memcg: rename mem_cgroup_zone_nr_pages() to mem_cgroup_zone_nr_lru_pages()
[linux-2.6.git] / mm / memcontrol.c
blobcc48a6854f7e5aa9ac9f38507b4637bed7e63114
1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
27 #include <linux/mm.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/mutex.h>
37 #include <linux/rbtree.h>
38 #include <linux/slab.h>
39 #include <linux/swap.h>
40 #include <linux/swapops.h>
41 #include <linux/spinlock.h>
42 #include <linux/eventfd.h>
43 #include <linux/sort.h>
44 #include <linux/fs.h>
45 #include <linux/seq_file.h>
46 #include <linux/vmalloc.h>
47 #include <linux/mm_inline.h>
48 #include <linux/page_cgroup.h>
49 #include <linux/cpu.h>
50 #include <linux/oom.h>
51 #include "internal.h"
53 #include <asm/uaccess.h>
55 #include <trace/events/vmscan.h>
57 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
58 #define MEM_CGROUP_RECLAIM_RETRIES 5
59 struct mem_cgroup *root_mem_cgroup __read_mostly;
61 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
62 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
63 int do_swap_account __read_mostly;
65 /* for remember boot option*/
66 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
67 static int really_do_swap_account __initdata = 1;
68 #else
69 static int really_do_swap_account __initdata = 0;
70 #endif
72 #else
73 #define do_swap_account (0)
74 #endif
78 * Statistics for memory cgroup.
80 enum mem_cgroup_stat_index {
82 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
84 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
85 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
86 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
87 MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
88 MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
89 MEM_CGROUP_ON_MOVE, /* someone is moving account between groups */
90 MEM_CGROUP_STAT_NSTATS,
93 enum mem_cgroup_events_index {
94 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
95 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
96 MEM_CGROUP_EVENTS_COUNT, /* # of pages paged in/out */
97 MEM_CGROUP_EVENTS_NSTATS,
100 * Per memcg event counter is incremented at every pagein/pageout. With THP,
101 * it will be incremated by the number of pages. This counter is used for
102 * for trigger some periodic events. This is straightforward and better
103 * than using jiffies etc. to handle periodic memcg event.
105 enum mem_cgroup_events_target {
106 MEM_CGROUP_TARGET_THRESH,
107 MEM_CGROUP_TARGET_SOFTLIMIT,
108 MEM_CGROUP_NTARGETS,
110 #define THRESHOLDS_EVENTS_TARGET (128)
111 #define SOFTLIMIT_EVENTS_TARGET (1024)
113 struct mem_cgroup_stat_cpu {
114 long count[MEM_CGROUP_STAT_NSTATS];
115 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
116 unsigned long targets[MEM_CGROUP_NTARGETS];
120 * per-zone information in memory controller.
122 struct mem_cgroup_per_zone {
124 * spin_lock to protect the per cgroup LRU
126 struct list_head lists[NR_LRU_LISTS];
127 unsigned long count[NR_LRU_LISTS];
129 struct zone_reclaim_stat reclaim_stat;
130 struct rb_node tree_node; /* RB tree node */
131 unsigned long long usage_in_excess;/* Set to the value by which */
132 /* the soft limit is exceeded*/
133 bool on_tree;
134 struct mem_cgroup *mem; /* Back pointer, we cannot */
135 /* use container_of */
137 /* Macro for accessing counter */
138 #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
140 struct mem_cgroup_per_node {
141 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
144 struct mem_cgroup_lru_info {
145 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
149 * Cgroups above their limits are maintained in a RB-Tree, independent of
150 * their hierarchy representation
153 struct mem_cgroup_tree_per_zone {
154 struct rb_root rb_root;
155 spinlock_t lock;
158 struct mem_cgroup_tree_per_node {
159 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
162 struct mem_cgroup_tree {
163 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
166 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
168 struct mem_cgroup_threshold {
169 struct eventfd_ctx *eventfd;
170 u64 threshold;
173 /* For threshold */
174 struct mem_cgroup_threshold_ary {
175 /* An array index points to threshold just below usage. */
176 int current_threshold;
177 /* Size of entries[] */
178 unsigned int size;
179 /* Array of thresholds */
180 struct mem_cgroup_threshold entries[0];
183 struct mem_cgroup_thresholds {
184 /* Primary thresholds array */
185 struct mem_cgroup_threshold_ary *primary;
187 * Spare threshold array.
188 * This is needed to make mem_cgroup_unregister_event() "never fail".
189 * It must be able to store at least primary->size - 1 entries.
191 struct mem_cgroup_threshold_ary *spare;
194 /* for OOM */
195 struct mem_cgroup_eventfd_list {
196 struct list_head list;
197 struct eventfd_ctx *eventfd;
200 static void mem_cgroup_threshold(struct mem_cgroup *mem);
201 static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
204 * The memory controller data structure. The memory controller controls both
205 * page cache and RSS per cgroup. We would eventually like to provide
206 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
207 * to help the administrator determine what knobs to tune.
209 * TODO: Add a water mark for the memory controller. Reclaim will begin when
210 * we hit the water mark. May be even add a low water mark, such that
211 * no reclaim occurs from a cgroup at it's low water mark, this is
212 * a feature that will be implemented much later in the future.
214 struct mem_cgroup {
215 struct cgroup_subsys_state css;
217 * the counter to account for memory usage
219 struct res_counter res;
221 * the counter to account for mem+swap usage.
223 struct res_counter memsw;
225 * Per cgroup active and inactive list, similar to the
226 * per zone LRU lists.
228 struct mem_cgroup_lru_info info;
230 * While reclaiming in a hierarchy, we cache the last child we
231 * reclaimed from.
233 int last_scanned_child;
234 int last_scanned_node;
235 #if MAX_NUMNODES > 1
236 nodemask_t scan_nodes;
237 unsigned long next_scan_node_update;
238 #endif
240 * Should the accounting and control be hierarchical, per subtree?
242 bool use_hierarchy;
243 atomic_t oom_lock;
244 atomic_t refcnt;
246 unsigned int swappiness;
247 /* OOM-Killer disable */
248 int oom_kill_disable;
250 /* set when res.limit == memsw.limit */
251 bool memsw_is_minimum;
253 /* protect arrays of thresholds */
254 struct mutex thresholds_lock;
256 /* thresholds for memory usage. RCU-protected */
257 struct mem_cgroup_thresholds thresholds;
259 /* thresholds for mem+swap usage. RCU-protected */
260 struct mem_cgroup_thresholds memsw_thresholds;
262 /* For oom notifier event fd */
263 struct list_head oom_notify;
266 * Should we move charges of a task when a task is moved into this
267 * mem_cgroup ? And what type of charges should we move ?
269 unsigned long move_charge_at_immigrate;
271 * percpu counter.
273 struct mem_cgroup_stat_cpu *stat;
275 * used when a cpu is offlined or other synchronizations
276 * See mem_cgroup_read_stat().
278 struct mem_cgroup_stat_cpu nocpu_base;
279 spinlock_t pcp_counter_lock;
282 /* Stuffs for move charges at task migration. */
284 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
285 * left-shifted bitmap of these types.
287 enum move_type {
288 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
289 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
290 NR_MOVE_TYPE,
293 /* "mc" and its members are protected by cgroup_mutex */
294 static struct move_charge_struct {
295 spinlock_t lock; /* for from, to */
296 struct mem_cgroup *from;
297 struct mem_cgroup *to;
298 unsigned long precharge;
299 unsigned long moved_charge;
300 unsigned long moved_swap;
301 struct task_struct *moving_task; /* a task moving charges */
302 wait_queue_head_t waitq; /* a waitq for other context */
303 } mc = {
304 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
305 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
308 static bool move_anon(void)
310 return test_bit(MOVE_CHARGE_TYPE_ANON,
311 &mc.to->move_charge_at_immigrate);
314 static bool move_file(void)
316 return test_bit(MOVE_CHARGE_TYPE_FILE,
317 &mc.to->move_charge_at_immigrate);
321 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
322 * limit reclaim to prevent infinite loops, if they ever occur.
324 #define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
325 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
327 enum charge_type {
328 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
329 MEM_CGROUP_CHARGE_TYPE_MAPPED,
330 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
331 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
332 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
333 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
334 NR_CHARGE_TYPE,
337 /* for encoding cft->private value on file */
338 #define _MEM (0)
339 #define _MEMSWAP (1)
340 #define _OOM_TYPE (2)
341 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
342 #define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
343 #define MEMFILE_ATTR(val) ((val) & 0xffff)
344 /* Used for OOM nofiier */
345 #define OOM_CONTROL (0)
348 * Reclaim flags for mem_cgroup_hierarchical_reclaim
350 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
351 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
352 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
353 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
354 #define MEM_CGROUP_RECLAIM_SOFT_BIT 0x2
355 #define MEM_CGROUP_RECLAIM_SOFT (1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
357 static void mem_cgroup_get(struct mem_cgroup *mem);
358 static void mem_cgroup_put(struct mem_cgroup *mem);
359 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
360 static void drain_all_stock_async(void);
362 static struct mem_cgroup_per_zone *
363 mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
365 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
368 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
370 return &mem->css;
373 static struct mem_cgroup_per_zone *
374 page_cgroup_zoneinfo(struct mem_cgroup *mem, struct page *page)
376 int nid = page_to_nid(page);
377 int zid = page_zonenum(page);
379 return mem_cgroup_zoneinfo(mem, nid, zid);
382 static struct mem_cgroup_tree_per_zone *
383 soft_limit_tree_node_zone(int nid, int zid)
385 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
388 static struct mem_cgroup_tree_per_zone *
389 soft_limit_tree_from_page(struct page *page)
391 int nid = page_to_nid(page);
392 int zid = page_zonenum(page);
394 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
397 static void
398 __mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
399 struct mem_cgroup_per_zone *mz,
400 struct mem_cgroup_tree_per_zone *mctz,
401 unsigned long long new_usage_in_excess)
403 struct rb_node **p = &mctz->rb_root.rb_node;
404 struct rb_node *parent = NULL;
405 struct mem_cgroup_per_zone *mz_node;
407 if (mz->on_tree)
408 return;
410 mz->usage_in_excess = new_usage_in_excess;
411 if (!mz->usage_in_excess)
412 return;
413 while (*p) {
414 parent = *p;
415 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
416 tree_node);
417 if (mz->usage_in_excess < mz_node->usage_in_excess)
418 p = &(*p)->rb_left;
420 * We can't avoid mem cgroups that are over their soft
421 * limit by the same amount
423 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
424 p = &(*p)->rb_right;
426 rb_link_node(&mz->tree_node, parent, p);
427 rb_insert_color(&mz->tree_node, &mctz->rb_root);
428 mz->on_tree = true;
431 static void
432 __mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
433 struct mem_cgroup_per_zone *mz,
434 struct mem_cgroup_tree_per_zone *mctz)
436 if (!mz->on_tree)
437 return;
438 rb_erase(&mz->tree_node, &mctz->rb_root);
439 mz->on_tree = false;
442 static void
443 mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
444 struct mem_cgroup_per_zone *mz,
445 struct mem_cgroup_tree_per_zone *mctz)
447 spin_lock(&mctz->lock);
448 __mem_cgroup_remove_exceeded(mem, mz, mctz);
449 spin_unlock(&mctz->lock);
453 static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
455 unsigned long long excess;
456 struct mem_cgroup_per_zone *mz;
457 struct mem_cgroup_tree_per_zone *mctz;
458 int nid = page_to_nid(page);
459 int zid = page_zonenum(page);
460 mctz = soft_limit_tree_from_page(page);
463 * Necessary to update all ancestors when hierarchy is used.
464 * because their event counter is not touched.
466 for (; mem; mem = parent_mem_cgroup(mem)) {
467 mz = mem_cgroup_zoneinfo(mem, nid, zid);
468 excess = res_counter_soft_limit_excess(&mem->res);
470 * We have to update the tree if mz is on RB-tree or
471 * mem is over its softlimit.
473 if (excess || mz->on_tree) {
474 spin_lock(&mctz->lock);
475 /* if on-tree, remove it */
476 if (mz->on_tree)
477 __mem_cgroup_remove_exceeded(mem, mz, mctz);
479 * Insert again. mz->usage_in_excess will be updated.
480 * If excess is 0, no tree ops.
482 __mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
483 spin_unlock(&mctz->lock);
488 static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
490 int node, zone;
491 struct mem_cgroup_per_zone *mz;
492 struct mem_cgroup_tree_per_zone *mctz;
494 for_each_node_state(node, N_POSSIBLE) {
495 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
496 mz = mem_cgroup_zoneinfo(mem, node, zone);
497 mctz = soft_limit_tree_node_zone(node, zone);
498 mem_cgroup_remove_exceeded(mem, mz, mctz);
503 static struct mem_cgroup_per_zone *
504 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
506 struct rb_node *rightmost = NULL;
507 struct mem_cgroup_per_zone *mz;
509 retry:
510 mz = NULL;
511 rightmost = rb_last(&mctz->rb_root);
512 if (!rightmost)
513 goto done; /* Nothing to reclaim from */
515 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
517 * Remove the node now but someone else can add it back,
518 * we will to add it back at the end of reclaim to its correct
519 * position in the tree.
521 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
522 if (!res_counter_soft_limit_excess(&mz->mem->res) ||
523 !css_tryget(&mz->mem->css))
524 goto retry;
525 done:
526 return mz;
529 static struct mem_cgroup_per_zone *
530 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
532 struct mem_cgroup_per_zone *mz;
534 spin_lock(&mctz->lock);
535 mz = __mem_cgroup_largest_soft_limit_node(mctz);
536 spin_unlock(&mctz->lock);
537 return mz;
541 * Implementation Note: reading percpu statistics for memcg.
543 * Both of vmstat[] and percpu_counter has threshold and do periodic
544 * synchronization to implement "quick" read. There are trade-off between
545 * reading cost and precision of value. Then, we may have a chance to implement
546 * a periodic synchronizion of counter in memcg's counter.
548 * But this _read() function is used for user interface now. The user accounts
549 * memory usage by memory cgroup and he _always_ requires exact value because
550 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
551 * have to visit all online cpus and make sum. So, for now, unnecessary
552 * synchronization is not implemented. (just implemented for cpu hotplug)
554 * If there are kernel internal actions which can make use of some not-exact
555 * value, and reading all cpu value can be performance bottleneck in some
556 * common workload, threashold and synchonization as vmstat[] should be
557 * implemented.
559 static long mem_cgroup_read_stat(struct mem_cgroup *mem,
560 enum mem_cgroup_stat_index idx)
562 long val = 0;
563 int cpu;
565 get_online_cpus();
566 for_each_online_cpu(cpu)
567 val += per_cpu(mem->stat->count[idx], cpu);
568 #ifdef CONFIG_HOTPLUG_CPU
569 spin_lock(&mem->pcp_counter_lock);
570 val += mem->nocpu_base.count[idx];
571 spin_unlock(&mem->pcp_counter_lock);
572 #endif
573 put_online_cpus();
574 return val;
577 static long mem_cgroup_local_usage(struct mem_cgroup *mem)
579 long ret;
581 ret = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
582 ret += mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
583 return ret;
586 static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
587 bool charge)
589 int val = (charge) ? 1 : -1;
590 this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
593 static unsigned long mem_cgroup_read_events(struct mem_cgroup *mem,
594 enum mem_cgroup_events_index idx)
596 unsigned long val = 0;
597 int cpu;
599 for_each_online_cpu(cpu)
600 val += per_cpu(mem->stat->events[idx], cpu);
601 #ifdef CONFIG_HOTPLUG_CPU
602 spin_lock(&mem->pcp_counter_lock);
603 val += mem->nocpu_base.events[idx];
604 spin_unlock(&mem->pcp_counter_lock);
605 #endif
606 return val;
609 static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
610 bool file, int nr_pages)
612 preempt_disable();
614 if (file)
615 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], nr_pages);
616 else
617 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], nr_pages);
619 /* pagein of a big page is an event. So, ignore page size */
620 if (nr_pages > 0)
621 __this_cpu_inc(mem->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
622 else {
623 __this_cpu_inc(mem->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
624 nr_pages = -nr_pages; /* for event */
627 __this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
629 preempt_enable();
632 static unsigned long
633 mem_cgroup_get_zonestat_node(struct mem_cgroup *mem, int nid, enum lru_list idx)
635 struct mem_cgroup_per_zone *mz;
636 u64 total = 0;
637 int zid;
639 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
640 mz = mem_cgroup_zoneinfo(mem, nid, zid);
641 total += MEM_CGROUP_ZSTAT(mz, idx);
643 return total;
645 static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
646 enum lru_list idx)
648 int nid;
649 u64 total = 0;
651 for_each_online_node(nid)
652 total += mem_cgroup_get_zonestat_node(mem, nid, idx);
653 return total;
656 static bool __memcg_event_check(struct mem_cgroup *mem, int target)
658 unsigned long val, next;
660 val = this_cpu_read(mem->stat->events[MEM_CGROUP_EVENTS_COUNT]);
661 next = this_cpu_read(mem->stat->targets[target]);
662 /* from time_after() in jiffies.h */
663 return ((long)next - (long)val < 0);
666 static void __mem_cgroup_target_update(struct mem_cgroup *mem, int target)
668 unsigned long val, next;
670 val = this_cpu_read(mem->stat->events[MEM_CGROUP_EVENTS_COUNT]);
672 switch (target) {
673 case MEM_CGROUP_TARGET_THRESH:
674 next = val + THRESHOLDS_EVENTS_TARGET;
675 break;
676 case MEM_CGROUP_TARGET_SOFTLIMIT:
677 next = val + SOFTLIMIT_EVENTS_TARGET;
678 break;
679 default:
680 return;
683 this_cpu_write(mem->stat->targets[target], next);
687 * Check events in order.
690 static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
692 /* threshold event is triggered in finer grain than soft limit */
693 if (unlikely(__memcg_event_check(mem, MEM_CGROUP_TARGET_THRESH))) {
694 mem_cgroup_threshold(mem);
695 __mem_cgroup_target_update(mem, MEM_CGROUP_TARGET_THRESH);
696 if (unlikely(__memcg_event_check(mem,
697 MEM_CGROUP_TARGET_SOFTLIMIT))){
698 mem_cgroup_update_tree(mem, page);
699 __mem_cgroup_target_update(mem,
700 MEM_CGROUP_TARGET_SOFTLIMIT);
705 static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
707 return container_of(cgroup_subsys_state(cont,
708 mem_cgroup_subsys_id), struct mem_cgroup,
709 css);
712 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
715 * mm_update_next_owner() may clear mm->owner to NULL
716 * if it races with swapoff, page migration, etc.
717 * So this can be called with p == NULL.
719 if (unlikely(!p))
720 return NULL;
722 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
723 struct mem_cgroup, css);
726 static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
728 struct mem_cgroup *mem = NULL;
730 if (!mm)
731 return NULL;
733 * Because we have no locks, mm->owner's may be being moved to other
734 * cgroup. We use css_tryget() here even if this looks
735 * pessimistic (rather than adding locks here).
737 rcu_read_lock();
738 do {
739 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
740 if (unlikely(!mem))
741 break;
742 } while (!css_tryget(&mem->css));
743 rcu_read_unlock();
744 return mem;
747 /* The caller has to guarantee "mem" exists before calling this */
748 static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem)
750 struct cgroup_subsys_state *css;
751 int found;
753 if (!mem) /* ROOT cgroup has the smallest ID */
754 return root_mem_cgroup; /*css_put/get against root is ignored*/
755 if (!mem->use_hierarchy) {
756 if (css_tryget(&mem->css))
757 return mem;
758 return NULL;
760 rcu_read_lock();
762 * searching a memory cgroup which has the smallest ID under given
763 * ROOT cgroup. (ID >= 1)
765 css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found);
766 if (css && css_tryget(css))
767 mem = container_of(css, struct mem_cgroup, css);
768 else
769 mem = NULL;
770 rcu_read_unlock();
771 return mem;
774 static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
775 struct mem_cgroup *root,
776 bool cond)
778 int nextid = css_id(&iter->css) + 1;
779 int found;
780 int hierarchy_used;
781 struct cgroup_subsys_state *css;
783 hierarchy_used = iter->use_hierarchy;
785 css_put(&iter->css);
786 /* If no ROOT, walk all, ignore hierarchy */
787 if (!cond || (root && !hierarchy_used))
788 return NULL;
790 if (!root)
791 root = root_mem_cgroup;
793 do {
794 iter = NULL;
795 rcu_read_lock();
797 css = css_get_next(&mem_cgroup_subsys, nextid,
798 &root->css, &found);
799 if (css && css_tryget(css))
800 iter = container_of(css, struct mem_cgroup, css);
801 rcu_read_unlock();
802 /* If css is NULL, no more cgroups will be found */
803 nextid = found + 1;
804 } while (css && !iter);
806 return iter;
809 * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
810 * be careful that "break" loop is not allowed. We have reference count.
811 * Instead of that modify "cond" to be false and "continue" to exit the loop.
813 #define for_each_mem_cgroup_tree_cond(iter, root, cond) \
814 for (iter = mem_cgroup_start_loop(root);\
815 iter != NULL;\
816 iter = mem_cgroup_get_next(iter, root, cond))
818 #define for_each_mem_cgroup_tree(iter, root) \
819 for_each_mem_cgroup_tree_cond(iter, root, true)
821 #define for_each_mem_cgroup_all(iter) \
822 for_each_mem_cgroup_tree_cond(iter, NULL, true)
825 static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
827 return (mem == root_mem_cgroup);
831 * Following LRU functions are allowed to be used without PCG_LOCK.
832 * Operations are called by routine of global LRU independently from memcg.
833 * What we have to take care of here is validness of pc->mem_cgroup.
835 * Changes to pc->mem_cgroup happens when
836 * 1. charge
837 * 2. moving account
838 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
839 * It is added to LRU before charge.
840 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
841 * When moving account, the page is not on LRU. It's isolated.
844 void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
846 struct page_cgroup *pc;
847 struct mem_cgroup_per_zone *mz;
849 if (mem_cgroup_disabled())
850 return;
851 pc = lookup_page_cgroup(page);
852 /* can happen while we handle swapcache. */
853 if (!TestClearPageCgroupAcctLRU(pc))
854 return;
855 VM_BUG_ON(!pc->mem_cgroup);
857 * We don't check PCG_USED bit. It's cleared when the "page" is finally
858 * removed from global LRU.
860 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
861 /* huge page split is done under lru_lock. so, we have no races. */
862 MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
863 if (mem_cgroup_is_root(pc->mem_cgroup))
864 return;
865 VM_BUG_ON(list_empty(&pc->lru));
866 list_del_init(&pc->lru);
869 void mem_cgroup_del_lru(struct page *page)
871 mem_cgroup_del_lru_list(page, page_lru(page));
875 * Writeback is about to end against a page which has been marked for immediate
876 * reclaim. If it still appears to be reclaimable, move it to the tail of the
877 * inactive list.
879 void mem_cgroup_rotate_reclaimable_page(struct page *page)
881 struct mem_cgroup_per_zone *mz;
882 struct page_cgroup *pc;
883 enum lru_list lru = page_lru(page);
885 if (mem_cgroup_disabled())
886 return;
888 pc = lookup_page_cgroup(page);
889 /* unused or root page is not rotated. */
890 if (!PageCgroupUsed(pc))
891 return;
892 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
893 smp_rmb();
894 if (mem_cgroup_is_root(pc->mem_cgroup))
895 return;
896 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
897 list_move_tail(&pc->lru, &mz->lists[lru]);
900 void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
902 struct mem_cgroup_per_zone *mz;
903 struct page_cgroup *pc;
905 if (mem_cgroup_disabled())
906 return;
908 pc = lookup_page_cgroup(page);
909 /* unused or root page is not rotated. */
910 if (!PageCgroupUsed(pc))
911 return;
912 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
913 smp_rmb();
914 if (mem_cgroup_is_root(pc->mem_cgroup))
915 return;
916 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
917 list_move(&pc->lru, &mz->lists[lru]);
920 void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
922 struct page_cgroup *pc;
923 struct mem_cgroup_per_zone *mz;
925 if (mem_cgroup_disabled())
926 return;
927 pc = lookup_page_cgroup(page);
928 VM_BUG_ON(PageCgroupAcctLRU(pc));
929 if (!PageCgroupUsed(pc))
930 return;
931 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
932 smp_rmb();
933 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
934 /* huge page split is done under lru_lock. so, we have no races. */
935 MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
936 SetPageCgroupAcctLRU(pc);
937 if (mem_cgroup_is_root(pc->mem_cgroup))
938 return;
939 list_add(&pc->lru, &mz->lists[lru]);
943 * At handling SwapCache and other FUSE stuff, pc->mem_cgroup may be changed
944 * while it's linked to lru because the page may be reused after it's fully
945 * uncharged. To handle that, unlink page_cgroup from LRU when charge it again.
946 * It's done under lock_page and expected that zone->lru_lock isnever held.
948 static void mem_cgroup_lru_del_before_commit(struct page *page)
950 unsigned long flags;
951 struct zone *zone = page_zone(page);
952 struct page_cgroup *pc = lookup_page_cgroup(page);
955 * Doing this check without taking ->lru_lock seems wrong but this
956 * is safe. Because if page_cgroup's USED bit is unset, the page
957 * will not be added to any memcg's LRU. If page_cgroup's USED bit is
958 * set, the commit after this will fail, anyway.
959 * This all charge/uncharge is done under some mutual execustion.
960 * So, we don't need to taking care of changes in USED bit.
962 if (likely(!PageLRU(page)))
963 return;
965 spin_lock_irqsave(&zone->lru_lock, flags);
967 * Forget old LRU when this page_cgroup is *not* used. This Used bit
968 * is guarded by lock_page() because the page is SwapCache.
970 if (!PageCgroupUsed(pc))
971 mem_cgroup_del_lru_list(page, page_lru(page));
972 spin_unlock_irqrestore(&zone->lru_lock, flags);
975 static void mem_cgroup_lru_add_after_commit(struct page *page)
977 unsigned long flags;
978 struct zone *zone = page_zone(page);
979 struct page_cgroup *pc = lookup_page_cgroup(page);
981 /* taking care of that the page is added to LRU while we commit it */
982 if (likely(!PageLRU(page)))
983 return;
984 spin_lock_irqsave(&zone->lru_lock, flags);
985 /* link when the page is linked to LRU but page_cgroup isn't */
986 if (PageLRU(page) && !PageCgroupAcctLRU(pc))
987 mem_cgroup_add_lru_list(page, page_lru(page));
988 spin_unlock_irqrestore(&zone->lru_lock, flags);
992 void mem_cgroup_move_lists(struct page *page,
993 enum lru_list from, enum lru_list to)
995 if (mem_cgroup_disabled())
996 return;
997 mem_cgroup_del_lru_list(page, from);
998 mem_cgroup_add_lru_list(page, to);
1001 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
1003 int ret;
1004 struct mem_cgroup *curr = NULL;
1005 struct task_struct *p;
1007 p = find_lock_task_mm(task);
1008 if (!p)
1009 return 0;
1010 curr = try_get_mem_cgroup_from_mm(p->mm);
1011 task_unlock(p);
1012 if (!curr)
1013 return 0;
1015 * We should check use_hierarchy of "mem" not "curr". Because checking
1016 * use_hierarchy of "curr" here make this function true if hierarchy is
1017 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
1018 * hierarchy(even if use_hierarchy is disabled in "mem").
1020 if (mem->use_hierarchy)
1021 ret = css_is_ancestor(&curr->css, &mem->css);
1022 else
1023 ret = (curr == mem);
1024 css_put(&curr->css);
1025 return ret;
1028 static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
1030 unsigned long active;
1031 unsigned long inactive;
1032 unsigned long gb;
1033 unsigned long inactive_ratio;
1035 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
1036 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
1038 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1039 if (gb)
1040 inactive_ratio = int_sqrt(10 * gb);
1041 else
1042 inactive_ratio = 1;
1044 if (present_pages) {
1045 present_pages[0] = inactive;
1046 present_pages[1] = active;
1049 return inactive_ratio;
1052 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
1054 unsigned long active;
1055 unsigned long inactive;
1056 unsigned long present_pages[2];
1057 unsigned long inactive_ratio;
1059 inactive_ratio = calc_inactive_ratio(memcg, present_pages);
1061 inactive = present_pages[0];
1062 active = present_pages[1];
1064 if (inactive * inactive_ratio < active)
1065 return 1;
1067 return 0;
1070 int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
1072 unsigned long active;
1073 unsigned long inactive;
1075 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
1076 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);
1078 return (active > inactive);
1081 unsigned long mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg,
1082 struct zone *zone,
1083 enum lru_list lru)
1085 int nid = zone_to_nid(zone);
1086 int zid = zone_idx(zone);
1087 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1089 return MEM_CGROUP_ZSTAT(mz, lru);
1092 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1093 struct zone *zone)
1095 int nid = zone_to_nid(zone);
1096 int zid = zone_idx(zone);
1097 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1099 return &mz->reclaim_stat;
1102 struct zone_reclaim_stat *
1103 mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1105 struct page_cgroup *pc;
1106 struct mem_cgroup_per_zone *mz;
1108 if (mem_cgroup_disabled())
1109 return NULL;
1111 pc = lookup_page_cgroup(page);
1112 if (!PageCgroupUsed(pc))
1113 return NULL;
1114 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1115 smp_rmb();
1116 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1117 return &mz->reclaim_stat;
1120 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
1121 struct list_head *dst,
1122 unsigned long *scanned, int order,
1123 int mode, struct zone *z,
1124 struct mem_cgroup *mem_cont,
1125 int active, int file)
1127 unsigned long nr_taken = 0;
1128 struct page *page;
1129 unsigned long scan;
1130 LIST_HEAD(pc_list);
1131 struct list_head *src;
1132 struct page_cgroup *pc, *tmp;
1133 int nid = zone_to_nid(z);
1134 int zid = zone_idx(z);
1135 struct mem_cgroup_per_zone *mz;
1136 int lru = LRU_FILE * file + active;
1137 int ret;
1139 BUG_ON(!mem_cont);
1140 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1141 src = &mz->lists[lru];
1143 scan = 0;
1144 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
1145 if (scan >= nr_to_scan)
1146 break;
1148 if (unlikely(!PageCgroupUsed(pc)))
1149 continue;
1151 page = lookup_cgroup_page(pc);
1153 if (unlikely(!PageLRU(page)))
1154 continue;
1156 scan++;
1157 ret = __isolate_lru_page(page, mode, file);
1158 switch (ret) {
1159 case 0:
1160 list_move(&page->lru, dst);
1161 mem_cgroup_del_lru(page);
1162 nr_taken += hpage_nr_pages(page);
1163 break;
1164 case -EBUSY:
1165 /* we don't affect global LRU but rotate in our LRU */
1166 mem_cgroup_rotate_lru_list(page, page_lru(page));
1167 break;
1168 default:
1169 break;
1173 *scanned = scan;
1175 trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
1176 0, 0, 0, mode);
1178 return nr_taken;
1181 #define mem_cgroup_from_res_counter(counter, member) \
1182 container_of(counter, struct mem_cgroup, member)
1185 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1186 * @mem: the memory cgroup
1188 * Returns the maximum amount of memory @mem can be charged with, in
1189 * pages.
1191 static unsigned long mem_cgroup_margin(struct mem_cgroup *mem)
1193 unsigned long long margin;
1195 margin = res_counter_margin(&mem->res);
1196 if (do_swap_account)
1197 margin = min(margin, res_counter_margin(&mem->memsw));
1198 return margin >> PAGE_SHIFT;
1201 static unsigned int get_swappiness(struct mem_cgroup *memcg)
1203 struct cgroup *cgrp = memcg->css.cgroup;
1205 /* root ? */
1206 if (cgrp->parent == NULL)
1207 return vm_swappiness;
1209 return memcg->swappiness;
1212 static void mem_cgroup_start_move(struct mem_cgroup *mem)
1214 int cpu;
1216 get_online_cpus();
1217 spin_lock(&mem->pcp_counter_lock);
1218 for_each_online_cpu(cpu)
1219 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1220 mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1221 spin_unlock(&mem->pcp_counter_lock);
1222 put_online_cpus();
1224 synchronize_rcu();
1227 static void mem_cgroup_end_move(struct mem_cgroup *mem)
1229 int cpu;
1231 if (!mem)
1232 return;
1233 get_online_cpus();
1234 spin_lock(&mem->pcp_counter_lock);
1235 for_each_online_cpu(cpu)
1236 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1237 mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1238 spin_unlock(&mem->pcp_counter_lock);
1239 put_online_cpus();
1242 * 2 routines for checking "mem" is under move_account() or not.
1244 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1245 * for avoiding race in accounting. If true,
1246 * pc->mem_cgroup may be overwritten.
1248 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1249 * under hierarchy of moving cgroups. This is for
1250 * waiting at hith-memory prressure caused by "move".
1253 static bool mem_cgroup_stealed(struct mem_cgroup *mem)
1255 VM_BUG_ON(!rcu_read_lock_held());
1256 return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1259 static bool mem_cgroup_under_move(struct mem_cgroup *mem)
1261 struct mem_cgroup *from;
1262 struct mem_cgroup *to;
1263 bool ret = false;
1265 * Unlike task_move routines, we access mc.to, mc.from not under
1266 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1268 spin_lock(&mc.lock);
1269 from = mc.from;
1270 to = mc.to;
1271 if (!from)
1272 goto unlock;
1273 if (from == mem || to == mem
1274 || (mem->use_hierarchy && css_is_ancestor(&from->css, &mem->css))
1275 || (mem->use_hierarchy && css_is_ancestor(&to->css, &mem->css)))
1276 ret = true;
1277 unlock:
1278 spin_unlock(&mc.lock);
1279 return ret;
1282 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
1284 if (mc.moving_task && current != mc.moving_task) {
1285 if (mem_cgroup_under_move(mem)) {
1286 DEFINE_WAIT(wait);
1287 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1288 /* moving charge context might have finished. */
1289 if (mc.moving_task)
1290 schedule();
1291 finish_wait(&mc.waitq, &wait);
1292 return true;
1295 return false;
1299 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1300 * @memcg: The memory cgroup that went over limit
1301 * @p: Task that is going to be killed
1303 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1304 * enabled
1306 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1308 struct cgroup *task_cgrp;
1309 struct cgroup *mem_cgrp;
1311 * Need a buffer in BSS, can't rely on allocations. The code relies
1312 * on the assumption that OOM is serialized for memory controller.
1313 * If this assumption is broken, revisit this code.
1315 static char memcg_name[PATH_MAX];
1316 int ret;
1318 if (!memcg || !p)
1319 return;
1322 rcu_read_lock();
1324 mem_cgrp = memcg->css.cgroup;
1325 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1327 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1328 if (ret < 0) {
1330 * Unfortunately, we are unable to convert to a useful name
1331 * But we'll still print out the usage information
1333 rcu_read_unlock();
1334 goto done;
1336 rcu_read_unlock();
1338 printk(KERN_INFO "Task in %s killed", memcg_name);
1340 rcu_read_lock();
1341 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1342 if (ret < 0) {
1343 rcu_read_unlock();
1344 goto done;
1346 rcu_read_unlock();
1349 * Continues from above, so we don't need an KERN_ level
1351 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1352 done:
1354 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1355 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1356 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1357 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1358 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1359 "failcnt %llu\n",
1360 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1361 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1362 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1366 * This function returns the number of memcg under hierarchy tree. Returns
1367 * 1(self count) if no children.
1369 static int mem_cgroup_count_children(struct mem_cgroup *mem)
1371 int num = 0;
1372 struct mem_cgroup *iter;
1374 for_each_mem_cgroup_tree(iter, mem)
1375 num++;
1376 return num;
1380 * Return the memory (and swap, if configured) limit for a memcg.
1382 u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1384 u64 limit;
1385 u64 memsw;
1387 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1388 limit += total_swap_pages << PAGE_SHIFT;
1390 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1392 * If memsw is finite and limits the amount of swap space available
1393 * to this memcg, return that limit.
1395 return min(limit, memsw);
1399 * Visit the first child (need not be the first child as per the ordering
1400 * of the cgroup list, since we track last_scanned_child) of @mem and use
1401 * that to reclaim free pages from.
1403 static struct mem_cgroup *
1404 mem_cgroup_select_victim(struct mem_cgroup *root_mem)
1406 struct mem_cgroup *ret = NULL;
1407 struct cgroup_subsys_state *css;
1408 int nextid, found;
1410 if (!root_mem->use_hierarchy) {
1411 css_get(&root_mem->css);
1412 ret = root_mem;
1415 while (!ret) {
1416 rcu_read_lock();
1417 nextid = root_mem->last_scanned_child + 1;
1418 css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
1419 &found);
1420 if (css && css_tryget(css))
1421 ret = container_of(css, struct mem_cgroup, css);
1423 rcu_read_unlock();
1424 /* Updates scanning parameter */
1425 if (!css) {
1426 /* this means start scan from ID:1 */
1427 root_mem->last_scanned_child = 0;
1428 } else
1429 root_mem->last_scanned_child = found;
1432 return ret;
1435 #if MAX_NUMNODES > 1
1438 * Always updating the nodemask is not very good - even if we have an empty
1439 * list or the wrong list here, we can start from some node and traverse all
1440 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1443 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *mem)
1445 int nid;
1447 if (time_after(mem->next_scan_node_update, jiffies))
1448 return;
1450 mem->next_scan_node_update = jiffies + 10*HZ;
1451 /* make a nodemask where this memcg uses memory from */
1452 mem->scan_nodes = node_states[N_HIGH_MEMORY];
1454 for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1456 if (mem_cgroup_get_zonestat_node(mem, nid, LRU_INACTIVE_FILE) ||
1457 mem_cgroup_get_zonestat_node(mem, nid, LRU_ACTIVE_FILE))
1458 continue;
1460 if (total_swap_pages &&
1461 (mem_cgroup_get_zonestat_node(mem, nid, LRU_INACTIVE_ANON) ||
1462 mem_cgroup_get_zonestat_node(mem, nid, LRU_ACTIVE_ANON)))
1463 continue;
1464 node_clear(nid, mem->scan_nodes);
1469 * Selecting a node where we start reclaim from. Because what we need is just
1470 * reducing usage counter, start from anywhere is O,K. Considering
1471 * memory reclaim from current node, there are pros. and cons.
1473 * Freeing memory from current node means freeing memory from a node which
1474 * we'll use or we've used. So, it may make LRU bad. And if several threads
1475 * hit limits, it will see a contention on a node. But freeing from remote
1476 * node means more costs for memory reclaim because of memory latency.
1478 * Now, we use round-robin. Better algorithm is welcomed.
1480 int mem_cgroup_select_victim_node(struct mem_cgroup *mem)
1482 int node;
1484 mem_cgroup_may_update_nodemask(mem);
1485 node = mem->last_scanned_node;
1487 node = next_node(node, mem->scan_nodes);
1488 if (node == MAX_NUMNODES)
1489 node = first_node(mem->scan_nodes);
1491 * We call this when we hit limit, not when pages are added to LRU.
1492 * No LRU may hold pages because all pages are UNEVICTABLE or
1493 * memcg is too small and all pages are not on LRU. In that case,
1494 * we use curret node.
1496 if (unlikely(node == MAX_NUMNODES))
1497 node = numa_node_id();
1499 mem->last_scanned_node = node;
1500 return node;
1503 #else
1504 int mem_cgroup_select_victim_node(struct mem_cgroup *mem)
1506 return 0;
1508 #endif
1511 * Scan the hierarchy if needed to reclaim memory. We remember the last child
1512 * we reclaimed from, so that we don't end up penalizing one child extensively
1513 * based on its position in the children list.
1515 * root_mem is the original ancestor that we've been reclaim from.
1517 * We give up and return to the caller when we visit root_mem twice.
1518 * (other groups can be removed while we're walking....)
1520 * If shrink==true, for avoiding to free too much, this returns immedieately.
1522 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1523 struct zone *zone,
1524 gfp_t gfp_mask,
1525 unsigned long reclaim_options,
1526 unsigned long *total_scanned)
1528 struct mem_cgroup *victim;
1529 int ret, total = 0;
1530 int loop = 0;
1531 bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1532 bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1533 bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1534 unsigned long excess;
1535 unsigned long nr_scanned;
1537 excess = res_counter_soft_limit_excess(&root_mem->res) >> PAGE_SHIFT;
1539 /* If memsw_is_minimum==1, swap-out is of-no-use. */
1540 if (root_mem->memsw_is_minimum)
1541 noswap = true;
1543 while (1) {
1544 victim = mem_cgroup_select_victim(root_mem);
1545 if (victim == root_mem) {
1546 loop++;
1547 if (loop >= 1)
1548 drain_all_stock_async();
1549 if (loop >= 2) {
1551 * If we have not been able to reclaim
1552 * anything, it might because there are
1553 * no reclaimable pages under this hierarchy
1555 if (!check_soft || !total) {
1556 css_put(&victim->css);
1557 break;
1560 * We want to do more targeted reclaim.
1561 * excess >> 2 is not to excessive so as to
1562 * reclaim too much, nor too less that we keep
1563 * coming back to reclaim from this cgroup
1565 if (total >= (excess >> 2) ||
1566 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1567 css_put(&victim->css);
1568 break;
1572 if (!mem_cgroup_local_usage(victim)) {
1573 /* this cgroup's local usage == 0 */
1574 css_put(&victim->css);
1575 continue;
1577 /* we use swappiness of local cgroup */
1578 if (check_soft) {
1579 ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1580 noswap, get_swappiness(victim), zone,
1581 &nr_scanned);
1582 *total_scanned += nr_scanned;
1583 } else
1584 ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1585 noswap, get_swappiness(victim));
1586 css_put(&victim->css);
1588 * At shrinking usage, we can't check we should stop here or
1589 * reclaim more. It's depends on callers. last_scanned_child
1590 * will work enough for keeping fairness under tree.
1592 if (shrink)
1593 return ret;
1594 total += ret;
1595 if (check_soft) {
1596 if (!res_counter_soft_limit_excess(&root_mem->res))
1597 return total;
1598 } else if (mem_cgroup_margin(root_mem))
1599 return total;
1601 return total;
1605 * Check OOM-Killer is already running under our hierarchy.
1606 * If someone is running, return false.
1608 static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
1610 int x, lock_count = 0;
1611 struct mem_cgroup *iter;
1613 for_each_mem_cgroup_tree(iter, mem) {
1614 x = atomic_inc_return(&iter->oom_lock);
1615 lock_count = max(x, lock_count);
1618 if (lock_count == 1)
1619 return true;
1620 return false;
1623 static int mem_cgroup_oom_unlock(struct mem_cgroup *mem)
1625 struct mem_cgroup *iter;
1628 * When a new child is created while the hierarchy is under oom,
1629 * mem_cgroup_oom_lock() may not be called. We have to use
1630 * atomic_add_unless() here.
1632 for_each_mem_cgroup_tree(iter, mem)
1633 atomic_add_unless(&iter->oom_lock, -1, 0);
1634 return 0;
1638 static DEFINE_MUTEX(memcg_oom_mutex);
1639 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1641 struct oom_wait_info {
1642 struct mem_cgroup *mem;
1643 wait_queue_t wait;
1646 static int memcg_oom_wake_function(wait_queue_t *wait,
1647 unsigned mode, int sync, void *arg)
1649 struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg;
1650 struct oom_wait_info *oom_wait_info;
1652 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1654 if (oom_wait_info->mem == wake_mem)
1655 goto wakeup;
1656 /* if no hierarchy, no match */
1657 if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy)
1658 return 0;
1660 * Both of oom_wait_info->mem and wake_mem are stable under us.
1661 * Then we can use css_is_ancestor without taking care of RCU.
1663 if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) &&
1664 !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css))
1665 return 0;
1667 wakeup:
1668 return autoremove_wake_function(wait, mode, sync, arg);
1671 static void memcg_wakeup_oom(struct mem_cgroup *mem)
1673 /* for filtering, pass "mem" as argument. */
1674 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
1677 static void memcg_oom_recover(struct mem_cgroup *mem)
1679 if (mem && atomic_read(&mem->oom_lock))
1680 memcg_wakeup_oom(mem);
1684 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1686 bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
1688 struct oom_wait_info owait;
1689 bool locked, need_to_kill;
1691 owait.mem = mem;
1692 owait.wait.flags = 0;
1693 owait.wait.func = memcg_oom_wake_function;
1694 owait.wait.private = current;
1695 INIT_LIST_HEAD(&owait.wait.task_list);
1696 need_to_kill = true;
1697 /* At first, try to OOM lock hierarchy under mem.*/
1698 mutex_lock(&memcg_oom_mutex);
1699 locked = mem_cgroup_oom_lock(mem);
1701 * Even if signal_pending(), we can't quit charge() loop without
1702 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1703 * under OOM is always welcomed, use TASK_KILLABLE here.
1705 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1706 if (!locked || mem->oom_kill_disable)
1707 need_to_kill = false;
1708 if (locked)
1709 mem_cgroup_oom_notify(mem);
1710 mutex_unlock(&memcg_oom_mutex);
1712 if (need_to_kill) {
1713 finish_wait(&memcg_oom_waitq, &owait.wait);
1714 mem_cgroup_out_of_memory(mem, mask);
1715 } else {
1716 schedule();
1717 finish_wait(&memcg_oom_waitq, &owait.wait);
1719 mutex_lock(&memcg_oom_mutex);
1720 mem_cgroup_oom_unlock(mem);
1721 memcg_wakeup_oom(mem);
1722 mutex_unlock(&memcg_oom_mutex);
1724 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1725 return false;
1726 /* Give chance to dying process */
1727 schedule_timeout(1);
1728 return true;
1732 * Currently used to update mapped file statistics, but the routine can be
1733 * generalized to update other statistics as well.
1735 * Notes: Race condition
1737 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1738 * it tends to be costly. But considering some conditions, we doesn't need
1739 * to do so _always_.
1741 * Considering "charge", lock_page_cgroup() is not required because all
1742 * file-stat operations happen after a page is attached to radix-tree. There
1743 * are no race with "charge".
1745 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1746 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1747 * if there are race with "uncharge". Statistics itself is properly handled
1748 * by flags.
1750 * Considering "move", this is an only case we see a race. To make the race
1751 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1752 * possibility of race condition. If there is, we take a lock.
1755 void mem_cgroup_update_page_stat(struct page *page,
1756 enum mem_cgroup_page_stat_item idx, int val)
1758 struct mem_cgroup *mem;
1759 struct page_cgroup *pc = lookup_page_cgroup(page);
1760 bool need_unlock = false;
1761 unsigned long uninitialized_var(flags);
1763 if (unlikely(!pc))
1764 return;
1766 rcu_read_lock();
1767 mem = pc->mem_cgroup;
1768 if (unlikely(!mem || !PageCgroupUsed(pc)))
1769 goto out;
1770 /* pc->mem_cgroup is unstable ? */
1771 if (unlikely(mem_cgroup_stealed(mem)) || PageTransHuge(page)) {
1772 /* take a lock against to access pc->mem_cgroup */
1773 move_lock_page_cgroup(pc, &flags);
1774 need_unlock = true;
1775 mem = pc->mem_cgroup;
1776 if (!mem || !PageCgroupUsed(pc))
1777 goto out;
1780 switch (idx) {
1781 case MEMCG_NR_FILE_MAPPED:
1782 if (val > 0)
1783 SetPageCgroupFileMapped(pc);
1784 else if (!page_mapped(page))
1785 ClearPageCgroupFileMapped(pc);
1786 idx = MEM_CGROUP_STAT_FILE_MAPPED;
1787 break;
1788 default:
1789 BUG();
1792 this_cpu_add(mem->stat->count[idx], val);
1794 out:
1795 if (unlikely(need_unlock))
1796 move_unlock_page_cgroup(pc, &flags);
1797 rcu_read_unlock();
1798 return;
1800 EXPORT_SYMBOL(mem_cgroup_update_page_stat);
1803 * size of first charge trial. "32" comes from vmscan.c's magic value.
1804 * TODO: maybe necessary to use big numbers in big irons.
1806 #define CHARGE_BATCH 32U
1807 struct memcg_stock_pcp {
1808 struct mem_cgroup *cached; /* this never be root cgroup */
1809 unsigned int nr_pages;
1810 struct work_struct work;
1812 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1813 static atomic_t memcg_drain_count;
1816 * Try to consume stocked charge on this cpu. If success, one page is consumed
1817 * from local stock and true is returned. If the stock is 0 or charges from a
1818 * cgroup which is not current target, returns false. This stock will be
1819 * refilled.
1821 static bool consume_stock(struct mem_cgroup *mem)
1823 struct memcg_stock_pcp *stock;
1824 bool ret = true;
1826 stock = &get_cpu_var(memcg_stock);
1827 if (mem == stock->cached && stock->nr_pages)
1828 stock->nr_pages--;
1829 else /* need to call res_counter_charge */
1830 ret = false;
1831 put_cpu_var(memcg_stock);
1832 return ret;
1836 * Returns stocks cached in percpu to res_counter and reset cached information.
1838 static void drain_stock(struct memcg_stock_pcp *stock)
1840 struct mem_cgroup *old = stock->cached;
1842 if (stock->nr_pages) {
1843 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
1845 res_counter_uncharge(&old->res, bytes);
1846 if (do_swap_account)
1847 res_counter_uncharge(&old->memsw, bytes);
1848 stock->nr_pages = 0;
1850 stock->cached = NULL;
1854 * This must be called under preempt disabled or must be called by
1855 * a thread which is pinned to local cpu.
1857 static void drain_local_stock(struct work_struct *dummy)
1859 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
1860 drain_stock(stock);
1864 * Cache charges(val) which is from res_counter, to local per_cpu area.
1865 * This will be consumed by consume_stock() function, later.
1867 static void refill_stock(struct mem_cgroup *mem, unsigned int nr_pages)
1869 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1871 if (stock->cached != mem) { /* reset if necessary */
1872 drain_stock(stock);
1873 stock->cached = mem;
1875 stock->nr_pages += nr_pages;
1876 put_cpu_var(memcg_stock);
1880 * Tries to drain stocked charges in other cpus. This function is asynchronous
1881 * and just put a work per cpu for draining localy on each cpu. Caller can
1882 * expects some charges will be back to res_counter later but cannot wait for
1883 * it.
1885 static void drain_all_stock_async(void)
1887 int cpu;
1888 /* This function is for scheduling "drain" in asynchronous way.
1889 * The result of "drain" is not directly handled by callers. Then,
1890 * if someone is calling drain, we don't have to call drain more.
1891 * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
1892 * there is a race. We just do loose check here.
1894 if (atomic_read(&memcg_drain_count))
1895 return;
1896 /* Notify other cpus that system-wide "drain" is running */
1897 atomic_inc(&memcg_drain_count);
1898 get_online_cpus();
1899 for_each_online_cpu(cpu) {
1900 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1901 schedule_work_on(cpu, &stock->work);
1903 put_online_cpus();
1904 atomic_dec(&memcg_drain_count);
1905 /* We don't wait for flush_work */
1908 /* This is a synchronous drain interface. */
1909 static void drain_all_stock_sync(void)
1911 /* called when force_empty is called */
1912 atomic_inc(&memcg_drain_count);
1913 schedule_on_each_cpu(drain_local_stock);
1914 atomic_dec(&memcg_drain_count);
1918 * This function drains percpu counter value from DEAD cpu and
1919 * move it to local cpu. Note that this function can be preempted.
1921 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu)
1923 int i;
1925 spin_lock(&mem->pcp_counter_lock);
1926 for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
1927 long x = per_cpu(mem->stat->count[i], cpu);
1929 per_cpu(mem->stat->count[i], cpu) = 0;
1930 mem->nocpu_base.count[i] += x;
1932 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
1933 unsigned long x = per_cpu(mem->stat->events[i], cpu);
1935 per_cpu(mem->stat->events[i], cpu) = 0;
1936 mem->nocpu_base.events[i] += x;
1938 /* need to clear ON_MOVE value, works as a kind of lock. */
1939 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
1940 spin_unlock(&mem->pcp_counter_lock);
1943 static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu)
1945 int idx = MEM_CGROUP_ON_MOVE;
1947 spin_lock(&mem->pcp_counter_lock);
1948 per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx];
1949 spin_unlock(&mem->pcp_counter_lock);
1952 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
1953 unsigned long action,
1954 void *hcpu)
1956 int cpu = (unsigned long)hcpu;
1957 struct memcg_stock_pcp *stock;
1958 struct mem_cgroup *iter;
1960 if ((action == CPU_ONLINE)) {
1961 for_each_mem_cgroup_all(iter)
1962 synchronize_mem_cgroup_on_move(iter, cpu);
1963 return NOTIFY_OK;
1966 if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
1967 return NOTIFY_OK;
1969 for_each_mem_cgroup_all(iter)
1970 mem_cgroup_drain_pcp_counter(iter, cpu);
1972 stock = &per_cpu(memcg_stock, cpu);
1973 drain_stock(stock);
1974 return NOTIFY_OK;
1978 /* See __mem_cgroup_try_charge() for details */
1979 enum {
1980 CHARGE_OK, /* success */
1981 CHARGE_RETRY, /* need to retry but retry is not bad */
1982 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
1983 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
1984 CHARGE_OOM_DIE, /* the current is killed because of OOM */
1987 static int mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
1988 unsigned int nr_pages, bool oom_check)
1990 unsigned long csize = nr_pages * PAGE_SIZE;
1991 struct mem_cgroup *mem_over_limit;
1992 struct res_counter *fail_res;
1993 unsigned long flags = 0;
1994 int ret;
1996 ret = res_counter_charge(&mem->res, csize, &fail_res);
1998 if (likely(!ret)) {
1999 if (!do_swap_account)
2000 return CHARGE_OK;
2001 ret = res_counter_charge(&mem->memsw, csize, &fail_res);
2002 if (likely(!ret))
2003 return CHARGE_OK;
2005 res_counter_uncharge(&mem->res, csize);
2006 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2007 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2008 } else
2009 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2011 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2012 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2014 * Never reclaim on behalf of optional batching, retry with a
2015 * single page instead.
2017 if (nr_pages == CHARGE_BATCH)
2018 return CHARGE_RETRY;
2020 if (!(gfp_mask & __GFP_WAIT))
2021 return CHARGE_WOULDBLOCK;
2023 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
2024 gfp_mask, flags, NULL);
2025 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2026 return CHARGE_RETRY;
2028 * Even though the limit is exceeded at this point, reclaim
2029 * may have been able to free some pages. Retry the charge
2030 * before killing the task.
2032 * Only for regular pages, though: huge pages are rather
2033 * unlikely to succeed so close to the limit, and we fall back
2034 * to regular pages anyway in case of failure.
2036 if (nr_pages == 1 && ret)
2037 return CHARGE_RETRY;
2040 * At task move, charge accounts can be doubly counted. So, it's
2041 * better to wait until the end of task_move if something is going on.
2043 if (mem_cgroup_wait_acct_move(mem_over_limit))
2044 return CHARGE_RETRY;
2046 /* If we don't need to call oom-killer at el, return immediately */
2047 if (!oom_check)
2048 return CHARGE_NOMEM;
2049 /* check OOM */
2050 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
2051 return CHARGE_OOM_DIE;
2053 return CHARGE_RETRY;
2057 * Unlike exported interface, "oom" parameter is added. if oom==true,
2058 * oom-killer can be invoked.
2060 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2061 gfp_t gfp_mask,
2062 unsigned int nr_pages,
2063 struct mem_cgroup **memcg,
2064 bool oom)
2066 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2067 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2068 struct mem_cgroup *mem = NULL;
2069 int ret;
2072 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2073 * in system level. So, allow to go ahead dying process in addition to
2074 * MEMDIE process.
2076 if (unlikely(test_thread_flag(TIF_MEMDIE)
2077 || fatal_signal_pending(current)))
2078 goto bypass;
2081 * We always charge the cgroup the mm_struct belongs to.
2082 * The mm_struct's mem_cgroup changes on task migration if the
2083 * thread group leader migrates. It's possible that mm is not
2084 * set, if so charge the init_mm (happens for pagecache usage).
2086 if (!*memcg && !mm)
2087 goto bypass;
2088 again:
2089 if (*memcg) { /* css should be a valid one */
2090 mem = *memcg;
2091 VM_BUG_ON(css_is_removed(&mem->css));
2092 if (mem_cgroup_is_root(mem))
2093 goto done;
2094 if (nr_pages == 1 && consume_stock(mem))
2095 goto done;
2096 css_get(&mem->css);
2097 } else {
2098 struct task_struct *p;
2100 rcu_read_lock();
2101 p = rcu_dereference(mm->owner);
2103 * Because we don't have task_lock(), "p" can exit.
2104 * In that case, "mem" can point to root or p can be NULL with
2105 * race with swapoff. Then, we have small risk of mis-accouning.
2106 * But such kind of mis-account by race always happens because
2107 * we don't have cgroup_mutex(). It's overkill and we allo that
2108 * small race, here.
2109 * (*) swapoff at el will charge against mm-struct not against
2110 * task-struct. So, mm->owner can be NULL.
2112 mem = mem_cgroup_from_task(p);
2113 if (!mem || mem_cgroup_is_root(mem)) {
2114 rcu_read_unlock();
2115 goto done;
2117 if (nr_pages == 1 && consume_stock(mem)) {
2119 * It seems dagerous to access memcg without css_get().
2120 * But considering how consume_stok works, it's not
2121 * necessary. If consume_stock success, some charges
2122 * from this memcg are cached on this cpu. So, we
2123 * don't need to call css_get()/css_tryget() before
2124 * calling consume_stock().
2126 rcu_read_unlock();
2127 goto done;
2129 /* after here, we may be blocked. we need to get refcnt */
2130 if (!css_tryget(&mem->css)) {
2131 rcu_read_unlock();
2132 goto again;
2134 rcu_read_unlock();
2137 do {
2138 bool oom_check;
2140 /* If killed, bypass charge */
2141 if (fatal_signal_pending(current)) {
2142 css_put(&mem->css);
2143 goto bypass;
2146 oom_check = false;
2147 if (oom && !nr_oom_retries) {
2148 oom_check = true;
2149 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2152 ret = mem_cgroup_do_charge(mem, gfp_mask, batch, oom_check);
2153 switch (ret) {
2154 case CHARGE_OK:
2155 break;
2156 case CHARGE_RETRY: /* not in OOM situation but retry */
2157 batch = nr_pages;
2158 css_put(&mem->css);
2159 mem = NULL;
2160 goto again;
2161 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2162 css_put(&mem->css);
2163 goto nomem;
2164 case CHARGE_NOMEM: /* OOM routine works */
2165 if (!oom) {
2166 css_put(&mem->css);
2167 goto nomem;
2169 /* If oom, we never return -ENOMEM */
2170 nr_oom_retries--;
2171 break;
2172 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2173 css_put(&mem->css);
2174 goto bypass;
2176 } while (ret != CHARGE_OK);
2178 if (batch > nr_pages)
2179 refill_stock(mem, batch - nr_pages);
2180 css_put(&mem->css);
2181 done:
2182 *memcg = mem;
2183 return 0;
2184 nomem:
2185 *memcg = NULL;
2186 return -ENOMEM;
2187 bypass:
2188 *memcg = NULL;
2189 return 0;
2193 * Somemtimes we have to undo a charge we got by try_charge().
2194 * This function is for that and do uncharge, put css's refcnt.
2195 * gotten by try_charge().
2197 static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2198 unsigned int nr_pages)
2200 if (!mem_cgroup_is_root(mem)) {
2201 unsigned long bytes = nr_pages * PAGE_SIZE;
2203 res_counter_uncharge(&mem->res, bytes);
2204 if (do_swap_account)
2205 res_counter_uncharge(&mem->memsw, bytes);
2210 * A helper function to get mem_cgroup from ID. must be called under
2211 * rcu_read_lock(). The caller must check css_is_removed() or some if
2212 * it's concern. (dropping refcnt from swap can be called against removed
2213 * memcg.)
2215 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2217 struct cgroup_subsys_state *css;
2219 /* ID 0 is unused ID */
2220 if (!id)
2221 return NULL;
2222 css = css_lookup(&mem_cgroup_subsys, id);
2223 if (!css)
2224 return NULL;
2225 return container_of(css, struct mem_cgroup, css);
2228 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2230 struct mem_cgroup *mem = NULL;
2231 struct page_cgroup *pc;
2232 unsigned short id;
2233 swp_entry_t ent;
2235 VM_BUG_ON(!PageLocked(page));
2237 pc = lookup_page_cgroup(page);
2238 lock_page_cgroup(pc);
2239 if (PageCgroupUsed(pc)) {
2240 mem = pc->mem_cgroup;
2241 if (mem && !css_tryget(&mem->css))
2242 mem = NULL;
2243 } else if (PageSwapCache(page)) {
2244 ent.val = page_private(page);
2245 id = lookup_swap_cgroup(ent);
2246 rcu_read_lock();
2247 mem = mem_cgroup_lookup(id);
2248 if (mem && !css_tryget(&mem->css))
2249 mem = NULL;
2250 rcu_read_unlock();
2252 unlock_page_cgroup(pc);
2253 return mem;
2256 static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
2257 struct page *page,
2258 unsigned int nr_pages,
2259 struct page_cgroup *pc,
2260 enum charge_type ctype)
2262 lock_page_cgroup(pc);
2263 if (unlikely(PageCgroupUsed(pc))) {
2264 unlock_page_cgroup(pc);
2265 __mem_cgroup_cancel_charge(mem, nr_pages);
2266 return;
2269 * we don't need page_cgroup_lock about tail pages, becase they are not
2270 * accessed by any other context at this point.
2272 pc->mem_cgroup = mem;
2274 * We access a page_cgroup asynchronously without lock_page_cgroup().
2275 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2276 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2277 * before USED bit, we need memory barrier here.
2278 * See mem_cgroup_add_lru_list(), etc.
2280 smp_wmb();
2281 switch (ctype) {
2282 case MEM_CGROUP_CHARGE_TYPE_CACHE:
2283 case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2284 SetPageCgroupCache(pc);
2285 SetPageCgroupUsed(pc);
2286 break;
2287 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2288 ClearPageCgroupCache(pc);
2289 SetPageCgroupUsed(pc);
2290 break;
2291 default:
2292 break;
2295 mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), nr_pages);
2296 unlock_page_cgroup(pc);
2298 * "charge_statistics" updated event counter. Then, check it.
2299 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2300 * if they exceeds softlimit.
2302 memcg_check_events(mem, page);
2305 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2307 #define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2308 (1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
2310 * Because tail pages are not marked as "used", set it. We're under
2311 * zone->lru_lock, 'splitting on pmd' and compund_lock.
2313 void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail)
2315 struct page_cgroup *head_pc = lookup_page_cgroup(head);
2316 struct page_cgroup *tail_pc = lookup_page_cgroup(tail);
2317 unsigned long flags;
2319 if (mem_cgroup_disabled())
2320 return;
2322 * We have no races with charge/uncharge but will have races with
2323 * page state accounting.
2325 move_lock_page_cgroup(head_pc, &flags);
2327 tail_pc->mem_cgroup = head_pc->mem_cgroup;
2328 smp_wmb(); /* see __commit_charge() */
2329 if (PageCgroupAcctLRU(head_pc)) {
2330 enum lru_list lru;
2331 struct mem_cgroup_per_zone *mz;
2334 * LRU flags cannot be copied because we need to add tail
2335 *.page to LRU by generic call and our hook will be called.
2336 * We hold lru_lock, then, reduce counter directly.
2338 lru = page_lru(head);
2339 mz = page_cgroup_zoneinfo(head_pc->mem_cgroup, head);
2340 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
2342 tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2343 move_unlock_page_cgroup(head_pc, &flags);
2345 #endif
2348 * mem_cgroup_move_account - move account of the page
2349 * @page: the page
2350 * @nr_pages: number of regular pages (>1 for huge pages)
2351 * @pc: page_cgroup of the page.
2352 * @from: mem_cgroup which the page is moved from.
2353 * @to: mem_cgroup which the page is moved to. @from != @to.
2354 * @uncharge: whether we should call uncharge and css_put against @from.
2356 * The caller must confirm following.
2357 * - page is not on LRU (isolate_page() is useful.)
2358 * - compound_lock is held when nr_pages > 1
2360 * This function doesn't do "charge" nor css_get to new cgroup. It should be
2361 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
2362 * true, this function does "uncharge" from old cgroup, but it doesn't if
2363 * @uncharge is false, so a caller should do "uncharge".
2365 static int mem_cgroup_move_account(struct page *page,
2366 unsigned int nr_pages,
2367 struct page_cgroup *pc,
2368 struct mem_cgroup *from,
2369 struct mem_cgroup *to,
2370 bool uncharge)
2372 unsigned long flags;
2373 int ret;
2375 VM_BUG_ON(from == to);
2376 VM_BUG_ON(PageLRU(page));
2378 * The page is isolated from LRU. So, collapse function
2379 * will not handle this page. But page splitting can happen.
2380 * Do this check under compound_page_lock(). The caller should
2381 * hold it.
2383 ret = -EBUSY;
2384 if (nr_pages > 1 && !PageTransHuge(page))
2385 goto out;
2387 lock_page_cgroup(pc);
2389 ret = -EINVAL;
2390 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2391 goto unlock;
2393 move_lock_page_cgroup(pc, &flags);
2395 if (PageCgroupFileMapped(pc)) {
2396 /* Update mapped_file data for mem_cgroup */
2397 preempt_disable();
2398 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2399 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2400 preempt_enable();
2402 mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2403 if (uncharge)
2404 /* This is not "cancel", but cancel_charge does all we need. */
2405 __mem_cgroup_cancel_charge(from, nr_pages);
2407 /* caller should have done css_get */
2408 pc->mem_cgroup = to;
2409 mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2411 * We charges against "to" which may not have any tasks. Then, "to"
2412 * can be under rmdir(). But in current implementation, caller of
2413 * this function is just force_empty() and move charge, so it's
2414 * guaranteed that "to" is never removed. So, we don't check rmdir
2415 * status here.
2417 move_unlock_page_cgroup(pc, &flags);
2418 ret = 0;
2419 unlock:
2420 unlock_page_cgroup(pc);
2422 * check events
2424 memcg_check_events(to, page);
2425 memcg_check_events(from, page);
2426 out:
2427 return ret;
2431 * move charges to its parent.
2434 static int mem_cgroup_move_parent(struct page *page,
2435 struct page_cgroup *pc,
2436 struct mem_cgroup *child,
2437 gfp_t gfp_mask)
2439 struct cgroup *cg = child->css.cgroup;
2440 struct cgroup *pcg = cg->parent;
2441 struct mem_cgroup *parent;
2442 unsigned int nr_pages;
2443 unsigned long uninitialized_var(flags);
2444 int ret;
2446 /* Is ROOT ? */
2447 if (!pcg)
2448 return -EINVAL;
2450 ret = -EBUSY;
2451 if (!get_page_unless_zero(page))
2452 goto out;
2453 if (isolate_lru_page(page))
2454 goto put;
2456 nr_pages = hpage_nr_pages(page);
2458 parent = mem_cgroup_from_cont(pcg);
2459 ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
2460 if (ret || !parent)
2461 goto put_back;
2463 if (nr_pages > 1)
2464 flags = compound_lock_irqsave(page);
2466 ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
2467 if (ret)
2468 __mem_cgroup_cancel_charge(parent, nr_pages);
2470 if (nr_pages > 1)
2471 compound_unlock_irqrestore(page, flags);
2472 put_back:
2473 putback_lru_page(page);
2474 put:
2475 put_page(page);
2476 out:
2477 return ret;
2481 * Charge the memory controller for page usage.
2482 * Return
2483 * 0 if the charge was successful
2484 * < 0 if the cgroup is over its limit
2486 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2487 gfp_t gfp_mask, enum charge_type ctype)
2489 struct mem_cgroup *mem = NULL;
2490 unsigned int nr_pages = 1;
2491 struct page_cgroup *pc;
2492 bool oom = true;
2493 int ret;
2495 if (PageTransHuge(page)) {
2496 nr_pages <<= compound_order(page);
2497 VM_BUG_ON(!PageTransHuge(page));
2499 * Never OOM-kill a process for a huge page. The
2500 * fault handler will fall back to regular pages.
2502 oom = false;
2505 pc = lookup_page_cgroup(page);
2506 BUG_ON(!pc); /* XXX: remove this and move pc lookup into commit */
2508 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &mem, oom);
2509 if (ret || !mem)
2510 return ret;
2512 __mem_cgroup_commit_charge(mem, page, nr_pages, pc, ctype);
2513 return 0;
2516 int mem_cgroup_newpage_charge(struct page *page,
2517 struct mm_struct *mm, gfp_t gfp_mask)
2519 if (mem_cgroup_disabled())
2520 return 0;
2522 * If already mapped, we don't have to account.
2523 * If page cache, page->mapping has address_space.
2524 * But page->mapping may have out-of-use anon_vma pointer,
2525 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2526 * is NULL.
2528 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
2529 return 0;
2530 if (unlikely(!mm))
2531 mm = &init_mm;
2532 return mem_cgroup_charge_common(page, mm, gfp_mask,
2533 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2536 static void
2537 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2538 enum charge_type ctype);
2540 static void
2541 __mem_cgroup_commit_charge_lrucare(struct page *page, struct mem_cgroup *mem,
2542 enum charge_type ctype)
2544 struct page_cgroup *pc = lookup_page_cgroup(page);
2546 * In some case, SwapCache, FUSE(splice_buf->radixtree), the page
2547 * is already on LRU. It means the page may on some other page_cgroup's
2548 * LRU. Take care of it.
2550 mem_cgroup_lru_del_before_commit(page);
2551 __mem_cgroup_commit_charge(mem, page, 1, pc, ctype);
2552 mem_cgroup_lru_add_after_commit(page);
2553 return;
2556 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2557 gfp_t gfp_mask)
2559 struct mem_cgroup *mem = NULL;
2560 int ret;
2562 if (mem_cgroup_disabled())
2563 return 0;
2564 if (PageCompound(page))
2565 return 0;
2567 * Corner case handling. This is called from add_to_page_cache()
2568 * in usual. But some FS (shmem) precharges this page before calling it
2569 * and call add_to_page_cache() with GFP_NOWAIT.
2571 * For GFP_NOWAIT case, the page may be pre-charged before calling
2572 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
2573 * charge twice. (It works but has to pay a bit larger cost.)
2574 * And when the page is SwapCache, it should take swap information
2575 * into account. This is under lock_page() now.
2577 if (!(gfp_mask & __GFP_WAIT)) {
2578 struct page_cgroup *pc;
2580 pc = lookup_page_cgroup(page);
2581 if (!pc)
2582 return 0;
2583 lock_page_cgroup(pc);
2584 if (PageCgroupUsed(pc)) {
2585 unlock_page_cgroup(pc);
2586 return 0;
2588 unlock_page_cgroup(pc);
2591 if (unlikely(!mm))
2592 mm = &init_mm;
2594 if (page_is_file_cache(page)) {
2595 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, &mem, true);
2596 if (ret || !mem)
2597 return ret;
2600 * FUSE reuses pages without going through the final
2601 * put that would remove them from the LRU list, make
2602 * sure that they get relinked properly.
2604 __mem_cgroup_commit_charge_lrucare(page, mem,
2605 MEM_CGROUP_CHARGE_TYPE_CACHE);
2606 return ret;
2608 /* shmem */
2609 if (PageSwapCache(page)) {
2610 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2611 if (!ret)
2612 __mem_cgroup_commit_charge_swapin(page, mem,
2613 MEM_CGROUP_CHARGE_TYPE_SHMEM);
2614 } else
2615 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2616 MEM_CGROUP_CHARGE_TYPE_SHMEM);
2618 return ret;
2622 * While swap-in, try_charge -> commit or cancel, the page is locked.
2623 * And when try_charge() successfully returns, one refcnt to memcg without
2624 * struct page_cgroup is acquired. This refcnt will be consumed by
2625 * "commit()" or removed by "cancel()"
2627 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2628 struct page *page,
2629 gfp_t mask, struct mem_cgroup **ptr)
2631 struct mem_cgroup *mem;
2632 int ret;
2634 *ptr = NULL;
2636 if (mem_cgroup_disabled())
2637 return 0;
2639 if (!do_swap_account)
2640 goto charge_cur_mm;
2642 * A racing thread's fault, or swapoff, may have already updated
2643 * the pte, and even removed page from swap cache: in those cases
2644 * do_swap_page()'s pte_same() test will fail; but there's also a
2645 * KSM case which does need to charge the page.
2647 if (!PageSwapCache(page))
2648 goto charge_cur_mm;
2649 mem = try_get_mem_cgroup_from_page(page);
2650 if (!mem)
2651 goto charge_cur_mm;
2652 *ptr = mem;
2653 ret = __mem_cgroup_try_charge(NULL, mask, 1, ptr, true);
2654 css_put(&mem->css);
2655 return ret;
2656 charge_cur_mm:
2657 if (unlikely(!mm))
2658 mm = &init_mm;
2659 return __mem_cgroup_try_charge(mm, mask, 1, ptr, true);
2662 static void
2663 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2664 enum charge_type ctype)
2666 if (mem_cgroup_disabled())
2667 return;
2668 if (!ptr)
2669 return;
2670 cgroup_exclude_rmdir(&ptr->css);
2672 __mem_cgroup_commit_charge_lrucare(page, ptr, ctype);
2674 * Now swap is on-memory. This means this page may be
2675 * counted both as mem and swap....double count.
2676 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2677 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2678 * may call delete_from_swap_cache() before reach here.
2680 if (do_swap_account && PageSwapCache(page)) {
2681 swp_entry_t ent = {.val = page_private(page)};
2682 unsigned short id;
2683 struct mem_cgroup *memcg;
2685 id = swap_cgroup_record(ent, 0);
2686 rcu_read_lock();
2687 memcg = mem_cgroup_lookup(id);
2688 if (memcg) {
2690 * This recorded memcg can be obsolete one. So, avoid
2691 * calling css_tryget
2693 if (!mem_cgroup_is_root(memcg))
2694 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2695 mem_cgroup_swap_statistics(memcg, false);
2696 mem_cgroup_put(memcg);
2698 rcu_read_unlock();
2701 * At swapin, we may charge account against cgroup which has no tasks.
2702 * So, rmdir()->pre_destroy() can be called while we do this charge.
2703 * In that case, we need to call pre_destroy() again. check it here.
2705 cgroup_release_and_wakeup_rmdir(&ptr->css);
2708 void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
2710 __mem_cgroup_commit_charge_swapin(page, ptr,
2711 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2714 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
2716 if (mem_cgroup_disabled())
2717 return;
2718 if (!mem)
2719 return;
2720 __mem_cgroup_cancel_charge(mem, 1);
2723 static void mem_cgroup_do_uncharge(struct mem_cgroup *mem,
2724 unsigned int nr_pages,
2725 const enum charge_type ctype)
2727 struct memcg_batch_info *batch = NULL;
2728 bool uncharge_memsw = true;
2730 /* If swapout, usage of swap doesn't decrease */
2731 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2732 uncharge_memsw = false;
2734 batch = &current->memcg_batch;
2736 * In usual, we do css_get() when we remember memcg pointer.
2737 * But in this case, we keep res->usage until end of a series of
2738 * uncharges. Then, it's ok to ignore memcg's refcnt.
2740 if (!batch->memcg)
2741 batch->memcg = mem;
2743 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2744 * In those cases, all pages freed continuously can be expected to be in
2745 * the same cgroup and we have chance to coalesce uncharges.
2746 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2747 * because we want to do uncharge as soon as possible.
2750 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2751 goto direct_uncharge;
2753 if (nr_pages > 1)
2754 goto direct_uncharge;
2757 * In typical case, batch->memcg == mem. This means we can
2758 * merge a series of uncharges to an uncharge of res_counter.
2759 * If not, we uncharge res_counter ony by one.
2761 if (batch->memcg != mem)
2762 goto direct_uncharge;
2763 /* remember freed charge and uncharge it later */
2764 batch->nr_pages++;
2765 if (uncharge_memsw)
2766 batch->memsw_nr_pages++;
2767 return;
2768 direct_uncharge:
2769 res_counter_uncharge(&mem->res, nr_pages * PAGE_SIZE);
2770 if (uncharge_memsw)
2771 res_counter_uncharge(&mem->memsw, nr_pages * PAGE_SIZE);
2772 if (unlikely(batch->memcg != mem))
2773 memcg_oom_recover(mem);
2774 return;
2778 * uncharge if !page_mapped(page)
2780 static struct mem_cgroup *
2781 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2783 struct mem_cgroup *mem = NULL;
2784 unsigned int nr_pages = 1;
2785 struct page_cgroup *pc;
2787 if (mem_cgroup_disabled())
2788 return NULL;
2790 if (PageSwapCache(page))
2791 return NULL;
2793 if (PageTransHuge(page)) {
2794 nr_pages <<= compound_order(page);
2795 VM_BUG_ON(!PageTransHuge(page));
2798 * Check if our page_cgroup is valid
2800 pc = lookup_page_cgroup(page);
2801 if (unlikely(!pc || !PageCgroupUsed(pc)))
2802 return NULL;
2804 lock_page_cgroup(pc);
2806 mem = pc->mem_cgroup;
2808 if (!PageCgroupUsed(pc))
2809 goto unlock_out;
2811 switch (ctype) {
2812 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2813 case MEM_CGROUP_CHARGE_TYPE_DROP:
2814 /* See mem_cgroup_prepare_migration() */
2815 if (page_mapped(page) || PageCgroupMigration(pc))
2816 goto unlock_out;
2817 break;
2818 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2819 if (!PageAnon(page)) { /* Shared memory */
2820 if (page->mapping && !page_is_file_cache(page))
2821 goto unlock_out;
2822 } else if (page_mapped(page)) /* Anon */
2823 goto unlock_out;
2824 break;
2825 default:
2826 break;
2829 mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), -nr_pages);
2831 ClearPageCgroupUsed(pc);
2833 * pc->mem_cgroup is not cleared here. It will be accessed when it's
2834 * freed from LRU. This is safe because uncharged page is expected not
2835 * to be reused (freed soon). Exception is SwapCache, it's handled by
2836 * special functions.
2839 unlock_page_cgroup(pc);
2841 * even after unlock, we have mem->res.usage here and this memcg
2842 * will never be freed.
2844 memcg_check_events(mem, page);
2845 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
2846 mem_cgroup_swap_statistics(mem, true);
2847 mem_cgroup_get(mem);
2849 if (!mem_cgroup_is_root(mem))
2850 mem_cgroup_do_uncharge(mem, nr_pages, ctype);
2852 return mem;
2854 unlock_out:
2855 unlock_page_cgroup(pc);
2856 return NULL;
2859 void mem_cgroup_uncharge_page(struct page *page)
2861 /* early check. */
2862 if (page_mapped(page))
2863 return;
2864 if (page->mapping && !PageAnon(page))
2865 return;
2866 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
2869 void mem_cgroup_uncharge_cache_page(struct page *page)
2871 VM_BUG_ON(page_mapped(page));
2872 VM_BUG_ON(page->mapping);
2873 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
2877 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
2878 * In that cases, pages are freed continuously and we can expect pages
2879 * are in the same memcg. All these calls itself limits the number of
2880 * pages freed at once, then uncharge_start/end() is called properly.
2881 * This may be called prural(2) times in a context,
2884 void mem_cgroup_uncharge_start(void)
2886 current->memcg_batch.do_batch++;
2887 /* We can do nest. */
2888 if (current->memcg_batch.do_batch == 1) {
2889 current->memcg_batch.memcg = NULL;
2890 current->memcg_batch.nr_pages = 0;
2891 current->memcg_batch.memsw_nr_pages = 0;
2895 void mem_cgroup_uncharge_end(void)
2897 struct memcg_batch_info *batch = &current->memcg_batch;
2899 if (!batch->do_batch)
2900 return;
2902 batch->do_batch--;
2903 if (batch->do_batch) /* If stacked, do nothing. */
2904 return;
2906 if (!batch->memcg)
2907 return;
2909 * This "batch->memcg" is valid without any css_get/put etc...
2910 * bacause we hide charges behind us.
2912 if (batch->nr_pages)
2913 res_counter_uncharge(&batch->memcg->res,
2914 batch->nr_pages * PAGE_SIZE);
2915 if (batch->memsw_nr_pages)
2916 res_counter_uncharge(&batch->memcg->memsw,
2917 batch->memsw_nr_pages * PAGE_SIZE);
2918 memcg_oom_recover(batch->memcg);
2919 /* forget this pointer (for sanity check) */
2920 batch->memcg = NULL;
2923 #ifdef CONFIG_SWAP
2925 * called after __delete_from_swap_cache() and drop "page" account.
2926 * memcg information is recorded to swap_cgroup of "ent"
2928 void
2929 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
2931 struct mem_cgroup *memcg;
2932 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
2934 if (!swapout) /* this was a swap cache but the swap is unused ! */
2935 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
2937 memcg = __mem_cgroup_uncharge_common(page, ctype);
2940 * record memcg information, if swapout && memcg != NULL,
2941 * mem_cgroup_get() was called in uncharge().
2943 if (do_swap_account && swapout && memcg)
2944 swap_cgroup_record(ent, css_id(&memcg->css));
2946 #endif
2948 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2950 * called from swap_entry_free(). remove record in swap_cgroup and
2951 * uncharge "memsw" account.
2953 void mem_cgroup_uncharge_swap(swp_entry_t ent)
2955 struct mem_cgroup *memcg;
2956 unsigned short id;
2958 if (!do_swap_account)
2959 return;
2961 id = swap_cgroup_record(ent, 0);
2962 rcu_read_lock();
2963 memcg = mem_cgroup_lookup(id);
2964 if (memcg) {
2966 * We uncharge this because swap is freed.
2967 * This memcg can be obsolete one. We avoid calling css_tryget
2969 if (!mem_cgroup_is_root(memcg))
2970 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2971 mem_cgroup_swap_statistics(memcg, false);
2972 mem_cgroup_put(memcg);
2974 rcu_read_unlock();
2978 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2979 * @entry: swap entry to be moved
2980 * @from: mem_cgroup which the entry is moved from
2981 * @to: mem_cgroup which the entry is moved to
2982 * @need_fixup: whether we should fixup res_counters and refcounts.
2984 * It succeeds only when the swap_cgroup's record for this entry is the same
2985 * as the mem_cgroup's id of @from.
2987 * Returns 0 on success, -EINVAL on failure.
2989 * The caller must have charged to @to, IOW, called res_counter_charge() about
2990 * both res and memsw, and called css_get().
2992 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2993 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2995 unsigned short old_id, new_id;
2997 old_id = css_id(&from->css);
2998 new_id = css_id(&to->css);
3000 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3001 mem_cgroup_swap_statistics(from, false);
3002 mem_cgroup_swap_statistics(to, true);
3004 * This function is only called from task migration context now.
3005 * It postpones res_counter and refcount handling till the end
3006 * of task migration(mem_cgroup_clear_mc()) for performance
3007 * improvement. But we cannot postpone mem_cgroup_get(to)
3008 * because if the process that has been moved to @to does
3009 * swap-in, the refcount of @to might be decreased to 0.
3011 mem_cgroup_get(to);
3012 if (need_fixup) {
3013 if (!mem_cgroup_is_root(from))
3014 res_counter_uncharge(&from->memsw, PAGE_SIZE);
3015 mem_cgroup_put(from);
3017 * we charged both to->res and to->memsw, so we should
3018 * uncharge to->res.
3020 if (!mem_cgroup_is_root(to))
3021 res_counter_uncharge(&to->res, PAGE_SIZE);
3023 return 0;
3025 return -EINVAL;
3027 #else
3028 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3029 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3031 return -EINVAL;
3033 #endif
3036 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3037 * page belongs to.
3039 int mem_cgroup_prepare_migration(struct page *page,
3040 struct page *newpage, struct mem_cgroup **ptr, gfp_t gfp_mask)
3042 struct mem_cgroup *mem = NULL;
3043 struct page_cgroup *pc;
3044 enum charge_type ctype;
3045 int ret = 0;
3047 *ptr = NULL;
3049 VM_BUG_ON(PageTransHuge(page));
3050 if (mem_cgroup_disabled())
3051 return 0;
3053 pc = lookup_page_cgroup(page);
3054 lock_page_cgroup(pc);
3055 if (PageCgroupUsed(pc)) {
3056 mem = pc->mem_cgroup;
3057 css_get(&mem->css);
3059 * At migrating an anonymous page, its mapcount goes down
3060 * to 0 and uncharge() will be called. But, even if it's fully
3061 * unmapped, migration may fail and this page has to be
3062 * charged again. We set MIGRATION flag here and delay uncharge
3063 * until end_migration() is called
3065 * Corner Case Thinking
3066 * A)
3067 * When the old page was mapped as Anon and it's unmap-and-freed
3068 * while migration was ongoing.
3069 * If unmap finds the old page, uncharge() of it will be delayed
3070 * until end_migration(). If unmap finds a new page, it's
3071 * uncharged when it make mapcount to be 1->0. If unmap code
3072 * finds swap_migration_entry, the new page will not be mapped
3073 * and end_migration() will find it(mapcount==0).
3075 * B)
3076 * When the old page was mapped but migraion fails, the kernel
3077 * remaps it. A charge for it is kept by MIGRATION flag even
3078 * if mapcount goes down to 0. We can do remap successfully
3079 * without charging it again.
3081 * C)
3082 * The "old" page is under lock_page() until the end of
3083 * migration, so, the old page itself will not be swapped-out.
3084 * If the new page is swapped out before end_migraton, our
3085 * hook to usual swap-out path will catch the event.
3087 if (PageAnon(page))
3088 SetPageCgroupMigration(pc);
3090 unlock_page_cgroup(pc);
3092 * If the page is not charged at this point,
3093 * we return here.
3095 if (!mem)
3096 return 0;
3098 *ptr = mem;
3099 ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, ptr, false);
3100 css_put(&mem->css);/* drop extra refcnt */
3101 if (ret || *ptr == NULL) {
3102 if (PageAnon(page)) {
3103 lock_page_cgroup(pc);
3104 ClearPageCgroupMigration(pc);
3105 unlock_page_cgroup(pc);
3107 * The old page may be fully unmapped while we kept it.
3109 mem_cgroup_uncharge_page(page);
3111 return -ENOMEM;
3114 * We charge new page before it's used/mapped. So, even if unlock_page()
3115 * is called before end_migration, we can catch all events on this new
3116 * page. In the case new page is migrated but not remapped, new page's
3117 * mapcount will be finally 0 and we call uncharge in end_migration().
3119 pc = lookup_page_cgroup(newpage);
3120 if (PageAnon(page))
3121 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
3122 else if (page_is_file_cache(page))
3123 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3124 else
3125 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3126 __mem_cgroup_commit_charge(mem, page, 1, pc, ctype);
3127 return ret;
3130 /* remove redundant charge if migration failed*/
3131 void mem_cgroup_end_migration(struct mem_cgroup *mem,
3132 struct page *oldpage, struct page *newpage, bool migration_ok)
3134 struct page *used, *unused;
3135 struct page_cgroup *pc;
3137 if (!mem)
3138 return;
3139 /* blocks rmdir() */
3140 cgroup_exclude_rmdir(&mem->css);
3141 if (!migration_ok) {
3142 used = oldpage;
3143 unused = newpage;
3144 } else {
3145 used = newpage;
3146 unused = oldpage;
3149 * We disallowed uncharge of pages under migration because mapcount
3150 * of the page goes down to zero, temporarly.
3151 * Clear the flag and check the page should be charged.
3153 pc = lookup_page_cgroup(oldpage);
3154 lock_page_cgroup(pc);
3155 ClearPageCgroupMigration(pc);
3156 unlock_page_cgroup(pc);
3158 __mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
3161 * If a page is a file cache, radix-tree replacement is very atomic
3162 * and we can skip this check. When it was an Anon page, its mapcount
3163 * goes down to 0. But because we added MIGRATION flage, it's not
3164 * uncharged yet. There are several case but page->mapcount check
3165 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3166 * check. (see prepare_charge() also)
3168 if (PageAnon(used))
3169 mem_cgroup_uncharge_page(used);
3171 * At migration, we may charge account against cgroup which has no
3172 * tasks.
3173 * So, rmdir()->pre_destroy() can be called while we do this charge.
3174 * In that case, we need to call pre_destroy() again. check it here.
3176 cgroup_release_and_wakeup_rmdir(&mem->css);
3180 * A call to try to shrink memory usage on charge failure at shmem's swapin.
3181 * Calling hierarchical_reclaim is not enough because we should update
3182 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
3183 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
3184 * not from the memcg which this page would be charged to.
3185 * try_charge_swapin does all of these works properly.
3187 int mem_cgroup_shmem_charge_fallback(struct page *page,
3188 struct mm_struct *mm,
3189 gfp_t gfp_mask)
3191 struct mem_cgroup *mem;
3192 int ret;
3194 if (mem_cgroup_disabled())
3195 return 0;
3197 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
3198 if (!ret)
3199 mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
3201 return ret;
3204 #ifdef CONFIG_DEBUG_VM
3205 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3207 struct page_cgroup *pc;
3209 pc = lookup_page_cgroup(page);
3210 if (likely(pc) && PageCgroupUsed(pc))
3211 return pc;
3212 return NULL;
3215 bool mem_cgroup_bad_page_check(struct page *page)
3217 if (mem_cgroup_disabled())
3218 return false;
3220 return lookup_page_cgroup_used(page) != NULL;
3223 void mem_cgroup_print_bad_page(struct page *page)
3225 struct page_cgroup *pc;
3227 pc = lookup_page_cgroup_used(page);
3228 if (pc) {
3229 int ret = -1;
3230 char *path;
3232 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p",
3233 pc, pc->flags, pc->mem_cgroup);
3235 path = kmalloc(PATH_MAX, GFP_KERNEL);
3236 if (path) {
3237 rcu_read_lock();
3238 ret = cgroup_path(pc->mem_cgroup->css.cgroup,
3239 path, PATH_MAX);
3240 rcu_read_unlock();
3243 printk(KERN_CONT "(%s)\n",
3244 (ret < 0) ? "cannot get the path" : path);
3245 kfree(path);
3248 #endif
3250 static DEFINE_MUTEX(set_limit_mutex);
3252 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3253 unsigned long long val)
3255 int retry_count;
3256 u64 memswlimit, memlimit;
3257 int ret = 0;
3258 int children = mem_cgroup_count_children(memcg);
3259 u64 curusage, oldusage;
3260 int enlarge;
3263 * For keeping hierarchical_reclaim simple, how long we should retry
3264 * is depends on callers. We set our retry-count to be function
3265 * of # of children which we should visit in this loop.
3267 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3269 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3271 enlarge = 0;
3272 while (retry_count) {
3273 if (signal_pending(current)) {
3274 ret = -EINTR;
3275 break;
3278 * Rather than hide all in some function, I do this in
3279 * open coded manner. You see what this really does.
3280 * We have to guarantee mem->res.limit < mem->memsw.limit.
3282 mutex_lock(&set_limit_mutex);
3283 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3284 if (memswlimit < val) {
3285 ret = -EINVAL;
3286 mutex_unlock(&set_limit_mutex);
3287 break;
3290 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3291 if (memlimit < val)
3292 enlarge = 1;
3294 ret = res_counter_set_limit(&memcg->res, val);
3295 if (!ret) {
3296 if (memswlimit == val)
3297 memcg->memsw_is_minimum = true;
3298 else
3299 memcg->memsw_is_minimum = false;
3301 mutex_unlock(&set_limit_mutex);
3303 if (!ret)
3304 break;
3306 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3307 MEM_CGROUP_RECLAIM_SHRINK,
3308 NULL);
3309 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3310 /* Usage is reduced ? */
3311 if (curusage >= oldusage)
3312 retry_count--;
3313 else
3314 oldusage = curusage;
3316 if (!ret && enlarge)
3317 memcg_oom_recover(memcg);
3319 return ret;
3322 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3323 unsigned long long val)
3325 int retry_count;
3326 u64 memlimit, memswlimit, oldusage, curusage;
3327 int children = mem_cgroup_count_children(memcg);
3328 int ret = -EBUSY;
3329 int enlarge = 0;
3331 /* see mem_cgroup_resize_res_limit */
3332 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3333 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3334 while (retry_count) {
3335 if (signal_pending(current)) {
3336 ret = -EINTR;
3337 break;
3340 * Rather than hide all in some function, I do this in
3341 * open coded manner. You see what this really does.
3342 * We have to guarantee mem->res.limit < mem->memsw.limit.
3344 mutex_lock(&set_limit_mutex);
3345 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3346 if (memlimit > val) {
3347 ret = -EINVAL;
3348 mutex_unlock(&set_limit_mutex);
3349 break;
3351 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3352 if (memswlimit < val)
3353 enlarge = 1;
3354 ret = res_counter_set_limit(&memcg->memsw, val);
3355 if (!ret) {
3356 if (memlimit == val)
3357 memcg->memsw_is_minimum = true;
3358 else
3359 memcg->memsw_is_minimum = false;
3361 mutex_unlock(&set_limit_mutex);
3363 if (!ret)
3364 break;
3366 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3367 MEM_CGROUP_RECLAIM_NOSWAP |
3368 MEM_CGROUP_RECLAIM_SHRINK,
3369 NULL);
3370 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3371 /* Usage is reduced ? */
3372 if (curusage >= oldusage)
3373 retry_count--;
3374 else
3375 oldusage = curusage;
3377 if (!ret && enlarge)
3378 memcg_oom_recover(memcg);
3379 return ret;
3382 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3383 gfp_t gfp_mask,
3384 unsigned long *total_scanned)
3386 unsigned long nr_reclaimed = 0;
3387 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3388 unsigned long reclaimed;
3389 int loop = 0;
3390 struct mem_cgroup_tree_per_zone *mctz;
3391 unsigned long long excess;
3392 unsigned long nr_scanned;
3394 if (order > 0)
3395 return 0;
3397 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3399 * This loop can run a while, specially if mem_cgroup's continuously
3400 * keep exceeding their soft limit and putting the system under
3401 * pressure
3403 do {
3404 if (next_mz)
3405 mz = next_mz;
3406 else
3407 mz = mem_cgroup_largest_soft_limit_node(mctz);
3408 if (!mz)
3409 break;
3411 nr_scanned = 0;
3412 reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
3413 gfp_mask,
3414 MEM_CGROUP_RECLAIM_SOFT,
3415 &nr_scanned);
3416 nr_reclaimed += reclaimed;
3417 *total_scanned += nr_scanned;
3418 spin_lock(&mctz->lock);
3421 * If we failed to reclaim anything from this memory cgroup
3422 * it is time to move on to the next cgroup
3424 next_mz = NULL;
3425 if (!reclaimed) {
3426 do {
3428 * Loop until we find yet another one.
3430 * By the time we get the soft_limit lock
3431 * again, someone might have aded the
3432 * group back on the RB tree. Iterate to
3433 * make sure we get a different mem.
3434 * mem_cgroup_largest_soft_limit_node returns
3435 * NULL if no other cgroup is present on
3436 * the tree
3438 next_mz =
3439 __mem_cgroup_largest_soft_limit_node(mctz);
3440 if (next_mz == mz)
3441 css_put(&next_mz->mem->css);
3442 else /* next_mz == NULL or other memcg */
3443 break;
3444 } while (1);
3446 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3447 excess = res_counter_soft_limit_excess(&mz->mem->res);
3449 * One school of thought says that we should not add
3450 * back the node to the tree if reclaim returns 0.
3451 * But our reclaim could return 0, simply because due
3452 * to priority we are exposing a smaller subset of
3453 * memory to reclaim from. Consider this as a longer
3454 * term TODO.
3456 /* If excess == 0, no tree ops */
3457 __mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3458 spin_unlock(&mctz->lock);
3459 css_put(&mz->mem->css);
3460 loop++;
3462 * Could not reclaim anything and there are no more
3463 * mem cgroups to try or we seem to be looping without
3464 * reclaiming anything.
3466 if (!nr_reclaimed &&
3467 (next_mz == NULL ||
3468 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3469 break;
3470 } while (!nr_reclaimed);
3471 if (next_mz)
3472 css_put(&next_mz->mem->css);
3473 return nr_reclaimed;
3477 * This routine traverse page_cgroup in given list and drop them all.
3478 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3480 static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
3481 int node, int zid, enum lru_list lru)
3483 struct zone *zone;
3484 struct mem_cgroup_per_zone *mz;
3485 struct page_cgroup *pc, *busy;
3486 unsigned long flags, loop;
3487 struct list_head *list;
3488 int ret = 0;
3490 zone = &NODE_DATA(node)->node_zones[zid];
3491 mz = mem_cgroup_zoneinfo(mem, node, zid);
3492 list = &mz->lists[lru];
3494 loop = MEM_CGROUP_ZSTAT(mz, lru);
3495 /* give some margin against EBUSY etc...*/
3496 loop += 256;
3497 busy = NULL;
3498 while (loop--) {
3499 struct page *page;
3501 ret = 0;
3502 spin_lock_irqsave(&zone->lru_lock, flags);
3503 if (list_empty(list)) {
3504 spin_unlock_irqrestore(&zone->lru_lock, flags);
3505 break;
3507 pc = list_entry(list->prev, struct page_cgroup, lru);
3508 if (busy == pc) {
3509 list_move(&pc->lru, list);
3510 busy = NULL;
3511 spin_unlock_irqrestore(&zone->lru_lock, flags);
3512 continue;
3514 spin_unlock_irqrestore(&zone->lru_lock, flags);
3516 page = lookup_cgroup_page(pc);
3518 ret = mem_cgroup_move_parent(page, pc, mem, GFP_KERNEL);
3519 if (ret == -ENOMEM)
3520 break;
3522 if (ret == -EBUSY || ret == -EINVAL) {
3523 /* found lock contention or "pc" is obsolete. */
3524 busy = pc;
3525 cond_resched();
3526 } else
3527 busy = NULL;
3530 if (!ret && !list_empty(list))
3531 return -EBUSY;
3532 return ret;
3536 * make mem_cgroup's charge to be 0 if there is no task.
3537 * This enables deleting this mem_cgroup.
3539 static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
3541 int ret;
3542 int node, zid, shrink;
3543 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3544 struct cgroup *cgrp = mem->css.cgroup;
3546 css_get(&mem->css);
3548 shrink = 0;
3549 /* should free all ? */
3550 if (free_all)
3551 goto try_to_free;
3552 move_account:
3553 do {
3554 ret = -EBUSY;
3555 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3556 goto out;
3557 ret = -EINTR;
3558 if (signal_pending(current))
3559 goto out;
3560 /* This is for making all *used* pages to be on LRU. */
3561 lru_add_drain_all();
3562 drain_all_stock_sync();
3563 ret = 0;
3564 mem_cgroup_start_move(mem);
3565 for_each_node_state(node, N_HIGH_MEMORY) {
3566 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3567 enum lru_list l;
3568 for_each_lru(l) {
3569 ret = mem_cgroup_force_empty_list(mem,
3570 node, zid, l);
3571 if (ret)
3572 break;
3575 if (ret)
3576 break;
3578 mem_cgroup_end_move(mem);
3579 memcg_oom_recover(mem);
3580 /* it seems parent cgroup doesn't have enough mem */
3581 if (ret == -ENOMEM)
3582 goto try_to_free;
3583 cond_resched();
3584 /* "ret" should also be checked to ensure all lists are empty. */
3585 } while (mem->res.usage > 0 || ret);
3586 out:
3587 css_put(&mem->css);
3588 return ret;
3590 try_to_free:
3591 /* returns EBUSY if there is a task or if we come here twice. */
3592 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3593 ret = -EBUSY;
3594 goto out;
3596 /* we call try-to-free pages for make this cgroup empty */
3597 lru_add_drain_all();
3598 /* try to free all pages in this cgroup */
3599 shrink = 1;
3600 while (nr_retries && mem->res.usage > 0) {
3601 int progress;
3603 if (signal_pending(current)) {
3604 ret = -EINTR;
3605 goto out;
3607 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
3608 false, get_swappiness(mem));
3609 if (!progress) {
3610 nr_retries--;
3611 /* maybe some writeback is necessary */
3612 congestion_wait(BLK_RW_ASYNC, HZ/10);
3616 lru_add_drain();
3617 /* try move_account...there may be some *locked* pages. */
3618 goto move_account;
3621 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3623 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3627 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3629 return mem_cgroup_from_cont(cont)->use_hierarchy;
3632 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3633 u64 val)
3635 int retval = 0;
3636 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3637 struct cgroup *parent = cont->parent;
3638 struct mem_cgroup *parent_mem = NULL;
3640 if (parent)
3641 parent_mem = mem_cgroup_from_cont(parent);
3643 cgroup_lock();
3645 * If parent's use_hierarchy is set, we can't make any modifications
3646 * in the child subtrees. If it is unset, then the change can
3647 * occur, provided the current cgroup has no children.
3649 * For the root cgroup, parent_mem is NULL, we allow value to be
3650 * set if there are no children.
3652 if ((!parent_mem || !parent_mem->use_hierarchy) &&
3653 (val == 1 || val == 0)) {
3654 if (list_empty(&cont->children))
3655 mem->use_hierarchy = val;
3656 else
3657 retval = -EBUSY;
3658 } else
3659 retval = -EINVAL;
3660 cgroup_unlock();
3662 return retval;
3666 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *mem,
3667 enum mem_cgroup_stat_index idx)
3669 struct mem_cgroup *iter;
3670 long val = 0;
3672 /* Per-cpu values can be negative, use a signed accumulator */
3673 for_each_mem_cgroup_tree(iter, mem)
3674 val += mem_cgroup_read_stat(iter, idx);
3676 if (val < 0) /* race ? */
3677 val = 0;
3678 return val;
3681 static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
3683 u64 val;
3685 if (!mem_cgroup_is_root(mem)) {
3686 if (!swap)
3687 return res_counter_read_u64(&mem->res, RES_USAGE);
3688 else
3689 return res_counter_read_u64(&mem->memsw, RES_USAGE);
3692 val = mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_CACHE);
3693 val += mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_RSS);
3695 if (swap)
3696 val += mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3698 return val << PAGE_SHIFT;
3701 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
3703 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3704 u64 val;
3705 int type, name;
3707 type = MEMFILE_TYPE(cft->private);
3708 name = MEMFILE_ATTR(cft->private);
3709 switch (type) {
3710 case _MEM:
3711 if (name == RES_USAGE)
3712 val = mem_cgroup_usage(mem, false);
3713 else
3714 val = res_counter_read_u64(&mem->res, name);
3715 break;
3716 case _MEMSWAP:
3717 if (name == RES_USAGE)
3718 val = mem_cgroup_usage(mem, true);
3719 else
3720 val = res_counter_read_u64(&mem->memsw, name);
3721 break;
3722 default:
3723 BUG();
3724 break;
3726 return val;
3729 * The user of this function is...
3730 * RES_LIMIT.
3732 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3733 const char *buffer)
3735 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3736 int type, name;
3737 unsigned long long val;
3738 int ret;
3740 type = MEMFILE_TYPE(cft->private);
3741 name = MEMFILE_ATTR(cft->private);
3742 switch (name) {
3743 case RES_LIMIT:
3744 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3745 ret = -EINVAL;
3746 break;
3748 /* This function does all necessary parse...reuse it */
3749 ret = res_counter_memparse_write_strategy(buffer, &val);
3750 if (ret)
3751 break;
3752 if (type == _MEM)
3753 ret = mem_cgroup_resize_limit(memcg, val);
3754 else
3755 ret = mem_cgroup_resize_memsw_limit(memcg, val);
3756 break;
3757 case RES_SOFT_LIMIT:
3758 ret = res_counter_memparse_write_strategy(buffer, &val);
3759 if (ret)
3760 break;
3762 * For memsw, soft limits are hard to implement in terms
3763 * of semantics, for now, we support soft limits for
3764 * control without swap
3766 if (type == _MEM)
3767 ret = res_counter_set_soft_limit(&memcg->res, val);
3768 else
3769 ret = -EINVAL;
3770 break;
3771 default:
3772 ret = -EINVAL; /* should be BUG() ? */
3773 break;
3775 return ret;
3778 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3779 unsigned long long *mem_limit, unsigned long long *memsw_limit)
3781 struct cgroup *cgroup;
3782 unsigned long long min_limit, min_memsw_limit, tmp;
3784 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3785 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3786 cgroup = memcg->css.cgroup;
3787 if (!memcg->use_hierarchy)
3788 goto out;
3790 while (cgroup->parent) {
3791 cgroup = cgroup->parent;
3792 memcg = mem_cgroup_from_cont(cgroup);
3793 if (!memcg->use_hierarchy)
3794 break;
3795 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3796 min_limit = min(min_limit, tmp);
3797 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3798 min_memsw_limit = min(min_memsw_limit, tmp);
3800 out:
3801 *mem_limit = min_limit;
3802 *memsw_limit = min_memsw_limit;
3803 return;
3806 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3808 struct mem_cgroup *mem;
3809 int type, name;
3811 mem = mem_cgroup_from_cont(cont);
3812 type = MEMFILE_TYPE(event);
3813 name = MEMFILE_ATTR(event);
3814 switch (name) {
3815 case RES_MAX_USAGE:
3816 if (type == _MEM)
3817 res_counter_reset_max(&mem->res);
3818 else
3819 res_counter_reset_max(&mem->memsw);
3820 break;
3821 case RES_FAILCNT:
3822 if (type == _MEM)
3823 res_counter_reset_failcnt(&mem->res);
3824 else
3825 res_counter_reset_failcnt(&mem->memsw);
3826 break;
3829 return 0;
3832 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
3833 struct cftype *cft)
3835 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
3838 #ifdef CONFIG_MMU
3839 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3840 struct cftype *cft, u64 val)
3842 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3844 if (val >= (1 << NR_MOVE_TYPE))
3845 return -EINVAL;
3847 * We check this value several times in both in can_attach() and
3848 * attach(), so we need cgroup lock to prevent this value from being
3849 * inconsistent.
3851 cgroup_lock();
3852 mem->move_charge_at_immigrate = val;
3853 cgroup_unlock();
3855 return 0;
3857 #else
3858 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3859 struct cftype *cft, u64 val)
3861 return -ENOSYS;
3863 #endif
3866 /* For read statistics */
3867 enum {
3868 MCS_CACHE,
3869 MCS_RSS,
3870 MCS_FILE_MAPPED,
3871 MCS_PGPGIN,
3872 MCS_PGPGOUT,
3873 MCS_SWAP,
3874 MCS_INACTIVE_ANON,
3875 MCS_ACTIVE_ANON,
3876 MCS_INACTIVE_FILE,
3877 MCS_ACTIVE_FILE,
3878 MCS_UNEVICTABLE,
3879 NR_MCS_STAT,
3882 struct mcs_total_stat {
3883 s64 stat[NR_MCS_STAT];
3886 struct {
3887 char *local_name;
3888 char *total_name;
3889 } memcg_stat_strings[NR_MCS_STAT] = {
3890 {"cache", "total_cache"},
3891 {"rss", "total_rss"},
3892 {"mapped_file", "total_mapped_file"},
3893 {"pgpgin", "total_pgpgin"},
3894 {"pgpgout", "total_pgpgout"},
3895 {"swap", "total_swap"},
3896 {"inactive_anon", "total_inactive_anon"},
3897 {"active_anon", "total_active_anon"},
3898 {"inactive_file", "total_inactive_file"},
3899 {"active_file", "total_active_file"},
3900 {"unevictable", "total_unevictable"}
3904 static void
3905 mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
3907 s64 val;
3909 /* per cpu stat */
3910 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
3911 s->stat[MCS_CACHE] += val * PAGE_SIZE;
3912 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
3913 s->stat[MCS_RSS] += val * PAGE_SIZE;
3914 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
3915 s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
3916 val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGPGIN);
3917 s->stat[MCS_PGPGIN] += val;
3918 val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGPGOUT);
3919 s->stat[MCS_PGPGOUT] += val;
3920 if (do_swap_account) {
3921 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3922 s->stat[MCS_SWAP] += val * PAGE_SIZE;
3925 /* per zone stat */
3926 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
3927 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
3928 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
3929 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
3930 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
3931 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
3932 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
3933 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
3934 val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
3935 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
3938 static void
3939 mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
3941 struct mem_cgroup *iter;
3943 for_each_mem_cgroup_tree(iter, mem)
3944 mem_cgroup_get_local_stat(iter, s);
3947 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
3948 struct cgroup_map_cb *cb)
3950 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
3951 struct mcs_total_stat mystat;
3952 int i;
3954 memset(&mystat, 0, sizeof(mystat));
3955 mem_cgroup_get_local_stat(mem_cont, &mystat);
3957 for (i = 0; i < NR_MCS_STAT; i++) {
3958 if (i == MCS_SWAP && !do_swap_account)
3959 continue;
3960 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
3963 /* Hierarchical information */
3965 unsigned long long limit, memsw_limit;
3966 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
3967 cb->fill(cb, "hierarchical_memory_limit", limit);
3968 if (do_swap_account)
3969 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
3972 memset(&mystat, 0, sizeof(mystat));
3973 mem_cgroup_get_total_stat(mem_cont, &mystat);
3974 for (i = 0; i < NR_MCS_STAT; i++) {
3975 if (i == MCS_SWAP && !do_swap_account)
3976 continue;
3977 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
3980 #ifdef CONFIG_DEBUG_VM
3981 cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
3984 int nid, zid;
3985 struct mem_cgroup_per_zone *mz;
3986 unsigned long recent_rotated[2] = {0, 0};
3987 unsigned long recent_scanned[2] = {0, 0};
3989 for_each_online_node(nid)
3990 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3991 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
3993 recent_rotated[0] +=
3994 mz->reclaim_stat.recent_rotated[0];
3995 recent_rotated[1] +=
3996 mz->reclaim_stat.recent_rotated[1];
3997 recent_scanned[0] +=
3998 mz->reclaim_stat.recent_scanned[0];
3999 recent_scanned[1] +=
4000 mz->reclaim_stat.recent_scanned[1];
4002 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
4003 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
4004 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
4005 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
4007 #endif
4009 return 0;
4012 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4014 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4016 return get_swappiness(memcg);
4019 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4020 u64 val)
4022 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4023 struct mem_cgroup *parent;
4025 if (val > 100)
4026 return -EINVAL;
4028 if (cgrp->parent == NULL)
4029 return -EINVAL;
4031 parent = mem_cgroup_from_cont(cgrp->parent);
4033 cgroup_lock();
4035 /* If under hierarchy, only empty-root can set this value */
4036 if ((parent->use_hierarchy) ||
4037 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4038 cgroup_unlock();
4039 return -EINVAL;
4042 memcg->swappiness = val;
4044 cgroup_unlock();
4046 return 0;
4049 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4051 struct mem_cgroup_threshold_ary *t;
4052 u64 usage;
4053 int i;
4055 rcu_read_lock();
4056 if (!swap)
4057 t = rcu_dereference(memcg->thresholds.primary);
4058 else
4059 t = rcu_dereference(memcg->memsw_thresholds.primary);
4061 if (!t)
4062 goto unlock;
4064 usage = mem_cgroup_usage(memcg, swap);
4067 * current_threshold points to threshold just below usage.
4068 * If it's not true, a threshold was crossed after last
4069 * call of __mem_cgroup_threshold().
4071 i = t->current_threshold;
4074 * Iterate backward over array of thresholds starting from
4075 * current_threshold and check if a threshold is crossed.
4076 * If none of thresholds below usage is crossed, we read
4077 * only one element of the array here.
4079 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4080 eventfd_signal(t->entries[i].eventfd, 1);
4082 /* i = current_threshold + 1 */
4083 i++;
4086 * Iterate forward over array of thresholds starting from
4087 * current_threshold+1 and check if a threshold is crossed.
4088 * If none of thresholds above usage is crossed, we read
4089 * only one element of the array here.
4091 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4092 eventfd_signal(t->entries[i].eventfd, 1);
4094 /* Update current_threshold */
4095 t->current_threshold = i - 1;
4096 unlock:
4097 rcu_read_unlock();
4100 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4102 while (memcg) {
4103 __mem_cgroup_threshold(memcg, false);
4104 if (do_swap_account)
4105 __mem_cgroup_threshold(memcg, true);
4107 memcg = parent_mem_cgroup(memcg);
4111 static int compare_thresholds(const void *a, const void *b)
4113 const struct mem_cgroup_threshold *_a = a;
4114 const struct mem_cgroup_threshold *_b = b;
4116 return _a->threshold - _b->threshold;
4119 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem)
4121 struct mem_cgroup_eventfd_list *ev;
4123 list_for_each_entry(ev, &mem->oom_notify, list)
4124 eventfd_signal(ev->eventfd, 1);
4125 return 0;
4128 static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
4130 struct mem_cgroup *iter;
4132 for_each_mem_cgroup_tree(iter, mem)
4133 mem_cgroup_oom_notify_cb(iter);
4136 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4137 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4139 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4140 struct mem_cgroup_thresholds *thresholds;
4141 struct mem_cgroup_threshold_ary *new;
4142 int type = MEMFILE_TYPE(cft->private);
4143 u64 threshold, usage;
4144 int i, size, ret;
4146 ret = res_counter_memparse_write_strategy(args, &threshold);
4147 if (ret)
4148 return ret;
4150 mutex_lock(&memcg->thresholds_lock);
4152 if (type == _MEM)
4153 thresholds = &memcg->thresholds;
4154 else if (type == _MEMSWAP)
4155 thresholds = &memcg->memsw_thresholds;
4156 else
4157 BUG();
4159 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4161 /* Check if a threshold crossed before adding a new one */
4162 if (thresholds->primary)
4163 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4165 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4167 /* Allocate memory for new array of thresholds */
4168 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4169 GFP_KERNEL);
4170 if (!new) {
4171 ret = -ENOMEM;
4172 goto unlock;
4174 new->size = size;
4176 /* Copy thresholds (if any) to new array */
4177 if (thresholds->primary) {
4178 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4179 sizeof(struct mem_cgroup_threshold));
4182 /* Add new threshold */
4183 new->entries[size - 1].eventfd = eventfd;
4184 new->entries[size - 1].threshold = threshold;
4186 /* Sort thresholds. Registering of new threshold isn't time-critical */
4187 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4188 compare_thresholds, NULL);
4190 /* Find current threshold */
4191 new->current_threshold = -1;
4192 for (i = 0; i < size; i++) {
4193 if (new->entries[i].threshold < usage) {
4195 * new->current_threshold will not be used until
4196 * rcu_assign_pointer(), so it's safe to increment
4197 * it here.
4199 ++new->current_threshold;
4203 /* Free old spare buffer and save old primary buffer as spare */
4204 kfree(thresholds->spare);
4205 thresholds->spare = thresholds->primary;
4207 rcu_assign_pointer(thresholds->primary, new);
4209 /* To be sure that nobody uses thresholds */
4210 synchronize_rcu();
4212 unlock:
4213 mutex_unlock(&memcg->thresholds_lock);
4215 return ret;
4218 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
4219 struct cftype *cft, struct eventfd_ctx *eventfd)
4221 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4222 struct mem_cgroup_thresholds *thresholds;
4223 struct mem_cgroup_threshold_ary *new;
4224 int type = MEMFILE_TYPE(cft->private);
4225 u64 usage;
4226 int i, j, size;
4228 mutex_lock(&memcg->thresholds_lock);
4229 if (type == _MEM)
4230 thresholds = &memcg->thresholds;
4231 else if (type == _MEMSWAP)
4232 thresholds = &memcg->memsw_thresholds;
4233 else
4234 BUG();
4237 * Something went wrong if we trying to unregister a threshold
4238 * if we don't have thresholds
4240 BUG_ON(!thresholds);
4242 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4244 /* Check if a threshold crossed before removing */
4245 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4247 /* Calculate new number of threshold */
4248 size = 0;
4249 for (i = 0; i < thresholds->primary->size; i++) {
4250 if (thresholds->primary->entries[i].eventfd != eventfd)
4251 size++;
4254 new = thresholds->spare;
4256 /* Set thresholds array to NULL if we don't have thresholds */
4257 if (!size) {
4258 kfree(new);
4259 new = NULL;
4260 goto swap_buffers;
4263 new->size = size;
4265 /* Copy thresholds and find current threshold */
4266 new->current_threshold = -1;
4267 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4268 if (thresholds->primary->entries[i].eventfd == eventfd)
4269 continue;
4271 new->entries[j] = thresholds->primary->entries[i];
4272 if (new->entries[j].threshold < usage) {
4274 * new->current_threshold will not be used
4275 * until rcu_assign_pointer(), so it's safe to increment
4276 * it here.
4278 ++new->current_threshold;
4280 j++;
4283 swap_buffers:
4284 /* Swap primary and spare array */
4285 thresholds->spare = thresholds->primary;
4286 rcu_assign_pointer(thresholds->primary, new);
4288 /* To be sure that nobody uses thresholds */
4289 synchronize_rcu();
4291 mutex_unlock(&memcg->thresholds_lock);
4294 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4295 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4297 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4298 struct mem_cgroup_eventfd_list *event;
4299 int type = MEMFILE_TYPE(cft->private);
4301 BUG_ON(type != _OOM_TYPE);
4302 event = kmalloc(sizeof(*event), GFP_KERNEL);
4303 if (!event)
4304 return -ENOMEM;
4306 mutex_lock(&memcg_oom_mutex);
4308 event->eventfd = eventfd;
4309 list_add(&event->list, &memcg->oom_notify);
4311 /* already in OOM ? */
4312 if (atomic_read(&memcg->oom_lock))
4313 eventfd_signal(eventfd, 1);
4314 mutex_unlock(&memcg_oom_mutex);
4316 return 0;
4319 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4320 struct cftype *cft, struct eventfd_ctx *eventfd)
4322 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4323 struct mem_cgroup_eventfd_list *ev, *tmp;
4324 int type = MEMFILE_TYPE(cft->private);
4326 BUG_ON(type != _OOM_TYPE);
4328 mutex_lock(&memcg_oom_mutex);
4330 list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
4331 if (ev->eventfd == eventfd) {
4332 list_del(&ev->list);
4333 kfree(ev);
4337 mutex_unlock(&memcg_oom_mutex);
4340 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4341 struct cftype *cft, struct cgroup_map_cb *cb)
4343 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4345 cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);
4347 if (atomic_read(&mem->oom_lock))
4348 cb->fill(cb, "under_oom", 1);
4349 else
4350 cb->fill(cb, "under_oom", 0);
4351 return 0;
4354 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4355 struct cftype *cft, u64 val)
4357 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4358 struct mem_cgroup *parent;
4360 /* cannot set to root cgroup and only 0 and 1 are allowed */
4361 if (!cgrp->parent || !((val == 0) || (val == 1)))
4362 return -EINVAL;
4364 parent = mem_cgroup_from_cont(cgrp->parent);
4366 cgroup_lock();
4367 /* oom-kill-disable is a flag for subhierarchy. */
4368 if ((parent->use_hierarchy) ||
4369 (mem->use_hierarchy && !list_empty(&cgrp->children))) {
4370 cgroup_unlock();
4371 return -EINVAL;
4373 mem->oom_kill_disable = val;
4374 if (!val)
4375 memcg_oom_recover(mem);
4376 cgroup_unlock();
4377 return 0;
4380 static struct cftype mem_cgroup_files[] = {
4382 .name = "usage_in_bytes",
4383 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4384 .read_u64 = mem_cgroup_read,
4385 .register_event = mem_cgroup_usage_register_event,
4386 .unregister_event = mem_cgroup_usage_unregister_event,
4389 .name = "max_usage_in_bytes",
4390 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4391 .trigger = mem_cgroup_reset,
4392 .read_u64 = mem_cgroup_read,
4395 .name = "limit_in_bytes",
4396 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4397 .write_string = mem_cgroup_write,
4398 .read_u64 = mem_cgroup_read,
4401 .name = "soft_limit_in_bytes",
4402 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4403 .write_string = mem_cgroup_write,
4404 .read_u64 = mem_cgroup_read,
4407 .name = "failcnt",
4408 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4409 .trigger = mem_cgroup_reset,
4410 .read_u64 = mem_cgroup_read,
4413 .name = "stat",
4414 .read_map = mem_control_stat_show,
4417 .name = "force_empty",
4418 .trigger = mem_cgroup_force_empty_write,
4421 .name = "use_hierarchy",
4422 .write_u64 = mem_cgroup_hierarchy_write,
4423 .read_u64 = mem_cgroup_hierarchy_read,
4426 .name = "swappiness",
4427 .read_u64 = mem_cgroup_swappiness_read,
4428 .write_u64 = mem_cgroup_swappiness_write,
4431 .name = "move_charge_at_immigrate",
4432 .read_u64 = mem_cgroup_move_charge_read,
4433 .write_u64 = mem_cgroup_move_charge_write,
4436 .name = "oom_control",
4437 .read_map = mem_cgroup_oom_control_read,
4438 .write_u64 = mem_cgroup_oom_control_write,
4439 .register_event = mem_cgroup_oom_register_event,
4440 .unregister_event = mem_cgroup_oom_unregister_event,
4441 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4445 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4446 static struct cftype memsw_cgroup_files[] = {
4448 .name = "memsw.usage_in_bytes",
4449 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4450 .read_u64 = mem_cgroup_read,
4451 .register_event = mem_cgroup_usage_register_event,
4452 .unregister_event = mem_cgroup_usage_unregister_event,
4455 .name = "memsw.max_usage_in_bytes",
4456 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4457 .trigger = mem_cgroup_reset,
4458 .read_u64 = mem_cgroup_read,
4461 .name = "memsw.limit_in_bytes",
4462 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4463 .write_string = mem_cgroup_write,
4464 .read_u64 = mem_cgroup_read,
4467 .name = "memsw.failcnt",
4468 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4469 .trigger = mem_cgroup_reset,
4470 .read_u64 = mem_cgroup_read,
4474 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4476 if (!do_swap_account)
4477 return 0;
4478 return cgroup_add_files(cont, ss, memsw_cgroup_files,
4479 ARRAY_SIZE(memsw_cgroup_files));
4481 #else
4482 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4484 return 0;
4486 #endif
4488 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4490 struct mem_cgroup_per_node *pn;
4491 struct mem_cgroup_per_zone *mz;
4492 enum lru_list l;
4493 int zone, tmp = node;
4495 * This routine is called against possible nodes.
4496 * But it's BUG to call kmalloc() against offline node.
4498 * TODO: this routine can waste much memory for nodes which will
4499 * never be onlined. It's better to use memory hotplug callback
4500 * function.
4502 if (!node_state(node, N_NORMAL_MEMORY))
4503 tmp = -1;
4504 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4505 if (!pn)
4506 return 1;
4508 mem->info.nodeinfo[node] = pn;
4509 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4510 mz = &pn->zoneinfo[zone];
4511 for_each_lru(l)
4512 INIT_LIST_HEAD(&mz->lists[l]);
4513 mz->usage_in_excess = 0;
4514 mz->on_tree = false;
4515 mz->mem = mem;
4517 return 0;
4520 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4522 kfree(mem->info.nodeinfo[node]);
4525 static struct mem_cgroup *mem_cgroup_alloc(void)
4527 struct mem_cgroup *mem;
4528 int size = sizeof(struct mem_cgroup);
4530 /* Can be very big if MAX_NUMNODES is very big */
4531 if (size < PAGE_SIZE)
4532 mem = kzalloc(size, GFP_KERNEL);
4533 else
4534 mem = vzalloc(size);
4536 if (!mem)
4537 return NULL;
4539 mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4540 if (!mem->stat)
4541 goto out_free;
4542 spin_lock_init(&mem->pcp_counter_lock);
4543 return mem;
4545 out_free:
4546 if (size < PAGE_SIZE)
4547 kfree(mem);
4548 else
4549 vfree(mem);
4550 return NULL;
4554 * At destroying mem_cgroup, references from swap_cgroup can remain.
4555 * (scanning all at force_empty is too costly...)
4557 * Instead of clearing all references at force_empty, we remember
4558 * the number of reference from swap_cgroup and free mem_cgroup when
4559 * it goes down to 0.
4561 * Removal of cgroup itself succeeds regardless of refs from swap.
4564 static void __mem_cgroup_free(struct mem_cgroup *mem)
4566 int node;
4568 mem_cgroup_remove_from_trees(mem);
4569 free_css_id(&mem_cgroup_subsys, &mem->css);
4571 for_each_node_state(node, N_POSSIBLE)
4572 free_mem_cgroup_per_zone_info(mem, node);
4574 free_percpu(mem->stat);
4575 if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4576 kfree(mem);
4577 else
4578 vfree(mem);
4581 static void mem_cgroup_get(struct mem_cgroup *mem)
4583 atomic_inc(&mem->refcnt);
4586 static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
4588 if (atomic_sub_and_test(count, &mem->refcnt)) {
4589 struct mem_cgroup *parent = parent_mem_cgroup(mem);
4590 __mem_cgroup_free(mem);
4591 if (parent)
4592 mem_cgroup_put(parent);
4596 static void mem_cgroup_put(struct mem_cgroup *mem)
4598 __mem_cgroup_put(mem, 1);
4602 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4604 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
4606 if (!mem->res.parent)
4607 return NULL;
4608 return mem_cgroup_from_res_counter(mem->res.parent, res);
4611 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4612 static void __init enable_swap_cgroup(void)
4614 if (!mem_cgroup_disabled() && really_do_swap_account)
4615 do_swap_account = 1;
4617 #else
4618 static void __init enable_swap_cgroup(void)
4621 #endif
4623 static int mem_cgroup_soft_limit_tree_init(void)
4625 struct mem_cgroup_tree_per_node *rtpn;
4626 struct mem_cgroup_tree_per_zone *rtpz;
4627 int tmp, node, zone;
4629 for_each_node_state(node, N_POSSIBLE) {
4630 tmp = node;
4631 if (!node_state(node, N_NORMAL_MEMORY))
4632 tmp = -1;
4633 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4634 if (!rtpn)
4635 return 1;
4637 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4639 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4640 rtpz = &rtpn->rb_tree_per_zone[zone];
4641 rtpz->rb_root = RB_ROOT;
4642 spin_lock_init(&rtpz->lock);
4645 return 0;
4648 static struct cgroup_subsys_state * __ref
4649 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
4651 struct mem_cgroup *mem, *parent;
4652 long error = -ENOMEM;
4653 int node;
4655 mem = mem_cgroup_alloc();
4656 if (!mem)
4657 return ERR_PTR(error);
4659 for_each_node_state(node, N_POSSIBLE)
4660 if (alloc_mem_cgroup_per_zone_info(mem, node))
4661 goto free_out;
4663 /* root ? */
4664 if (cont->parent == NULL) {
4665 int cpu;
4666 enable_swap_cgroup();
4667 parent = NULL;
4668 root_mem_cgroup = mem;
4669 if (mem_cgroup_soft_limit_tree_init())
4670 goto free_out;
4671 for_each_possible_cpu(cpu) {
4672 struct memcg_stock_pcp *stock =
4673 &per_cpu(memcg_stock, cpu);
4674 INIT_WORK(&stock->work, drain_local_stock);
4676 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4677 } else {
4678 parent = mem_cgroup_from_cont(cont->parent);
4679 mem->use_hierarchy = parent->use_hierarchy;
4680 mem->oom_kill_disable = parent->oom_kill_disable;
4683 if (parent && parent->use_hierarchy) {
4684 res_counter_init(&mem->res, &parent->res);
4685 res_counter_init(&mem->memsw, &parent->memsw);
4687 * We increment refcnt of the parent to ensure that we can
4688 * safely access it on res_counter_charge/uncharge.
4689 * This refcnt will be decremented when freeing this
4690 * mem_cgroup(see mem_cgroup_put).
4692 mem_cgroup_get(parent);
4693 } else {
4694 res_counter_init(&mem->res, NULL);
4695 res_counter_init(&mem->memsw, NULL);
4697 mem->last_scanned_child = 0;
4698 mem->last_scanned_node = MAX_NUMNODES;
4699 INIT_LIST_HEAD(&mem->oom_notify);
4701 if (parent)
4702 mem->swappiness = get_swappiness(parent);
4703 atomic_set(&mem->refcnt, 1);
4704 mem->move_charge_at_immigrate = 0;
4705 mutex_init(&mem->thresholds_lock);
4706 return &mem->css;
4707 free_out:
4708 __mem_cgroup_free(mem);
4709 root_mem_cgroup = NULL;
4710 return ERR_PTR(error);
4713 static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
4714 struct cgroup *cont)
4716 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4718 return mem_cgroup_force_empty(mem, false);
4721 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
4722 struct cgroup *cont)
4724 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4726 mem_cgroup_put(mem);
4729 static int mem_cgroup_populate(struct cgroup_subsys *ss,
4730 struct cgroup *cont)
4732 int ret;
4734 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
4735 ARRAY_SIZE(mem_cgroup_files));
4737 if (!ret)
4738 ret = register_memsw_files(cont, ss);
4739 return ret;
4742 #ifdef CONFIG_MMU
4743 /* Handlers for move charge at task migration. */
4744 #define PRECHARGE_COUNT_AT_ONCE 256
4745 static int mem_cgroup_do_precharge(unsigned long count)
4747 int ret = 0;
4748 int batch_count = PRECHARGE_COUNT_AT_ONCE;
4749 struct mem_cgroup *mem = mc.to;
4751 if (mem_cgroup_is_root(mem)) {
4752 mc.precharge += count;
4753 /* we don't need css_get for root */
4754 return ret;
4756 /* try to charge at once */
4757 if (count > 1) {
4758 struct res_counter *dummy;
4760 * "mem" cannot be under rmdir() because we've already checked
4761 * by cgroup_lock_live_cgroup() that it is not removed and we
4762 * are still under the same cgroup_mutex. So we can postpone
4763 * css_get().
4765 if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
4766 goto one_by_one;
4767 if (do_swap_account && res_counter_charge(&mem->memsw,
4768 PAGE_SIZE * count, &dummy)) {
4769 res_counter_uncharge(&mem->res, PAGE_SIZE * count);
4770 goto one_by_one;
4772 mc.precharge += count;
4773 return ret;
4775 one_by_one:
4776 /* fall back to one by one charge */
4777 while (count--) {
4778 if (signal_pending(current)) {
4779 ret = -EINTR;
4780 break;
4782 if (!batch_count--) {
4783 batch_count = PRECHARGE_COUNT_AT_ONCE;
4784 cond_resched();
4786 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, 1, &mem, false);
4787 if (ret || !mem)
4788 /* mem_cgroup_clear_mc() will do uncharge later */
4789 return -ENOMEM;
4790 mc.precharge++;
4792 return ret;
4796 * is_target_pte_for_mc - check a pte whether it is valid for move charge
4797 * @vma: the vma the pte to be checked belongs
4798 * @addr: the address corresponding to the pte to be checked
4799 * @ptent: the pte to be checked
4800 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4802 * Returns
4803 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4804 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4805 * move charge. if @target is not NULL, the page is stored in target->page
4806 * with extra refcnt got(Callers should handle it).
4807 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4808 * target for charge migration. if @target is not NULL, the entry is stored
4809 * in target->ent.
4811 * Called with pte lock held.
4813 union mc_target {
4814 struct page *page;
4815 swp_entry_t ent;
4818 enum mc_target_type {
4819 MC_TARGET_NONE, /* not used */
4820 MC_TARGET_PAGE,
4821 MC_TARGET_SWAP,
4824 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4825 unsigned long addr, pte_t ptent)
4827 struct page *page = vm_normal_page(vma, addr, ptent);
4829 if (!page || !page_mapped(page))
4830 return NULL;
4831 if (PageAnon(page)) {
4832 /* we don't move shared anon */
4833 if (!move_anon() || page_mapcount(page) > 2)
4834 return NULL;
4835 } else if (!move_file())
4836 /* we ignore mapcount for file pages */
4837 return NULL;
4838 if (!get_page_unless_zero(page))
4839 return NULL;
4841 return page;
4844 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4845 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4847 int usage_count;
4848 struct page *page = NULL;
4849 swp_entry_t ent = pte_to_swp_entry(ptent);
4851 if (!move_anon() || non_swap_entry(ent))
4852 return NULL;
4853 usage_count = mem_cgroup_count_swap_user(ent, &page);
4854 if (usage_count > 1) { /* we don't move shared anon */
4855 if (page)
4856 put_page(page);
4857 return NULL;
4859 if (do_swap_account)
4860 entry->val = ent.val;
4862 return page;
4865 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4866 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4868 struct page *page = NULL;
4869 struct inode *inode;
4870 struct address_space *mapping;
4871 pgoff_t pgoff;
4873 if (!vma->vm_file) /* anonymous vma */
4874 return NULL;
4875 if (!move_file())
4876 return NULL;
4878 inode = vma->vm_file->f_path.dentry->d_inode;
4879 mapping = vma->vm_file->f_mapping;
4880 if (pte_none(ptent))
4881 pgoff = linear_page_index(vma, addr);
4882 else /* pte_file(ptent) is true */
4883 pgoff = pte_to_pgoff(ptent);
4885 /* page is moved even if it's not RSS of this task(page-faulted). */
4886 if (!mapping_cap_swap_backed(mapping)) { /* normal file */
4887 page = find_get_page(mapping, pgoff);
4888 } else { /* shmem/tmpfs file. we should take account of swap too. */
4889 swp_entry_t ent;
4890 mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent);
4891 if (do_swap_account)
4892 entry->val = ent.val;
4895 return page;
4898 static int is_target_pte_for_mc(struct vm_area_struct *vma,
4899 unsigned long addr, pte_t ptent, union mc_target *target)
4901 struct page *page = NULL;
4902 struct page_cgroup *pc;
4903 int ret = 0;
4904 swp_entry_t ent = { .val = 0 };
4906 if (pte_present(ptent))
4907 page = mc_handle_present_pte(vma, addr, ptent);
4908 else if (is_swap_pte(ptent))
4909 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4910 else if (pte_none(ptent) || pte_file(ptent))
4911 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4913 if (!page && !ent.val)
4914 return 0;
4915 if (page) {
4916 pc = lookup_page_cgroup(page);
4918 * Do only loose check w/o page_cgroup lock.
4919 * mem_cgroup_move_account() checks the pc is valid or not under
4920 * the lock.
4922 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
4923 ret = MC_TARGET_PAGE;
4924 if (target)
4925 target->page = page;
4927 if (!ret || !target)
4928 put_page(page);
4930 /* There is a swap entry and a page doesn't exist or isn't charged */
4931 if (ent.val && !ret &&
4932 css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
4933 ret = MC_TARGET_SWAP;
4934 if (target)
4935 target->ent = ent;
4937 return ret;
4940 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4941 unsigned long addr, unsigned long end,
4942 struct mm_walk *walk)
4944 struct vm_area_struct *vma = walk->private;
4945 pte_t *pte;
4946 spinlock_t *ptl;
4948 split_huge_page_pmd(walk->mm, pmd);
4950 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4951 for (; addr != end; pte++, addr += PAGE_SIZE)
4952 if (is_target_pte_for_mc(vma, addr, *pte, NULL))
4953 mc.precharge++; /* increment precharge temporarily */
4954 pte_unmap_unlock(pte - 1, ptl);
4955 cond_resched();
4957 return 0;
4960 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4962 unsigned long precharge;
4963 struct vm_area_struct *vma;
4965 down_read(&mm->mmap_sem);
4966 for (vma = mm->mmap; vma; vma = vma->vm_next) {
4967 struct mm_walk mem_cgroup_count_precharge_walk = {
4968 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4969 .mm = mm,
4970 .private = vma,
4972 if (is_vm_hugetlb_page(vma))
4973 continue;
4974 walk_page_range(vma->vm_start, vma->vm_end,
4975 &mem_cgroup_count_precharge_walk);
4977 up_read(&mm->mmap_sem);
4979 precharge = mc.precharge;
4980 mc.precharge = 0;
4982 return precharge;
4985 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4987 unsigned long precharge = mem_cgroup_count_precharge(mm);
4989 VM_BUG_ON(mc.moving_task);
4990 mc.moving_task = current;
4991 return mem_cgroup_do_precharge(precharge);
4994 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4995 static void __mem_cgroup_clear_mc(void)
4997 struct mem_cgroup *from = mc.from;
4998 struct mem_cgroup *to = mc.to;
5000 /* we must uncharge all the leftover precharges from mc.to */
5001 if (mc.precharge) {
5002 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
5003 mc.precharge = 0;
5006 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5007 * we must uncharge here.
5009 if (mc.moved_charge) {
5010 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5011 mc.moved_charge = 0;
5013 /* we must fixup refcnts and charges */
5014 if (mc.moved_swap) {
5015 /* uncharge swap account from the old cgroup */
5016 if (!mem_cgroup_is_root(mc.from))
5017 res_counter_uncharge(&mc.from->memsw,
5018 PAGE_SIZE * mc.moved_swap);
5019 __mem_cgroup_put(mc.from, mc.moved_swap);
5021 if (!mem_cgroup_is_root(mc.to)) {
5023 * we charged both to->res and to->memsw, so we should
5024 * uncharge to->res.
5026 res_counter_uncharge(&mc.to->res,
5027 PAGE_SIZE * mc.moved_swap);
5029 /* we've already done mem_cgroup_get(mc.to) */
5030 mc.moved_swap = 0;
5032 memcg_oom_recover(from);
5033 memcg_oom_recover(to);
5034 wake_up_all(&mc.waitq);
5037 static void mem_cgroup_clear_mc(void)
5039 struct mem_cgroup *from = mc.from;
5042 * we must clear moving_task before waking up waiters at the end of
5043 * task migration.
5045 mc.moving_task = NULL;
5046 __mem_cgroup_clear_mc();
5047 spin_lock(&mc.lock);
5048 mc.from = NULL;
5049 mc.to = NULL;
5050 spin_unlock(&mc.lock);
5051 mem_cgroup_end_move(from);
5054 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5055 struct cgroup *cgroup,
5056 struct task_struct *p)
5058 int ret = 0;
5059 struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);
5061 if (mem->move_charge_at_immigrate) {
5062 struct mm_struct *mm;
5063 struct mem_cgroup *from = mem_cgroup_from_task(p);
5065 VM_BUG_ON(from == mem);
5067 mm = get_task_mm(p);
5068 if (!mm)
5069 return 0;
5070 /* We move charges only when we move a owner of the mm */
5071 if (mm->owner == p) {
5072 VM_BUG_ON(mc.from);
5073 VM_BUG_ON(mc.to);
5074 VM_BUG_ON(mc.precharge);
5075 VM_BUG_ON(mc.moved_charge);
5076 VM_BUG_ON(mc.moved_swap);
5077 mem_cgroup_start_move(from);
5078 spin_lock(&mc.lock);
5079 mc.from = from;
5080 mc.to = mem;
5081 spin_unlock(&mc.lock);
5082 /* We set mc.moving_task later */
5084 ret = mem_cgroup_precharge_mc(mm);
5085 if (ret)
5086 mem_cgroup_clear_mc();
5088 mmput(mm);
5090 return ret;
5093 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5094 struct cgroup *cgroup,
5095 struct task_struct *p)
5097 mem_cgroup_clear_mc();
5100 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5101 unsigned long addr, unsigned long end,
5102 struct mm_walk *walk)
5104 int ret = 0;
5105 struct vm_area_struct *vma = walk->private;
5106 pte_t *pte;
5107 spinlock_t *ptl;
5109 split_huge_page_pmd(walk->mm, pmd);
5110 retry:
5111 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5112 for (; addr != end; addr += PAGE_SIZE) {
5113 pte_t ptent = *(pte++);
5114 union mc_target target;
5115 int type;
5116 struct page *page;
5117 struct page_cgroup *pc;
5118 swp_entry_t ent;
5120 if (!mc.precharge)
5121 break;
5123 type = is_target_pte_for_mc(vma, addr, ptent, &target);
5124 switch (type) {
5125 case MC_TARGET_PAGE:
5126 page = target.page;
5127 if (isolate_lru_page(page))
5128 goto put;
5129 pc = lookup_page_cgroup(page);
5130 if (!mem_cgroup_move_account(page, 1, pc,
5131 mc.from, mc.to, false)) {
5132 mc.precharge--;
5133 /* we uncharge from mc.from later. */
5134 mc.moved_charge++;
5136 putback_lru_page(page);
5137 put: /* is_target_pte_for_mc() gets the page */
5138 put_page(page);
5139 break;
5140 case MC_TARGET_SWAP:
5141 ent = target.ent;
5142 if (!mem_cgroup_move_swap_account(ent,
5143 mc.from, mc.to, false)) {
5144 mc.precharge--;
5145 /* we fixup refcnts and charges later. */
5146 mc.moved_swap++;
5148 break;
5149 default:
5150 break;
5153 pte_unmap_unlock(pte - 1, ptl);
5154 cond_resched();
5156 if (addr != end) {
5158 * We have consumed all precharges we got in can_attach().
5159 * We try charge one by one, but don't do any additional
5160 * charges to mc.to if we have failed in charge once in attach()
5161 * phase.
5163 ret = mem_cgroup_do_precharge(1);
5164 if (!ret)
5165 goto retry;
5168 return ret;
5171 static void mem_cgroup_move_charge(struct mm_struct *mm)
5173 struct vm_area_struct *vma;
5175 lru_add_drain_all();
5176 retry:
5177 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5179 * Someone who are holding the mmap_sem might be waiting in
5180 * waitq. So we cancel all extra charges, wake up all waiters,
5181 * and retry. Because we cancel precharges, we might not be able
5182 * to move enough charges, but moving charge is a best-effort
5183 * feature anyway, so it wouldn't be a big problem.
5185 __mem_cgroup_clear_mc();
5186 cond_resched();
5187 goto retry;
5189 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5190 int ret;
5191 struct mm_walk mem_cgroup_move_charge_walk = {
5192 .pmd_entry = mem_cgroup_move_charge_pte_range,
5193 .mm = mm,
5194 .private = vma,
5196 if (is_vm_hugetlb_page(vma))
5197 continue;
5198 ret = walk_page_range(vma->vm_start, vma->vm_end,
5199 &mem_cgroup_move_charge_walk);
5200 if (ret)
5202 * means we have consumed all precharges and failed in
5203 * doing additional charge. Just abandon here.
5205 break;
5207 up_read(&mm->mmap_sem);
5210 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5211 struct cgroup *cont,
5212 struct cgroup *old_cont,
5213 struct task_struct *p)
5215 struct mm_struct *mm;
5217 if (!mc.to)
5218 /* no need to move charge */
5219 return;
5221 mm = get_task_mm(p);
5222 if (mm) {
5223 mem_cgroup_move_charge(mm);
5224 mmput(mm);
5226 mem_cgroup_clear_mc();
5228 #else /* !CONFIG_MMU */
5229 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5230 struct cgroup *cgroup,
5231 struct task_struct *p)
5233 return 0;
5235 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5236 struct cgroup *cgroup,
5237 struct task_struct *p)
5240 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5241 struct cgroup *cont,
5242 struct cgroup *old_cont,
5243 struct task_struct *p)
5246 #endif
5248 struct cgroup_subsys mem_cgroup_subsys = {
5249 .name = "memory",
5250 .subsys_id = mem_cgroup_subsys_id,
5251 .create = mem_cgroup_create,
5252 .pre_destroy = mem_cgroup_pre_destroy,
5253 .destroy = mem_cgroup_destroy,
5254 .populate = mem_cgroup_populate,
5255 .can_attach = mem_cgroup_can_attach,
5256 .cancel_attach = mem_cgroup_cancel_attach,
5257 .attach = mem_cgroup_move_task,
5258 .early_init = 0,
5259 .use_id = 1,
5262 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5263 static int __init enable_swap_account(char *s)
5265 /* consider enabled if no parameter or 1 is given */
5266 if (!strcmp(s, "1"))
5267 really_do_swap_account = 1;
5268 else if (!strcmp(s, "0"))
5269 really_do_swap_account = 0;
5270 return 1;
5272 __setup("swapaccount=", enable_swap_account);
5274 #endif