1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
20 #include <linux/res_counter.h>
21 #include <linux/memcontrol.h>
22 #include <linux/cgroup.h>
24 #include <linux/pagemap.h>
25 #include <linux/smp.h>
26 #include <linux/page-flags.h>
27 #include <linux/backing-dev.h>
28 #include <linux/bit_spinlock.h>
29 #include <linux/rcupdate.h>
30 #include <linux/limits.h>
31 #include <linux/mutex.h>
32 #include <linux/rbtree.h>
33 #include <linux/slab.h>
34 #include <linux/swap.h>
35 #include <linux/spinlock.h>
37 #include <linux/seq_file.h>
38 #include <linux/vmalloc.h>
39 #include <linux/mm_inline.h>
40 #include <linux/page_cgroup.h>
41 #include <linux/cpu.h>
44 #include <asm/uaccess.h>
46 struct cgroup_subsys mem_cgroup_subsys __read_mostly
;
47 #define MEM_CGROUP_RECLAIM_RETRIES 5
48 struct mem_cgroup
*root_mem_cgroup __read_mostly
;
50 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
51 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
52 int do_swap_account __read_mostly
;
53 static int really_do_swap_account __initdata
= 1; /* for remember boot option*/
55 #define do_swap_account (0)
58 #define SOFTLIMIT_EVENTS_THRESH (1000)
61 * Statistics for memory cgroup.
63 enum mem_cgroup_stat_index
{
65 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
67 MEM_CGROUP_STAT_CACHE
, /* # of pages charged as cache */
68 MEM_CGROUP_STAT_RSS
, /* # of pages charged as anon rss */
69 MEM_CGROUP_STAT_FILE_MAPPED
, /* # of pages charged as file rss */
70 MEM_CGROUP_STAT_PGPGIN_COUNT
, /* # of pages paged in */
71 MEM_CGROUP_STAT_PGPGOUT_COUNT
, /* # of pages paged out */
72 MEM_CGROUP_STAT_EVENTS
, /* sum of pagein + pageout for internal use */
73 MEM_CGROUP_STAT_SWAPOUT
, /* # of pages, swapped out */
75 MEM_CGROUP_STAT_NSTATS
,
78 struct mem_cgroup_stat_cpu
{
79 s64 count
[MEM_CGROUP_STAT_NSTATS
];
80 } ____cacheline_aligned_in_smp
;
82 struct mem_cgroup_stat
{
83 struct mem_cgroup_stat_cpu cpustat
[0];
87 __mem_cgroup_stat_reset_safe(struct mem_cgroup_stat_cpu
*stat
,
88 enum mem_cgroup_stat_index idx
)
94 __mem_cgroup_stat_read_local(struct mem_cgroup_stat_cpu
*stat
,
95 enum mem_cgroup_stat_index idx
)
97 return stat
->count
[idx
];
101 * For accounting under irq disable, no need for increment preempt count.
103 static inline void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat_cpu
*stat
,
104 enum mem_cgroup_stat_index idx
, int val
)
106 stat
->count
[idx
] += val
;
109 static s64
mem_cgroup_read_stat(struct mem_cgroup_stat
*stat
,
110 enum mem_cgroup_stat_index idx
)
114 for_each_possible_cpu(cpu
)
115 ret
+= stat
->cpustat
[cpu
].count
[idx
];
119 static s64
mem_cgroup_local_usage(struct mem_cgroup_stat
*stat
)
123 ret
= mem_cgroup_read_stat(stat
, MEM_CGROUP_STAT_CACHE
);
124 ret
+= mem_cgroup_read_stat(stat
, MEM_CGROUP_STAT_RSS
);
129 * per-zone information in memory controller.
131 struct mem_cgroup_per_zone
{
133 * spin_lock to protect the per cgroup LRU
135 struct list_head lists
[NR_LRU_LISTS
];
136 unsigned long count
[NR_LRU_LISTS
];
138 struct zone_reclaim_stat reclaim_stat
;
139 struct rb_node tree_node
; /* RB tree node */
140 unsigned long long usage_in_excess
;/* Set to the value by which */
141 /* the soft limit is exceeded*/
143 struct mem_cgroup
*mem
; /* Back pointer, we cannot */
144 /* use container_of */
146 /* Macro for accessing counter */
147 #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
149 struct mem_cgroup_per_node
{
150 struct mem_cgroup_per_zone zoneinfo
[MAX_NR_ZONES
];
153 struct mem_cgroup_lru_info
{
154 struct mem_cgroup_per_node
*nodeinfo
[MAX_NUMNODES
];
158 * Cgroups above their limits are maintained in a RB-Tree, independent of
159 * their hierarchy representation
162 struct mem_cgroup_tree_per_zone
{
163 struct rb_root rb_root
;
167 struct mem_cgroup_tree_per_node
{
168 struct mem_cgroup_tree_per_zone rb_tree_per_zone
[MAX_NR_ZONES
];
171 struct mem_cgroup_tree
{
172 struct mem_cgroup_tree_per_node
*rb_tree_per_node
[MAX_NUMNODES
];
175 static struct mem_cgroup_tree soft_limit_tree __read_mostly
;
178 * The memory controller data structure. The memory controller controls both
179 * page cache and RSS per cgroup. We would eventually like to provide
180 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
181 * to help the administrator determine what knobs to tune.
183 * TODO: Add a water mark for the memory controller. Reclaim will begin when
184 * we hit the water mark. May be even add a low water mark, such that
185 * no reclaim occurs from a cgroup at it's low water mark, this is
186 * a feature that will be implemented much later in the future.
189 struct cgroup_subsys_state css
;
191 * the counter to account for memory usage
193 struct res_counter res
;
195 * the counter to account for mem+swap usage.
197 struct res_counter memsw
;
199 * Per cgroup active and inactive list, similar to the
200 * per zone LRU lists.
202 struct mem_cgroup_lru_info info
;
205 protect against reclaim related member.
207 spinlock_t reclaim_param_lock
;
209 int prev_priority
; /* for recording reclaim priority */
212 * While reclaiming in a hierarchy, we cache the last child we
215 int last_scanned_child
;
217 * Should the accounting and control be hierarchical, per subtree?
220 unsigned long last_oom_jiffies
;
223 unsigned int swappiness
;
225 /* set when res.limit == memsw.limit */
226 bool memsw_is_minimum
;
229 * statistics. This must be placed at the end of memcg.
231 struct mem_cgroup_stat stat
;
235 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
236 * limit reclaim to prevent infinite loops, if they ever occur.
238 #define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
239 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
242 MEM_CGROUP_CHARGE_TYPE_CACHE
= 0,
243 MEM_CGROUP_CHARGE_TYPE_MAPPED
,
244 MEM_CGROUP_CHARGE_TYPE_SHMEM
, /* used by page migration of shmem */
245 MEM_CGROUP_CHARGE_TYPE_FORCE
, /* used by force_empty */
246 MEM_CGROUP_CHARGE_TYPE_SWAPOUT
, /* for accounting swapcache */
247 MEM_CGROUP_CHARGE_TYPE_DROP
, /* a page was unused swap cache */
251 /* only for here (for easy reading.) */
252 #define PCGF_CACHE (1UL << PCG_CACHE)
253 #define PCGF_USED (1UL << PCG_USED)
254 #define PCGF_LOCK (1UL << PCG_LOCK)
255 /* Not used, but added here for completeness */
256 #define PCGF_ACCT (1UL << PCG_ACCT)
258 /* for encoding cft->private value on file */
261 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
262 #define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
263 #define MEMFILE_ATTR(val) ((val) & 0xffff)
266 * Reclaim flags for mem_cgroup_hierarchical_reclaim
268 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
269 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
270 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
271 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
272 #define MEM_CGROUP_RECLAIM_SOFT_BIT 0x2
273 #define MEM_CGROUP_RECLAIM_SOFT (1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
275 static void mem_cgroup_get(struct mem_cgroup
*mem
);
276 static void mem_cgroup_put(struct mem_cgroup
*mem
);
277 static struct mem_cgroup
*parent_mem_cgroup(struct mem_cgroup
*mem
);
278 static void drain_all_stock_async(void);
280 static struct mem_cgroup_per_zone
*
281 mem_cgroup_zoneinfo(struct mem_cgroup
*mem
, int nid
, int zid
)
283 return &mem
->info
.nodeinfo
[nid
]->zoneinfo
[zid
];
286 struct cgroup_subsys_state
*mem_cgroup_css(struct mem_cgroup
*mem
)
291 static struct mem_cgroup_per_zone
*
292 page_cgroup_zoneinfo(struct page_cgroup
*pc
)
294 struct mem_cgroup
*mem
= pc
->mem_cgroup
;
295 int nid
= page_cgroup_nid(pc
);
296 int zid
= page_cgroup_zid(pc
);
301 return mem_cgroup_zoneinfo(mem
, nid
, zid
);
304 static struct mem_cgroup_tree_per_zone
*
305 soft_limit_tree_node_zone(int nid
, int zid
)
307 return &soft_limit_tree
.rb_tree_per_node
[nid
]->rb_tree_per_zone
[zid
];
310 static struct mem_cgroup_tree_per_zone
*
311 soft_limit_tree_from_page(struct page
*page
)
313 int nid
= page_to_nid(page
);
314 int zid
= page_zonenum(page
);
316 return &soft_limit_tree
.rb_tree_per_node
[nid
]->rb_tree_per_zone
[zid
];
320 __mem_cgroup_insert_exceeded(struct mem_cgroup
*mem
,
321 struct mem_cgroup_per_zone
*mz
,
322 struct mem_cgroup_tree_per_zone
*mctz
,
323 unsigned long long new_usage_in_excess
)
325 struct rb_node
**p
= &mctz
->rb_root
.rb_node
;
326 struct rb_node
*parent
= NULL
;
327 struct mem_cgroup_per_zone
*mz_node
;
332 mz
->usage_in_excess
= new_usage_in_excess
;
333 if (!mz
->usage_in_excess
)
337 mz_node
= rb_entry(parent
, struct mem_cgroup_per_zone
,
339 if (mz
->usage_in_excess
< mz_node
->usage_in_excess
)
342 * We can't avoid mem cgroups that are over their soft
343 * limit by the same amount
345 else if (mz
->usage_in_excess
>= mz_node
->usage_in_excess
)
348 rb_link_node(&mz
->tree_node
, parent
, p
);
349 rb_insert_color(&mz
->tree_node
, &mctz
->rb_root
);
354 __mem_cgroup_remove_exceeded(struct mem_cgroup
*mem
,
355 struct mem_cgroup_per_zone
*mz
,
356 struct mem_cgroup_tree_per_zone
*mctz
)
360 rb_erase(&mz
->tree_node
, &mctz
->rb_root
);
365 mem_cgroup_remove_exceeded(struct mem_cgroup
*mem
,
366 struct mem_cgroup_per_zone
*mz
,
367 struct mem_cgroup_tree_per_zone
*mctz
)
369 spin_lock(&mctz
->lock
);
370 __mem_cgroup_remove_exceeded(mem
, mz
, mctz
);
371 spin_unlock(&mctz
->lock
);
374 static bool mem_cgroup_soft_limit_check(struct mem_cgroup
*mem
)
379 struct mem_cgroup_stat_cpu
*cpustat
;
382 cpustat
= &mem
->stat
.cpustat
[cpu
];
383 val
= __mem_cgroup_stat_read_local(cpustat
, MEM_CGROUP_STAT_EVENTS
);
384 if (unlikely(val
> SOFTLIMIT_EVENTS_THRESH
)) {
385 __mem_cgroup_stat_reset_safe(cpustat
, MEM_CGROUP_STAT_EVENTS
);
392 static void mem_cgroup_update_tree(struct mem_cgroup
*mem
, struct page
*page
)
394 unsigned long long excess
;
395 struct mem_cgroup_per_zone
*mz
;
396 struct mem_cgroup_tree_per_zone
*mctz
;
397 int nid
= page_to_nid(page
);
398 int zid
= page_zonenum(page
);
399 mctz
= soft_limit_tree_from_page(page
);
402 * Necessary to update all ancestors when hierarchy is used.
403 * because their event counter is not touched.
405 for (; mem
; mem
= parent_mem_cgroup(mem
)) {
406 mz
= mem_cgroup_zoneinfo(mem
, nid
, zid
);
407 excess
= res_counter_soft_limit_excess(&mem
->res
);
409 * We have to update the tree if mz is on RB-tree or
410 * mem is over its softlimit.
412 if (excess
|| mz
->on_tree
) {
413 spin_lock(&mctz
->lock
);
414 /* if on-tree, remove it */
416 __mem_cgroup_remove_exceeded(mem
, mz
, mctz
);
418 * Insert again. mz->usage_in_excess will be updated.
419 * If excess is 0, no tree ops.
421 __mem_cgroup_insert_exceeded(mem
, mz
, mctz
, excess
);
422 spin_unlock(&mctz
->lock
);
427 static void mem_cgroup_remove_from_trees(struct mem_cgroup
*mem
)
430 struct mem_cgroup_per_zone
*mz
;
431 struct mem_cgroup_tree_per_zone
*mctz
;
433 for_each_node_state(node
, N_POSSIBLE
) {
434 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
435 mz
= mem_cgroup_zoneinfo(mem
, node
, zone
);
436 mctz
= soft_limit_tree_node_zone(node
, zone
);
437 mem_cgroup_remove_exceeded(mem
, mz
, mctz
);
442 static inline unsigned long mem_cgroup_get_excess(struct mem_cgroup
*mem
)
444 return res_counter_soft_limit_excess(&mem
->res
) >> PAGE_SHIFT
;
447 static struct mem_cgroup_per_zone
*
448 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone
*mctz
)
450 struct rb_node
*rightmost
= NULL
;
451 struct mem_cgroup_per_zone
*mz
;
455 rightmost
= rb_last(&mctz
->rb_root
);
457 goto done
; /* Nothing to reclaim from */
459 mz
= rb_entry(rightmost
, struct mem_cgroup_per_zone
, tree_node
);
461 * Remove the node now but someone else can add it back,
462 * we will to add it back at the end of reclaim to its correct
463 * position in the tree.
465 __mem_cgroup_remove_exceeded(mz
->mem
, mz
, mctz
);
466 if (!res_counter_soft_limit_excess(&mz
->mem
->res
) ||
467 !css_tryget(&mz
->mem
->css
))
473 static struct mem_cgroup_per_zone
*
474 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone
*mctz
)
476 struct mem_cgroup_per_zone
*mz
;
478 spin_lock(&mctz
->lock
);
479 mz
= __mem_cgroup_largest_soft_limit_node(mctz
);
480 spin_unlock(&mctz
->lock
);
484 static void mem_cgroup_swap_statistics(struct mem_cgroup
*mem
,
487 int val
= (charge
) ? 1 : -1;
488 struct mem_cgroup_stat
*stat
= &mem
->stat
;
489 struct mem_cgroup_stat_cpu
*cpustat
;
492 cpustat
= &stat
->cpustat
[cpu
];
493 __mem_cgroup_stat_add_safe(cpustat
, MEM_CGROUP_STAT_SWAPOUT
, val
);
497 static void mem_cgroup_charge_statistics(struct mem_cgroup
*mem
,
498 struct page_cgroup
*pc
,
501 int val
= (charge
) ? 1 : -1;
502 struct mem_cgroup_stat
*stat
= &mem
->stat
;
503 struct mem_cgroup_stat_cpu
*cpustat
;
506 cpustat
= &stat
->cpustat
[cpu
];
507 if (PageCgroupCache(pc
))
508 __mem_cgroup_stat_add_safe(cpustat
, MEM_CGROUP_STAT_CACHE
, val
);
510 __mem_cgroup_stat_add_safe(cpustat
, MEM_CGROUP_STAT_RSS
, val
);
513 __mem_cgroup_stat_add_safe(cpustat
,
514 MEM_CGROUP_STAT_PGPGIN_COUNT
, 1);
516 __mem_cgroup_stat_add_safe(cpustat
,
517 MEM_CGROUP_STAT_PGPGOUT_COUNT
, 1);
518 __mem_cgroup_stat_add_safe(cpustat
, MEM_CGROUP_STAT_EVENTS
, 1);
522 static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup
*mem
,
526 struct mem_cgroup_per_zone
*mz
;
529 for_each_online_node(nid
)
530 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
531 mz
= mem_cgroup_zoneinfo(mem
, nid
, zid
);
532 total
+= MEM_CGROUP_ZSTAT(mz
, idx
);
537 static struct mem_cgroup
*mem_cgroup_from_cont(struct cgroup
*cont
)
539 return container_of(cgroup_subsys_state(cont
,
540 mem_cgroup_subsys_id
), struct mem_cgroup
,
544 struct mem_cgroup
*mem_cgroup_from_task(struct task_struct
*p
)
547 * mm_update_next_owner() may clear mm->owner to NULL
548 * if it races with swapoff, page migration, etc.
549 * So this can be called with p == NULL.
554 return container_of(task_subsys_state(p
, mem_cgroup_subsys_id
),
555 struct mem_cgroup
, css
);
558 static struct mem_cgroup
*try_get_mem_cgroup_from_mm(struct mm_struct
*mm
)
560 struct mem_cgroup
*mem
= NULL
;
565 * Because we have no locks, mm->owner's may be being moved to other
566 * cgroup. We use css_tryget() here even if this looks
567 * pessimistic (rather than adding locks here).
571 mem
= mem_cgroup_from_task(rcu_dereference(mm
->owner
));
574 } while (!css_tryget(&mem
->css
));
580 * Call callback function against all cgroup under hierarchy tree.
582 static int mem_cgroup_walk_tree(struct mem_cgroup
*root
, void *data
,
583 int (*func
)(struct mem_cgroup
*, void *))
585 int found
, ret
, nextid
;
586 struct cgroup_subsys_state
*css
;
587 struct mem_cgroup
*mem
;
589 if (!root
->use_hierarchy
)
590 return (*func
)(root
, data
);
598 css
= css_get_next(&mem_cgroup_subsys
, nextid
, &root
->css
,
600 if (css
&& css_tryget(css
))
601 mem
= container_of(css
, struct mem_cgroup
, css
);
605 ret
= (*func
)(mem
, data
);
609 } while (!ret
&& css
);
614 static inline bool mem_cgroup_is_root(struct mem_cgroup
*mem
)
616 return (mem
== root_mem_cgroup
);
620 * Following LRU functions are allowed to be used without PCG_LOCK.
621 * Operations are called by routine of global LRU independently from memcg.
622 * What we have to take care of here is validness of pc->mem_cgroup.
624 * Changes to pc->mem_cgroup happens when
627 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
628 * It is added to LRU before charge.
629 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
630 * When moving account, the page is not on LRU. It's isolated.
633 void mem_cgroup_del_lru_list(struct page
*page
, enum lru_list lru
)
635 struct page_cgroup
*pc
;
636 struct mem_cgroup_per_zone
*mz
;
638 if (mem_cgroup_disabled())
640 pc
= lookup_page_cgroup(page
);
641 /* can happen while we handle swapcache. */
642 if (!TestClearPageCgroupAcctLRU(pc
))
644 VM_BUG_ON(!pc
->mem_cgroup
);
646 * We don't check PCG_USED bit. It's cleared when the "page" is finally
647 * removed from global LRU.
649 mz
= page_cgroup_zoneinfo(pc
);
650 MEM_CGROUP_ZSTAT(mz
, lru
) -= 1;
651 if (mem_cgroup_is_root(pc
->mem_cgroup
))
653 VM_BUG_ON(list_empty(&pc
->lru
));
654 list_del_init(&pc
->lru
);
658 void mem_cgroup_del_lru(struct page
*page
)
660 mem_cgroup_del_lru_list(page
, page_lru(page
));
663 void mem_cgroup_rotate_lru_list(struct page
*page
, enum lru_list lru
)
665 struct mem_cgroup_per_zone
*mz
;
666 struct page_cgroup
*pc
;
668 if (mem_cgroup_disabled())
671 pc
= lookup_page_cgroup(page
);
673 * Used bit is set without atomic ops but after smp_wmb().
674 * For making pc->mem_cgroup visible, insert smp_rmb() here.
677 /* unused or root page is not rotated. */
678 if (!PageCgroupUsed(pc
) || mem_cgroup_is_root(pc
->mem_cgroup
))
680 mz
= page_cgroup_zoneinfo(pc
);
681 list_move(&pc
->lru
, &mz
->lists
[lru
]);
684 void mem_cgroup_add_lru_list(struct page
*page
, enum lru_list lru
)
686 struct page_cgroup
*pc
;
687 struct mem_cgroup_per_zone
*mz
;
689 if (mem_cgroup_disabled())
691 pc
= lookup_page_cgroup(page
);
692 VM_BUG_ON(PageCgroupAcctLRU(pc
));
694 * Used bit is set without atomic ops but after smp_wmb().
695 * For making pc->mem_cgroup visible, insert smp_rmb() here.
698 if (!PageCgroupUsed(pc
))
701 mz
= page_cgroup_zoneinfo(pc
);
702 MEM_CGROUP_ZSTAT(mz
, lru
) += 1;
703 SetPageCgroupAcctLRU(pc
);
704 if (mem_cgroup_is_root(pc
->mem_cgroup
))
706 list_add(&pc
->lru
, &mz
->lists
[lru
]);
710 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
711 * lru because the page may.be reused after it's fully uncharged (because of
712 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
713 * it again. This function is only used to charge SwapCache. It's done under
714 * lock_page and expected that zone->lru_lock is never held.
716 static void mem_cgroup_lru_del_before_commit_swapcache(struct page
*page
)
719 struct zone
*zone
= page_zone(page
);
720 struct page_cgroup
*pc
= lookup_page_cgroup(page
);
722 spin_lock_irqsave(&zone
->lru_lock
, flags
);
724 * Forget old LRU when this page_cgroup is *not* used. This Used bit
725 * is guarded by lock_page() because the page is SwapCache.
727 if (!PageCgroupUsed(pc
))
728 mem_cgroup_del_lru_list(page
, page_lru(page
));
729 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
732 static void mem_cgroup_lru_add_after_commit_swapcache(struct page
*page
)
735 struct zone
*zone
= page_zone(page
);
736 struct page_cgroup
*pc
= lookup_page_cgroup(page
);
738 spin_lock_irqsave(&zone
->lru_lock
, flags
);
739 /* link when the page is linked to LRU but page_cgroup isn't */
740 if (PageLRU(page
) && !PageCgroupAcctLRU(pc
))
741 mem_cgroup_add_lru_list(page
, page_lru(page
));
742 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
746 void mem_cgroup_move_lists(struct page
*page
,
747 enum lru_list from
, enum lru_list to
)
749 if (mem_cgroup_disabled())
751 mem_cgroup_del_lru_list(page
, from
);
752 mem_cgroup_add_lru_list(page
, to
);
755 int task_in_mem_cgroup(struct task_struct
*task
, const struct mem_cgroup
*mem
)
758 struct mem_cgroup
*curr
= NULL
;
762 curr
= try_get_mem_cgroup_from_mm(task
->mm
);
768 * We should check use_hierarchy of "mem" not "curr". Because checking
769 * use_hierarchy of "curr" here make this function true if hierarchy is
770 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
771 * hierarchy(even if use_hierarchy is disabled in "mem").
773 if (mem
->use_hierarchy
)
774 ret
= css_is_ancestor(&curr
->css
, &mem
->css
);
782 * prev_priority control...this will be used in memory reclaim path.
784 int mem_cgroup_get_reclaim_priority(struct mem_cgroup
*mem
)
788 spin_lock(&mem
->reclaim_param_lock
);
789 prev_priority
= mem
->prev_priority
;
790 spin_unlock(&mem
->reclaim_param_lock
);
792 return prev_priority
;
795 void mem_cgroup_note_reclaim_priority(struct mem_cgroup
*mem
, int priority
)
797 spin_lock(&mem
->reclaim_param_lock
);
798 if (priority
< mem
->prev_priority
)
799 mem
->prev_priority
= priority
;
800 spin_unlock(&mem
->reclaim_param_lock
);
803 void mem_cgroup_record_reclaim_priority(struct mem_cgroup
*mem
, int priority
)
805 spin_lock(&mem
->reclaim_param_lock
);
806 mem
->prev_priority
= priority
;
807 spin_unlock(&mem
->reclaim_param_lock
);
810 static int calc_inactive_ratio(struct mem_cgroup
*memcg
, unsigned long *present_pages
)
812 unsigned long active
;
813 unsigned long inactive
;
815 unsigned long inactive_ratio
;
817 inactive
= mem_cgroup_get_local_zonestat(memcg
, LRU_INACTIVE_ANON
);
818 active
= mem_cgroup_get_local_zonestat(memcg
, LRU_ACTIVE_ANON
);
820 gb
= (inactive
+ active
) >> (30 - PAGE_SHIFT
);
822 inactive_ratio
= int_sqrt(10 * gb
);
827 present_pages
[0] = inactive
;
828 present_pages
[1] = active
;
831 return inactive_ratio
;
834 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup
*memcg
)
836 unsigned long active
;
837 unsigned long inactive
;
838 unsigned long present_pages
[2];
839 unsigned long inactive_ratio
;
841 inactive_ratio
= calc_inactive_ratio(memcg
, present_pages
);
843 inactive
= present_pages
[0];
844 active
= present_pages
[1];
846 if (inactive
* inactive_ratio
< active
)
852 int mem_cgroup_inactive_file_is_low(struct mem_cgroup
*memcg
)
854 unsigned long active
;
855 unsigned long inactive
;
857 inactive
= mem_cgroup_get_local_zonestat(memcg
, LRU_INACTIVE_FILE
);
858 active
= mem_cgroup_get_local_zonestat(memcg
, LRU_ACTIVE_FILE
);
860 return (active
> inactive
);
863 unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup
*memcg
,
867 int nid
= zone
->zone_pgdat
->node_id
;
868 int zid
= zone_idx(zone
);
869 struct mem_cgroup_per_zone
*mz
= mem_cgroup_zoneinfo(memcg
, nid
, zid
);
871 return MEM_CGROUP_ZSTAT(mz
, lru
);
874 struct zone_reclaim_stat
*mem_cgroup_get_reclaim_stat(struct mem_cgroup
*memcg
,
877 int nid
= zone
->zone_pgdat
->node_id
;
878 int zid
= zone_idx(zone
);
879 struct mem_cgroup_per_zone
*mz
= mem_cgroup_zoneinfo(memcg
, nid
, zid
);
881 return &mz
->reclaim_stat
;
884 struct zone_reclaim_stat
*
885 mem_cgroup_get_reclaim_stat_from_page(struct page
*page
)
887 struct page_cgroup
*pc
;
888 struct mem_cgroup_per_zone
*mz
;
890 if (mem_cgroup_disabled())
893 pc
= lookup_page_cgroup(page
);
895 * Used bit is set without atomic ops but after smp_wmb().
896 * For making pc->mem_cgroup visible, insert smp_rmb() here.
899 if (!PageCgroupUsed(pc
))
902 mz
= page_cgroup_zoneinfo(pc
);
906 return &mz
->reclaim_stat
;
909 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan
,
910 struct list_head
*dst
,
911 unsigned long *scanned
, int order
,
912 int mode
, struct zone
*z
,
913 struct mem_cgroup
*mem_cont
,
914 int active
, int file
)
916 unsigned long nr_taken
= 0;
920 struct list_head
*src
;
921 struct page_cgroup
*pc
, *tmp
;
922 int nid
= z
->zone_pgdat
->node_id
;
923 int zid
= zone_idx(z
);
924 struct mem_cgroup_per_zone
*mz
;
925 int lru
= LRU_FILE
* file
+ active
;
929 mz
= mem_cgroup_zoneinfo(mem_cont
, nid
, zid
);
930 src
= &mz
->lists
[lru
];
933 list_for_each_entry_safe_reverse(pc
, tmp
, src
, lru
) {
934 if (scan
>= nr_to_scan
)
938 if (unlikely(!PageCgroupUsed(pc
)))
940 if (unlikely(!PageLRU(page
)))
944 ret
= __isolate_lru_page(page
, mode
, file
);
947 list_move(&page
->lru
, dst
);
948 mem_cgroup_del_lru(page
);
952 /* we don't affect global LRU but rotate in our LRU */
953 mem_cgroup_rotate_lru_list(page
, page_lru(page
));
964 #define mem_cgroup_from_res_counter(counter, member) \
965 container_of(counter, struct mem_cgroup, member)
967 static bool mem_cgroup_check_under_limit(struct mem_cgroup
*mem
)
969 if (do_swap_account
) {
970 if (res_counter_check_under_limit(&mem
->res
) &&
971 res_counter_check_under_limit(&mem
->memsw
))
974 if (res_counter_check_under_limit(&mem
->res
))
979 static unsigned int get_swappiness(struct mem_cgroup
*memcg
)
981 struct cgroup
*cgrp
= memcg
->css
.cgroup
;
982 unsigned int swappiness
;
985 if (cgrp
->parent
== NULL
)
986 return vm_swappiness
;
988 spin_lock(&memcg
->reclaim_param_lock
);
989 swappiness
= memcg
->swappiness
;
990 spin_unlock(&memcg
->reclaim_param_lock
);
995 static int mem_cgroup_count_children_cb(struct mem_cgroup
*mem
, void *data
)
1003 * mem_cgroup_print_mem_info: Called from OOM with tasklist_lock held in read mode.
1004 * @memcg: The memory cgroup that went over limit
1005 * @p: Task that is going to be killed
1007 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1010 void mem_cgroup_print_oom_info(struct mem_cgroup
*memcg
, struct task_struct
*p
)
1012 struct cgroup
*task_cgrp
;
1013 struct cgroup
*mem_cgrp
;
1015 * Need a buffer in BSS, can't rely on allocations. The code relies
1016 * on the assumption that OOM is serialized for memory controller.
1017 * If this assumption is broken, revisit this code.
1019 static char memcg_name
[PATH_MAX
];
1028 mem_cgrp
= memcg
->css
.cgroup
;
1029 task_cgrp
= task_cgroup(p
, mem_cgroup_subsys_id
);
1031 ret
= cgroup_path(task_cgrp
, memcg_name
, PATH_MAX
);
1034 * Unfortunately, we are unable to convert to a useful name
1035 * But we'll still print out the usage information
1042 printk(KERN_INFO
"Task in %s killed", memcg_name
);
1045 ret
= cgroup_path(mem_cgrp
, memcg_name
, PATH_MAX
);
1053 * Continues from above, so we don't need an KERN_ level
1055 printk(KERN_CONT
" as a result of limit of %s\n", memcg_name
);
1058 printk(KERN_INFO
"memory: usage %llukB, limit %llukB, failcnt %llu\n",
1059 res_counter_read_u64(&memcg
->res
, RES_USAGE
) >> 10,
1060 res_counter_read_u64(&memcg
->res
, RES_LIMIT
) >> 10,
1061 res_counter_read_u64(&memcg
->res
, RES_FAILCNT
));
1062 printk(KERN_INFO
"memory+swap: usage %llukB, limit %llukB, "
1064 res_counter_read_u64(&memcg
->memsw
, RES_USAGE
) >> 10,
1065 res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
) >> 10,
1066 res_counter_read_u64(&memcg
->memsw
, RES_FAILCNT
));
1070 * This function returns the number of memcg under hierarchy tree. Returns
1071 * 1(self count) if no children.
1073 static int mem_cgroup_count_children(struct mem_cgroup
*mem
)
1076 mem_cgroup_walk_tree(mem
, &num
, mem_cgroup_count_children_cb
);
1081 * Visit the first child (need not be the first child as per the ordering
1082 * of the cgroup list, since we track last_scanned_child) of @mem and use
1083 * that to reclaim free pages from.
1085 static struct mem_cgroup
*
1086 mem_cgroup_select_victim(struct mem_cgroup
*root_mem
)
1088 struct mem_cgroup
*ret
= NULL
;
1089 struct cgroup_subsys_state
*css
;
1092 if (!root_mem
->use_hierarchy
) {
1093 css_get(&root_mem
->css
);
1099 nextid
= root_mem
->last_scanned_child
+ 1;
1100 css
= css_get_next(&mem_cgroup_subsys
, nextid
, &root_mem
->css
,
1102 if (css
&& css_tryget(css
))
1103 ret
= container_of(css
, struct mem_cgroup
, css
);
1106 /* Updates scanning parameter */
1107 spin_lock(&root_mem
->reclaim_param_lock
);
1109 /* this means start scan from ID:1 */
1110 root_mem
->last_scanned_child
= 0;
1112 root_mem
->last_scanned_child
= found
;
1113 spin_unlock(&root_mem
->reclaim_param_lock
);
1120 * Scan the hierarchy if needed to reclaim memory. We remember the last child
1121 * we reclaimed from, so that we don't end up penalizing one child extensively
1122 * based on its position in the children list.
1124 * root_mem is the original ancestor that we've been reclaim from.
1126 * We give up and return to the caller when we visit root_mem twice.
1127 * (other groups can be removed while we're walking....)
1129 * If shrink==true, for avoiding to free too much, this returns immedieately.
1131 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup
*root_mem
,
1134 unsigned long reclaim_options
)
1136 struct mem_cgroup
*victim
;
1139 bool noswap
= reclaim_options
& MEM_CGROUP_RECLAIM_NOSWAP
;
1140 bool shrink
= reclaim_options
& MEM_CGROUP_RECLAIM_SHRINK
;
1141 bool check_soft
= reclaim_options
& MEM_CGROUP_RECLAIM_SOFT
;
1142 unsigned long excess
= mem_cgroup_get_excess(root_mem
);
1144 /* If memsw_is_minimum==1, swap-out is of-no-use. */
1145 if (root_mem
->memsw_is_minimum
)
1149 victim
= mem_cgroup_select_victim(root_mem
);
1150 if (victim
== root_mem
) {
1153 drain_all_stock_async();
1156 * If we have not been able to reclaim
1157 * anything, it might because there are
1158 * no reclaimable pages under this hierarchy
1160 if (!check_soft
|| !total
) {
1161 css_put(&victim
->css
);
1165 * We want to do more targetted reclaim.
1166 * excess >> 2 is not to excessive so as to
1167 * reclaim too much, nor too less that we keep
1168 * coming back to reclaim from this cgroup
1170 if (total
>= (excess
>> 2) ||
1171 (loop
> MEM_CGROUP_MAX_RECLAIM_LOOPS
)) {
1172 css_put(&victim
->css
);
1177 if (!mem_cgroup_local_usage(&victim
->stat
)) {
1178 /* this cgroup's local usage == 0 */
1179 css_put(&victim
->css
);
1182 /* we use swappiness of local cgroup */
1184 ret
= mem_cgroup_shrink_node_zone(victim
, gfp_mask
,
1185 noswap
, get_swappiness(victim
), zone
,
1186 zone
->zone_pgdat
->node_id
);
1188 ret
= try_to_free_mem_cgroup_pages(victim
, gfp_mask
,
1189 noswap
, get_swappiness(victim
));
1190 css_put(&victim
->css
);
1192 * At shrinking usage, we can't check we should stop here or
1193 * reclaim more. It's depends on callers. last_scanned_child
1194 * will work enough for keeping fairness under tree.
1200 if (res_counter_check_under_soft_limit(&root_mem
->res
))
1202 } else if (mem_cgroup_check_under_limit(root_mem
))
1208 bool mem_cgroup_oom_called(struct task_struct
*task
)
1211 struct mem_cgroup
*mem
;
1212 struct mm_struct
*mm
;
1218 mem
= mem_cgroup_from_task(rcu_dereference(mm
->owner
));
1219 if (mem
&& time_before(jiffies
, mem
->last_oom_jiffies
+ HZ
/10))
1225 static int record_last_oom_cb(struct mem_cgroup
*mem
, void *data
)
1227 mem
->last_oom_jiffies
= jiffies
;
1231 static void record_last_oom(struct mem_cgroup
*mem
)
1233 mem_cgroup_walk_tree(mem
, NULL
, record_last_oom_cb
);
1237 * Currently used to update mapped file statistics, but the routine can be
1238 * generalized to update other statistics as well.
1240 void mem_cgroup_update_file_mapped(struct page
*page
, int val
)
1242 struct mem_cgroup
*mem
;
1243 struct mem_cgroup_stat
*stat
;
1244 struct mem_cgroup_stat_cpu
*cpustat
;
1246 struct page_cgroup
*pc
;
1248 pc
= lookup_page_cgroup(page
);
1252 lock_page_cgroup(pc
);
1253 mem
= pc
->mem_cgroup
;
1257 if (!PageCgroupUsed(pc
))
1261 * Preemption is already disabled, we don't need get_cpu()
1263 cpu
= smp_processor_id();
1265 cpustat
= &stat
->cpustat
[cpu
];
1267 __mem_cgroup_stat_add_safe(cpustat
, MEM_CGROUP_STAT_FILE_MAPPED
, val
);
1269 unlock_page_cgroup(pc
);
1273 * size of first charge trial. "32" comes from vmscan.c's magic value.
1274 * TODO: maybe necessary to use big numbers in big irons.
1276 #define CHARGE_SIZE (32 * PAGE_SIZE)
1277 struct memcg_stock_pcp
{
1278 struct mem_cgroup
*cached
; /* this never be root cgroup */
1280 struct work_struct work
;
1282 static DEFINE_PER_CPU(struct memcg_stock_pcp
, memcg_stock
);
1283 static atomic_t memcg_drain_count
;
1286 * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed
1287 * from local stock and true is returned. If the stock is 0 or charges from a
1288 * cgroup which is not current target, returns false. This stock will be
1291 static bool consume_stock(struct mem_cgroup
*mem
)
1293 struct memcg_stock_pcp
*stock
;
1296 stock
= &get_cpu_var(memcg_stock
);
1297 if (mem
== stock
->cached
&& stock
->charge
)
1298 stock
->charge
-= PAGE_SIZE
;
1299 else /* need to call res_counter_charge */
1301 put_cpu_var(memcg_stock
);
1306 * Returns stocks cached in percpu to res_counter and reset cached information.
1308 static void drain_stock(struct memcg_stock_pcp
*stock
)
1310 struct mem_cgroup
*old
= stock
->cached
;
1312 if (stock
->charge
) {
1313 res_counter_uncharge(&old
->res
, stock
->charge
);
1314 if (do_swap_account
)
1315 res_counter_uncharge(&old
->memsw
, stock
->charge
);
1317 stock
->cached
= NULL
;
1322 * This must be called under preempt disabled or must be called by
1323 * a thread which is pinned to local cpu.
1325 static void drain_local_stock(struct work_struct
*dummy
)
1327 struct memcg_stock_pcp
*stock
= &__get_cpu_var(memcg_stock
);
1332 * Cache charges(val) which is from res_counter, to local per_cpu area.
1333 * This will be consumed by consumt_stock() function, later.
1335 static void refill_stock(struct mem_cgroup
*mem
, int val
)
1337 struct memcg_stock_pcp
*stock
= &get_cpu_var(memcg_stock
);
1339 if (stock
->cached
!= mem
) { /* reset if necessary */
1341 stock
->cached
= mem
;
1343 stock
->charge
+= val
;
1344 put_cpu_var(memcg_stock
);
1348 * Tries to drain stocked charges in other cpus. This function is asynchronous
1349 * and just put a work per cpu for draining localy on each cpu. Caller can
1350 * expects some charges will be back to res_counter later but cannot wait for
1353 static void drain_all_stock_async(void)
1356 /* This function is for scheduling "drain" in asynchronous way.
1357 * The result of "drain" is not directly handled by callers. Then,
1358 * if someone is calling drain, we don't have to call drain more.
1359 * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
1360 * there is a race. We just do loose check here.
1362 if (atomic_read(&memcg_drain_count
))
1364 /* Notify other cpus that system-wide "drain" is running */
1365 atomic_inc(&memcg_drain_count
);
1367 for_each_online_cpu(cpu
) {
1368 struct memcg_stock_pcp
*stock
= &per_cpu(memcg_stock
, cpu
);
1369 schedule_work_on(cpu
, &stock
->work
);
1372 atomic_dec(&memcg_drain_count
);
1373 /* We don't wait for flush_work */
1376 /* This is a synchronous drain interface. */
1377 static void drain_all_stock_sync(void)
1379 /* called when force_empty is called */
1380 atomic_inc(&memcg_drain_count
);
1381 schedule_on_each_cpu(drain_local_stock
);
1382 atomic_dec(&memcg_drain_count
);
1385 static int __cpuinit
memcg_stock_cpu_callback(struct notifier_block
*nb
,
1386 unsigned long action
,
1389 int cpu
= (unsigned long)hcpu
;
1390 struct memcg_stock_pcp
*stock
;
1392 if (action
!= CPU_DEAD
)
1394 stock
= &per_cpu(memcg_stock
, cpu
);
1400 * Unlike exported interface, "oom" parameter is added. if oom==true,
1401 * oom-killer can be invoked.
1403 static int __mem_cgroup_try_charge(struct mm_struct
*mm
,
1404 gfp_t gfp_mask
, struct mem_cgroup
**memcg
,
1405 bool oom
, struct page
*page
)
1407 struct mem_cgroup
*mem
, *mem_over_limit
;
1408 int nr_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
1409 struct res_counter
*fail_res
;
1410 int csize
= CHARGE_SIZE
;
1412 if (unlikely(test_thread_flag(TIF_MEMDIE
))) {
1413 /* Don't account this! */
1419 * We always charge the cgroup the mm_struct belongs to.
1420 * The mm_struct's mem_cgroup changes on task migration if the
1421 * thread group leader migrates. It's possible that mm is not
1422 * set, if so charge the init_mm (happens for pagecache usage).
1426 mem
= try_get_mem_cgroup_from_mm(mm
);
1434 VM_BUG_ON(css_is_removed(&mem
->css
));
1435 if (mem_cgroup_is_root(mem
))
1440 unsigned long flags
= 0;
1442 if (consume_stock(mem
))
1445 ret
= res_counter_charge(&mem
->res
, csize
, &fail_res
);
1447 if (!do_swap_account
)
1449 ret
= res_counter_charge(&mem
->memsw
, csize
, &fail_res
);
1452 /* mem+swap counter fails */
1453 res_counter_uncharge(&mem
->res
, csize
);
1454 flags
|= MEM_CGROUP_RECLAIM_NOSWAP
;
1455 mem_over_limit
= mem_cgroup_from_res_counter(fail_res
,
1458 /* mem counter fails */
1459 mem_over_limit
= mem_cgroup_from_res_counter(fail_res
,
1462 /* reduce request size and retry */
1463 if (csize
> PAGE_SIZE
) {
1467 if (!(gfp_mask
& __GFP_WAIT
))
1470 ret
= mem_cgroup_hierarchical_reclaim(mem_over_limit
, NULL
,
1476 * try_to_free_mem_cgroup_pages() might not give us a full
1477 * picture of reclaim. Some pages are reclaimed and might be
1478 * moved to swap cache or just unmapped from the cgroup.
1479 * Check the limit again to see if the reclaim reduced the
1480 * current usage of the cgroup before giving up
1483 if (mem_cgroup_check_under_limit(mem_over_limit
))
1486 if (!nr_retries
--) {
1488 mem_cgroup_out_of_memory(mem_over_limit
, gfp_mask
);
1489 record_last_oom(mem_over_limit
);
1494 if (csize
> PAGE_SIZE
)
1495 refill_stock(mem
, csize
- PAGE_SIZE
);
1498 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
1499 * if they exceeds softlimit.
1501 if (mem_cgroup_soft_limit_check(mem
))
1502 mem_cgroup_update_tree(mem
, page
);
1511 * Somemtimes we have to undo a charge we got by try_charge().
1512 * This function is for that and do uncharge, put css's refcnt.
1513 * gotten by try_charge().
1515 static void mem_cgroup_cancel_charge(struct mem_cgroup
*mem
)
1517 if (!mem_cgroup_is_root(mem
)) {
1518 res_counter_uncharge(&mem
->res
, PAGE_SIZE
);
1519 if (do_swap_account
)
1520 res_counter_uncharge(&mem
->memsw
, PAGE_SIZE
);
1526 * A helper function to get mem_cgroup from ID. must be called under
1527 * rcu_read_lock(). The caller must check css_is_removed() or some if
1528 * it's concern. (dropping refcnt from swap can be called against removed
1531 static struct mem_cgroup
*mem_cgroup_lookup(unsigned short id
)
1533 struct cgroup_subsys_state
*css
;
1535 /* ID 0 is unused ID */
1538 css
= css_lookup(&mem_cgroup_subsys
, id
);
1541 return container_of(css
, struct mem_cgroup
, css
);
1544 struct mem_cgroup
*try_get_mem_cgroup_from_page(struct page
*page
)
1546 struct mem_cgroup
*mem
= NULL
;
1547 struct page_cgroup
*pc
;
1551 VM_BUG_ON(!PageLocked(page
));
1553 pc
= lookup_page_cgroup(page
);
1554 lock_page_cgroup(pc
);
1555 if (PageCgroupUsed(pc
)) {
1556 mem
= pc
->mem_cgroup
;
1557 if (mem
&& !css_tryget(&mem
->css
))
1559 } else if (PageSwapCache(page
)) {
1560 ent
.val
= page_private(page
);
1561 id
= lookup_swap_cgroup(ent
);
1563 mem
= mem_cgroup_lookup(id
);
1564 if (mem
&& !css_tryget(&mem
->css
))
1568 unlock_page_cgroup(pc
);
1573 * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
1574 * USED state. If already USED, uncharge and return.
1577 static void __mem_cgroup_commit_charge(struct mem_cgroup
*mem
,
1578 struct page_cgroup
*pc
,
1579 enum charge_type ctype
)
1581 /* try_charge() can return NULL to *memcg, taking care of it. */
1585 lock_page_cgroup(pc
);
1586 if (unlikely(PageCgroupUsed(pc
))) {
1587 unlock_page_cgroup(pc
);
1588 mem_cgroup_cancel_charge(mem
);
1592 pc
->mem_cgroup
= mem
;
1594 * We access a page_cgroup asynchronously without lock_page_cgroup().
1595 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
1596 * is accessed after testing USED bit. To make pc->mem_cgroup visible
1597 * before USED bit, we need memory barrier here.
1598 * See mem_cgroup_add_lru_list(), etc.
1602 case MEM_CGROUP_CHARGE_TYPE_CACHE
:
1603 case MEM_CGROUP_CHARGE_TYPE_SHMEM
:
1604 SetPageCgroupCache(pc
);
1605 SetPageCgroupUsed(pc
);
1607 case MEM_CGROUP_CHARGE_TYPE_MAPPED
:
1608 ClearPageCgroupCache(pc
);
1609 SetPageCgroupUsed(pc
);
1615 mem_cgroup_charge_statistics(mem
, pc
, true);
1617 unlock_page_cgroup(pc
);
1621 * __mem_cgroup_move_account - move account of the page
1622 * @pc: page_cgroup of the page.
1623 * @from: mem_cgroup which the page is moved from.
1624 * @to: mem_cgroup which the page is moved to. @from != @to.
1626 * The caller must confirm following.
1627 * - page is not on LRU (isolate_page() is useful.)
1628 * - the pc is locked, used, and ->mem_cgroup points to @from.
1630 * This function does "uncharge" from old cgroup but doesn't do "charge" to
1631 * new cgroup. It should be done by a caller.
1634 static void __mem_cgroup_move_account(struct page_cgroup
*pc
,
1635 struct mem_cgroup
*from
, struct mem_cgroup
*to
)
1639 struct mem_cgroup_stat
*stat
;
1640 struct mem_cgroup_stat_cpu
*cpustat
;
1642 VM_BUG_ON(from
== to
);
1643 VM_BUG_ON(PageLRU(pc
->page
));
1644 VM_BUG_ON(!PageCgroupLocked(pc
));
1645 VM_BUG_ON(!PageCgroupUsed(pc
));
1646 VM_BUG_ON(pc
->mem_cgroup
!= from
);
1648 if (!mem_cgroup_is_root(from
))
1649 res_counter_uncharge(&from
->res
, PAGE_SIZE
);
1650 mem_cgroup_charge_statistics(from
, pc
, false);
1653 if (page_mapped(page
) && !PageAnon(page
)) {
1654 cpu
= smp_processor_id();
1655 /* Update mapped_file data for mem_cgroup "from" */
1657 cpustat
= &stat
->cpustat
[cpu
];
1658 __mem_cgroup_stat_add_safe(cpustat
, MEM_CGROUP_STAT_FILE_MAPPED
,
1661 /* Update mapped_file data for mem_cgroup "to" */
1663 cpustat
= &stat
->cpustat
[cpu
];
1664 __mem_cgroup_stat_add_safe(cpustat
, MEM_CGROUP_STAT_FILE_MAPPED
,
1668 if (do_swap_account
&& !mem_cgroup_is_root(from
))
1669 res_counter_uncharge(&from
->memsw
, PAGE_SIZE
);
1670 css_put(&from
->css
);
1673 pc
->mem_cgroup
= to
;
1674 mem_cgroup_charge_statistics(to
, pc
, true);
1676 * We charges against "to" which may not have any tasks. Then, "to"
1677 * can be under rmdir(). But in current implementation, caller of
1678 * this function is just force_empty() and it's garanteed that
1679 * "to" is never removed. So, we don't check rmdir status here.
1684 * check whether the @pc is valid for moving account and call
1685 * __mem_cgroup_move_account()
1687 static int mem_cgroup_move_account(struct page_cgroup
*pc
,
1688 struct mem_cgroup
*from
, struct mem_cgroup
*to
)
1691 lock_page_cgroup(pc
);
1692 if (PageCgroupUsed(pc
) && pc
->mem_cgroup
== from
) {
1693 __mem_cgroup_move_account(pc
, from
, to
);
1696 unlock_page_cgroup(pc
);
1701 * move charges to its parent.
1704 static int mem_cgroup_move_parent(struct page_cgroup
*pc
,
1705 struct mem_cgroup
*child
,
1708 struct page
*page
= pc
->page
;
1709 struct cgroup
*cg
= child
->css
.cgroup
;
1710 struct cgroup
*pcg
= cg
->parent
;
1711 struct mem_cgroup
*parent
;
1719 if (!get_page_unless_zero(page
))
1721 if (isolate_lru_page(page
))
1724 parent
= mem_cgroup_from_cont(pcg
);
1725 ret
= __mem_cgroup_try_charge(NULL
, gfp_mask
, &parent
, false, page
);
1729 ret
= mem_cgroup_move_account(pc
, child
, parent
);
1731 css_put(&parent
->css
); /* drop extra refcnt by try_charge() */
1733 mem_cgroup_cancel_charge(parent
); /* does css_put */
1735 putback_lru_page(page
);
1743 * Charge the memory controller for page usage.
1745 * 0 if the charge was successful
1746 * < 0 if the cgroup is over its limit
1748 static int mem_cgroup_charge_common(struct page
*page
, struct mm_struct
*mm
,
1749 gfp_t gfp_mask
, enum charge_type ctype
,
1750 struct mem_cgroup
*memcg
)
1752 struct mem_cgroup
*mem
;
1753 struct page_cgroup
*pc
;
1756 pc
= lookup_page_cgroup(page
);
1757 /* can happen at boot */
1763 ret
= __mem_cgroup_try_charge(mm
, gfp_mask
, &mem
, true, page
);
1767 __mem_cgroup_commit_charge(mem
, pc
, ctype
);
1771 int mem_cgroup_newpage_charge(struct page
*page
,
1772 struct mm_struct
*mm
, gfp_t gfp_mask
)
1774 if (mem_cgroup_disabled())
1776 if (PageCompound(page
))
1779 * If already mapped, we don't have to account.
1780 * If page cache, page->mapping has address_space.
1781 * But page->mapping may have out-of-use anon_vma pointer,
1782 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
1785 if (page_mapped(page
) || (page
->mapping
&& !PageAnon(page
)))
1789 return mem_cgroup_charge_common(page
, mm
, gfp_mask
,
1790 MEM_CGROUP_CHARGE_TYPE_MAPPED
, NULL
);
1794 __mem_cgroup_commit_charge_swapin(struct page
*page
, struct mem_cgroup
*ptr
,
1795 enum charge_type ctype
);
1797 int mem_cgroup_cache_charge(struct page
*page
, struct mm_struct
*mm
,
1800 struct mem_cgroup
*mem
= NULL
;
1803 if (mem_cgroup_disabled())
1805 if (PageCompound(page
))
1808 * Corner case handling. This is called from add_to_page_cache()
1809 * in usual. But some FS (shmem) precharges this page before calling it
1810 * and call add_to_page_cache() with GFP_NOWAIT.
1812 * For GFP_NOWAIT case, the page may be pre-charged before calling
1813 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
1814 * charge twice. (It works but has to pay a bit larger cost.)
1815 * And when the page is SwapCache, it should take swap information
1816 * into account. This is under lock_page() now.
1818 if (!(gfp_mask
& __GFP_WAIT
)) {
1819 struct page_cgroup
*pc
;
1822 pc
= lookup_page_cgroup(page
);
1825 lock_page_cgroup(pc
);
1826 if (PageCgroupUsed(pc
)) {
1827 unlock_page_cgroup(pc
);
1830 unlock_page_cgroup(pc
);
1833 if (unlikely(!mm
&& !mem
))
1836 if (page_is_file_cache(page
))
1837 return mem_cgroup_charge_common(page
, mm
, gfp_mask
,
1838 MEM_CGROUP_CHARGE_TYPE_CACHE
, NULL
);
1841 if (PageSwapCache(page
)) {
1842 ret
= mem_cgroup_try_charge_swapin(mm
, page
, gfp_mask
, &mem
);
1844 __mem_cgroup_commit_charge_swapin(page
, mem
,
1845 MEM_CGROUP_CHARGE_TYPE_SHMEM
);
1847 ret
= mem_cgroup_charge_common(page
, mm
, gfp_mask
,
1848 MEM_CGROUP_CHARGE_TYPE_SHMEM
, mem
);
1854 * While swap-in, try_charge -> commit or cancel, the page is locked.
1855 * And when try_charge() successfully returns, one refcnt to memcg without
1856 * struct page_cgroup is acquired. This refcnt will be consumed by
1857 * "commit()" or removed by "cancel()"
1859 int mem_cgroup_try_charge_swapin(struct mm_struct
*mm
,
1861 gfp_t mask
, struct mem_cgroup
**ptr
)
1863 struct mem_cgroup
*mem
;
1866 if (mem_cgroup_disabled())
1869 if (!do_swap_account
)
1872 * A racing thread's fault, or swapoff, may have already updated
1873 * the pte, and even removed page from swap cache: in those cases
1874 * do_swap_page()'s pte_same() test will fail; but there's also a
1875 * KSM case which does need to charge the page.
1877 if (!PageSwapCache(page
))
1879 mem
= try_get_mem_cgroup_from_page(page
);
1883 ret
= __mem_cgroup_try_charge(NULL
, mask
, ptr
, true, page
);
1884 /* drop extra refcnt from tryget */
1890 return __mem_cgroup_try_charge(mm
, mask
, ptr
, true, page
);
1894 __mem_cgroup_commit_charge_swapin(struct page
*page
, struct mem_cgroup
*ptr
,
1895 enum charge_type ctype
)
1897 struct page_cgroup
*pc
;
1899 if (mem_cgroup_disabled())
1903 cgroup_exclude_rmdir(&ptr
->css
);
1904 pc
= lookup_page_cgroup(page
);
1905 mem_cgroup_lru_del_before_commit_swapcache(page
);
1906 __mem_cgroup_commit_charge(ptr
, pc
, ctype
);
1907 mem_cgroup_lru_add_after_commit_swapcache(page
);
1909 * Now swap is on-memory. This means this page may be
1910 * counted both as mem and swap....double count.
1911 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
1912 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
1913 * may call delete_from_swap_cache() before reach here.
1915 if (do_swap_account
&& PageSwapCache(page
)) {
1916 swp_entry_t ent
= {.val
= page_private(page
)};
1918 struct mem_cgroup
*memcg
;
1920 id
= swap_cgroup_record(ent
, 0);
1922 memcg
= mem_cgroup_lookup(id
);
1925 * This recorded memcg can be obsolete one. So, avoid
1926 * calling css_tryget
1928 if (!mem_cgroup_is_root(memcg
))
1929 res_counter_uncharge(&memcg
->memsw
, PAGE_SIZE
);
1930 mem_cgroup_swap_statistics(memcg
, false);
1931 mem_cgroup_put(memcg
);
1936 * At swapin, we may charge account against cgroup which has no tasks.
1937 * So, rmdir()->pre_destroy() can be called while we do this charge.
1938 * In that case, we need to call pre_destroy() again. check it here.
1940 cgroup_release_and_wakeup_rmdir(&ptr
->css
);
1943 void mem_cgroup_commit_charge_swapin(struct page
*page
, struct mem_cgroup
*ptr
)
1945 __mem_cgroup_commit_charge_swapin(page
, ptr
,
1946 MEM_CGROUP_CHARGE_TYPE_MAPPED
);
1949 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup
*mem
)
1951 if (mem_cgroup_disabled())
1955 mem_cgroup_cancel_charge(mem
);
1959 __do_uncharge(struct mem_cgroup
*mem
, const enum charge_type ctype
)
1961 struct memcg_batch_info
*batch
= NULL
;
1962 bool uncharge_memsw
= true;
1963 /* If swapout, usage of swap doesn't decrease */
1964 if (!do_swap_account
|| ctype
== MEM_CGROUP_CHARGE_TYPE_SWAPOUT
)
1965 uncharge_memsw
= false;
1967 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
1968 * In those cases, all pages freed continously can be expected to be in
1969 * the same cgroup and we have chance to coalesce uncharges.
1970 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
1971 * because we want to do uncharge as soon as possible.
1973 if (!current
->memcg_batch
.do_batch
|| test_thread_flag(TIF_MEMDIE
))
1974 goto direct_uncharge
;
1976 batch
= ¤t
->memcg_batch
;
1978 * In usual, we do css_get() when we remember memcg pointer.
1979 * But in this case, we keep res->usage until end of a series of
1980 * uncharges. Then, it's ok to ignore memcg's refcnt.
1985 * In typical case, batch->memcg == mem. This means we can
1986 * merge a series of uncharges to an uncharge of res_counter.
1987 * If not, we uncharge res_counter ony by one.
1989 if (batch
->memcg
!= mem
)
1990 goto direct_uncharge
;
1991 /* remember freed charge and uncharge it later */
1992 batch
->bytes
+= PAGE_SIZE
;
1994 batch
->memsw_bytes
+= PAGE_SIZE
;
1997 res_counter_uncharge(&mem
->res
, PAGE_SIZE
);
1999 res_counter_uncharge(&mem
->memsw
, PAGE_SIZE
);
2004 * uncharge if !page_mapped(page)
2006 static struct mem_cgroup
*
2007 __mem_cgroup_uncharge_common(struct page
*page
, enum charge_type ctype
)
2009 struct page_cgroup
*pc
;
2010 struct mem_cgroup
*mem
= NULL
;
2011 struct mem_cgroup_per_zone
*mz
;
2013 if (mem_cgroup_disabled())
2016 if (PageSwapCache(page
))
2020 * Check if our page_cgroup is valid
2022 pc
= lookup_page_cgroup(page
);
2023 if (unlikely(!pc
|| !PageCgroupUsed(pc
)))
2026 lock_page_cgroup(pc
);
2028 mem
= pc
->mem_cgroup
;
2030 if (!PageCgroupUsed(pc
))
2034 case MEM_CGROUP_CHARGE_TYPE_MAPPED
:
2035 case MEM_CGROUP_CHARGE_TYPE_DROP
:
2036 if (page_mapped(page
))
2039 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT
:
2040 if (!PageAnon(page
)) { /* Shared memory */
2041 if (page
->mapping
&& !page_is_file_cache(page
))
2043 } else if (page_mapped(page
)) /* Anon */
2050 if (!mem_cgroup_is_root(mem
))
2051 __do_uncharge(mem
, ctype
);
2052 if (ctype
== MEM_CGROUP_CHARGE_TYPE_SWAPOUT
)
2053 mem_cgroup_swap_statistics(mem
, true);
2054 mem_cgroup_charge_statistics(mem
, pc
, false);
2056 ClearPageCgroupUsed(pc
);
2058 * pc->mem_cgroup is not cleared here. It will be accessed when it's
2059 * freed from LRU. This is safe because uncharged page is expected not
2060 * to be reused (freed soon). Exception is SwapCache, it's handled by
2061 * special functions.
2064 mz
= page_cgroup_zoneinfo(pc
);
2065 unlock_page_cgroup(pc
);
2067 if (mem_cgroup_soft_limit_check(mem
))
2068 mem_cgroup_update_tree(mem
, page
);
2069 /* at swapout, this memcg will be accessed to record to swap */
2070 if (ctype
!= MEM_CGROUP_CHARGE_TYPE_SWAPOUT
)
2076 unlock_page_cgroup(pc
);
2080 void mem_cgroup_uncharge_page(struct page
*page
)
2083 if (page_mapped(page
))
2085 if (page
->mapping
&& !PageAnon(page
))
2087 __mem_cgroup_uncharge_common(page
, MEM_CGROUP_CHARGE_TYPE_MAPPED
);
2090 void mem_cgroup_uncharge_cache_page(struct page
*page
)
2092 VM_BUG_ON(page_mapped(page
));
2093 VM_BUG_ON(page
->mapping
);
2094 __mem_cgroup_uncharge_common(page
, MEM_CGROUP_CHARGE_TYPE_CACHE
);
2098 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
2099 * In that cases, pages are freed continuously and we can expect pages
2100 * are in the same memcg. All these calls itself limits the number of
2101 * pages freed at once, then uncharge_start/end() is called properly.
2102 * This may be called prural(2) times in a context,
2105 void mem_cgroup_uncharge_start(void)
2107 current
->memcg_batch
.do_batch
++;
2108 /* We can do nest. */
2109 if (current
->memcg_batch
.do_batch
== 1) {
2110 current
->memcg_batch
.memcg
= NULL
;
2111 current
->memcg_batch
.bytes
= 0;
2112 current
->memcg_batch
.memsw_bytes
= 0;
2116 void mem_cgroup_uncharge_end(void)
2118 struct memcg_batch_info
*batch
= ¤t
->memcg_batch
;
2120 if (!batch
->do_batch
)
2124 if (batch
->do_batch
) /* If stacked, do nothing. */
2130 * This "batch->memcg" is valid without any css_get/put etc...
2131 * bacause we hide charges behind us.
2134 res_counter_uncharge(&batch
->memcg
->res
, batch
->bytes
);
2135 if (batch
->memsw_bytes
)
2136 res_counter_uncharge(&batch
->memcg
->memsw
, batch
->memsw_bytes
);
2137 /* forget this pointer (for sanity check) */
2138 batch
->memcg
= NULL
;
2143 * called after __delete_from_swap_cache() and drop "page" account.
2144 * memcg information is recorded to swap_cgroup of "ent"
2147 mem_cgroup_uncharge_swapcache(struct page
*page
, swp_entry_t ent
, bool swapout
)
2149 struct mem_cgroup
*memcg
;
2150 int ctype
= MEM_CGROUP_CHARGE_TYPE_SWAPOUT
;
2152 if (!swapout
) /* this was a swap cache but the swap is unused ! */
2153 ctype
= MEM_CGROUP_CHARGE_TYPE_DROP
;
2155 memcg
= __mem_cgroup_uncharge_common(page
, ctype
);
2157 /* record memcg information */
2158 if (do_swap_account
&& swapout
&& memcg
) {
2159 swap_cgroup_record(ent
, css_id(&memcg
->css
));
2160 mem_cgroup_get(memcg
);
2162 if (swapout
&& memcg
)
2163 css_put(&memcg
->css
);
2167 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2169 * called from swap_entry_free(). remove record in swap_cgroup and
2170 * uncharge "memsw" account.
2172 void mem_cgroup_uncharge_swap(swp_entry_t ent
)
2174 struct mem_cgroup
*memcg
;
2177 if (!do_swap_account
)
2180 id
= swap_cgroup_record(ent
, 0);
2182 memcg
= mem_cgroup_lookup(id
);
2185 * We uncharge this because swap is freed.
2186 * This memcg can be obsolete one. We avoid calling css_tryget
2188 if (!mem_cgroup_is_root(memcg
))
2189 res_counter_uncharge(&memcg
->memsw
, PAGE_SIZE
);
2190 mem_cgroup_swap_statistics(memcg
, false);
2191 mem_cgroup_put(memcg
);
2198 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
2201 int mem_cgroup_prepare_migration(struct page
*page
, struct mem_cgroup
**ptr
)
2203 struct page_cgroup
*pc
;
2204 struct mem_cgroup
*mem
= NULL
;
2207 if (mem_cgroup_disabled())
2210 pc
= lookup_page_cgroup(page
);
2211 lock_page_cgroup(pc
);
2212 if (PageCgroupUsed(pc
)) {
2213 mem
= pc
->mem_cgroup
;
2216 unlock_page_cgroup(pc
);
2219 ret
= __mem_cgroup_try_charge(NULL
, GFP_KERNEL
, &mem
, false,
2227 /* remove redundant charge if migration failed*/
2228 void mem_cgroup_end_migration(struct mem_cgroup
*mem
,
2229 struct page
*oldpage
, struct page
*newpage
)
2231 struct page
*target
, *unused
;
2232 struct page_cgroup
*pc
;
2233 enum charge_type ctype
;
2237 cgroup_exclude_rmdir(&mem
->css
);
2238 /* at migration success, oldpage->mapping is NULL. */
2239 if (oldpage
->mapping
) {
2247 if (PageAnon(target
))
2248 ctype
= MEM_CGROUP_CHARGE_TYPE_MAPPED
;
2249 else if (page_is_file_cache(target
))
2250 ctype
= MEM_CGROUP_CHARGE_TYPE_CACHE
;
2252 ctype
= MEM_CGROUP_CHARGE_TYPE_SHMEM
;
2254 /* unused page is not on radix-tree now. */
2256 __mem_cgroup_uncharge_common(unused
, ctype
);
2258 pc
= lookup_page_cgroup(target
);
2260 * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
2261 * So, double-counting is effectively avoided.
2263 __mem_cgroup_commit_charge(mem
, pc
, ctype
);
2266 * Both of oldpage and newpage are still under lock_page().
2267 * Then, we don't have to care about race in radix-tree.
2268 * But we have to be careful that this page is unmapped or not.
2270 * There is a case for !page_mapped(). At the start of
2271 * migration, oldpage was mapped. But now, it's zapped.
2272 * But we know *target* page is not freed/reused under us.
2273 * mem_cgroup_uncharge_page() does all necessary checks.
2275 if (ctype
== MEM_CGROUP_CHARGE_TYPE_MAPPED
)
2276 mem_cgroup_uncharge_page(target
);
2278 * At migration, we may charge account against cgroup which has no tasks
2279 * So, rmdir()->pre_destroy() can be called while we do this charge.
2280 * In that case, we need to call pre_destroy() again. check it here.
2282 cgroup_release_and_wakeup_rmdir(&mem
->css
);
2286 * A call to try to shrink memory usage on charge failure at shmem's swapin.
2287 * Calling hierarchical_reclaim is not enough because we should update
2288 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
2289 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
2290 * not from the memcg which this page would be charged to.
2291 * try_charge_swapin does all of these works properly.
2293 int mem_cgroup_shmem_charge_fallback(struct page
*page
,
2294 struct mm_struct
*mm
,
2297 struct mem_cgroup
*mem
= NULL
;
2300 if (mem_cgroup_disabled())
2303 ret
= mem_cgroup_try_charge_swapin(mm
, page
, gfp_mask
, &mem
);
2305 mem_cgroup_cancel_charge_swapin(mem
); /* it does !mem check */
2310 static DEFINE_MUTEX(set_limit_mutex
);
2312 static int mem_cgroup_resize_limit(struct mem_cgroup
*memcg
,
2313 unsigned long long val
)
2318 int children
= mem_cgroup_count_children(memcg
);
2319 u64 curusage
, oldusage
;
2322 * For keeping hierarchical_reclaim simple, how long we should retry
2323 * is depends on callers. We set our retry-count to be function
2324 * of # of children which we should visit in this loop.
2326 retry_count
= MEM_CGROUP_RECLAIM_RETRIES
* children
;
2328 oldusage
= res_counter_read_u64(&memcg
->res
, RES_USAGE
);
2330 while (retry_count
) {
2331 if (signal_pending(current
)) {
2336 * Rather than hide all in some function, I do this in
2337 * open coded manner. You see what this really does.
2338 * We have to guarantee mem->res.limit < mem->memsw.limit.
2340 mutex_lock(&set_limit_mutex
);
2341 memswlimit
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
2342 if (memswlimit
< val
) {
2344 mutex_unlock(&set_limit_mutex
);
2347 ret
= res_counter_set_limit(&memcg
->res
, val
);
2349 if (memswlimit
== val
)
2350 memcg
->memsw_is_minimum
= true;
2352 memcg
->memsw_is_minimum
= false;
2354 mutex_unlock(&set_limit_mutex
);
2359 mem_cgroup_hierarchical_reclaim(memcg
, NULL
, GFP_KERNEL
,
2360 MEM_CGROUP_RECLAIM_SHRINK
);
2361 curusage
= res_counter_read_u64(&memcg
->res
, RES_USAGE
);
2362 /* Usage is reduced ? */
2363 if (curusage
>= oldusage
)
2366 oldusage
= curusage
;
2372 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup
*memcg
,
2373 unsigned long long val
)
2376 u64 memlimit
, oldusage
, curusage
;
2377 int children
= mem_cgroup_count_children(memcg
);
2380 /* see mem_cgroup_resize_res_limit */
2381 retry_count
= children
* MEM_CGROUP_RECLAIM_RETRIES
;
2382 oldusage
= res_counter_read_u64(&memcg
->memsw
, RES_USAGE
);
2383 while (retry_count
) {
2384 if (signal_pending(current
)) {
2389 * Rather than hide all in some function, I do this in
2390 * open coded manner. You see what this really does.
2391 * We have to guarantee mem->res.limit < mem->memsw.limit.
2393 mutex_lock(&set_limit_mutex
);
2394 memlimit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
2395 if (memlimit
> val
) {
2397 mutex_unlock(&set_limit_mutex
);
2400 ret
= res_counter_set_limit(&memcg
->memsw
, val
);
2402 if (memlimit
== val
)
2403 memcg
->memsw_is_minimum
= true;
2405 memcg
->memsw_is_minimum
= false;
2407 mutex_unlock(&set_limit_mutex
);
2412 mem_cgroup_hierarchical_reclaim(memcg
, NULL
, GFP_KERNEL
,
2413 MEM_CGROUP_RECLAIM_NOSWAP
|
2414 MEM_CGROUP_RECLAIM_SHRINK
);
2415 curusage
= res_counter_read_u64(&memcg
->memsw
, RES_USAGE
);
2416 /* Usage is reduced ? */
2417 if (curusage
>= oldusage
)
2420 oldusage
= curusage
;
2425 unsigned long mem_cgroup_soft_limit_reclaim(struct zone
*zone
, int order
,
2426 gfp_t gfp_mask
, int nid
,
2429 unsigned long nr_reclaimed
= 0;
2430 struct mem_cgroup_per_zone
*mz
, *next_mz
= NULL
;
2431 unsigned long reclaimed
;
2433 struct mem_cgroup_tree_per_zone
*mctz
;
2434 unsigned long long excess
;
2439 mctz
= soft_limit_tree_node_zone(nid
, zid
);
2441 * This loop can run a while, specially if mem_cgroup's continuously
2442 * keep exceeding their soft limit and putting the system under
2449 mz
= mem_cgroup_largest_soft_limit_node(mctz
);
2453 reclaimed
= mem_cgroup_hierarchical_reclaim(mz
->mem
, zone
,
2455 MEM_CGROUP_RECLAIM_SOFT
);
2456 nr_reclaimed
+= reclaimed
;
2457 spin_lock(&mctz
->lock
);
2460 * If we failed to reclaim anything from this memory cgroup
2461 * it is time to move on to the next cgroup
2467 * Loop until we find yet another one.
2469 * By the time we get the soft_limit lock
2470 * again, someone might have aded the
2471 * group back on the RB tree. Iterate to
2472 * make sure we get a different mem.
2473 * mem_cgroup_largest_soft_limit_node returns
2474 * NULL if no other cgroup is present on
2478 __mem_cgroup_largest_soft_limit_node(mctz
);
2479 if (next_mz
== mz
) {
2480 css_put(&next_mz
->mem
->css
);
2482 } else /* next_mz == NULL or other memcg */
2486 __mem_cgroup_remove_exceeded(mz
->mem
, mz
, mctz
);
2487 excess
= res_counter_soft_limit_excess(&mz
->mem
->res
);
2489 * One school of thought says that we should not add
2490 * back the node to the tree if reclaim returns 0.
2491 * But our reclaim could return 0, simply because due
2492 * to priority we are exposing a smaller subset of
2493 * memory to reclaim from. Consider this as a longer
2496 /* If excess == 0, no tree ops */
2497 __mem_cgroup_insert_exceeded(mz
->mem
, mz
, mctz
, excess
);
2498 spin_unlock(&mctz
->lock
);
2499 css_put(&mz
->mem
->css
);
2502 * Could not reclaim anything and there are no more
2503 * mem cgroups to try or we seem to be looping without
2504 * reclaiming anything.
2506 if (!nr_reclaimed
&&
2508 loop
> MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS
))
2510 } while (!nr_reclaimed
);
2512 css_put(&next_mz
->mem
->css
);
2513 return nr_reclaimed
;
2517 * This routine traverse page_cgroup in given list and drop them all.
2518 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
2520 static int mem_cgroup_force_empty_list(struct mem_cgroup
*mem
,
2521 int node
, int zid
, enum lru_list lru
)
2524 struct mem_cgroup_per_zone
*mz
;
2525 struct page_cgroup
*pc
, *busy
;
2526 unsigned long flags
, loop
;
2527 struct list_head
*list
;
2530 zone
= &NODE_DATA(node
)->node_zones
[zid
];
2531 mz
= mem_cgroup_zoneinfo(mem
, node
, zid
);
2532 list
= &mz
->lists
[lru
];
2534 loop
= MEM_CGROUP_ZSTAT(mz
, lru
);
2535 /* give some margin against EBUSY etc...*/
2540 spin_lock_irqsave(&zone
->lru_lock
, flags
);
2541 if (list_empty(list
)) {
2542 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
2545 pc
= list_entry(list
->prev
, struct page_cgroup
, lru
);
2547 list_move(&pc
->lru
, list
);
2549 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
2552 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
2554 ret
= mem_cgroup_move_parent(pc
, mem
, GFP_KERNEL
);
2558 if (ret
== -EBUSY
|| ret
== -EINVAL
) {
2559 /* found lock contention or "pc" is obsolete. */
2566 if (!ret
&& !list_empty(list
))
2572 * make mem_cgroup's charge to be 0 if there is no task.
2573 * This enables deleting this mem_cgroup.
2575 static int mem_cgroup_force_empty(struct mem_cgroup
*mem
, bool free_all
)
2578 int node
, zid
, shrink
;
2579 int nr_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
2580 struct cgroup
*cgrp
= mem
->css
.cgroup
;
2585 /* should free all ? */
2589 while (mem
->res
.usage
> 0) {
2591 if (cgroup_task_count(cgrp
) || !list_empty(&cgrp
->children
))
2594 if (signal_pending(current
))
2596 /* This is for making all *used* pages to be on LRU. */
2597 lru_add_drain_all();
2598 drain_all_stock_sync();
2600 for_each_node_state(node
, N_HIGH_MEMORY
) {
2601 for (zid
= 0; !ret
&& zid
< MAX_NR_ZONES
; zid
++) {
2604 ret
= mem_cgroup_force_empty_list(mem
,
2613 /* it seems parent cgroup doesn't have enough mem */
2624 /* returns EBUSY if there is a task or if we come here twice. */
2625 if (cgroup_task_count(cgrp
) || !list_empty(&cgrp
->children
) || shrink
) {
2629 /* we call try-to-free pages for make this cgroup empty */
2630 lru_add_drain_all();
2631 /* try to free all pages in this cgroup */
2633 while (nr_retries
&& mem
->res
.usage
> 0) {
2636 if (signal_pending(current
)) {
2640 progress
= try_to_free_mem_cgroup_pages(mem
, GFP_KERNEL
,
2641 false, get_swappiness(mem
));
2644 /* maybe some writeback is necessary */
2645 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
2650 /* try move_account...there may be some *locked* pages. */
2657 int mem_cgroup_force_empty_write(struct cgroup
*cont
, unsigned int event
)
2659 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont
), true);
2663 static u64
mem_cgroup_hierarchy_read(struct cgroup
*cont
, struct cftype
*cft
)
2665 return mem_cgroup_from_cont(cont
)->use_hierarchy
;
2668 static int mem_cgroup_hierarchy_write(struct cgroup
*cont
, struct cftype
*cft
,
2672 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cont
);
2673 struct cgroup
*parent
= cont
->parent
;
2674 struct mem_cgroup
*parent_mem
= NULL
;
2677 parent_mem
= mem_cgroup_from_cont(parent
);
2681 * If parent's use_hierarchy is set, we can't make any modifications
2682 * in the child subtrees. If it is unset, then the change can
2683 * occur, provided the current cgroup has no children.
2685 * For the root cgroup, parent_mem is NULL, we allow value to be
2686 * set if there are no children.
2688 if ((!parent_mem
|| !parent_mem
->use_hierarchy
) &&
2689 (val
== 1 || val
== 0)) {
2690 if (list_empty(&cont
->children
))
2691 mem
->use_hierarchy
= val
;
2701 struct mem_cgroup_idx_data
{
2703 enum mem_cgroup_stat_index idx
;
2707 mem_cgroup_get_idx_stat(struct mem_cgroup
*mem
, void *data
)
2709 struct mem_cgroup_idx_data
*d
= data
;
2710 d
->val
+= mem_cgroup_read_stat(&mem
->stat
, d
->idx
);
2715 mem_cgroup_get_recursive_idx_stat(struct mem_cgroup
*mem
,
2716 enum mem_cgroup_stat_index idx
, s64
*val
)
2718 struct mem_cgroup_idx_data d
;
2721 mem_cgroup_walk_tree(mem
, &d
, mem_cgroup_get_idx_stat
);
2725 static u64
mem_cgroup_read(struct cgroup
*cont
, struct cftype
*cft
)
2727 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cont
);
2731 type
= MEMFILE_TYPE(cft
->private);
2732 name
= MEMFILE_ATTR(cft
->private);
2735 if (name
== RES_USAGE
&& mem_cgroup_is_root(mem
)) {
2736 mem_cgroup_get_recursive_idx_stat(mem
,
2737 MEM_CGROUP_STAT_CACHE
, &idx_val
);
2739 mem_cgroup_get_recursive_idx_stat(mem
,
2740 MEM_CGROUP_STAT_RSS
, &idx_val
);
2744 val
= res_counter_read_u64(&mem
->res
, name
);
2747 if (name
== RES_USAGE
&& mem_cgroup_is_root(mem
)) {
2748 mem_cgroup_get_recursive_idx_stat(mem
,
2749 MEM_CGROUP_STAT_CACHE
, &idx_val
);
2751 mem_cgroup_get_recursive_idx_stat(mem
,
2752 MEM_CGROUP_STAT_RSS
, &idx_val
);
2754 mem_cgroup_get_recursive_idx_stat(mem
,
2755 MEM_CGROUP_STAT_SWAPOUT
, &idx_val
);
2759 val
= res_counter_read_u64(&mem
->memsw
, name
);
2768 * The user of this function is...
2771 static int mem_cgroup_write(struct cgroup
*cont
, struct cftype
*cft
,
2774 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cont
);
2776 unsigned long long val
;
2779 type
= MEMFILE_TYPE(cft
->private);
2780 name
= MEMFILE_ATTR(cft
->private);
2783 if (mem_cgroup_is_root(memcg
)) { /* Can't set limit on root */
2787 /* This function does all necessary parse...reuse it */
2788 ret
= res_counter_memparse_write_strategy(buffer
, &val
);
2792 ret
= mem_cgroup_resize_limit(memcg
, val
);
2794 ret
= mem_cgroup_resize_memsw_limit(memcg
, val
);
2796 case RES_SOFT_LIMIT
:
2797 ret
= res_counter_memparse_write_strategy(buffer
, &val
);
2801 * For memsw, soft limits are hard to implement in terms
2802 * of semantics, for now, we support soft limits for
2803 * control without swap
2806 ret
= res_counter_set_soft_limit(&memcg
->res
, val
);
2811 ret
= -EINVAL
; /* should be BUG() ? */
2817 static void memcg_get_hierarchical_limit(struct mem_cgroup
*memcg
,
2818 unsigned long long *mem_limit
, unsigned long long *memsw_limit
)
2820 struct cgroup
*cgroup
;
2821 unsigned long long min_limit
, min_memsw_limit
, tmp
;
2823 min_limit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
2824 min_memsw_limit
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
2825 cgroup
= memcg
->css
.cgroup
;
2826 if (!memcg
->use_hierarchy
)
2829 while (cgroup
->parent
) {
2830 cgroup
= cgroup
->parent
;
2831 memcg
= mem_cgroup_from_cont(cgroup
);
2832 if (!memcg
->use_hierarchy
)
2834 tmp
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
2835 min_limit
= min(min_limit
, tmp
);
2836 tmp
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
2837 min_memsw_limit
= min(min_memsw_limit
, tmp
);
2840 *mem_limit
= min_limit
;
2841 *memsw_limit
= min_memsw_limit
;
2845 static int mem_cgroup_reset(struct cgroup
*cont
, unsigned int event
)
2847 struct mem_cgroup
*mem
;
2850 mem
= mem_cgroup_from_cont(cont
);
2851 type
= MEMFILE_TYPE(event
);
2852 name
= MEMFILE_ATTR(event
);
2856 res_counter_reset_max(&mem
->res
);
2858 res_counter_reset_max(&mem
->memsw
);
2862 res_counter_reset_failcnt(&mem
->res
);
2864 res_counter_reset_failcnt(&mem
->memsw
);
2872 /* For read statistics */
2888 struct mcs_total_stat
{
2889 s64 stat
[NR_MCS_STAT
];
2895 } memcg_stat_strings
[NR_MCS_STAT
] = {
2896 {"cache", "total_cache"},
2897 {"rss", "total_rss"},
2898 {"mapped_file", "total_mapped_file"},
2899 {"pgpgin", "total_pgpgin"},
2900 {"pgpgout", "total_pgpgout"},
2901 {"swap", "total_swap"},
2902 {"inactive_anon", "total_inactive_anon"},
2903 {"active_anon", "total_active_anon"},
2904 {"inactive_file", "total_inactive_file"},
2905 {"active_file", "total_active_file"},
2906 {"unevictable", "total_unevictable"}
2910 static int mem_cgroup_get_local_stat(struct mem_cgroup
*mem
, void *data
)
2912 struct mcs_total_stat
*s
= data
;
2916 val
= mem_cgroup_read_stat(&mem
->stat
, MEM_CGROUP_STAT_CACHE
);
2917 s
->stat
[MCS_CACHE
] += val
* PAGE_SIZE
;
2918 val
= mem_cgroup_read_stat(&mem
->stat
, MEM_CGROUP_STAT_RSS
);
2919 s
->stat
[MCS_RSS
] += val
* PAGE_SIZE
;
2920 val
= mem_cgroup_read_stat(&mem
->stat
, MEM_CGROUP_STAT_FILE_MAPPED
);
2921 s
->stat
[MCS_FILE_MAPPED
] += val
* PAGE_SIZE
;
2922 val
= mem_cgroup_read_stat(&mem
->stat
, MEM_CGROUP_STAT_PGPGIN_COUNT
);
2923 s
->stat
[MCS_PGPGIN
] += val
;
2924 val
= mem_cgroup_read_stat(&mem
->stat
, MEM_CGROUP_STAT_PGPGOUT_COUNT
);
2925 s
->stat
[MCS_PGPGOUT
] += val
;
2926 if (do_swap_account
) {
2927 val
= mem_cgroup_read_stat(&mem
->stat
, MEM_CGROUP_STAT_SWAPOUT
);
2928 s
->stat
[MCS_SWAP
] += val
* PAGE_SIZE
;
2932 val
= mem_cgroup_get_local_zonestat(mem
, LRU_INACTIVE_ANON
);
2933 s
->stat
[MCS_INACTIVE_ANON
] += val
* PAGE_SIZE
;
2934 val
= mem_cgroup_get_local_zonestat(mem
, LRU_ACTIVE_ANON
);
2935 s
->stat
[MCS_ACTIVE_ANON
] += val
* PAGE_SIZE
;
2936 val
= mem_cgroup_get_local_zonestat(mem
, LRU_INACTIVE_FILE
);
2937 s
->stat
[MCS_INACTIVE_FILE
] += val
* PAGE_SIZE
;
2938 val
= mem_cgroup_get_local_zonestat(mem
, LRU_ACTIVE_FILE
);
2939 s
->stat
[MCS_ACTIVE_FILE
] += val
* PAGE_SIZE
;
2940 val
= mem_cgroup_get_local_zonestat(mem
, LRU_UNEVICTABLE
);
2941 s
->stat
[MCS_UNEVICTABLE
] += val
* PAGE_SIZE
;
2946 mem_cgroup_get_total_stat(struct mem_cgroup
*mem
, struct mcs_total_stat
*s
)
2948 mem_cgroup_walk_tree(mem
, s
, mem_cgroup_get_local_stat
);
2951 static int mem_control_stat_show(struct cgroup
*cont
, struct cftype
*cft
,
2952 struct cgroup_map_cb
*cb
)
2954 struct mem_cgroup
*mem_cont
= mem_cgroup_from_cont(cont
);
2955 struct mcs_total_stat mystat
;
2958 memset(&mystat
, 0, sizeof(mystat
));
2959 mem_cgroup_get_local_stat(mem_cont
, &mystat
);
2961 for (i
= 0; i
< NR_MCS_STAT
; i
++) {
2962 if (i
== MCS_SWAP
&& !do_swap_account
)
2964 cb
->fill(cb
, memcg_stat_strings
[i
].local_name
, mystat
.stat
[i
]);
2967 /* Hierarchical information */
2969 unsigned long long limit
, memsw_limit
;
2970 memcg_get_hierarchical_limit(mem_cont
, &limit
, &memsw_limit
);
2971 cb
->fill(cb
, "hierarchical_memory_limit", limit
);
2972 if (do_swap_account
)
2973 cb
->fill(cb
, "hierarchical_memsw_limit", memsw_limit
);
2976 memset(&mystat
, 0, sizeof(mystat
));
2977 mem_cgroup_get_total_stat(mem_cont
, &mystat
);
2978 for (i
= 0; i
< NR_MCS_STAT
; i
++) {
2979 if (i
== MCS_SWAP
&& !do_swap_account
)
2981 cb
->fill(cb
, memcg_stat_strings
[i
].total_name
, mystat
.stat
[i
]);
2984 #ifdef CONFIG_DEBUG_VM
2985 cb
->fill(cb
, "inactive_ratio", calc_inactive_ratio(mem_cont
, NULL
));
2989 struct mem_cgroup_per_zone
*mz
;
2990 unsigned long recent_rotated
[2] = {0, 0};
2991 unsigned long recent_scanned
[2] = {0, 0};
2993 for_each_online_node(nid
)
2994 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
2995 mz
= mem_cgroup_zoneinfo(mem_cont
, nid
, zid
);
2997 recent_rotated
[0] +=
2998 mz
->reclaim_stat
.recent_rotated
[0];
2999 recent_rotated
[1] +=
3000 mz
->reclaim_stat
.recent_rotated
[1];
3001 recent_scanned
[0] +=
3002 mz
->reclaim_stat
.recent_scanned
[0];
3003 recent_scanned
[1] +=
3004 mz
->reclaim_stat
.recent_scanned
[1];
3006 cb
->fill(cb
, "recent_rotated_anon", recent_rotated
[0]);
3007 cb
->fill(cb
, "recent_rotated_file", recent_rotated
[1]);
3008 cb
->fill(cb
, "recent_scanned_anon", recent_scanned
[0]);
3009 cb
->fill(cb
, "recent_scanned_file", recent_scanned
[1]);
3016 static u64
mem_cgroup_swappiness_read(struct cgroup
*cgrp
, struct cftype
*cft
)
3018 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
3020 return get_swappiness(memcg
);
3023 static int mem_cgroup_swappiness_write(struct cgroup
*cgrp
, struct cftype
*cft
,
3026 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
3027 struct mem_cgroup
*parent
;
3032 if (cgrp
->parent
== NULL
)
3035 parent
= mem_cgroup_from_cont(cgrp
->parent
);
3039 /* If under hierarchy, only empty-root can set this value */
3040 if ((parent
->use_hierarchy
) ||
3041 (memcg
->use_hierarchy
&& !list_empty(&cgrp
->children
))) {
3046 spin_lock(&memcg
->reclaim_param_lock
);
3047 memcg
->swappiness
= val
;
3048 spin_unlock(&memcg
->reclaim_param_lock
);
3056 static struct cftype mem_cgroup_files
[] = {
3058 .name
= "usage_in_bytes",
3059 .private = MEMFILE_PRIVATE(_MEM
, RES_USAGE
),
3060 .read_u64
= mem_cgroup_read
,
3063 .name
= "max_usage_in_bytes",
3064 .private = MEMFILE_PRIVATE(_MEM
, RES_MAX_USAGE
),
3065 .trigger
= mem_cgroup_reset
,
3066 .read_u64
= mem_cgroup_read
,
3069 .name
= "limit_in_bytes",
3070 .private = MEMFILE_PRIVATE(_MEM
, RES_LIMIT
),
3071 .write_string
= mem_cgroup_write
,
3072 .read_u64
= mem_cgroup_read
,
3075 .name
= "soft_limit_in_bytes",
3076 .private = MEMFILE_PRIVATE(_MEM
, RES_SOFT_LIMIT
),
3077 .write_string
= mem_cgroup_write
,
3078 .read_u64
= mem_cgroup_read
,
3082 .private = MEMFILE_PRIVATE(_MEM
, RES_FAILCNT
),
3083 .trigger
= mem_cgroup_reset
,
3084 .read_u64
= mem_cgroup_read
,
3088 .read_map
= mem_control_stat_show
,
3091 .name
= "force_empty",
3092 .trigger
= mem_cgroup_force_empty_write
,
3095 .name
= "use_hierarchy",
3096 .write_u64
= mem_cgroup_hierarchy_write
,
3097 .read_u64
= mem_cgroup_hierarchy_read
,
3100 .name
= "swappiness",
3101 .read_u64
= mem_cgroup_swappiness_read
,
3102 .write_u64
= mem_cgroup_swappiness_write
,
3106 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3107 static struct cftype memsw_cgroup_files
[] = {
3109 .name
= "memsw.usage_in_bytes",
3110 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_USAGE
),
3111 .read_u64
= mem_cgroup_read
,
3114 .name
= "memsw.max_usage_in_bytes",
3115 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_MAX_USAGE
),
3116 .trigger
= mem_cgroup_reset
,
3117 .read_u64
= mem_cgroup_read
,
3120 .name
= "memsw.limit_in_bytes",
3121 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_LIMIT
),
3122 .write_string
= mem_cgroup_write
,
3123 .read_u64
= mem_cgroup_read
,
3126 .name
= "memsw.failcnt",
3127 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_FAILCNT
),
3128 .trigger
= mem_cgroup_reset
,
3129 .read_u64
= mem_cgroup_read
,
3133 static int register_memsw_files(struct cgroup
*cont
, struct cgroup_subsys
*ss
)
3135 if (!do_swap_account
)
3137 return cgroup_add_files(cont
, ss
, memsw_cgroup_files
,
3138 ARRAY_SIZE(memsw_cgroup_files
));
3141 static int register_memsw_files(struct cgroup
*cont
, struct cgroup_subsys
*ss
)
3147 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup
*mem
, int node
)
3149 struct mem_cgroup_per_node
*pn
;
3150 struct mem_cgroup_per_zone
*mz
;
3152 int zone
, tmp
= node
;
3154 * This routine is called against possible nodes.
3155 * But it's BUG to call kmalloc() against offline node.
3157 * TODO: this routine can waste much memory for nodes which will
3158 * never be onlined. It's better to use memory hotplug callback
3161 if (!node_state(node
, N_NORMAL_MEMORY
))
3163 pn
= kmalloc_node(sizeof(*pn
), GFP_KERNEL
, tmp
);
3167 mem
->info
.nodeinfo
[node
] = pn
;
3168 memset(pn
, 0, sizeof(*pn
));
3170 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
3171 mz
= &pn
->zoneinfo
[zone
];
3173 INIT_LIST_HEAD(&mz
->lists
[l
]);
3174 mz
->usage_in_excess
= 0;
3175 mz
->on_tree
= false;
3181 static void free_mem_cgroup_per_zone_info(struct mem_cgroup
*mem
, int node
)
3183 kfree(mem
->info
.nodeinfo
[node
]);
3186 static int mem_cgroup_size(void)
3188 int cpustat_size
= nr_cpu_ids
* sizeof(struct mem_cgroup_stat_cpu
);
3189 return sizeof(struct mem_cgroup
) + cpustat_size
;
3192 static struct mem_cgroup
*mem_cgroup_alloc(void)
3194 struct mem_cgroup
*mem
;
3195 int size
= mem_cgroup_size();
3197 if (size
< PAGE_SIZE
)
3198 mem
= kmalloc(size
, GFP_KERNEL
);
3200 mem
= vmalloc(size
);
3203 memset(mem
, 0, size
);
3208 * At destroying mem_cgroup, references from swap_cgroup can remain.
3209 * (scanning all at force_empty is too costly...)
3211 * Instead of clearing all references at force_empty, we remember
3212 * the number of reference from swap_cgroup and free mem_cgroup when
3213 * it goes down to 0.
3215 * Removal of cgroup itself succeeds regardless of refs from swap.
3218 static void __mem_cgroup_free(struct mem_cgroup
*mem
)
3222 mem_cgroup_remove_from_trees(mem
);
3223 free_css_id(&mem_cgroup_subsys
, &mem
->css
);
3225 for_each_node_state(node
, N_POSSIBLE
)
3226 free_mem_cgroup_per_zone_info(mem
, node
);
3228 if (mem_cgroup_size() < PAGE_SIZE
)
3234 static void mem_cgroup_get(struct mem_cgroup
*mem
)
3236 atomic_inc(&mem
->refcnt
);
3239 static void mem_cgroup_put(struct mem_cgroup
*mem
)
3241 if (atomic_dec_and_test(&mem
->refcnt
)) {
3242 struct mem_cgroup
*parent
= parent_mem_cgroup(mem
);
3243 __mem_cgroup_free(mem
);
3245 mem_cgroup_put(parent
);
3250 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
3252 static struct mem_cgroup
*parent_mem_cgroup(struct mem_cgroup
*mem
)
3254 if (!mem
->res
.parent
)
3256 return mem_cgroup_from_res_counter(mem
->res
.parent
, res
);
3259 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3260 static void __init
enable_swap_cgroup(void)
3262 if (!mem_cgroup_disabled() && really_do_swap_account
)
3263 do_swap_account
= 1;
3266 static void __init
enable_swap_cgroup(void)
3271 static int mem_cgroup_soft_limit_tree_init(void)
3273 struct mem_cgroup_tree_per_node
*rtpn
;
3274 struct mem_cgroup_tree_per_zone
*rtpz
;
3275 int tmp
, node
, zone
;
3277 for_each_node_state(node
, N_POSSIBLE
) {
3279 if (!node_state(node
, N_NORMAL_MEMORY
))
3281 rtpn
= kzalloc_node(sizeof(*rtpn
), GFP_KERNEL
, tmp
);
3285 soft_limit_tree
.rb_tree_per_node
[node
] = rtpn
;
3287 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
3288 rtpz
= &rtpn
->rb_tree_per_zone
[zone
];
3289 rtpz
->rb_root
= RB_ROOT
;
3290 spin_lock_init(&rtpz
->lock
);
3296 static struct cgroup_subsys_state
* __ref
3297 mem_cgroup_create(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
3299 struct mem_cgroup
*mem
, *parent
;
3300 long error
= -ENOMEM
;
3303 mem
= mem_cgroup_alloc();
3305 return ERR_PTR(error
);
3307 for_each_node_state(node
, N_POSSIBLE
)
3308 if (alloc_mem_cgroup_per_zone_info(mem
, node
))
3312 if (cont
->parent
== NULL
) {
3314 enable_swap_cgroup();
3316 root_mem_cgroup
= mem
;
3317 if (mem_cgroup_soft_limit_tree_init())
3319 for_each_possible_cpu(cpu
) {
3320 struct memcg_stock_pcp
*stock
=
3321 &per_cpu(memcg_stock
, cpu
);
3322 INIT_WORK(&stock
->work
, drain_local_stock
);
3324 hotcpu_notifier(memcg_stock_cpu_callback
, 0);
3327 parent
= mem_cgroup_from_cont(cont
->parent
);
3328 mem
->use_hierarchy
= parent
->use_hierarchy
;
3331 if (parent
&& parent
->use_hierarchy
) {
3332 res_counter_init(&mem
->res
, &parent
->res
);
3333 res_counter_init(&mem
->memsw
, &parent
->memsw
);
3335 * We increment refcnt of the parent to ensure that we can
3336 * safely access it on res_counter_charge/uncharge.
3337 * This refcnt will be decremented when freeing this
3338 * mem_cgroup(see mem_cgroup_put).
3340 mem_cgroup_get(parent
);
3342 res_counter_init(&mem
->res
, NULL
);
3343 res_counter_init(&mem
->memsw
, NULL
);
3345 mem
->last_scanned_child
= 0;
3346 spin_lock_init(&mem
->reclaim_param_lock
);
3349 mem
->swappiness
= get_swappiness(parent
);
3350 atomic_set(&mem
->refcnt
, 1);
3353 __mem_cgroup_free(mem
);
3354 root_mem_cgroup
= NULL
;
3355 return ERR_PTR(error
);
3358 static int mem_cgroup_pre_destroy(struct cgroup_subsys
*ss
,
3359 struct cgroup
*cont
)
3361 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cont
);
3363 return mem_cgroup_force_empty(mem
, false);
3366 static void mem_cgroup_destroy(struct cgroup_subsys
*ss
,
3367 struct cgroup
*cont
)
3369 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cont
);
3371 mem_cgroup_put(mem
);
3374 static int mem_cgroup_populate(struct cgroup_subsys
*ss
,
3375 struct cgroup
*cont
)
3379 ret
= cgroup_add_files(cont
, ss
, mem_cgroup_files
,
3380 ARRAY_SIZE(mem_cgroup_files
));
3383 ret
= register_memsw_files(cont
, ss
);
3387 static void mem_cgroup_move_task(struct cgroup_subsys
*ss
,
3388 struct cgroup
*cont
,
3389 struct cgroup
*old_cont
,
3390 struct task_struct
*p
,
3394 * FIXME: It's better to move charges of this process from old
3395 * memcg to new memcg. But it's just on TODO-List now.
3399 struct cgroup_subsys mem_cgroup_subsys
= {
3401 .subsys_id
= mem_cgroup_subsys_id
,
3402 .create
= mem_cgroup_create
,
3403 .pre_destroy
= mem_cgroup_pre_destroy
,
3404 .destroy
= mem_cgroup_destroy
,
3405 .populate
= mem_cgroup_populate
,
3406 .attach
= mem_cgroup_move_task
,
3411 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3413 static int __init
disable_swap_account(char *s
)
3415 really_do_swap_account
= 0;
3418 __setup("noswapaccount", disable_swap_account
);