Merge tag 'gpio-v3.13-3' of git://git.kernel.org/pub/scm/linux/kernel/git/linusw...
[linux-2.6.git] / drivers / md / raid1.c
blob1e5a540995e932852df5ff484a96bfcc8636a432
1 /*
2 * raid1.c : Multiple Devices driver for Linux
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8 * RAID-1 management functions.
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
27 * any later version.
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40 #include "md.h"
41 #include "raid1.h"
42 #include "bitmap.h"
45 * Number of guaranteed r1bios in case of extreme VM load:
47 #define NR_RAID1_BIOS 256
49 /* when we get a read error on a read-only array, we redirect to another
50 * device without failing the first device, or trying to over-write to
51 * correct the read error. To keep track of bad blocks on a per-bio
52 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
54 #define IO_BLOCKED ((struct bio *)1)
55 /* When we successfully write to a known bad-block, we need to remove the
56 * bad-block marking which must be done from process context. So we record
57 * the success by setting devs[n].bio to IO_MADE_GOOD
59 #define IO_MADE_GOOD ((struct bio *)2)
61 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
63 /* When there are this many requests queue to be written by
64 * the raid1 thread, we become 'congested' to provide back-pressure
65 * for writeback.
67 static int max_queued_requests = 1024;
69 static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
70 sector_t bi_sector);
71 static void lower_barrier(struct r1conf *conf);
73 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
75 struct pool_info *pi = data;
76 int size = offsetof(struct r1bio, bios[pi->raid_disks]);
78 /* allocate a r1bio with room for raid_disks entries in the bios array */
79 return kzalloc(size, gfp_flags);
82 static void r1bio_pool_free(void *r1_bio, void *data)
84 kfree(r1_bio);
87 #define RESYNC_BLOCK_SIZE (64*1024)
88 #define RESYNC_DEPTH 32
89 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
90 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
91 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
92 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
93 #define NEXT_NORMALIO_DISTANCE (3 * RESYNC_WINDOW_SECTORS)
95 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
97 struct pool_info *pi = data;
98 struct r1bio *r1_bio;
99 struct bio *bio;
100 int i, j;
102 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
103 if (!r1_bio)
104 return NULL;
107 * Allocate bios : 1 for reading, n-1 for writing
109 for (j = pi->raid_disks ; j-- ; ) {
110 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
111 if (!bio)
112 goto out_free_bio;
113 r1_bio->bios[j] = bio;
116 * Allocate RESYNC_PAGES data pages and attach them to
117 * the first bio.
118 * If this is a user-requested check/repair, allocate
119 * RESYNC_PAGES for each bio.
121 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
122 j = pi->raid_disks;
123 else
124 j = 1;
125 while(j--) {
126 bio = r1_bio->bios[j];
127 bio->bi_vcnt = RESYNC_PAGES;
129 if (bio_alloc_pages(bio, gfp_flags))
130 goto out_free_bio;
132 /* If not user-requests, copy the page pointers to all bios */
133 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
134 for (i=0; i<RESYNC_PAGES ; i++)
135 for (j=1; j<pi->raid_disks; j++)
136 r1_bio->bios[j]->bi_io_vec[i].bv_page =
137 r1_bio->bios[0]->bi_io_vec[i].bv_page;
140 r1_bio->master_bio = NULL;
142 return r1_bio;
144 out_free_bio:
145 while (++j < pi->raid_disks)
146 bio_put(r1_bio->bios[j]);
147 r1bio_pool_free(r1_bio, data);
148 return NULL;
151 static void r1buf_pool_free(void *__r1_bio, void *data)
153 struct pool_info *pi = data;
154 int i,j;
155 struct r1bio *r1bio = __r1_bio;
157 for (i = 0; i < RESYNC_PAGES; i++)
158 for (j = pi->raid_disks; j-- ;) {
159 if (j == 0 ||
160 r1bio->bios[j]->bi_io_vec[i].bv_page !=
161 r1bio->bios[0]->bi_io_vec[i].bv_page)
162 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
164 for (i=0 ; i < pi->raid_disks; i++)
165 bio_put(r1bio->bios[i]);
167 r1bio_pool_free(r1bio, data);
170 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
172 int i;
174 for (i = 0; i < conf->raid_disks * 2; i++) {
175 struct bio **bio = r1_bio->bios + i;
176 if (!BIO_SPECIAL(*bio))
177 bio_put(*bio);
178 *bio = NULL;
182 static void free_r1bio(struct r1bio *r1_bio)
184 struct r1conf *conf = r1_bio->mddev->private;
186 put_all_bios(conf, r1_bio);
187 mempool_free(r1_bio, conf->r1bio_pool);
190 static void put_buf(struct r1bio *r1_bio)
192 struct r1conf *conf = r1_bio->mddev->private;
193 int i;
195 for (i = 0; i < conf->raid_disks * 2; i++) {
196 struct bio *bio = r1_bio->bios[i];
197 if (bio->bi_end_io)
198 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
201 mempool_free(r1_bio, conf->r1buf_pool);
203 lower_barrier(conf);
206 static void reschedule_retry(struct r1bio *r1_bio)
208 unsigned long flags;
209 struct mddev *mddev = r1_bio->mddev;
210 struct r1conf *conf = mddev->private;
212 spin_lock_irqsave(&conf->device_lock, flags);
213 list_add(&r1_bio->retry_list, &conf->retry_list);
214 conf->nr_queued ++;
215 spin_unlock_irqrestore(&conf->device_lock, flags);
217 wake_up(&conf->wait_barrier);
218 md_wakeup_thread(mddev->thread);
222 * raid_end_bio_io() is called when we have finished servicing a mirrored
223 * operation and are ready to return a success/failure code to the buffer
224 * cache layer.
226 static void call_bio_endio(struct r1bio *r1_bio)
228 struct bio *bio = r1_bio->master_bio;
229 int done;
230 struct r1conf *conf = r1_bio->mddev->private;
231 sector_t start_next_window = r1_bio->start_next_window;
232 sector_t bi_sector = bio->bi_sector;
234 if (bio->bi_phys_segments) {
235 unsigned long flags;
236 spin_lock_irqsave(&conf->device_lock, flags);
237 bio->bi_phys_segments--;
238 done = (bio->bi_phys_segments == 0);
239 spin_unlock_irqrestore(&conf->device_lock, flags);
241 * make_request() might be waiting for
242 * bi_phys_segments to decrease
244 wake_up(&conf->wait_barrier);
245 } else
246 done = 1;
248 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
249 clear_bit(BIO_UPTODATE, &bio->bi_flags);
250 if (done) {
251 bio_endio(bio, 0);
253 * Wake up any possible resync thread that waits for the device
254 * to go idle.
256 allow_barrier(conf, start_next_window, bi_sector);
260 static void raid_end_bio_io(struct r1bio *r1_bio)
262 struct bio *bio = r1_bio->master_bio;
264 /* if nobody has done the final endio yet, do it now */
265 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
266 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
267 (bio_data_dir(bio) == WRITE) ? "write" : "read",
268 (unsigned long long) bio->bi_sector,
269 (unsigned long long) bio->bi_sector +
270 bio_sectors(bio) - 1);
272 call_bio_endio(r1_bio);
274 free_r1bio(r1_bio);
278 * Update disk head position estimator based on IRQ completion info.
280 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
282 struct r1conf *conf = r1_bio->mddev->private;
284 conf->mirrors[disk].head_position =
285 r1_bio->sector + (r1_bio->sectors);
289 * Find the disk number which triggered given bio
291 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
293 int mirror;
294 struct r1conf *conf = r1_bio->mddev->private;
295 int raid_disks = conf->raid_disks;
297 for (mirror = 0; mirror < raid_disks * 2; mirror++)
298 if (r1_bio->bios[mirror] == bio)
299 break;
301 BUG_ON(mirror == raid_disks * 2);
302 update_head_pos(mirror, r1_bio);
304 return mirror;
307 static void raid1_end_read_request(struct bio *bio, int error)
309 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
310 struct r1bio *r1_bio = bio->bi_private;
311 int mirror;
312 struct r1conf *conf = r1_bio->mddev->private;
314 mirror = r1_bio->read_disk;
316 * this branch is our 'one mirror IO has finished' event handler:
318 update_head_pos(mirror, r1_bio);
320 if (uptodate)
321 set_bit(R1BIO_Uptodate, &r1_bio->state);
322 else {
323 /* If all other devices have failed, we want to return
324 * the error upwards rather than fail the last device.
325 * Here we redefine "uptodate" to mean "Don't want to retry"
327 unsigned long flags;
328 spin_lock_irqsave(&conf->device_lock, flags);
329 if (r1_bio->mddev->degraded == conf->raid_disks ||
330 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
331 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
332 uptodate = 1;
333 spin_unlock_irqrestore(&conf->device_lock, flags);
336 if (uptodate) {
337 raid_end_bio_io(r1_bio);
338 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
339 } else {
341 * oops, read error:
343 char b[BDEVNAME_SIZE];
344 printk_ratelimited(
345 KERN_ERR "md/raid1:%s: %s: "
346 "rescheduling sector %llu\n",
347 mdname(conf->mddev),
348 bdevname(conf->mirrors[mirror].rdev->bdev,
350 (unsigned long long)r1_bio->sector);
351 set_bit(R1BIO_ReadError, &r1_bio->state);
352 reschedule_retry(r1_bio);
353 /* don't drop the reference on read_disk yet */
357 static void close_write(struct r1bio *r1_bio)
359 /* it really is the end of this request */
360 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
361 /* free extra copy of the data pages */
362 int i = r1_bio->behind_page_count;
363 while (i--)
364 safe_put_page(r1_bio->behind_bvecs[i].bv_page);
365 kfree(r1_bio->behind_bvecs);
366 r1_bio->behind_bvecs = NULL;
368 /* clear the bitmap if all writes complete successfully */
369 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
370 r1_bio->sectors,
371 !test_bit(R1BIO_Degraded, &r1_bio->state),
372 test_bit(R1BIO_BehindIO, &r1_bio->state));
373 md_write_end(r1_bio->mddev);
376 static void r1_bio_write_done(struct r1bio *r1_bio)
378 if (!atomic_dec_and_test(&r1_bio->remaining))
379 return;
381 if (test_bit(R1BIO_WriteError, &r1_bio->state))
382 reschedule_retry(r1_bio);
383 else {
384 close_write(r1_bio);
385 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
386 reschedule_retry(r1_bio);
387 else
388 raid_end_bio_io(r1_bio);
392 static void raid1_end_write_request(struct bio *bio, int error)
394 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
395 struct r1bio *r1_bio = bio->bi_private;
396 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
397 struct r1conf *conf = r1_bio->mddev->private;
398 struct bio *to_put = NULL;
400 mirror = find_bio_disk(r1_bio, bio);
403 * 'one mirror IO has finished' event handler:
405 if (!uptodate) {
406 set_bit(WriteErrorSeen,
407 &conf->mirrors[mirror].rdev->flags);
408 if (!test_and_set_bit(WantReplacement,
409 &conf->mirrors[mirror].rdev->flags))
410 set_bit(MD_RECOVERY_NEEDED, &
411 conf->mddev->recovery);
413 set_bit(R1BIO_WriteError, &r1_bio->state);
414 } else {
416 * Set R1BIO_Uptodate in our master bio, so that we
417 * will return a good error code for to the higher
418 * levels even if IO on some other mirrored buffer
419 * fails.
421 * The 'master' represents the composite IO operation
422 * to user-side. So if something waits for IO, then it
423 * will wait for the 'master' bio.
425 sector_t first_bad;
426 int bad_sectors;
428 r1_bio->bios[mirror] = NULL;
429 to_put = bio;
431 * Do not set R1BIO_Uptodate if the current device is
432 * rebuilding or Faulty. This is because we cannot use
433 * such device for properly reading the data back (we could
434 * potentially use it, if the current write would have felt
435 * before rdev->recovery_offset, but for simplicity we don't
436 * check this here.
438 if (test_bit(In_sync, &conf->mirrors[mirror].rdev->flags) &&
439 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags))
440 set_bit(R1BIO_Uptodate, &r1_bio->state);
442 /* Maybe we can clear some bad blocks. */
443 if (is_badblock(conf->mirrors[mirror].rdev,
444 r1_bio->sector, r1_bio->sectors,
445 &first_bad, &bad_sectors)) {
446 r1_bio->bios[mirror] = IO_MADE_GOOD;
447 set_bit(R1BIO_MadeGood, &r1_bio->state);
451 if (behind) {
452 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
453 atomic_dec(&r1_bio->behind_remaining);
456 * In behind mode, we ACK the master bio once the I/O
457 * has safely reached all non-writemostly
458 * disks. Setting the Returned bit ensures that this
459 * gets done only once -- we don't ever want to return
460 * -EIO here, instead we'll wait
462 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
463 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
464 /* Maybe we can return now */
465 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
466 struct bio *mbio = r1_bio->master_bio;
467 pr_debug("raid1: behind end write sectors"
468 " %llu-%llu\n",
469 (unsigned long long) mbio->bi_sector,
470 (unsigned long long) mbio->bi_sector +
471 bio_sectors(mbio) - 1);
472 call_bio_endio(r1_bio);
476 if (r1_bio->bios[mirror] == NULL)
477 rdev_dec_pending(conf->mirrors[mirror].rdev,
478 conf->mddev);
481 * Let's see if all mirrored write operations have finished
482 * already.
484 r1_bio_write_done(r1_bio);
486 if (to_put)
487 bio_put(to_put);
492 * This routine returns the disk from which the requested read should
493 * be done. There is a per-array 'next expected sequential IO' sector
494 * number - if this matches on the next IO then we use the last disk.
495 * There is also a per-disk 'last know head position' sector that is
496 * maintained from IRQ contexts, both the normal and the resync IO
497 * completion handlers update this position correctly. If there is no
498 * perfect sequential match then we pick the disk whose head is closest.
500 * If there are 2 mirrors in the same 2 devices, performance degrades
501 * because position is mirror, not device based.
503 * The rdev for the device selected will have nr_pending incremented.
505 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
507 const sector_t this_sector = r1_bio->sector;
508 int sectors;
509 int best_good_sectors;
510 int best_disk, best_dist_disk, best_pending_disk;
511 int has_nonrot_disk;
512 int disk;
513 sector_t best_dist;
514 unsigned int min_pending;
515 struct md_rdev *rdev;
516 int choose_first;
517 int choose_next_idle;
519 rcu_read_lock();
521 * Check if we can balance. We can balance on the whole
522 * device if no resync is going on, or below the resync window.
523 * We take the first readable disk when above the resync window.
525 retry:
526 sectors = r1_bio->sectors;
527 best_disk = -1;
528 best_dist_disk = -1;
529 best_dist = MaxSector;
530 best_pending_disk = -1;
531 min_pending = UINT_MAX;
532 best_good_sectors = 0;
533 has_nonrot_disk = 0;
534 choose_next_idle = 0;
536 if (conf->mddev->recovery_cp < MaxSector &&
537 (this_sector + sectors >= conf->next_resync))
538 choose_first = 1;
539 else
540 choose_first = 0;
542 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
543 sector_t dist;
544 sector_t first_bad;
545 int bad_sectors;
546 unsigned int pending;
547 bool nonrot;
549 rdev = rcu_dereference(conf->mirrors[disk].rdev);
550 if (r1_bio->bios[disk] == IO_BLOCKED
551 || rdev == NULL
552 || test_bit(Unmerged, &rdev->flags)
553 || test_bit(Faulty, &rdev->flags))
554 continue;
555 if (!test_bit(In_sync, &rdev->flags) &&
556 rdev->recovery_offset < this_sector + sectors)
557 continue;
558 if (test_bit(WriteMostly, &rdev->flags)) {
559 /* Don't balance among write-mostly, just
560 * use the first as a last resort */
561 if (best_disk < 0) {
562 if (is_badblock(rdev, this_sector, sectors,
563 &first_bad, &bad_sectors)) {
564 if (first_bad < this_sector)
565 /* Cannot use this */
566 continue;
567 best_good_sectors = first_bad - this_sector;
568 } else
569 best_good_sectors = sectors;
570 best_disk = disk;
572 continue;
574 /* This is a reasonable device to use. It might
575 * even be best.
577 if (is_badblock(rdev, this_sector, sectors,
578 &first_bad, &bad_sectors)) {
579 if (best_dist < MaxSector)
580 /* already have a better device */
581 continue;
582 if (first_bad <= this_sector) {
583 /* cannot read here. If this is the 'primary'
584 * device, then we must not read beyond
585 * bad_sectors from another device..
587 bad_sectors -= (this_sector - first_bad);
588 if (choose_first && sectors > bad_sectors)
589 sectors = bad_sectors;
590 if (best_good_sectors > sectors)
591 best_good_sectors = sectors;
593 } else {
594 sector_t good_sectors = first_bad - this_sector;
595 if (good_sectors > best_good_sectors) {
596 best_good_sectors = good_sectors;
597 best_disk = disk;
599 if (choose_first)
600 break;
602 continue;
603 } else
604 best_good_sectors = sectors;
606 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
607 has_nonrot_disk |= nonrot;
608 pending = atomic_read(&rdev->nr_pending);
609 dist = abs(this_sector - conf->mirrors[disk].head_position);
610 if (choose_first) {
611 best_disk = disk;
612 break;
614 /* Don't change to another disk for sequential reads */
615 if (conf->mirrors[disk].next_seq_sect == this_sector
616 || dist == 0) {
617 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
618 struct raid1_info *mirror = &conf->mirrors[disk];
620 best_disk = disk;
622 * If buffered sequential IO size exceeds optimal
623 * iosize, check if there is idle disk. If yes, choose
624 * the idle disk. read_balance could already choose an
625 * idle disk before noticing it's a sequential IO in
626 * this disk. This doesn't matter because this disk
627 * will idle, next time it will be utilized after the
628 * first disk has IO size exceeds optimal iosize. In
629 * this way, iosize of the first disk will be optimal
630 * iosize at least. iosize of the second disk might be
631 * small, but not a big deal since when the second disk
632 * starts IO, the first disk is likely still busy.
634 if (nonrot && opt_iosize > 0 &&
635 mirror->seq_start != MaxSector &&
636 mirror->next_seq_sect > opt_iosize &&
637 mirror->next_seq_sect - opt_iosize >=
638 mirror->seq_start) {
639 choose_next_idle = 1;
640 continue;
642 break;
644 /* If device is idle, use it */
645 if (pending == 0) {
646 best_disk = disk;
647 break;
650 if (choose_next_idle)
651 continue;
653 if (min_pending > pending) {
654 min_pending = pending;
655 best_pending_disk = disk;
658 if (dist < best_dist) {
659 best_dist = dist;
660 best_dist_disk = disk;
665 * If all disks are rotational, choose the closest disk. If any disk is
666 * non-rotational, choose the disk with less pending request even the
667 * disk is rotational, which might/might not be optimal for raids with
668 * mixed ratation/non-rotational disks depending on workload.
670 if (best_disk == -1) {
671 if (has_nonrot_disk)
672 best_disk = best_pending_disk;
673 else
674 best_disk = best_dist_disk;
677 if (best_disk >= 0) {
678 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
679 if (!rdev)
680 goto retry;
681 atomic_inc(&rdev->nr_pending);
682 if (test_bit(Faulty, &rdev->flags)) {
683 /* cannot risk returning a device that failed
684 * before we inc'ed nr_pending
686 rdev_dec_pending(rdev, conf->mddev);
687 goto retry;
689 sectors = best_good_sectors;
691 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
692 conf->mirrors[best_disk].seq_start = this_sector;
694 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
696 rcu_read_unlock();
697 *max_sectors = sectors;
699 return best_disk;
702 static int raid1_mergeable_bvec(struct request_queue *q,
703 struct bvec_merge_data *bvm,
704 struct bio_vec *biovec)
706 struct mddev *mddev = q->queuedata;
707 struct r1conf *conf = mddev->private;
708 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
709 int max = biovec->bv_len;
711 if (mddev->merge_check_needed) {
712 int disk;
713 rcu_read_lock();
714 for (disk = 0; disk < conf->raid_disks * 2; disk++) {
715 struct md_rdev *rdev = rcu_dereference(
716 conf->mirrors[disk].rdev);
717 if (rdev && !test_bit(Faulty, &rdev->flags)) {
718 struct request_queue *q =
719 bdev_get_queue(rdev->bdev);
720 if (q->merge_bvec_fn) {
721 bvm->bi_sector = sector +
722 rdev->data_offset;
723 bvm->bi_bdev = rdev->bdev;
724 max = min(max, q->merge_bvec_fn(
725 q, bvm, biovec));
729 rcu_read_unlock();
731 return max;
735 int md_raid1_congested(struct mddev *mddev, int bits)
737 struct r1conf *conf = mddev->private;
738 int i, ret = 0;
740 if ((bits & (1 << BDI_async_congested)) &&
741 conf->pending_count >= max_queued_requests)
742 return 1;
744 rcu_read_lock();
745 for (i = 0; i < conf->raid_disks * 2; i++) {
746 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
747 if (rdev && !test_bit(Faulty, &rdev->flags)) {
748 struct request_queue *q = bdev_get_queue(rdev->bdev);
750 BUG_ON(!q);
752 /* Note the '|| 1' - when read_balance prefers
753 * non-congested targets, it can be removed
755 if ((bits & (1<<BDI_async_congested)) || 1)
756 ret |= bdi_congested(&q->backing_dev_info, bits);
757 else
758 ret &= bdi_congested(&q->backing_dev_info, bits);
761 rcu_read_unlock();
762 return ret;
764 EXPORT_SYMBOL_GPL(md_raid1_congested);
766 static int raid1_congested(void *data, int bits)
768 struct mddev *mddev = data;
770 return mddev_congested(mddev, bits) ||
771 md_raid1_congested(mddev, bits);
774 static void flush_pending_writes(struct r1conf *conf)
776 /* Any writes that have been queued but are awaiting
777 * bitmap updates get flushed here.
779 spin_lock_irq(&conf->device_lock);
781 if (conf->pending_bio_list.head) {
782 struct bio *bio;
783 bio = bio_list_get(&conf->pending_bio_list);
784 conf->pending_count = 0;
785 spin_unlock_irq(&conf->device_lock);
786 /* flush any pending bitmap writes to
787 * disk before proceeding w/ I/O */
788 bitmap_unplug(conf->mddev->bitmap);
789 wake_up(&conf->wait_barrier);
791 while (bio) { /* submit pending writes */
792 struct bio *next = bio->bi_next;
793 bio->bi_next = NULL;
794 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
795 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
796 /* Just ignore it */
797 bio_endio(bio, 0);
798 else
799 generic_make_request(bio);
800 bio = next;
802 } else
803 spin_unlock_irq(&conf->device_lock);
806 /* Barriers....
807 * Sometimes we need to suspend IO while we do something else,
808 * either some resync/recovery, or reconfigure the array.
809 * To do this we raise a 'barrier'.
810 * The 'barrier' is a counter that can be raised multiple times
811 * to count how many activities are happening which preclude
812 * normal IO.
813 * We can only raise the barrier if there is no pending IO.
814 * i.e. if nr_pending == 0.
815 * We choose only to raise the barrier if no-one is waiting for the
816 * barrier to go down. This means that as soon as an IO request
817 * is ready, no other operations which require a barrier will start
818 * until the IO request has had a chance.
820 * So: regular IO calls 'wait_barrier'. When that returns there
821 * is no backgroup IO happening, It must arrange to call
822 * allow_barrier when it has finished its IO.
823 * backgroup IO calls must call raise_barrier. Once that returns
824 * there is no normal IO happeing. It must arrange to call
825 * lower_barrier when the particular background IO completes.
827 static void raise_barrier(struct r1conf *conf)
829 spin_lock_irq(&conf->resync_lock);
831 /* Wait until no block IO is waiting */
832 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
833 conf->resync_lock);
835 /* block any new IO from starting */
836 conf->barrier++;
838 /* For these conditions we must wait:
839 * A: while the array is in frozen state
840 * B: while barrier >= RESYNC_DEPTH, meaning resync reach
841 * the max count which allowed.
842 * C: next_resync + RESYNC_SECTORS > start_next_window, meaning
843 * next resync will reach to the window which normal bios are
844 * handling.
846 wait_event_lock_irq(conf->wait_barrier,
847 !conf->array_frozen &&
848 conf->barrier < RESYNC_DEPTH &&
849 (conf->start_next_window >=
850 conf->next_resync + RESYNC_SECTORS),
851 conf->resync_lock);
853 spin_unlock_irq(&conf->resync_lock);
856 static void lower_barrier(struct r1conf *conf)
858 unsigned long flags;
859 BUG_ON(conf->barrier <= 0);
860 spin_lock_irqsave(&conf->resync_lock, flags);
861 conf->barrier--;
862 spin_unlock_irqrestore(&conf->resync_lock, flags);
863 wake_up(&conf->wait_barrier);
866 static bool need_to_wait_for_sync(struct r1conf *conf, struct bio *bio)
868 bool wait = false;
870 if (conf->array_frozen || !bio)
871 wait = true;
872 else if (conf->barrier && bio_data_dir(bio) == WRITE) {
873 if (conf->next_resync < RESYNC_WINDOW_SECTORS)
874 wait = true;
875 else if ((conf->next_resync - RESYNC_WINDOW_SECTORS
876 >= bio_end_sector(bio)) ||
877 (conf->next_resync + NEXT_NORMALIO_DISTANCE
878 <= bio->bi_sector))
879 wait = false;
880 else
881 wait = true;
884 return wait;
887 static sector_t wait_barrier(struct r1conf *conf, struct bio *bio)
889 sector_t sector = 0;
891 spin_lock_irq(&conf->resync_lock);
892 if (need_to_wait_for_sync(conf, bio)) {
893 conf->nr_waiting++;
894 /* Wait for the barrier to drop.
895 * However if there are already pending
896 * requests (preventing the barrier from
897 * rising completely), and the
898 * pre-process bio queue isn't empty,
899 * then don't wait, as we need to empty
900 * that queue to get the nr_pending
901 * count down.
903 wait_event_lock_irq(conf->wait_barrier,
904 !conf->array_frozen &&
905 (!conf->barrier ||
906 ((conf->start_next_window <
907 conf->next_resync + RESYNC_SECTORS) &&
908 current->bio_list &&
909 !bio_list_empty(current->bio_list))),
910 conf->resync_lock);
911 conf->nr_waiting--;
914 if (bio && bio_data_dir(bio) == WRITE) {
915 if (conf->next_resync + NEXT_NORMALIO_DISTANCE
916 <= bio->bi_sector) {
917 if (conf->start_next_window == MaxSector)
918 conf->start_next_window =
919 conf->next_resync +
920 NEXT_NORMALIO_DISTANCE;
922 if ((conf->start_next_window + NEXT_NORMALIO_DISTANCE)
923 <= bio->bi_sector)
924 conf->next_window_requests++;
925 else
926 conf->current_window_requests++;
928 if (bio->bi_sector >= conf->start_next_window)
929 sector = conf->start_next_window;
932 conf->nr_pending++;
933 spin_unlock_irq(&conf->resync_lock);
934 return sector;
937 static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
938 sector_t bi_sector)
940 unsigned long flags;
942 spin_lock_irqsave(&conf->resync_lock, flags);
943 conf->nr_pending--;
944 if (start_next_window) {
945 if (start_next_window == conf->start_next_window) {
946 if (conf->start_next_window + NEXT_NORMALIO_DISTANCE
947 <= bi_sector)
948 conf->next_window_requests--;
949 else
950 conf->current_window_requests--;
951 } else
952 conf->current_window_requests--;
954 if (!conf->current_window_requests) {
955 if (conf->next_window_requests) {
956 conf->current_window_requests =
957 conf->next_window_requests;
958 conf->next_window_requests = 0;
959 conf->start_next_window +=
960 NEXT_NORMALIO_DISTANCE;
961 } else
962 conf->start_next_window = MaxSector;
965 spin_unlock_irqrestore(&conf->resync_lock, flags);
966 wake_up(&conf->wait_barrier);
969 static void freeze_array(struct r1conf *conf, int extra)
971 /* stop syncio and normal IO and wait for everything to
972 * go quite.
973 * We wait until nr_pending match nr_queued+extra
974 * This is called in the context of one normal IO request
975 * that has failed. Thus any sync request that might be pending
976 * will be blocked by nr_pending, and we need to wait for
977 * pending IO requests to complete or be queued for re-try.
978 * Thus the number queued (nr_queued) plus this request (extra)
979 * must match the number of pending IOs (nr_pending) before
980 * we continue.
982 spin_lock_irq(&conf->resync_lock);
983 conf->array_frozen = 1;
984 wait_event_lock_irq_cmd(conf->wait_barrier,
985 conf->nr_pending == conf->nr_queued+extra,
986 conf->resync_lock,
987 flush_pending_writes(conf));
988 spin_unlock_irq(&conf->resync_lock);
990 static void unfreeze_array(struct r1conf *conf)
992 /* reverse the effect of the freeze */
993 spin_lock_irq(&conf->resync_lock);
994 conf->array_frozen = 0;
995 wake_up(&conf->wait_barrier);
996 spin_unlock_irq(&conf->resync_lock);
1000 /* duplicate the data pages for behind I/O
1002 static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
1004 int i;
1005 struct bio_vec *bvec;
1006 struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
1007 GFP_NOIO);
1008 if (unlikely(!bvecs))
1009 return;
1011 bio_for_each_segment_all(bvec, bio, i) {
1012 bvecs[i] = *bvec;
1013 bvecs[i].bv_page = alloc_page(GFP_NOIO);
1014 if (unlikely(!bvecs[i].bv_page))
1015 goto do_sync_io;
1016 memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
1017 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
1018 kunmap(bvecs[i].bv_page);
1019 kunmap(bvec->bv_page);
1021 r1_bio->behind_bvecs = bvecs;
1022 r1_bio->behind_page_count = bio->bi_vcnt;
1023 set_bit(R1BIO_BehindIO, &r1_bio->state);
1024 return;
1026 do_sync_io:
1027 for (i = 0; i < bio->bi_vcnt; i++)
1028 if (bvecs[i].bv_page)
1029 put_page(bvecs[i].bv_page);
1030 kfree(bvecs);
1031 pr_debug("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
1034 struct raid1_plug_cb {
1035 struct blk_plug_cb cb;
1036 struct bio_list pending;
1037 int pending_cnt;
1040 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1042 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1043 cb);
1044 struct mddev *mddev = plug->cb.data;
1045 struct r1conf *conf = mddev->private;
1046 struct bio *bio;
1048 if (from_schedule || current->bio_list) {
1049 spin_lock_irq(&conf->device_lock);
1050 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1051 conf->pending_count += plug->pending_cnt;
1052 spin_unlock_irq(&conf->device_lock);
1053 wake_up(&conf->wait_barrier);
1054 md_wakeup_thread(mddev->thread);
1055 kfree(plug);
1056 return;
1059 /* we aren't scheduling, so we can do the write-out directly. */
1060 bio = bio_list_get(&plug->pending);
1061 bitmap_unplug(mddev->bitmap);
1062 wake_up(&conf->wait_barrier);
1064 while (bio) { /* submit pending writes */
1065 struct bio *next = bio->bi_next;
1066 bio->bi_next = NULL;
1067 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1068 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1069 /* Just ignore it */
1070 bio_endio(bio, 0);
1071 else
1072 generic_make_request(bio);
1073 bio = next;
1075 kfree(plug);
1078 static void make_request(struct mddev *mddev, struct bio * bio)
1080 struct r1conf *conf = mddev->private;
1081 struct raid1_info *mirror;
1082 struct r1bio *r1_bio;
1083 struct bio *read_bio;
1084 int i, disks;
1085 struct bitmap *bitmap;
1086 unsigned long flags;
1087 const int rw = bio_data_dir(bio);
1088 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1089 const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
1090 const unsigned long do_discard = (bio->bi_rw
1091 & (REQ_DISCARD | REQ_SECURE));
1092 const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1093 struct md_rdev *blocked_rdev;
1094 struct blk_plug_cb *cb;
1095 struct raid1_plug_cb *plug = NULL;
1096 int first_clone;
1097 int sectors_handled;
1098 int max_sectors;
1099 sector_t start_next_window;
1102 * Register the new request and wait if the reconstruction
1103 * thread has put up a bar for new requests.
1104 * Continue immediately if no resync is active currently.
1107 md_write_start(mddev, bio); /* wait on superblock update early */
1109 if (bio_data_dir(bio) == WRITE &&
1110 bio_end_sector(bio) > mddev->suspend_lo &&
1111 bio->bi_sector < mddev->suspend_hi) {
1112 /* As the suspend_* range is controlled by
1113 * userspace, we want an interruptible
1114 * wait.
1116 DEFINE_WAIT(w);
1117 for (;;) {
1118 flush_signals(current);
1119 prepare_to_wait(&conf->wait_barrier,
1120 &w, TASK_INTERRUPTIBLE);
1121 if (bio_end_sector(bio) <= mddev->suspend_lo ||
1122 bio->bi_sector >= mddev->suspend_hi)
1123 break;
1124 schedule();
1126 finish_wait(&conf->wait_barrier, &w);
1129 start_next_window = wait_barrier(conf, bio);
1131 bitmap = mddev->bitmap;
1134 * make_request() can abort the operation when READA is being
1135 * used and no empty request is available.
1138 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1140 r1_bio->master_bio = bio;
1141 r1_bio->sectors = bio_sectors(bio);
1142 r1_bio->state = 0;
1143 r1_bio->mddev = mddev;
1144 r1_bio->sector = bio->bi_sector;
1146 /* We might need to issue multiple reads to different
1147 * devices if there are bad blocks around, so we keep
1148 * track of the number of reads in bio->bi_phys_segments.
1149 * If this is 0, there is only one r1_bio and no locking
1150 * will be needed when requests complete. If it is
1151 * non-zero, then it is the number of not-completed requests.
1153 bio->bi_phys_segments = 0;
1154 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1156 if (rw == READ) {
1158 * read balancing logic:
1160 int rdisk;
1162 read_again:
1163 rdisk = read_balance(conf, r1_bio, &max_sectors);
1165 if (rdisk < 0) {
1166 /* couldn't find anywhere to read from */
1167 raid_end_bio_io(r1_bio);
1168 return;
1170 mirror = conf->mirrors + rdisk;
1172 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1173 bitmap) {
1174 /* Reading from a write-mostly device must
1175 * take care not to over-take any writes
1176 * that are 'behind'
1178 wait_event(bitmap->behind_wait,
1179 atomic_read(&bitmap->behind_writes) == 0);
1181 r1_bio->read_disk = rdisk;
1183 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1184 bio_trim(read_bio, r1_bio->sector - bio->bi_sector,
1185 max_sectors);
1187 r1_bio->bios[rdisk] = read_bio;
1189 read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
1190 read_bio->bi_bdev = mirror->rdev->bdev;
1191 read_bio->bi_end_io = raid1_end_read_request;
1192 read_bio->bi_rw = READ | do_sync;
1193 read_bio->bi_private = r1_bio;
1195 if (max_sectors < r1_bio->sectors) {
1196 /* could not read all from this device, so we will
1197 * need another r1_bio.
1200 sectors_handled = (r1_bio->sector + max_sectors
1201 - bio->bi_sector);
1202 r1_bio->sectors = max_sectors;
1203 spin_lock_irq(&conf->device_lock);
1204 if (bio->bi_phys_segments == 0)
1205 bio->bi_phys_segments = 2;
1206 else
1207 bio->bi_phys_segments++;
1208 spin_unlock_irq(&conf->device_lock);
1209 /* Cannot call generic_make_request directly
1210 * as that will be queued in __make_request
1211 * and subsequent mempool_alloc might block waiting
1212 * for it. So hand bio over to raid1d.
1214 reschedule_retry(r1_bio);
1216 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1218 r1_bio->master_bio = bio;
1219 r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1220 r1_bio->state = 0;
1221 r1_bio->mddev = mddev;
1222 r1_bio->sector = bio->bi_sector + sectors_handled;
1223 goto read_again;
1224 } else
1225 generic_make_request(read_bio);
1226 return;
1230 * WRITE:
1232 if (conf->pending_count >= max_queued_requests) {
1233 md_wakeup_thread(mddev->thread);
1234 wait_event(conf->wait_barrier,
1235 conf->pending_count < max_queued_requests);
1237 /* first select target devices under rcu_lock and
1238 * inc refcount on their rdev. Record them by setting
1239 * bios[x] to bio
1240 * If there are known/acknowledged bad blocks on any device on
1241 * which we have seen a write error, we want to avoid writing those
1242 * blocks.
1243 * This potentially requires several writes to write around
1244 * the bad blocks. Each set of writes gets it's own r1bio
1245 * with a set of bios attached.
1248 disks = conf->raid_disks * 2;
1249 retry_write:
1250 r1_bio->start_next_window = start_next_window;
1251 blocked_rdev = NULL;
1252 rcu_read_lock();
1253 max_sectors = r1_bio->sectors;
1254 for (i = 0; i < disks; i++) {
1255 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1256 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1257 atomic_inc(&rdev->nr_pending);
1258 blocked_rdev = rdev;
1259 break;
1261 r1_bio->bios[i] = NULL;
1262 if (!rdev || test_bit(Faulty, &rdev->flags)
1263 || test_bit(Unmerged, &rdev->flags)) {
1264 if (i < conf->raid_disks)
1265 set_bit(R1BIO_Degraded, &r1_bio->state);
1266 continue;
1269 atomic_inc(&rdev->nr_pending);
1270 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1271 sector_t first_bad;
1272 int bad_sectors;
1273 int is_bad;
1275 is_bad = is_badblock(rdev, r1_bio->sector,
1276 max_sectors,
1277 &first_bad, &bad_sectors);
1278 if (is_bad < 0) {
1279 /* mustn't write here until the bad block is
1280 * acknowledged*/
1281 set_bit(BlockedBadBlocks, &rdev->flags);
1282 blocked_rdev = rdev;
1283 break;
1285 if (is_bad && first_bad <= r1_bio->sector) {
1286 /* Cannot write here at all */
1287 bad_sectors -= (r1_bio->sector - first_bad);
1288 if (bad_sectors < max_sectors)
1289 /* mustn't write more than bad_sectors
1290 * to other devices yet
1292 max_sectors = bad_sectors;
1293 rdev_dec_pending(rdev, mddev);
1294 /* We don't set R1BIO_Degraded as that
1295 * only applies if the disk is
1296 * missing, so it might be re-added,
1297 * and we want to know to recover this
1298 * chunk.
1299 * In this case the device is here,
1300 * and the fact that this chunk is not
1301 * in-sync is recorded in the bad
1302 * block log
1304 continue;
1306 if (is_bad) {
1307 int good_sectors = first_bad - r1_bio->sector;
1308 if (good_sectors < max_sectors)
1309 max_sectors = good_sectors;
1312 r1_bio->bios[i] = bio;
1314 rcu_read_unlock();
1316 if (unlikely(blocked_rdev)) {
1317 /* Wait for this device to become unblocked */
1318 int j;
1319 sector_t old = start_next_window;
1321 for (j = 0; j < i; j++)
1322 if (r1_bio->bios[j])
1323 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1324 r1_bio->state = 0;
1325 allow_barrier(conf, start_next_window, bio->bi_sector);
1326 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1327 start_next_window = wait_barrier(conf, bio);
1329 * We must make sure the multi r1bios of bio have
1330 * the same value of bi_phys_segments
1332 if (bio->bi_phys_segments && old &&
1333 old != start_next_window)
1334 /* Wait for the former r1bio(s) to complete */
1335 wait_event(conf->wait_barrier,
1336 bio->bi_phys_segments == 1);
1337 goto retry_write;
1340 if (max_sectors < r1_bio->sectors) {
1341 /* We are splitting this write into multiple parts, so
1342 * we need to prepare for allocating another r1_bio.
1344 r1_bio->sectors = max_sectors;
1345 spin_lock_irq(&conf->device_lock);
1346 if (bio->bi_phys_segments == 0)
1347 bio->bi_phys_segments = 2;
1348 else
1349 bio->bi_phys_segments++;
1350 spin_unlock_irq(&conf->device_lock);
1352 sectors_handled = r1_bio->sector + max_sectors - bio->bi_sector;
1354 atomic_set(&r1_bio->remaining, 1);
1355 atomic_set(&r1_bio->behind_remaining, 0);
1357 first_clone = 1;
1358 for (i = 0; i < disks; i++) {
1359 struct bio *mbio;
1360 if (!r1_bio->bios[i])
1361 continue;
1363 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1364 bio_trim(mbio, r1_bio->sector - bio->bi_sector, max_sectors);
1366 if (first_clone) {
1367 /* do behind I/O ?
1368 * Not if there are too many, or cannot
1369 * allocate memory, or a reader on WriteMostly
1370 * is waiting for behind writes to flush */
1371 if (bitmap &&
1372 (atomic_read(&bitmap->behind_writes)
1373 < mddev->bitmap_info.max_write_behind) &&
1374 !waitqueue_active(&bitmap->behind_wait))
1375 alloc_behind_pages(mbio, r1_bio);
1377 bitmap_startwrite(bitmap, r1_bio->sector,
1378 r1_bio->sectors,
1379 test_bit(R1BIO_BehindIO,
1380 &r1_bio->state));
1381 first_clone = 0;
1383 if (r1_bio->behind_bvecs) {
1384 struct bio_vec *bvec;
1385 int j;
1388 * We trimmed the bio, so _all is legit
1390 bio_for_each_segment_all(bvec, mbio, j)
1391 bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1392 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1393 atomic_inc(&r1_bio->behind_remaining);
1396 r1_bio->bios[i] = mbio;
1398 mbio->bi_sector = (r1_bio->sector +
1399 conf->mirrors[i].rdev->data_offset);
1400 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1401 mbio->bi_end_io = raid1_end_write_request;
1402 mbio->bi_rw =
1403 WRITE | do_flush_fua | do_sync | do_discard | do_same;
1404 mbio->bi_private = r1_bio;
1406 atomic_inc(&r1_bio->remaining);
1408 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1409 if (cb)
1410 plug = container_of(cb, struct raid1_plug_cb, cb);
1411 else
1412 plug = NULL;
1413 spin_lock_irqsave(&conf->device_lock, flags);
1414 if (plug) {
1415 bio_list_add(&plug->pending, mbio);
1416 plug->pending_cnt++;
1417 } else {
1418 bio_list_add(&conf->pending_bio_list, mbio);
1419 conf->pending_count++;
1421 spin_unlock_irqrestore(&conf->device_lock, flags);
1422 if (!plug)
1423 md_wakeup_thread(mddev->thread);
1425 /* Mustn't call r1_bio_write_done before this next test,
1426 * as it could result in the bio being freed.
1428 if (sectors_handled < bio_sectors(bio)) {
1429 r1_bio_write_done(r1_bio);
1430 /* We need another r1_bio. It has already been counted
1431 * in bio->bi_phys_segments
1433 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1434 r1_bio->master_bio = bio;
1435 r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1436 r1_bio->state = 0;
1437 r1_bio->mddev = mddev;
1438 r1_bio->sector = bio->bi_sector + sectors_handled;
1439 goto retry_write;
1442 r1_bio_write_done(r1_bio);
1444 /* In case raid1d snuck in to freeze_array */
1445 wake_up(&conf->wait_barrier);
1448 static void status(struct seq_file *seq, struct mddev *mddev)
1450 struct r1conf *conf = mddev->private;
1451 int i;
1453 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1454 conf->raid_disks - mddev->degraded);
1455 rcu_read_lock();
1456 for (i = 0; i < conf->raid_disks; i++) {
1457 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1458 seq_printf(seq, "%s",
1459 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1461 rcu_read_unlock();
1462 seq_printf(seq, "]");
1466 static void error(struct mddev *mddev, struct md_rdev *rdev)
1468 char b[BDEVNAME_SIZE];
1469 struct r1conf *conf = mddev->private;
1472 * If it is not operational, then we have already marked it as dead
1473 * else if it is the last working disks, ignore the error, let the
1474 * next level up know.
1475 * else mark the drive as failed
1477 if (test_bit(In_sync, &rdev->flags)
1478 && (conf->raid_disks - mddev->degraded) == 1) {
1480 * Don't fail the drive, act as though we were just a
1481 * normal single drive.
1482 * However don't try a recovery from this drive as
1483 * it is very likely to fail.
1485 conf->recovery_disabled = mddev->recovery_disabled;
1486 return;
1488 set_bit(Blocked, &rdev->flags);
1489 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1490 unsigned long flags;
1491 spin_lock_irqsave(&conf->device_lock, flags);
1492 mddev->degraded++;
1493 set_bit(Faulty, &rdev->flags);
1494 spin_unlock_irqrestore(&conf->device_lock, flags);
1496 * if recovery is running, make sure it aborts.
1498 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1499 } else
1500 set_bit(Faulty, &rdev->flags);
1501 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1502 printk(KERN_ALERT
1503 "md/raid1:%s: Disk failure on %s, disabling device.\n"
1504 "md/raid1:%s: Operation continuing on %d devices.\n",
1505 mdname(mddev), bdevname(rdev->bdev, b),
1506 mdname(mddev), conf->raid_disks - mddev->degraded);
1509 static void print_conf(struct r1conf *conf)
1511 int i;
1513 printk(KERN_DEBUG "RAID1 conf printout:\n");
1514 if (!conf) {
1515 printk(KERN_DEBUG "(!conf)\n");
1516 return;
1518 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1519 conf->raid_disks);
1521 rcu_read_lock();
1522 for (i = 0; i < conf->raid_disks; i++) {
1523 char b[BDEVNAME_SIZE];
1524 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1525 if (rdev)
1526 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1527 i, !test_bit(In_sync, &rdev->flags),
1528 !test_bit(Faulty, &rdev->flags),
1529 bdevname(rdev->bdev,b));
1531 rcu_read_unlock();
1534 static void close_sync(struct r1conf *conf)
1536 wait_barrier(conf, NULL);
1537 allow_barrier(conf, 0, 0);
1539 mempool_destroy(conf->r1buf_pool);
1540 conf->r1buf_pool = NULL;
1542 conf->next_resync = 0;
1543 conf->start_next_window = MaxSector;
1546 static int raid1_spare_active(struct mddev *mddev)
1548 int i;
1549 struct r1conf *conf = mddev->private;
1550 int count = 0;
1551 unsigned long flags;
1554 * Find all failed disks within the RAID1 configuration
1555 * and mark them readable.
1556 * Called under mddev lock, so rcu protection not needed.
1558 for (i = 0; i < conf->raid_disks; i++) {
1559 struct md_rdev *rdev = conf->mirrors[i].rdev;
1560 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1561 if (repl
1562 && repl->recovery_offset == MaxSector
1563 && !test_bit(Faulty, &repl->flags)
1564 && !test_and_set_bit(In_sync, &repl->flags)) {
1565 /* replacement has just become active */
1566 if (!rdev ||
1567 !test_and_clear_bit(In_sync, &rdev->flags))
1568 count++;
1569 if (rdev) {
1570 /* Replaced device not technically
1571 * faulty, but we need to be sure
1572 * it gets removed and never re-added
1574 set_bit(Faulty, &rdev->flags);
1575 sysfs_notify_dirent_safe(
1576 rdev->sysfs_state);
1579 if (rdev
1580 && rdev->recovery_offset == MaxSector
1581 && !test_bit(Faulty, &rdev->flags)
1582 && !test_and_set_bit(In_sync, &rdev->flags)) {
1583 count++;
1584 sysfs_notify_dirent_safe(rdev->sysfs_state);
1587 spin_lock_irqsave(&conf->device_lock, flags);
1588 mddev->degraded -= count;
1589 spin_unlock_irqrestore(&conf->device_lock, flags);
1591 print_conf(conf);
1592 return count;
1596 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1598 struct r1conf *conf = mddev->private;
1599 int err = -EEXIST;
1600 int mirror = 0;
1601 struct raid1_info *p;
1602 int first = 0;
1603 int last = conf->raid_disks - 1;
1604 struct request_queue *q = bdev_get_queue(rdev->bdev);
1606 if (mddev->recovery_disabled == conf->recovery_disabled)
1607 return -EBUSY;
1609 if (rdev->raid_disk >= 0)
1610 first = last = rdev->raid_disk;
1612 if (q->merge_bvec_fn) {
1613 set_bit(Unmerged, &rdev->flags);
1614 mddev->merge_check_needed = 1;
1617 for (mirror = first; mirror <= last; mirror++) {
1618 p = conf->mirrors+mirror;
1619 if (!p->rdev) {
1621 if (mddev->gendisk)
1622 disk_stack_limits(mddev->gendisk, rdev->bdev,
1623 rdev->data_offset << 9);
1625 p->head_position = 0;
1626 rdev->raid_disk = mirror;
1627 err = 0;
1628 /* As all devices are equivalent, we don't need a full recovery
1629 * if this was recently any drive of the array
1631 if (rdev->saved_raid_disk < 0)
1632 conf->fullsync = 1;
1633 rcu_assign_pointer(p->rdev, rdev);
1634 break;
1636 if (test_bit(WantReplacement, &p->rdev->flags) &&
1637 p[conf->raid_disks].rdev == NULL) {
1638 /* Add this device as a replacement */
1639 clear_bit(In_sync, &rdev->flags);
1640 set_bit(Replacement, &rdev->flags);
1641 rdev->raid_disk = mirror;
1642 err = 0;
1643 conf->fullsync = 1;
1644 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1645 break;
1648 if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1649 /* Some requests might not have seen this new
1650 * merge_bvec_fn. We must wait for them to complete
1651 * before merging the device fully.
1652 * First we make sure any code which has tested
1653 * our function has submitted the request, then
1654 * we wait for all outstanding requests to complete.
1656 synchronize_sched();
1657 freeze_array(conf, 0);
1658 unfreeze_array(conf);
1659 clear_bit(Unmerged, &rdev->flags);
1661 md_integrity_add_rdev(rdev, mddev);
1662 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1663 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1664 print_conf(conf);
1665 return err;
1668 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1670 struct r1conf *conf = mddev->private;
1671 int err = 0;
1672 int number = rdev->raid_disk;
1673 struct raid1_info *p = conf->mirrors + number;
1675 if (rdev != p->rdev)
1676 p = conf->mirrors + conf->raid_disks + number;
1678 print_conf(conf);
1679 if (rdev == p->rdev) {
1680 if (test_bit(In_sync, &rdev->flags) ||
1681 atomic_read(&rdev->nr_pending)) {
1682 err = -EBUSY;
1683 goto abort;
1685 /* Only remove non-faulty devices if recovery
1686 * is not possible.
1688 if (!test_bit(Faulty, &rdev->flags) &&
1689 mddev->recovery_disabled != conf->recovery_disabled &&
1690 mddev->degraded < conf->raid_disks) {
1691 err = -EBUSY;
1692 goto abort;
1694 p->rdev = NULL;
1695 synchronize_rcu();
1696 if (atomic_read(&rdev->nr_pending)) {
1697 /* lost the race, try later */
1698 err = -EBUSY;
1699 p->rdev = rdev;
1700 goto abort;
1701 } else if (conf->mirrors[conf->raid_disks + number].rdev) {
1702 /* We just removed a device that is being replaced.
1703 * Move down the replacement. We drain all IO before
1704 * doing this to avoid confusion.
1706 struct md_rdev *repl =
1707 conf->mirrors[conf->raid_disks + number].rdev;
1708 freeze_array(conf, 0);
1709 clear_bit(Replacement, &repl->flags);
1710 p->rdev = repl;
1711 conf->mirrors[conf->raid_disks + number].rdev = NULL;
1712 unfreeze_array(conf);
1713 clear_bit(WantReplacement, &rdev->flags);
1714 } else
1715 clear_bit(WantReplacement, &rdev->flags);
1716 err = md_integrity_register(mddev);
1718 abort:
1720 print_conf(conf);
1721 return err;
1725 static void end_sync_read(struct bio *bio, int error)
1727 struct r1bio *r1_bio = bio->bi_private;
1729 update_head_pos(r1_bio->read_disk, r1_bio);
1732 * we have read a block, now it needs to be re-written,
1733 * or re-read if the read failed.
1734 * We don't do much here, just schedule handling by raid1d
1736 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1737 set_bit(R1BIO_Uptodate, &r1_bio->state);
1739 if (atomic_dec_and_test(&r1_bio->remaining))
1740 reschedule_retry(r1_bio);
1743 static void end_sync_write(struct bio *bio, int error)
1745 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1746 struct r1bio *r1_bio = bio->bi_private;
1747 struct mddev *mddev = r1_bio->mddev;
1748 struct r1conf *conf = mddev->private;
1749 int mirror=0;
1750 sector_t first_bad;
1751 int bad_sectors;
1753 mirror = find_bio_disk(r1_bio, bio);
1755 if (!uptodate) {
1756 sector_t sync_blocks = 0;
1757 sector_t s = r1_bio->sector;
1758 long sectors_to_go = r1_bio->sectors;
1759 /* make sure these bits doesn't get cleared. */
1760 do {
1761 bitmap_end_sync(mddev->bitmap, s,
1762 &sync_blocks, 1);
1763 s += sync_blocks;
1764 sectors_to_go -= sync_blocks;
1765 } while (sectors_to_go > 0);
1766 set_bit(WriteErrorSeen,
1767 &conf->mirrors[mirror].rdev->flags);
1768 if (!test_and_set_bit(WantReplacement,
1769 &conf->mirrors[mirror].rdev->flags))
1770 set_bit(MD_RECOVERY_NEEDED, &
1771 mddev->recovery);
1772 set_bit(R1BIO_WriteError, &r1_bio->state);
1773 } else if (is_badblock(conf->mirrors[mirror].rdev,
1774 r1_bio->sector,
1775 r1_bio->sectors,
1776 &first_bad, &bad_sectors) &&
1777 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1778 r1_bio->sector,
1779 r1_bio->sectors,
1780 &first_bad, &bad_sectors)
1782 set_bit(R1BIO_MadeGood, &r1_bio->state);
1784 if (atomic_dec_and_test(&r1_bio->remaining)) {
1785 int s = r1_bio->sectors;
1786 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1787 test_bit(R1BIO_WriteError, &r1_bio->state))
1788 reschedule_retry(r1_bio);
1789 else {
1790 put_buf(r1_bio);
1791 md_done_sync(mddev, s, uptodate);
1796 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1797 int sectors, struct page *page, int rw)
1799 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1800 /* success */
1801 return 1;
1802 if (rw == WRITE) {
1803 set_bit(WriteErrorSeen, &rdev->flags);
1804 if (!test_and_set_bit(WantReplacement,
1805 &rdev->flags))
1806 set_bit(MD_RECOVERY_NEEDED, &
1807 rdev->mddev->recovery);
1809 /* need to record an error - either for the block or the device */
1810 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1811 md_error(rdev->mddev, rdev);
1812 return 0;
1815 static int fix_sync_read_error(struct r1bio *r1_bio)
1817 /* Try some synchronous reads of other devices to get
1818 * good data, much like with normal read errors. Only
1819 * read into the pages we already have so we don't
1820 * need to re-issue the read request.
1821 * We don't need to freeze the array, because being in an
1822 * active sync request, there is no normal IO, and
1823 * no overlapping syncs.
1824 * We don't need to check is_badblock() again as we
1825 * made sure that anything with a bad block in range
1826 * will have bi_end_io clear.
1828 struct mddev *mddev = r1_bio->mddev;
1829 struct r1conf *conf = mddev->private;
1830 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1831 sector_t sect = r1_bio->sector;
1832 int sectors = r1_bio->sectors;
1833 int idx = 0;
1835 while(sectors) {
1836 int s = sectors;
1837 int d = r1_bio->read_disk;
1838 int success = 0;
1839 struct md_rdev *rdev;
1840 int start;
1842 if (s > (PAGE_SIZE>>9))
1843 s = PAGE_SIZE >> 9;
1844 do {
1845 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1846 /* No rcu protection needed here devices
1847 * can only be removed when no resync is
1848 * active, and resync is currently active
1850 rdev = conf->mirrors[d].rdev;
1851 if (sync_page_io(rdev, sect, s<<9,
1852 bio->bi_io_vec[idx].bv_page,
1853 READ, false)) {
1854 success = 1;
1855 break;
1858 d++;
1859 if (d == conf->raid_disks * 2)
1860 d = 0;
1861 } while (!success && d != r1_bio->read_disk);
1863 if (!success) {
1864 char b[BDEVNAME_SIZE];
1865 int abort = 0;
1866 /* Cannot read from anywhere, this block is lost.
1867 * Record a bad block on each device. If that doesn't
1868 * work just disable and interrupt the recovery.
1869 * Don't fail devices as that won't really help.
1871 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1872 " for block %llu\n",
1873 mdname(mddev),
1874 bdevname(bio->bi_bdev, b),
1875 (unsigned long long)r1_bio->sector);
1876 for (d = 0; d < conf->raid_disks * 2; d++) {
1877 rdev = conf->mirrors[d].rdev;
1878 if (!rdev || test_bit(Faulty, &rdev->flags))
1879 continue;
1880 if (!rdev_set_badblocks(rdev, sect, s, 0))
1881 abort = 1;
1883 if (abort) {
1884 conf->recovery_disabled =
1885 mddev->recovery_disabled;
1886 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1887 md_done_sync(mddev, r1_bio->sectors, 0);
1888 put_buf(r1_bio);
1889 return 0;
1891 /* Try next page */
1892 sectors -= s;
1893 sect += s;
1894 idx++;
1895 continue;
1898 start = d;
1899 /* write it back and re-read */
1900 while (d != r1_bio->read_disk) {
1901 if (d == 0)
1902 d = conf->raid_disks * 2;
1903 d--;
1904 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1905 continue;
1906 rdev = conf->mirrors[d].rdev;
1907 if (r1_sync_page_io(rdev, sect, s,
1908 bio->bi_io_vec[idx].bv_page,
1909 WRITE) == 0) {
1910 r1_bio->bios[d]->bi_end_io = NULL;
1911 rdev_dec_pending(rdev, mddev);
1914 d = start;
1915 while (d != r1_bio->read_disk) {
1916 if (d == 0)
1917 d = conf->raid_disks * 2;
1918 d--;
1919 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1920 continue;
1921 rdev = conf->mirrors[d].rdev;
1922 if (r1_sync_page_io(rdev, sect, s,
1923 bio->bi_io_vec[idx].bv_page,
1924 READ) != 0)
1925 atomic_add(s, &rdev->corrected_errors);
1927 sectors -= s;
1928 sect += s;
1929 idx ++;
1931 set_bit(R1BIO_Uptodate, &r1_bio->state);
1932 set_bit(BIO_UPTODATE, &bio->bi_flags);
1933 return 1;
1936 static int process_checks(struct r1bio *r1_bio)
1938 /* We have read all readable devices. If we haven't
1939 * got the block, then there is no hope left.
1940 * If we have, then we want to do a comparison
1941 * and skip the write if everything is the same.
1942 * If any blocks failed to read, then we need to
1943 * attempt an over-write
1945 struct mddev *mddev = r1_bio->mddev;
1946 struct r1conf *conf = mddev->private;
1947 int primary;
1948 int i;
1949 int vcnt;
1951 /* Fix variable parts of all bios */
1952 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
1953 for (i = 0; i < conf->raid_disks * 2; i++) {
1954 int j;
1955 int size;
1956 struct bio *b = r1_bio->bios[i];
1957 if (b->bi_end_io != end_sync_read)
1958 continue;
1959 /* fixup the bio for reuse */
1960 bio_reset(b);
1961 b->bi_vcnt = vcnt;
1962 b->bi_size = r1_bio->sectors << 9;
1963 b->bi_sector = r1_bio->sector +
1964 conf->mirrors[i].rdev->data_offset;
1965 b->bi_bdev = conf->mirrors[i].rdev->bdev;
1966 b->bi_end_io = end_sync_read;
1967 b->bi_private = r1_bio;
1969 size = b->bi_size;
1970 for (j = 0; j < vcnt ; j++) {
1971 struct bio_vec *bi;
1972 bi = &b->bi_io_vec[j];
1973 bi->bv_offset = 0;
1974 if (size > PAGE_SIZE)
1975 bi->bv_len = PAGE_SIZE;
1976 else
1977 bi->bv_len = size;
1978 size -= PAGE_SIZE;
1981 for (primary = 0; primary < conf->raid_disks * 2; primary++)
1982 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1983 test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1984 r1_bio->bios[primary]->bi_end_io = NULL;
1985 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1986 break;
1988 r1_bio->read_disk = primary;
1989 for (i = 0; i < conf->raid_disks * 2; i++) {
1990 int j;
1991 struct bio *pbio = r1_bio->bios[primary];
1992 struct bio *sbio = r1_bio->bios[i];
1994 if (sbio->bi_end_io != end_sync_read)
1995 continue;
1997 if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) {
1998 for (j = vcnt; j-- ; ) {
1999 struct page *p, *s;
2000 p = pbio->bi_io_vec[j].bv_page;
2001 s = sbio->bi_io_vec[j].bv_page;
2002 if (memcmp(page_address(p),
2003 page_address(s),
2004 sbio->bi_io_vec[j].bv_len))
2005 break;
2007 } else
2008 j = 0;
2009 if (j >= 0)
2010 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2011 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2012 && test_bit(BIO_UPTODATE, &sbio->bi_flags))) {
2013 /* No need to write to this device. */
2014 sbio->bi_end_io = NULL;
2015 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2016 continue;
2019 bio_copy_data(sbio, pbio);
2021 return 0;
2024 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2026 struct r1conf *conf = mddev->private;
2027 int i;
2028 int disks = conf->raid_disks * 2;
2029 struct bio *bio, *wbio;
2031 bio = r1_bio->bios[r1_bio->read_disk];
2033 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2034 /* ouch - failed to read all of that. */
2035 if (!fix_sync_read_error(r1_bio))
2036 return;
2038 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2039 if (process_checks(r1_bio) < 0)
2040 return;
2042 * schedule writes
2044 atomic_set(&r1_bio->remaining, 1);
2045 for (i = 0; i < disks ; i++) {
2046 wbio = r1_bio->bios[i];
2047 if (wbio->bi_end_io == NULL ||
2048 (wbio->bi_end_io == end_sync_read &&
2049 (i == r1_bio->read_disk ||
2050 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2051 continue;
2053 wbio->bi_rw = WRITE;
2054 wbio->bi_end_io = end_sync_write;
2055 atomic_inc(&r1_bio->remaining);
2056 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2058 generic_make_request(wbio);
2061 if (atomic_dec_and_test(&r1_bio->remaining)) {
2062 /* if we're here, all write(s) have completed, so clean up */
2063 int s = r1_bio->sectors;
2064 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2065 test_bit(R1BIO_WriteError, &r1_bio->state))
2066 reschedule_retry(r1_bio);
2067 else {
2068 put_buf(r1_bio);
2069 md_done_sync(mddev, s, 1);
2075 * This is a kernel thread which:
2077 * 1. Retries failed read operations on working mirrors.
2078 * 2. Updates the raid superblock when problems encounter.
2079 * 3. Performs writes following reads for array synchronising.
2082 static void fix_read_error(struct r1conf *conf, int read_disk,
2083 sector_t sect, int sectors)
2085 struct mddev *mddev = conf->mddev;
2086 while(sectors) {
2087 int s = sectors;
2088 int d = read_disk;
2089 int success = 0;
2090 int start;
2091 struct md_rdev *rdev;
2093 if (s > (PAGE_SIZE>>9))
2094 s = PAGE_SIZE >> 9;
2096 do {
2097 /* Note: no rcu protection needed here
2098 * as this is synchronous in the raid1d thread
2099 * which is the thread that might remove
2100 * a device. If raid1d ever becomes multi-threaded....
2102 sector_t first_bad;
2103 int bad_sectors;
2105 rdev = conf->mirrors[d].rdev;
2106 if (rdev &&
2107 (test_bit(In_sync, &rdev->flags) ||
2108 (!test_bit(Faulty, &rdev->flags) &&
2109 rdev->recovery_offset >= sect + s)) &&
2110 is_badblock(rdev, sect, s,
2111 &first_bad, &bad_sectors) == 0 &&
2112 sync_page_io(rdev, sect, s<<9,
2113 conf->tmppage, READ, false))
2114 success = 1;
2115 else {
2116 d++;
2117 if (d == conf->raid_disks * 2)
2118 d = 0;
2120 } while (!success && d != read_disk);
2122 if (!success) {
2123 /* Cannot read from anywhere - mark it bad */
2124 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2125 if (!rdev_set_badblocks(rdev, sect, s, 0))
2126 md_error(mddev, rdev);
2127 break;
2129 /* write it back and re-read */
2130 start = d;
2131 while (d != read_disk) {
2132 if (d==0)
2133 d = conf->raid_disks * 2;
2134 d--;
2135 rdev = conf->mirrors[d].rdev;
2136 if (rdev &&
2137 test_bit(In_sync, &rdev->flags))
2138 r1_sync_page_io(rdev, sect, s,
2139 conf->tmppage, WRITE);
2141 d = start;
2142 while (d != read_disk) {
2143 char b[BDEVNAME_SIZE];
2144 if (d==0)
2145 d = conf->raid_disks * 2;
2146 d--;
2147 rdev = conf->mirrors[d].rdev;
2148 if (rdev &&
2149 test_bit(In_sync, &rdev->flags)) {
2150 if (r1_sync_page_io(rdev, sect, s,
2151 conf->tmppage, READ)) {
2152 atomic_add(s, &rdev->corrected_errors);
2153 printk(KERN_INFO
2154 "md/raid1:%s: read error corrected "
2155 "(%d sectors at %llu on %s)\n",
2156 mdname(mddev), s,
2157 (unsigned long long)(sect +
2158 rdev->data_offset),
2159 bdevname(rdev->bdev, b));
2163 sectors -= s;
2164 sect += s;
2168 static int narrow_write_error(struct r1bio *r1_bio, int i)
2170 struct mddev *mddev = r1_bio->mddev;
2171 struct r1conf *conf = mddev->private;
2172 struct md_rdev *rdev = conf->mirrors[i].rdev;
2174 /* bio has the data to be written to device 'i' where
2175 * we just recently had a write error.
2176 * We repeatedly clone the bio and trim down to one block,
2177 * then try the write. Where the write fails we record
2178 * a bad block.
2179 * It is conceivable that the bio doesn't exactly align with
2180 * blocks. We must handle this somehow.
2182 * We currently own a reference on the rdev.
2185 int block_sectors;
2186 sector_t sector;
2187 int sectors;
2188 int sect_to_write = r1_bio->sectors;
2189 int ok = 1;
2191 if (rdev->badblocks.shift < 0)
2192 return 0;
2194 block_sectors = 1 << rdev->badblocks.shift;
2195 sector = r1_bio->sector;
2196 sectors = ((sector + block_sectors)
2197 & ~(sector_t)(block_sectors - 1))
2198 - sector;
2200 while (sect_to_write) {
2201 struct bio *wbio;
2202 if (sectors > sect_to_write)
2203 sectors = sect_to_write;
2204 /* Write at 'sector' for 'sectors'*/
2206 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2207 unsigned vcnt = r1_bio->behind_page_count;
2208 struct bio_vec *vec = r1_bio->behind_bvecs;
2210 while (!vec->bv_page) {
2211 vec++;
2212 vcnt--;
2215 wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2216 memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2218 wbio->bi_vcnt = vcnt;
2219 } else {
2220 wbio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2223 wbio->bi_rw = WRITE;
2224 wbio->bi_sector = r1_bio->sector;
2225 wbio->bi_size = r1_bio->sectors << 9;
2227 bio_trim(wbio, sector - r1_bio->sector, sectors);
2228 wbio->bi_sector += rdev->data_offset;
2229 wbio->bi_bdev = rdev->bdev;
2230 if (submit_bio_wait(WRITE, wbio) == 0)
2231 /* failure! */
2232 ok = rdev_set_badblocks(rdev, sector,
2233 sectors, 0)
2234 && ok;
2236 bio_put(wbio);
2237 sect_to_write -= sectors;
2238 sector += sectors;
2239 sectors = block_sectors;
2241 return ok;
2244 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2246 int m;
2247 int s = r1_bio->sectors;
2248 for (m = 0; m < conf->raid_disks * 2 ; m++) {
2249 struct md_rdev *rdev = conf->mirrors[m].rdev;
2250 struct bio *bio = r1_bio->bios[m];
2251 if (bio->bi_end_io == NULL)
2252 continue;
2253 if (test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2254 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2255 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2257 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2258 test_bit(R1BIO_WriteError, &r1_bio->state)) {
2259 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2260 md_error(conf->mddev, rdev);
2263 put_buf(r1_bio);
2264 md_done_sync(conf->mddev, s, 1);
2267 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2269 int m;
2270 for (m = 0; m < conf->raid_disks * 2 ; m++)
2271 if (r1_bio->bios[m] == IO_MADE_GOOD) {
2272 struct md_rdev *rdev = conf->mirrors[m].rdev;
2273 rdev_clear_badblocks(rdev,
2274 r1_bio->sector,
2275 r1_bio->sectors, 0);
2276 rdev_dec_pending(rdev, conf->mddev);
2277 } else if (r1_bio->bios[m] != NULL) {
2278 /* This drive got a write error. We need to
2279 * narrow down and record precise write
2280 * errors.
2282 if (!narrow_write_error(r1_bio, m)) {
2283 md_error(conf->mddev,
2284 conf->mirrors[m].rdev);
2285 /* an I/O failed, we can't clear the bitmap */
2286 set_bit(R1BIO_Degraded, &r1_bio->state);
2288 rdev_dec_pending(conf->mirrors[m].rdev,
2289 conf->mddev);
2291 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2292 close_write(r1_bio);
2293 raid_end_bio_io(r1_bio);
2296 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2298 int disk;
2299 int max_sectors;
2300 struct mddev *mddev = conf->mddev;
2301 struct bio *bio;
2302 char b[BDEVNAME_SIZE];
2303 struct md_rdev *rdev;
2305 clear_bit(R1BIO_ReadError, &r1_bio->state);
2306 /* we got a read error. Maybe the drive is bad. Maybe just
2307 * the block and we can fix it.
2308 * We freeze all other IO, and try reading the block from
2309 * other devices. When we find one, we re-write
2310 * and check it that fixes the read error.
2311 * This is all done synchronously while the array is
2312 * frozen
2314 if (mddev->ro == 0) {
2315 freeze_array(conf, 1);
2316 fix_read_error(conf, r1_bio->read_disk,
2317 r1_bio->sector, r1_bio->sectors);
2318 unfreeze_array(conf);
2319 } else
2320 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
2321 rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev);
2323 bio = r1_bio->bios[r1_bio->read_disk];
2324 bdevname(bio->bi_bdev, b);
2325 read_more:
2326 disk = read_balance(conf, r1_bio, &max_sectors);
2327 if (disk == -1) {
2328 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
2329 " read error for block %llu\n",
2330 mdname(mddev), b, (unsigned long long)r1_bio->sector);
2331 raid_end_bio_io(r1_bio);
2332 } else {
2333 const unsigned long do_sync
2334 = r1_bio->master_bio->bi_rw & REQ_SYNC;
2335 if (bio) {
2336 r1_bio->bios[r1_bio->read_disk] =
2337 mddev->ro ? IO_BLOCKED : NULL;
2338 bio_put(bio);
2340 r1_bio->read_disk = disk;
2341 bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2342 bio_trim(bio, r1_bio->sector - bio->bi_sector, max_sectors);
2343 r1_bio->bios[r1_bio->read_disk] = bio;
2344 rdev = conf->mirrors[disk].rdev;
2345 printk_ratelimited(KERN_ERR
2346 "md/raid1:%s: redirecting sector %llu"
2347 " to other mirror: %s\n",
2348 mdname(mddev),
2349 (unsigned long long)r1_bio->sector,
2350 bdevname(rdev->bdev, b));
2351 bio->bi_sector = r1_bio->sector + rdev->data_offset;
2352 bio->bi_bdev = rdev->bdev;
2353 bio->bi_end_io = raid1_end_read_request;
2354 bio->bi_rw = READ | do_sync;
2355 bio->bi_private = r1_bio;
2356 if (max_sectors < r1_bio->sectors) {
2357 /* Drat - have to split this up more */
2358 struct bio *mbio = r1_bio->master_bio;
2359 int sectors_handled = (r1_bio->sector + max_sectors
2360 - mbio->bi_sector);
2361 r1_bio->sectors = max_sectors;
2362 spin_lock_irq(&conf->device_lock);
2363 if (mbio->bi_phys_segments == 0)
2364 mbio->bi_phys_segments = 2;
2365 else
2366 mbio->bi_phys_segments++;
2367 spin_unlock_irq(&conf->device_lock);
2368 generic_make_request(bio);
2369 bio = NULL;
2371 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2373 r1_bio->master_bio = mbio;
2374 r1_bio->sectors = bio_sectors(mbio) - sectors_handled;
2375 r1_bio->state = 0;
2376 set_bit(R1BIO_ReadError, &r1_bio->state);
2377 r1_bio->mddev = mddev;
2378 r1_bio->sector = mbio->bi_sector + sectors_handled;
2380 goto read_more;
2381 } else
2382 generic_make_request(bio);
2386 static void raid1d(struct md_thread *thread)
2388 struct mddev *mddev = thread->mddev;
2389 struct r1bio *r1_bio;
2390 unsigned long flags;
2391 struct r1conf *conf = mddev->private;
2392 struct list_head *head = &conf->retry_list;
2393 struct blk_plug plug;
2395 md_check_recovery(mddev);
2397 blk_start_plug(&plug);
2398 for (;;) {
2400 flush_pending_writes(conf);
2402 spin_lock_irqsave(&conf->device_lock, flags);
2403 if (list_empty(head)) {
2404 spin_unlock_irqrestore(&conf->device_lock, flags);
2405 break;
2407 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2408 list_del(head->prev);
2409 conf->nr_queued--;
2410 spin_unlock_irqrestore(&conf->device_lock, flags);
2412 mddev = r1_bio->mddev;
2413 conf = mddev->private;
2414 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2415 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2416 test_bit(R1BIO_WriteError, &r1_bio->state))
2417 handle_sync_write_finished(conf, r1_bio);
2418 else
2419 sync_request_write(mddev, r1_bio);
2420 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2421 test_bit(R1BIO_WriteError, &r1_bio->state))
2422 handle_write_finished(conf, r1_bio);
2423 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2424 handle_read_error(conf, r1_bio);
2425 else
2426 /* just a partial read to be scheduled from separate
2427 * context
2429 generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2431 cond_resched();
2432 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2433 md_check_recovery(mddev);
2435 blk_finish_plug(&plug);
2439 static int init_resync(struct r1conf *conf)
2441 int buffs;
2443 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2444 BUG_ON(conf->r1buf_pool);
2445 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2446 conf->poolinfo);
2447 if (!conf->r1buf_pool)
2448 return -ENOMEM;
2449 conf->next_resync = 0;
2450 return 0;
2454 * perform a "sync" on one "block"
2456 * We need to make sure that no normal I/O request - particularly write
2457 * requests - conflict with active sync requests.
2459 * This is achieved by tracking pending requests and a 'barrier' concept
2460 * that can be installed to exclude normal IO requests.
2463 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
2465 struct r1conf *conf = mddev->private;
2466 struct r1bio *r1_bio;
2467 struct bio *bio;
2468 sector_t max_sector, nr_sectors;
2469 int disk = -1;
2470 int i;
2471 int wonly = -1;
2472 int write_targets = 0, read_targets = 0;
2473 sector_t sync_blocks;
2474 int still_degraded = 0;
2475 int good_sectors = RESYNC_SECTORS;
2476 int min_bad = 0; /* number of sectors that are bad in all devices */
2478 if (!conf->r1buf_pool)
2479 if (init_resync(conf))
2480 return 0;
2482 max_sector = mddev->dev_sectors;
2483 if (sector_nr >= max_sector) {
2484 /* If we aborted, we need to abort the
2485 * sync on the 'current' bitmap chunk (there will
2486 * only be one in raid1 resync.
2487 * We can find the current addess in mddev->curr_resync
2489 if (mddev->curr_resync < max_sector) /* aborted */
2490 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2491 &sync_blocks, 1);
2492 else /* completed sync */
2493 conf->fullsync = 0;
2495 bitmap_close_sync(mddev->bitmap);
2496 close_sync(conf);
2497 return 0;
2500 if (mddev->bitmap == NULL &&
2501 mddev->recovery_cp == MaxSector &&
2502 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2503 conf->fullsync == 0) {
2504 *skipped = 1;
2505 return max_sector - sector_nr;
2507 /* before building a request, check if we can skip these blocks..
2508 * This call the bitmap_start_sync doesn't actually record anything
2510 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2511 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2512 /* We can skip this block, and probably several more */
2513 *skipped = 1;
2514 return sync_blocks;
2517 * If there is non-resync activity waiting for a turn,
2518 * and resync is going fast enough,
2519 * then let it though before starting on this new sync request.
2521 if (!go_faster && conf->nr_waiting)
2522 msleep_interruptible(1000);
2524 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2525 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2526 raise_barrier(conf);
2528 conf->next_resync = sector_nr;
2530 rcu_read_lock();
2532 * If we get a correctably read error during resync or recovery,
2533 * we might want to read from a different device. So we
2534 * flag all drives that could conceivably be read from for READ,
2535 * and any others (which will be non-In_sync devices) for WRITE.
2536 * If a read fails, we try reading from something else for which READ
2537 * is OK.
2540 r1_bio->mddev = mddev;
2541 r1_bio->sector = sector_nr;
2542 r1_bio->state = 0;
2543 set_bit(R1BIO_IsSync, &r1_bio->state);
2545 for (i = 0; i < conf->raid_disks * 2; i++) {
2546 struct md_rdev *rdev;
2547 bio = r1_bio->bios[i];
2548 bio_reset(bio);
2550 rdev = rcu_dereference(conf->mirrors[i].rdev);
2551 if (rdev == NULL ||
2552 test_bit(Faulty, &rdev->flags)) {
2553 if (i < conf->raid_disks)
2554 still_degraded = 1;
2555 } else if (!test_bit(In_sync, &rdev->flags)) {
2556 bio->bi_rw = WRITE;
2557 bio->bi_end_io = end_sync_write;
2558 write_targets ++;
2559 } else {
2560 /* may need to read from here */
2561 sector_t first_bad = MaxSector;
2562 int bad_sectors;
2564 if (is_badblock(rdev, sector_nr, good_sectors,
2565 &first_bad, &bad_sectors)) {
2566 if (first_bad > sector_nr)
2567 good_sectors = first_bad - sector_nr;
2568 else {
2569 bad_sectors -= (sector_nr - first_bad);
2570 if (min_bad == 0 ||
2571 min_bad > bad_sectors)
2572 min_bad = bad_sectors;
2575 if (sector_nr < first_bad) {
2576 if (test_bit(WriteMostly, &rdev->flags)) {
2577 if (wonly < 0)
2578 wonly = i;
2579 } else {
2580 if (disk < 0)
2581 disk = i;
2583 bio->bi_rw = READ;
2584 bio->bi_end_io = end_sync_read;
2585 read_targets++;
2586 } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2587 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2588 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2590 * The device is suitable for reading (InSync),
2591 * but has bad block(s) here. Let's try to correct them,
2592 * if we are doing resync or repair. Otherwise, leave
2593 * this device alone for this sync request.
2595 bio->bi_rw = WRITE;
2596 bio->bi_end_io = end_sync_write;
2597 write_targets++;
2600 if (bio->bi_end_io) {
2601 atomic_inc(&rdev->nr_pending);
2602 bio->bi_sector = sector_nr + rdev->data_offset;
2603 bio->bi_bdev = rdev->bdev;
2604 bio->bi_private = r1_bio;
2607 rcu_read_unlock();
2608 if (disk < 0)
2609 disk = wonly;
2610 r1_bio->read_disk = disk;
2612 if (read_targets == 0 && min_bad > 0) {
2613 /* These sectors are bad on all InSync devices, so we
2614 * need to mark them bad on all write targets
2616 int ok = 1;
2617 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2618 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2619 struct md_rdev *rdev = conf->mirrors[i].rdev;
2620 ok = rdev_set_badblocks(rdev, sector_nr,
2621 min_bad, 0
2622 ) && ok;
2624 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2625 *skipped = 1;
2626 put_buf(r1_bio);
2628 if (!ok) {
2629 /* Cannot record the badblocks, so need to
2630 * abort the resync.
2631 * If there are multiple read targets, could just
2632 * fail the really bad ones ???
2634 conf->recovery_disabled = mddev->recovery_disabled;
2635 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2636 return 0;
2637 } else
2638 return min_bad;
2641 if (min_bad > 0 && min_bad < good_sectors) {
2642 /* only resync enough to reach the next bad->good
2643 * transition */
2644 good_sectors = min_bad;
2647 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2648 /* extra read targets are also write targets */
2649 write_targets += read_targets-1;
2651 if (write_targets == 0 || read_targets == 0) {
2652 /* There is nowhere to write, so all non-sync
2653 * drives must be failed - so we are finished
2655 sector_t rv;
2656 if (min_bad > 0)
2657 max_sector = sector_nr + min_bad;
2658 rv = max_sector - sector_nr;
2659 *skipped = 1;
2660 put_buf(r1_bio);
2661 return rv;
2664 if (max_sector > mddev->resync_max)
2665 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2666 if (max_sector > sector_nr + good_sectors)
2667 max_sector = sector_nr + good_sectors;
2668 nr_sectors = 0;
2669 sync_blocks = 0;
2670 do {
2671 struct page *page;
2672 int len = PAGE_SIZE;
2673 if (sector_nr + (len>>9) > max_sector)
2674 len = (max_sector - sector_nr) << 9;
2675 if (len == 0)
2676 break;
2677 if (sync_blocks == 0) {
2678 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2679 &sync_blocks, still_degraded) &&
2680 !conf->fullsync &&
2681 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2682 break;
2683 BUG_ON(sync_blocks < (PAGE_SIZE>>9));
2684 if ((len >> 9) > sync_blocks)
2685 len = sync_blocks<<9;
2688 for (i = 0 ; i < conf->raid_disks * 2; i++) {
2689 bio = r1_bio->bios[i];
2690 if (bio->bi_end_io) {
2691 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2692 if (bio_add_page(bio, page, len, 0) == 0) {
2693 /* stop here */
2694 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2695 while (i > 0) {
2696 i--;
2697 bio = r1_bio->bios[i];
2698 if (bio->bi_end_io==NULL)
2699 continue;
2700 /* remove last page from this bio */
2701 bio->bi_vcnt--;
2702 bio->bi_size -= len;
2703 bio->bi_flags &= ~(1<< BIO_SEG_VALID);
2705 goto bio_full;
2709 nr_sectors += len>>9;
2710 sector_nr += len>>9;
2711 sync_blocks -= (len>>9);
2712 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2713 bio_full:
2714 r1_bio->sectors = nr_sectors;
2716 /* For a user-requested sync, we read all readable devices and do a
2717 * compare
2719 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2720 atomic_set(&r1_bio->remaining, read_targets);
2721 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2722 bio = r1_bio->bios[i];
2723 if (bio->bi_end_io == end_sync_read) {
2724 read_targets--;
2725 md_sync_acct(bio->bi_bdev, nr_sectors);
2726 generic_make_request(bio);
2729 } else {
2730 atomic_set(&r1_bio->remaining, 1);
2731 bio = r1_bio->bios[r1_bio->read_disk];
2732 md_sync_acct(bio->bi_bdev, nr_sectors);
2733 generic_make_request(bio);
2736 return nr_sectors;
2739 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2741 if (sectors)
2742 return sectors;
2744 return mddev->dev_sectors;
2747 static struct r1conf *setup_conf(struct mddev *mddev)
2749 struct r1conf *conf;
2750 int i;
2751 struct raid1_info *disk;
2752 struct md_rdev *rdev;
2753 int err = -ENOMEM;
2755 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2756 if (!conf)
2757 goto abort;
2759 conf->mirrors = kzalloc(sizeof(struct raid1_info)
2760 * mddev->raid_disks * 2,
2761 GFP_KERNEL);
2762 if (!conf->mirrors)
2763 goto abort;
2765 conf->tmppage = alloc_page(GFP_KERNEL);
2766 if (!conf->tmppage)
2767 goto abort;
2769 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2770 if (!conf->poolinfo)
2771 goto abort;
2772 conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2773 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2774 r1bio_pool_free,
2775 conf->poolinfo);
2776 if (!conf->r1bio_pool)
2777 goto abort;
2779 conf->poolinfo->mddev = mddev;
2781 err = -EINVAL;
2782 spin_lock_init(&conf->device_lock);
2783 rdev_for_each(rdev, mddev) {
2784 struct request_queue *q;
2785 int disk_idx = rdev->raid_disk;
2786 if (disk_idx >= mddev->raid_disks
2787 || disk_idx < 0)
2788 continue;
2789 if (test_bit(Replacement, &rdev->flags))
2790 disk = conf->mirrors + mddev->raid_disks + disk_idx;
2791 else
2792 disk = conf->mirrors + disk_idx;
2794 if (disk->rdev)
2795 goto abort;
2796 disk->rdev = rdev;
2797 q = bdev_get_queue(rdev->bdev);
2798 if (q->merge_bvec_fn)
2799 mddev->merge_check_needed = 1;
2801 disk->head_position = 0;
2802 disk->seq_start = MaxSector;
2804 conf->raid_disks = mddev->raid_disks;
2805 conf->mddev = mddev;
2806 INIT_LIST_HEAD(&conf->retry_list);
2808 spin_lock_init(&conf->resync_lock);
2809 init_waitqueue_head(&conf->wait_barrier);
2811 bio_list_init(&conf->pending_bio_list);
2812 conf->pending_count = 0;
2813 conf->recovery_disabled = mddev->recovery_disabled - 1;
2815 conf->start_next_window = MaxSector;
2816 conf->current_window_requests = conf->next_window_requests = 0;
2818 err = -EIO;
2819 for (i = 0; i < conf->raid_disks * 2; i++) {
2821 disk = conf->mirrors + i;
2823 if (i < conf->raid_disks &&
2824 disk[conf->raid_disks].rdev) {
2825 /* This slot has a replacement. */
2826 if (!disk->rdev) {
2827 /* No original, just make the replacement
2828 * a recovering spare
2830 disk->rdev =
2831 disk[conf->raid_disks].rdev;
2832 disk[conf->raid_disks].rdev = NULL;
2833 } else if (!test_bit(In_sync, &disk->rdev->flags))
2834 /* Original is not in_sync - bad */
2835 goto abort;
2838 if (!disk->rdev ||
2839 !test_bit(In_sync, &disk->rdev->flags)) {
2840 disk->head_position = 0;
2841 if (disk->rdev &&
2842 (disk->rdev->saved_raid_disk < 0))
2843 conf->fullsync = 1;
2847 err = -ENOMEM;
2848 conf->thread = md_register_thread(raid1d, mddev, "raid1");
2849 if (!conf->thread) {
2850 printk(KERN_ERR
2851 "md/raid1:%s: couldn't allocate thread\n",
2852 mdname(mddev));
2853 goto abort;
2856 return conf;
2858 abort:
2859 if (conf) {
2860 if (conf->r1bio_pool)
2861 mempool_destroy(conf->r1bio_pool);
2862 kfree(conf->mirrors);
2863 safe_put_page(conf->tmppage);
2864 kfree(conf->poolinfo);
2865 kfree(conf);
2867 return ERR_PTR(err);
2870 static int stop(struct mddev *mddev);
2871 static int run(struct mddev *mddev)
2873 struct r1conf *conf;
2874 int i;
2875 struct md_rdev *rdev;
2876 int ret;
2877 bool discard_supported = false;
2879 if (mddev->level != 1) {
2880 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
2881 mdname(mddev), mddev->level);
2882 return -EIO;
2884 if (mddev->reshape_position != MaxSector) {
2885 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
2886 mdname(mddev));
2887 return -EIO;
2890 * copy the already verified devices into our private RAID1
2891 * bookkeeping area. [whatever we allocate in run(),
2892 * should be freed in stop()]
2894 if (mddev->private == NULL)
2895 conf = setup_conf(mddev);
2896 else
2897 conf = mddev->private;
2899 if (IS_ERR(conf))
2900 return PTR_ERR(conf);
2902 if (mddev->queue)
2903 blk_queue_max_write_same_sectors(mddev->queue, 0);
2905 rdev_for_each(rdev, mddev) {
2906 if (!mddev->gendisk)
2907 continue;
2908 disk_stack_limits(mddev->gendisk, rdev->bdev,
2909 rdev->data_offset << 9);
2910 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
2911 discard_supported = true;
2914 mddev->degraded = 0;
2915 for (i=0; i < conf->raid_disks; i++)
2916 if (conf->mirrors[i].rdev == NULL ||
2917 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2918 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2919 mddev->degraded++;
2921 if (conf->raid_disks - mddev->degraded == 1)
2922 mddev->recovery_cp = MaxSector;
2924 if (mddev->recovery_cp != MaxSector)
2925 printk(KERN_NOTICE "md/raid1:%s: not clean"
2926 " -- starting background reconstruction\n",
2927 mdname(mddev));
2928 printk(KERN_INFO
2929 "md/raid1:%s: active with %d out of %d mirrors\n",
2930 mdname(mddev), mddev->raid_disks - mddev->degraded,
2931 mddev->raid_disks);
2934 * Ok, everything is just fine now
2936 mddev->thread = conf->thread;
2937 conf->thread = NULL;
2938 mddev->private = conf;
2940 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2942 if (mddev->queue) {
2943 mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2944 mddev->queue->backing_dev_info.congested_data = mddev;
2945 blk_queue_merge_bvec(mddev->queue, raid1_mergeable_bvec);
2947 if (discard_supported)
2948 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
2949 mddev->queue);
2950 else
2951 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
2952 mddev->queue);
2955 ret = md_integrity_register(mddev);
2956 if (ret)
2957 stop(mddev);
2958 return ret;
2961 static int stop(struct mddev *mddev)
2963 struct r1conf *conf = mddev->private;
2964 struct bitmap *bitmap = mddev->bitmap;
2966 /* wait for behind writes to complete */
2967 if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
2968 printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n",
2969 mdname(mddev));
2970 /* need to kick something here to make sure I/O goes? */
2971 wait_event(bitmap->behind_wait,
2972 atomic_read(&bitmap->behind_writes) == 0);
2975 freeze_array(conf, 0);
2976 unfreeze_array(conf);
2978 md_unregister_thread(&mddev->thread);
2979 if (conf->r1bio_pool)
2980 mempool_destroy(conf->r1bio_pool);
2981 kfree(conf->mirrors);
2982 safe_put_page(conf->tmppage);
2983 kfree(conf->poolinfo);
2984 kfree(conf);
2985 mddev->private = NULL;
2986 return 0;
2989 static int raid1_resize(struct mddev *mddev, sector_t sectors)
2991 /* no resync is happening, and there is enough space
2992 * on all devices, so we can resize.
2993 * We need to make sure resync covers any new space.
2994 * If the array is shrinking we should possibly wait until
2995 * any io in the removed space completes, but it hardly seems
2996 * worth it.
2998 sector_t newsize = raid1_size(mddev, sectors, 0);
2999 if (mddev->external_size &&
3000 mddev->array_sectors > newsize)
3001 return -EINVAL;
3002 if (mddev->bitmap) {
3003 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3004 if (ret)
3005 return ret;
3007 md_set_array_sectors(mddev, newsize);
3008 set_capacity(mddev->gendisk, mddev->array_sectors);
3009 revalidate_disk(mddev->gendisk);
3010 if (sectors > mddev->dev_sectors &&
3011 mddev->recovery_cp > mddev->dev_sectors) {
3012 mddev->recovery_cp = mddev->dev_sectors;
3013 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3015 mddev->dev_sectors = sectors;
3016 mddev->resync_max_sectors = sectors;
3017 return 0;
3020 static int raid1_reshape(struct mddev *mddev)
3022 /* We need to:
3023 * 1/ resize the r1bio_pool
3024 * 2/ resize conf->mirrors
3026 * We allocate a new r1bio_pool if we can.
3027 * Then raise a device barrier and wait until all IO stops.
3028 * Then resize conf->mirrors and swap in the new r1bio pool.
3030 * At the same time, we "pack" the devices so that all the missing
3031 * devices have the higher raid_disk numbers.
3033 mempool_t *newpool, *oldpool;
3034 struct pool_info *newpoolinfo;
3035 struct raid1_info *newmirrors;
3036 struct r1conf *conf = mddev->private;
3037 int cnt, raid_disks;
3038 unsigned long flags;
3039 int d, d2, err;
3041 /* Cannot change chunk_size, layout, or level */
3042 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3043 mddev->layout != mddev->new_layout ||
3044 mddev->level != mddev->new_level) {
3045 mddev->new_chunk_sectors = mddev->chunk_sectors;
3046 mddev->new_layout = mddev->layout;
3047 mddev->new_level = mddev->level;
3048 return -EINVAL;
3051 err = md_allow_write(mddev);
3052 if (err)
3053 return err;
3055 raid_disks = mddev->raid_disks + mddev->delta_disks;
3057 if (raid_disks < conf->raid_disks) {
3058 cnt=0;
3059 for (d= 0; d < conf->raid_disks; d++)
3060 if (conf->mirrors[d].rdev)
3061 cnt++;
3062 if (cnt > raid_disks)
3063 return -EBUSY;
3066 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3067 if (!newpoolinfo)
3068 return -ENOMEM;
3069 newpoolinfo->mddev = mddev;
3070 newpoolinfo->raid_disks = raid_disks * 2;
3072 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3073 r1bio_pool_free, newpoolinfo);
3074 if (!newpool) {
3075 kfree(newpoolinfo);
3076 return -ENOMEM;
3078 newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
3079 GFP_KERNEL);
3080 if (!newmirrors) {
3081 kfree(newpoolinfo);
3082 mempool_destroy(newpool);
3083 return -ENOMEM;
3086 freeze_array(conf, 0);
3088 /* ok, everything is stopped */
3089 oldpool = conf->r1bio_pool;
3090 conf->r1bio_pool = newpool;
3092 for (d = d2 = 0; d < conf->raid_disks; d++) {
3093 struct md_rdev *rdev = conf->mirrors[d].rdev;
3094 if (rdev && rdev->raid_disk != d2) {
3095 sysfs_unlink_rdev(mddev, rdev);
3096 rdev->raid_disk = d2;
3097 sysfs_unlink_rdev(mddev, rdev);
3098 if (sysfs_link_rdev(mddev, rdev))
3099 printk(KERN_WARNING
3100 "md/raid1:%s: cannot register rd%d\n",
3101 mdname(mddev), rdev->raid_disk);
3103 if (rdev)
3104 newmirrors[d2++].rdev = rdev;
3106 kfree(conf->mirrors);
3107 conf->mirrors = newmirrors;
3108 kfree(conf->poolinfo);
3109 conf->poolinfo = newpoolinfo;
3111 spin_lock_irqsave(&conf->device_lock, flags);
3112 mddev->degraded += (raid_disks - conf->raid_disks);
3113 spin_unlock_irqrestore(&conf->device_lock, flags);
3114 conf->raid_disks = mddev->raid_disks = raid_disks;
3115 mddev->delta_disks = 0;
3117 unfreeze_array(conf);
3119 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3120 md_wakeup_thread(mddev->thread);
3122 mempool_destroy(oldpool);
3123 return 0;
3126 static void raid1_quiesce(struct mddev *mddev, int state)
3128 struct r1conf *conf = mddev->private;
3130 switch(state) {
3131 case 2: /* wake for suspend */
3132 wake_up(&conf->wait_barrier);
3133 break;
3134 case 1:
3135 freeze_array(conf, 0);
3136 break;
3137 case 0:
3138 unfreeze_array(conf);
3139 break;
3143 static void *raid1_takeover(struct mddev *mddev)
3145 /* raid1 can take over:
3146 * raid5 with 2 devices, any layout or chunk size
3148 if (mddev->level == 5 && mddev->raid_disks == 2) {
3149 struct r1conf *conf;
3150 mddev->new_level = 1;
3151 mddev->new_layout = 0;
3152 mddev->new_chunk_sectors = 0;
3153 conf = setup_conf(mddev);
3154 if (!IS_ERR(conf))
3155 /* Array must appear to be quiesced */
3156 conf->array_frozen = 1;
3157 return conf;
3159 return ERR_PTR(-EINVAL);
3162 static struct md_personality raid1_personality =
3164 .name = "raid1",
3165 .level = 1,
3166 .owner = THIS_MODULE,
3167 .make_request = make_request,
3168 .run = run,
3169 .stop = stop,
3170 .status = status,
3171 .error_handler = error,
3172 .hot_add_disk = raid1_add_disk,
3173 .hot_remove_disk= raid1_remove_disk,
3174 .spare_active = raid1_spare_active,
3175 .sync_request = sync_request,
3176 .resize = raid1_resize,
3177 .size = raid1_size,
3178 .check_reshape = raid1_reshape,
3179 .quiesce = raid1_quiesce,
3180 .takeover = raid1_takeover,
3183 static int __init raid_init(void)
3185 return register_md_personality(&raid1_personality);
3188 static void raid_exit(void)
3190 unregister_md_personality(&raid1_personality);
3193 module_init(raid_init);
3194 module_exit(raid_exit);
3195 MODULE_LICENSE("GPL");
3196 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3197 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3198 MODULE_ALIAS("md-raid1");
3199 MODULE_ALIAS("md-level-1");
3201 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);