_cont(cgrp
)->move_charge_at_immigrate
;
5144 static int mem_cgroup_move_charge_write(struct cgroup
*cgrp
,
5145 struct cftype
*cft
, u64 val
)
5147 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
5149 if (val
>= (1 << NR_MOVE_TYPE
))
5152 * We check this value several times in both in can_attach() and
5153 * attach(), so we need cgroup lock to prevent this value from being
5157 memcg
->move_charge_at_immigrate
= val
;
5163 static int mem_cgroup_move_charge_write(struct cgroup
*cgrp
,
5164 struct cftype
*cft
, u64 val
)
5171 static int memcg_numa_stat_show(struct cgroup
*cont
, struct cftype
*cft
,
5175 unsigned long total_nr
, file_nr
, anon_nr
, unevictable_nr
;
5176 unsigned long node_nr
;
5177 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cont
);
5179 total_nr
= mem_cgroup_nr_lru_pages(memcg
, LRU_ALL
);
5180 seq_printf(m
, "total=%lu", total_nr
);
5181 for_each_node_state(nid
, N_MEMORY
) {
5182 node_nr
= mem_cgroup_node_nr_lru_pages(memcg
, nid
, LRU_ALL
);
5183 seq_printf(m
, " N%d=%lu", nid
, node_nr
);
5187 file_nr
= mem_cgroup_nr_lru_pages(memcg
, LRU_ALL_FILE
);
5188 seq_printf(m
, "file=%lu", file_nr
);
5189 for_each_node_state(nid
, N_MEMORY
) {
5190 node_nr
= mem_cgroup_node_nr_lru_pages(memcg
, nid
,
5192 seq_printf(m
, " N%d=%lu", nid
, node_nr
);
5196 anon_nr
= mem_cgroup_nr_lru_pages(memcg
, LRU_ALL_ANON
);
5197 seq_printf(m
, "anon=%lu", anon_nr
);
5198 for_each_node_state(nid
, N_MEMORY
) {
5199 node_nr
= mem_cgroup_node_nr_lru_pages(memcg
, nid
,
5201 seq_printf(m
, " N%d=%lu", nid
, node_nr
);
5205 unevictable_nr
= mem_cgroup_nr_lru_pages(memcg
, BIT(LRU_UNEVICTABLE
));
5206 seq_printf(m
, "unevictable=%lu", unevictable_nr
);
5207 for_each_node_state(nid
, N_MEMORY
) {
5208 node_nr
= mem_cgroup_node_nr_lru_pages(memcg
, nid
,
5209 BIT(LRU_UNEVICTABLE
));
5210 seq_printf(m
, " N%d=%lu", nid
, node_nr
);
5215 #endif /* CONFIG_NUMA */
5217 static const char * const mem_cgroup_lru_names
[] = {
5225 static inline void mem_cgroup_lru_names_not_uptodate(void)
5227 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names
) != NR_LRU_LISTS
);
5230 static int memcg_stat_show(struct cgroup
*cont
, struct cftype
*cft
,
5233 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cont
);
5234 struct mem_cgroup
*mi
;
5237 for (i
= 0; i
< MEM_CGROUP_STAT_NSTATS
; i
++) {
5238 if (i
== MEM_CGROUP_STAT_SWAP
&& !do_swap_account
)
5240 seq_printf(m
, "%s %ld\n", mem_cgroup_stat_names
[i
],
5241 mem_cgroup_read_stat(memcg
, i
) * PAGE_SIZE
);
5244 for (i
= 0; i
< MEM_CGROUP_EVENTS_NSTATS
; i
++)
5245 seq_printf(m
, "%s %lu\n", mem_cgroup_events_names
[i
],
5246 mem_cgroup_read_events(memcg
, i
));
5248 for (i
= 0; i
< NR_LRU_LISTS
; i
++)
5249 seq_printf(m
, "%s %lu\n", mem_cgroup_lru_names
[i
],
5250 mem_cgroup_nr_lru_pages(memcg
, BIT(i
)) * PAGE_SIZE
);
5252 /* Hierarchical information */
5254 unsigned long long limit
, memsw_limit
;
5255 memcg_get_hierarchical_limit(memcg
, &limit
, &memsw_limit
);
5256 seq_printf(m
, "hierarchical_memory_limit %llu\n", limit
);
5257 if (do_swap_account
)
5258 seq_printf(m
, "hierarchical_memsw_limit %llu\n",
5262 for (i
= 0; i
< MEM_CGROUP_STAT_NSTATS
; i
++) {
5265 if (i
== MEM_CGROUP_STAT_SWAP
&& !do_swap_account
)
5267 for_each_mem_cgroup_tree(mi
, memcg
)
5268 val
+= mem_cgroup_read_stat(mi
, i
) * PAGE_SIZE
;
5269 seq_printf(m
, "total_%s %lld\n", mem_cgroup_stat_names
[i
], val
);
5272 for (i
= 0; i
< MEM_CGROUP_EVENTS_NSTATS
; i
++) {
5273 unsigned long long val
= 0;
5275 for_each_mem_cgroup_tree(mi
, memcg
)
5276 val
+= mem_cgroup_read_events(mi
, i
);
5277 seq_printf(m
, "total_%s %llu\n",
5278 mem_cgroup_events_names
[i
], val
);
5281 for (i
= 0; i
< NR_LRU_LISTS
; i
++) {
5282 unsigned long long val
= 0;
5284 for_each_mem_cgroup_tree(mi
, memcg
)
5285 val
+= mem_cgroup_nr_lru_pages(mi
, BIT(i
)) * PAGE_SIZE
;
5286 seq_printf(m
, "total_%s %llu\n", mem_cgroup_lru_names
[i
], val
);
5289 #ifdef CONFIG_DEBUG_VM
5292 struct mem_cgroup_per_zone
*mz
;
5293 struct zone_reclaim_stat
*rstat
;
5294 unsigned long recent_rotated
[2] = {0, 0};
5295 unsigned long recent_scanned
[2] = {0, 0};
5297 for_each_online_node(nid
)
5298 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
5299 mz
= mem_cgroup_zoneinfo(memcg
, nid
, zid
);
5300 rstat
= &mz
->lruvec
.reclaim_stat
;
5302 recent_rotated
[0] += rstat
->recent_rotated
[0];
5303 recent_rotated
[1] += rstat
->recent_rotated
[1];
5304 recent_scanned
[0] += rstat
->recent_scanned
[0];
5305 recent_scanned
[1] += rstat
->recent_scanned
[1];
5307 seq_printf(m
, "recent_rotated_anon %lu\n", recent_rotated
[0]);
5308 seq_printf(m
, "recent_rotated_file %lu\n", recent_rotated
[1]);
5309 seq_printf(m
, "recent_scanned_anon %lu\n", recent_scanned
[0]);
5310 seq_printf(m
, "recent_scanned_file %lu\n", recent_scanned
[1]);
5317 static u64
mem_cgroup_swappiness_read(struct cgroup
*cgrp
, struct cftype
*cft
)
5319 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
5321 return mem_cgroup_swappiness(memcg
);
5324 static int mem_cgroup_swappiness_write(struct cgroup
*cgrp
, struct cftype
*cft
,
5327 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
5328 struct mem_cgroup
*parent
;
5333 if (cgrp
->parent
== NULL
)
5336 parent
= mem_cgroup_from_cont(cgrp
->parent
);
5340 /* If under hierarchy, only empty-root can set this value */
5341 if ((parent
->use_hierarchy
) ||
5342 (memcg
->use_hierarchy
&& !list_empty(&cgrp
->children
))) {
5347 memcg
->swappiness
= val
;
5354 static void __mem_cgroup_threshold(struct mem_cgroup
*memcg
, bool swap
)
5356 struct mem_cgroup_threshold_ary
*t
;
5362 t
= rcu_dereference(memcg
->thresholds
.primary
);
5364 t
= rcu_dereference(memcg
->memsw_thresholds
.primary
);
5369 usage
= mem_cgroup_usage(memcg
, swap
);
5372 * current_threshold points to threshold just below or equal to usage.
5373 * If it's not true, a threshold was crossed after last
5374 * call of __mem_cgroup_threshold().
5376 i
= t
->current_threshold
;
5379 * Iterate backward over array of thresholds starting from
5380 * current_threshold and check if a threshold is crossed.
5381 * If none of thresholds below usage is crossed, we read
5382 * only one element of the array here.
5384 for (; i
>= 0 && unlikely(t
->entries
[i
].threshold
> usage
); i
--)
5385 eventfd_signal(t
->entries
[i
].eventfd
, 1);
5387 /* i = current_threshold + 1 */
5391 * Iterate forward over array of thresholds starting from
5392 * current_threshold+1 and check if a threshold is crossed.
5393 * If none of thresholds above usage is crossed, we read
5394 * only one element of the array here.
5396 for (; i
< t
->size
&& unlikely(t
->entries
[i
].threshold
<= usage
); i
++)
5397 eventfd_signal(t
->entries
[i
].eventfd
, 1);
5399 /* Update current_threshold */
5400 t
->current_threshold
= i
- 1;
5405 static void mem_cgroup_threshold(struct mem_cgroup
*memcg
)
5408 __mem_cgroup_threshold(memcg
, false);
5409 if (do_swap_account
)
5410 __mem_cgroup_threshold(memcg
, true);
5412 memcg
= parent_mem_cgroup(memcg
);
5416 static int compare_thresholds(const void *a
, const void *b
)
5418 const struct mem_cgroup_threshold
*_a
= a
;
5419 const struct mem_cgroup_threshold
*_b
= b
;
5421 return _a
->threshold
- _b
->threshold
;
5424 static int mem_cgroup_oom_notify_cb(struct mem_cgroup
*memcg
)
5426 struct mem_cgroup_eventfd_list
*ev
;
5428 list_for_each_entry(ev
, &memcg
->oom_notify
, list
)
5429 eventfd_signal(ev
->eventfd
, 1);
5433 static void mem_cgroup_oom_notify(struct mem_cgroup
*memcg
)
5435 struct mem_cgroup
*iter
;
5437 for_each_mem_cgroup_tree(iter
, memcg
)
5438 mem_cgroup_oom_notify_cb(iter
);
5441 static int mem_cgroup_usage_register_event(struct cgroup
*cgrp
,
5442 struct cftype
*cft
, struct eventfd_ctx
*eventfd
, const char *args
)
5444 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
5445 struct mem_cgroup_thresholds
*thresholds
;
5446 struct mem_cgroup_threshold_ary
*new;
5447 enum res_type type
= MEMFILE_TYPE(cft
->private);
5448 u64 threshold
, usage
;
5451 ret
= res_counter_memparse_write_strategy(args
, &threshold
);
5455 mutex_lock(&memcg
->thresholds_lock
);
5458 thresholds
= &memcg
->thresholds
;
5459 else if (type
== _MEMSWAP
)
5460 thresholds
= &memcg
->memsw_thresholds
;
5464 usage
= mem_cgroup_usage(memcg
, type
== _MEMSWAP
);
5466 /* Check if a threshold crossed before adding a new one */
5467 if (thresholds
->primary
)
5468 __mem_cgroup_threshold(memcg
, type
== _MEMSWAP
);
5470 size
= thresholds
->primary
? thresholds
->primary
->size
+ 1 : 1;
5472 /* Allocate memory for new array of thresholds */
5473 new = kmalloc(sizeof(*new) + size
* sizeof(struct mem_cgroup_threshold
),
5481 /* Copy thresholds (if any) to new array */
5482 if (thresholds
->primary
) {
5483 memcpy(new->entries
, thresholds
->primary
->entries
, (size
- 1) *
5484 sizeof(struct mem_cgroup_threshold
));
5487 /* Add new threshold */
5488 new->entries
[size
- 1].eventfd
= eventfd
;
5489 new->entries
[size
- 1].threshold
= threshold
;
5491 /* Sort thresholds. Registering of new threshold isn't time-critical */
5492 sort(new->entries
, size
, sizeof(struct mem_cgroup_threshold
),
5493 compare_thresholds
, NULL
);
5495 /* Find current threshold */
5496 new->current_threshold
= -1;
5497 for (i
= 0; i
< size
; i
++) {
5498 if (new->entries
[i
].threshold
<= usage
) {
5500 * new->current_threshold will not be used until
5501 * rcu_assign_pointer(), so it's safe to increment
5504 ++new->current_threshold
;
5509 /* Free old spare buffer and save old primary buffer as spare */
5510 kfree(thresholds
->spare
);
5511 thresholds
->spare
= thresholds
->primary
;
5513 rcu_assign_pointer(thresholds
->primary
, new);
5515 /* To be sure that nobody uses thresholds */
5519 mutex_unlock(&memcg
->thresholds_lock
);
5524 static void mem_cgroup_usage_unregister_event(struct cgroup
*cgrp
,
5525 struct cftype
*cft
, struct eventfd_ctx
*eventfd
)
5527 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
5528 struct mem_cgroup_thresholds
*thresholds
;
5529 struct mem_cgroup_threshold_ary
*new;
5530 enum res_type type
= MEMFILE_TYPE(cft
->private);
5534 mutex_lock(&memcg
->thresholds_lock
);
5536 thresholds
= &memcg
->thresholds
;
5537 else if (type
== _MEMSWAP
)
5538 thresholds
= &memcg
->memsw_thresholds
;
5542 if (!thresholds
->primary
)
5545 usage
= mem_cgroup_usage(memcg
, type
== _MEMSWAP
);
5547 /* Check if a threshold crossed before removing */
5548 __mem_cgroup_threshold(memcg
, type
== _MEMSWAP
);
5550 /* Calculate new number of threshold */
5552 for (i
= 0; i
< thresholds
->primary
->size
; i
++) {
5553 if (thresholds
->primary
->entries
[i
].eventfd
!= eventfd
)
5557 new = thresholds
->spare
;
5559 /* Set thresholds array to NULL if we don't have thresholds */
5568 /* Copy thresholds and find current threshold */
5569 new->current_threshold
= -1;
5570 for (i
= 0, j
= 0; i
< thresholds
->primary
->size
; i
++) {
5571 if (thresholds
->primary
->entries
[i
].eventfd
== eventfd
)
5574 new->entries
[j
] = thresholds
->primary
->entries
[i
];
5575 if (new->entries
[j
].threshold
<= usage
) {
5577 * new->current_threshold will not be used
5578 * until rcu_assign_pointer(), so it's safe to increment
5581 ++new->current_threshold
;
5587 /* Swap primary and spare array */
5588 thresholds
->spare
= thresholds
->primary
;
5589 /* If all events are unregistered, free the spare array */
5591 kfree(thresholds
->spare
);
5592 thresholds
->spare
= NULL
;
5595 rcu_assign_pointer(thresholds
->primary
, new);
5597 /* To be sure that nobody uses thresholds */
5600 mutex_unlock(&memcg
->thresholds_lock
);
5603 static int mem_cgroup_oom_register_event(struct cgroup
*cgrp
,
5604 struct cftype
*cft
, struct eventfd_ctx
*eventfd
, const char *args
)
5606 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
5607 struct mem_cgroup_eventfd_list
*event
;
5608 enum res_type type
= MEMFILE_TYPE(cft
->private);
5610 BUG_ON(type
!= _OOM_TYPE
);
5611 event
= kmalloc(sizeof(*event
), GFP_KERNEL
);
5615 spin_lock(&memcg_oom_lock
);
5617 event
->eventfd
= eventfd
;
5618 list_add(&event
->list
, &memcg
->oom_notify
);
5620 /* already in OOM ? */
5621 if (atomic_read(&memcg
->under_oom
))
5622 eventfd_signal(eventfd
, 1);
5623 spin_unlock(&memcg_oom_lock
);
5628 static void mem_cgroup_oom_unregister_event(struct cgroup
*cgrp
,
5629 struct cftype
*cft
, struct eventfd_ctx
*eventfd
)
5631 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
5632 struct mem_cgroup_eventfd_list
*ev
, *tmp
;
5633 enum res_type type
= MEMFILE_TYPE(cft
->private);
5635 BUG_ON(type
!= _OOM_TYPE
);
5637 spin_lock(&memcg_oom_lock
);
5639 list_for_each_entry_safe(ev
, tmp
, &memcg
->oom_notify
, list
) {
5640 if (ev
->eventfd
== eventfd
) {
5641 list_del(&ev
->list
);
5646 spin_unlock(&memcg_oom_lock
);
5649 static int mem_cgroup_oom_control_read(struct cgroup
*cgrp
,
5650 struct cftype
*cft
, struct cgroup_map_cb
*cb
)
5652 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
5654 cb
->fill(cb
, "oom_kill_disable", memcg
->oom_kill_disable
);
5656 if (atomic_read(&memcg
->under_oom
))
5657 cb
->fill(cb
, "under_oom", 1);
5659 cb
->fill(cb
, "under_oom", 0);
5663 static int mem_cgroup_oom_control_write(struct cgroup
*cgrp
,
5664 struct cftype
*cft
, u64 val
)
5666 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
5667 struct mem_cgroup
*parent
;
5669 /* cannot set to root cgroup and only 0 and 1 are allowed */
5670 if (!cgrp
->parent
|| !((val
== 0) || (val
== 1)))
5673 parent
= mem_cgroup_from_cont(cgrp
->parent
);
5676 /* oom-kill-disable is a flag for subhierarchy. */
5677 if ((parent
->use_hierarchy
) ||
5678 (memcg
->use_hierarchy
&& !list_empty(&cgrp
->children
))) {
5682 memcg
->oom_kill_disable
= val
;
5684 memcg_oom_recover(memcg
);
5689 #ifdef CONFIG_MEMCG_KMEM
5690 static int memcg_init_kmem(struct mem_cgroup
*memcg
, struct cgroup_subsys
*ss
)
5694 memcg
->kmemcg_id
= -1;
5695 ret
= memcg_propagate_kmem(memcg
);
5699 return mem_cgroup_sockets_init(memcg
, ss
);
5702 static void kmem_cgroup_destroy(struct mem_cgroup
*memcg
)
5704 mem_cgroup_sockets_destroy(memcg
);
5706 memcg_kmem_mark_dead(memcg
);
5708 if (res_counter_read_u64(&memcg
->kmem
, RES_USAGE
) != 0)
5712 * Charges already down to 0, undo mem_cgroup_get() done in the charge
5713 * path here, being careful not to race with memcg_uncharge_kmem: it is
5714 * possible that the charges went down to 0 between mark_dead and the
5715 * res_counter read, so in that case, we don't need the put
5717 if (memcg_kmem_test_and_clear_dead(memcg
))
5718 mem_cgroup_put(memcg
);
5721 static int memcg_init_kmem(struct mem_cgroup
*memcg
, struct cgroup_subsys
*ss
)
5726 static void kmem_cgroup_destroy(struct mem_cgroup
*memcg
)
5731 static struct cftype mem_cgroup_files
[] = {
5733 .name
= "usage_in_bytes",
5734 .private = MEMFILE_PRIVATE(_MEM
, RES_USAGE
),
5735 .read
= mem_cgroup_read
,
5736 .register_event
= mem_cgroup_usage_register_event
,
5737 .unregister_event
= mem_cgroup_usage_unregister_event
,
5740 .name
= "max_usage_in_bytes",
5741 .private = MEMFILE_PRIVATE(_MEM
, RES_MAX_USAGE
),
5742 .trigger
= mem_cgroup_reset
,
5743 .read
= mem_cgroup_read
,
5746 .name
= "limit_in_bytes",
5747 .private = MEMFILE_PRIVATE(_MEM
, RES_LIMIT
),
5748 .write_string
= mem_cgroup_write
,
5749 .read
= mem_cgroup_read
,
5752 .name
= "soft_limit_in_bytes",
5753 .private = MEMFILE_PRIVATE(_MEM
, RES_SOFT_LIMIT
),
5754 .write_string
= mem_cgroup_write
,
5755 .read
= mem_cgroup_read
,
5759 .private = MEMFILE_PRIVATE(_MEM
, RES_FAILCNT
),
5760 .trigger
= mem_cgroup_reset
,
5761 .read
= mem_cgroup_read
,
5765 .read_seq_string
= memcg_stat_show
,
5768 .name
= "force_empty",
5769 .trigger
= mem_cgroup_force_empty_write
,
5772 .name
= "use_hierarchy",
5773 .write_u64
= mem_cgroup_hierarchy_write
,
5774 .read_u64
= mem_cgroup_hierarchy_read
,
5777 .name
= "swappiness",
5778 .read_u64
= mem_cgroup_swappiness_read
,
5779 .write_u64
= mem_cgroup_swappiness_write
,
5782 .name
= "move_charge_at_immigrate",
5783 .read_u64
= mem_cgroup_move_charge_read
,
5784 .write_u64
= mem_cgroup_move_charge_write
,
5787 .name
= "oom_control",
5788 .read_map
= mem_cgroup_oom_control_read
,
5789 .write_u64
= mem_cgroup_oom_control_write
,
5790 .register_event
= mem_cgroup_oom_register_event
,
5791 .unregister_event
= mem_cgroup_oom_unregister_event
,
5792 .private = MEMFILE_PRIVATE(_OOM_TYPE
, OOM_CONTROL
),
5796 .name
= "numa_stat",
5797 .read_seq_string
= memcg_numa_stat_show
,
5800 #ifdef CONFIG_MEMCG_SWAP
5802 .name
= "memsw.usage_in_bytes",
5803 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_USAGE
),
5804 .read
= mem_cgroup_read
,
5805 .register_event
= mem_cgroup_usage_register_event
,
5806 .unregister_event
= mem_cgroup_usage_unregister_event
,
5809 .name
= "memsw.max_usage_in_bytes",
5810 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_MAX_USAGE
),
5811 .trigger
= mem_cgroup_reset
,
5812 .read
= mem_cgroup_read
,
5815 .name
= "memsw.limit_in_bytes",
5816 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_LIMIT
),
5817 .write_string
= mem_cgroup_write
,
5818 .read
= mem_cgroup_read
,
5821 .name
= "memsw.failcnt",
5822 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_FAILCNT
),
5823 .trigger
= mem_cgroup_reset
,
5824 .read
= mem_cgroup_read
,
5827 #ifdef CONFIG_MEMCG_KMEM
5829 .name
= "kmem.limit_in_bytes",
5830 .private = MEMFILE_PRIVATE(_KMEM
, RES_LIMIT
),
5831 .write_string
= mem_cgroup_write
,
5832 .read
= mem_cgroup_read
,
5835 .name
= "kmem.usage_in_bytes",
5836 .private = MEMFILE_PRIVATE(_KMEM
, RES_USAGE
),
5837 .read
= mem_cgroup_read
,
5840 .name
= "kmem.failcnt",
5841 .private = MEMFILE_PRIVATE(_KMEM
, RES_FAILCNT
),
5842 .trigger
= mem_cgroup_reset
,
5843 .read
= mem_cgroup_read
,
5846 .name
= "kmem.max_usage_in_bytes",
5847 .private = MEMFILE_PRIVATE(_KMEM
, RES_MAX_USAGE
),
5848 .trigger
= mem_cgroup_reset
,
5849 .read
= mem_cgroup_read
,
5851 #ifdef CONFIG_SLABINFO
5853 .name
= "kmem.slabinfo",
5854 .read_seq_string
= mem_cgroup_slabinfo_read
,
5858 { }, /* terminate */
5861 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup
*memcg
, int node
)
5863 struct mem_cgroup_per_node
*pn
;
5864 struct mem_cgroup_per_zone
*mz
;
5865 int zone
, tmp
= node
;
5867 * This routine is called against possible nodes.
5868 * But it's BUG to call kmalloc() against offline node.
5870 * TODO: this routine can waste much memory for nodes which will
5871 * never be onlined. It's better to use memory hotplug callback
5874 if (!node_state(node
, N_NORMAL_MEMORY
))
5876 pn
= kzalloc_node(sizeof(*pn
), GFP_KERNEL
, tmp
);
5880 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
5881 mz
= &pn
->zoneinfo
[zone
];
5882 lruvec_init(&mz
->lruvec
);
5883 mz
->usage_in_excess
= 0;
5884 mz
->on_tree
= false;
5887 memcg
->info
.nodeinfo
[node
] = pn
;
5891 static void free_mem_cgroup_per_zone_info(struct mem_cgroup
*memcg
, int node
)
5893 kfree(memcg
->info
.nodeinfo
[node
]);
5896 static struct mem_cgroup
*mem_cgroup_alloc(void)
5898 struct mem_cgroup
*memcg
;
5899 int size
= sizeof(struct mem_cgroup
);
5901 /* Can be very big if MAX_NUMNODES is very big */
5902 if (size
< PAGE_SIZE
)
5903 memcg
= kzalloc(size
, GFP_KERNEL
);
5905 memcg
= vzalloc(size
);
5910 memcg
->stat
= alloc_percpu(struct mem_cgroup_stat_cpu
);
5913 spin_lock_init(&memcg
->pcp_counter_lock
);
5917 if (size
< PAGE_SIZE
)
5925 * At destroying mem_cgroup, references from swap_cgroup can remain.
5926 * (scanning all at force_empty is too costly...)
5928 * Instead of clearing all references at force_empty, we remember
5929 * the number of reference from swap_cgroup and free mem_cgroup when
5930 * it goes down to 0.
5932 * Removal of cgroup itself succeeds regardless of refs from swap.
5935 static void __mem_cgroup_free(struct mem_cgroup
*memcg
)
5938 int size
= sizeof(struct mem_cgroup
);
5940 mem_cgroup_remove_from_trees(memcg
);
5941 free_css_id(&mem_cgroup_subsys
, &memcg
->css
);
5944 free_mem_cgroup_per_zone_info(memcg
, node
);
5946 free_percpu(memcg
->stat
);
5949 * We need to make sure that (at least for now), the jump label
5950 * destruction code runs outside of the cgroup lock. This is because
5951 * get_online_cpus(), which is called from the static_branch update,
5952 * can't be called inside the cgroup_lock. cpusets are the ones
5953 * enforcing this dependency, so if they ever change, we might as well.
5955 * schedule_work() will guarantee this happens. Be careful if you need
5956 * to move this code around, and make sure it is outside
5959 disarm_static_keys(memcg
);
5960 if (size
< PAGE_SIZE
)
5968 * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU,
5969 * but in process context. The work_freeing structure is overlaid
5970 * on the rcu_freeing structure, which itself is overlaid on memsw.
5972 static void free_work(struct work_struct
*work
)
5974 struct mem_cgroup
*memcg
;
5976 memcg
= container_of(work
, struct mem_cgroup
, work_freeing
);
5977 __mem_cgroup_free(memcg
);
5980 static void free_rcu(struct rcu_head
*rcu_head
)
5982 struct mem_cgroup
*memcg
;
5984 memcg
= container_of(rcu_head
, struct mem_cgroup
, rcu_freeing
);
5985 INIT_WORK(&memcg
->work_freeing
, free_work
);
5986 schedule_work(&memcg
->work_freeing
);
5989 static void mem_cgroup_get(struct mem_cgroup
*memcg
)
5991 atomic_inc(&memcg
->refcnt
);
5994 static void __mem_cgroup_put(struct mem_cgroup
*memcg
, int count
)
5996 if (atomic_sub_and_test(count
, &memcg
->refcnt
)) {
5997 struct mem_cgroup
*parent
= parent_mem_cgroup(memcg
);
5998 call_rcu(&memcg
->rcu_freeing
, free_rcu
);
6000 mem_cgroup_put(parent
);
6004 static void mem_cgroup_put(struct mem_cgroup
*memcg
)
6006 __mem_cgroup_put(memcg
, 1);
6010 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
6012 struct mem_cgroup
*parent_mem_cgroup(struct mem_cgroup
*memcg
)
6014 if (!memcg
->res
.parent
)
6016 return mem_cgroup_from_res_counter(memcg
->res
.parent
, res
);
6018 EXPORT_SYMBOL(parent_mem_cgroup
);
6020 #ifdef CONFIG_MEMCG_SWAP
6021 static void __init
enable_swap_cgroup(void)
6023 if (!mem_cgroup_disabled() && really_do_swap_account
)
6024 do_swap_account
= 1;
6027 static void __init
enable_swap_cgroup(void)
6032 static int mem_cgroup_soft_limit_tree_init(void)
6034 struct mem_cgroup_tree_per_node
*rtpn
;
6035 struct mem_cgroup_tree_per_zone
*rtpz
;
6036 int tmp
, node
, zone
;
6038 for_each_node(node
) {
6040 if (!node_state(node
, N_NORMAL_MEMORY
))
6042 rtpn
= kzalloc_node(sizeof(*rtpn
), GFP_KERNEL
, tmp
);
6046 soft_limit_tree
.rb_tree_per_node
[node
] = rtpn
;
6048 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
6049 rtpz
= &rtpn
->rb_tree_per_zone
[zone
];
6050 rtpz
->rb_root
= RB_ROOT
;
6051 spin_lock_init(&rtpz
->lock
);
6057 for_each_node(node
) {
6058 if (!soft_limit_tree
.rb_tree_per_node
[node
])
6060 kfree(soft_limit_tree
.rb_tree_per_node
[node
]);
6061 soft_limit_tree
.rb_tree_per_node
[node
] = NULL
;
6067 static struct cgroup_subsys_state
* __ref
6068 mem_cgroup_css_alloc(struct cgroup
*cont
)
6070 struct mem_cgroup
*memcg
, *parent
;
6071 long error
= -ENOMEM
;
6074 memcg
= mem_cgroup_alloc();
6076 return ERR_PTR(error
);
6079 if (alloc_mem_cgroup_per_zone_info(memcg
, node
))
6083 if (cont
->parent
== NULL
) {
6085 enable_swap_cgroup();
6087 if (mem_cgroup_soft_limit_tree_init())
6089 root_mem_cgroup
= memcg
;
6090 for_each_possible_cpu(cpu
) {
6091 struct memcg_stock_pcp
*stock
=
6092 &per_cpu(memcg_stock
, cpu
);
6093 INIT_WORK(&stock
->work
, drain_local_stock
);
6096 parent
= mem_cgroup_from_cont(cont
->parent
);
6097 memcg
->use_hierarchy
= parent
->use_hierarchy
;
6098 memcg
->oom_kill_disable
= parent
->oom_kill_disable
;
6101 if (parent
&& parent
->use_hierarchy
) {
6102 res_counter_init(&memcg
->res
, &parent
->res
);
6103 res_counter_init(&memcg
->memsw
, &parent
->memsw
);
6104 res_counter_init(&memcg
->kmem
, &parent
->kmem
);
6107 * We increment refcnt of the parent to ensure that we can
6108 * safely access it on res_counter_charge/uncharge.
6109 * This refcnt will be decremented when freeing this
6110 * mem_cgroup(see mem_cgroup_put).
6112 mem_cgroup_get(parent
);
6114 res_counter_init(&memcg
->res
, NULL
);
6115 res_counter_init(&memcg
->memsw
, NULL
);
6116 res_counter_init(&memcg
->kmem
, NULL
);
6118 * Deeper hierachy with use_hierarchy == false doesn't make
6119 * much sense so let cgroup subsystem know about this
6120 * unfortunate state in our controller.
6122 if (parent
&& parent
!= root_mem_cgroup
)
6123 mem_cgroup_subsys
.broken_hierarchy
= true;
6125 memcg
->last_scanned_node
= MAX_NUMNODES
;
6126 INIT_LIST_HEAD(&memcg
->oom_notify
);
6129 memcg
->swappiness
= mem_cgroup_swappiness(parent
);
6130 atomic_set(&memcg
->refcnt
, 1);
6131 memcg
->move_charge_at_immigrate
= 0;
6132 mutex_init(&memcg
->thresholds_lock
);
6133 spin_lock_init(&memcg
->move_lock
);
6135 error
= memcg_init_kmem(memcg
, &mem_cgroup_subsys
);
6138 * We call put now because our (and parent's) refcnts
6139 * are already in place. mem_cgroup_put() will internally
6140 * call __mem_cgroup_free, so return directly
6142 mem_cgroup_put(memcg
);
6143 return ERR_PTR(error
);
6147 __mem_cgroup_free(memcg
);
6148 return ERR_PTR(error
);
6151 static void mem_cgroup_css_offline(struct cgroup
*cont
)
6153 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cont
);
6155 mem_cgroup_reparent_charges(memcg
);
6156 mem_cgroup_destroy_all_caches(memcg
);
6159 static void mem_cgroup_css_free(struct cgroup
*cont
)
6161 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cont
);
6163 kmem_cgroup_destroy(memcg
);
6165 mem_cgroup_put(memcg
);
6169 /* Handlers for move charge at task migration. */
6170 #define PRECHARGE_COUNT_AT_ONCE 256
6171 static int mem_cgroup_do_precharge(unsigned long count
)
6174 int batch_count
= PRECHARGE_COUNT_AT_ONCE
;
6175 struct mem_cgroup
*memcg
= mc
.to
;
6177 if (mem_cgroup_is_root(memcg
)) {
6178 mc
.precharge
+= count
;
6179 /* we don't need css_get for root */
6182 /* try to charge at once */
6184 struct res_counter
*dummy
;
6186 * "memcg" cannot be under rmdir() because we've already checked
6187 * by cgroup_lock_live_cgroup() that it is not removed and we
6188 * are still under the same cgroup_mutex. So we can postpone
6191 if (res_counter_charge(&memcg
->res
, PAGE_SIZE
* count
, &dummy
))
6193 if (do_swap_account
&& res_counter_charge(&memcg
->memsw
,
6194 PAGE_SIZE
* count
, &dummy
)) {
6195 res_counter_uncharge(&memcg
->res
, PAGE_SIZE
* count
);
6198 mc
.precharge
+= count
;
6202 /* fall back to one by one charge */
6204 if (signal_pending(current
)) {
6208 if (!batch_count
--) {
6209 batch_count
= PRECHARGE_COUNT_AT_ONCE
;
6212 ret
= __mem_cgroup_try_charge(NULL
,
6213 GFP_KERNEL
, 1, &memcg
, false);
6215 /* mem_cgroup_clear_mc() will do uncharge later */
6223 * get_mctgt_type - get target type of moving charge
6224 * @vma: the vma the pte to be checked belongs
6225 * @addr: the address corresponding to the pte to be checked
6226 * @ptent: the pte to be checked
6227 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6230 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
6231 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
6232 * move charge. if @target is not NULL, the page is stored in target->page
6233 * with extra refcnt got(Callers should handle it).
6234 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
6235 * target for charge migration. if @target is not NULL, the entry is stored
6238 * Called with pte lock held.
6245 enum mc_target_type
{
6251 static struct page
*mc_handle_present_pte(struct vm_area_struct
*vma
,
6252 unsigned long addr
, pte_t ptent
)
6254 struct page
*page
= vm_normal_page(vma
, addr
, ptent
);
6256 if (!page
|| !page_mapped(page
))
6258 if (PageAnon(page
)) {
6259 /* we don't move shared anon */
6262 } else if (!move_file())
6263 /* we ignore mapcount for file pages */
6265 if (!get_page_unless_zero(page
))
6272 static struct page
*mc_handle_swap_pte(struct vm_area_struct
*vma
,
6273 unsigned long addr
, pte_t ptent
, swp_entry_t
*entry
)
6275 struct page
*page
= NULL
;
6276 swp_entry_t ent
= pte_to_swp_entry(ptent
);
6278 if (!move_anon() || non_swap_entry(ent
))
6281 * Because lookup_swap_cache() updates some statistics counter,
6282 * we call find_get_page() with swapper_space directly.
6284 page
= find_get_page(&swapper_space
, ent
.val
);
6285 if (do_swap_account
)
6286 entry
->val
= ent
.val
;
6291 static struct page
*mc_handle_swap_pte(struct vm_area_struct
*vma
,
6292 unsigned long addr
, pte_t ptent
, swp_entry_t
*entry
)
6298 static struct page
*mc_handle_file_pte(struct vm_area_struct
*vma
,
6299 unsigned long addr
, pte_t ptent
, swp_entry_t
*entry
)
6301 struct page
*page
= NULL
;
6302 struct address_space
*mapping
;
6305 if (!vma
->vm_file
) /* anonymous vma */
6310 mapping
= vma
->vm_file
->f_mapping
;
6311 if (pte_none(ptent
))
6312 pgoff
= linear_page_index(vma
, addr
);
6313 else /* pte_file(ptent) is true */
6314 pgoff
= pte_to_pgoff(ptent
);
6316 /* page is moved even if it's not RSS of this task(page-faulted). */
6317 page
= find_get_page(mapping
, pgoff
);
6320 /* shmem/tmpfs may report page out on swap: account for that too. */
6321 if (radix_tree_exceptional_entry(page
)) {
6322 swp_entry_t swap
= radix_to_swp_entry(page
);
6323 if (do_swap_account
)
6325 page
= find_get_page(&swapper_space
, swap
.val
);
6331 static enum mc_target_type
get_mctgt_type(struct vm_area_struct
*vma
,
6332 unsigned long addr
, pte_t ptent
, union mc_target
*target
)
6334 struct page
*page
= NULL
;
6335 struct page_cgroup
*pc
;
6336 enum mc_target_type ret
= MC_TARGET_NONE
;
6337 swp_entry_t ent
= { .val
= 0 };
6339 if (pte_present(ptent
))
6340 page
= mc_handle_present_pte(vma
, addr
, ptent
);
6341 else if (is_swap_pte(ptent
))
6342 page
= mc_handle_swap_pte(vma
, addr
, ptent
, &ent
);
6343 else if (pte_none(ptent
) || pte_file(ptent
))
6344 page
= mc_handle_file_pte(vma
, addr
, ptent
, &ent
);
6346 if (!page
&& !ent
.val
)
6349 pc
= lookup_page_cgroup(page
);
6351 * Do only loose check w/o page_cgroup lock.
6352 * mem_cgroup_move_account() checks the pc is valid or not under
6355 if (PageCgroupUsed(pc
) && pc
->mem_cgroup
== mc
.from
) {
6356 ret
= MC_TARGET_PAGE
;
6358 target
->page
= page
;
6360 if (!ret
|| !target
)
6363 /* There is a swap entry and a page doesn't exist or isn't charged */
6364 if (ent
.val
&& !ret
&&
6365 css_id(&mc
.from
->css
) == lookup_swap_cgroup_id(ent
)) {
6366 ret
= MC_TARGET_SWAP
;
6373 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6375 * We don't consider swapping or file mapped pages because THP does not
6376 * support them for now.
6377 * Caller should make sure that pmd_trans_huge(pmd) is true.
6379 static enum mc_target_type
get_mctgt_type_thp(struct vm_area_struct
*vma
,
6380 unsigned long addr
, pmd_t pmd
, union mc_target
*target
)
6382 struct page
*page
= NULL
;
6383 struct page_cgroup
*pc
;
6384 enum mc_target_type ret
= MC_TARGET_NONE
;
6386 page
= pmd_page(pmd
);
6387 VM_BUG_ON(!page
|| !PageHead(page
));
6390 pc
= lookup_page_cgroup(page
);
6391 if (PageCgroupUsed(pc
) && pc
->mem_cgroup
== mc
.from
) {
6392 ret
= MC_TARGET_PAGE
;
6395 target
->page
= page
;
6401 static inline enum mc_target_type
get_mctgt_type_thp(struct vm_area_struct
*vma
,
6402 unsigned long addr
, pmd_t pmd
, union mc_target
*target
)
6404 return MC_TARGET_NONE
;
6408 static int mem_cgroup_count_precharge_pte_range(pmd_t
*pmd
,
6409 unsigned long addr
, unsigned long end
,
6410 struct mm_walk
*walk
)
6412 struct vm_area_struct
*vma
= walk
->private;
6416 if (pmd_trans_huge_lock(pmd
, vma
) == 1) {
6417 if (get_mctgt_type_thp(vma
, addr
, *pmd
, NULL
) == MC_TARGET_PAGE
)
6418 mc
.precharge
+= HPAGE_PMD_NR
;
6419 spin_unlock(&vma
->vm_mm
->page_table_lock
);
6423 if (pmd_trans_unstable(pmd
))
6425 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
6426 for (; addr
!= end
; pte
++, addr
+= PAGE_SIZE
)
6427 if (get_mctgt_type(vma
, addr
, *pte
, NULL
))
6428 mc
.precharge
++; /* increment precharge temporarily */
6429 pte_unmap_unlock(pte
- 1, ptl
);
6435 static unsigned long mem_cgroup_count_precharge(struct mm_struct
*mm
)
6437 unsigned long precharge
;
6438 struct vm_area_struct
*vma
;
6440 down_read(&mm
->mmap_sem
);
6441 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
6442 struct mm_walk mem_cgroup_count_precharge_walk
= {
6443 .pmd_entry
= mem_cgroup_count_precharge_pte_range
,
6447 if (is_vm_hugetlb_page(vma
))
6449 walk_page_range(vma
->vm_start
, vma
->vm_end
,
6450 &mem_cgroup_count_precharge_walk
);
6452 up_read(&mm
->mmap_sem
);
6454 precharge
= mc
.precharge
;
6460 static int mem_cgroup_precharge_mc(struct mm_struct
*mm
)
6462 unsigned long precharge
= mem_cgroup_count_precharge(mm
);
6464 VM_BUG_ON(mc
.moving_task
);
6465 mc
.moving_task
= current
;
6466 return mem_cgroup_do_precharge(precharge
);
6469 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6470 static void __mem_cgroup_clear_mc(void)
6472 struct mem_cgroup
*from
= mc
.from
;
6473 struct mem_cgroup
*to
= mc
.to
;
6475 /* we must uncharge all the leftover precharges from mc.to */
6477 __mem_cgroup_cancel_charge(mc
.to
, mc
.precharge
);
6481 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6482 * we must uncharge here.
6484 if (mc
.moved_charge
) {
6485 __mem_cgroup_cancel_charge(mc
.from
, mc
.moved_charge
);
6486 mc
.moved_charge
= 0;
6488 /* we must fixup refcnts and charges */
6489 if (mc
.moved_swap
) {
6490 /* uncharge swap account from the old cgroup */
6491 if (!mem_cgroup_is_root(mc
.from
))
6492 res_counter_uncharge(&mc
.from
->memsw
,
6493 PAGE_SIZE
* mc
.moved_swap
);
6494 __mem_cgroup_put(mc
.from
, mc
.moved_swap
);
6496 if (!mem_cgroup_is_root(mc
.to
)) {
6498 * we charged both to->res and to->memsw, so we should
6501 res_counter_uncharge(&mc
.to
->res
,
6502 PAGE_SIZE
* mc
.moved_swap
);
6504 /* we've already done mem_cgroup_get(mc.to) */
6507 memcg_oom_recover(from
);
6508 memcg_oom_recover(to
);
6509 wake_up_all(&mc
.waitq
);
6512 static void mem_cgroup_clear_mc(void)
6514 struct mem_cgroup
*from
= mc
.from
;
6517 * we must clear moving_task before waking up waiters at the end of
6520 mc
.moving_task
= NULL
;
6521 __mem_cgroup_clear_mc();
6522 spin_lock(&mc
.lock
);
6525 spin_unlock(&mc
.lock
);
6526 mem_cgroup_end_move(from
);
6529 static int mem_cgroup_can_attach(struct cgroup
*cgroup
,
6530 struct cgroup_taskset
*tset
)
6532 struct task_struct
*p
= cgroup_taskset_first(tset
);
6534 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgroup
);
6536 if (memcg
->move_charge_at_immigrate
) {
6537 struct mm_struct
*mm
;
6538 struct mem_cgroup
*from
= mem_cgroup_from_task(p
);
6540 VM_BUG_ON(from
== memcg
);
6542 mm
= get_task_mm(p
);
6545 /* We move charges only when we move a owner of the mm */
6546 if (mm
->owner
== p
) {
6549 VM_BUG_ON(mc
.precharge
);
6550 VM_BUG_ON(mc
.moved_charge
);
6551 VM_BUG_ON(mc
.moved_swap
);
6552 mem_cgroup_start_move(from
);
6553 spin_lock(&mc
.lock
);
6556 spin_unlock(&mc
.lock
);
6557 /* We set mc.moving_task later */
6559 ret
= mem_cgroup_precharge_mc(mm
);
6561 mem_cgroup_clear_mc();
6568 static void mem_cgroup_cancel_attach(struct cgroup
*cgroup
,
6569 struct cgroup_taskset
*tset
)
6571 mem_cgroup_clear_mc();
6574 static int mem_cgroup_move_charge_pte_range(pmd_t
*pmd
,
6575 unsigned long addr
, unsigned long end
,
6576 struct mm_walk
*walk
)
6579 struct vm_area_struct
*vma
= walk
->private;
6582 enum mc_target_type target_type
;
6583 union mc_target target
;
6585 struct page_cgroup
*pc
;
6588 * We don't take compound_lock() here but no race with splitting thp
6590 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
6591 * under splitting, which means there's no concurrent thp split,
6592 * - if another thread runs into split_huge_page() just after we
6593 * entered this if-block, the thread must wait for page table lock
6594 * to be unlocked in __split_huge_page_splitting(), where the main
6595 * part of thp split is not executed yet.
6597 if (pmd_trans_huge_lock(pmd
, vma
) == 1) {
6598 if (mc
.precharge
< HPAGE_PMD_NR
) {
6599 spin_unlock(&vma
->vm_mm
->page_table_lock
);
6602 target_type
= get_mctgt_type_thp(vma
, addr
, *pmd
, &target
);
6603 if (target_type
== MC_TARGET_PAGE
) {
6605 if (!isolate_lru_page(page
)) {
6606 pc
= lookup_page_cgroup(page
);
6607 if (!mem_cgroup_move_account(page
, HPAGE_PMD_NR
,
6608 pc
, mc
.from
, mc
.to
)) {
6609 mc
.precharge
-= HPAGE_PMD_NR
;
6610 mc
.moved_charge
+= HPAGE_PMD_NR
;
6612 putback_lru_page(page
);
6616 spin_unlock(&vma
->vm_mm
->page_table_lock
);
6620 if (pmd_trans_unstable(pmd
))
6623 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
6624 for (; addr
!= end
; addr
+= PAGE_SIZE
) {
6625 pte_t ptent
= *(pte
++);
6631 switch (get_mctgt_type(vma
, addr
, ptent
, &target
)) {
6632 case MC_TARGET_PAGE
:
6634 if (isolate_lru_page(page
))
6636 pc
= lookup_page_cgroup(page
);
6637 if (!mem_cgroup_move_account(page
, 1, pc
,
6640 /* we uncharge from mc.from later. */
6643 putback_lru_page(page
);
6644 put
: /* get_mctgt_type() gets the page */
6647 case MC_TARGET_SWAP
:
6649 if (!mem_cgroup_move_swap_account(ent
, mc
.from
, mc
.to
)) {
6651 /* we fixup refcnts and charges later. */
6659 pte_unmap_unlock(pte
- 1, ptl
);
6664 * We have consumed all precharges we got in can_attach().
6665 * We try charge one by one, but don't do any additional
6666 * charges to mc.to if we have failed in charge once in attach()
6669 ret
= mem_cgroup_do_precharge(1);
6677 static void mem_cgroup_move_charge(struct mm_struct
*mm
)
6679 struct vm_area_struct
*vma
;
6681 lru_add_drain_all();
6683 if (unlikely(!down_read_trylock(&mm
->mmap_sem
))) {
6685 * Someone who are holding the mmap_sem might be waiting in
6686 * waitq. So we cancel all extra charges, wake up all waiters,
6687 * and retry. Because we cancel precharges, we might not be able
6688 * to move enough charges, but moving charge is a best-effort
6689 * feature anyway, so it wouldn't be a big problem.
6691 __mem_cgroup_clear_mc();
6695 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
6697 struct mm_walk mem_cgroup_move_charge_walk
= {
6698 .pmd_entry
= mem_cgroup_move_charge_pte_range
,
6702 if (is_vm_hugetlb_page(vma
))
6704 ret
= walk_page_range(vma
->vm_start
, vma
->vm_end
,
6705 &mem_cgroup_move_charge_walk
);
6708 * means we have consumed all precharges and failed in
6709 * doing additional charge. Just abandon here.
6713 up_read(&mm
->mmap_sem
);
6716 static void mem_cgroup_move_task(struct cgroup
*cont
,
6717 struct cgroup_taskset
*tset
)
6719 struct task_struct
*p
= cgroup_taskset_first(tset
);
6720 struct mm_struct
*mm
= get_task_mm(p
);
6724 mem_cgroup_move_charge(mm
);
6728 mem_cgroup_clear_mc();
6730 #else /* !CONFIG_MMU */
6731 static int mem_cgroup_can_attach(struct cgroup
*cgroup
,
6732 struct cgroup_taskset
*tset
)
6736 static void mem_cgroup_cancel_attach(struct cgroup
*cgroup
,
6737 struct cgroup_taskset
*tset
)
6740 static void mem_cgroup_move_task(struct cgroup
*cont
,
6741 struct cgroup_taskset
*tset
)
6746 struct cgroup_subsys mem_cgroup_subsys
= {
6748 .subsys_id
= mem_cgroup_subsys_id
,
6749 .css_alloc
= mem_cgroup_css_alloc
,
6750 .css_offline
= mem_cgroup_css_offline
,
6751 .css_free
= mem_cgroup_css_free
,
6752 .can_attach
= mem_cgroup_can_attach
,
6753 .cancel_attach
= mem_cgroup_cancel_attach
,
6754 .attach
= mem_cgroup_move_task
,
6755 .base_cftypes
= mem_cgroup_files
,
6761 * The rest of init is performed during ->css_alloc() for root css which
6762 * happens before initcalls. hotcpu_notifier() can't be done together as
6763 * it would introduce circular locking by adding cgroup_lock -> cpu hotplug
6764 * dependency. Do it from a subsys_initcall().
6766 static int __init
mem_cgroup_init(void)
6768 hotcpu_notifier(memcg_cpu_hotplug_callback
, 0);
6771 subsys_initcall(mem_cgroup_init
);
6773 #ifdef CONFIG_MEMCG_SWAP
6774 static int __init
enable_swap_account(char *s
)
6776 /* consider enabled if no parameter or 1 is given */
6777 if (!strcmp(s
, "1"))
6778 really_do_swap_account
= 1;
6779 else if (!strcmp(s
, "0"))
6780 really_do_swap_account
= 0;
6783 __setup("swapaccount=", enable_swap_account
);