blkcg: move refcnt to blkcg core
[linux-2.6.git] / drivers / md / raid1.c
bloba368db2431a596020a98a3e64f67685ccef9c6cc
1 /*
2 * raid1.c : Multiple Devices driver for Linux
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8 * RAID-1 management functions.
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
27 * any later version.
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40 #include "md.h"
41 #include "raid1.h"
42 #include "bitmap.h"
45 * Number of guaranteed r1bios in case of extreme VM load:
47 #define NR_RAID1_BIOS 256
49 /* When there are this many requests queue to be written by
50 * the raid1 thread, we become 'congested' to provide back-pressure
51 * for writeback.
53 static int max_queued_requests = 1024;
55 static void allow_barrier(struct r1conf *conf);
56 static void lower_barrier(struct r1conf *conf);
58 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
60 struct pool_info *pi = data;
61 int size = offsetof(struct r1bio, bios[pi->raid_disks]);
63 /* allocate a r1bio with room for raid_disks entries in the bios array */
64 return kzalloc(size, gfp_flags);
67 static void r1bio_pool_free(void *r1_bio, void *data)
69 kfree(r1_bio);
72 #define RESYNC_BLOCK_SIZE (64*1024)
73 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
74 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
75 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
76 #define RESYNC_WINDOW (2048*1024)
78 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
80 struct pool_info *pi = data;
81 struct page *page;
82 struct r1bio *r1_bio;
83 struct bio *bio;
84 int i, j;
86 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
87 if (!r1_bio)
88 return NULL;
91 * Allocate bios : 1 for reading, n-1 for writing
93 for (j = pi->raid_disks ; j-- ; ) {
94 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
95 if (!bio)
96 goto out_free_bio;
97 r1_bio->bios[j] = bio;
100 * Allocate RESYNC_PAGES data pages and attach them to
101 * the first bio.
102 * If this is a user-requested check/repair, allocate
103 * RESYNC_PAGES for each bio.
105 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
106 j = pi->raid_disks;
107 else
108 j = 1;
109 while(j--) {
110 bio = r1_bio->bios[j];
111 for (i = 0; i < RESYNC_PAGES; i++) {
112 page = alloc_page(gfp_flags);
113 if (unlikely(!page))
114 goto out_free_pages;
116 bio->bi_io_vec[i].bv_page = page;
117 bio->bi_vcnt = i+1;
120 /* If not user-requests, copy the page pointers to all bios */
121 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
122 for (i=0; i<RESYNC_PAGES ; i++)
123 for (j=1; j<pi->raid_disks; j++)
124 r1_bio->bios[j]->bi_io_vec[i].bv_page =
125 r1_bio->bios[0]->bi_io_vec[i].bv_page;
128 r1_bio->master_bio = NULL;
130 return r1_bio;
132 out_free_pages:
133 for (j=0 ; j < pi->raid_disks; j++)
134 for (i=0; i < r1_bio->bios[j]->bi_vcnt ; i++)
135 put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page);
136 j = -1;
137 out_free_bio:
138 while (++j < pi->raid_disks)
139 bio_put(r1_bio->bios[j]);
140 r1bio_pool_free(r1_bio, data);
141 return NULL;
144 static void r1buf_pool_free(void *__r1_bio, void *data)
146 struct pool_info *pi = data;
147 int i,j;
148 struct r1bio *r1bio = __r1_bio;
150 for (i = 0; i < RESYNC_PAGES; i++)
151 for (j = pi->raid_disks; j-- ;) {
152 if (j == 0 ||
153 r1bio->bios[j]->bi_io_vec[i].bv_page !=
154 r1bio->bios[0]->bi_io_vec[i].bv_page)
155 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
157 for (i=0 ; i < pi->raid_disks; i++)
158 bio_put(r1bio->bios[i]);
160 r1bio_pool_free(r1bio, data);
163 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
165 int i;
167 for (i = 0; i < conf->raid_disks * 2; i++) {
168 struct bio **bio = r1_bio->bios + i;
169 if (!BIO_SPECIAL(*bio))
170 bio_put(*bio);
171 *bio = NULL;
175 static void free_r1bio(struct r1bio *r1_bio)
177 struct r1conf *conf = r1_bio->mddev->private;
179 put_all_bios(conf, r1_bio);
180 mempool_free(r1_bio, conf->r1bio_pool);
183 static void put_buf(struct r1bio *r1_bio)
185 struct r1conf *conf = r1_bio->mddev->private;
186 int i;
188 for (i = 0; i < conf->raid_disks * 2; i++) {
189 struct bio *bio = r1_bio->bios[i];
190 if (bio->bi_end_io)
191 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
194 mempool_free(r1_bio, conf->r1buf_pool);
196 lower_barrier(conf);
199 static void reschedule_retry(struct r1bio *r1_bio)
201 unsigned long flags;
202 struct mddev *mddev = r1_bio->mddev;
203 struct r1conf *conf = mddev->private;
205 spin_lock_irqsave(&conf->device_lock, flags);
206 list_add(&r1_bio->retry_list, &conf->retry_list);
207 conf->nr_queued ++;
208 spin_unlock_irqrestore(&conf->device_lock, flags);
210 wake_up(&conf->wait_barrier);
211 md_wakeup_thread(mddev->thread);
215 * raid_end_bio_io() is called when we have finished servicing a mirrored
216 * operation and are ready to return a success/failure code to the buffer
217 * cache layer.
219 static void call_bio_endio(struct r1bio *r1_bio)
221 struct bio *bio = r1_bio->master_bio;
222 int done;
223 struct r1conf *conf = r1_bio->mddev->private;
225 if (bio->bi_phys_segments) {
226 unsigned long flags;
227 spin_lock_irqsave(&conf->device_lock, flags);
228 bio->bi_phys_segments--;
229 done = (bio->bi_phys_segments == 0);
230 spin_unlock_irqrestore(&conf->device_lock, flags);
231 } else
232 done = 1;
234 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
235 clear_bit(BIO_UPTODATE, &bio->bi_flags);
236 if (done) {
237 bio_endio(bio, 0);
239 * Wake up any possible resync thread that waits for the device
240 * to go idle.
242 allow_barrier(conf);
246 static void raid_end_bio_io(struct r1bio *r1_bio)
248 struct bio *bio = r1_bio->master_bio;
250 /* if nobody has done the final endio yet, do it now */
251 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
252 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
253 (bio_data_dir(bio) == WRITE) ? "write" : "read",
254 (unsigned long long) bio->bi_sector,
255 (unsigned long long) bio->bi_sector +
256 (bio->bi_size >> 9) - 1);
258 call_bio_endio(r1_bio);
260 free_r1bio(r1_bio);
264 * Update disk head position estimator based on IRQ completion info.
266 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
268 struct r1conf *conf = r1_bio->mddev->private;
270 conf->mirrors[disk].head_position =
271 r1_bio->sector + (r1_bio->sectors);
275 * Find the disk number which triggered given bio
277 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
279 int mirror;
280 struct r1conf *conf = r1_bio->mddev->private;
281 int raid_disks = conf->raid_disks;
283 for (mirror = 0; mirror < raid_disks * 2; mirror++)
284 if (r1_bio->bios[mirror] == bio)
285 break;
287 BUG_ON(mirror == raid_disks * 2);
288 update_head_pos(mirror, r1_bio);
290 return mirror;
293 static void raid1_end_read_request(struct bio *bio, int error)
295 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
296 struct r1bio *r1_bio = bio->bi_private;
297 int mirror;
298 struct r1conf *conf = r1_bio->mddev->private;
300 mirror = r1_bio->read_disk;
302 * this branch is our 'one mirror IO has finished' event handler:
304 update_head_pos(mirror, r1_bio);
306 if (uptodate)
307 set_bit(R1BIO_Uptodate, &r1_bio->state);
308 else {
309 /* If all other devices have failed, we want to return
310 * the error upwards rather than fail the last device.
311 * Here we redefine "uptodate" to mean "Don't want to retry"
313 unsigned long flags;
314 spin_lock_irqsave(&conf->device_lock, flags);
315 if (r1_bio->mddev->degraded == conf->raid_disks ||
316 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
317 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
318 uptodate = 1;
319 spin_unlock_irqrestore(&conf->device_lock, flags);
322 if (uptodate)
323 raid_end_bio_io(r1_bio);
324 else {
326 * oops, read error:
328 char b[BDEVNAME_SIZE];
329 printk_ratelimited(
330 KERN_ERR "md/raid1:%s: %s: "
331 "rescheduling sector %llu\n",
332 mdname(conf->mddev),
333 bdevname(conf->mirrors[mirror].rdev->bdev,
335 (unsigned long long)r1_bio->sector);
336 set_bit(R1BIO_ReadError, &r1_bio->state);
337 reschedule_retry(r1_bio);
340 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
343 static void close_write(struct r1bio *r1_bio)
345 /* it really is the end of this request */
346 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
347 /* free extra copy of the data pages */
348 int i = r1_bio->behind_page_count;
349 while (i--)
350 safe_put_page(r1_bio->behind_bvecs[i].bv_page);
351 kfree(r1_bio->behind_bvecs);
352 r1_bio->behind_bvecs = NULL;
354 /* clear the bitmap if all writes complete successfully */
355 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
356 r1_bio->sectors,
357 !test_bit(R1BIO_Degraded, &r1_bio->state),
358 test_bit(R1BIO_BehindIO, &r1_bio->state));
359 md_write_end(r1_bio->mddev);
362 static void r1_bio_write_done(struct r1bio *r1_bio)
364 if (!atomic_dec_and_test(&r1_bio->remaining))
365 return;
367 if (test_bit(R1BIO_WriteError, &r1_bio->state))
368 reschedule_retry(r1_bio);
369 else {
370 close_write(r1_bio);
371 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
372 reschedule_retry(r1_bio);
373 else
374 raid_end_bio_io(r1_bio);
378 static void raid1_end_write_request(struct bio *bio, int error)
380 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
381 struct r1bio *r1_bio = bio->bi_private;
382 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
383 struct r1conf *conf = r1_bio->mddev->private;
384 struct bio *to_put = NULL;
386 mirror = find_bio_disk(r1_bio, bio);
389 * 'one mirror IO has finished' event handler:
391 if (!uptodate) {
392 set_bit(WriteErrorSeen,
393 &conf->mirrors[mirror].rdev->flags);
394 if (!test_and_set_bit(WantReplacement,
395 &conf->mirrors[mirror].rdev->flags))
396 set_bit(MD_RECOVERY_NEEDED, &
397 conf->mddev->recovery);
399 set_bit(R1BIO_WriteError, &r1_bio->state);
400 } else {
402 * Set R1BIO_Uptodate in our master bio, so that we
403 * will return a good error code for to the higher
404 * levels even if IO on some other mirrored buffer
405 * fails.
407 * The 'master' represents the composite IO operation
408 * to user-side. So if something waits for IO, then it
409 * will wait for the 'master' bio.
411 sector_t first_bad;
412 int bad_sectors;
414 r1_bio->bios[mirror] = NULL;
415 to_put = bio;
416 set_bit(R1BIO_Uptodate, &r1_bio->state);
418 /* Maybe we can clear some bad blocks. */
419 if (is_badblock(conf->mirrors[mirror].rdev,
420 r1_bio->sector, r1_bio->sectors,
421 &first_bad, &bad_sectors)) {
422 r1_bio->bios[mirror] = IO_MADE_GOOD;
423 set_bit(R1BIO_MadeGood, &r1_bio->state);
427 if (behind) {
428 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
429 atomic_dec(&r1_bio->behind_remaining);
432 * In behind mode, we ACK the master bio once the I/O
433 * has safely reached all non-writemostly
434 * disks. Setting the Returned bit ensures that this
435 * gets done only once -- we don't ever want to return
436 * -EIO here, instead we'll wait
438 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
439 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
440 /* Maybe we can return now */
441 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
442 struct bio *mbio = r1_bio->master_bio;
443 pr_debug("raid1: behind end write sectors"
444 " %llu-%llu\n",
445 (unsigned long long) mbio->bi_sector,
446 (unsigned long long) mbio->bi_sector +
447 (mbio->bi_size >> 9) - 1);
448 call_bio_endio(r1_bio);
452 if (r1_bio->bios[mirror] == NULL)
453 rdev_dec_pending(conf->mirrors[mirror].rdev,
454 conf->mddev);
457 * Let's see if all mirrored write operations have finished
458 * already.
460 r1_bio_write_done(r1_bio);
462 if (to_put)
463 bio_put(to_put);
468 * This routine returns the disk from which the requested read should
469 * be done. There is a per-array 'next expected sequential IO' sector
470 * number - if this matches on the next IO then we use the last disk.
471 * There is also a per-disk 'last know head position' sector that is
472 * maintained from IRQ contexts, both the normal and the resync IO
473 * completion handlers update this position correctly. If there is no
474 * perfect sequential match then we pick the disk whose head is closest.
476 * If there are 2 mirrors in the same 2 devices, performance degrades
477 * because position is mirror, not device based.
479 * The rdev for the device selected will have nr_pending incremented.
481 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
483 const sector_t this_sector = r1_bio->sector;
484 int sectors;
485 int best_good_sectors;
486 int start_disk;
487 int best_disk;
488 int i;
489 sector_t best_dist;
490 struct md_rdev *rdev;
491 int choose_first;
493 rcu_read_lock();
495 * Check if we can balance. We can balance on the whole
496 * device if no resync is going on, or below the resync window.
497 * We take the first readable disk when above the resync window.
499 retry:
500 sectors = r1_bio->sectors;
501 best_disk = -1;
502 best_dist = MaxSector;
503 best_good_sectors = 0;
505 if (conf->mddev->recovery_cp < MaxSector &&
506 (this_sector + sectors >= conf->next_resync)) {
507 choose_first = 1;
508 start_disk = 0;
509 } else {
510 choose_first = 0;
511 start_disk = conf->last_used;
514 for (i = 0 ; i < conf->raid_disks * 2 ; i++) {
515 sector_t dist;
516 sector_t first_bad;
517 int bad_sectors;
519 int disk = start_disk + i;
520 if (disk >= conf->raid_disks)
521 disk -= conf->raid_disks;
523 rdev = rcu_dereference(conf->mirrors[disk].rdev);
524 if (r1_bio->bios[disk] == IO_BLOCKED
525 || rdev == NULL
526 || test_bit(Faulty, &rdev->flags))
527 continue;
528 if (!test_bit(In_sync, &rdev->flags) &&
529 rdev->recovery_offset < this_sector + sectors)
530 continue;
531 if (test_bit(WriteMostly, &rdev->flags)) {
532 /* Don't balance among write-mostly, just
533 * use the first as a last resort */
534 if (best_disk < 0) {
535 if (is_badblock(rdev, this_sector, sectors,
536 &first_bad, &bad_sectors)) {
537 if (first_bad < this_sector)
538 /* Cannot use this */
539 continue;
540 best_good_sectors = first_bad - this_sector;
541 } else
542 best_good_sectors = sectors;
543 best_disk = disk;
545 continue;
547 /* This is a reasonable device to use. It might
548 * even be best.
550 if (is_badblock(rdev, this_sector, sectors,
551 &first_bad, &bad_sectors)) {
552 if (best_dist < MaxSector)
553 /* already have a better device */
554 continue;
555 if (first_bad <= this_sector) {
556 /* cannot read here. If this is the 'primary'
557 * device, then we must not read beyond
558 * bad_sectors from another device..
560 bad_sectors -= (this_sector - first_bad);
561 if (choose_first && sectors > bad_sectors)
562 sectors = bad_sectors;
563 if (best_good_sectors > sectors)
564 best_good_sectors = sectors;
566 } else {
567 sector_t good_sectors = first_bad - this_sector;
568 if (good_sectors > best_good_sectors) {
569 best_good_sectors = good_sectors;
570 best_disk = disk;
572 if (choose_first)
573 break;
575 continue;
576 } else
577 best_good_sectors = sectors;
579 dist = abs(this_sector - conf->mirrors[disk].head_position);
580 if (choose_first
581 /* Don't change to another disk for sequential reads */
582 || conf->next_seq_sect == this_sector
583 || dist == 0
584 /* If device is idle, use it */
585 || atomic_read(&rdev->nr_pending) == 0) {
586 best_disk = disk;
587 break;
589 if (dist < best_dist) {
590 best_dist = dist;
591 best_disk = disk;
595 if (best_disk >= 0) {
596 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
597 if (!rdev)
598 goto retry;
599 atomic_inc(&rdev->nr_pending);
600 if (test_bit(Faulty, &rdev->flags)) {
601 /* cannot risk returning a device that failed
602 * before we inc'ed nr_pending
604 rdev_dec_pending(rdev, conf->mddev);
605 goto retry;
607 sectors = best_good_sectors;
608 conf->next_seq_sect = this_sector + sectors;
609 conf->last_used = best_disk;
611 rcu_read_unlock();
612 *max_sectors = sectors;
614 return best_disk;
617 int md_raid1_congested(struct mddev *mddev, int bits)
619 struct r1conf *conf = mddev->private;
620 int i, ret = 0;
622 if ((bits & (1 << BDI_async_congested)) &&
623 conf->pending_count >= max_queued_requests)
624 return 1;
626 rcu_read_lock();
627 for (i = 0; i < conf->raid_disks; i++) {
628 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
629 if (rdev && !test_bit(Faulty, &rdev->flags)) {
630 struct request_queue *q = bdev_get_queue(rdev->bdev);
632 BUG_ON(!q);
634 /* Note the '|| 1' - when read_balance prefers
635 * non-congested targets, it can be removed
637 if ((bits & (1<<BDI_async_congested)) || 1)
638 ret |= bdi_congested(&q->backing_dev_info, bits);
639 else
640 ret &= bdi_congested(&q->backing_dev_info, bits);
643 rcu_read_unlock();
644 return ret;
646 EXPORT_SYMBOL_GPL(md_raid1_congested);
648 static int raid1_congested(void *data, int bits)
650 struct mddev *mddev = data;
652 return mddev_congested(mddev, bits) ||
653 md_raid1_congested(mddev, bits);
656 static void flush_pending_writes(struct r1conf *conf)
658 /* Any writes that have been queued but are awaiting
659 * bitmap updates get flushed here.
661 spin_lock_irq(&conf->device_lock);
663 if (conf->pending_bio_list.head) {
664 struct bio *bio;
665 bio = bio_list_get(&conf->pending_bio_list);
666 conf->pending_count = 0;
667 spin_unlock_irq(&conf->device_lock);
668 /* flush any pending bitmap writes to
669 * disk before proceeding w/ I/O */
670 bitmap_unplug(conf->mddev->bitmap);
671 wake_up(&conf->wait_barrier);
673 while (bio) { /* submit pending writes */
674 struct bio *next = bio->bi_next;
675 bio->bi_next = NULL;
676 generic_make_request(bio);
677 bio = next;
679 } else
680 spin_unlock_irq(&conf->device_lock);
683 /* Barriers....
684 * Sometimes we need to suspend IO while we do something else,
685 * either some resync/recovery, or reconfigure the array.
686 * To do this we raise a 'barrier'.
687 * The 'barrier' is a counter that can be raised multiple times
688 * to count how many activities are happening which preclude
689 * normal IO.
690 * We can only raise the barrier if there is no pending IO.
691 * i.e. if nr_pending == 0.
692 * We choose only to raise the barrier if no-one is waiting for the
693 * barrier to go down. This means that as soon as an IO request
694 * is ready, no other operations which require a barrier will start
695 * until the IO request has had a chance.
697 * So: regular IO calls 'wait_barrier'. When that returns there
698 * is no backgroup IO happening, It must arrange to call
699 * allow_barrier when it has finished its IO.
700 * backgroup IO calls must call raise_barrier. Once that returns
701 * there is no normal IO happeing. It must arrange to call
702 * lower_barrier when the particular background IO completes.
704 #define RESYNC_DEPTH 32
706 static void raise_barrier(struct r1conf *conf)
708 spin_lock_irq(&conf->resync_lock);
710 /* Wait until no block IO is waiting */
711 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
712 conf->resync_lock, );
714 /* block any new IO from starting */
715 conf->barrier++;
717 /* Now wait for all pending IO to complete */
718 wait_event_lock_irq(conf->wait_barrier,
719 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
720 conf->resync_lock, );
722 spin_unlock_irq(&conf->resync_lock);
725 static void lower_barrier(struct r1conf *conf)
727 unsigned long flags;
728 BUG_ON(conf->barrier <= 0);
729 spin_lock_irqsave(&conf->resync_lock, flags);
730 conf->barrier--;
731 spin_unlock_irqrestore(&conf->resync_lock, flags);
732 wake_up(&conf->wait_barrier);
735 static void wait_barrier(struct r1conf *conf)
737 spin_lock_irq(&conf->resync_lock);
738 if (conf->barrier) {
739 conf->nr_waiting++;
740 wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
741 conf->resync_lock,
743 conf->nr_waiting--;
745 conf->nr_pending++;
746 spin_unlock_irq(&conf->resync_lock);
749 static void allow_barrier(struct r1conf *conf)
751 unsigned long flags;
752 spin_lock_irqsave(&conf->resync_lock, flags);
753 conf->nr_pending--;
754 spin_unlock_irqrestore(&conf->resync_lock, flags);
755 wake_up(&conf->wait_barrier);
758 static void freeze_array(struct r1conf *conf)
760 /* stop syncio and normal IO and wait for everything to
761 * go quite.
762 * We increment barrier and nr_waiting, and then
763 * wait until nr_pending match nr_queued+1
764 * This is called in the context of one normal IO request
765 * that has failed. Thus any sync request that might be pending
766 * will be blocked by nr_pending, and we need to wait for
767 * pending IO requests to complete or be queued for re-try.
768 * Thus the number queued (nr_queued) plus this request (1)
769 * must match the number of pending IOs (nr_pending) before
770 * we continue.
772 spin_lock_irq(&conf->resync_lock);
773 conf->barrier++;
774 conf->nr_waiting++;
775 wait_event_lock_irq(conf->wait_barrier,
776 conf->nr_pending == conf->nr_queued+1,
777 conf->resync_lock,
778 flush_pending_writes(conf));
779 spin_unlock_irq(&conf->resync_lock);
781 static void unfreeze_array(struct r1conf *conf)
783 /* reverse the effect of the freeze */
784 spin_lock_irq(&conf->resync_lock);
785 conf->barrier--;
786 conf->nr_waiting--;
787 wake_up(&conf->wait_barrier);
788 spin_unlock_irq(&conf->resync_lock);
792 /* duplicate the data pages for behind I/O
794 static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
796 int i;
797 struct bio_vec *bvec;
798 struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
799 GFP_NOIO);
800 if (unlikely(!bvecs))
801 return;
803 bio_for_each_segment(bvec, bio, i) {
804 bvecs[i] = *bvec;
805 bvecs[i].bv_page = alloc_page(GFP_NOIO);
806 if (unlikely(!bvecs[i].bv_page))
807 goto do_sync_io;
808 memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
809 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
810 kunmap(bvecs[i].bv_page);
811 kunmap(bvec->bv_page);
813 r1_bio->behind_bvecs = bvecs;
814 r1_bio->behind_page_count = bio->bi_vcnt;
815 set_bit(R1BIO_BehindIO, &r1_bio->state);
816 return;
818 do_sync_io:
819 for (i = 0; i < bio->bi_vcnt; i++)
820 if (bvecs[i].bv_page)
821 put_page(bvecs[i].bv_page);
822 kfree(bvecs);
823 pr_debug("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
826 static void make_request(struct mddev *mddev, struct bio * bio)
828 struct r1conf *conf = mddev->private;
829 struct mirror_info *mirror;
830 struct r1bio *r1_bio;
831 struct bio *read_bio;
832 int i, disks;
833 struct bitmap *bitmap;
834 unsigned long flags;
835 const int rw = bio_data_dir(bio);
836 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
837 const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
838 struct md_rdev *blocked_rdev;
839 int plugged;
840 int first_clone;
841 int sectors_handled;
842 int max_sectors;
845 * Register the new request and wait if the reconstruction
846 * thread has put up a bar for new requests.
847 * Continue immediately if no resync is active currently.
850 md_write_start(mddev, bio); /* wait on superblock update early */
852 if (bio_data_dir(bio) == WRITE &&
853 bio->bi_sector + bio->bi_size/512 > mddev->suspend_lo &&
854 bio->bi_sector < mddev->suspend_hi) {
855 /* As the suspend_* range is controlled by
856 * userspace, we want an interruptible
857 * wait.
859 DEFINE_WAIT(w);
860 for (;;) {
861 flush_signals(current);
862 prepare_to_wait(&conf->wait_barrier,
863 &w, TASK_INTERRUPTIBLE);
864 if (bio->bi_sector + bio->bi_size/512 <= mddev->suspend_lo ||
865 bio->bi_sector >= mddev->suspend_hi)
866 break;
867 schedule();
869 finish_wait(&conf->wait_barrier, &w);
872 wait_barrier(conf);
874 bitmap = mddev->bitmap;
877 * make_request() can abort the operation when READA is being
878 * used and no empty request is available.
881 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
883 r1_bio->master_bio = bio;
884 r1_bio->sectors = bio->bi_size >> 9;
885 r1_bio->state = 0;
886 r1_bio->mddev = mddev;
887 r1_bio->sector = bio->bi_sector;
889 /* We might need to issue multiple reads to different
890 * devices if there are bad blocks around, so we keep
891 * track of the number of reads in bio->bi_phys_segments.
892 * If this is 0, there is only one r1_bio and no locking
893 * will be needed when requests complete. If it is
894 * non-zero, then it is the number of not-completed requests.
896 bio->bi_phys_segments = 0;
897 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
899 if (rw == READ) {
901 * read balancing logic:
903 int rdisk;
905 read_again:
906 rdisk = read_balance(conf, r1_bio, &max_sectors);
908 if (rdisk < 0) {
909 /* couldn't find anywhere to read from */
910 raid_end_bio_io(r1_bio);
911 return;
913 mirror = conf->mirrors + rdisk;
915 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
916 bitmap) {
917 /* Reading from a write-mostly device must
918 * take care not to over-take any writes
919 * that are 'behind'
921 wait_event(bitmap->behind_wait,
922 atomic_read(&bitmap->behind_writes) == 0);
924 r1_bio->read_disk = rdisk;
926 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
927 md_trim_bio(read_bio, r1_bio->sector - bio->bi_sector,
928 max_sectors);
930 r1_bio->bios[rdisk] = read_bio;
932 read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
933 read_bio->bi_bdev = mirror->rdev->bdev;
934 read_bio->bi_end_io = raid1_end_read_request;
935 read_bio->bi_rw = READ | do_sync;
936 read_bio->bi_private = r1_bio;
938 if (max_sectors < r1_bio->sectors) {
939 /* could not read all from this device, so we will
940 * need another r1_bio.
943 sectors_handled = (r1_bio->sector + max_sectors
944 - bio->bi_sector);
945 r1_bio->sectors = max_sectors;
946 spin_lock_irq(&conf->device_lock);
947 if (bio->bi_phys_segments == 0)
948 bio->bi_phys_segments = 2;
949 else
950 bio->bi_phys_segments++;
951 spin_unlock_irq(&conf->device_lock);
952 /* Cannot call generic_make_request directly
953 * as that will be queued in __make_request
954 * and subsequent mempool_alloc might block waiting
955 * for it. So hand bio over to raid1d.
957 reschedule_retry(r1_bio);
959 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
961 r1_bio->master_bio = bio;
962 r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
963 r1_bio->state = 0;
964 r1_bio->mddev = mddev;
965 r1_bio->sector = bio->bi_sector + sectors_handled;
966 goto read_again;
967 } else
968 generic_make_request(read_bio);
969 return;
973 * WRITE:
975 if (conf->pending_count >= max_queued_requests) {
976 md_wakeup_thread(mddev->thread);
977 wait_event(conf->wait_barrier,
978 conf->pending_count < max_queued_requests);
980 /* first select target devices under rcu_lock and
981 * inc refcount on their rdev. Record them by setting
982 * bios[x] to bio
983 * If there are known/acknowledged bad blocks on any device on
984 * which we have seen a write error, we want to avoid writing those
985 * blocks.
986 * This potentially requires several writes to write around
987 * the bad blocks. Each set of writes gets it's own r1bio
988 * with a set of bios attached.
990 plugged = mddev_check_plugged(mddev);
992 disks = conf->raid_disks * 2;
993 retry_write:
994 blocked_rdev = NULL;
995 rcu_read_lock();
996 max_sectors = r1_bio->sectors;
997 for (i = 0; i < disks; i++) {
998 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
999 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1000 atomic_inc(&rdev->nr_pending);
1001 blocked_rdev = rdev;
1002 break;
1004 r1_bio->bios[i] = NULL;
1005 if (!rdev || test_bit(Faulty, &rdev->flags)) {
1006 if (i < conf->raid_disks)
1007 set_bit(R1BIO_Degraded, &r1_bio->state);
1008 continue;
1011 atomic_inc(&rdev->nr_pending);
1012 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1013 sector_t first_bad;
1014 int bad_sectors;
1015 int is_bad;
1017 is_bad = is_badblock(rdev, r1_bio->sector,
1018 max_sectors,
1019 &first_bad, &bad_sectors);
1020 if (is_bad < 0) {
1021 /* mustn't write here until the bad block is
1022 * acknowledged*/
1023 set_bit(BlockedBadBlocks, &rdev->flags);
1024 blocked_rdev = rdev;
1025 break;
1027 if (is_bad && first_bad <= r1_bio->sector) {
1028 /* Cannot write here at all */
1029 bad_sectors -= (r1_bio->sector - first_bad);
1030 if (bad_sectors < max_sectors)
1031 /* mustn't write more than bad_sectors
1032 * to other devices yet
1034 max_sectors = bad_sectors;
1035 rdev_dec_pending(rdev, mddev);
1036 /* We don't set R1BIO_Degraded as that
1037 * only applies if the disk is
1038 * missing, so it might be re-added,
1039 * and we want to know to recover this
1040 * chunk.
1041 * In this case the device is here,
1042 * and the fact that this chunk is not
1043 * in-sync is recorded in the bad
1044 * block log
1046 continue;
1048 if (is_bad) {
1049 int good_sectors = first_bad - r1_bio->sector;
1050 if (good_sectors < max_sectors)
1051 max_sectors = good_sectors;
1054 r1_bio->bios[i] = bio;
1056 rcu_read_unlock();
1058 if (unlikely(blocked_rdev)) {
1059 /* Wait for this device to become unblocked */
1060 int j;
1062 for (j = 0; j < i; j++)
1063 if (r1_bio->bios[j])
1064 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1065 r1_bio->state = 0;
1066 allow_barrier(conf);
1067 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1068 wait_barrier(conf);
1069 goto retry_write;
1072 if (max_sectors < r1_bio->sectors) {
1073 /* We are splitting this write into multiple parts, so
1074 * we need to prepare for allocating another r1_bio.
1076 r1_bio->sectors = max_sectors;
1077 spin_lock_irq(&conf->device_lock);
1078 if (bio->bi_phys_segments == 0)
1079 bio->bi_phys_segments = 2;
1080 else
1081 bio->bi_phys_segments++;
1082 spin_unlock_irq(&conf->device_lock);
1084 sectors_handled = r1_bio->sector + max_sectors - bio->bi_sector;
1086 atomic_set(&r1_bio->remaining, 1);
1087 atomic_set(&r1_bio->behind_remaining, 0);
1089 first_clone = 1;
1090 for (i = 0; i < disks; i++) {
1091 struct bio *mbio;
1092 if (!r1_bio->bios[i])
1093 continue;
1095 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1096 md_trim_bio(mbio, r1_bio->sector - bio->bi_sector, max_sectors);
1098 if (first_clone) {
1099 /* do behind I/O ?
1100 * Not if there are too many, or cannot
1101 * allocate memory, or a reader on WriteMostly
1102 * is waiting for behind writes to flush */
1103 if (bitmap &&
1104 (atomic_read(&bitmap->behind_writes)
1105 < mddev->bitmap_info.max_write_behind) &&
1106 !waitqueue_active(&bitmap->behind_wait))
1107 alloc_behind_pages(mbio, r1_bio);
1109 bitmap_startwrite(bitmap, r1_bio->sector,
1110 r1_bio->sectors,
1111 test_bit(R1BIO_BehindIO,
1112 &r1_bio->state));
1113 first_clone = 0;
1115 if (r1_bio->behind_bvecs) {
1116 struct bio_vec *bvec;
1117 int j;
1119 /* Yes, I really want the '__' version so that
1120 * we clear any unused pointer in the io_vec, rather
1121 * than leave them unchanged. This is important
1122 * because when we come to free the pages, we won't
1123 * know the original bi_idx, so we just free
1124 * them all
1126 __bio_for_each_segment(bvec, mbio, j, 0)
1127 bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1128 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1129 atomic_inc(&r1_bio->behind_remaining);
1132 r1_bio->bios[i] = mbio;
1134 mbio->bi_sector = (r1_bio->sector +
1135 conf->mirrors[i].rdev->data_offset);
1136 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1137 mbio->bi_end_io = raid1_end_write_request;
1138 mbio->bi_rw = WRITE | do_flush_fua | do_sync;
1139 mbio->bi_private = r1_bio;
1141 atomic_inc(&r1_bio->remaining);
1142 spin_lock_irqsave(&conf->device_lock, flags);
1143 bio_list_add(&conf->pending_bio_list, mbio);
1144 conf->pending_count++;
1145 spin_unlock_irqrestore(&conf->device_lock, flags);
1147 /* Mustn't call r1_bio_write_done before this next test,
1148 * as it could result in the bio being freed.
1150 if (sectors_handled < (bio->bi_size >> 9)) {
1151 r1_bio_write_done(r1_bio);
1152 /* We need another r1_bio. It has already been counted
1153 * in bio->bi_phys_segments
1155 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1156 r1_bio->master_bio = bio;
1157 r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1158 r1_bio->state = 0;
1159 r1_bio->mddev = mddev;
1160 r1_bio->sector = bio->bi_sector + sectors_handled;
1161 goto retry_write;
1164 r1_bio_write_done(r1_bio);
1166 /* In case raid1d snuck in to freeze_array */
1167 wake_up(&conf->wait_barrier);
1169 if (do_sync || !bitmap || !plugged)
1170 md_wakeup_thread(mddev->thread);
1173 static void status(struct seq_file *seq, struct mddev *mddev)
1175 struct r1conf *conf = mddev->private;
1176 int i;
1178 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1179 conf->raid_disks - mddev->degraded);
1180 rcu_read_lock();
1181 for (i = 0; i < conf->raid_disks; i++) {
1182 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1183 seq_printf(seq, "%s",
1184 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1186 rcu_read_unlock();
1187 seq_printf(seq, "]");
1191 static void error(struct mddev *mddev, struct md_rdev *rdev)
1193 char b[BDEVNAME_SIZE];
1194 struct r1conf *conf = mddev->private;
1197 * If it is not operational, then we have already marked it as dead
1198 * else if it is the last working disks, ignore the error, let the
1199 * next level up know.
1200 * else mark the drive as failed
1202 if (test_bit(In_sync, &rdev->flags)
1203 && (conf->raid_disks - mddev->degraded) == 1) {
1205 * Don't fail the drive, act as though we were just a
1206 * normal single drive.
1207 * However don't try a recovery from this drive as
1208 * it is very likely to fail.
1210 conf->recovery_disabled = mddev->recovery_disabled;
1211 return;
1213 set_bit(Blocked, &rdev->flags);
1214 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1215 unsigned long flags;
1216 spin_lock_irqsave(&conf->device_lock, flags);
1217 mddev->degraded++;
1218 set_bit(Faulty, &rdev->flags);
1219 spin_unlock_irqrestore(&conf->device_lock, flags);
1221 * if recovery is running, make sure it aborts.
1223 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1224 } else
1225 set_bit(Faulty, &rdev->flags);
1226 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1227 printk(KERN_ALERT
1228 "md/raid1:%s: Disk failure on %s, disabling device.\n"
1229 "md/raid1:%s: Operation continuing on %d devices.\n",
1230 mdname(mddev), bdevname(rdev->bdev, b),
1231 mdname(mddev), conf->raid_disks - mddev->degraded);
1234 static void print_conf(struct r1conf *conf)
1236 int i;
1238 printk(KERN_DEBUG "RAID1 conf printout:\n");
1239 if (!conf) {
1240 printk(KERN_DEBUG "(!conf)\n");
1241 return;
1243 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1244 conf->raid_disks);
1246 rcu_read_lock();
1247 for (i = 0; i < conf->raid_disks; i++) {
1248 char b[BDEVNAME_SIZE];
1249 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1250 if (rdev)
1251 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1252 i, !test_bit(In_sync, &rdev->flags),
1253 !test_bit(Faulty, &rdev->flags),
1254 bdevname(rdev->bdev,b));
1256 rcu_read_unlock();
1259 static void close_sync(struct r1conf *conf)
1261 wait_barrier(conf);
1262 allow_barrier(conf);
1264 mempool_destroy(conf->r1buf_pool);
1265 conf->r1buf_pool = NULL;
1268 static int raid1_spare_active(struct mddev *mddev)
1270 int i;
1271 struct r1conf *conf = mddev->private;
1272 int count = 0;
1273 unsigned long flags;
1276 * Find all failed disks within the RAID1 configuration
1277 * and mark them readable.
1278 * Called under mddev lock, so rcu protection not needed.
1280 for (i = 0; i < conf->raid_disks; i++) {
1281 struct md_rdev *rdev = conf->mirrors[i].rdev;
1282 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1283 if (repl
1284 && repl->recovery_offset == MaxSector
1285 && !test_bit(Faulty, &repl->flags)
1286 && !test_and_set_bit(In_sync, &repl->flags)) {
1287 /* replacement has just become active */
1288 if (!rdev ||
1289 !test_and_clear_bit(In_sync, &rdev->flags))
1290 count++;
1291 if (rdev) {
1292 /* Replaced device not technically
1293 * faulty, but we need to be sure
1294 * it gets removed and never re-added
1296 set_bit(Faulty, &rdev->flags);
1297 sysfs_notify_dirent_safe(
1298 rdev->sysfs_state);
1301 if (rdev
1302 && !test_bit(Faulty, &rdev->flags)
1303 && !test_and_set_bit(In_sync, &rdev->flags)) {
1304 count++;
1305 sysfs_notify_dirent_safe(rdev->sysfs_state);
1308 spin_lock_irqsave(&conf->device_lock, flags);
1309 mddev->degraded -= count;
1310 spin_unlock_irqrestore(&conf->device_lock, flags);
1312 print_conf(conf);
1313 return count;
1317 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1319 struct r1conf *conf = mddev->private;
1320 int err = -EEXIST;
1321 int mirror = 0;
1322 struct mirror_info *p;
1323 int first = 0;
1324 int last = conf->raid_disks - 1;
1326 if (mddev->recovery_disabled == conf->recovery_disabled)
1327 return -EBUSY;
1329 if (rdev->raid_disk >= 0)
1330 first = last = rdev->raid_disk;
1332 for (mirror = first; mirror <= last; mirror++) {
1333 p = conf->mirrors+mirror;
1334 if (!p->rdev) {
1336 disk_stack_limits(mddev->gendisk, rdev->bdev,
1337 rdev->data_offset << 9);
1338 /* as we don't honour merge_bvec_fn, we must
1339 * never risk violating it, so limit
1340 * ->max_segments to one lying with a single
1341 * page, as a one page request is never in
1342 * violation.
1344 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
1345 blk_queue_max_segments(mddev->queue, 1);
1346 blk_queue_segment_boundary(mddev->queue,
1347 PAGE_CACHE_SIZE - 1);
1350 p->head_position = 0;
1351 rdev->raid_disk = mirror;
1352 err = 0;
1353 /* As all devices are equivalent, we don't need a full recovery
1354 * if this was recently any drive of the array
1356 if (rdev->saved_raid_disk < 0)
1357 conf->fullsync = 1;
1358 rcu_assign_pointer(p->rdev, rdev);
1359 break;
1361 if (test_bit(WantReplacement, &p->rdev->flags) &&
1362 p[conf->raid_disks].rdev == NULL) {
1363 /* Add this device as a replacement */
1364 clear_bit(In_sync, &rdev->flags);
1365 set_bit(Replacement, &rdev->flags);
1366 rdev->raid_disk = mirror;
1367 err = 0;
1368 conf->fullsync = 1;
1369 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1370 break;
1373 md_integrity_add_rdev(rdev, mddev);
1374 print_conf(conf);
1375 return err;
1378 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1380 struct r1conf *conf = mddev->private;
1381 int err = 0;
1382 int number = rdev->raid_disk;
1383 struct mirror_info *p = conf->mirrors+ number;
1385 if (rdev != p->rdev)
1386 p = conf->mirrors + conf->raid_disks + number;
1388 print_conf(conf);
1389 if (rdev == p->rdev) {
1390 if (test_bit(In_sync, &rdev->flags) ||
1391 atomic_read(&rdev->nr_pending)) {
1392 err = -EBUSY;
1393 goto abort;
1395 /* Only remove non-faulty devices if recovery
1396 * is not possible.
1398 if (!test_bit(Faulty, &rdev->flags) &&
1399 mddev->recovery_disabled != conf->recovery_disabled &&
1400 mddev->degraded < conf->raid_disks) {
1401 err = -EBUSY;
1402 goto abort;
1404 p->rdev = NULL;
1405 synchronize_rcu();
1406 if (atomic_read(&rdev->nr_pending)) {
1407 /* lost the race, try later */
1408 err = -EBUSY;
1409 p->rdev = rdev;
1410 goto abort;
1411 } else if (conf->mirrors[conf->raid_disks + number].rdev) {
1412 /* We just removed a device that is being replaced.
1413 * Move down the replacement. We drain all IO before
1414 * doing this to avoid confusion.
1416 struct md_rdev *repl =
1417 conf->mirrors[conf->raid_disks + number].rdev;
1418 raise_barrier(conf);
1419 clear_bit(Replacement, &repl->flags);
1420 p->rdev = repl;
1421 conf->mirrors[conf->raid_disks + number].rdev = NULL;
1422 lower_barrier(conf);
1423 clear_bit(WantReplacement, &rdev->flags);
1424 } else
1425 clear_bit(WantReplacement, &rdev->flags);
1426 err = md_integrity_register(mddev);
1428 abort:
1430 print_conf(conf);
1431 return err;
1435 static void end_sync_read(struct bio *bio, int error)
1437 struct r1bio *r1_bio = bio->bi_private;
1439 update_head_pos(r1_bio->read_disk, r1_bio);
1442 * we have read a block, now it needs to be re-written,
1443 * or re-read if the read failed.
1444 * We don't do much here, just schedule handling by raid1d
1446 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1447 set_bit(R1BIO_Uptodate, &r1_bio->state);
1449 if (atomic_dec_and_test(&r1_bio->remaining))
1450 reschedule_retry(r1_bio);
1453 static void end_sync_write(struct bio *bio, int error)
1455 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1456 struct r1bio *r1_bio = bio->bi_private;
1457 struct mddev *mddev = r1_bio->mddev;
1458 struct r1conf *conf = mddev->private;
1459 int mirror=0;
1460 sector_t first_bad;
1461 int bad_sectors;
1463 mirror = find_bio_disk(r1_bio, bio);
1465 if (!uptodate) {
1466 sector_t sync_blocks = 0;
1467 sector_t s = r1_bio->sector;
1468 long sectors_to_go = r1_bio->sectors;
1469 /* make sure these bits doesn't get cleared. */
1470 do {
1471 bitmap_end_sync(mddev->bitmap, s,
1472 &sync_blocks, 1);
1473 s += sync_blocks;
1474 sectors_to_go -= sync_blocks;
1475 } while (sectors_to_go > 0);
1476 set_bit(WriteErrorSeen,
1477 &conf->mirrors[mirror].rdev->flags);
1478 if (!test_and_set_bit(WantReplacement,
1479 &conf->mirrors[mirror].rdev->flags))
1480 set_bit(MD_RECOVERY_NEEDED, &
1481 mddev->recovery);
1482 set_bit(R1BIO_WriteError, &r1_bio->state);
1483 } else if (is_badblock(conf->mirrors[mirror].rdev,
1484 r1_bio->sector,
1485 r1_bio->sectors,
1486 &first_bad, &bad_sectors) &&
1487 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1488 r1_bio->sector,
1489 r1_bio->sectors,
1490 &first_bad, &bad_sectors)
1492 set_bit(R1BIO_MadeGood, &r1_bio->state);
1494 if (atomic_dec_and_test(&r1_bio->remaining)) {
1495 int s = r1_bio->sectors;
1496 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1497 test_bit(R1BIO_WriteError, &r1_bio->state))
1498 reschedule_retry(r1_bio);
1499 else {
1500 put_buf(r1_bio);
1501 md_done_sync(mddev, s, uptodate);
1506 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1507 int sectors, struct page *page, int rw)
1509 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1510 /* success */
1511 return 1;
1512 if (rw == WRITE) {
1513 set_bit(WriteErrorSeen, &rdev->flags);
1514 if (!test_and_set_bit(WantReplacement,
1515 &rdev->flags))
1516 set_bit(MD_RECOVERY_NEEDED, &
1517 rdev->mddev->recovery);
1519 /* need to record an error - either for the block or the device */
1520 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1521 md_error(rdev->mddev, rdev);
1522 return 0;
1525 static int fix_sync_read_error(struct r1bio *r1_bio)
1527 /* Try some synchronous reads of other devices to get
1528 * good data, much like with normal read errors. Only
1529 * read into the pages we already have so we don't
1530 * need to re-issue the read request.
1531 * We don't need to freeze the array, because being in an
1532 * active sync request, there is no normal IO, and
1533 * no overlapping syncs.
1534 * We don't need to check is_badblock() again as we
1535 * made sure that anything with a bad block in range
1536 * will have bi_end_io clear.
1538 struct mddev *mddev = r1_bio->mddev;
1539 struct r1conf *conf = mddev->private;
1540 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1541 sector_t sect = r1_bio->sector;
1542 int sectors = r1_bio->sectors;
1543 int idx = 0;
1545 while(sectors) {
1546 int s = sectors;
1547 int d = r1_bio->read_disk;
1548 int success = 0;
1549 struct md_rdev *rdev;
1550 int start;
1552 if (s > (PAGE_SIZE>>9))
1553 s = PAGE_SIZE >> 9;
1554 do {
1555 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1556 /* No rcu protection needed here devices
1557 * can only be removed when no resync is
1558 * active, and resync is currently active
1560 rdev = conf->mirrors[d].rdev;
1561 if (sync_page_io(rdev, sect, s<<9,
1562 bio->bi_io_vec[idx].bv_page,
1563 READ, false)) {
1564 success = 1;
1565 break;
1568 d++;
1569 if (d == conf->raid_disks * 2)
1570 d = 0;
1571 } while (!success && d != r1_bio->read_disk);
1573 if (!success) {
1574 char b[BDEVNAME_SIZE];
1575 int abort = 0;
1576 /* Cannot read from anywhere, this block is lost.
1577 * Record a bad block on each device. If that doesn't
1578 * work just disable and interrupt the recovery.
1579 * Don't fail devices as that won't really help.
1581 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1582 " for block %llu\n",
1583 mdname(mddev),
1584 bdevname(bio->bi_bdev, b),
1585 (unsigned long long)r1_bio->sector);
1586 for (d = 0; d < conf->raid_disks * 2; d++) {
1587 rdev = conf->mirrors[d].rdev;
1588 if (!rdev || test_bit(Faulty, &rdev->flags))
1589 continue;
1590 if (!rdev_set_badblocks(rdev, sect, s, 0))
1591 abort = 1;
1593 if (abort) {
1594 conf->recovery_disabled =
1595 mddev->recovery_disabled;
1596 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1597 md_done_sync(mddev, r1_bio->sectors, 0);
1598 put_buf(r1_bio);
1599 return 0;
1601 /* Try next page */
1602 sectors -= s;
1603 sect += s;
1604 idx++;
1605 continue;
1608 start = d;
1609 /* write it back and re-read */
1610 while (d != r1_bio->read_disk) {
1611 if (d == 0)
1612 d = conf->raid_disks * 2;
1613 d--;
1614 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1615 continue;
1616 rdev = conf->mirrors[d].rdev;
1617 if (r1_sync_page_io(rdev, sect, s,
1618 bio->bi_io_vec[idx].bv_page,
1619 WRITE) == 0) {
1620 r1_bio->bios[d]->bi_end_io = NULL;
1621 rdev_dec_pending(rdev, mddev);
1624 d = start;
1625 while (d != r1_bio->read_disk) {
1626 if (d == 0)
1627 d = conf->raid_disks * 2;
1628 d--;
1629 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1630 continue;
1631 rdev = conf->mirrors[d].rdev;
1632 if (r1_sync_page_io(rdev, sect, s,
1633 bio->bi_io_vec[idx].bv_page,
1634 READ) != 0)
1635 atomic_add(s, &rdev->corrected_errors);
1637 sectors -= s;
1638 sect += s;
1639 idx ++;
1641 set_bit(R1BIO_Uptodate, &r1_bio->state);
1642 set_bit(BIO_UPTODATE, &bio->bi_flags);
1643 return 1;
1646 static int process_checks(struct r1bio *r1_bio)
1648 /* We have read all readable devices. If we haven't
1649 * got the block, then there is no hope left.
1650 * If we have, then we want to do a comparison
1651 * and skip the write if everything is the same.
1652 * If any blocks failed to read, then we need to
1653 * attempt an over-write
1655 struct mddev *mddev = r1_bio->mddev;
1656 struct r1conf *conf = mddev->private;
1657 int primary;
1658 int i;
1660 for (primary = 0; primary < conf->raid_disks * 2; primary++)
1661 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1662 test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1663 r1_bio->bios[primary]->bi_end_io = NULL;
1664 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1665 break;
1667 r1_bio->read_disk = primary;
1668 for (i = 0; i < conf->raid_disks * 2; i++) {
1669 int j;
1670 int vcnt = r1_bio->sectors >> (PAGE_SHIFT- 9);
1671 struct bio *pbio = r1_bio->bios[primary];
1672 struct bio *sbio = r1_bio->bios[i];
1673 int size;
1675 if (r1_bio->bios[i]->bi_end_io != end_sync_read)
1676 continue;
1678 if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) {
1679 for (j = vcnt; j-- ; ) {
1680 struct page *p, *s;
1681 p = pbio->bi_io_vec[j].bv_page;
1682 s = sbio->bi_io_vec[j].bv_page;
1683 if (memcmp(page_address(p),
1684 page_address(s),
1685 PAGE_SIZE))
1686 break;
1688 } else
1689 j = 0;
1690 if (j >= 0)
1691 mddev->resync_mismatches += r1_bio->sectors;
1692 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1693 && test_bit(BIO_UPTODATE, &sbio->bi_flags))) {
1694 /* No need to write to this device. */
1695 sbio->bi_end_io = NULL;
1696 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1697 continue;
1699 /* fixup the bio for reuse */
1700 sbio->bi_vcnt = vcnt;
1701 sbio->bi_size = r1_bio->sectors << 9;
1702 sbio->bi_idx = 0;
1703 sbio->bi_phys_segments = 0;
1704 sbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1705 sbio->bi_flags |= 1 << BIO_UPTODATE;
1706 sbio->bi_next = NULL;
1707 sbio->bi_sector = r1_bio->sector +
1708 conf->mirrors[i].rdev->data_offset;
1709 sbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1710 size = sbio->bi_size;
1711 for (j = 0; j < vcnt ; j++) {
1712 struct bio_vec *bi;
1713 bi = &sbio->bi_io_vec[j];
1714 bi->bv_offset = 0;
1715 if (size > PAGE_SIZE)
1716 bi->bv_len = PAGE_SIZE;
1717 else
1718 bi->bv_len = size;
1719 size -= PAGE_SIZE;
1720 memcpy(page_address(bi->bv_page),
1721 page_address(pbio->bi_io_vec[j].bv_page),
1722 PAGE_SIZE);
1725 return 0;
1728 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
1730 struct r1conf *conf = mddev->private;
1731 int i;
1732 int disks = conf->raid_disks * 2;
1733 struct bio *bio, *wbio;
1735 bio = r1_bio->bios[r1_bio->read_disk];
1737 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
1738 /* ouch - failed to read all of that. */
1739 if (!fix_sync_read_error(r1_bio))
1740 return;
1742 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1743 if (process_checks(r1_bio) < 0)
1744 return;
1746 * schedule writes
1748 atomic_set(&r1_bio->remaining, 1);
1749 for (i = 0; i < disks ; i++) {
1750 wbio = r1_bio->bios[i];
1751 if (wbio->bi_end_io == NULL ||
1752 (wbio->bi_end_io == end_sync_read &&
1753 (i == r1_bio->read_disk ||
1754 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1755 continue;
1757 wbio->bi_rw = WRITE;
1758 wbio->bi_end_io = end_sync_write;
1759 atomic_inc(&r1_bio->remaining);
1760 md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
1762 generic_make_request(wbio);
1765 if (atomic_dec_and_test(&r1_bio->remaining)) {
1766 /* if we're here, all write(s) have completed, so clean up */
1767 md_done_sync(mddev, r1_bio->sectors, 1);
1768 put_buf(r1_bio);
1773 * This is a kernel thread which:
1775 * 1. Retries failed read operations on working mirrors.
1776 * 2. Updates the raid superblock when problems encounter.
1777 * 3. Performs writes following reads for array synchronising.
1780 static void fix_read_error(struct r1conf *conf, int read_disk,
1781 sector_t sect, int sectors)
1783 struct mddev *mddev = conf->mddev;
1784 while(sectors) {
1785 int s = sectors;
1786 int d = read_disk;
1787 int success = 0;
1788 int start;
1789 struct md_rdev *rdev;
1791 if (s > (PAGE_SIZE>>9))
1792 s = PAGE_SIZE >> 9;
1794 do {
1795 /* Note: no rcu protection needed here
1796 * as this is synchronous in the raid1d thread
1797 * which is the thread that might remove
1798 * a device. If raid1d ever becomes multi-threaded....
1800 sector_t first_bad;
1801 int bad_sectors;
1803 rdev = conf->mirrors[d].rdev;
1804 if (rdev &&
1805 test_bit(In_sync, &rdev->flags) &&
1806 is_badblock(rdev, sect, s,
1807 &first_bad, &bad_sectors) == 0 &&
1808 sync_page_io(rdev, sect, s<<9,
1809 conf->tmppage, READ, false))
1810 success = 1;
1811 else {
1812 d++;
1813 if (d == conf->raid_disks * 2)
1814 d = 0;
1816 } while (!success && d != read_disk);
1818 if (!success) {
1819 /* Cannot read from anywhere - mark it bad */
1820 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
1821 if (!rdev_set_badblocks(rdev, sect, s, 0))
1822 md_error(mddev, rdev);
1823 break;
1825 /* write it back and re-read */
1826 start = d;
1827 while (d != read_disk) {
1828 if (d==0)
1829 d = conf->raid_disks * 2;
1830 d--;
1831 rdev = conf->mirrors[d].rdev;
1832 if (rdev &&
1833 test_bit(In_sync, &rdev->flags))
1834 r1_sync_page_io(rdev, sect, s,
1835 conf->tmppage, WRITE);
1837 d = start;
1838 while (d != read_disk) {
1839 char b[BDEVNAME_SIZE];
1840 if (d==0)
1841 d = conf->raid_disks * 2;
1842 d--;
1843 rdev = conf->mirrors[d].rdev;
1844 if (rdev &&
1845 test_bit(In_sync, &rdev->flags)) {
1846 if (r1_sync_page_io(rdev, sect, s,
1847 conf->tmppage, READ)) {
1848 atomic_add(s, &rdev->corrected_errors);
1849 printk(KERN_INFO
1850 "md/raid1:%s: read error corrected "
1851 "(%d sectors at %llu on %s)\n",
1852 mdname(mddev), s,
1853 (unsigned long long)(sect +
1854 rdev->data_offset),
1855 bdevname(rdev->bdev, b));
1859 sectors -= s;
1860 sect += s;
1864 static void bi_complete(struct bio *bio, int error)
1866 complete((struct completion *)bio->bi_private);
1869 static int submit_bio_wait(int rw, struct bio *bio)
1871 struct completion event;
1872 rw |= REQ_SYNC;
1874 init_completion(&event);
1875 bio->bi_private = &event;
1876 bio->bi_end_io = bi_complete;
1877 submit_bio(rw, bio);
1878 wait_for_completion(&event);
1880 return test_bit(BIO_UPTODATE, &bio->bi_flags);
1883 static int narrow_write_error(struct r1bio *r1_bio, int i)
1885 struct mddev *mddev = r1_bio->mddev;
1886 struct r1conf *conf = mddev->private;
1887 struct md_rdev *rdev = conf->mirrors[i].rdev;
1888 int vcnt, idx;
1889 struct bio_vec *vec;
1891 /* bio has the data to be written to device 'i' where
1892 * we just recently had a write error.
1893 * We repeatedly clone the bio and trim down to one block,
1894 * then try the write. Where the write fails we record
1895 * a bad block.
1896 * It is conceivable that the bio doesn't exactly align with
1897 * blocks. We must handle this somehow.
1899 * We currently own a reference on the rdev.
1902 int block_sectors;
1903 sector_t sector;
1904 int sectors;
1905 int sect_to_write = r1_bio->sectors;
1906 int ok = 1;
1908 if (rdev->badblocks.shift < 0)
1909 return 0;
1911 block_sectors = 1 << rdev->badblocks.shift;
1912 sector = r1_bio->sector;
1913 sectors = ((sector + block_sectors)
1914 & ~(sector_t)(block_sectors - 1))
1915 - sector;
1917 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
1918 vcnt = r1_bio->behind_page_count;
1919 vec = r1_bio->behind_bvecs;
1920 idx = 0;
1921 while (vec[idx].bv_page == NULL)
1922 idx++;
1923 } else {
1924 vcnt = r1_bio->master_bio->bi_vcnt;
1925 vec = r1_bio->master_bio->bi_io_vec;
1926 idx = r1_bio->master_bio->bi_idx;
1928 while (sect_to_write) {
1929 struct bio *wbio;
1930 if (sectors > sect_to_write)
1931 sectors = sect_to_write;
1932 /* Write at 'sector' for 'sectors'*/
1934 wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
1935 memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
1936 wbio->bi_sector = r1_bio->sector;
1937 wbio->bi_rw = WRITE;
1938 wbio->bi_vcnt = vcnt;
1939 wbio->bi_size = r1_bio->sectors << 9;
1940 wbio->bi_idx = idx;
1942 md_trim_bio(wbio, sector - r1_bio->sector, sectors);
1943 wbio->bi_sector += rdev->data_offset;
1944 wbio->bi_bdev = rdev->bdev;
1945 if (submit_bio_wait(WRITE, wbio) == 0)
1946 /* failure! */
1947 ok = rdev_set_badblocks(rdev, sector,
1948 sectors, 0)
1949 && ok;
1951 bio_put(wbio);
1952 sect_to_write -= sectors;
1953 sector += sectors;
1954 sectors = block_sectors;
1956 return ok;
1959 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
1961 int m;
1962 int s = r1_bio->sectors;
1963 for (m = 0; m < conf->raid_disks * 2 ; m++) {
1964 struct md_rdev *rdev = conf->mirrors[m].rdev;
1965 struct bio *bio = r1_bio->bios[m];
1966 if (bio->bi_end_io == NULL)
1967 continue;
1968 if (test_bit(BIO_UPTODATE, &bio->bi_flags) &&
1969 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
1970 rdev_clear_badblocks(rdev, r1_bio->sector, s);
1972 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
1973 test_bit(R1BIO_WriteError, &r1_bio->state)) {
1974 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
1975 md_error(conf->mddev, rdev);
1978 put_buf(r1_bio);
1979 md_done_sync(conf->mddev, s, 1);
1982 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
1984 int m;
1985 for (m = 0; m < conf->raid_disks * 2 ; m++)
1986 if (r1_bio->bios[m] == IO_MADE_GOOD) {
1987 struct md_rdev *rdev = conf->mirrors[m].rdev;
1988 rdev_clear_badblocks(rdev,
1989 r1_bio->sector,
1990 r1_bio->sectors);
1991 rdev_dec_pending(rdev, conf->mddev);
1992 } else if (r1_bio->bios[m] != NULL) {
1993 /* This drive got a write error. We need to
1994 * narrow down and record precise write
1995 * errors.
1997 if (!narrow_write_error(r1_bio, m)) {
1998 md_error(conf->mddev,
1999 conf->mirrors[m].rdev);
2000 /* an I/O failed, we can't clear the bitmap */
2001 set_bit(R1BIO_Degraded, &r1_bio->state);
2003 rdev_dec_pending(conf->mirrors[m].rdev,
2004 conf->mddev);
2006 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2007 close_write(r1_bio);
2008 raid_end_bio_io(r1_bio);
2011 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2013 int disk;
2014 int max_sectors;
2015 struct mddev *mddev = conf->mddev;
2016 struct bio *bio;
2017 char b[BDEVNAME_SIZE];
2018 struct md_rdev *rdev;
2020 clear_bit(R1BIO_ReadError, &r1_bio->state);
2021 /* we got a read error. Maybe the drive is bad. Maybe just
2022 * the block and we can fix it.
2023 * We freeze all other IO, and try reading the block from
2024 * other devices. When we find one, we re-write
2025 * and check it that fixes the read error.
2026 * This is all done synchronously while the array is
2027 * frozen
2029 if (mddev->ro == 0) {
2030 freeze_array(conf);
2031 fix_read_error(conf, r1_bio->read_disk,
2032 r1_bio->sector, r1_bio->sectors);
2033 unfreeze_array(conf);
2034 } else
2035 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
2037 bio = r1_bio->bios[r1_bio->read_disk];
2038 bdevname(bio->bi_bdev, b);
2039 read_more:
2040 disk = read_balance(conf, r1_bio, &max_sectors);
2041 if (disk == -1) {
2042 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
2043 " read error for block %llu\n",
2044 mdname(mddev), b, (unsigned long long)r1_bio->sector);
2045 raid_end_bio_io(r1_bio);
2046 } else {
2047 const unsigned long do_sync
2048 = r1_bio->master_bio->bi_rw & REQ_SYNC;
2049 if (bio) {
2050 r1_bio->bios[r1_bio->read_disk] =
2051 mddev->ro ? IO_BLOCKED : NULL;
2052 bio_put(bio);
2054 r1_bio->read_disk = disk;
2055 bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2056 md_trim_bio(bio, r1_bio->sector - bio->bi_sector, max_sectors);
2057 r1_bio->bios[r1_bio->read_disk] = bio;
2058 rdev = conf->mirrors[disk].rdev;
2059 printk_ratelimited(KERN_ERR
2060 "md/raid1:%s: redirecting sector %llu"
2061 " to other mirror: %s\n",
2062 mdname(mddev),
2063 (unsigned long long)r1_bio->sector,
2064 bdevname(rdev->bdev, b));
2065 bio->bi_sector = r1_bio->sector + rdev->data_offset;
2066 bio->bi_bdev = rdev->bdev;
2067 bio->bi_end_io = raid1_end_read_request;
2068 bio->bi_rw = READ | do_sync;
2069 bio->bi_private = r1_bio;
2070 if (max_sectors < r1_bio->sectors) {
2071 /* Drat - have to split this up more */
2072 struct bio *mbio = r1_bio->master_bio;
2073 int sectors_handled = (r1_bio->sector + max_sectors
2074 - mbio->bi_sector);
2075 r1_bio->sectors = max_sectors;
2076 spin_lock_irq(&conf->device_lock);
2077 if (mbio->bi_phys_segments == 0)
2078 mbio->bi_phys_segments = 2;
2079 else
2080 mbio->bi_phys_segments++;
2081 spin_unlock_irq(&conf->device_lock);
2082 generic_make_request(bio);
2083 bio = NULL;
2085 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2087 r1_bio->master_bio = mbio;
2088 r1_bio->sectors = (mbio->bi_size >> 9)
2089 - sectors_handled;
2090 r1_bio->state = 0;
2091 set_bit(R1BIO_ReadError, &r1_bio->state);
2092 r1_bio->mddev = mddev;
2093 r1_bio->sector = mbio->bi_sector + sectors_handled;
2095 goto read_more;
2096 } else
2097 generic_make_request(bio);
2101 static void raid1d(struct mddev *mddev)
2103 struct r1bio *r1_bio;
2104 unsigned long flags;
2105 struct r1conf *conf = mddev->private;
2106 struct list_head *head = &conf->retry_list;
2107 struct blk_plug plug;
2109 md_check_recovery(mddev);
2111 blk_start_plug(&plug);
2112 for (;;) {
2114 if (atomic_read(&mddev->plug_cnt) == 0)
2115 flush_pending_writes(conf);
2117 spin_lock_irqsave(&conf->device_lock, flags);
2118 if (list_empty(head)) {
2119 spin_unlock_irqrestore(&conf->device_lock, flags);
2120 break;
2122 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2123 list_del(head->prev);
2124 conf->nr_queued--;
2125 spin_unlock_irqrestore(&conf->device_lock, flags);
2127 mddev = r1_bio->mddev;
2128 conf = mddev->private;
2129 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2130 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2131 test_bit(R1BIO_WriteError, &r1_bio->state))
2132 handle_sync_write_finished(conf, r1_bio);
2133 else
2134 sync_request_write(mddev, r1_bio);
2135 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2136 test_bit(R1BIO_WriteError, &r1_bio->state))
2137 handle_write_finished(conf, r1_bio);
2138 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2139 handle_read_error(conf, r1_bio);
2140 else
2141 /* just a partial read to be scheduled from separate
2142 * context
2144 generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2146 cond_resched();
2147 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2148 md_check_recovery(mddev);
2150 blk_finish_plug(&plug);
2154 static int init_resync(struct r1conf *conf)
2156 int buffs;
2158 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2159 BUG_ON(conf->r1buf_pool);
2160 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2161 conf->poolinfo);
2162 if (!conf->r1buf_pool)
2163 return -ENOMEM;
2164 conf->next_resync = 0;
2165 return 0;
2169 * perform a "sync" on one "block"
2171 * We need to make sure that no normal I/O request - particularly write
2172 * requests - conflict with active sync requests.
2174 * This is achieved by tracking pending requests and a 'barrier' concept
2175 * that can be installed to exclude normal IO requests.
2178 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
2180 struct r1conf *conf = mddev->private;
2181 struct r1bio *r1_bio;
2182 struct bio *bio;
2183 sector_t max_sector, nr_sectors;
2184 int disk = -1;
2185 int i;
2186 int wonly = -1;
2187 int write_targets = 0, read_targets = 0;
2188 sector_t sync_blocks;
2189 int still_degraded = 0;
2190 int good_sectors = RESYNC_SECTORS;
2191 int min_bad = 0; /* number of sectors that are bad in all devices */
2193 if (!conf->r1buf_pool)
2194 if (init_resync(conf))
2195 return 0;
2197 max_sector = mddev->dev_sectors;
2198 if (sector_nr >= max_sector) {
2199 /* If we aborted, we need to abort the
2200 * sync on the 'current' bitmap chunk (there will
2201 * only be one in raid1 resync.
2202 * We can find the current addess in mddev->curr_resync
2204 if (mddev->curr_resync < max_sector) /* aborted */
2205 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2206 &sync_blocks, 1);
2207 else /* completed sync */
2208 conf->fullsync = 0;
2210 bitmap_close_sync(mddev->bitmap);
2211 close_sync(conf);
2212 return 0;
2215 if (mddev->bitmap == NULL &&
2216 mddev->recovery_cp == MaxSector &&
2217 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2218 conf->fullsync == 0) {
2219 *skipped = 1;
2220 return max_sector - sector_nr;
2222 /* before building a request, check if we can skip these blocks..
2223 * This call the bitmap_start_sync doesn't actually record anything
2225 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2226 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2227 /* We can skip this block, and probably several more */
2228 *skipped = 1;
2229 return sync_blocks;
2232 * If there is non-resync activity waiting for a turn,
2233 * and resync is going fast enough,
2234 * then let it though before starting on this new sync request.
2236 if (!go_faster && conf->nr_waiting)
2237 msleep_interruptible(1000);
2239 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2240 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2241 raise_barrier(conf);
2243 conf->next_resync = sector_nr;
2245 rcu_read_lock();
2247 * If we get a correctably read error during resync or recovery,
2248 * we might want to read from a different device. So we
2249 * flag all drives that could conceivably be read from for READ,
2250 * and any others (which will be non-In_sync devices) for WRITE.
2251 * If a read fails, we try reading from something else for which READ
2252 * is OK.
2255 r1_bio->mddev = mddev;
2256 r1_bio->sector = sector_nr;
2257 r1_bio->state = 0;
2258 set_bit(R1BIO_IsSync, &r1_bio->state);
2260 for (i = 0; i < conf->raid_disks * 2; i++) {
2261 struct md_rdev *rdev;
2262 bio = r1_bio->bios[i];
2264 /* take from bio_init */
2265 bio->bi_next = NULL;
2266 bio->bi_flags &= ~(BIO_POOL_MASK-1);
2267 bio->bi_flags |= 1 << BIO_UPTODATE;
2268 bio->bi_rw = READ;
2269 bio->bi_vcnt = 0;
2270 bio->bi_idx = 0;
2271 bio->bi_phys_segments = 0;
2272 bio->bi_size = 0;
2273 bio->bi_end_io = NULL;
2274 bio->bi_private = NULL;
2276 rdev = rcu_dereference(conf->mirrors[i].rdev);
2277 if (rdev == NULL ||
2278 test_bit(Faulty, &rdev->flags)) {
2279 if (i < conf->raid_disks)
2280 still_degraded = 1;
2281 } else if (!test_bit(In_sync, &rdev->flags)) {
2282 bio->bi_rw = WRITE;
2283 bio->bi_end_io = end_sync_write;
2284 write_targets ++;
2285 } else {
2286 /* may need to read from here */
2287 sector_t first_bad = MaxSector;
2288 int bad_sectors;
2290 if (is_badblock(rdev, sector_nr, good_sectors,
2291 &first_bad, &bad_sectors)) {
2292 if (first_bad > sector_nr)
2293 good_sectors = first_bad - sector_nr;
2294 else {
2295 bad_sectors -= (sector_nr - first_bad);
2296 if (min_bad == 0 ||
2297 min_bad > bad_sectors)
2298 min_bad = bad_sectors;
2301 if (sector_nr < first_bad) {
2302 if (test_bit(WriteMostly, &rdev->flags)) {
2303 if (wonly < 0)
2304 wonly = i;
2305 } else {
2306 if (disk < 0)
2307 disk = i;
2309 bio->bi_rw = READ;
2310 bio->bi_end_io = end_sync_read;
2311 read_targets++;
2314 if (bio->bi_end_io) {
2315 atomic_inc(&rdev->nr_pending);
2316 bio->bi_sector = sector_nr + rdev->data_offset;
2317 bio->bi_bdev = rdev->bdev;
2318 bio->bi_private = r1_bio;
2321 rcu_read_unlock();
2322 if (disk < 0)
2323 disk = wonly;
2324 r1_bio->read_disk = disk;
2326 if (read_targets == 0 && min_bad > 0) {
2327 /* These sectors are bad on all InSync devices, so we
2328 * need to mark them bad on all write targets
2330 int ok = 1;
2331 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2332 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2333 struct md_rdev *rdev =
2334 rcu_dereference(conf->mirrors[i].rdev);
2335 ok = rdev_set_badblocks(rdev, sector_nr,
2336 min_bad, 0
2337 ) && ok;
2339 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2340 *skipped = 1;
2341 put_buf(r1_bio);
2343 if (!ok) {
2344 /* Cannot record the badblocks, so need to
2345 * abort the resync.
2346 * If there are multiple read targets, could just
2347 * fail the really bad ones ???
2349 conf->recovery_disabled = mddev->recovery_disabled;
2350 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2351 return 0;
2352 } else
2353 return min_bad;
2356 if (min_bad > 0 && min_bad < good_sectors) {
2357 /* only resync enough to reach the next bad->good
2358 * transition */
2359 good_sectors = min_bad;
2362 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2363 /* extra read targets are also write targets */
2364 write_targets += read_targets-1;
2366 if (write_targets == 0 || read_targets == 0) {
2367 /* There is nowhere to write, so all non-sync
2368 * drives must be failed - so we are finished
2370 sector_t rv = max_sector - sector_nr;
2371 *skipped = 1;
2372 put_buf(r1_bio);
2373 return rv;
2376 if (max_sector > mddev->resync_max)
2377 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2378 if (max_sector > sector_nr + good_sectors)
2379 max_sector = sector_nr + good_sectors;
2380 nr_sectors = 0;
2381 sync_blocks = 0;
2382 do {
2383 struct page *page;
2384 int len = PAGE_SIZE;
2385 if (sector_nr + (len>>9) > max_sector)
2386 len = (max_sector - sector_nr) << 9;
2387 if (len == 0)
2388 break;
2389 if (sync_blocks == 0) {
2390 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2391 &sync_blocks, still_degraded) &&
2392 !conf->fullsync &&
2393 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2394 break;
2395 BUG_ON(sync_blocks < (PAGE_SIZE>>9));
2396 if ((len >> 9) > sync_blocks)
2397 len = sync_blocks<<9;
2400 for (i = 0 ; i < conf->raid_disks * 2; i++) {
2401 bio = r1_bio->bios[i];
2402 if (bio->bi_end_io) {
2403 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2404 if (bio_add_page(bio, page, len, 0) == 0) {
2405 /* stop here */
2406 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2407 while (i > 0) {
2408 i--;
2409 bio = r1_bio->bios[i];
2410 if (bio->bi_end_io==NULL)
2411 continue;
2412 /* remove last page from this bio */
2413 bio->bi_vcnt--;
2414 bio->bi_size -= len;
2415 bio->bi_flags &= ~(1<< BIO_SEG_VALID);
2417 goto bio_full;
2421 nr_sectors += len>>9;
2422 sector_nr += len>>9;
2423 sync_blocks -= (len>>9);
2424 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2425 bio_full:
2426 r1_bio->sectors = nr_sectors;
2428 /* For a user-requested sync, we read all readable devices and do a
2429 * compare
2431 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2432 atomic_set(&r1_bio->remaining, read_targets);
2433 for (i = 0; i < conf->raid_disks * 2; i++) {
2434 bio = r1_bio->bios[i];
2435 if (bio->bi_end_io == end_sync_read) {
2436 md_sync_acct(bio->bi_bdev, nr_sectors);
2437 generic_make_request(bio);
2440 } else {
2441 atomic_set(&r1_bio->remaining, 1);
2442 bio = r1_bio->bios[r1_bio->read_disk];
2443 md_sync_acct(bio->bi_bdev, nr_sectors);
2444 generic_make_request(bio);
2447 return nr_sectors;
2450 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2452 if (sectors)
2453 return sectors;
2455 return mddev->dev_sectors;
2458 static struct r1conf *setup_conf(struct mddev *mddev)
2460 struct r1conf *conf;
2461 int i;
2462 struct mirror_info *disk;
2463 struct md_rdev *rdev;
2464 int err = -ENOMEM;
2466 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2467 if (!conf)
2468 goto abort;
2470 conf->mirrors = kzalloc(sizeof(struct mirror_info)
2471 * mddev->raid_disks * 2,
2472 GFP_KERNEL);
2473 if (!conf->mirrors)
2474 goto abort;
2476 conf->tmppage = alloc_page(GFP_KERNEL);
2477 if (!conf->tmppage)
2478 goto abort;
2480 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2481 if (!conf->poolinfo)
2482 goto abort;
2483 conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2484 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2485 r1bio_pool_free,
2486 conf->poolinfo);
2487 if (!conf->r1bio_pool)
2488 goto abort;
2490 conf->poolinfo->mddev = mddev;
2492 err = -EINVAL;
2493 spin_lock_init(&conf->device_lock);
2494 list_for_each_entry(rdev, &mddev->disks, same_set) {
2495 int disk_idx = rdev->raid_disk;
2496 if (disk_idx >= mddev->raid_disks
2497 || disk_idx < 0)
2498 continue;
2499 if (test_bit(Replacement, &rdev->flags))
2500 disk = conf->mirrors + conf->raid_disks + disk_idx;
2501 else
2502 disk = conf->mirrors + disk_idx;
2504 if (disk->rdev)
2505 goto abort;
2506 disk->rdev = rdev;
2508 disk->head_position = 0;
2510 conf->raid_disks = mddev->raid_disks;
2511 conf->mddev = mddev;
2512 INIT_LIST_HEAD(&conf->retry_list);
2514 spin_lock_init(&conf->resync_lock);
2515 init_waitqueue_head(&conf->wait_barrier);
2517 bio_list_init(&conf->pending_bio_list);
2518 conf->pending_count = 0;
2519 conf->recovery_disabled = mddev->recovery_disabled - 1;
2521 err = -EIO;
2522 conf->last_used = -1;
2523 for (i = 0; i < conf->raid_disks * 2; i++) {
2525 disk = conf->mirrors + i;
2527 if (i < conf->raid_disks &&
2528 disk[conf->raid_disks].rdev) {
2529 /* This slot has a replacement. */
2530 if (!disk->rdev) {
2531 /* No original, just make the replacement
2532 * a recovering spare
2534 disk->rdev =
2535 disk[conf->raid_disks].rdev;
2536 disk[conf->raid_disks].rdev = NULL;
2537 } else if (!test_bit(In_sync, &disk->rdev->flags))
2538 /* Original is not in_sync - bad */
2539 goto abort;
2542 if (!disk->rdev ||
2543 !test_bit(In_sync, &disk->rdev->flags)) {
2544 disk->head_position = 0;
2545 if (disk->rdev)
2546 conf->fullsync = 1;
2547 } else if (conf->last_used < 0)
2549 * The first working device is used as a
2550 * starting point to read balancing.
2552 conf->last_used = i;
2555 if (conf->last_used < 0) {
2556 printk(KERN_ERR "md/raid1:%s: no operational mirrors\n",
2557 mdname(mddev));
2558 goto abort;
2560 err = -ENOMEM;
2561 conf->thread = md_register_thread(raid1d, mddev, NULL);
2562 if (!conf->thread) {
2563 printk(KERN_ERR
2564 "md/raid1:%s: couldn't allocate thread\n",
2565 mdname(mddev));
2566 goto abort;
2569 return conf;
2571 abort:
2572 if (conf) {
2573 if (conf->r1bio_pool)
2574 mempool_destroy(conf->r1bio_pool);
2575 kfree(conf->mirrors);
2576 safe_put_page(conf->tmppage);
2577 kfree(conf->poolinfo);
2578 kfree(conf);
2580 return ERR_PTR(err);
2583 static int run(struct mddev *mddev)
2585 struct r1conf *conf;
2586 int i;
2587 struct md_rdev *rdev;
2589 if (mddev->level != 1) {
2590 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
2591 mdname(mddev), mddev->level);
2592 return -EIO;
2594 if (mddev->reshape_position != MaxSector) {
2595 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
2596 mdname(mddev));
2597 return -EIO;
2600 * copy the already verified devices into our private RAID1
2601 * bookkeeping area. [whatever we allocate in run(),
2602 * should be freed in stop()]
2604 if (mddev->private == NULL)
2605 conf = setup_conf(mddev);
2606 else
2607 conf = mddev->private;
2609 if (IS_ERR(conf))
2610 return PTR_ERR(conf);
2612 list_for_each_entry(rdev, &mddev->disks, same_set) {
2613 if (!mddev->gendisk)
2614 continue;
2615 disk_stack_limits(mddev->gendisk, rdev->bdev,
2616 rdev->data_offset << 9);
2617 /* as we don't honour merge_bvec_fn, we must never risk
2618 * violating it, so limit ->max_segments to 1 lying within
2619 * a single page, as a one page request is never in violation.
2621 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
2622 blk_queue_max_segments(mddev->queue, 1);
2623 blk_queue_segment_boundary(mddev->queue,
2624 PAGE_CACHE_SIZE - 1);
2628 mddev->degraded = 0;
2629 for (i=0; i < conf->raid_disks; i++)
2630 if (conf->mirrors[i].rdev == NULL ||
2631 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2632 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2633 mddev->degraded++;
2635 if (conf->raid_disks - mddev->degraded == 1)
2636 mddev->recovery_cp = MaxSector;
2638 if (mddev->recovery_cp != MaxSector)
2639 printk(KERN_NOTICE "md/raid1:%s: not clean"
2640 " -- starting background reconstruction\n",
2641 mdname(mddev));
2642 printk(KERN_INFO
2643 "md/raid1:%s: active with %d out of %d mirrors\n",
2644 mdname(mddev), mddev->raid_disks - mddev->degraded,
2645 mddev->raid_disks);
2648 * Ok, everything is just fine now
2650 mddev->thread = conf->thread;
2651 conf->thread = NULL;
2652 mddev->private = conf;
2654 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2656 if (mddev->queue) {
2657 mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2658 mddev->queue->backing_dev_info.congested_data = mddev;
2660 return md_integrity_register(mddev);
2663 static int stop(struct mddev *mddev)
2665 struct r1conf *conf = mddev->private;
2666 struct bitmap *bitmap = mddev->bitmap;
2668 /* wait for behind writes to complete */
2669 if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
2670 printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n",
2671 mdname(mddev));
2672 /* need to kick something here to make sure I/O goes? */
2673 wait_event(bitmap->behind_wait,
2674 atomic_read(&bitmap->behind_writes) == 0);
2677 raise_barrier(conf);
2678 lower_barrier(conf);
2680 md_unregister_thread(&mddev->thread);
2681 if (conf->r1bio_pool)
2682 mempool_destroy(conf->r1bio_pool);
2683 kfree(conf->mirrors);
2684 kfree(conf->poolinfo);
2685 kfree(conf);
2686 mddev->private = NULL;
2687 return 0;
2690 static int raid1_resize(struct mddev *mddev, sector_t sectors)
2692 /* no resync is happening, and there is enough space
2693 * on all devices, so we can resize.
2694 * We need to make sure resync covers any new space.
2695 * If the array is shrinking we should possibly wait until
2696 * any io in the removed space completes, but it hardly seems
2697 * worth it.
2699 md_set_array_sectors(mddev, raid1_size(mddev, sectors, 0));
2700 if (mddev->array_sectors > raid1_size(mddev, sectors, 0))
2701 return -EINVAL;
2702 set_capacity(mddev->gendisk, mddev->array_sectors);
2703 revalidate_disk(mddev->gendisk);
2704 if (sectors > mddev->dev_sectors &&
2705 mddev->recovery_cp > mddev->dev_sectors) {
2706 mddev->recovery_cp = mddev->dev_sectors;
2707 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2709 mddev->dev_sectors = sectors;
2710 mddev->resync_max_sectors = sectors;
2711 return 0;
2714 static int raid1_reshape(struct mddev *mddev)
2716 /* We need to:
2717 * 1/ resize the r1bio_pool
2718 * 2/ resize conf->mirrors
2720 * We allocate a new r1bio_pool if we can.
2721 * Then raise a device barrier and wait until all IO stops.
2722 * Then resize conf->mirrors and swap in the new r1bio pool.
2724 * At the same time, we "pack" the devices so that all the missing
2725 * devices have the higher raid_disk numbers.
2727 mempool_t *newpool, *oldpool;
2728 struct pool_info *newpoolinfo;
2729 struct mirror_info *newmirrors;
2730 struct r1conf *conf = mddev->private;
2731 int cnt, raid_disks;
2732 unsigned long flags;
2733 int d, d2, err;
2735 /* Cannot change chunk_size, layout, or level */
2736 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
2737 mddev->layout != mddev->new_layout ||
2738 mddev->level != mddev->new_level) {
2739 mddev->new_chunk_sectors = mddev->chunk_sectors;
2740 mddev->new_layout = mddev->layout;
2741 mddev->new_level = mddev->level;
2742 return -EINVAL;
2745 err = md_allow_write(mddev);
2746 if (err)
2747 return err;
2749 raid_disks = mddev->raid_disks + mddev->delta_disks;
2751 if (raid_disks < conf->raid_disks) {
2752 cnt=0;
2753 for (d= 0; d < conf->raid_disks; d++)
2754 if (conf->mirrors[d].rdev)
2755 cnt++;
2756 if (cnt > raid_disks)
2757 return -EBUSY;
2760 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
2761 if (!newpoolinfo)
2762 return -ENOMEM;
2763 newpoolinfo->mddev = mddev;
2764 newpoolinfo->raid_disks = raid_disks * 2;
2766 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2767 r1bio_pool_free, newpoolinfo);
2768 if (!newpool) {
2769 kfree(newpoolinfo);
2770 return -ENOMEM;
2772 newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks * 2,
2773 GFP_KERNEL);
2774 if (!newmirrors) {
2775 kfree(newpoolinfo);
2776 mempool_destroy(newpool);
2777 return -ENOMEM;
2780 raise_barrier(conf);
2782 /* ok, everything is stopped */
2783 oldpool = conf->r1bio_pool;
2784 conf->r1bio_pool = newpool;
2786 for (d = d2 = 0; d < conf->raid_disks; d++) {
2787 struct md_rdev *rdev = conf->mirrors[d].rdev;
2788 if (rdev && rdev->raid_disk != d2) {
2789 sysfs_unlink_rdev(mddev, rdev);
2790 rdev->raid_disk = d2;
2791 sysfs_unlink_rdev(mddev, rdev);
2792 if (sysfs_link_rdev(mddev, rdev))
2793 printk(KERN_WARNING
2794 "md/raid1:%s: cannot register rd%d\n",
2795 mdname(mddev), rdev->raid_disk);
2797 if (rdev)
2798 newmirrors[d2++].rdev = rdev;
2800 kfree(conf->mirrors);
2801 conf->mirrors = newmirrors;
2802 kfree(conf->poolinfo);
2803 conf->poolinfo = newpoolinfo;
2805 spin_lock_irqsave(&conf->device_lock, flags);
2806 mddev->degraded += (raid_disks - conf->raid_disks);
2807 spin_unlock_irqrestore(&conf->device_lock, flags);
2808 conf->raid_disks = mddev->raid_disks = raid_disks;
2809 mddev->delta_disks = 0;
2811 conf->last_used = 0; /* just make sure it is in-range */
2812 lower_barrier(conf);
2814 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2815 md_wakeup_thread(mddev->thread);
2817 mempool_destroy(oldpool);
2818 return 0;
2821 static void raid1_quiesce(struct mddev *mddev, int state)
2823 struct r1conf *conf = mddev->private;
2825 switch(state) {
2826 case 2: /* wake for suspend */
2827 wake_up(&conf->wait_barrier);
2828 break;
2829 case 1:
2830 raise_barrier(conf);
2831 break;
2832 case 0:
2833 lower_barrier(conf);
2834 break;
2838 static void *raid1_takeover(struct mddev *mddev)
2840 /* raid1 can take over:
2841 * raid5 with 2 devices, any layout or chunk size
2843 if (mddev->level == 5 && mddev->raid_disks == 2) {
2844 struct r1conf *conf;
2845 mddev->new_level = 1;
2846 mddev->new_layout = 0;
2847 mddev->new_chunk_sectors = 0;
2848 conf = setup_conf(mddev);
2849 if (!IS_ERR(conf))
2850 conf->barrier = 1;
2851 return conf;
2853 return ERR_PTR(-EINVAL);
2856 static struct md_personality raid1_personality =
2858 .name = "raid1",
2859 .level = 1,
2860 .owner = THIS_MODULE,
2861 .make_request = make_request,
2862 .run = run,
2863 .stop = stop,
2864 .status = status,
2865 .error_handler = error,
2866 .hot_add_disk = raid1_add_disk,
2867 .hot_remove_disk= raid1_remove_disk,
2868 .spare_active = raid1_spare_active,
2869 .sync_request = sync_request,
2870 .resize = raid1_resize,
2871 .size = raid1_size,
2872 .check_reshape = raid1_reshape,
2873 .quiesce = raid1_quiesce,
2874 .takeover = raid1_takeover,
2877 static int __init raid_init(void)
2879 return register_md_personality(&raid1_personality);
2882 static void raid_exit(void)
2884 unregister_md_personality(&raid1_personality);
2887 module_init(raid_init);
2888 module_exit(raid_exit);
2889 MODULE_LICENSE("GPL");
2890 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
2891 MODULE_ALIAS("md-personality-3"); /* RAID1 */
2892 MODULE_ALIAS("md-raid1");
2893 MODULE_ALIAS("md-level-1");
2895 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);