[PATCH] swap: swap_lock replace list+device
[linux-2.6.22.y-op.git] / mm / rmap.c
blobfacb8cdca665cc9b80debc37c7c8ba5d6ad7d763
1 /*
2 * mm/rmap.c - physical to virtual reverse mappings
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins <hugh@veritas.com> 2003, 2004
21 * Lock ordering in mm:
23 * inode->i_sem (while writing or truncating, not reading or faulting)
24 * inode->i_alloc_sem
26 * When a page fault occurs in writing from user to file, down_read
27 * of mmap_sem nests within i_sem; in sys_msync, i_sem nests within
28 * down_read of mmap_sem; i_sem and down_write of mmap_sem are never
29 * taken together; in truncation, i_sem is taken outermost.
31 * mm->mmap_sem
32 * page->flags PG_locked (lock_page)
33 * mapping->i_mmap_lock
34 * anon_vma->lock
35 * mm->page_table_lock
36 * zone->lru_lock (in mark_page_accessed)
37 * swap_lock (in swap_duplicate, swap_info_get)
38 * mmlist_lock (in mmput, drain_mmlist and others)
39 * mapping->private_lock (in __set_page_dirty_buffers)
40 * inode_lock (in set_page_dirty's __mark_inode_dirty)
41 * sb_lock (within inode_lock in fs/fs-writeback.c)
42 * mapping->tree_lock (widely used, in set_page_dirty,
43 * in arch-dependent flush_dcache_mmap_lock,
44 * within inode_lock in __sync_single_inode)
47 #include <linux/mm.h>
48 #include <linux/pagemap.h>
49 #include <linux/swap.h>
50 #include <linux/swapops.h>
51 #include <linux/slab.h>
52 #include <linux/init.h>
53 #include <linux/rmap.h>
54 #include <linux/rcupdate.h>
56 #include <asm/tlbflush.h>
58 //#define RMAP_DEBUG /* can be enabled only for debugging */
60 kmem_cache_t *anon_vma_cachep;
62 static inline void validate_anon_vma(struct vm_area_struct *find_vma)
64 #ifdef RMAP_DEBUG
65 struct anon_vma *anon_vma = find_vma->anon_vma;
66 struct vm_area_struct *vma;
67 unsigned int mapcount = 0;
68 int found = 0;
70 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
71 mapcount++;
72 BUG_ON(mapcount > 100000);
73 if (vma == find_vma)
74 found = 1;
76 BUG_ON(!found);
77 #endif
80 /* This must be called under the mmap_sem. */
81 int anon_vma_prepare(struct vm_area_struct *vma)
83 struct anon_vma *anon_vma = vma->anon_vma;
85 might_sleep();
86 if (unlikely(!anon_vma)) {
87 struct mm_struct *mm = vma->vm_mm;
88 struct anon_vma *allocated, *locked;
90 anon_vma = find_mergeable_anon_vma(vma);
91 if (anon_vma) {
92 allocated = NULL;
93 locked = anon_vma;
94 spin_lock(&locked->lock);
95 } else {
96 anon_vma = anon_vma_alloc();
97 if (unlikely(!anon_vma))
98 return -ENOMEM;
99 allocated = anon_vma;
100 locked = NULL;
103 /* page_table_lock to protect against threads */
104 spin_lock(&mm->page_table_lock);
105 if (likely(!vma->anon_vma)) {
106 vma->anon_vma = anon_vma;
107 list_add(&vma->anon_vma_node, &anon_vma->head);
108 allocated = NULL;
110 spin_unlock(&mm->page_table_lock);
112 if (locked)
113 spin_unlock(&locked->lock);
114 if (unlikely(allocated))
115 anon_vma_free(allocated);
117 return 0;
120 void __anon_vma_merge(struct vm_area_struct *vma, struct vm_area_struct *next)
122 BUG_ON(vma->anon_vma != next->anon_vma);
123 list_del(&next->anon_vma_node);
126 void __anon_vma_link(struct vm_area_struct *vma)
128 struct anon_vma *anon_vma = vma->anon_vma;
130 if (anon_vma) {
131 list_add(&vma->anon_vma_node, &anon_vma->head);
132 validate_anon_vma(vma);
136 void anon_vma_link(struct vm_area_struct *vma)
138 struct anon_vma *anon_vma = vma->anon_vma;
140 if (anon_vma) {
141 spin_lock(&anon_vma->lock);
142 list_add(&vma->anon_vma_node, &anon_vma->head);
143 validate_anon_vma(vma);
144 spin_unlock(&anon_vma->lock);
148 void anon_vma_unlink(struct vm_area_struct *vma)
150 struct anon_vma *anon_vma = vma->anon_vma;
151 int empty;
153 if (!anon_vma)
154 return;
156 spin_lock(&anon_vma->lock);
157 validate_anon_vma(vma);
158 list_del(&vma->anon_vma_node);
160 /* We must garbage collect the anon_vma if it's empty */
161 empty = list_empty(&anon_vma->head);
162 spin_unlock(&anon_vma->lock);
164 if (empty)
165 anon_vma_free(anon_vma);
168 static void anon_vma_ctor(void *data, kmem_cache_t *cachep, unsigned long flags)
170 if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
171 SLAB_CTOR_CONSTRUCTOR) {
172 struct anon_vma *anon_vma = data;
174 spin_lock_init(&anon_vma->lock);
175 INIT_LIST_HEAD(&anon_vma->head);
179 void __init anon_vma_init(void)
181 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
182 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor, NULL);
186 * Getting a lock on a stable anon_vma from a page off the LRU is
187 * tricky: page_lock_anon_vma rely on RCU to guard against the races.
189 static struct anon_vma *page_lock_anon_vma(struct page *page)
191 struct anon_vma *anon_vma = NULL;
192 unsigned long anon_mapping;
194 rcu_read_lock();
195 anon_mapping = (unsigned long) page->mapping;
196 if (!(anon_mapping & PAGE_MAPPING_ANON))
197 goto out;
198 if (!page_mapped(page))
199 goto out;
201 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
202 spin_lock(&anon_vma->lock);
203 out:
204 rcu_read_unlock();
205 return anon_vma;
209 * At what user virtual address is page expected in vma?
211 static inline unsigned long
212 vma_address(struct page *page, struct vm_area_struct *vma)
214 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
215 unsigned long address;
217 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
218 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
219 /* page should be within any vma from prio_tree_next */
220 BUG_ON(!PageAnon(page));
221 return -EFAULT;
223 return address;
227 * At what user virtual address is page expected in vma? checking that the
228 * page matches the vma: currently only used by unuse_process, on anon pages.
230 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
232 if (PageAnon(page)) {
233 if ((void *)vma->anon_vma !=
234 (void *)page->mapping - PAGE_MAPPING_ANON)
235 return -EFAULT;
236 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
237 if (vma->vm_file->f_mapping != page->mapping)
238 return -EFAULT;
239 } else
240 return -EFAULT;
241 return vma_address(page, vma);
245 * Check that @page is mapped at @address into @mm.
247 * On success returns with mapped pte and locked mm->page_table_lock.
249 pte_t *page_check_address(struct page *page, struct mm_struct *mm,
250 unsigned long address)
252 pgd_t *pgd;
253 pud_t *pud;
254 pmd_t *pmd;
255 pte_t *pte;
258 * We need the page_table_lock to protect us from page faults,
259 * munmap, fork, etc...
261 spin_lock(&mm->page_table_lock);
262 pgd = pgd_offset(mm, address);
263 if (likely(pgd_present(*pgd))) {
264 pud = pud_offset(pgd, address);
265 if (likely(pud_present(*pud))) {
266 pmd = pmd_offset(pud, address);
267 if (likely(pmd_present(*pmd))) {
268 pte = pte_offset_map(pmd, address);
269 if (likely(pte_present(*pte) &&
270 page_to_pfn(page) == pte_pfn(*pte)))
271 return pte;
272 pte_unmap(pte);
276 spin_unlock(&mm->page_table_lock);
277 return ERR_PTR(-ENOENT);
281 * Subfunctions of page_referenced: page_referenced_one called
282 * repeatedly from either page_referenced_anon or page_referenced_file.
284 static int page_referenced_one(struct page *page,
285 struct vm_area_struct *vma, unsigned int *mapcount, int ignore_token)
287 struct mm_struct *mm = vma->vm_mm;
288 unsigned long address;
289 pte_t *pte;
290 int referenced = 0;
292 if (!get_mm_counter(mm, rss))
293 goto out;
294 address = vma_address(page, vma);
295 if (address == -EFAULT)
296 goto out;
298 pte = page_check_address(page, mm, address);
299 if (!IS_ERR(pte)) {
300 if (ptep_clear_flush_young(vma, address, pte))
301 referenced++;
303 if (mm != current->mm && !ignore_token && has_swap_token(mm))
304 referenced++;
306 (*mapcount)--;
307 pte_unmap(pte);
308 spin_unlock(&mm->page_table_lock);
310 out:
311 return referenced;
314 static int page_referenced_anon(struct page *page, int ignore_token)
316 unsigned int mapcount;
317 struct anon_vma *anon_vma;
318 struct vm_area_struct *vma;
319 int referenced = 0;
321 anon_vma = page_lock_anon_vma(page);
322 if (!anon_vma)
323 return referenced;
325 mapcount = page_mapcount(page);
326 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
327 referenced += page_referenced_one(page, vma, &mapcount,
328 ignore_token);
329 if (!mapcount)
330 break;
332 spin_unlock(&anon_vma->lock);
333 return referenced;
337 * page_referenced_file - referenced check for object-based rmap
338 * @page: the page we're checking references on.
340 * For an object-based mapped page, find all the places it is mapped and
341 * check/clear the referenced flag. This is done by following the page->mapping
342 * pointer, then walking the chain of vmas it holds. It returns the number
343 * of references it found.
345 * This function is only called from page_referenced for object-based pages.
347 static int page_referenced_file(struct page *page, int ignore_token)
349 unsigned int mapcount;
350 struct address_space *mapping = page->mapping;
351 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
352 struct vm_area_struct *vma;
353 struct prio_tree_iter iter;
354 int referenced = 0;
357 * The caller's checks on page->mapping and !PageAnon have made
358 * sure that this is a file page: the check for page->mapping
359 * excludes the case just before it gets set on an anon page.
361 BUG_ON(PageAnon(page));
364 * The page lock not only makes sure that page->mapping cannot
365 * suddenly be NULLified by truncation, it makes sure that the
366 * structure at mapping cannot be freed and reused yet,
367 * so we can safely take mapping->i_mmap_lock.
369 BUG_ON(!PageLocked(page));
371 spin_lock(&mapping->i_mmap_lock);
374 * i_mmap_lock does not stabilize mapcount at all, but mapcount
375 * is more likely to be accurate if we note it after spinning.
377 mapcount = page_mapcount(page);
379 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
380 if ((vma->vm_flags & (VM_LOCKED|VM_MAYSHARE))
381 == (VM_LOCKED|VM_MAYSHARE)) {
382 referenced++;
383 break;
385 referenced += page_referenced_one(page, vma, &mapcount,
386 ignore_token);
387 if (!mapcount)
388 break;
391 spin_unlock(&mapping->i_mmap_lock);
392 return referenced;
396 * page_referenced - test if the page was referenced
397 * @page: the page to test
398 * @is_locked: caller holds lock on the page
400 * Quick test_and_clear_referenced for all mappings to a page,
401 * returns the number of ptes which referenced the page.
403 int page_referenced(struct page *page, int is_locked, int ignore_token)
405 int referenced = 0;
407 if (!swap_token_default_timeout)
408 ignore_token = 1;
410 if (page_test_and_clear_young(page))
411 referenced++;
413 if (TestClearPageReferenced(page))
414 referenced++;
416 if (page_mapped(page) && page->mapping) {
417 if (PageAnon(page))
418 referenced += page_referenced_anon(page, ignore_token);
419 else if (is_locked)
420 referenced += page_referenced_file(page, ignore_token);
421 else if (TestSetPageLocked(page))
422 referenced++;
423 else {
424 if (page->mapping)
425 referenced += page_referenced_file(page,
426 ignore_token);
427 unlock_page(page);
430 return referenced;
434 * page_add_anon_rmap - add pte mapping to an anonymous page
435 * @page: the page to add the mapping to
436 * @vma: the vm area in which the mapping is added
437 * @address: the user virtual address mapped
439 * The caller needs to hold the mm->page_table_lock.
441 void page_add_anon_rmap(struct page *page,
442 struct vm_area_struct *vma, unsigned long address)
444 struct anon_vma *anon_vma = vma->anon_vma;
445 pgoff_t index;
447 BUG_ON(PageReserved(page));
448 BUG_ON(!anon_vma);
450 inc_mm_counter(vma->vm_mm, anon_rss);
452 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
453 index = (address - vma->vm_start) >> PAGE_SHIFT;
454 index += vma->vm_pgoff;
455 index >>= PAGE_CACHE_SHIFT - PAGE_SHIFT;
457 if (atomic_inc_and_test(&page->_mapcount)) {
458 page->index = index;
459 page->mapping = (struct address_space *) anon_vma;
460 inc_page_state(nr_mapped);
462 /* else checking page index and mapping is racy */
466 * page_add_file_rmap - add pte mapping to a file page
467 * @page: the page to add the mapping to
469 * The caller needs to hold the mm->page_table_lock.
471 void page_add_file_rmap(struct page *page)
473 BUG_ON(PageAnon(page));
474 if (!pfn_valid(page_to_pfn(page)) || PageReserved(page))
475 return;
477 if (atomic_inc_and_test(&page->_mapcount))
478 inc_page_state(nr_mapped);
482 * page_remove_rmap - take down pte mapping from a page
483 * @page: page to remove mapping from
485 * Caller needs to hold the mm->page_table_lock.
487 void page_remove_rmap(struct page *page)
489 BUG_ON(PageReserved(page));
491 if (atomic_add_negative(-1, &page->_mapcount)) {
492 BUG_ON(page_mapcount(page) < 0);
494 * It would be tidy to reset the PageAnon mapping here,
495 * but that might overwrite a racing page_add_anon_rmap
496 * which increments mapcount after us but sets mapping
497 * before us: so leave the reset to free_hot_cold_page,
498 * and remember that it's only reliable while mapped.
499 * Leaving it set also helps swapoff to reinstate ptes
500 * faster for those pages still in swapcache.
502 if (page_test_and_clear_dirty(page))
503 set_page_dirty(page);
504 dec_page_state(nr_mapped);
509 * Subfunctions of try_to_unmap: try_to_unmap_one called
510 * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
512 static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma)
514 struct mm_struct *mm = vma->vm_mm;
515 unsigned long address;
516 pte_t *pte;
517 pte_t pteval;
518 int ret = SWAP_AGAIN;
520 if (!get_mm_counter(mm, rss))
521 goto out;
522 address = vma_address(page, vma);
523 if (address == -EFAULT)
524 goto out;
526 pte = page_check_address(page, mm, address);
527 if (IS_ERR(pte))
528 goto out;
531 * If the page is mlock()d, we cannot swap it out.
532 * If it's recently referenced (perhaps page_referenced
533 * skipped over this mm) then we should reactivate it.
535 if ((vma->vm_flags & (VM_LOCKED|VM_RESERVED)) ||
536 ptep_clear_flush_young(vma, address, pte)) {
537 ret = SWAP_FAIL;
538 goto out_unmap;
541 /* Nuke the page table entry. */
542 flush_cache_page(vma, address, page_to_pfn(page));
543 pteval = ptep_clear_flush(vma, address, pte);
545 /* Move the dirty bit to the physical page now the pte is gone. */
546 if (pte_dirty(pteval))
547 set_page_dirty(page);
549 if (PageAnon(page)) {
550 swp_entry_t entry = { .val = page->private };
552 * Store the swap location in the pte.
553 * See handle_pte_fault() ...
555 BUG_ON(!PageSwapCache(page));
556 swap_duplicate(entry);
557 if (list_empty(&mm->mmlist)) {
558 spin_lock(&mmlist_lock);
559 list_add(&mm->mmlist, &init_mm.mmlist);
560 spin_unlock(&mmlist_lock);
562 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
563 BUG_ON(pte_file(*pte));
564 dec_mm_counter(mm, anon_rss);
567 dec_mm_counter(mm, rss);
568 page_remove_rmap(page);
569 page_cache_release(page);
571 out_unmap:
572 pte_unmap(pte);
573 spin_unlock(&mm->page_table_lock);
574 out:
575 return ret;
579 * objrmap doesn't work for nonlinear VMAs because the assumption that
580 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
581 * Consequently, given a particular page and its ->index, we cannot locate the
582 * ptes which are mapping that page without an exhaustive linear search.
584 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
585 * maps the file to which the target page belongs. The ->vm_private_data field
586 * holds the current cursor into that scan. Successive searches will circulate
587 * around the vma's virtual address space.
589 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
590 * more scanning pressure is placed against them as well. Eventually pages
591 * will become fully unmapped and are eligible for eviction.
593 * For very sparsely populated VMAs this is a little inefficient - chances are
594 * there there won't be many ptes located within the scan cluster. In this case
595 * maybe we could scan further - to the end of the pte page, perhaps.
597 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
598 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
600 static void try_to_unmap_cluster(unsigned long cursor,
601 unsigned int *mapcount, struct vm_area_struct *vma)
603 struct mm_struct *mm = vma->vm_mm;
604 pgd_t *pgd;
605 pud_t *pud;
606 pmd_t *pmd;
607 pte_t *pte, *original_pte;
608 pte_t pteval;
609 struct page *page;
610 unsigned long address;
611 unsigned long end;
612 unsigned long pfn;
615 * We need the page_table_lock to protect us from page faults,
616 * munmap, fork, etc...
618 spin_lock(&mm->page_table_lock);
620 address = (vma->vm_start + cursor) & CLUSTER_MASK;
621 end = address + CLUSTER_SIZE;
622 if (address < vma->vm_start)
623 address = vma->vm_start;
624 if (end > vma->vm_end)
625 end = vma->vm_end;
627 pgd = pgd_offset(mm, address);
628 if (!pgd_present(*pgd))
629 goto out_unlock;
631 pud = pud_offset(pgd, address);
632 if (!pud_present(*pud))
633 goto out_unlock;
635 pmd = pmd_offset(pud, address);
636 if (!pmd_present(*pmd))
637 goto out_unlock;
639 for (original_pte = pte = pte_offset_map(pmd, address);
640 address < end; pte++, address += PAGE_SIZE) {
642 if (!pte_present(*pte))
643 continue;
645 pfn = pte_pfn(*pte);
646 if (!pfn_valid(pfn))
647 continue;
649 page = pfn_to_page(pfn);
650 BUG_ON(PageAnon(page));
651 if (PageReserved(page))
652 continue;
654 if (ptep_clear_flush_young(vma, address, pte))
655 continue;
657 /* Nuke the page table entry. */
658 flush_cache_page(vma, address, pfn);
659 pteval = ptep_clear_flush(vma, address, pte);
661 /* If nonlinear, store the file page offset in the pte. */
662 if (page->index != linear_page_index(vma, address))
663 set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
665 /* Move the dirty bit to the physical page now the pte is gone. */
666 if (pte_dirty(pteval))
667 set_page_dirty(page);
669 page_remove_rmap(page);
670 page_cache_release(page);
671 dec_mm_counter(mm, rss);
672 (*mapcount)--;
675 pte_unmap(original_pte);
676 out_unlock:
677 spin_unlock(&mm->page_table_lock);
680 static int try_to_unmap_anon(struct page *page)
682 struct anon_vma *anon_vma;
683 struct vm_area_struct *vma;
684 int ret = SWAP_AGAIN;
686 anon_vma = page_lock_anon_vma(page);
687 if (!anon_vma)
688 return ret;
690 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
691 ret = try_to_unmap_one(page, vma);
692 if (ret == SWAP_FAIL || !page_mapped(page))
693 break;
695 spin_unlock(&anon_vma->lock);
696 return ret;
700 * try_to_unmap_file - unmap file page using the object-based rmap method
701 * @page: the page to unmap
703 * Find all the mappings of a page using the mapping pointer and the vma chains
704 * contained in the address_space struct it points to.
706 * This function is only called from try_to_unmap for object-based pages.
708 static int try_to_unmap_file(struct page *page)
710 struct address_space *mapping = page->mapping;
711 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
712 struct vm_area_struct *vma;
713 struct prio_tree_iter iter;
714 int ret = SWAP_AGAIN;
715 unsigned long cursor;
716 unsigned long max_nl_cursor = 0;
717 unsigned long max_nl_size = 0;
718 unsigned int mapcount;
720 spin_lock(&mapping->i_mmap_lock);
721 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
722 ret = try_to_unmap_one(page, vma);
723 if (ret == SWAP_FAIL || !page_mapped(page))
724 goto out;
727 if (list_empty(&mapping->i_mmap_nonlinear))
728 goto out;
730 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
731 shared.vm_set.list) {
732 if (vma->vm_flags & (VM_LOCKED|VM_RESERVED))
733 continue;
734 cursor = (unsigned long) vma->vm_private_data;
735 if (cursor > max_nl_cursor)
736 max_nl_cursor = cursor;
737 cursor = vma->vm_end - vma->vm_start;
738 if (cursor > max_nl_size)
739 max_nl_size = cursor;
742 if (max_nl_size == 0) { /* any nonlinears locked or reserved */
743 ret = SWAP_FAIL;
744 goto out;
748 * We don't try to search for this page in the nonlinear vmas,
749 * and page_referenced wouldn't have found it anyway. Instead
750 * just walk the nonlinear vmas trying to age and unmap some.
751 * The mapcount of the page we came in with is irrelevant,
752 * but even so use it as a guide to how hard we should try?
754 mapcount = page_mapcount(page);
755 if (!mapcount)
756 goto out;
757 cond_resched_lock(&mapping->i_mmap_lock);
759 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
760 if (max_nl_cursor == 0)
761 max_nl_cursor = CLUSTER_SIZE;
763 do {
764 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
765 shared.vm_set.list) {
766 if (vma->vm_flags & (VM_LOCKED|VM_RESERVED))
767 continue;
768 cursor = (unsigned long) vma->vm_private_data;
769 while (get_mm_counter(vma->vm_mm, rss) &&
770 cursor < max_nl_cursor &&
771 cursor < vma->vm_end - vma->vm_start) {
772 try_to_unmap_cluster(cursor, &mapcount, vma);
773 cursor += CLUSTER_SIZE;
774 vma->vm_private_data = (void *) cursor;
775 if ((int)mapcount <= 0)
776 goto out;
778 vma->vm_private_data = (void *) max_nl_cursor;
780 cond_resched_lock(&mapping->i_mmap_lock);
781 max_nl_cursor += CLUSTER_SIZE;
782 } while (max_nl_cursor <= max_nl_size);
785 * Don't loop forever (perhaps all the remaining pages are
786 * in locked vmas). Reset cursor on all unreserved nonlinear
787 * vmas, now forgetting on which ones it had fallen behind.
789 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
790 shared.vm_set.list) {
791 if (!(vma->vm_flags & VM_RESERVED))
792 vma->vm_private_data = NULL;
794 out:
795 spin_unlock(&mapping->i_mmap_lock);
796 return ret;
800 * try_to_unmap - try to remove all page table mappings to a page
801 * @page: the page to get unmapped
803 * Tries to remove all the page table entries which are mapping this
804 * page, used in the pageout path. Caller must hold the page lock.
805 * Return values are:
807 * SWAP_SUCCESS - we succeeded in removing all mappings
808 * SWAP_AGAIN - we missed a mapping, try again later
809 * SWAP_FAIL - the page is unswappable
811 int try_to_unmap(struct page *page)
813 int ret;
815 BUG_ON(PageReserved(page));
816 BUG_ON(!PageLocked(page));
818 if (PageAnon(page))
819 ret = try_to_unmap_anon(page);
820 else
821 ret = try_to_unmap_file(page);
823 if (!page_mapped(page))
824 ret = SWAP_SUCCESS;
825 return ret;