perf: Do not set task_ctx pointer in cpuctx if there are no events in the context
[linux-2.6.git] / kernel / events / core.c
blobb0c1186fd97bcdaed7e8cdb537d9a61740bb86f3
1 /*
2 * Performance events core code:
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 * For licensing details see kernel-base/COPYING
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/rculist.h>
32 #include <linux/uaccess.h>
33 #include <linux/syscalls.h>
34 #include <linux/anon_inodes.h>
35 #include <linux/kernel_stat.h>
36 #include <linux/perf_event.h>
37 #include <linux/ftrace_event.h>
38 #include <linux/hw_breakpoint.h>
40 #include "internal.h"
42 #include <asm/irq_regs.h>
44 struct remote_function_call {
45 struct task_struct *p;
46 int (*func)(void *info);
47 void *info;
48 int ret;
51 static void remote_function(void *data)
53 struct remote_function_call *tfc = data;
54 struct task_struct *p = tfc->p;
56 if (p) {
57 tfc->ret = -EAGAIN;
58 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
59 return;
62 tfc->ret = tfc->func(tfc->info);
65 /**
66 * task_function_call - call a function on the cpu on which a task runs
67 * @p: the task to evaluate
68 * @func: the function to be called
69 * @info: the function call argument
71 * Calls the function @func when the task is currently running. This might
72 * be on the current CPU, which just calls the function directly
74 * returns: @func return value, or
75 * -ESRCH - when the process isn't running
76 * -EAGAIN - when the process moved away
78 static int
79 task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
81 struct remote_function_call data = {
82 .p = p,
83 .func = func,
84 .info = info,
85 .ret = -ESRCH, /* No such (running) process */
88 if (task_curr(p))
89 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
91 return data.ret;
94 /**
95 * cpu_function_call - call a function on the cpu
96 * @func: the function to be called
97 * @info: the function call argument
99 * Calls the function @func on the remote cpu.
101 * returns: @func return value or -ENXIO when the cpu is offline
103 static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
105 struct remote_function_call data = {
106 .p = NULL,
107 .func = func,
108 .info = info,
109 .ret = -ENXIO, /* No such CPU */
112 smp_call_function_single(cpu, remote_function, &data, 1);
114 return data.ret;
117 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
118 PERF_FLAG_FD_OUTPUT |\
119 PERF_FLAG_PID_CGROUP)
121 enum event_type_t {
122 EVENT_FLEXIBLE = 0x1,
123 EVENT_PINNED = 0x2,
124 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
128 * perf_sched_events : >0 events exist
129 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
131 struct jump_label_key perf_sched_events __read_mostly;
132 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
134 static atomic_t nr_mmap_events __read_mostly;
135 static atomic_t nr_comm_events __read_mostly;
136 static atomic_t nr_task_events __read_mostly;
138 static LIST_HEAD(pmus);
139 static DEFINE_MUTEX(pmus_lock);
140 static struct srcu_struct pmus_srcu;
143 * perf event paranoia level:
144 * -1 - not paranoid at all
145 * 0 - disallow raw tracepoint access for unpriv
146 * 1 - disallow cpu events for unpriv
147 * 2 - disallow kernel profiling for unpriv
149 int sysctl_perf_event_paranoid __read_mostly = 1;
151 /* Minimum for 512 kiB + 1 user control page */
152 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
155 * max perf event sample rate
157 #define DEFAULT_MAX_SAMPLE_RATE 100000
158 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
159 static int max_samples_per_tick __read_mostly =
160 DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
162 int perf_proc_update_handler(struct ctl_table *table, int write,
163 void __user *buffer, size_t *lenp,
164 loff_t *ppos)
166 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
168 if (ret || !write)
169 return ret;
171 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
173 return 0;
176 static atomic64_t perf_event_id;
178 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
179 enum event_type_t event_type);
181 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
182 enum event_type_t event_type,
183 struct task_struct *task);
185 static void update_context_time(struct perf_event_context *ctx);
186 static u64 perf_event_time(struct perf_event *event);
188 void __weak perf_event_print_debug(void) { }
190 extern __weak const char *perf_pmu_name(void)
192 return "pmu";
195 static inline u64 perf_clock(void)
197 return local_clock();
200 static inline struct perf_cpu_context *
201 __get_cpu_context(struct perf_event_context *ctx)
203 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
206 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
207 struct perf_event_context *ctx)
209 raw_spin_lock(&cpuctx->ctx.lock);
210 if (ctx)
211 raw_spin_lock(&ctx->lock);
214 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
215 struct perf_event_context *ctx)
217 if (ctx)
218 raw_spin_unlock(&ctx->lock);
219 raw_spin_unlock(&cpuctx->ctx.lock);
222 #ifdef CONFIG_CGROUP_PERF
225 * Must ensure cgroup is pinned (css_get) before calling
226 * this function. In other words, we cannot call this function
227 * if there is no cgroup event for the current CPU context.
229 static inline struct perf_cgroup *
230 perf_cgroup_from_task(struct task_struct *task)
232 return container_of(task_subsys_state(task, perf_subsys_id),
233 struct perf_cgroup, css);
236 static inline bool
237 perf_cgroup_match(struct perf_event *event)
239 struct perf_event_context *ctx = event->ctx;
240 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
242 return !event->cgrp || event->cgrp == cpuctx->cgrp;
245 static inline void perf_get_cgroup(struct perf_event *event)
247 css_get(&event->cgrp->css);
250 static inline void perf_put_cgroup(struct perf_event *event)
252 css_put(&event->cgrp->css);
255 static inline void perf_detach_cgroup(struct perf_event *event)
257 perf_put_cgroup(event);
258 event->cgrp = NULL;
261 static inline int is_cgroup_event(struct perf_event *event)
263 return event->cgrp != NULL;
266 static inline u64 perf_cgroup_event_time(struct perf_event *event)
268 struct perf_cgroup_info *t;
270 t = per_cpu_ptr(event->cgrp->info, event->cpu);
271 return t->time;
274 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
276 struct perf_cgroup_info *info;
277 u64 now;
279 now = perf_clock();
281 info = this_cpu_ptr(cgrp->info);
283 info->time += now - info->timestamp;
284 info->timestamp = now;
287 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
289 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
290 if (cgrp_out)
291 __update_cgrp_time(cgrp_out);
294 static inline void update_cgrp_time_from_event(struct perf_event *event)
296 struct perf_cgroup *cgrp;
299 * ensure we access cgroup data only when needed and
300 * when we know the cgroup is pinned (css_get)
302 if (!is_cgroup_event(event))
303 return;
305 cgrp = perf_cgroup_from_task(current);
307 * Do not update time when cgroup is not active
309 if (cgrp == event->cgrp)
310 __update_cgrp_time(event->cgrp);
313 static inline void
314 perf_cgroup_set_timestamp(struct task_struct *task,
315 struct perf_event_context *ctx)
317 struct perf_cgroup *cgrp;
318 struct perf_cgroup_info *info;
321 * ctx->lock held by caller
322 * ensure we do not access cgroup data
323 * unless we have the cgroup pinned (css_get)
325 if (!task || !ctx->nr_cgroups)
326 return;
328 cgrp = perf_cgroup_from_task(task);
329 info = this_cpu_ptr(cgrp->info);
330 info->timestamp = ctx->timestamp;
333 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
334 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
337 * reschedule events based on the cgroup constraint of task.
339 * mode SWOUT : schedule out everything
340 * mode SWIN : schedule in based on cgroup for next
342 void perf_cgroup_switch(struct task_struct *task, int mode)
344 struct perf_cpu_context *cpuctx;
345 struct pmu *pmu;
346 unsigned long flags;
349 * disable interrupts to avoid geting nr_cgroup
350 * changes via __perf_event_disable(). Also
351 * avoids preemption.
353 local_irq_save(flags);
356 * we reschedule only in the presence of cgroup
357 * constrained events.
359 rcu_read_lock();
361 list_for_each_entry_rcu(pmu, &pmus, entry) {
362 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
365 * perf_cgroup_events says at least one
366 * context on this CPU has cgroup events.
368 * ctx->nr_cgroups reports the number of cgroup
369 * events for a context.
371 if (cpuctx->ctx.nr_cgroups > 0) {
372 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
373 perf_pmu_disable(cpuctx->ctx.pmu);
375 if (mode & PERF_CGROUP_SWOUT) {
376 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
378 * must not be done before ctxswout due
379 * to event_filter_match() in event_sched_out()
381 cpuctx->cgrp = NULL;
384 if (mode & PERF_CGROUP_SWIN) {
385 WARN_ON_ONCE(cpuctx->cgrp);
386 /* set cgrp before ctxsw in to
387 * allow event_filter_match() to not
388 * have to pass task around
390 cpuctx->cgrp = perf_cgroup_from_task(task);
391 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
393 perf_pmu_enable(cpuctx->ctx.pmu);
394 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
398 rcu_read_unlock();
400 local_irq_restore(flags);
403 static inline void perf_cgroup_sched_out(struct task_struct *task,
404 struct task_struct *next)
406 struct perf_cgroup *cgrp1;
407 struct perf_cgroup *cgrp2 = NULL;
410 * we come here when we know perf_cgroup_events > 0
412 cgrp1 = perf_cgroup_from_task(task);
415 * next is NULL when called from perf_event_enable_on_exec()
416 * that will systematically cause a cgroup_switch()
418 if (next)
419 cgrp2 = perf_cgroup_from_task(next);
422 * only schedule out current cgroup events if we know
423 * that we are switching to a different cgroup. Otherwise,
424 * do no touch the cgroup events.
426 if (cgrp1 != cgrp2)
427 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
430 static inline void perf_cgroup_sched_in(struct task_struct *prev,
431 struct task_struct *task)
433 struct perf_cgroup *cgrp1;
434 struct perf_cgroup *cgrp2 = NULL;
437 * we come here when we know perf_cgroup_events > 0
439 cgrp1 = perf_cgroup_from_task(task);
441 /* prev can never be NULL */
442 cgrp2 = perf_cgroup_from_task(prev);
445 * only need to schedule in cgroup events if we are changing
446 * cgroup during ctxsw. Cgroup events were not scheduled
447 * out of ctxsw out if that was not the case.
449 if (cgrp1 != cgrp2)
450 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
453 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
454 struct perf_event_attr *attr,
455 struct perf_event *group_leader)
457 struct perf_cgroup *cgrp;
458 struct cgroup_subsys_state *css;
459 struct file *file;
460 int ret = 0, fput_needed;
462 file = fget_light(fd, &fput_needed);
463 if (!file)
464 return -EBADF;
466 css = cgroup_css_from_dir(file, perf_subsys_id);
467 if (IS_ERR(css)) {
468 ret = PTR_ERR(css);
469 goto out;
472 cgrp = container_of(css, struct perf_cgroup, css);
473 event->cgrp = cgrp;
475 /* must be done before we fput() the file */
476 perf_get_cgroup(event);
479 * all events in a group must monitor
480 * the same cgroup because a task belongs
481 * to only one perf cgroup at a time
483 if (group_leader && group_leader->cgrp != cgrp) {
484 perf_detach_cgroup(event);
485 ret = -EINVAL;
487 out:
488 fput_light(file, fput_needed);
489 return ret;
492 static inline void
493 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
495 struct perf_cgroup_info *t;
496 t = per_cpu_ptr(event->cgrp->info, event->cpu);
497 event->shadow_ctx_time = now - t->timestamp;
500 static inline void
501 perf_cgroup_defer_enabled(struct perf_event *event)
504 * when the current task's perf cgroup does not match
505 * the event's, we need to remember to call the
506 * perf_mark_enable() function the first time a task with
507 * a matching perf cgroup is scheduled in.
509 if (is_cgroup_event(event) && !perf_cgroup_match(event))
510 event->cgrp_defer_enabled = 1;
513 static inline void
514 perf_cgroup_mark_enabled(struct perf_event *event,
515 struct perf_event_context *ctx)
517 struct perf_event *sub;
518 u64 tstamp = perf_event_time(event);
520 if (!event->cgrp_defer_enabled)
521 return;
523 event->cgrp_defer_enabled = 0;
525 event->tstamp_enabled = tstamp - event->total_time_enabled;
526 list_for_each_entry(sub, &event->sibling_list, group_entry) {
527 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
528 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
529 sub->cgrp_defer_enabled = 0;
533 #else /* !CONFIG_CGROUP_PERF */
535 static inline bool
536 perf_cgroup_match(struct perf_event *event)
538 return true;
541 static inline void perf_detach_cgroup(struct perf_event *event)
544 static inline int is_cgroup_event(struct perf_event *event)
546 return 0;
549 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
551 return 0;
554 static inline void update_cgrp_time_from_event(struct perf_event *event)
558 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
562 static inline void perf_cgroup_sched_out(struct task_struct *task,
563 struct task_struct *next)
567 static inline void perf_cgroup_sched_in(struct task_struct *prev,
568 struct task_struct *task)
572 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
573 struct perf_event_attr *attr,
574 struct perf_event *group_leader)
576 return -EINVAL;
579 static inline void
580 perf_cgroup_set_timestamp(struct task_struct *task,
581 struct perf_event_context *ctx)
585 void
586 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
590 static inline void
591 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
595 static inline u64 perf_cgroup_event_time(struct perf_event *event)
597 return 0;
600 static inline void
601 perf_cgroup_defer_enabled(struct perf_event *event)
605 static inline void
606 perf_cgroup_mark_enabled(struct perf_event *event,
607 struct perf_event_context *ctx)
610 #endif
612 void perf_pmu_disable(struct pmu *pmu)
614 int *count = this_cpu_ptr(pmu->pmu_disable_count);
615 if (!(*count)++)
616 pmu->pmu_disable(pmu);
619 void perf_pmu_enable(struct pmu *pmu)
621 int *count = this_cpu_ptr(pmu->pmu_disable_count);
622 if (!--(*count))
623 pmu->pmu_enable(pmu);
626 static DEFINE_PER_CPU(struct list_head, rotation_list);
629 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
630 * because they're strictly cpu affine and rotate_start is called with IRQs
631 * disabled, while rotate_context is called from IRQ context.
633 static void perf_pmu_rotate_start(struct pmu *pmu)
635 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
636 struct list_head *head = &__get_cpu_var(rotation_list);
638 WARN_ON(!irqs_disabled());
640 if (list_empty(&cpuctx->rotation_list))
641 list_add(&cpuctx->rotation_list, head);
644 static void get_ctx(struct perf_event_context *ctx)
646 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
649 static void put_ctx(struct perf_event_context *ctx)
651 if (atomic_dec_and_test(&ctx->refcount)) {
652 if (ctx->parent_ctx)
653 put_ctx(ctx->parent_ctx);
654 if (ctx->task)
655 put_task_struct(ctx->task);
656 kfree_rcu(ctx, rcu_head);
660 static void unclone_ctx(struct perf_event_context *ctx)
662 if (ctx->parent_ctx) {
663 put_ctx(ctx->parent_ctx);
664 ctx->parent_ctx = NULL;
668 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
671 * only top level events have the pid namespace they were created in
673 if (event->parent)
674 event = event->parent;
676 return task_tgid_nr_ns(p, event->ns);
679 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
682 * only top level events have the pid namespace they were created in
684 if (event->parent)
685 event = event->parent;
687 return task_pid_nr_ns(p, event->ns);
691 * If we inherit events we want to return the parent event id
692 * to userspace.
694 static u64 primary_event_id(struct perf_event *event)
696 u64 id = event->id;
698 if (event->parent)
699 id = event->parent->id;
701 return id;
705 * Get the perf_event_context for a task and lock it.
706 * This has to cope with with the fact that until it is locked,
707 * the context could get moved to another task.
709 static struct perf_event_context *
710 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
712 struct perf_event_context *ctx;
714 rcu_read_lock();
715 retry:
716 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
717 if (ctx) {
719 * If this context is a clone of another, it might
720 * get swapped for another underneath us by
721 * perf_event_task_sched_out, though the
722 * rcu_read_lock() protects us from any context
723 * getting freed. Lock the context and check if it
724 * got swapped before we could get the lock, and retry
725 * if so. If we locked the right context, then it
726 * can't get swapped on us any more.
728 raw_spin_lock_irqsave(&ctx->lock, *flags);
729 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
730 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
731 goto retry;
734 if (!atomic_inc_not_zero(&ctx->refcount)) {
735 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
736 ctx = NULL;
739 rcu_read_unlock();
740 return ctx;
744 * Get the context for a task and increment its pin_count so it
745 * can't get swapped to another task. This also increments its
746 * reference count so that the context can't get freed.
748 static struct perf_event_context *
749 perf_pin_task_context(struct task_struct *task, int ctxn)
751 struct perf_event_context *ctx;
752 unsigned long flags;
754 ctx = perf_lock_task_context(task, ctxn, &flags);
755 if (ctx) {
756 ++ctx->pin_count;
757 raw_spin_unlock_irqrestore(&ctx->lock, flags);
759 return ctx;
762 static void perf_unpin_context(struct perf_event_context *ctx)
764 unsigned long flags;
766 raw_spin_lock_irqsave(&ctx->lock, flags);
767 --ctx->pin_count;
768 raw_spin_unlock_irqrestore(&ctx->lock, flags);
772 * Update the record of the current time in a context.
774 static void update_context_time(struct perf_event_context *ctx)
776 u64 now = perf_clock();
778 ctx->time += now - ctx->timestamp;
779 ctx->timestamp = now;
782 static u64 perf_event_time(struct perf_event *event)
784 struct perf_event_context *ctx = event->ctx;
786 if (is_cgroup_event(event))
787 return perf_cgroup_event_time(event);
789 return ctx ? ctx->time : 0;
793 * Update the total_time_enabled and total_time_running fields for a event.
794 * The caller of this function needs to hold the ctx->lock.
796 static void update_event_times(struct perf_event *event)
798 struct perf_event_context *ctx = event->ctx;
799 u64 run_end;
801 if (event->state < PERF_EVENT_STATE_INACTIVE ||
802 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
803 return;
805 * in cgroup mode, time_enabled represents
806 * the time the event was enabled AND active
807 * tasks were in the monitored cgroup. This is
808 * independent of the activity of the context as
809 * there may be a mix of cgroup and non-cgroup events.
811 * That is why we treat cgroup events differently
812 * here.
814 if (is_cgroup_event(event))
815 run_end = perf_event_time(event);
816 else if (ctx->is_active)
817 run_end = ctx->time;
818 else
819 run_end = event->tstamp_stopped;
821 event->total_time_enabled = run_end - event->tstamp_enabled;
823 if (event->state == PERF_EVENT_STATE_INACTIVE)
824 run_end = event->tstamp_stopped;
825 else
826 run_end = perf_event_time(event);
828 event->total_time_running = run_end - event->tstamp_running;
833 * Update total_time_enabled and total_time_running for all events in a group.
835 static void update_group_times(struct perf_event *leader)
837 struct perf_event *event;
839 update_event_times(leader);
840 list_for_each_entry(event, &leader->sibling_list, group_entry)
841 update_event_times(event);
844 static struct list_head *
845 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
847 if (event->attr.pinned)
848 return &ctx->pinned_groups;
849 else
850 return &ctx->flexible_groups;
854 * Add a event from the lists for its context.
855 * Must be called with ctx->mutex and ctx->lock held.
857 static void
858 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
860 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
861 event->attach_state |= PERF_ATTACH_CONTEXT;
864 * If we're a stand alone event or group leader, we go to the context
865 * list, group events are kept attached to the group so that
866 * perf_group_detach can, at all times, locate all siblings.
868 if (event->group_leader == event) {
869 struct list_head *list;
871 if (is_software_event(event))
872 event->group_flags |= PERF_GROUP_SOFTWARE;
874 list = ctx_group_list(event, ctx);
875 list_add_tail(&event->group_entry, list);
878 if (is_cgroup_event(event))
879 ctx->nr_cgroups++;
881 list_add_rcu(&event->event_entry, &ctx->event_list);
882 if (!ctx->nr_events)
883 perf_pmu_rotate_start(ctx->pmu);
884 ctx->nr_events++;
885 if (event->attr.inherit_stat)
886 ctx->nr_stat++;
890 * Called at perf_event creation and when events are attached/detached from a
891 * group.
893 static void perf_event__read_size(struct perf_event *event)
895 int entry = sizeof(u64); /* value */
896 int size = 0;
897 int nr = 1;
899 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
900 size += sizeof(u64);
902 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
903 size += sizeof(u64);
905 if (event->attr.read_format & PERF_FORMAT_ID)
906 entry += sizeof(u64);
908 if (event->attr.read_format & PERF_FORMAT_GROUP) {
909 nr += event->group_leader->nr_siblings;
910 size += sizeof(u64);
913 size += entry * nr;
914 event->read_size = size;
917 static void perf_event__header_size(struct perf_event *event)
919 struct perf_sample_data *data;
920 u64 sample_type = event->attr.sample_type;
921 u16 size = 0;
923 perf_event__read_size(event);
925 if (sample_type & PERF_SAMPLE_IP)
926 size += sizeof(data->ip);
928 if (sample_type & PERF_SAMPLE_ADDR)
929 size += sizeof(data->addr);
931 if (sample_type & PERF_SAMPLE_PERIOD)
932 size += sizeof(data->period);
934 if (sample_type & PERF_SAMPLE_READ)
935 size += event->read_size;
937 event->header_size = size;
940 static void perf_event__id_header_size(struct perf_event *event)
942 struct perf_sample_data *data;
943 u64 sample_type = event->attr.sample_type;
944 u16 size = 0;
946 if (sample_type & PERF_SAMPLE_TID)
947 size += sizeof(data->tid_entry);
949 if (sample_type & PERF_SAMPLE_TIME)
950 size += sizeof(data->time);
952 if (sample_type & PERF_SAMPLE_ID)
953 size += sizeof(data->id);
955 if (sample_type & PERF_SAMPLE_STREAM_ID)
956 size += sizeof(data->stream_id);
958 if (sample_type & PERF_SAMPLE_CPU)
959 size += sizeof(data->cpu_entry);
961 event->id_header_size = size;
964 static void perf_group_attach(struct perf_event *event)
966 struct perf_event *group_leader = event->group_leader, *pos;
969 * We can have double attach due to group movement in perf_event_open.
971 if (event->attach_state & PERF_ATTACH_GROUP)
972 return;
974 event->attach_state |= PERF_ATTACH_GROUP;
976 if (group_leader == event)
977 return;
979 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
980 !is_software_event(event))
981 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
983 list_add_tail(&event->group_entry, &group_leader->sibling_list);
984 group_leader->nr_siblings++;
986 perf_event__header_size(group_leader);
988 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
989 perf_event__header_size(pos);
993 * Remove a event from the lists for its context.
994 * Must be called with ctx->mutex and ctx->lock held.
996 static void
997 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
999 struct perf_cpu_context *cpuctx;
1001 * We can have double detach due to exit/hot-unplug + close.
1003 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1004 return;
1006 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1008 if (is_cgroup_event(event)) {
1009 ctx->nr_cgroups--;
1010 cpuctx = __get_cpu_context(ctx);
1012 * if there are no more cgroup events
1013 * then cler cgrp to avoid stale pointer
1014 * in update_cgrp_time_from_cpuctx()
1016 if (!ctx->nr_cgroups)
1017 cpuctx->cgrp = NULL;
1020 ctx->nr_events--;
1021 if (event->attr.inherit_stat)
1022 ctx->nr_stat--;
1024 list_del_rcu(&event->event_entry);
1026 if (event->group_leader == event)
1027 list_del_init(&event->group_entry);
1029 update_group_times(event);
1032 * If event was in error state, then keep it
1033 * that way, otherwise bogus counts will be
1034 * returned on read(). The only way to get out
1035 * of error state is by explicit re-enabling
1036 * of the event
1038 if (event->state > PERF_EVENT_STATE_OFF)
1039 event->state = PERF_EVENT_STATE_OFF;
1042 static void perf_group_detach(struct perf_event *event)
1044 struct perf_event *sibling, *tmp;
1045 struct list_head *list = NULL;
1048 * We can have double detach due to exit/hot-unplug + close.
1050 if (!(event->attach_state & PERF_ATTACH_GROUP))
1051 return;
1053 event->attach_state &= ~PERF_ATTACH_GROUP;
1056 * If this is a sibling, remove it from its group.
1058 if (event->group_leader != event) {
1059 list_del_init(&event->group_entry);
1060 event->group_leader->nr_siblings--;
1061 goto out;
1064 if (!list_empty(&event->group_entry))
1065 list = &event->group_entry;
1068 * If this was a group event with sibling events then
1069 * upgrade the siblings to singleton events by adding them
1070 * to whatever list we are on.
1072 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1073 if (list)
1074 list_move_tail(&sibling->group_entry, list);
1075 sibling->group_leader = sibling;
1077 /* Inherit group flags from the previous leader */
1078 sibling->group_flags = event->group_flags;
1081 out:
1082 perf_event__header_size(event->group_leader);
1084 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1085 perf_event__header_size(tmp);
1088 static inline int
1089 event_filter_match(struct perf_event *event)
1091 return (event->cpu == -1 || event->cpu == smp_processor_id())
1092 && perf_cgroup_match(event);
1095 static void
1096 event_sched_out(struct perf_event *event,
1097 struct perf_cpu_context *cpuctx,
1098 struct perf_event_context *ctx)
1100 u64 tstamp = perf_event_time(event);
1101 u64 delta;
1103 * An event which could not be activated because of
1104 * filter mismatch still needs to have its timings
1105 * maintained, otherwise bogus information is return
1106 * via read() for time_enabled, time_running:
1108 if (event->state == PERF_EVENT_STATE_INACTIVE
1109 && !event_filter_match(event)) {
1110 delta = tstamp - event->tstamp_stopped;
1111 event->tstamp_running += delta;
1112 event->tstamp_stopped = tstamp;
1115 if (event->state != PERF_EVENT_STATE_ACTIVE)
1116 return;
1118 event->state = PERF_EVENT_STATE_INACTIVE;
1119 if (event->pending_disable) {
1120 event->pending_disable = 0;
1121 event->state = PERF_EVENT_STATE_OFF;
1123 event->tstamp_stopped = tstamp;
1124 event->pmu->del(event, 0);
1125 event->oncpu = -1;
1127 if (!is_software_event(event))
1128 cpuctx->active_oncpu--;
1129 ctx->nr_active--;
1130 if (event->attr.exclusive || !cpuctx->active_oncpu)
1131 cpuctx->exclusive = 0;
1134 static void
1135 group_sched_out(struct perf_event *group_event,
1136 struct perf_cpu_context *cpuctx,
1137 struct perf_event_context *ctx)
1139 struct perf_event *event;
1140 int state = group_event->state;
1142 event_sched_out(group_event, cpuctx, ctx);
1145 * Schedule out siblings (if any):
1147 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1148 event_sched_out(event, cpuctx, ctx);
1150 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1151 cpuctx->exclusive = 0;
1155 * Cross CPU call to remove a performance event
1157 * We disable the event on the hardware level first. After that we
1158 * remove it from the context list.
1160 static int __perf_remove_from_context(void *info)
1162 struct perf_event *event = info;
1163 struct perf_event_context *ctx = event->ctx;
1164 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1166 raw_spin_lock(&ctx->lock);
1167 event_sched_out(event, cpuctx, ctx);
1168 list_del_event(event, ctx);
1169 if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1170 ctx->is_active = 0;
1171 cpuctx->task_ctx = NULL;
1173 raw_spin_unlock(&ctx->lock);
1175 return 0;
1180 * Remove the event from a task's (or a CPU's) list of events.
1182 * CPU events are removed with a smp call. For task events we only
1183 * call when the task is on a CPU.
1185 * If event->ctx is a cloned context, callers must make sure that
1186 * every task struct that event->ctx->task could possibly point to
1187 * remains valid. This is OK when called from perf_release since
1188 * that only calls us on the top-level context, which can't be a clone.
1189 * When called from perf_event_exit_task, it's OK because the
1190 * context has been detached from its task.
1192 static void perf_remove_from_context(struct perf_event *event)
1194 struct perf_event_context *ctx = event->ctx;
1195 struct task_struct *task = ctx->task;
1197 lockdep_assert_held(&ctx->mutex);
1199 if (!task) {
1201 * Per cpu events are removed via an smp call and
1202 * the removal is always successful.
1204 cpu_function_call(event->cpu, __perf_remove_from_context, event);
1205 return;
1208 retry:
1209 if (!task_function_call(task, __perf_remove_from_context, event))
1210 return;
1212 raw_spin_lock_irq(&ctx->lock);
1214 * If we failed to find a running task, but find the context active now
1215 * that we've acquired the ctx->lock, retry.
1217 if (ctx->is_active) {
1218 raw_spin_unlock_irq(&ctx->lock);
1219 goto retry;
1223 * Since the task isn't running, its safe to remove the event, us
1224 * holding the ctx->lock ensures the task won't get scheduled in.
1226 list_del_event(event, ctx);
1227 raw_spin_unlock_irq(&ctx->lock);
1231 * Cross CPU call to disable a performance event
1233 static int __perf_event_disable(void *info)
1235 struct perf_event *event = info;
1236 struct perf_event_context *ctx = event->ctx;
1237 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1240 * If this is a per-task event, need to check whether this
1241 * event's task is the current task on this cpu.
1243 * Can trigger due to concurrent perf_event_context_sched_out()
1244 * flipping contexts around.
1246 if (ctx->task && cpuctx->task_ctx != ctx)
1247 return -EINVAL;
1249 raw_spin_lock(&ctx->lock);
1252 * If the event is on, turn it off.
1253 * If it is in error state, leave it in error state.
1255 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1256 update_context_time(ctx);
1257 update_cgrp_time_from_event(event);
1258 update_group_times(event);
1259 if (event == event->group_leader)
1260 group_sched_out(event, cpuctx, ctx);
1261 else
1262 event_sched_out(event, cpuctx, ctx);
1263 event->state = PERF_EVENT_STATE_OFF;
1266 raw_spin_unlock(&ctx->lock);
1268 return 0;
1272 * Disable a event.
1274 * If event->ctx is a cloned context, callers must make sure that
1275 * every task struct that event->ctx->task could possibly point to
1276 * remains valid. This condition is satisifed when called through
1277 * perf_event_for_each_child or perf_event_for_each because they
1278 * hold the top-level event's child_mutex, so any descendant that
1279 * goes to exit will block in sync_child_event.
1280 * When called from perf_pending_event it's OK because event->ctx
1281 * is the current context on this CPU and preemption is disabled,
1282 * hence we can't get into perf_event_task_sched_out for this context.
1284 void perf_event_disable(struct perf_event *event)
1286 struct perf_event_context *ctx = event->ctx;
1287 struct task_struct *task = ctx->task;
1289 if (!task) {
1291 * Disable the event on the cpu that it's on
1293 cpu_function_call(event->cpu, __perf_event_disable, event);
1294 return;
1297 retry:
1298 if (!task_function_call(task, __perf_event_disable, event))
1299 return;
1301 raw_spin_lock_irq(&ctx->lock);
1303 * If the event is still active, we need to retry the cross-call.
1305 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1306 raw_spin_unlock_irq(&ctx->lock);
1308 * Reload the task pointer, it might have been changed by
1309 * a concurrent perf_event_context_sched_out().
1311 task = ctx->task;
1312 goto retry;
1316 * Since we have the lock this context can't be scheduled
1317 * in, so we can change the state safely.
1319 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1320 update_group_times(event);
1321 event->state = PERF_EVENT_STATE_OFF;
1323 raw_spin_unlock_irq(&ctx->lock);
1326 static void perf_set_shadow_time(struct perf_event *event,
1327 struct perf_event_context *ctx,
1328 u64 tstamp)
1331 * use the correct time source for the time snapshot
1333 * We could get by without this by leveraging the
1334 * fact that to get to this function, the caller
1335 * has most likely already called update_context_time()
1336 * and update_cgrp_time_xx() and thus both timestamp
1337 * are identical (or very close). Given that tstamp is,
1338 * already adjusted for cgroup, we could say that:
1339 * tstamp - ctx->timestamp
1340 * is equivalent to
1341 * tstamp - cgrp->timestamp.
1343 * Then, in perf_output_read(), the calculation would
1344 * work with no changes because:
1345 * - event is guaranteed scheduled in
1346 * - no scheduled out in between
1347 * - thus the timestamp would be the same
1349 * But this is a bit hairy.
1351 * So instead, we have an explicit cgroup call to remain
1352 * within the time time source all along. We believe it
1353 * is cleaner and simpler to understand.
1355 if (is_cgroup_event(event))
1356 perf_cgroup_set_shadow_time(event, tstamp);
1357 else
1358 event->shadow_ctx_time = tstamp - ctx->timestamp;
1361 #define MAX_INTERRUPTS (~0ULL)
1363 static void perf_log_throttle(struct perf_event *event, int enable);
1365 static int
1366 event_sched_in(struct perf_event *event,
1367 struct perf_cpu_context *cpuctx,
1368 struct perf_event_context *ctx)
1370 u64 tstamp = perf_event_time(event);
1372 if (event->state <= PERF_EVENT_STATE_OFF)
1373 return 0;
1375 event->state = PERF_EVENT_STATE_ACTIVE;
1376 event->oncpu = smp_processor_id();
1379 * Unthrottle events, since we scheduled we might have missed several
1380 * ticks already, also for a heavily scheduling task there is little
1381 * guarantee it'll get a tick in a timely manner.
1383 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1384 perf_log_throttle(event, 1);
1385 event->hw.interrupts = 0;
1389 * The new state must be visible before we turn it on in the hardware:
1391 smp_wmb();
1393 if (event->pmu->add(event, PERF_EF_START)) {
1394 event->state = PERF_EVENT_STATE_INACTIVE;
1395 event->oncpu = -1;
1396 return -EAGAIN;
1399 event->tstamp_running += tstamp - event->tstamp_stopped;
1401 perf_set_shadow_time(event, ctx, tstamp);
1403 if (!is_software_event(event))
1404 cpuctx->active_oncpu++;
1405 ctx->nr_active++;
1407 if (event->attr.exclusive)
1408 cpuctx->exclusive = 1;
1410 return 0;
1413 static int
1414 group_sched_in(struct perf_event *group_event,
1415 struct perf_cpu_context *cpuctx,
1416 struct perf_event_context *ctx)
1418 struct perf_event *event, *partial_group = NULL;
1419 struct pmu *pmu = group_event->pmu;
1420 u64 now = ctx->time;
1421 bool simulate = false;
1423 if (group_event->state == PERF_EVENT_STATE_OFF)
1424 return 0;
1426 pmu->start_txn(pmu);
1428 if (event_sched_in(group_event, cpuctx, ctx)) {
1429 pmu->cancel_txn(pmu);
1430 return -EAGAIN;
1434 * Schedule in siblings as one group (if any):
1436 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1437 if (event_sched_in(event, cpuctx, ctx)) {
1438 partial_group = event;
1439 goto group_error;
1443 if (!pmu->commit_txn(pmu))
1444 return 0;
1446 group_error:
1448 * Groups can be scheduled in as one unit only, so undo any
1449 * partial group before returning:
1450 * The events up to the failed event are scheduled out normally,
1451 * tstamp_stopped will be updated.
1453 * The failed events and the remaining siblings need to have
1454 * their timings updated as if they had gone thru event_sched_in()
1455 * and event_sched_out(). This is required to get consistent timings
1456 * across the group. This also takes care of the case where the group
1457 * could never be scheduled by ensuring tstamp_stopped is set to mark
1458 * the time the event was actually stopped, such that time delta
1459 * calculation in update_event_times() is correct.
1461 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1462 if (event == partial_group)
1463 simulate = true;
1465 if (simulate) {
1466 event->tstamp_running += now - event->tstamp_stopped;
1467 event->tstamp_stopped = now;
1468 } else {
1469 event_sched_out(event, cpuctx, ctx);
1472 event_sched_out(group_event, cpuctx, ctx);
1474 pmu->cancel_txn(pmu);
1476 return -EAGAIN;
1480 * Work out whether we can put this event group on the CPU now.
1482 static int group_can_go_on(struct perf_event *event,
1483 struct perf_cpu_context *cpuctx,
1484 int can_add_hw)
1487 * Groups consisting entirely of software events can always go on.
1489 if (event->group_flags & PERF_GROUP_SOFTWARE)
1490 return 1;
1492 * If an exclusive group is already on, no other hardware
1493 * events can go on.
1495 if (cpuctx->exclusive)
1496 return 0;
1498 * If this group is exclusive and there are already
1499 * events on the CPU, it can't go on.
1501 if (event->attr.exclusive && cpuctx->active_oncpu)
1502 return 0;
1504 * Otherwise, try to add it if all previous groups were able
1505 * to go on.
1507 return can_add_hw;
1510 static void add_event_to_ctx(struct perf_event *event,
1511 struct perf_event_context *ctx)
1513 u64 tstamp = perf_event_time(event);
1515 list_add_event(event, ctx);
1516 perf_group_attach(event);
1517 event->tstamp_enabled = tstamp;
1518 event->tstamp_running = tstamp;
1519 event->tstamp_stopped = tstamp;
1522 static void task_ctx_sched_out(struct perf_event_context *ctx);
1523 static void
1524 ctx_sched_in(struct perf_event_context *ctx,
1525 struct perf_cpu_context *cpuctx,
1526 enum event_type_t event_type,
1527 struct task_struct *task);
1529 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
1530 struct perf_event_context *ctx,
1531 struct task_struct *task)
1533 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
1534 if (ctx)
1535 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
1536 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
1537 if (ctx)
1538 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
1542 * Cross CPU call to install and enable a performance event
1544 * Must be called with ctx->mutex held
1546 static int __perf_install_in_context(void *info)
1548 struct perf_event *event = info;
1549 struct perf_event_context *ctx = event->ctx;
1550 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1551 struct perf_event_context *task_ctx = cpuctx->task_ctx;
1552 struct task_struct *task = current;
1554 perf_ctx_lock(cpuctx, task_ctx);
1555 perf_pmu_disable(cpuctx->ctx.pmu);
1558 * If there was an active task_ctx schedule it out.
1560 if (task_ctx)
1561 task_ctx_sched_out(task_ctx);
1564 * If the context we're installing events in is not the
1565 * active task_ctx, flip them.
1567 if (ctx->task && task_ctx != ctx) {
1568 if (task_ctx)
1569 raw_spin_unlock(&task_ctx->lock);
1570 raw_spin_lock(&ctx->lock);
1571 task_ctx = ctx;
1574 if (task_ctx) {
1575 cpuctx->task_ctx = task_ctx;
1576 task = task_ctx->task;
1579 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
1581 update_context_time(ctx);
1583 * update cgrp time only if current cgrp
1584 * matches event->cgrp. Must be done before
1585 * calling add_event_to_ctx()
1587 update_cgrp_time_from_event(event);
1589 add_event_to_ctx(event, ctx);
1592 * Schedule everything back in
1594 perf_event_sched_in(cpuctx, task_ctx, task);
1596 perf_pmu_enable(cpuctx->ctx.pmu);
1597 perf_ctx_unlock(cpuctx, task_ctx);
1599 return 0;
1603 * Attach a performance event to a context
1605 * First we add the event to the list with the hardware enable bit
1606 * in event->hw_config cleared.
1608 * If the event is attached to a task which is on a CPU we use a smp
1609 * call to enable it in the task context. The task might have been
1610 * scheduled away, but we check this in the smp call again.
1612 static void
1613 perf_install_in_context(struct perf_event_context *ctx,
1614 struct perf_event *event,
1615 int cpu)
1617 struct task_struct *task = ctx->task;
1619 lockdep_assert_held(&ctx->mutex);
1621 event->ctx = ctx;
1623 if (!task) {
1625 * Per cpu events are installed via an smp call and
1626 * the install is always successful.
1628 cpu_function_call(cpu, __perf_install_in_context, event);
1629 return;
1632 retry:
1633 if (!task_function_call(task, __perf_install_in_context, event))
1634 return;
1636 raw_spin_lock_irq(&ctx->lock);
1638 * If we failed to find a running task, but find the context active now
1639 * that we've acquired the ctx->lock, retry.
1641 if (ctx->is_active) {
1642 raw_spin_unlock_irq(&ctx->lock);
1643 goto retry;
1647 * Since the task isn't running, its safe to add the event, us holding
1648 * the ctx->lock ensures the task won't get scheduled in.
1650 add_event_to_ctx(event, ctx);
1651 raw_spin_unlock_irq(&ctx->lock);
1655 * Put a event into inactive state and update time fields.
1656 * Enabling the leader of a group effectively enables all
1657 * the group members that aren't explicitly disabled, so we
1658 * have to update their ->tstamp_enabled also.
1659 * Note: this works for group members as well as group leaders
1660 * since the non-leader members' sibling_lists will be empty.
1662 static void __perf_event_mark_enabled(struct perf_event *event,
1663 struct perf_event_context *ctx)
1665 struct perf_event *sub;
1666 u64 tstamp = perf_event_time(event);
1668 event->state = PERF_EVENT_STATE_INACTIVE;
1669 event->tstamp_enabled = tstamp - event->total_time_enabled;
1670 list_for_each_entry(sub, &event->sibling_list, group_entry) {
1671 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
1672 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
1677 * Cross CPU call to enable a performance event
1679 static int __perf_event_enable(void *info)
1681 struct perf_event *event = info;
1682 struct perf_event_context *ctx = event->ctx;
1683 struct perf_event *leader = event->group_leader;
1684 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1685 int err;
1687 if (WARN_ON_ONCE(!ctx->is_active))
1688 return -EINVAL;
1690 raw_spin_lock(&ctx->lock);
1691 update_context_time(ctx);
1693 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1694 goto unlock;
1697 * set current task's cgroup time reference point
1699 perf_cgroup_set_timestamp(current, ctx);
1701 __perf_event_mark_enabled(event, ctx);
1703 if (!event_filter_match(event)) {
1704 if (is_cgroup_event(event))
1705 perf_cgroup_defer_enabled(event);
1706 goto unlock;
1710 * If the event is in a group and isn't the group leader,
1711 * then don't put it on unless the group is on.
1713 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
1714 goto unlock;
1716 if (!group_can_go_on(event, cpuctx, 1)) {
1717 err = -EEXIST;
1718 } else {
1719 if (event == leader)
1720 err = group_sched_in(event, cpuctx, ctx);
1721 else
1722 err = event_sched_in(event, cpuctx, ctx);
1725 if (err) {
1727 * If this event can't go on and it's part of a
1728 * group, then the whole group has to come off.
1730 if (leader != event)
1731 group_sched_out(leader, cpuctx, ctx);
1732 if (leader->attr.pinned) {
1733 update_group_times(leader);
1734 leader->state = PERF_EVENT_STATE_ERROR;
1738 unlock:
1739 raw_spin_unlock(&ctx->lock);
1741 return 0;
1745 * Enable a event.
1747 * If event->ctx is a cloned context, callers must make sure that
1748 * every task struct that event->ctx->task could possibly point to
1749 * remains valid. This condition is satisfied when called through
1750 * perf_event_for_each_child or perf_event_for_each as described
1751 * for perf_event_disable.
1753 void perf_event_enable(struct perf_event *event)
1755 struct perf_event_context *ctx = event->ctx;
1756 struct task_struct *task = ctx->task;
1758 if (!task) {
1760 * Enable the event on the cpu that it's on
1762 cpu_function_call(event->cpu, __perf_event_enable, event);
1763 return;
1766 raw_spin_lock_irq(&ctx->lock);
1767 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1768 goto out;
1771 * If the event is in error state, clear that first.
1772 * That way, if we see the event in error state below, we
1773 * know that it has gone back into error state, as distinct
1774 * from the task having been scheduled away before the
1775 * cross-call arrived.
1777 if (event->state == PERF_EVENT_STATE_ERROR)
1778 event->state = PERF_EVENT_STATE_OFF;
1780 retry:
1781 if (!ctx->is_active) {
1782 __perf_event_mark_enabled(event, ctx);
1783 goto out;
1786 raw_spin_unlock_irq(&ctx->lock);
1788 if (!task_function_call(task, __perf_event_enable, event))
1789 return;
1791 raw_spin_lock_irq(&ctx->lock);
1794 * If the context is active and the event is still off,
1795 * we need to retry the cross-call.
1797 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
1799 * task could have been flipped by a concurrent
1800 * perf_event_context_sched_out()
1802 task = ctx->task;
1803 goto retry;
1806 out:
1807 raw_spin_unlock_irq(&ctx->lock);
1810 int perf_event_refresh(struct perf_event *event, int refresh)
1813 * not supported on inherited events
1815 if (event->attr.inherit || !is_sampling_event(event))
1816 return -EINVAL;
1818 atomic_add(refresh, &event->event_limit);
1819 perf_event_enable(event);
1821 return 0;
1823 EXPORT_SYMBOL_GPL(perf_event_refresh);
1825 static void ctx_sched_out(struct perf_event_context *ctx,
1826 struct perf_cpu_context *cpuctx,
1827 enum event_type_t event_type)
1829 struct perf_event *event;
1830 int is_active = ctx->is_active;
1832 ctx->is_active &= ~event_type;
1833 if (likely(!ctx->nr_events))
1834 return;
1836 update_context_time(ctx);
1837 update_cgrp_time_from_cpuctx(cpuctx);
1838 if (!ctx->nr_active)
1839 return;
1841 perf_pmu_disable(ctx->pmu);
1842 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
1843 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1844 group_sched_out(event, cpuctx, ctx);
1847 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
1848 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1849 group_sched_out(event, cpuctx, ctx);
1851 perf_pmu_enable(ctx->pmu);
1855 * Test whether two contexts are equivalent, i.e. whether they
1856 * have both been cloned from the same version of the same context
1857 * and they both have the same number of enabled events.
1858 * If the number of enabled events is the same, then the set
1859 * of enabled events should be the same, because these are both
1860 * inherited contexts, therefore we can't access individual events
1861 * in them directly with an fd; we can only enable/disable all
1862 * events via prctl, or enable/disable all events in a family
1863 * via ioctl, which will have the same effect on both contexts.
1865 static int context_equiv(struct perf_event_context *ctx1,
1866 struct perf_event_context *ctx2)
1868 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1869 && ctx1->parent_gen == ctx2->parent_gen
1870 && !ctx1->pin_count && !ctx2->pin_count;
1873 static void __perf_event_sync_stat(struct perf_event *event,
1874 struct perf_event *next_event)
1876 u64 value;
1878 if (!event->attr.inherit_stat)
1879 return;
1882 * Update the event value, we cannot use perf_event_read()
1883 * because we're in the middle of a context switch and have IRQs
1884 * disabled, which upsets smp_call_function_single(), however
1885 * we know the event must be on the current CPU, therefore we
1886 * don't need to use it.
1888 switch (event->state) {
1889 case PERF_EVENT_STATE_ACTIVE:
1890 event->pmu->read(event);
1891 /* fall-through */
1893 case PERF_EVENT_STATE_INACTIVE:
1894 update_event_times(event);
1895 break;
1897 default:
1898 break;
1902 * In order to keep per-task stats reliable we need to flip the event
1903 * values when we flip the contexts.
1905 value = local64_read(&next_event->count);
1906 value = local64_xchg(&event->count, value);
1907 local64_set(&next_event->count, value);
1909 swap(event->total_time_enabled, next_event->total_time_enabled);
1910 swap(event->total_time_running, next_event->total_time_running);
1913 * Since we swizzled the values, update the user visible data too.
1915 perf_event_update_userpage(event);
1916 perf_event_update_userpage(next_event);
1919 #define list_next_entry(pos, member) \
1920 list_entry(pos->member.next, typeof(*pos), member)
1922 static void perf_event_sync_stat(struct perf_event_context *ctx,
1923 struct perf_event_context *next_ctx)
1925 struct perf_event *event, *next_event;
1927 if (!ctx->nr_stat)
1928 return;
1930 update_context_time(ctx);
1932 event = list_first_entry(&ctx->event_list,
1933 struct perf_event, event_entry);
1935 next_event = list_first_entry(&next_ctx->event_list,
1936 struct perf_event, event_entry);
1938 while (&event->event_entry != &ctx->event_list &&
1939 &next_event->event_entry != &next_ctx->event_list) {
1941 __perf_event_sync_stat(event, next_event);
1943 event = list_next_entry(event, event_entry);
1944 next_event = list_next_entry(next_event, event_entry);
1948 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
1949 struct task_struct *next)
1951 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1952 struct perf_event_context *next_ctx;
1953 struct perf_event_context *parent;
1954 struct perf_cpu_context *cpuctx;
1955 int do_switch = 1;
1957 if (likely(!ctx))
1958 return;
1960 cpuctx = __get_cpu_context(ctx);
1961 if (!cpuctx->task_ctx)
1962 return;
1964 rcu_read_lock();
1965 parent = rcu_dereference(ctx->parent_ctx);
1966 next_ctx = next->perf_event_ctxp[ctxn];
1967 if (parent && next_ctx &&
1968 rcu_dereference(next_ctx->parent_ctx) == parent) {
1970 * Looks like the two contexts are clones, so we might be
1971 * able to optimize the context switch. We lock both
1972 * contexts and check that they are clones under the
1973 * lock (including re-checking that neither has been
1974 * uncloned in the meantime). It doesn't matter which
1975 * order we take the locks because no other cpu could
1976 * be trying to lock both of these tasks.
1978 raw_spin_lock(&ctx->lock);
1979 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1980 if (context_equiv(ctx, next_ctx)) {
1982 * XXX do we need a memory barrier of sorts
1983 * wrt to rcu_dereference() of perf_event_ctxp
1985 task->perf_event_ctxp[ctxn] = next_ctx;
1986 next->perf_event_ctxp[ctxn] = ctx;
1987 ctx->task = next;
1988 next_ctx->task = task;
1989 do_switch = 0;
1991 perf_event_sync_stat(ctx, next_ctx);
1993 raw_spin_unlock(&next_ctx->lock);
1994 raw_spin_unlock(&ctx->lock);
1996 rcu_read_unlock();
1998 if (do_switch) {
1999 raw_spin_lock(&ctx->lock);
2000 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2001 cpuctx->task_ctx = NULL;
2002 raw_spin_unlock(&ctx->lock);
2006 #define for_each_task_context_nr(ctxn) \
2007 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2010 * Called from scheduler to remove the events of the current task,
2011 * with interrupts disabled.
2013 * We stop each event and update the event value in event->count.
2015 * This does not protect us against NMI, but disable()
2016 * sets the disabled bit in the control field of event _before_
2017 * accessing the event control register. If a NMI hits, then it will
2018 * not restart the event.
2020 void __perf_event_task_sched_out(struct task_struct *task,
2021 struct task_struct *next)
2023 int ctxn;
2025 for_each_task_context_nr(ctxn)
2026 perf_event_context_sched_out(task, ctxn, next);
2029 * if cgroup events exist on this CPU, then we need
2030 * to check if we have to switch out PMU state.
2031 * cgroup event are system-wide mode only
2033 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2034 perf_cgroup_sched_out(task, next);
2037 static void task_ctx_sched_out(struct perf_event_context *ctx)
2039 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2041 if (!cpuctx->task_ctx)
2042 return;
2044 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2045 return;
2047 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2048 cpuctx->task_ctx = NULL;
2052 * Called with IRQs disabled
2054 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2055 enum event_type_t event_type)
2057 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2060 static void
2061 ctx_pinned_sched_in(struct perf_event_context *ctx,
2062 struct perf_cpu_context *cpuctx)
2064 struct perf_event *event;
2066 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2067 if (event->state <= PERF_EVENT_STATE_OFF)
2068 continue;
2069 if (!event_filter_match(event))
2070 continue;
2072 /* may need to reset tstamp_enabled */
2073 if (is_cgroup_event(event))
2074 perf_cgroup_mark_enabled(event, ctx);
2076 if (group_can_go_on(event, cpuctx, 1))
2077 group_sched_in(event, cpuctx, ctx);
2080 * If this pinned group hasn't been scheduled,
2081 * put it in error state.
2083 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2084 update_group_times(event);
2085 event->state = PERF_EVENT_STATE_ERROR;
2090 static void
2091 ctx_flexible_sched_in(struct perf_event_context *ctx,
2092 struct perf_cpu_context *cpuctx)
2094 struct perf_event *event;
2095 int can_add_hw = 1;
2097 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2098 /* Ignore events in OFF or ERROR state */
2099 if (event->state <= PERF_EVENT_STATE_OFF)
2100 continue;
2102 * Listen to the 'cpu' scheduling filter constraint
2103 * of events:
2105 if (!event_filter_match(event))
2106 continue;
2108 /* may need to reset tstamp_enabled */
2109 if (is_cgroup_event(event))
2110 perf_cgroup_mark_enabled(event, ctx);
2112 if (group_can_go_on(event, cpuctx, can_add_hw)) {
2113 if (group_sched_in(event, cpuctx, ctx))
2114 can_add_hw = 0;
2119 static void
2120 ctx_sched_in(struct perf_event_context *ctx,
2121 struct perf_cpu_context *cpuctx,
2122 enum event_type_t event_type,
2123 struct task_struct *task)
2125 u64 now;
2126 int is_active = ctx->is_active;
2128 ctx->is_active |= event_type;
2129 if (likely(!ctx->nr_events))
2130 return;
2132 now = perf_clock();
2133 ctx->timestamp = now;
2134 perf_cgroup_set_timestamp(task, ctx);
2136 * First go through the list and put on any pinned groups
2137 * in order to give them the best chance of going on.
2139 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2140 ctx_pinned_sched_in(ctx, cpuctx);
2142 /* Then walk through the lower prio flexible groups */
2143 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2144 ctx_flexible_sched_in(ctx, cpuctx);
2147 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2148 enum event_type_t event_type,
2149 struct task_struct *task)
2151 struct perf_event_context *ctx = &cpuctx->ctx;
2153 ctx_sched_in(ctx, cpuctx, event_type, task);
2156 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2157 struct task_struct *task)
2159 struct perf_cpu_context *cpuctx;
2161 cpuctx = __get_cpu_context(ctx);
2162 if (cpuctx->task_ctx == ctx)
2163 return;
2165 perf_ctx_lock(cpuctx, ctx);
2166 perf_pmu_disable(ctx->pmu);
2168 * We want to keep the following priority order:
2169 * cpu pinned (that don't need to move), task pinned,
2170 * cpu flexible, task flexible.
2172 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2174 perf_event_sched_in(cpuctx, ctx, task);
2176 if (ctx->nr_events)
2177 cpuctx->task_ctx = ctx;
2179 perf_pmu_enable(ctx->pmu);
2180 perf_ctx_unlock(cpuctx, ctx);
2183 * Since these rotations are per-cpu, we need to ensure the
2184 * cpu-context we got scheduled on is actually rotating.
2186 perf_pmu_rotate_start(ctx->pmu);
2190 * Called from scheduler to add the events of the current task
2191 * with interrupts disabled.
2193 * We restore the event value and then enable it.
2195 * This does not protect us against NMI, but enable()
2196 * sets the enabled bit in the control field of event _before_
2197 * accessing the event control register. If a NMI hits, then it will
2198 * keep the event running.
2200 void __perf_event_task_sched_in(struct task_struct *prev,
2201 struct task_struct *task)
2203 struct perf_event_context *ctx;
2204 int ctxn;
2206 for_each_task_context_nr(ctxn) {
2207 ctx = task->perf_event_ctxp[ctxn];
2208 if (likely(!ctx))
2209 continue;
2211 perf_event_context_sched_in(ctx, task);
2214 * if cgroup events exist on this CPU, then we need
2215 * to check if we have to switch in PMU state.
2216 * cgroup event are system-wide mode only
2218 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2219 perf_cgroup_sched_in(prev, task);
2222 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2224 u64 frequency = event->attr.sample_freq;
2225 u64 sec = NSEC_PER_SEC;
2226 u64 divisor, dividend;
2228 int count_fls, nsec_fls, frequency_fls, sec_fls;
2230 count_fls = fls64(count);
2231 nsec_fls = fls64(nsec);
2232 frequency_fls = fls64(frequency);
2233 sec_fls = 30;
2236 * We got @count in @nsec, with a target of sample_freq HZ
2237 * the target period becomes:
2239 * @count * 10^9
2240 * period = -------------------
2241 * @nsec * sample_freq
2246 * Reduce accuracy by one bit such that @a and @b converge
2247 * to a similar magnitude.
2249 #define REDUCE_FLS(a, b) \
2250 do { \
2251 if (a##_fls > b##_fls) { \
2252 a >>= 1; \
2253 a##_fls--; \
2254 } else { \
2255 b >>= 1; \
2256 b##_fls--; \
2258 } while (0)
2261 * Reduce accuracy until either term fits in a u64, then proceed with
2262 * the other, so that finally we can do a u64/u64 division.
2264 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2265 REDUCE_FLS(nsec, frequency);
2266 REDUCE_FLS(sec, count);
2269 if (count_fls + sec_fls > 64) {
2270 divisor = nsec * frequency;
2272 while (count_fls + sec_fls > 64) {
2273 REDUCE_FLS(count, sec);
2274 divisor >>= 1;
2277 dividend = count * sec;
2278 } else {
2279 dividend = count * sec;
2281 while (nsec_fls + frequency_fls > 64) {
2282 REDUCE_FLS(nsec, frequency);
2283 dividend >>= 1;
2286 divisor = nsec * frequency;
2289 if (!divisor)
2290 return dividend;
2292 return div64_u64(dividend, divisor);
2295 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
2297 struct hw_perf_event *hwc = &event->hw;
2298 s64 period, sample_period;
2299 s64 delta;
2301 period = perf_calculate_period(event, nsec, count);
2303 delta = (s64)(period - hwc->sample_period);
2304 delta = (delta + 7) / 8; /* low pass filter */
2306 sample_period = hwc->sample_period + delta;
2308 if (!sample_period)
2309 sample_period = 1;
2311 hwc->sample_period = sample_period;
2313 if (local64_read(&hwc->period_left) > 8*sample_period) {
2314 event->pmu->stop(event, PERF_EF_UPDATE);
2315 local64_set(&hwc->period_left, 0);
2316 event->pmu->start(event, PERF_EF_RELOAD);
2320 static void perf_ctx_adjust_freq(struct perf_event_context *ctx, u64 period)
2322 struct perf_event *event;
2323 struct hw_perf_event *hwc;
2324 u64 interrupts, now;
2325 s64 delta;
2327 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2328 if (event->state != PERF_EVENT_STATE_ACTIVE)
2329 continue;
2331 if (!event_filter_match(event))
2332 continue;
2334 hwc = &event->hw;
2336 interrupts = hwc->interrupts;
2337 hwc->interrupts = 0;
2340 * unthrottle events on the tick
2342 if (interrupts == MAX_INTERRUPTS) {
2343 perf_log_throttle(event, 1);
2344 event->pmu->start(event, 0);
2347 if (!event->attr.freq || !event->attr.sample_freq)
2348 continue;
2350 event->pmu->read(event);
2351 now = local64_read(&event->count);
2352 delta = now - hwc->freq_count_stamp;
2353 hwc->freq_count_stamp = now;
2355 if (delta > 0)
2356 perf_adjust_period(event, period, delta);
2361 * Round-robin a context's events:
2363 static void rotate_ctx(struct perf_event_context *ctx)
2366 * Rotate the first entry last of non-pinned groups. Rotation might be
2367 * disabled by the inheritance code.
2369 if (!ctx->rotate_disable)
2370 list_rotate_left(&ctx->flexible_groups);
2374 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2375 * because they're strictly cpu affine and rotate_start is called with IRQs
2376 * disabled, while rotate_context is called from IRQ context.
2378 static void perf_rotate_context(struct perf_cpu_context *cpuctx)
2380 u64 interval = (u64)cpuctx->jiffies_interval * TICK_NSEC;
2381 struct perf_event_context *ctx = NULL;
2382 int rotate = 0, remove = 1;
2384 if (cpuctx->ctx.nr_events) {
2385 remove = 0;
2386 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2387 rotate = 1;
2390 ctx = cpuctx->task_ctx;
2391 if (ctx && ctx->nr_events) {
2392 remove = 0;
2393 if (ctx->nr_events != ctx->nr_active)
2394 rotate = 1;
2397 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2398 perf_pmu_disable(cpuctx->ctx.pmu);
2399 perf_ctx_adjust_freq(&cpuctx->ctx, interval);
2400 if (ctx)
2401 perf_ctx_adjust_freq(ctx, interval);
2403 if (!rotate)
2404 goto done;
2406 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2407 if (ctx)
2408 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
2410 rotate_ctx(&cpuctx->ctx);
2411 if (ctx)
2412 rotate_ctx(ctx);
2414 perf_event_sched_in(cpuctx, ctx, current);
2416 done:
2417 if (remove)
2418 list_del_init(&cpuctx->rotation_list);
2420 perf_pmu_enable(cpuctx->ctx.pmu);
2421 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2424 void perf_event_task_tick(void)
2426 struct list_head *head = &__get_cpu_var(rotation_list);
2427 struct perf_cpu_context *cpuctx, *tmp;
2429 WARN_ON(!irqs_disabled());
2431 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2432 if (cpuctx->jiffies_interval == 1 ||
2433 !(jiffies % cpuctx->jiffies_interval))
2434 perf_rotate_context(cpuctx);
2438 static int event_enable_on_exec(struct perf_event *event,
2439 struct perf_event_context *ctx)
2441 if (!event->attr.enable_on_exec)
2442 return 0;
2444 event->attr.enable_on_exec = 0;
2445 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2446 return 0;
2448 __perf_event_mark_enabled(event, ctx);
2450 return 1;
2454 * Enable all of a task's events that have been marked enable-on-exec.
2455 * This expects task == current.
2457 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2459 struct perf_event *event;
2460 unsigned long flags;
2461 int enabled = 0;
2462 int ret;
2464 local_irq_save(flags);
2465 if (!ctx || !ctx->nr_events)
2466 goto out;
2469 * We must ctxsw out cgroup events to avoid conflict
2470 * when invoking perf_task_event_sched_in() later on
2471 * in this function. Otherwise we end up trying to
2472 * ctxswin cgroup events which are already scheduled
2473 * in.
2475 perf_cgroup_sched_out(current, NULL);
2477 raw_spin_lock(&ctx->lock);
2478 task_ctx_sched_out(ctx);
2480 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2481 ret = event_enable_on_exec(event, ctx);
2482 if (ret)
2483 enabled = 1;
2486 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2487 ret = event_enable_on_exec(event, ctx);
2488 if (ret)
2489 enabled = 1;
2493 * Unclone this context if we enabled any event.
2495 if (enabled)
2496 unclone_ctx(ctx);
2498 raw_spin_unlock(&ctx->lock);
2501 * Also calls ctxswin for cgroup events, if any:
2503 perf_event_context_sched_in(ctx, ctx->task);
2504 out:
2505 local_irq_restore(flags);
2509 * Cross CPU call to read the hardware event
2511 static void __perf_event_read(void *info)
2513 struct perf_event *event = info;
2514 struct perf_event_context *ctx = event->ctx;
2515 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2518 * If this is a task context, we need to check whether it is
2519 * the current task context of this cpu. If not it has been
2520 * scheduled out before the smp call arrived. In that case
2521 * event->count would have been updated to a recent sample
2522 * when the event was scheduled out.
2524 if (ctx->task && cpuctx->task_ctx != ctx)
2525 return;
2527 raw_spin_lock(&ctx->lock);
2528 if (ctx->is_active) {
2529 update_context_time(ctx);
2530 update_cgrp_time_from_event(event);
2532 update_event_times(event);
2533 if (event->state == PERF_EVENT_STATE_ACTIVE)
2534 event->pmu->read(event);
2535 raw_spin_unlock(&ctx->lock);
2538 static inline u64 perf_event_count(struct perf_event *event)
2540 return local64_read(&event->count) + atomic64_read(&event->child_count);
2543 static u64 perf_event_read(struct perf_event *event)
2546 * If event is enabled and currently active on a CPU, update the
2547 * value in the event structure:
2549 if (event->state == PERF_EVENT_STATE_ACTIVE) {
2550 smp_call_function_single(event->oncpu,
2551 __perf_event_read, event, 1);
2552 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2553 struct perf_event_context *ctx = event->ctx;
2554 unsigned long flags;
2556 raw_spin_lock_irqsave(&ctx->lock, flags);
2558 * may read while context is not active
2559 * (e.g., thread is blocked), in that case
2560 * we cannot update context time
2562 if (ctx->is_active) {
2563 update_context_time(ctx);
2564 update_cgrp_time_from_event(event);
2566 update_event_times(event);
2567 raw_spin_unlock_irqrestore(&ctx->lock, flags);
2570 return perf_event_count(event);
2574 * Callchain support
2577 struct callchain_cpus_entries {
2578 struct rcu_head rcu_head;
2579 struct perf_callchain_entry *cpu_entries[0];
2582 static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]);
2583 static atomic_t nr_callchain_events;
2584 static DEFINE_MUTEX(callchain_mutex);
2585 struct callchain_cpus_entries *callchain_cpus_entries;
2588 __weak void perf_callchain_kernel(struct perf_callchain_entry *entry,
2589 struct pt_regs *regs)
2593 __weak void perf_callchain_user(struct perf_callchain_entry *entry,
2594 struct pt_regs *regs)
2598 static void release_callchain_buffers_rcu(struct rcu_head *head)
2600 struct callchain_cpus_entries *entries;
2601 int cpu;
2603 entries = container_of(head, struct callchain_cpus_entries, rcu_head);
2605 for_each_possible_cpu(cpu)
2606 kfree(entries->cpu_entries[cpu]);
2608 kfree(entries);
2611 static void release_callchain_buffers(void)
2613 struct callchain_cpus_entries *entries;
2615 entries = callchain_cpus_entries;
2616 rcu_assign_pointer(callchain_cpus_entries, NULL);
2617 call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
2620 static int alloc_callchain_buffers(void)
2622 int cpu;
2623 int size;
2624 struct callchain_cpus_entries *entries;
2627 * We can't use the percpu allocation API for data that can be
2628 * accessed from NMI. Use a temporary manual per cpu allocation
2629 * until that gets sorted out.
2631 size = offsetof(struct callchain_cpus_entries, cpu_entries[nr_cpu_ids]);
2633 entries = kzalloc(size, GFP_KERNEL);
2634 if (!entries)
2635 return -ENOMEM;
2637 size = sizeof(struct perf_callchain_entry) * PERF_NR_CONTEXTS;
2639 for_each_possible_cpu(cpu) {
2640 entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
2641 cpu_to_node(cpu));
2642 if (!entries->cpu_entries[cpu])
2643 goto fail;
2646 rcu_assign_pointer(callchain_cpus_entries, entries);
2648 return 0;
2650 fail:
2651 for_each_possible_cpu(cpu)
2652 kfree(entries->cpu_entries[cpu]);
2653 kfree(entries);
2655 return -ENOMEM;
2658 static int get_callchain_buffers(void)
2660 int err = 0;
2661 int count;
2663 mutex_lock(&callchain_mutex);
2665 count = atomic_inc_return(&nr_callchain_events);
2666 if (WARN_ON_ONCE(count < 1)) {
2667 err = -EINVAL;
2668 goto exit;
2671 if (count > 1) {
2672 /* If the allocation failed, give up */
2673 if (!callchain_cpus_entries)
2674 err = -ENOMEM;
2675 goto exit;
2678 err = alloc_callchain_buffers();
2679 if (err)
2680 release_callchain_buffers();
2681 exit:
2682 mutex_unlock(&callchain_mutex);
2684 return err;
2687 static void put_callchain_buffers(void)
2689 if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
2690 release_callchain_buffers();
2691 mutex_unlock(&callchain_mutex);
2695 static int get_recursion_context(int *recursion)
2697 int rctx;
2699 if (in_nmi())
2700 rctx = 3;
2701 else if (in_irq())
2702 rctx = 2;
2703 else if (in_softirq())
2704 rctx = 1;
2705 else
2706 rctx = 0;
2708 if (recursion[rctx])
2709 return -1;
2711 recursion[rctx]++;
2712 barrier();
2714 return rctx;
2717 static inline void put_recursion_context(int *recursion, int rctx)
2719 barrier();
2720 recursion[rctx]--;
2723 static struct perf_callchain_entry *get_callchain_entry(int *rctx)
2725 int cpu;
2726 struct callchain_cpus_entries *entries;
2728 *rctx = get_recursion_context(__get_cpu_var(callchain_recursion));
2729 if (*rctx == -1)
2730 return NULL;
2732 entries = rcu_dereference(callchain_cpus_entries);
2733 if (!entries)
2734 return NULL;
2736 cpu = smp_processor_id();
2738 return &entries->cpu_entries[cpu][*rctx];
2741 static void
2742 put_callchain_entry(int rctx)
2744 put_recursion_context(__get_cpu_var(callchain_recursion), rctx);
2747 static struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2749 int rctx;
2750 struct perf_callchain_entry *entry;
2753 entry = get_callchain_entry(&rctx);
2754 if (rctx == -1)
2755 return NULL;
2757 if (!entry)
2758 goto exit_put;
2760 entry->nr = 0;
2762 if (!user_mode(regs)) {
2763 perf_callchain_store(entry, PERF_CONTEXT_KERNEL);
2764 perf_callchain_kernel(entry, regs);
2765 if (current->mm)
2766 regs = task_pt_regs(current);
2767 else
2768 regs = NULL;
2771 if (regs) {
2772 perf_callchain_store(entry, PERF_CONTEXT_USER);
2773 perf_callchain_user(entry, regs);
2776 exit_put:
2777 put_callchain_entry(rctx);
2779 return entry;
2783 * Initialize the perf_event context in a task_struct:
2785 static void __perf_event_init_context(struct perf_event_context *ctx)
2787 raw_spin_lock_init(&ctx->lock);
2788 mutex_init(&ctx->mutex);
2789 INIT_LIST_HEAD(&ctx->pinned_groups);
2790 INIT_LIST_HEAD(&ctx->flexible_groups);
2791 INIT_LIST_HEAD(&ctx->event_list);
2792 atomic_set(&ctx->refcount, 1);
2795 static struct perf_event_context *
2796 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2798 struct perf_event_context *ctx;
2800 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2801 if (!ctx)
2802 return NULL;
2804 __perf_event_init_context(ctx);
2805 if (task) {
2806 ctx->task = task;
2807 get_task_struct(task);
2809 ctx->pmu = pmu;
2811 return ctx;
2814 static struct task_struct *
2815 find_lively_task_by_vpid(pid_t vpid)
2817 struct task_struct *task;
2818 int err;
2820 rcu_read_lock();
2821 if (!vpid)
2822 task = current;
2823 else
2824 task = find_task_by_vpid(vpid);
2825 if (task)
2826 get_task_struct(task);
2827 rcu_read_unlock();
2829 if (!task)
2830 return ERR_PTR(-ESRCH);
2832 /* Reuse ptrace permission checks for now. */
2833 err = -EACCES;
2834 if (!ptrace_may_access(task, PTRACE_MODE_READ))
2835 goto errout;
2837 return task;
2838 errout:
2839 put_task_struct(task);
2840 return ERR_PTR(err);
2845 * Returns a matching context with refcount and pincount.
2847 static struct perf_event_context *
2848 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
2850 struct perf_event_context *ctx;
2851 struct perf_cpu_context *cpuctx;
2852 unsigned long flags;
2853 int ctxn, err;
2855 if (!task) {
2856 /* Must be root to operate on a CPU event: */
2857 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2858 return ERR_PTR(-EACCES);
2861 * We could be clever and allow to attach a event to an
2862 * offline CPU and activate it when the CPU comes up, but
2863 * that's for later.
2865 if (!cpu_online(cpu))
2866 return ERR_PTR(-ENODEV);
2868 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
2869 ctx = &cpuctx->ctx;
2870 get_ctx(ctx);
2871 ++ctx->pin_count;
2873 return ctx;
2876 err = -EINVAL;
2877 ctxn = pmu->task_ctx_nr;
2878 if (ctxn < 0)
2879 goto errout;
2881 retry:
2882 ctx = perf_lock_task_context(task, ctxn, &flags);
2883 if (ctx) {
2884 unclone_ctx(ctx);
2885 ++ctx->pin_count;
2886 raw_spin_unlock_irqrestore(&ctx->lock, flags);
2887 } else {
2888 ctx = alloc_perf_context(pmu, task);
2889 err = -ENOMEM;
2890 if (!ctx)
2891 goto errout;
2893 err = 0;
2894 mutex_lock(&task->perf_event_mutex);
2896 * If it has already passed perf_event_exit_task().
2897 * we must see PF_EXITING, it takes this mutex too.
2899 if (task->flags & PF_EXITING)
2900 err = -ESRCH;
2901 else if (task->perf_event_ctxp[ctxn])
2902 err = -EAGAIN;
2903 else {
2904 get_ctx(ctx);
2905 ++ctx->pin_count;
2906 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
2908 mutex_unlock(&task->perf_event_mutex);
2910 if (unlikely(err)) {
2911 put_ctx(ctx);
2913 if (err == -EAGAIN)
2914 goto retry;
2915 goto errout;
2919 return ctx;
2921 errout:
2922 return ERR_PTR(err);
2925 static void perf_event_free_filter(struct perf_event *event);
2927 static void free_event_rcu(struct rcu_head *head)
2929 struct perf_event *event;
2931 event = container_of(head, struct perf_event, rcu_head);
2932 if (event->ns)
2933 put_pid_ns(event->ns);
2934 perf_event_free_filter(event);
2935 kfree(event);
2938 static void ring_buffer_put(struct ring_buffer *rb);
2940 static void free_event(struct perf_event *event)
2942 irq_work_sync(&event->pending);
2944 if (!event->parent) {
2945 if (event->attach_state & PERF_ATTACH_TASK)
2946 jump_label_dec(&perf_sched_events);
2947 if (event->attr.mmap || event->attr.mmap_data)
2948 atomic_dec(&nr_mmap_events);
2949 if (event->attr.comm)
2950 atomic_dec(&nr_comm_events);
2951 if (event->attr.task)
2952 atomic_dec(&nr_task_events);
2953 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
2954 put_callchain_buffers();
2955 if (is_cgroup_event(event)) {
2956 atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
2957 jump_label_dec(&perf_sched_events);
2961 if (event->rb) {
2962 ring_buffer_put(event->rb);
2963 event->rb = NULL;
2966 if (is_cgroup_event(event))
2967 perf_detach_cgroup(event);
2969 if (event->destroy)
2970 event->destroy(event);
2972 if (event->ctx)
2973 put_ctx(event->ctx);
2975 call_rcu(&event->rcu_head, free_event_rcu);
2978 int perf_event_release_kernel(struct perf_event *event)
2980 struct perf_event_context *ctx = event->ctx;
2982 WARN_ON_ONCE(ctx->parent_ctx);
2984 * There are two ways this annotation is useful:
2986 * 1) there is a lock recursion from perf_event_exit_task
2987 * see the comment there.
2989 * 2) there is a lock-inversion with mmap_sem through
2990 * perf_event_read_group(), which takes faults while
2991 * holding ctx->mutex, however this is called after
2992 * the last filedesc died, so there is no possibility
2993 * to trigger the AB-BA case.
2995 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2996 raw_spin_lock_irq(&ctx->lock);
2997 perf_group_detach(event);
2998 raw_spin_unlock_irq(&ctx->lock);
2999 perf_remove_from_context(event);
3000 mutex_unlock(&ctx->mutex);
3002 free_event(event);
3004 return 0;
3006 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3009 * Called when the last reference to the file is gone.
3011 static int perf_release(struct inode *inode, struct file *file)
3013 struct perf_event *event = file->private_data;
3014 struct task_struct *owner;
3016 file->private_data = NULL;
3018 rcu_read_lock();
3019 owner = ACCESS_ONCE(event->owner);
3021 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3022 * !owner it means the list deletion is complete and we can indeed
3023 * free this event, otherwise we need to serialize on
3024 * owner->perf_event_mutex.
3026 smp_read_barrier_depends();
3027 if (owner) {
3029 * Since delayed_put_task_struct() also drops the last
3030 * task reference we can safely take a new reference
3031 * while holding the rcu_read_lock().
3033 get_task_struct(owner);
3035 rcu_read_unlock();
3037 if (owner) {
3038 mutex_lock(&owner->perf_event_mutex);
3040 * We have to re-check the event->owner field, if it is cleared
3041 * we raced with perf_event_exit_task(), acquiring the mutex
3042 * ensured they're done, and we can proceed with freeing the
3043 * event.
3045 if (event->owner)
3046 list_del_init(&event->owner_entry);
3047 mutex_unlock(&owner->perf_event_mutex);
3048 put_task_struct(owner);
3051 return perf_event_release_kernel(event);
3054 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3056 struct perf_event *child;
3057 u64 total = 0;
3059 *enabled = 0;
3060 *running = 0;
3062 mutex_lock(&event->child_mutex);
3063 total += perf_event_read(event);
3064 *enabled += event->total_time_enabled +
3065 atomic64_read(&event->child_total_time_enabled);
3066 *running += event->total_time_running +
3067 atomic64_read(&event->child_total_time_running);
3069 list_for_each_entry(child, &event->child_list, child_list) {
3070 total += perf_event_read(child);
3071 *enabled += child->total_time_enabled;
3072 *running += child->total_time_running;
3074 mutex_unlock(&event->child_mutex);
3076 return total;
3078 EXPORT_SYMBOL_GPL(perf_event_read_value);
3080 static int perf_event_read_group(struct perf_event *event,
3081 u64 read_format, char __user *buf)
3083 struct perf_event *leader = event->group_leader, *sub;
3084 int n = 0, size = 0, ret = -EFAULT;
3085 struct perf_event_context *ctx = leader->ctx;
3086 u64 values[5];
3087 u64 count, enabled, running;
3089 mutex_lock(&ctx->mutex);
3090 count = perf_event_read_value(leader, &enabled, &running);
3092 values[n++] = 1 + leader->nr_siblings;
3093 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3094 values[n++] = enabled;
3095 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3096 values[n++] = running;
3097 values[n++] = count;
3098 if (read_format & PERF_FORMAT_ID)
3099 values[n++] = primary_event_id(leader);
3101 size = n * sizeof(u64);
3103 if (copy_to_user(buf, values, size))
3104 goto unlock;
3106 ret = size;
3108 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3109 n = 0;
3111 values[n++] = perf_event_read_value(sub, &enabled, &running);
3112 if (read_format & PERF_FORMAT_ID)
3113 values[n++] = primary_event_id(sub);
3115 size = n * sizeof(u64);
3117 if (copy_to_user(buf + ret, values, size)) {
3118 ret = -EFAULT;
3119 goto unlock;
3122 ret += size;
3124 unlock:
3125 mutex_unlock(&ctx->mutex);
3127 return ret;
3130 static int perf_event_read_one(struct perf_event *event,
3131 u64 read_format, char __user *buf)
3133 u64 enabled, running;
3134 u64 values[4];
3135 int n = 0;
3137 values[n++] = perf_event_read_value(event, &enabled, &running);
3138 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3139 values[n++] = enabled;
3140 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3141 values[n++] = running;
3142 if (read_format & PERF_FORMAT_ID)
3143 values[n++] = primary_event_id(event);
3145 if (copy_to_user(buf, values, n * sizeof(u64)))
3146 return -EFAULT;
3148 return n * sizeof(u64);
3152 * Read the performance event - simple non blocking version for now
3154 static ssize_t
3155 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
3157 u64 read_format = event->attr.read_format;
3158 int ret;
3161 * Return end-of-file for a read on a event that is in
3162 * error state (i.e. because it was pinned but it couldn't be
3163 * scheduled on to the CPU at some point).
3165 if (event->state == PERF_EVENT_STATE_ERROR)
3166 return 0;
3168 if (count < event->read_size)
3169 return -ENOSPC;
3171 WARN_ON_ONCE(event->ctx->parent_ctx);
3172 if (read_format & PERF_FORMAT_GROUP)
3173 ret = perf_event_read_group(event, read_format, buf);
3174 else
3175 ret = perf_event_read_one(event, read_format, buf);
3177 return ret;
3180 static ssize_t
3181 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3183 struct perf_event *event = file->private_data;
3185 return perf_read_hw(event, buf, count);
3188 static unsigned int perf_poll(struct file *file, poll_table *wait)
3190 struct perf_event *event = file->private_data;
3191 struct ring_buffer *rb;
3192 unsigned int events = POLL_HUP;
3194 rcu_read_lock();
3195 rb = rcu_dereference(event->rb);
3196 if (rb)
3197 events = atomic_xchg(&rb->poll, 0);
3198 rcu_read_unlock();
3200 poll_wait(file, &event->waitq, wait);
3202 return events;
3205 static void perf_event_reset(struct perf_event *event)
3207 (void)perf_event_read(event);
3208 local64_set(&event->count, 0);
3209 perf_event_update_userpage(event);
3213 * Holding the top-level event's child_mutex means that any
3214 * descendant process that has inherited this event will block
3215 * in sync_child_event if it goes to exit, thus satisfying the
3216 * task existence requirements of perf_event_enable/disable.
3218 static void perf_event_for_each_child(struct perf_event *event,
3219 void (*func)(struct perf_event *))
3221 struct perf_event *child;
3223 WARN_ON_ONCE(event->ctx->parent_ctx);
3224 mutex_lock(&event->child_mutex);
3225 func(event);
3226 list_for_each_entry(child, &event->child_list, child_list)
3227 func(child);
3228 mutex_unlock(&event->child_mutex);
3231 static void perf_event_for_each(struct perf_event *event,
3232 void (*func)(struct perf_event *))
3234 struct perf_event_context *ctx = event->ctx;
3235 struct perf_event *sibling;
3237 WARN_ON_ONCE(ctx->parent_ctx);
3238 mutex_lock(&ctx->mutex);
3239 event = event->group_leader;
3241 perf_event_for_each_child(event, func);
3242 func(event);
3243 list_for_each_entry(sibling, &event->sibling_list, group_entry)
3244 perf_event_for_each_child(event, func);
3245 mutex_unlock(&ctx->mutex);
3248 static int perf_event_period(struct perf_event *event, u64 __user *arg)
3250 struct perf_event_context *ctx = event->ctx;
3251 int ret = 0;
3252 u64 value;
3254 if (!is_sampling_event(event))
3255 return -EINVAL;
3257 if (copy_from_user(&value, arg, sizeof(value)))
3258 return -EFAULT;
3260 if (!value)
3261 return -EINVAL;
3263 raw_spin_lock_irq(&ctx->lock);
3264 if (event->attr.freq) {
3265 if (value > sysctl_perf_event_sample_rate) {
3266 ret = -EINVAL;
3267 goto unlock;
3270 event->attr.sample_freq = value;
3271 } else {
3272 event->attr.sample_period = value;
3273 event->hw.sample_period = value;
3275 unlock:
3276 raw_spin_unlock_irq(&ctx->lock);
3278 return ret;
3281 static const struct file_operations perf_fops;
3283 static struct perf_event *perf_fget_light(int fd, int *fput_needed)
3285 struct file *file;
3287 file = fget_light(fd, fput_needed);
3288 if (!file)
3289 return ERR_PTR(-EBADF);
3291 if (file->f_op != &perf_fops) {
3292 fput_light(file, *fput_needed);
3293 *fput_needed = 0;
3294 return ERR_PTR(-EBADF);
3297 return file->private_data;
3300 static int perf_event_set_output(struct perf_event *event,
3301 struct perf_event *output_event);
3302 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3304 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3306 struct perf_event *event = file->private_data;
3307 void (*func)(struct perf_event *);
3308 u32 flags = arg;
3310 switch (cmd) {
3311 case PERF_EVENT_IOC_ENABLE:
3312 func = perf_event_enable;
3313 break;
3314 case PERF_EVENT_IOC_DISABLE:
3315 func = perf_event_disable;
3316 break;
3317 case PERF_EVENT_IOC_RESET:
3318 func = perf_event_reset;
3319 break;
3321 case PERF_EVENT_IOC_REFRESH:
3322 return perf_event_refresh(event, arg);
3324 case PERF_EVENT_IOC_PERIOD:
3325 return perf_event_period(event, (u64 __user *)arg);
3327 case PERF_EVENT_IOC_SET_OUTPUT:
3329 struct perf_event *output_event = NULL;
3330 int fput_needed = 0;
3331 int ret;
3333 if (arg != -1) {
3334 output_event = perf_fget_light(arg, &fput_needed);
3335 if (IS_ERR(output_event))
3336 return PTR_ERR(output_event);
3339 ret = perf_event_set_output(event, output_event);
3340 if (output_event)
3341 fput_light(output_event->filp, fput_needed);
3343 return ret;
3346 case PERF_EVENT_IOC_SET_FILTER:
3347 return perf_event_set_filter(event, (void __user *)arg);
3349 default:
3350 return -ENOTTY;
3353 if (flags & PERF_IOC_FLAG_GROUP)
3354 perf_event_for_each(event, func);
3355 else
3356 perf_event_for_each_child(event, func);
3358 return 0;
3361 int perf_event_task_enable(void)
3363 struct perf_event *event;
3365 mutex_lock(&current->perf_event_mutex);
3366 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3367 perf_event_for_each_child(event, perf_event_enable);
3368 mutex_unlock(&current->perf_event_mutex);
3370 return 0;
3373 int perf_event_task_disable(void)
3375 struct perf_event *event;
3377 mutex_lock(&current->perf_event_mutex);
3378 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3379 perf_event_for_each_child(event, perf_event_disable);
3380 mutex_unlock(&current->perf_event_mutex);
3382 return 0;
3385 #ifndef PERF_EVENT_INDEX_OFFSET
3386 # define PERF_EVENT_INDEX_OFFSET 0
3387 #endif
3389 static int perf_event_index(struct perf_event *event)
3391 if (event->hw.state & PERF_HES_STOPPED)
3392 return 0;
3394 if (event->state != PERF_EVENT_STATE_ACTIVE)
3395 return 0;
3397 return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
3400 static void calc_timer_values(struct perf_event *event,
3401 u64 *enabled,
3402 u64 *running)
3404 u64 now, ctx_time;
3406 now = perf_clock();
3407 ctx_time = event->shadow_ctx_time + now;
3408 *enabled = ctx_time - event->tstamp_enabled;
3409 *running = ctx_time - event->tstamp_running;
3413 * Callers need to ensure there can be no nesting of this function, otherwise
3414 * the seqlock logic goes bad. We can not serialize this because the arch
3415 * code calls this from NMI context.
3417 void perf_event_update_userpage(struct perf_event *event)
3419 struct perf_event_mmap_page *userpg;
3420 struct ring_buffer *rb;
3421 u64 enabled, running;
3423 rcu_read_lock();
3425 * compute total_time_enabled, total_time_running
3426 * based on snapshot values taken when the event
3427 * was last scheduled in.
3429 * we cannot simply called update_context_time()
3430 * because of locking issue as we can be called in
3431 * NMI context
3433 calc_timer_values(event, &enabled, &running);
3434 rb = rcu_dereference(event->rb);
3435 if (!rb)
3436 goto unlock;
3438 userpg = rb->user_page;
3441 * Disable preemption so as to not let the corresponding user-space
3442 * spin too long if we get preempted.
3444 preempt_disable();
3445 ++userpg->lock;
3446 barrier();
3447 userpg->index = perf_event_index(event);
3448 userpg->offset = perf_event_count(event);
3449 if (event->state == PERF_EVENT_STATE_ACTIVE)
3450 userpg->offset -= local64_read(&event->hw.prev_count);
3452 userpg->time_enabled = enabled +
3453 atomic64_read(&event->child_total_time_enabled);
3455 userpg->time_running = running +
3456 atomic64_read(&event->child_total_time_running);
3458 barrier();
3459 ++userpg->lock;
3460 preempt_enable();
3461 unlock:
3462 rcu_read_unlock();
3465 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3467 struct perf_event *event = vma->vm_file->private_data;
3468 struct ring_buffer *rb;
3469 int ret = VM_FAULT_SIGBUS;
3471 if (vmf->flags & FAULT_FLAG_MKWRITE) {
3472 if (vmf->pgoff == 0)
3473 ret = 0;
3474 return ret;
3477 rcu_read_lock();
3478 rb = rcu_dereference(event->rb);
3479 if (!rb)
3480 goto unlock;
3482 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3483 goto unlock;
3485 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3486 if (!vmf->page)
3487 goto unlock;
3489 get_page(vmf->page);
3490 vmf->page->mapping = vma->vm_file->f_mapping;
3491 vmf->page->index = vmf->pgoff;
3493 ret = 0;
3494 unlock:
3495 rcu_read_unlock();
3497 return ret;
3500 static void rb_free_rcu(struct rcu_head *rcu_head)
3502 struct ring_buffer *rb;
3504 rb = container_of(rcu_head, struct ring_buffer, rcu_head);
3505 rb_free(rb);
3508 static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3510 struct ring_buffer *rb;
3512 rcu_read_lock();
3513 rb = rcu_dereference(event->rb);
3514 if (rb) {
3515 if (!atomic_inc_not_zero(&rb->refcount))
3516 rb = NULL;
3518 rcu_read_unlock();
3520 return rb;
3523 static void ring_buffer_put(struct ring_buffer *rb)
3525 if (!atomic_dec_and_test(&rb->refcount))
3526 return;
3528 call_rcu(&rb->rcu_head, rb_free_rcu);
3531 static void perf_mmap_open(struct vm_area_struct *vma)
3533 struct perf_event *event = vma->vm_file->private_data;
3535 atomic_inc(&event->mmap_count);
3538 static void perf_mmap_close(struct vm_area_struct *vma)
3540 struct perf_event *event = vma->vm_file->private_data;
3542 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
3543 unsigned long size = perf_data_size(event->rb);
3544 struct user_struct *user = event->mmap_user;
3545 struct ring_buffer *rb = event->rb;
3547 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
3548 vma->vm_mm->pinned_vm -= event->mmap_locked;
3549 rcu_assign_pointer(event->rb, NULL);
3550 mutex_unlock(&event->mmap_mutex);
3552 ring_buffer_put(rb);
3553 free_uid(user);
3557 static const struct vm_operations_struct perf_mmap_vmops = {
3558 .open = perf_mmap_open,
3559 .close = perf_mmap_close,
3560 .fault = perf_mmap_fault,
3561 .page_mkwrite = perf_mmap_fault,
3564 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
3566 struct perf_event *event = file->private_data;
3567 unsigned long user_locked, user_lock_limit;
3568 struct user_struct *user = current_user();
3569 unsigned long locked, lock_limit;
3570 struct ring_buffer *rb;
3571 unsigned long vma_size;
3572 unsigned long nr_pages;
3573 long user_extra, extra;
3574 int ret = 0, flags = 0;
3577 * Don't allow mmap() of inherited per-task counters. This would
3578 * create a performance issue due to all children writing to the
3579 * same rb.
3581 if (event->cpu == -1 && event->attr.inherit)
3582 return -EINVAL;
3584 if (!(vma->vm_flags & VM_SHARED))
3585 return -EINVAL;
3587 vma_size = vma->vm_end - vma->vm_start;
3588 nr_pages = (vma_size / PAGE_SIZE) - 1;
3591 * If we have rb pages ensure they're a power-of-two number, so we
3592 * can do bitmasks instead of modulo.
3594 if (nr_pages != 0 && !is_power_of_2(nr_pages))
3595 return -EINVAL;
3597 if (vma_size != PAGE_SIZE * (1 + nr_pages))
3598 return -EINVAL;
3600 if (vma->vm_pgoff != 0)
3601 return -EINVAL;
3603 WARN_ON_ONCE(event->ctx->parent_ctx);
3604 mutex_lock(&event->mmap_mutex);
3605 if (event->rb) {
3606 if (event->rb->nr_pages == nr_pages)
3607 atomic_inc(&event->rb->refcount);
3608 else
3609 ret = -EINVAL;
3610 goto unlock;
3613 user_extra = nr_pages + 1;
3614 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
3617 * Increase the limit linearly with more CPUs:
3619 user_lock_limit *= num_online_cpus();
3621 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3623 extra = 0;
3624 if (user_locked > user_lock_limit)
3625 extra = user_locked - user_lock_limit;
3627 lock_limit = rlimit(RLIMIT_MEMLOCK);
3628 lock_limit >>= PAGE_SHIFT;
3629 locked = vma->vm_mm->pinned_vm + extra;
3631 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
3632 !capable(CAP_IPC_LOCK)) {
3633 ret = -EPERM;
3634 goto unlock;
3637 WARN_ON(event->rb);
3639 if (vma->vm_flags & VM_WRITE)
3640 flags |= RING_BUFFER_WRITABLE;
3642 rb = rb_alloc(nr_pages,
3643 event->attr.watermark ? event->attr.wakeup_watermark : 0,
3644 event->cpu, flags);
3646 if (!rb) {
3647 ret = -ENOMEM;
3648 goto unlock;
3650 rcu_assign_pointer(event->rb, rb);
3652 atomic_long_add(user_extra, &user->locked_vm);
3653 event->mmap_locked = extra;
3654 event->mmap_user = get_current_user();
3655 vma->vm_mm->pinned_vm += event->mmap_locked;
3657 unlock:
3658 if (!ret)
3659 atomic_inc(&event->mmap_count);
3660 mutex_unlock(&event->mmap_mutex);
3662 vma->vm_flags |= VM_RESERVED;
3663 vma->vm_ops = &perf_mmap_vmops;
3665 return ret;
3668 static int perf_fasync(int fd, struct file *filp, int on)
3670 struct inode *inode = filp->f_path.dentry->d_inode;
3671 struct perf_event *event = filp->private_data;
3672 int retval;
3674 mutex_lock(&inode->i_mutex);
3675 retval = fasync_helper(fd, filp, on, &event->fasync);
3676 mutex_unlock(&inode->i_mutex);
3678 if (retval < 0)
3679 return retval;
3681 return 0;
3684 static const struct file_operations perf_fops = {
3685 .llseek = no_llseek,
3686 .release = perf_release,
3687 .read = perf_read,
3688 .poll = perf_poll,
3689 .unlocked_ioctl = perf_ioctl,
3690 .compat_ioctl = perf_ioctl,
3691 .mmap = perf_mmap,
3692 .fasync = perf_fasync,
3696 * Perf event wakeup
3698 * If there's data, ensure we set the poll() state and publish everything
3699 * to user-space before waking everybody up.
3702 void perf_event_wakeup(struct perf_event *event)
3704 wake_up_all(&event->waitq);
3706 if (event->pending_kill) {
3707 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
3708 event->pending_kill = 0;
3712 static void perf_pending_event(struct irq_work *entry)
3714 struct perf_event *event = container_of(entry,
3715 struct perf_event, pending);
3717 if (event->pending_disable) {
3718 event->pending_disable = 0;
3719 __perf_event_disable(event);
3722 if (event->pending_wakeup) {
3723 event->pending_wakeup = 0;
3724 perf_event_wakeup(event);
3729 * We assume there is only KVM supporting the callbacks.
3730 * Later on, we might change it to a list if there is
3731 * another virtualization implementation supporting the callbacks.
3733 struct perf_guest_info_callbacks *perf_guest_cbs;
3735 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3737 perf_guest_cbs = cbs;
3738 return 0;
3740 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
3742 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3744 perf_guest_cbs = NULL;
3745 return 0;
3747 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
3749 static void __perf_event_header__init_id(struct perf_event_header *header,
3750 struct perf_sample_data *data,
3751 struct perf_event *event)
3753 u64 sample_type = event->attr.sample_type;
3755 data->type = sample_type;
3756 header->size += event->id_header_size;
3758 if (sample_type & PERF_SAMPLE_TID) {
3759 /* namespace issues */
3760 data->tid_entry.pid = perf_event_pid(event, current);
3761 data->tid_entry.tid = perf_event_tid(event, current);
3764 if (sample_type & PERF_SAMPLE_TIME)
3765 data->time = perf_clock();
3767 if (sample_type & PERF_SAMPLE_ID)
3768 data->id = primary_event_id(event);
3770 if (sample_type & PERF_SAMPLE_STREAM_ID)
3771 data->stream_id = event->id;
3773 if (sample_type & PERF_SAMPLE_CPU) {
3774 data->cpu_entry.cpu = raw_smp_processor_id();
3775 data->cpu_entry.reserved = 0;
3779 void perf_event_header__init_id(struct perf_event_header *header,
3780 struct perf_sample_data *data,
3781 struct perf_event *event)
3783 if (event->attr.sample_id_all)
3784 __perf_event_header__init_id(header, data, event);
3787 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
3788 struct perf_sample_data *data)
3790 u64 sample_type = data->type;
3792 if (sample_type & PERF_SAMPLE_TID)
3793 perf_output_put(handle, data->tid_entry);
3795 if (sample_type & PERF_SAMPLE_TIME)
3796 perf_output_put(handle, data->time);
3798 if (sample_type & PERF_SAMPLE_ID)
3799 perf_output_put(handle, data->id);
3801 if (sample_type & PERF_SAMPLE_STREAM_ID)
3802 perf_output_put(handle, data->stream_id);
3804 if (sample_type & PERF_SAMPLE_CPU)
3805 perf_output_put(handle, data->cpu_entry);
3808 void perf_event__output_id_sample(struct perf_event *event,
3809 struct perf_output_handle *handle,
3810 struct perf_sample_data *sample)
3812 if (event->attr.sample_id_all)
3813 __perf_event__output_id_sample(handle, sample);
3816 static void perf_output_read_one(struct perf_output_handle *handle,
3817 struct perf_event *event,
3818 u64 enabled, u64 running)
3820 u64 read_format = event->attr.read_format;
3821 u64 values[4];
3822 int n = 0;
3824 values[n++] = perf_event_count(event);
3825 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3826 values[n++] = enabled +
3827 atomic64_read(&event->child_total_time_enabled);
3829 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3830 values[n++] = running +
3831 atomic64_read(&event->child_total_time_running);
3833 if (read_format & PERF_FORMAT_ID)
3834 values[n++] = primary_event_id(event);
3836 __output_copy(handle, values, n * sizeof(u64));
3840 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3842 static void perf_output_read_group(struct perf_output_handle *handle,
3843 struct perf_event *event,
3844 u64 enabled, u64 running)
3846 struct perf_event *leader = event->group_leader, *sub;
3847 u64 read_format = event->attr.read_format;
3848 u64 values[5];
3849 int n = 0;
3851 values[n++] = 1 + leader->nr_siblings;
3853 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3854 values[n++] = enabled;
3856 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3857 values[n++] = running;
3859 if (leader != event)
3860 leader->pmu->read(leader);
3862 values[n++] = perf_event_count(leader);
3863 if (read_format & PERF_FORMAT_ID)
3864 values[n++] = primary_event_id(leader);
3866 __output_copy(handle, values, n * sizeof(u64));
3868 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3869 n = 0;
3871 if (sub != event)
3872 sub->pmu->read(sub);
3874 values[n++] = perf_event_count(sub);
3875 if (read_format & PERF_FORMAT_ID)
3876 values[n++] = primary_event_id(sub);
3878 __output_copy(handle, values, n * sizeof(u64));
3882 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
3883 PERF_FORMAT_TOTAL_TIME_RUNNING)
3885 static void perf_output_read(struct perf_output_handle *handle,
3886 struct perf_event *event)
3888 u64 enabled = 0, running = 0;
3889 u64 read_format = event->attr.read_format;
3892 * compute total_time_enabled, total_time_running
3893 * based on snapshot values taken when the event
3894 * was last scheduled in.
3896 * we cannot simply called update_context_time()
3897 * because of locking issue as we are called in
3898 * NMI context
3900 if (read_format & PERF_FORMAT_TOTAL_TIMES)
3901 calc_timer_values(event, &enabled, &running);
3903 if (event->attr.read_format & PERF_FORMAT_GROUP)
3904 perf_output_read_group(handle, event, enabled, running);
3905 else
3906 perf_output_read_one(handle, event, enabled, running);
3909 void perf_output_sample(struct perf_output_handle *handle,
3910 struct perf_event_header *header,
3911 struct perf_sample_data *data,
3912 struct perf_event *event)
3914 u64 sample_type = data->type;
3916 perf_output_put(handle, *header);
3918 if (sample_type & PERF_SAMPLE_IP)
3919 perf_output_put(handle, data->ip);
3921 if (sample_type & PERF_SAMPLE_TID)
3922 perf_output_put(handle, data->tid_entry);
3924 if (sample_type & PERF_SAMPLE_TIME)
3925 perf_output_put(handle, data->time);
3927 if (sample_type & PERF_SAMPLE_ADDR)
3928 perf_output_put(handle, data->addr);
3930 if (sample_type & PERF_SAMPLE_ID)
3931 perf_output_put(handle, data->id);
3933 if (sample_type & PERF_SAMPLE_STREAM_ID)
3934 perf_output_put(handle, data->stream_id);
3936 if (sample_type & PERF_SAMPLE_CPU)
3937 perf_output_put(handle, data->cpu_entry);
3939 if (sample_type & PERF_SAMPLE_PERIOD)
3940 perf_output_put(handle, data->period);
3942 if (sample_type & PERF_SAMPLE_READ)
3943 perf_output_read(handle, event);
3945 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3946 if (data->callchain) {
3947 int size = 1;
3949 if (data->callchain)
3950 size += data->callchain->nr;
3952 size *= sizeof(u64);
3954 __output_copy(handle, data->callchain, size);
3955 } else {
3956 u64 nr = 0;
3957 perf_output_put(handle, nr);
3961 if (sample_type & PERF_SAMPLE_RAW) {
3962 if (data->raw) {
3963 perf_output_put(handle, data->raw->size);
3964 __output_copy(handle, data->raw->data,
3965 data->raw->size);
3966 } else {
3967 struct {
3968 u32 size;
3969 u32 data;
3970 } raw = {
3971 .size = sizeof(u32),
3972 .data = 0,
3974 perf_output_put(handle, raw);
3978 if (!event->attr.watermark) {
3979 int wakeup_events = event->attr.wakeup_events;
3981 if (wakeup_events) {
3982 struct ring_buffer *rb = handle->rb;
3983 int events = local_inc_return(&rb->events);
3985 if (events >= wakeup_events) {
3986 local_sub(wakeup_events, &rb->events);
3987 local_inc(&rb->wakeup);
3993 void perf_prepare_sample(struct perf_event_header *header,
3994 struct perf_sample_data *data,
3995 struct perf_event *event,
3996 struct pt_regs *regs)
3998 u64 sample_type = event->attr.sample_type;
4000 header->type = PERF_RECORD_SAMPLE;
4001 header->size = sizeof(*header) + event->header_size;
4003 header->misc = 0;
4004 header->misc |= perf_misc_flags(regs);
4006 __perf_event_header__init_id(header, data, event);
4008 if (sample_type & PERF_SAMPLE_IP)
4009 data->ip = perf_instruction_pointer(regs);
4011 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4012 int size = 1;
4014 data->callchain = perf_callchain(regs);
4016 if (data->callchain)
4017 size += data->callchain->nr;
4019 header->size += size * sizeof(u64);
4022 if (sample_type & PERF_SAMPLE_RAW) {
4023 int size = sizeof(u32);
4025 if (data->raw)
4026 size += data->raw->size;
4027 else
4028 size += sizeof(u32);
4030 WARN_ON_ONCE(size & (sizeof(u64)-1));
4031 header->size += size;
4035 static void perf_event_output(struct perf_event *event,
4036 struct perf_sample_data *data,
4037 struct pt_regs *regs)
4039 struct perf_output_handle handle;
4040 struct perf_event_header header;
4042 /* protect the callchain buffers */
4043 rcu_read_lock();
4045 perf_prepare_sample(&header, data, event, regs);
4047 if (perf_output_begin(&handle, event, header.size))
4048 goto exit;
4050 perf_output_sample(&handle, &header, data, event);
4052 perf_output_end(&handle);
4054 exit:
4055 rcu_read_unlock();
4059 * read event_id
4062 struct perf_read_event {
4063 struct perf_event_header header;
4065 u32 pid;
4066 u32 tid;
4069 static void
4070 perf_event_read_event(struct perf_event *event,
4071 struct task_struct *task)
4073 struct perf_output_handle handle;
4074 struct perf_sample_data sample;
4075 struct perf_read_event read_event = {
4076 .header = {
4077 .type = PERF_RECORD_READ,
4078 .misc = 0,
4079 .size = sizeof(read_event) + event->read_size,
4081 .pid = perf_event_pid(event, task),
4082 .tid = perf_event_tid(event, task),
4084 int ret;
4086 perf_event_header__init_id(&read_event.header, &sample, event);
4087 ret = perf_output_begin(&handle, event, read_event.header.size);
4088 if (ret)
4089 return;
4091 perf_output_put(&handle, read_event);
4092 perf_output_read(&handle, event);
4093 perf_event__output_id_sample(event, &handle, &sample);
4095 perf_output_end(&handle);
4099 * task tracking -- fork/exit
4101 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
4104 struct perf_task_event {
4105 struct task_struct *task;
4106 struct perf_event_context *task_ctx;
4108 struct {
4109 struct perf_event_header header;
4111 u32 pid;
4112 u32 ppid;
4113 u32 tid;
4114 u32 ptid;
4115 u64 time;
4116 } event_id;
4119 static void perf_event_task_output(struct perf_event *event,
4120 struct perf_task_event *task_event)
4122 struct perf_output_handle handle;
4123 struct perf_sample_data sample;
4124 struct task_struct *task = task_event->task;
4125 int ret, size = task_event->event_id.header.size;
4127 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
4129 ret = perf_output_begin(&handle, event,
4130 task_event->event_id.header.size);
4131 if (ret)
4132 goto out;
4134 task_event->event_id.pid = perf_event_pid(event, task);
4135 task_event->event_id.ppid = perf_event_pid(event, current);
4137 task_event->event_id.tid = perf_event_tid(event, task);
4138 task_event->event_id.ptid = perf_event_tid(event, current);
4140 perf_output_put(&handle, task_event->event_id);
4142 perf_event__output_id_sample(event, &handle, &sample);
4144 perf_output_end(&handle);
4145 out:
4146 task_event->event_id.header.size = size;
4149 static int perf_event_task_match(struct perf_event *event)
4151 if (event->state < PERF_EVENT_STATE_INACTIVE)
4152 return 0;
4154 if (!event_filter_match(event))
4155 return 0;
4157 if (event->attr.comm || event->attr.mmap ||
4158 event->attr.mmap_data || event->attr.task)
4159 return 1;
4161 return 0;
4164 static void perf_event_task_ctx(struct perf_event_context *ctx,
4165 struct perf_task_event *task_event)
4167 struct perf_event *event;
4169 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4170 if (perf_event_task_match(event))
4171 perf_event_task_output(event, task_event);
4175 static void perf_event_task_event(struct perf_task_event *task_event)
4177 struct perf_cpu_context *cpuctx;
4178 struct perf_event_context *ctx;
4179 struct pmu *pmu;
4180 int ctxn;
4182 rcu_read_lock();
4183 list_for_each_entry_rcu(pmu, &pmus, entry) {
4184 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4185 if (cpuctx->active_pmu != pmu)
4186 goto next;
4187 perf_event_task_ctx(&cpuctx->ctx, task_event);
4189 ctx = task_event->task_ctx;
4190 if (!ctx) {
4191 ctxn = pmu->task_ctx_nr;
4192 if (ctxn < 0)
4193 goto next;
4194 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4196 if (ctx)
4197 perf_event_task_ctx(ctx, task_event);
4198 next:
4199 put_cpu_ptr(pmu->pmu_cpu_context);
4201 rcu_read_unlock();
4204 static void perf_event_task(struct task_struct *task,
4205 struct perf_event_context *task_ctx,
4206 int new)
4208 struct perf_task_event task_event;
4210 if (!atomic_read(&nr_comm_events) &&
4211 !atomic_read(&nr_mmap_events) &&
4212 !atomic_read(&nr_task_events))
4213 return;
4215 task_event = (struct perf_task_event){
4216 .task = task,
4217 .task_ctx = task_ctx,
4218 .event_id = {
4219 .header = {
4220 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4221 .misc = 0,
4222 .size = sizeof(task_event.event_id),
4224 /* .pid */
4225 /* .ppid */
4226 /* .tid */
4227 /* .ptid */
4228 .time = perf_clock(),
4232 perf_event_task_event(&task_event);
4235 void perf_event_fork(struct task_struct *task)
4237 perf_event_task(task, NULL, 1);
4241 * comm tracking
4244 struct perf_comm_event {
4245 struct task_struct *task;
4246 char *comm;
4247 int comm_size;
4249 struct {
4250 struct perf_event_header header;
4252 u32 pid;
4253 u32 tid;
4254 } event_id;
4257 static void perf_event_comm_output(struct perf_event *event,
4258 struct perf_comm_event *comm_event)
4260 struct perf_output_handle handle;
4261 struct perf_sample_data sample;
4262 int size = comm_event->event_id.header.size;
4263 int ret;
4265 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
4266 ret = perf_output_begin(&handle, event,
4267 comm_event->event_id.header.size);
4269 if (ret)
4270 goto out;
4272 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
4273 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4275 perf_output_put(&handle, comm_event->event_id);
4276 __output_copy(&handle, comm_event->comm,
4277 comm_event->comm_size);
4279 perf_event__output_id_sample(event, &handle, &sample);
4281 perf_output_end(&handle);
4282 out:
4283 comm_event->event_id.header.size = size;
4286 static int perf_event_comm_match(struct perf_event *event)
4288 if (event->state < PERF_EVENT_STATE_INACTIVE)
4289 return 0;
4291 if (!event_filter_match(event))
4292 return 0;
4294 if (event->attr.comm)
4295 return 1;
4297 return 0;
4300 static void perf_event_comm_ctx(struct perf_event_context *ctx,
4301 struct perf_comm_event *comm_event)
4303 struct perf_event *event;
4305 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4306 if (perf_event_comm_match(event))
4307 perf_event_comm_output(event, comm_event);
4311 static void perf_event_comm_event(struct perf_comm_event *comm_event)
4313 struct perf_cpu_context *cpuctx;
4314 struct perf_event_context *ctx;
4315 char comm[TASK_COMM_LEN];
4316 unsigned int size;
4317 struct pmu *pmu;
4318 int ctxn;
4320 memset(comm, 0, sizeof(comm));
4321 strlcpy(comm, comm_event->task->comm, sizeof(comm));
4322 size = ALIGN(strlen(comm)+1, sizeof(u64));
4324 comm_event->comm = comm;
4325 comm_event->comm_size = size;
4327 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
4328 rcu_read_lock();
4329 list_for_each_entry_rcu(pmu, &pmus, entry) {
4330 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4331 if (cpuctx->active_pmu != pmu)
4332 goto next;
4333 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
4335 ctxn = pmu->task_ctx_nr;
4336 if (ctxn < 0)
4337 goto next;
4339 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4340 if (ctx)
4341 perf_event_comm_ctx(ctx, comm_event);
4342 next:
4343 put_cpu_ptr(pmu->pmu_cpu_context);
4345 rcu_read_unlock();
4348 void perf_event_comm(struct task_struct *task)
4350 struct perf_comm_event comm_event;
4351 struct perf_event_context *ctx;
4352 int ctxn;
4354 for_each_task_context_nr(ctxn) {
4355 ctx = task->perf_event_ctxp[ctxn];
4356 if (!ctx)
4357 continue;
4359 perf_event_enable_on_exec(ctx);
4362 if (!atomic_read(&nr_comm_events))
4363 return;
4365 comm_event = (struct perf_comm_event){
4366 .task = task,
4367 /* .comm */
4368 /* .comm_size */
4369 .event_id = {
4370 .header = {
4371 .type = PERF_RECORD_COMM,
4372 .misc = 0,
4373 /* .size */
4375 /* .pid */
4376 /* .tid */
4380 perf_event_comm_event(&comm_event);
4384 * mmap tracking
4387 struct perf_mmap_event {
4388 struct vm_area_struct *vma;
4390 const char *file_name;
4391 int file_size;
4393 struct {
4394 struct perf_event_header header;
4396 u32 pid;
4397 u32 tid;
4398 u64 start;
4399 u64 len;
4400 u64 pgoff;
4401 } event_id;
4404 static void perf_event_mmap_output(struct perf_event *event,
4405 struct perf_mmap_event *mmap_event)
4407 struct perf_output_handle handle;
4408 struct perf_sample_data sample;
4409 int size = mmap_event->event_id.header.size;
4410 int ret;
4412 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
4413 ret = perf_output_begin(&handle, event,
4414 mmap_event->event_id.header.size);
4415 if (ret)
4416 goto out;
4418 mmap_event->event_id.pid = perf_event_pid(event, current);
4419 mmap_event->event_id.tid = perf_event_tid(event, current);
4421 perf_output_put(&handle, mmap_event->event_id);
4422 __output_copy(&handle, mmap_event->file_name,
4423 mmap_event->file_size);
4425 perf_event__output_id_sample(event, &handle, &sample);
4427 perf_output_end(&handle);
4428 out:
4429 mmap_event->event_id.header.size = size;
4432 static int perf_event_mmap_match(struct perf_event *event,
4433 struct perf_mmap_event *mmap_event,
4434 int executable)
4436 if (event->state < PERF_EVENT_STATE_INACTIVE)
4437 return 0;
4439 if (!event_filter_match(event))
4440 return 0;
4442 if ((!executable && event->attr.mmap_data) ||
4443 (executable && event->attr.mmap))
4444 return 1;
4446 return 0;
4449 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4450 struct perf_mmap_event *mmap_event,
4451 int executable)
4453 struct perf_event *event;
4455 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4456 if (perf_event_mmap_match(event, mmap_event, executable))
4457 perf_event_mmap_output(event, mmap_event);
4461 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4463 struct perf_cpu_context *cpuctx;
4464 struct perf_event_context *ctx;
4465 struct vm_area_struct *vma = mmap_event->vma;
4466 struct file *file = vma->vm_file;
4467 unsigned int size;
4468 char tmp[16];
4469 char *buf = NULL;
4470 const char *name;
4471 struct pmu *pmu;
4472 int ctxn;
4474 memset(tmp, 0, sizeof(tmp));
4476 if (file) {
4478 * d_path works from the end of the rb backwards, so we
4479 * need to add enough zero bytes after the string to handle
4480 * the 64bit alignment we do later.
4482 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4483 if (!buf) {
4484 name = strncpy(tmp, "//enomem", sizeof(tmp));
4485 goto got_name;
4487 name = d_path(&file->f_path, buf, PATH_MAX);
4488 if (IS_ERR(name)) {
4489 name = strncpy(tmp, "//toolong", sizeof(tmp));
4490 goto got_name;
4492 } else {
4493 if (arch_vma_name(mmap_event->vma)) {
4494 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
4495 sizeof(tmp));
4496 goto got_name;
4499 if (!vma->vm_mm) {
4500 name = strncpy(tmp, "[vdso]", sizeof(tmp));
4501 goto got_name;
4502 } else if (vma->vm_start <= vma->vm_mm->start_brk &&
4503 vma->vm_end >= vma->vm_mm->brk) {
4504 name = strncpy(tmp, "[heap]", sizeof(tmp));
4505 goto got_name;
4506 } else if (vma->vm_start <= vma->vm_mm->start_stack &&
4507 vma->vm_end >= vma->vm_mm->start_stack) {
4508 name = strncpy(tmp, "[stack]", sizeof(tmp));
4509 goto got_name;
4512 name = strncpy(tmp, "//anon", sizeof(tmp));
4513 goto got_name;
4516 got_name:
4517 size = ALIGN(strlen(name)+1, sizeof(u64));
4519 mmap_event->file_name = name;
4520 mmap_event->file_size = size;
4522 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4524 rcu_read_lock();
4525 list_for_each_entry_rcu(pmu, &pmus, entry) {
4526 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4527 if (cpuctx->active_pmu != pmu)
4528 goto next;
4529 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
4530 vma->vm_flags & VM_EXEC);
4532 ctxn = pmu->task_ctx_nr;
4533 if (ctxn < 0)
4534 goto next;
4536 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4537 if (ctx) {
4538 perf_event_mmap_ctx(ctx, mmap_event,
4539 vma->vm_flags & VM_EXEC);
4541 next:
4542 put_cpu_ptr(pmu->pmu_cpu_context);
4544 rcu_read_unlock();
4546 kfree(buf);
4549 void perf_event_mmap(struct vm_area_struct *vma)
4551 struct perf_mmap_event mmap_event;
4553 if (!atomic_read(&nr_mmap_events))
4554 return;
4556 mmap_event = (struct perf_mmap_event){
4557 .vma = vma,
4558 /* .file_name */
4559 /* .file_size */
4560 .event_id = {
4561 .header = {
4562 .type = PERF_RECORD_MMAP,
4563 .misc = PERF_RECORD_MISC_USER,
4564 /* .size */
4566 /* .pid */
4567 /* .tid */
4568 .start = vma->vm_start,
4569 .len = vma->vm_end - vma->vm_start,
4570 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
4574 perf_event_mmap_event(&mmap_event);
4578 * IRQ throttle logging
4581 static void perf_log_throttle(struct perf_event *event, int enable)
4583 struct perf_output_handle handle;
4584 struct perf_sample_data sample;
4585 int ret;
4587 struct {
4588 struct perf_event_header header;
4589 u64 time;
4590 u64 id;
4591 u64 stream_id;
4592 } throttle_event = {
4593 .header = {
4594 .type = PERF_RECORD_THROTTLE,
4595 .misc = 0,
4596 .size = sizeof(throttle_event),
4598 .time = perf_clock(),
4599 .id = primary_event_id(event),
4600 .stream_id = event->id,
4603 if (enable)
4604 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4606 perf_event_header__init_id(&throttle_event.header, &sample, event);
4608 ret = perf_output_begin(&handle, event,
4609 throttle_event.header.size);
4610 if (ret)
4611 return;
4613 perf_output_put(&handle, throttle_event);
4614 perf_event__output_id_sample(event, &handle, &sample);
4615 perf_output_end(&handle);
4619 * Generic event overflow handling, sampling.
4622 static int __perf_event_overflow(struct perf_event *event,
4623 int throttle, struct perf_sample_data *data,
4624 struct pt_regs *regs)
4626 int events = atomic_read(&event->event_limit);
4627 struct hw_perf_event *hwc = &event->hw;
4628 int ret = 0;
4631 * Non-sampling counters might still use the PMI to fold short
4632 * hardware counters, ignore those.
4634 if (unlikely(!is_sampling_event(event)))
4635 return 0;
4637 if (unlikely(hwc->interrupts >= max_samples_per_tick)) {
4638 if (throttle) {
4639 hwc->interrupts = MAX_INTERRUPTS;
4640 perf_log_throttle(event, 0);
4641 ret = 1;
4643 } else
4644 hwc->interrupts++;
4646 if (event->attr.freq) {
4647 u64 now = perf_clock();
4648 s64 delta = now - hwc->freq_time_stamp;
4650 hwc->freq_time_stamp = now;
4652 if (delta > 0 && delta < 2*TICK_NSEC)
4653 perf_adjust_period(event, delta, hwc->last_period);
4657 * XXX event_limit might not quite work as expected on inherited
4658 * events
4661 event->pending_kill = POLL_IN;
4662 if (events && atomic_dec_and_test(&event->event_limit)) {
4663 ret = 1;
4664 event->pending_kill = POLL_HUP;
4665 event->pending_disable = 1;
4666 irq_work_queue(&event->pending);
4669 if (event->overflow_handler)
4670 event->overflow_handler(event, data, regs);
4671 else
4672 perf_event_output(event, data, regs);
4674 if (event->fasync && event->pending_kill) {
4675 event->pending_wakeup = 1;
4676 irq_work_queue(&event->pending);
4679 return ret;
4682 int perf_event_overflow(struct perf_event *event,
4683 struct perf_sample_data *data,
4684 struct pt_regs *regs)
4686 return __perf_event_overflow(event, 1, data, regs);
4690 * Generic software event infrastructure
4693 struct swevent_htable {
4694 struct swevent_hlist *swevent_hlist;
4695 struct mutex hlist_mutex;
4696 int hlist_refcount;
4698 /* Recursion avoidance in each contexts */
4699 int recursion[PERF_NR_CONTEXTS];
4702 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
4705 * We directly increment event->count and keep a second value in
4706 * event->hw.period_left to count intervals. This period event
4707 * is kept in the range [-sample_period, 0] so that we can use the
4708 * sign as trigger.
4711 static u64 perf_swevent_set_period(struct perf_event *event)
4713 struct hw_perf_event *hwc = &event->hw;
4714 u64 period = hwc->last_period;
4715 u64 nr, offset;
4716 s64 old, val;
4718 hwc->last_period = hwc->sample_period;
4720 again:
4721 old = val = local64_read(&hwc->period_left);
4722 if (val < 0)
4723 return 0;
4725 nr = div64_u64(period + val, period);
4726 offset = nr * period;
4727 val -= offset;
4728 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4729 goto again;
4731 return nr;
4734 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4735 struct perf_sample_data *data,
4736 struct pt_regs *regs)
4738 struct hw_perf_event *hwc = &event->hw;
4739 int throttle = 0;
4741 data->period = event->hw.last_period;
4742 if (!overflow)
4743 overflow = perf_swevent_set_period(event);
4745 if (hwc->interrupts == MAX_INTERRUPTS)
4746 return;
4748 for (; overflow; overflow--) {
4749 if (__perf_event_overflow(event, throttle,
4750 data, regs)) {
4752 * We inhibit the overflow from happening when
4753 * hwc->interrupts == MAX_INTERRUPTS.
4755 break;
4757 throttle = 1;
4761 static void perf_swevent_event(struct perf_event *event, u64 nr,
4762 struct perf_sample_data *data,
4763 struct pt_regs *regs)
4765 struct hw_perf_event *hwc = &event->hw;
4767 local64_add(nr, &event->count);
4769 if (!regs)
4770 return;
4772 if (!is_sampling_event(event))
4773 return;
4775 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
4776 return perf_swevent_overflow(event, 1, data, regs);
4778 if (local64_add_negative(nr, &hwc->period_left))
4779 return;
4781 perf_swevent_overflow(event, 0, data, regs);
4784 static int perf_exclude_event(struct perf_event *event,
4785 struct pt_regs *regs)
4787 if (event->hw.state & PERF_HES_STOPPED)
4788 return 1;
4790 if (regs) {
4791 if (event->attr.exclude_user && user_mode(regs))
4792 return 1;
4794 if (event->attr.exclude_kernel && !user_mode(regs))
4795 return 1;
4798 return 0;
4801 static int perf_swevent_match(struct perf_event *event,
4802 enum perf_type_id type,
4803 u32 event_id,
4804 struct perf_sample_data *data,
4805 struct pt_regs *regs)
4807 if (event->attr.type != type)
4808 return 0;
4810 if (event->attr.config != event_id)
4811 return 0;
4813 if (perf_exclude_event(event, regs))
4814 return 0;
4816 return 1;
4819 static inline u64 swevent_hash(u64 type, u32 event_id)
4821 u64 val = event_id | (type << 32);
4823 return hash_64(val, SWEVENT_HLIST_BITS);
4826 static inline struct hlist_head *
4827 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4829 u64 hash = swevent_hash(type, event_id);
4831 return &hlist->heads[hash];
4834 /* For the read side: events when they trigger */
4835 static inline struct hlist_head *
4836 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
4838 struct swevent_hlist *hlist;
4840 hlist = rcu_dereference(swhash->swevent_hlist);
4841 if (!hlist)
4842 return NULL;
4844 return __find_swevent_head(hlist, type, event_id);
4847 /* For the event head insertion and removal in the hlist */
4848 static inline struct hlist_head *
4849 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
4851 struct swevent_hlist *hlist;
4852 u32 event_id = event->attr.config;
4853 u64 type = event->attr.type;
4856 * Event scheduling is always serialized against hlist allocation
4857 * and release. Which makes the protected version suitable here.
4858 * The context lock guarantees that.
4860 hlist = rcu_dereference_protected(swhash->swevent_hlist,
4861 lockdep_is_held(&event->ctx->lock));
4862 if (!hlist)
4863 return NULL;
4865 return __find_swevent_head(hlist, type, event_id);
4868 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4869 u64 nr,
4870 struct perf_sample_data *data,
4871 struct pt_regs *regs)
4873 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4874 struct perf_event *event;
4875 struct hlist_node *node;
4876 struct hlist_head *head;
4878 rcu_read_lock();
4879 head = find_swevent_head_rcu(swhash, type, event_id);
4880 if (!head)
4881 goto end;
4883 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4884 if (perf_swevent_match(event, type, event_id, data, regs))
4885 perf_swevent_event(event, nr, data, regs);
4887 end:
4888 rcu_read_unlock();
4891 int perf_swevent_get_recursion_context(void)
4893 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4895 return get_recursion_context(swhash->recursion);
4897 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
4899 inline void perf_swevent_put_recursion_context(int rctx)
4901 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4903 put_recursion_context(swhash->recursion, rctx);
4906 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
4908 struct perf_sample_data data;
4909 int rctx;
4911 preempt_disable_notrace();
4912 rctx = perf_swevent_get_recursion_context();
4913 if (rctx < 0)
4914 return;
4916 perf_sample_data_init(&data, addr);
4918 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
4920 perf_swevent_put_recursion_context(rctx);
4921 preempt_enable_notrace();
4924 static void perf_swevent_read(struct perf_event *event)
4928 static int perf_swevent_add(struct perf_event *event, int flags)
4930 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4931 struct hw_perf_event *hwc = &event->hw;
4932 struct hlist_head *head;
4934 if (is_sampling_event(event)) {
4935 hwc->last_period = hwc->sample_period;
4936 perf_swevent_set_period(event);
4939 hwc->state = !(flags & PERF_EF_START);
4941 head = find_swevent_head(swhash, event);
4942 if (WARN_ON_ONCE(!head))
4943 return -EINVAL;
4945 hlist_add_head_rcu(&event->hlist_entry, head);
4947 return 0;
4950 static void perf_swevent_del(struct perf_event *event, int flags)
4952 hlist_del_rcu(&event->hlist_entry);
4955 static void perf_swevent_start(struct perf_event *event, int flags)
4957 event->hw.state = 0;
4960 static void perf_swevent_stop(struct perf_event *event, int flags)
4962 event->hw.state = PERF_HES_STOPPED;
4965 /* Deref the hlist from the update side */
4966 static inline struct swevent_hlist *
4967 swevent_hlist_deref(struct swevent_htable *swhash)
4969 return rcu_dereference_protected(swhash->swevent_hlist,
4970 lockdep_is_held(&swhash->hlist_mutex));
4973 static void swevent_hlist_release(struct swevent_htable *swhash)
4975 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
4977 if (!hlist)
4978 return;
4980 rcu_assign_pointer(swhash->swevent_hlist, NULL);
4981 kfree_rcu(hlist, rcu_head);
4984 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
4986 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4988 mutex_lock(&swhash->hlist_mutex);
4990 if (!--swhash->hlist_refcount)
4991 swevent_hlist_release(swhash);
4993 mutex_unlock(&swhash->hlist_mutex);
4996 static void swevent_hlist_put(struct perf_event *event)
4998 int cpu;
5000 if (event->cpu != -1) {
5001 swevent_hlist_put_cpu(event, event->cpu);
5002 return;
5005 for_each_possible_cpu(cpu)
5006 swevent_hlist_put_cpu(event, cpu);
5009 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
5011 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5012 int err = 0;
5014 mutex_lock(&swhash->hlist_mutex);
5016 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5017 struct swevent_hlist *hlist;
5019 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5020 if (!hlist) {
5021 err = -ENOMEM;
5022 goto exit;
5024 rcu_assign_pointer(swhash->swevent_hlist, hlist);
5026 swhash->hlist_refcount++;
5027 exit:
5028 mutex_unlock(&swhash->hlist_mutex);
5030 return err;
5033 static int swevent_hlist_get(struct perf_event *event)
5035 int err;
5036 int cpu, failed_cpu;
5038 if (event->cpu != -1)
5039 return swevent_hlist_get_cpu(event, event->cpu);
5041 get_online_cpus();
5042 for_each_possible_cpu(cpu) {
5043 err = swevent_hlist_get_cpu(event, cpu);
5044 if (err) {
5045 failed_cpu = cpu;
5046 goto fail;
5049 put_online_cpus();
5051 return 0;
5052 fail:
5053 for_each_possible_cpu(cpu) {
5054 if (cpu == failed_cpu)
5055 break;
5056 swevent_hlist_put_cpu(event, cpu);
5059 put_online_cpus();
5060 return err;
5063 struct jump_label_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
5065 static void sw_perf_event_destroy(struct perf_event *event)
5067 u64 event_id = event->attr.config;
5069 WARN_ON(event->parent);
5071 jump_label_dec(&perf_swevent_enabled[event_id]);
5072 swevent_hlist_put(event);
5075 static int perf_swevent_init(struct perf_event *event)
5077 int event_id = event->attr.config;
5079 if (event->attr.type != PERF_TYPE_SOFTWARE)
5080 return -ENOENT;
5082 switch (event_id) {
5083 case PERF_COUNT_SW_CPU_CLOCK:
5084 case PERF_COUNT_SW_TASK_CLOCK:
5085 return -ENOENT;
5087 default:
5088 break;
5091 if (event_id >= PERF_COUNT_SW_MAX)
5092 return -ENOENT;
5094 if (!event->parent) {
5095 int err;
5097 err = swevent_hlist_get(event);
5098 if (err)
5099 return err;
5101 jump_label_inc(&perf_swevent_enabled[event_id]);
5102 event->destroy = sw_perf_event_destroy;
5105 return 0;
5108 static struct pmu perf_swevent = {
5109 .task_ctx_nr = perf_sw_context,
5111 .event_init = perf_swevent_init,
5112 .add = perf_swevent_add,
5113 .del = perf_swevent_del,
5114 .start = perf_swevent_start,
5115 .stop = perf_swevent_stop,
5116 .read = perf_swevent_read,
5119 #ifdef CONFIG_EVENT_TRACING
5121 static int perf_tp_filter_match(struct perf_event *event,
5122 struct perf_sample_data *data)
5124 void *record = data->raw->data;
5126 if (likely(!event->filter) || filter_match_preds(event->filter, record))
5127 return 1;
5128 return 0;
5131 static int perf_tp_event_match(struct perf_event *event,
5132 struct perf_sample_data *data,
5133 struct pt_regs *regs)
5135 if (event->hw.state & PERF_HES_STOPPED)
5136 return 0;
5138 * All tracepoints are from kernel-space.
5140 if (event->attr.exclude_kernel)
5141 return 0;
5143 if (!perf_tp_filter_match(event, data))
5144 return 0;
5146 return 1;
5149 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5150 struct pt_regs *regs, struct hlist_head *head, int rctx)
5152 struct perf_sample_data data;
5153 struct perf_event *event;
5154 struct hlist_node *node;
5156 struct perf_raw_record raw = {
5157 .size = entry_size,
5158 .data = record,
5161 perf_sample_data_init(&data, addr);
5162 data.raw = &raw;
5164 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
5165 if (perf_tp_event_match(event, &data, regs))
5166 perf_swevent_event(event, count, &data, regs);
5169 perf_swevent_put_recursion_context(rctx);
5171 EXPORT_SYMBOL_GPL(perf_tp_event);
5173 static void tp_perf_event_destroy(struct perf_event *event)
5175 perf_trace_destroy(event);
5178 static int perf_tp_event_init(struct perf_event *event)
5180 int err;
5182 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5183 return -ENOENT;
5185 err = perf_trace_init(event);
5186 if (err)
5187 return err;
5189 event->destroy = tp_perf_event_destroy;
5191 return 0;
5194 static struct pmu perf_tracepoint = {
5195 .task_ctx_nr = perf_sw_context,
5197 .event_init = perf_tp_event_init,
5198 .add = perf_trace_add,
5199 .del = perf_trace_del,
5200 .start = perf_swevent_start,
5201 .stop = perf_swevent_stop,
5202 .read = perf_swevent_read,
5205 static inline void perf_tp_register(void)
5207 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5210 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5212 char *filter_str;
5213 int ret;
5215 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5216 return -EINVAL;
5218 filter_str = strndup_user(arg, PAGE_SIZE);
5219 if (IS_ERR(filter_str))
5220 return PTR_ERR(filter_str);
5222 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
5224 kfree(filter_str);
5225 return ret;
5228 static void perf_event_free_filter(struct perf_event *event)
5230 ftrace_profile_free_filter(event);
5233 #else
5235 static inline void perf_tp_register(void)
5239 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5241 return -ENOENT;
5244 static void perf_event_free_filter(struct perf_event *event)
5248 #endif /* CONFIG_EVENT_TRACING */
5250 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5251 void perf_bp_event(struct perf_event *bp, void *data)
5253 struct perf_sample_data sample;
5254 struct pt_regs *regs = data;
5256 perf_sample_data_init(&sample, bp->attr.bp_addr);
5258 if (!bp->hw.state && !perf_exclude_event(bp, regs))
5259 perf_swevent_event(bp, 1, &sample, regs);
5261 #endif
5264 * hrtimer based swevent callback
5267 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5269 enum hrtimer_restart ret = HRTIMER_RESTART;
5270 struct perf_sample_data data;
5271 struct pt_regs *regs;
5272 struct perf_event *event;
5273 u64 period;
5275 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
5277 if (event->state != PERF_EVENT_STATE_ACTIVE)
5278 return HRTIMER_NORESTART;
5280 event->pmu->read(event);
5282 perf_sample_data_init(&data, 0);
5283 data.period = event->hw.last_period;
5284 regs = get_irq_regs();
5286 if (regs && !perf_exclude_event(event, regs)) {
5287 if (!(event->attr.exclude_idle && current->pid == 0))
5288 if (perf_event_overflow(event, &data, regs))
5289 ret = HRTIMER_NORESTART;
5292 period = max_t(u64, 10000, event->hw.sample_period);
5293 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
5295 return ret;
5298 static void perf_swevent_start_hrtimer(struct perf_event *event)
5300 struct hw_perf_event *hwc = &event->hw;
5301 s64 period;
5303 if (!is_sampling_event(event))
5304 return;
5306 period = local64_read(&hwc->period_left);
5307 if (period) {
5308 if (period < 0)
5309 period = 10000;
5311 local64_set(&hwc->period_left, 0);
5312 } else {
5313 period = max_t(u64, 10000, hwc->sample_period);
5315 __hrtimer_start_range_ns(&hwc->hrtimer,
5316 ns_to_ktime(period), 0,
5317 HRTIMER_MODE_REL_PINNED, 0);
5320 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
5322 struct hw_perf_event *hwc = &event->hw;
5324 if (is_sampling_event(event)) {
5325 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
5326 local64_set(&hwc->period_left, ktime_to_ns(remaining));
5328 hrtimer_cancel(&hwc->hrtimer);
5332 static void perf_swevent_init_hrtimer(struct perf_event *event)
5334 struct hw_perf_event *hwc = &event->hw;
5336 if (!is_sampling_event(event))
5337 return;
5339 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5340 hwc->hrtimer.function = perf_swevent_hrtimer;
5343 * Since hrtimers have a fixed rate, we can do a static freq->period
5344 * mapping and avoid the whole period adjust feedback stuff.
5346 if (event->attr.freq) {
5347 long freq = event->attr.sample_freq;
5349 event->attr.sample_period = NSEC_PER_SEC / freq;
5350 hwc->sample_period = event->attr.sample_period;
5351 local64_set(&hwc->period_left, hwc->sample_period);
5352 event->attr.freq = 0;
5357 * Software event: cpu wall time clock
5360 static void cpu_clock_event_update(struct perf_event *event)
5362 s64 prev;
5363 u64 now;
5365 now = local_clock();
5366 prev = local64_xchg(&event->hw.prev_count, now);
5367 local64_add(now - prev, &event->count);
5370 static void cpu_clock_event_start(struct perf_event *event, int flags)
5372 local64_set(&event->hw.prev_count, local_clock());
5373 perf_swevent_start_hrtimer(event);
5376 static void cpu_clock_event_stop(struct perf_event *event, int flags)
5378 perf_swevent_cancel_hrtimer(event);
5379 cpu_clock_event_update(event);
5382 static int cpu_clock_event_add(struct perf_event *event, int flags)
5384 if (flags & PERF_EF_START)
5385 cpu_clock_event_start(event, flags);
5387 return 0;
5390 static void cpu_clock_event_del(struct perf_event *event, int flags)
5392 cpu_clock_event_stop(event, flags);
5395 static void cpu_clock_event_read(struct perf_event *event)
5397 cpu_clock_event_update(event);
5400 static int cpu_clock_event_init(struct perf_event *event)
5402 if (event->attr.type != PERF_TYPE_SOFTWARE)
5403 return -ENOENT;
5405 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
5406 return -ENOENT;
5408 perf_swevent_init_hrtimer(event);
5410 return 0;
5413 static struct pmu perf_cpu_clock = {
5414 .task_ctx_nr = perf_sw_context,
5416 .event_init = cpu_clock_event_init,
5417 .add = cpu_clock_event_add,
5418 .del = cpu_clock_event_del,
5419 .start = cpu_clock_event_start,
5420 .stop = cpu_clock_event_stop,
5421 .read = cpu_clock_event_read,
5425 * Software event: task time clock
5428 static void task_clock_event_update(struct perf_event *event, u64 now)
5430 u64 prev;
5431 s64 delta;
5433 prev = local64_xchg(&event->hw.prev_count, now);
5434 delta = now - prev;
5435 local64_add(delta, &event->count);
5438 static void task_clock_event_start(struct perf_event *event, int flags)
5440 local64_set(&event->hw.prev_count, event->ctx->time);
5441 perf_swevent_start_hrtimer(event);
5444 static void task_clock_event_stop(struct perf_event *event, int flags)
5446 perf_swevent_cancel_hrtimer(event);
5447 task_clock_event_update(event, event->ctx->time);
5450 static int task_clock_event_add(struct perf_event *event, int flags)
5452 if (flags & PERF_EF_START)
5453 task_clock_event_start(event, flags);
5455 return 0;
5458 static void task_clock_event_del(struct perf_event *event, int flags)
5460 task_clock_event_stop(event, PERF_EF_UPDATE);
5463 static void task_clock_event_read(struct perf_event *event)
5465 u64 now = perf_clock();
5466 u64 delta = now - event->ctx->timestamp;
5467 u64 time = event->ctx->time + delta;
5469 task_clock_event_update(event, time);
5472 static int task_clock_event_init(struct perf_event *event)
5474 if (event->attr.type != PERF_TYPE_SOFTWARE)
5475 return -ENOENT;
5477 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
5478 return -ENOENT;
5480 perf_swevent_init_hrtimer(event);
5482 return 0;
5485 static struct pmu perf_task_clock = {
5486 .task_ctx_nr = perf_sw_context,
5488 .event_init = task_clock_event_init,
5489 .add = task_clock_event_add,
5490 .del = task_clock_event_del,
5491 .start = task_clock_event_start,
5492 .stop = task_clock_event_stop,
5493 .read = task_clock_event_read,
5496 static void perf_pmu_nop_void(struct pmu *pmu)
5500 static int perf_pmu_nop_int(struct pmu *pmu)
5502 return 0;
5505 static void perf_pmu_start_txn(struct pmu *pmu)
5507 perf_pmu_disable(pmu);
5510 static int perf_pmu_commit_txn(struct pmu *pmu)
5512 perf_pmu_enable(pmu);
5513 return 0;
5516 static void perf_pmu_cancel_txn(struct pmu *pmu)
5518 perf_pmu_enable(pmu);
5522 * Ensures all contexts with the same task_ctx_nr have the same
5523 * pmu_cpu_context too.
5525 static void *find_pmu_context(int ctxn)
5527 struct pmu *pmu;
5529 if (ctxn < 0)
5530 return NULL;
5532 list_for_each_entry(pmu, &pmus, entry) {
5533 if (pmu->task_ctx_nr == ctxn)
5534 return pmu->pmu_cpu_context;
5537 return NULL;
5540 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
5542 int cpu;
5544 for_each_possible_cpu(cpu) {
5545 struct perf_cpu_context *cpuctx;
5547 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5549 if (cpuctx->active_pmu == old_pmu)
5550 cpuctx->active_pmu = pmu;
5554 static void free_pmu_context(struct pmu *pmu)
5556 struct pmu *i;
5558 mutex_lock(&pmus_lock);
5560 * Like a real lame refcount.
5562 list_for_each_entry(i, &pmus, entry) {
5563 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
5564 update_pmu_context(i, pmu);
5565 goto out;
5569 free_percpu(pmu->pmu_cpu_context);
5570 out:
5571 mutex_unlock(&pmus_lock);
5573 static struct idr pmu_idr;
5575 static ssize_t
5576 type_show(struct device *dev, struct device_attribute *attr, char *page)
5578 struct pmu *pmu = dev_get_drvdata(dev);
5580 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
5583 static struct device_attribute pmu_dev_attrs[] = {
5584 __ATTR_RO(type),
5585 __ATTR_NULL,
5588 static int pmu_bus_running;
5589 static struct bus_type pmu_bus = {
5590 .name = "event_source",
5591 .dev_attrs = pmu_dev_attrs,
5594 static void pmu_dev_release(struct device *dev)
5596 kfree(dev);
5599 static int pmu_dev_alloc(struct pmu *pmu)
5601 int ret = -ENOMEM;
5603 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
5604 if (!pmu->dev)
5605 goto out;
5607 device_initialize(pmu->dev);
5608 ret = dev_set_name(pmu->dev, "%s", pmu->name);
5609 if (ret)
5610 goto free_dev;
5612 dev_set_drvdata(pmu->dev, pmu);
5613 pmu->dev->bus = &pmu_bus;
5614 pmu->dev->release = pmu_dev_release;
5615 ret = device_add(pmu->dev);
5616 if (ret)
5617 goto free_dev;
5619 out:
5620 return ret;
5622 free_dev:
5623 put_device(pmu->dev);
5624 goto out;
5627 static struct lock_class_key cpuctx_mutex;
5628 static struct lock_class_key cpuctx_lock;
5630 int perf_pmu_register(struct pmu *pmu, char *name, int type)
5632 int cpu, ret;
5634 mutex_lock(&pmus_lock);
5635 ret = -ENOMEM;
5636 pmu->pmu_disable_count = alloc_percpu(int);
5637 if (!pmu->pmu_disable_count)
5638 goto unlock;
5640 pmu->type = -1;
5641 if (!name)
5642 goto skip_type;
5643 pmu->name = name;
5645 if (type < 0) {
5646 int err = idr_pre_get(&pmu_idr, GFP_KERNEL);
5647 if (!err)
5648 goto free_pdc;
5650 err = idr_get_new_above(&pmu_idr, pmu, PERF_TYPE_MAX, &type);
5651 if (err) {
5652 ret = err;
5653 goto free_pdc;
5656 pmu->type = type;
5658 if (pmu_bus_running) {
5659 ret = pmu_dev_alloc(pmu);
5660 if (ret)
5661 goto free_idr;
5664 skip_type:
5665 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
5666 if (pmu->pmu_cpu_context)
5667 goto got_cpu_context;
5669 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
5670 if (!pmu->pmu_cpu_context)
5671 goto free_dev;
5673 for_each_possible_cpu(cpu) {
5674 struct perf_cpu_context *cpuctx;
5676 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5677 __perf_event_init_context(&cpuctx->ctx);
5678 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
5679 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
5680 cpuctx->ctx.type = cpu_context;
5681 cpuctx->ctx.pmu = pmu;
5682 cpuctx->jiffies_interval = 1;
5683 INIT_LIST_HEAD(&cpuctx->rotation_list);
5684 cpuctx->active_pmu = pmu;
5687 got_cpu_context:
5688 if (!pmu->start_txn) {
5689 if (pmu->pmu_enable) {
5691 * If we have pmu_enable/pmu_disable calls, install
5692 * transaction stubs that use that to try and batch
5693 * hardware accesses.
5695 pmu->start_txn = perf_pmu_start_txn;
5696 pmu->commit_txn = perf_pmu_commit_txn;
5697 pmu->cancel_txn = perf_pmu_cancel_txn;
5698 } else {
5699 pmu->start_txn = perf_pmu_nop_void;
5700 pmu->commit_txn = perf_pmu_nop_int;
5701 pmu->cancel_txn = perf_pmu_nop_void;
5705 if (!pmu->pmu_enable) {
5706 pmu->pmu_enable = perf_pmu_nop_void;
5707 pmu->pmu_disable = perf_pmu_nop_void;
5710 list_add_rcu(&pmu->entry, &pmus);
5711 ret = 0;
5712 unlock:
5713 mutex_unlock(&pmus_lock);
5715 return ret;
5717 free_dev:
5718 device_del(pmu->dev);
5719 put_device(pmu->dev);
5721 free_idr:
5722 if (pmu->type >= PERF_TYPE_MAX)
5723 idr_remove(&pmu_idr, pmu->type);
5725 free_pdc:
5726 free_percpu(pmu->pmu_disable_count);
5727 goto unlock;
5730 void perf_pmu_unregister(struct pmu *pmu)
5732 mutex_lock(&pmus_lock);
5733 list_del_rcu(&pmu->entry);
5734 mutex_unlock(&pmus_lock);
5737 * We dereference the pmu list under both SRCU and regular RCU, so
5738 * synchronize against both of those.
5740 synchronize_srcu(&pmus_srcu);
5741 synchronize_rcu();
5743 free_percpu(pmu->pmu_disable_count);
5744 if (pmu->type >= PERF_TYPE_MAX)
5745 idr_remove(&pmu_idr, pmu->type);
5746 device_del(pmu->dev);
5747 put_device(pmu->dev);
5748 free_pmu_context(pmu);
5751 struct pmu *perf_init_event(struct perf_event *event)
5753 struct pmu *pmu = NULL;
5754 int idx;
5755 int ret;
5757 idx = srcu_read_lock(&pmus_srcu);
5759 rcu_read_lock();
5760 pmu = idr_find(&pmu_idr, event->attr.type);
5761 rcu_read_unlock();
5762 if (pmu) {
5763 event->pmu = pmu;
5764 ret = pmu->event_init(event);
5765 if (ret)
5766 pmu = ERR_PTR(ret);
5767 goto unlock;
5770 list_for_each_entry_rcu(pmu, &pmus, entry) {
5771 event->pmu = pmu;
5772 ret = pmu->event_init(event);
5773 if (!ret)
5774 goto unlock;
5776 if (ret != -ENOENT) {
5777 pmu = ERR_PTR(ret);
5778 goto unlock;
5781 pmu = ERR_PTR(-ENOENT);
5782 unlock:
5783 srcu_read_unlock(&pmus_srcu, idx);
5785 return pmu;
5789 * Allocate and initialize a event structure
5791 static struct perf_event *
5792 perf_event_alloc(struct perf_event_attr *attr, int cpu,
5793 struct task_struct *task,
5794 struct perf_event *group_leader,
5795 struct perf_event *parent_event,
5796 perf_overflow_handler_t overflow_handler,
5797 void *context)
5799 struct pmu *pmu;
5800 struct perf_event *event;
5801 struct hw_perf_event *hwc;
5802 long err;
5804 if ((unsigned)cpu >= nr_cpu_ids) {
5805 if (!task || cpu != -1)
5806 return ERR_PTR(-EINVAL);
5809 event = kzalloc(sizeof(*event), GFP_KERNEL);
5810 if (!event)
5811 return ERR_PTR(-ENOMEM);
5814 * Single events are their own group leaders, with an
5815 * empty sibling list:
5817 if (!group_leader)
5818 group_leader = event;
5820 mutex_init(&event->child_mutex);
5821 INIT_LIST_HEAD(&event->child_list);
5823 INIT_LIST_HEAD(&event->group_entry);
5824 INIT_LIST_HEAD(&event->event_entry);
5825 INIT_LIST_HEAD(&event->sibling_list);
5826 init_waitqueue_head(&event->waitq);
5827 init_irq_work(&event->pending, perf_pending_event);
5829 mutex_init(&event->mmap_mutex);
5831 event->cpu = cpu;
5832 event->attr = *attr;
5833 event->group_leader = group_leader;
5834 event->pmu = NULL;
5835 event->oncpu = -1;
5837 event->parent = parent_event;
5839 event->ns = get_pid_ns(current->nsproxy->pid_ns);
5840 event->id = atomic64_inc_return(&perf_event_id);
5842 event->state = PERF_EVENT_STATE_INACTIVE;
5844 if (task) {
5845 event->attach_state = PERF_ATTACH_TASK;
5846 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5848 * hw_breakpoint is a bit difficult here..
5850 if (attr->type == PERF_TYPE_BREAKPOINT)
5851 event->hw.bp_target = task;
5852 #endif
5855 if (!overflow_handler && parent_event) {
5856 overflow_handler = parent_event->overflow_handler;
5857 context = parent_event->overflow_handler_context;
5860 event->overflow_handler = overflow_handler;
5861 event->overflow_handler_context = context;
5863 if (attr->disabled)
5864 event->state = PERF_EVENT_STATE_OFF;
5866 pmu = NULL;
5868 hwc = &event->hw;
5869 hwc->sample_period = attr->sample_period;
5870 if (attr->freq && attr->sample_freq)
5871 hwc->sample_period = 1;
5872 hwc->last_period = hwc->sample_period;
5874 local64_set(&hwc->period_left, hwc->sample_period);
5877 * we currently do not support PERF_FORMAT_GROUP on inherited events
5879 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
5880 goto done;
5882 pmu = perf_init_event(event);
5884 done:
5885 err = 0;
5886 if (!pmu)
5887 err = -EINVAL;
5888 else if (IS_ERR(pmu))
5889 err = PTR_ERR(pmu);
5891 if (err) {
5892 if (event->ns)
5893 put_pid_ns(event->ns);
5894 kfree(event);
5895 return ERR_PTR(err);
5898 if (!event->parent) {
5899 if (event->attach_state & PERF_ATTACH_TASK)
5900 jump_label_inc(&perf_sched_events);
5901 if (event->attr.mmap || event->attr.mmap_data)
5902 atomic_inc(&nr_mmap_events);
5903 if (event->attr.comm)
5904 atomic_inc(&nr_comm_events);
5905 if (event->attr.task)
5906 atomic_inc(&nr_task_events);
5907 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
5908 err = get_callchain_buffers();
5909 if (err) {
5910 free_event(event);
5911 return ERR_PTR(err);
5916 return event;
5919 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5920 struct perf_event_attr *attr)
5922 u32 size;
5923 int ret;
5925 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
5926 return -EFAULT;
5929 * zero the full structure, so that a short copy will be nice.
5931 memset(attr, 0, sizeof(*attr));
5933 ret = get_user(size, &uattr->size);
5934 if (ret)
5935 return ret;
5937 if (size > PAGE_SIZE) /* silly large */
5938 goto err_size;
5940 if (!size) /* abi compat */
5941 size = PERF_ATTR_SIZE_VER0;
5943 if (size < PERF_ATTR_SIZE_VER0)
5944 goto err_size;
5947 * If we're handed a bigger struct than we know of,
5948 * ensure all the unknown bits are 0 - i.e. new
5949 * user-space does not rely on any kernel feature
5950 * extensions we dont know about yet.
5952 if (size > sizeof(*attr)) {
5953 unsigned char __user *addr;
5954 unsigned char __user *end;
5955 unsigned char val;
5957 addr = (void __user *)uattr + sizeof(*attr);
5958 end = (void __user *)uattr + size;
5960 for (; addr < end; addr++) {
5961 ret = get_user(val, addr);
5962 if (ret)
5963 return ret;
5964 if (val)
5965 goto err_size;
5967 size = sizeof(*attr);
5970 ret = copy_from_user(attr, uattr, size);
5971 if (ret)
5972 return -EFAULT;
5974 if (attr->__reserved_1)
5975 return -EINVAL;
5977 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
5978 return -EINVAL;
5980 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
5981 return -EINVAL;
5983 out:
5984 return ret;
5986 err_size:
5987 put_user(sizeof(*attr), &uattr->size);
5988 ret = -E2BIG;
5989 goto out;
5992 static int
5993 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
5995 struct ring_buffer *rb = NULL, *old_rb = NULL;
5996 int ret = -EINVAL;
5998 if (!output_event)
5999 goto set;
6001 /* don't allow circular references */
6002 if (event == output_event)
6003 goto out;
6006 * Don't allow cross-cpu buffers
6008 if (output_event->cpu != event->cpu)
6009 goto out;
6012 * If its not a per-cpu rb, it must be the same task.
6014 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
6015 goto out;
6017 set:
6018 mutex_lock(&event->mmap_mutex);
6019 /* Can't redirect output if we've got an active mmap() */
6020 if (atomic_read(&event->mmap_count))
6021 goto unlock;
6023 if (output_event) {
6024 /* get the rb we want to redirect to */
6025 rb = ring_buffer_get(output_event);
6026 if (!rb)
6027 goto unlock;
6030 old_rb = event->rb;
6031 rcu_assign_pointer(event->rb, rb);
6032 ret = 0;
6033 unlock:
6034 mutex_unlock(&event->mmap_mutex);
6036 if (old_rb)
6037 ring_buffer_put(old_rb);
6038 out:
6039 return ret;
6043 * sys_perf_event_open - open a performance event, associate it to a task/cpu
6045 * @attr_uptr: event_id type attributes for monitoring/sampling
6046 * @pid: target pid
6047 * @cpu: target cpu
6048 * @group_fd: group leader event fd
6050 SYSCALL_DEFINE5(perf_event_open,
6051 struct perf_event_attr __user *, attr_uptr,
6052 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
6054 struct perf_event *group_leader = NULL, *output_event = NULL;
6055 struct perf_event *event, *sibling;
6056 struct perf_event_attr attr;
6057 struct perf_event_context *ctx;
6058 struct file *event_file = NULL;
6059 struct file *group_file = NULL;
6060 struct task_struct *task = NULL;
6061 struct pmu *pmu;
6062 int event_fd;
6063 int move_group = 0;
6064 int fput_needed = 0;
6065 int err;
6067 /* for future expandability... */
6068 if (flags & ~PERF_FLAG_ALL)
6069 return -EINVAL;
6071 err = perf_copy_attr(attr_uptr, &attr);
6072 if (err)
6073 return err;
6075 if (!attr.exclude_kernel) {
6076 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6077 return -EACCES;
6080 if (attr.freq) {
6081 if (attr.sample_freq > sysctl_perf_event_sample_rate)
6082 return -EINVAL;
6086 * In cgroup mode, the pid argument is used to pass the fd
6087 * opened to the cgroup directory in cgroupfs. The cpu argument
6088 * designates the cpu on which to monitor threads from that
6089 * cgroup.
6091 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
6092 return -EINVAL;
6094 event_fd = get_unused_fd_flags(O_RDWR);
6095 if (event_fd < 0)
6096 return event_fd;
6098 if (group_fd != -1) {
6099 group_leader = perf_fget_light(group_fd, &fput_needed);
6100 if (IS_ERR(group_leader)) {
6101 err = PTR_ERR(group_leader);
6102 goto err_fd;
6104 group_file = group_leader->filp;
6105 if (flags & PERF_FLAG_FD_OUTPUT)
6106 output_event = group_leader;
6107 if (flags & PERF_FLAG_FD_NO_GROUP)
6108 group_leader = NULL;
6111 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
6112 task = find_lively_task_by_vpid(pid);
6113 if (IS_ERR(task)) {
6114 err = PTR_ERR(task);
6115 goto err_group_fd;
6119 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
6120 NULL, NULL);
6121 if (IS_ERR(event)) {
6122 err = PTR_ERR(event);
6123 goto err_task;
6126 if (flags & PERF_FLAG_PID_CGROUP) {
6127 err = perf_cgroup_connect(pid, event, &attr, group_leader);
6128 if (err)
6129 goto err_alloc;
6131 * one more event:
6132 * - that has cgroup constraint on event->cpu
6133 * - that may need work on context switch
6135 atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
6136 jump_label_inc(&perf_sched_events);
6140 * Special case software events and allow them to be part of
6141 * any hardware group.
6143 pmu = event->pmu;
6145 if (group_leader &&
6146 (is_software_event(event) != is_software_event(group_leader))) {
6147 if (is_software_event(event)) {
6149 * If event and group_leader are not both a software
6150 * event, and event is, then group leader is not.
6152 * Allow the addition of software events to !software
6153 * groups, this is safe because software events never
6154 * fail to schedule.
6156 pmu = group_leader->pmu;
6157 } else if (is_software_event(group_leader) &&
6158 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
6160 * In case the group is a pure software group, and we
6161 * try to add a hardware event, move the whole group to
6162 * the hardware context.
6164 move_group = 1;
6169 * Get the target context (task or percpu):
6171 ctx = find_get_context(pmu, task, cpu);
6172 if (IS_ERR(ctx)) {
6173 err = PTR_ERR(ctx);
6174 goto err_alloc;
6177 if (task) {
6178 put_task_struct(task);
6179 task = NULL;
6183 * Look up the group leader (we will attach this event to it):
6185 if (group_leader) {
6186 err = -EINVAL;
6189 * Do not allow a recursive hierarchy (this new sibling
6190 * becoming part of another group-sibling):
6192 if (group_leader->group_leader != group_leader)
6193 goto err_context;
6195 * Do not allow to attach to a group in a different
6196 * task or CPU context:
6198 if (move_group) {
6199 if (group_leader->ctx->type != ctx->type)
6200 goto err_context;
6201 } else {
6202 if (group_leader->ctx != ctx)
6203 goto err_context;
6207 * Only a group leader can be exclusive or pinned
6209 if (attr.exclusive || attr.pinned)
6210 goto err_context;
6213 if (output_event) {
6214 err = perf_event_set_output(event, output_event);
6215 if (err)
6216 goto err_context;
6219 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
6220 if (IS_ERR(event_file)) {
6221 err = PTR_ERR(event_file);
6222 goto err_context;
6225 if (move_group) {
6226 struct perf_event_context *gctx = group_leader->ctx;
6228 mutex_lock(&gctx->mutex);
6229 perf_remove_from_context(group_leader);
6230 list_for_each_entry(sibling, &group_leader->sibling_list,
6231 group_entry) {
6232 perf_remove_from_context(sibling);
6233 put_ctx(gctx);
6235 mutex_unlock(&gctx->mutex);
6236 put_ctx(gctx);
6239 event->filp = event_file;
6240 WARN_ON_ONCE(ctx->parent_ctx);
6241 mutex_lock(&ctx->mutex);
6243 if (move_group) {
6244 perf_install_in_context(ctx, group_leader, cpu);
6245 get_ctx(ctx);
6246 list_for_each_entry(sibling, &group_leader->sibling_list,
6247 group_entry) {
6248 perf_install_in_context(ctx, sibling, cpu);
6249 get_ctx(ctx);
6253 perf_install_in_context(ctx, event, cpu);
6254 ++ctx->generation;
6255 perf_unpin_context(ctx);
6256 mutex_unlock(&ctx->mutex);
6258 event->owner = current;
6260 mutex_lock(&current->perf_event_mutex);
6261 list_add_tail(&event->owner_entry, &current->perf_event_list);
6262 mutex_unlock(&current->perf_event_mutex);
6265 * Precalculate sample_data sizes
6267 perf_event__header_size(event);
6268 perf_event__id_header_size(event);
6271 * Drop the reference on the group_event after placing the
6272 * new event on the sibling_list. This ensures destruction
6273 * of the group leader will find the pointer to itself in
6274 * perf_group_detach().
6276 fput_light(group_file, fput_needed);
6277 fd_install(event_fd, event_file);
6278 return event_fd;
6280 err_context:
6281 perf_unpin_context(ctx);
6282 put_ctx(ctx);
6283 err_alloc:
6284 free_event(event);
6285 err_task:
6286 if (task)
6287 put_task_struct(task);
6288 err_group_fd:
6289 fput_light(group_file, fput_needed);
6290 err_fd:
6291 put_unused_fd(event_fd);
6292 return err;
6296 * perf_event_create_kernel_counter
6298 * @attr: attributes of the counter to create
6299 * @cpu: cpu in which the counter is bound
6300 * @task: task to profile (NULL for percpu)
6302 struct perf_event *
6303 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
6304 struct task_struct *task,
6305 perf_overflow_handler_t overflow_handler,
6306 void *context)
6308 struct perf_event_context *ctx;
6309 struct perf_event *event;
6310 int err;
6313 * Get the target context (task or percpu):
6316 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
6317 overflow_handler, context);
6318 if (IS_ERR(event)) {
6319 err = PTR_ERR(event);
6320 goto err;
6323 ctx = find_get_context(event->pmu, task, cpu);
6324 if (IS_ERR(ctx)) {
6325 err = PTR_ERR(ctx);
6326 goto err_free;
6329 event->filp = NULL;
6330 WARN_ON_ONCE(ctx->parent_ctx);
6331 mutex_lock(&ctx->mutex);
6332 perf_install_in_context(ctx, event, cpu);
6333 ++ctx->generation;
6334 perf_unpin_context(ctx);
6335 mutex_unlock(&ctx->mutex);
6337 return event;
6339 err_free:
6340 free_event(event);
6341 err:
6342 return ERR_PTR(err);
6344 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
6346 static void sync_child_event(struct perf_event *child_event,
6347 struct task_struct *child)
6349 struct perf_event *parent_event = child_event->parent;
6350 u64 child_val;
6352 if (child_event->attr.inherit_stat)
6353 perf_event_read_event(child_event, child);
6355 child_val = perf_event_count(child_event);
6358 * Add back the child's count to the parent's count:
6360 atomic64_add(child_val, &parent_event->child_count);
6361 atomic64_add(child_event->total_time_enabled,
6362 &parent_event->child_total_time_enabled);
6363 atomic64_add(child_event->total_time_running,
6364 &parent_event->child_total_time_running);
6367 * Remove this event from the parent's list
6369 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6370 mutex_lock(&parent_event->child_mutex);
6371 list_del_init(&child_event->child_list);
6372 mutex_unlock(&parent_event->child_mutex);
6375 * Release the parent event, if this was the last
6376 * reference to it.
6378 fput(parent_event->filp);
6381 static void
6382 __perf_event_exit_task(struct perf_event *child_event,
6383 struct perf_event_context *child_ctx,
6384 struct task_struct *child)
6386 if (child_event->parent) {
6387 raw_spin_lock_irq(&child_ctx->lock);
6388 perf_group_detach(child_event);
6389 raw_spin_unlock_irq(&child_ctx->lock);
6392 perf_remove_from_context(child_event);
6395 * It can happen that the parent exits first, and has events
6396 * that are still around due to the child reference. These
6397 * events need to be zapped.
6399 if (child_event->parent) {
6400 sync_child_event(child_event, child);
6401 free_event(child_event);
6405 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
6407 struct perf_event *child_event, *tmp;
6408 struct perf_event_context *child_ctx;
6409 unsigned long flags;
6411 if (likely(!child->perf_event_ctxp[ctxn])) {
6412 perf_event_task(child, NULL, 0);
6413 return;
6416 local_irq_save(flags);
6418 * We can't reschedule here because interrupts are disabled,
6419 * and either child is current or it is a task that can't be
6420 * scheduled, so we are now safe from rescheduling changing
6421 * our context.
6423 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
6426 * Take the context lock here so that if find_get_context is
6427 * reading child->perf_event_ctxp, we wait until it has
6428 * incremented the context's refcount before we do put_ctx below.
6430 raw_spin_lock(&child_ctx->lock);
6431 task_ctx_sched_out(child_ctx);
6432 child->perf_event_ctxp[ctxn] = NULL;
6434 * If this context is a clone; unclone it so it can't get
6435 * swapped to another process while we're removing all
6436 * the events from it.
6438 unclone_ctx(child_ctx);
6439 update_context_time(child_ctx);
6440 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6443 * Report the task dead after unscheduling the events so that we
6444 * won't get any samples after PERF_RECORD_EXIT. We can however still
6445 * get a few PERF_RECORD_READ events.
6447 perf_event_task(child, child_ctx, 0);
6450 * We can recurse on the same lock type through:
6452 * __perf_event_exit_task()
6453 * sync_child_event()
6454 * fput(parent_event->filp)
6455 * perf_release()
6456 * mutex_lock(&ctx->mutex)
6458 * But since its the parent context it won't be the same instance.
6460 mutex_lock(&child_ctx->mutex);
6462 again:
6463 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
6464 group_entry)
6465 __perf_event_exit_task(child_event, child_ctx, child);
6467 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
6468 group_entry)
6469 __perf_event_exit_task(child_event, child_ctx, child);
6472 * If the last event was a group event, it will have appended all
6473 * its siblings to the list, but we obtained 'tmp' before that which
6474 * will still point to the list head terminating the iteration.
6476 if (!list_empty(&child_ctx->pinned_groups) ||
6477 !list_empty(&child_ctx->flexible_groups))
6478 goto again;
6480 mutex_unlock(&child_ctx->mutex);
6482 put_ctx(child_ctx);
6486 * When a child task exits, feed back event values to parent events.
6488 void perf_event_exit_task(struct task_struct *child)
6490 struct perf_event *event, *tmp;
6491 int ctxn;
6493 mutex_lock(&child->perf_event_mutex);
6494 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
6495 owner_entry) {
6496 list_del_init(&event->owner_entry);
6499 * Ensure the list deletion is visible before we clear
6500 * the owner, closes a race against perf_release() where
6501 * we need to serialize on the owner->perf_event_mutex.
6503 smp_wmb();
6504 event->owner = NULL;
6506 mutex_unlock(&child->perf_event_mutex);
6508 for_each_task_context_nr(ctxn)
6509 perf_event_exit_task_context(child, ctxn);
6512 static void perf_free_event(struct perf_event *event,
6513 struct perf_event_context *ctx)
6515 struct perf_event *parent = event->parent;
6517 if (WARN_ON_ONCE(!parent))
6518 return;
6520 mutex_lock(&parent->child_mutex);
6521 list_del_init(&event->child_list);
6522 mutex_unlock(&parent->child_mutex);
6524 fput(parent->filp);
6526 perf_group_detach(event);
6527 list_del_event(event, ctx);
6528 free_event(event);
6532 * free an unexposed, unused context as created by inheritance by
6533 * perf_event_init_task below, used by fork() in case of fail.
6535 void perf_event_free_task(struct task_struct *task)
6537 struct perf_event_context *ctx;
6538 struct perf_event *event, *tmp;
6539 int ctxn;
6541 for_each_task_context_nr(ctxn) {
6542 ctx = task->perf_event_ctxp[ctxn];
6543 if (!ctx)
6544 continue;
6546 mutex_lock(&ctx->mutex);
6547 again:
6548 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
6549 group_entry)
6550 perf_free_event(event, ctx);
6552 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
6553 group_entry)
6554 perf_free_event(event, ctx);
6556 if (!list_empty(&ctx->pinned_groups) ||
6557 !list_empty(&ctx->flexible_groups))
6558 goto again;
6560 mutex_unlock(&ctx->mutex);
6562 put_ctx(ctx);
6566 void perf_event_delayed_put(struct task_struct *task)
6568 int ctxn;
6570 for_each_task_context_nr(ctxn)
6571 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
6575 * inherit a event from parent task to child task:
6577 static struct perf_event *
6578 inherit_event(struct perf_event *parent_event,
6579 struct task_struct *parent,
6580 struct perf_event_context *parent_ctx,
6581 struct task_struct *child,
6582 struct perf_event *group_leader,
6583 struct perf_event_context *child_ctx)
6585 struct perf_event *child_event;
6586 unsigned long flags;
6589 * Instead of creating recursive hierarchies of events,
6590 * we link inherited events back to the original parent,
6591 * which has a filp for sure, which we use as the reference
6592 * count:
6594 if (parent_event->parent)
6595 parent_event = parent_event->parent;
6597 child_event = perf_event_alloc(&parent_event->attr,
6598 parent_event->cpu,
6599 child,
6600 group_leader, parent_event,
6601 NULL, NULL);
6602 if (IS_ERR(child_event))
6603 return child_event;
6604 get_ctx(child_ctx);
6607 * Make the child state follow the state of the parent event,
6608 * not its attr.disabled bit. We hold the parent's mutex,
6609 * so we won't race with perf_event_{en, dis}able_family.
6611 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
6612 child_event->state = PERF_EVENT_STATE_INACTIVE;
6613 else
6614 child_event->state = PERF_EVENT_STATE_OFF;
6616 if (parent_event->attr.freq) {
6617 u64 sample_period = parent_event->hw.sample_period;
6618 struct hw_perf_event *hwc = &child_event->hw;
6620 hwc->sample_period = sample_period;
6621 hwc->last_period = sample_period;
6623 local64_set(&hwc->period_left, sample_period);
6626 child_event->ctx = child_ctx;
6627 child_event->overflow_handler = parent_event->overflow_handler;
6628 child_event->overflow_handler_context
6629 = parent_event->overflow_handler_context;
6632 * Precalculate sample_data sizes
6634 perf_event__header_size(child_event);
6635 perf_event__id_header_size(child_event);
6638 * Link it up in the child's context:
6640 raw_spin_lock_irqsave(&child_ctx->lock, flags);
6641 add_event_to_ctx(child_event, child_ctx);
6642 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6645 * Get a reference to the parent filp - we will fput it
6646 * when the child event exits. This is safe to do because
6647 * we are in the parent and we know that the filp still
6648 * exists and has a nonzero count:
6650 atomic_long_inc(&parent_event->filp->f_count);
6653 * Link this into the parent event's child list
6655 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6656 mutex_lock(&parent_event->child_mutex);
6657 list_add_tail(&child_event->child_list, &parent_event->child_list);
6658 mutex_unlock(&parent_event->child_mutex);
6660 return child_event;
6663 static int inherit_group(struct perf_event *parent_event,
6664 struct task_struct *parent,
6665 struct perf_event_context *parent_ctx,
6666 struct task_struct *child,
6667 struct perf_event_context *child_ctx)
6669 struct perf_event *leader;
6670 struct perf_event *sub;
6671 struct perf_event *child_ctr;
6673 leader = inherit_event(parent_event, parent, parent_ctx,
6674 child, NULL, child_ctx);
6675 if (IS_ERR(leader))
6676 return PTR_ERR(leader);
6677 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
6678 child_ctr = inherit_event(sub, parent, parent_ctx,
6679 child, leader, child_ctx);
6680 if (IS_ERR(child_ctr))
6681 return PTR_ERR(child_ctr);
6683 return 0;
6686 static int
6687 inherit_task_group(struct perf_event *event, struct task_struct *parent,
6688 struct perf_event_context *parent_ctx,
6689 struct task_struct *child, int ctxn,
6690 int *inherited_all)
6692 int ret;
6693 struct perf_event_context *child_ctx;
6695 if (!event->attr.inherit) {
6696 *inherited_all = 0;
6697 return 0;
6700 child_ctx = child->perf_event_ctxp[ctxn];
6701 if (!child_ctx) {
6703 * This is executed from the parent task context, so
6704 * inherit events that have been marked for cloning.
6705 * First allocate and initialize a context for the
6706 * child.
6709 child_ctx = alloc_perf_context(event->pmu, child);
6710 if (!child_ctx)
6711 return -ENOMEM;
6713 child->perf_event_ctxp[ctxn] = child_ctx;
6716 ret = inherit_group(event, parent, parent_ctx,
6717 child, child_ctx);
6719 if (ret)
6720 *inherited_all = 0;
6722 return ret;
6726 * Initialize the perf_event context in task_struct
6728 int perf_event_init_context(struct task_struct *child, int ctxn)
6730 struct perf_event_context *child_ctx, *parent_ctx;
6731 struct perf_event_context *cloned_ctx;
6732 struct perf_event *event;
6733 struct task_struct *parent = current;
6734 int inherited_all = 1;
6735 unsigned long flags;
6736 int ret = 0;
6738 if (likely(!parent->perf_event_ctxp[ctxn]))
6739 return 0;
6742 * If the parent's context is a clone, pin it so it won't get
6743 * swapped under us.
6745 parent_ctx = perf_pin_task_context(parent, ctxn);
6748 * No need to check if parent_ctx != NULL here; since we saw
6749 * it non-NULL earlier, the only reason for it to become NULL
6750 * is if we exit, and since we're currently in the middle of
6751 * a fork we can't be exiting at the same time.
6755 * Lock the parent list. No need to lock the child - not PID
6756 * hashed yet and not running, so nobody can access it.
6758 mutex_lock(&parent_ctx->mutex);
6761 * We dont have to disable NMIs - we are only looking at
6762 * the list, not manipulating it:
6764 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
6765 ret = inherit_task_group(event, parent, parent_ctx,
6766 child, ctxn, &inherited_all);
6767 if (ret)
6768 break;
6772 * We can't hold ctx->lock when iterating the ->flexible_group list due
6773 * to allocations, but we need to prevent rotation because
6774 * rotate_ctx() will change the list from interrupt context.
6776 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
6777 parent_ctx->rotate_disable = 1;
6778 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
6780 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
6781 ret = inherit_task_group(event, parent, parent_ctx,
6782 child, ctxn, &inherited_all);
6783 if (ret)
6784 break;
6787 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
6788 parent_ctx->rotate_disable = 0;
6790 child_ctx = child->perf_event_ctxp[ctxn];
6792 if (child_ctx && inherited_all) {
6794 * Mark the child context as a clone of the parent
6795 * context, or of whatever the parent is a clone of.
6797 * Note that if the parent is a clone, the holding of
6798 * parent_ctx->lock avoids it from being uncloned.
6800 cloned_ctx = parent_ctx->parent_ctx;
6801 if (cloned_ctx) {
6802 child_ctx->parent_ctx = cloned_ctx;
6803 child_ctx->parent_gen = parent_ctx->parent_gen;
6804 } else {
6805 child_ctx->parent_ctx = parent_ctx;
6806 child_ctx->parent_gen = parent_ctx->generation;
6808 get_ctx(child_ctx->parent_ctx);
6811 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
6812 mutex_unlock(&parent_ctx->mutex);
6814 perf_unpin_context(parent_ctx);
6815 put_ctx(parent_ctx);
6817 return ret;
6821 * Initialize the perf_event context in task_struct
6823 int perf_event_init_task(struct task_struct *child)
6825 int ctxn, ret;
6827 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
6828 mutex_init(&child->perf_event_mutex);
6829 INIT_LIST_HEAD(&child->perf_event_list);
6831 for_each_task_context_nr(ctxn) {
6832 ret = perf_event_init_context(child, ctxn);
6833 if (ret)
6834 return ret;
6837 return 0;
6840 static void __init perf_event_init_all_cpus(void)
6842 struct swevent_htable *swhash;
6843 int cpu;
6845 for_each_possible_cpu(cpu) {
6846 swhash = &per_cpu(swevent_htable, cpu);
6847 mutex_init(&swhash->hlist_mutex);
6848 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
6852 static void __cpuinit perf_event_init_cpu(int cpu)
6854 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6856 mutex_lock(&swhash->hlist_mutex);
6857 if (swhash->hlist_refcount > 0) {
6858 struct swevent_hlist *hlist;
6860 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
6861 WARN_ON(!hlist);
6862 rcu_assign_pointer(swhash->swevent_hlist, hlist);
6864 mutex_unlock(&swhash->hlist_mutex);
6867 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
6868 static void perf_pmu_rotate_stop(struct pmu *pmu)
6870 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6872 WARN_ON(!irqs_disabled());
6874 list_del_init(&cpuctx->rotation_list);
6877 static void __perf_event_exit_context(void *__info)
6879 struct perf_event_context *ctx = __info;
6880 struct perf_event *event, *tmp;
6882 perf_pmu_rotate_stop(ctx->pmu);
6884 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
6885 __perf_remove_from_context(event);
6886 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
6887 __perf_remove_from_context(event);
6890 static void perf_event_exit_cpu_context(int cpu)
6892 struct perf_event_context *ctx;
6893 struct pmu *pmu;
6894 int idx;
6896 idx = srcu_read_lock(&pmus_srcu);
6897 list_for_each_entry_rcu(pmu, &pmus, entry) {
6898 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
6900 mutex_lock(&ctx->mutex);
6901 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
6902 mutex_unlock(&ctx->mutex);
6904 srcu_read_unlock(&pmus_srcu, idx);
6907 static void perf_event_exit_cpu(int cpu)
6909 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6911 mutex_lock(&swhash->hlist_mutex);
6912 swevent_hlist_release(swhash);
6913 mutex_unlock(&swhash->hlist_mutex);
6915 perf_event_exit_cpu_context(cpu);
6917 #else
6918 static inline void perf_event_exit_cpu(int cpu) { }
6919 #endif
6921 static int
6922 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
6924 int cpu;
6926 for_each_online_cpu(cpu)
6927 perf_event_exit_cpu(cpu);
6929 return NOTIFY_OK;
6933 * Run the perf reboot notifier at the very last possible moment so that
6934 * the generic watchdog code runs as long as possible.
6936 static struct notifier_block perf_reboot_notifier = {
6937 .notifier_call = perf_reboot,
6938 .priority = INT_MIN,
6941 static int __cpuinit
6942 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
6944 unsigned int cpu = (long)hcpu;
6946 switch (action & ~CPU_TASKS_FROZEN) {
6948 case CPU_UP_PREPARE:
6949 case CPU_DOWN_FAILED:
6950 perf_event_init_cpu(cpu);
6951 break;
6953 case CPU_UP_CANCELED:
6954 case CPU_DOWN_PREPARE:
6955 perf_event_exit_cpu(cpu);
6956 break;
6958 default:
6959 break;
6962 return NOTIFY_OK;
6965 void __init perf_event_init(void)
6967 int ret;
6969 idr_init(&pmu_idr);
6971 perf_event_init_all_cpus();
6972 init_srcu_struct(&pmus_srcu);
6973 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
6974 perf_pmu_register(&perf_cpu_clock, NULL, -1);
6975 perf_pmu_register(&perf_task_clock, NULL, -1);
6976 perf_tp_register();
6977 perf_cpu_notifier(perf_cpu_notify);
6978 register_reboot_notifier(&perf_reboot_notifier);
6980 ret = init_hw_breakpoint();
6981 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
6984 static int __init perf_event_sysfs_init(void)
6986 struct pmu *pmu;
6987 int ret;
6989 mutex_lock(&pmus_lock);
6991 ret = bus_register(&pmu_bus);
6992 if (ret)
6993 goto unlock;
6995 list_for_each_entry(pmu, &pmus, entry) {
6996 if (!pmu->name || pmu->type < 0)
6997 continue;
6999 ret = pmu_dev_alloc(pmu);
7000 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
7002 pmu_bus_running = 1;
7003 ret = 0;
7005 unlock:
7006 mutex_unlock(&pmus_lock);
7008 return ret;
7010 device_initcall(perf_event_sysfs_init);
7012 #ifdef CONFIG_CGROUP_PERF
7013 static struct cgroup_subsys_state *perf_cgroup_create(
7014 struct cgroup_subsys *ss, struct cgroup *cont)
7016 struct perf_cgroup *jc;
7018 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
7019 if (!jc)
7020 return ERR_PTR(-ENOMEM);
7022 jc->info = alloc_percpu(struct perf_cgroup_info);
7023 if (!jc->info) {
7024 kfree(jc);
7025 return ERR_PTR(-ENOMEM);
7028 return &jc->css;
7031 static void perf_cgroup_destroy(struct cgroup_subsys *ss,
7032 struct cgroup *cont)
7034 struct perf_cgroup *jc;
7035 jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
7036 struct perf_cgroup, css);
7037 free_percpu(jc->info);
7038 kfree(jc);
7041 static int __perf_cgroup_move(void *info)
7043 struct task_struct *task = info;
7044 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
7045 return 0;
7048 static void
7049 perf_cgroup_attach_task(struct cgroup *cgrp, struct task_struct *task)
7051 task_function_call(task, __perf_cgroup_move, task);
7054 static void perf_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
7055 struct cgroup *old_cgrp, struct task_struct *task)
7058 * cgroup_exit() is called in the copy_process() failure path.
7059 * Ignore this case since the task hasn't ran yet, this avoids
7060 * trying to poke a half freed task state from generic code.
7062 if (!(task->flags & PF_EXITING))
7063 return;
7065 perf_cgroup_attach_task(cgrp, task);
7068 struct cgroup_subsys perf_subsys = {
7069 .name = "perf_event",
7070 .subsys_id = perf_subsys_id,
7071 .create = perf_cgroup_create,
7072 .destroy = perf_cgroup_destroy,
7073 .exit = perf_cgroup_exit,
7074 .attach_task = perf_cgroup_attach_task,
7076 #endif /* CONFIG_CGROUP_PERF */