inotify: fix race
[linux-2.6.22.y-op.git] / mm / shmem.c
blobd1c65fbdb623f0292f4404ed38bf831af61fca44
1 /*
2 * Resizable virtual memory filesystem for Linux.
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2005 Hugh Dickins.
10 * Copyright (C) 2002-2005 VERITAS Software Corporation.
11 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 * Extended attribute support for tmpfs:
14 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 * This file is released under the GPL.
21 * This virtual memory filesystem is heavily based on the ramfs. It
22 * extends ramfs by the ability to use swap and honor resource limits
23 * which makes it a completely usable filesystem.
26 #include <linux/module.h>
27 #include <linux/init.h>
28 #include <linux/fs.h>
29 #include <linux/xattr.h>
30 #include <linux/generic_acl.h>
31 #include <linux/mm.h>
32 #include <linux/mman.h>
33 #include <linux/file.h>
34 #include <linux/swap.h>
35 #include <linux/pagemap.h>
36 #include <linux/string.h>
37 #include <linux/slab.h>
38 #include <linux/backing-dev.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/mount.h>
41 #include <linux/writeback.h>
42 #include <linux/vfs.h>
43 #include <linux/blkdev.h>
44 #include <linux/security.h>
45 #include <linux/swapops.h>
46 #include <linux/mempolicy.h>
47 #include <linux/namei.h>
48 #include <linux/ctype.h>
49 #include <linux/migrate.h>
50 #include <linux/highmem.h>
51 #include <linux/backing-dev.h>
53 #include <asm/uaccess.h>
54 #include <asm/div64.h>
55 #include <asm/pgtable.h>
57 /* This magic number is used in glibc for posix shared memory */
58 #define TMPFS_MAGIC 0x01021994
60 #define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
61 #define ENTRIES_PER_PAGEPAGE (ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
62 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
64 #define SHMEM_MAX_INDEX (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1))
65 #define SHMEM_MAX_BYTES ((unsigned long long)SHMEM_MAX_INDEX << PAGE_CACHE_SHIFT)
67 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
69 /* info->flags needs VM_flags to handle pagein/truncate races efficiently */
70 #define SHMEM_PAGEIN VM_READ
71 #define SHMEM_TRUNCATE VM_WRITE
73 /* Definition to limit shmem_truncate's steps between cond_rescheds */
74 #define LATENCY_LIMIT 64
76 /* Pretend that each entry is of this size in directory's i_size */
77 #define BOGO_DIRENT_SIZE 20
79 /* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */
80 enum sgp_type {
81 SGP_QUICK, /* don't try more than file page cache lookup */
82 SGP_READ, /* don't exceed i_size, don't allocate page */
83 SGP_CACHE, /* don't exceed i_size, may allocate page */
84 SGP_WRITE, /* may exceed i_size, may allocate page */
87 static int shmem_getpage(struct inode *inode, unsigned long idx,
88 struct page **pagep, enum sgp_type sgp, int *type);
90 static inline struct page *shmem_dir_alloc(gfp_t gfp_mask)
93 * The above definition of ENTRIES_PER_PAGE, and the use of
94 * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
95 * might be reconsidered if it ever diverges from PAGE_SIZE.
97 return alloc_pages(gfp_mask, PAGE_CACHE_SHIFT-PAGE_SHIFT);
100 static inline void shmem_dir_free(struct page *page)
102 __free_pages(page, PAGE_CACHE_SHIFT-PAGE_SHIFT);
105 static struct page **shmem_dir_map(struct page *page)
107 return (struct page **)kmap_atomic(page, KM_USER0);
110 static inline void shmem_dir_unmap(struct page **dir)
112 kunmap_atomic(dir, KM_USER0);
115 static swp_entry_t *shmem_swp_map(struct page *page)
117 return (swp_entry_t *)kmap_atomic(page, KM_USER1);
120 static inline void shmem_swp_balance_unmap(void)
123 * When passing a pointer to an i_direct entry, to code which
124 * also handles indirect entries and so will shmem_swp_unmap,
125 * we must arrange for the preempt count to remain in balance.
126 * What kmap_atomic of a lowmem page does depends on config
127 * and architecture, so pretend to kmap_atomic some lowmem page.
129 (void) kmap_atomic(ZERO_PAGE(0), KM_USER1);
132 static inline void shmem_swp_unmap(swp_entry_t *entry)
134 kunmap_atomic(entry, KM_USER1);
137 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
139 return sb->s_fs_info;
143 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
144 * for shared memory and for shared anonymous (/dev/zero) mappings
145 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
146 * consistent with the pre-accounting of private mappings ...
148 static inline int shmem_acct_size(unsigned long flags, loff_t size)
150 return (flags & VM_ACCOUNT)?
151 security_vm_enough_memory(VM_ACCT(size)): 0;
154 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
156 if (flags & VM_ACCOUNT)
157 vm_unacct_memory(VM_ACCT(size));
161 * ... whereas tmpfs objects are accounted incrementally as
162 * pages are allocated, in order to allow huge sparse files.
163 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
164 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
166 static inline int shmem_acct_block(unsigned long flags)
168 return (flags & VM_ACCOUNT)?
169 0: security_vm_enough_memory(VM_ACCT(PAGE_CACHE_SIZE));
172 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
174 if (!(flags & VM_ACCOUNT))
175 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
178 static const struct super_operations shmem_ops;
179 static const struct address_space_operations shmem_aops;
180 static const struct file_operations shmem_file_operations;
181 static const struct inode_operations shmem_inode_operations;
182 static const struct inode_operations shmem_dir_inode_operations;
183 static const struct inode_operations shmem_special_inode_operations;
184 static struct vm_operations_struct shmem_vm_ops;
186 static struct backing_dev_info shmem_backing_dev_info __read_mostly = {
187 .ra_pages = 0, /* No readahead */
188 .capabilities = BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
189 .unplug_io_fn = default_unplug_io_fn,
192 static LIST_HEAD(shmem_swaplist);
193 static DEFINE_SPINLOCK(shmem_swaplist_lock);
195 static void shmem_free_blocks(struct inode *inode, long pages)
197 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
198 if (sbinfo->max_blocks) {
199 spin_lock(&sbinfo->stat_lock);
200 sbinfo->free_blocks += pages;
201 inode->i_blocks -= pages*BLOCKS_PER_PAGE;
202 spin_unlock(&sbinfo->stat_lock);
207 * shmem_recalc_inode - recalculate the size of an inode
209 * @inode: inode to recalc
211 * We have to calculate the free blocks since the mm can drop
212 * undirtied hole pages behind our back.
214 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
215 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
217 * It has to be called with the spinlock held.
219 static void shmem_recalc_inode(struct inode *inode)
221 struct shmem_inode_info *info = SHMEM_I(inode);
222 long freed;
224 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
225 if (freed > 0) {
226 info->alloced -= freed;
227 shmem_unacct_blocks(info->flags, freed);
228 shmem_free_blocks(inode, freed);
233 * shmem_swp_entry - find the swap vector position in the info structure
235 * @info: info structure for the inode
236 * @index: index of the page to find
237 * @page: optional page to add to the structure. Has to be preset to
238 * all zeros
240 * If there is no space allocated yet it will return NULL when
241 * page is NULL, else it will use the page for the needed block,
242 * setting it to NULL on return to indicate that it has been used.
244 * The swap vector is organized the following way:
246 * There are SHMEM_NR_DIRECT entries directly stored in the
247 * shmem_inode_info structure. So small files do not need an addional
248 * allocation.
250 * For pages with index > SHMEM_NR_DIRECT there is the pointer
251 * i_indirect which points to a page which holds in the first half
252 * doubly indirect blocks, in the second half triple indirect blocks:
254 * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the
255 * following layout (for SHMEM_NR_DIRECT == 16):
257 * i_indirect -> dir --> 16-19
258 * | +-> 20-23
260 * +-->dir2 --> 24-27
261 * | +-> 28-31
262 * | +-> 32-35
263 * | +-> 36-39
265 * +-->dir3 --> 40-43
266 * +-> 44-47
267 * +-> 48-51
268 * +-> 52-55
270 static swp_entry_t *shmem_swp_entry(struct shmem_inode_info *info, unsigned long index, struct page **page)
272 unsigned long offset;
273 struct page **dir;
274 struct page *subdir;
276 if (index < SHMEM_NR_DIRECT) {
277 shmem_swp_balance_unmap();
278 return info->i_direct+index;
280 if (!info->i_indirect) {
281 if (page) {
282 info->i_indirect = *page;
283 *page = NULL;
285 return NULL; /* need another page */
288 index -= SHMEM_NR_DIRECT;
289 offset = index % ENTRIES_PER_PAGE;
290 index /= ENTRIES_PER_PAGE;
291 dir = shmem_dir_map(info->i_indirect);
293 if (index >= ENTRIES_PER_PAGE/2) {
294 index -= ENTRIES_PER_PAGE/2;
295 dir += ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE;
296 index %= ENTRIES_PER_PAGE;
297 subdir = *dir;
298 if (!subdir) {
299 if (page) {
300 *dir = *page;
301 *page = NULL;
303 shmem_dir_unmap(dir);
304 return NULL; /* need another page */
306 shmem_dir_unmap(dir);
307 dir = shmem_dir_map(subdir);
310 dir += index;
311 subdir = *dir;
312 if (!subdir) {
313 if (!page || !(subdir = *page)) {
314 shmem_dir_unmap(dir);
315 return NULL; /* need a page */
317 *dir = subdir;
318 *page = NULL;
320 shmem_dir_unmap(dir);
321 return shmem_swp_map(subdir) + offset;
324 static void shmem_swp_set(struct shmem_inode_info *info, swp_entry_t *entry, unsigned long value)
326 long incdec = value? 1: -1;
328 entry->val = value;
329 info->swapped += incdec;
330 if ((unsigned long)(entry - info->i_direct) >= SHMEM_NR_DIRECT) {
331 struct page *page = kmap_atomic_to_page(entry);
332 set_page_private(page, page_private(page) + incdec);
337 * shmem_swp_alloc - get the position of the swap entry for the page.
338 * If it does not exist allocate the entry.
340 * @info: info structure for the inode
341 * @index: index of the page to find
342 * @sgp: check and recheck i_size? skip allocation?
344 static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long index, enum sgp_type sgp)
346 struct inode *inode = &info->vfs_inode;
347 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
348 struct page *page = NULL;
349 swp_entry_t *entry;
351 if (sgp != SGP_WRITE &&
352 ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode))
353 return ERR_PTR(-EINVAL);
355 while (!(entry = shmem_swp_entry(info, index, &page))) {
356 if (sgp == SGP_READ)
357 return shmem_swp_map(ZERO_PAGE(0));
359 * Test free_blocks against 1 not 0, since we have 1 data
360 * page (and perhaps indirect index pages) yet to allocate:
361 * a waste to allocate index if we cannot allocate data.
363 if (sbinfo->max_blocks) {
364 spin_lock(&sbinfo->stat_lock);
365 if (sbinfo->free_blocks <= 1) {
366 spin_unlock(&sbinfo->stat_lock);
367 return ERR_PTR(-ENOSPC);
369 sbinfo->free_blocks--;
370 inode->i_blocks += BLOCKS_PER_PAGE;
371 spin_unlock(&sbinfo->stat_lock);
374 spin_unlock(&info->lock);
375 page = shmem_dir_alloc(mapping_gfp_mask(inode->i_mapping) | __GFP_ZERO);
376 if (page)
377 set_page_private(page, 0);
378 spin_lock(&info->lock);
380 if (!page) {
381 shmem_free_blocks(inode, 1);
382 return ERR_PTR(-ENOMEM);
384 if (sgp != SGP_WRITE &&
385 ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
386 entry = ERR_PTR(-EINVAL);
387 break;
389 if (info->next_index <= index)
390 info->next_index = index + 1;
392 if (page) {
393 /* another task gave its page, or truncated the file */
394 shmem_free_blocks(inode, 1);
395 shmem_dir_free(page);
397 if (info->next_index <= index && !IS_ERR(entry))
398 info->next_index = index + 1;
399 return entry;
403 * shmem_free_swp - free some swap entries in a directory
405 * @dir: pointer to the directory
406 * @edir: pointer after last entry of the directory
407 * @punch_lock: pointer to spinlock when needed for the holepunch case
409 static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir,
410 spinlock_t *punch_lock)
412 spinlock_t *punch_unlock = NULL;
413 swp_entry_t *ptr;
414 int freed = 0;
416 for (ptr = dir; ptr < edir; ptr++) {
417 if (ptr->val) {
418 if (unlikely(punch_lock)) {
419 punch_unlock = punch_lock;
420 punch_lock = NULL;
421 spin_lock(punch_unlock);
422 if (!ptr->val)
423 continue;
425 free_swap_and_cache(*ptr);
426 *ptr = (swp_entry_t){0};
427 freed++;
430 if (punch_unlock)
431 spin_unlock(punch_unlock);
432 return freed;
435 static int shmem_map_and_free_swp(struct page *subdir, int offset,
436 int limit, struct page ***dir, spinlock_t *punch_lock)
438 swp_entry_t *ptr;
439 int freed = 0;
441 ptr = shmem_swp_map(subdir);
442 for (; offset < limit; offset += LATENCY_LIMIT) {
443 int size = limit - offset;
444 if (size > LATENCY_LIMIT)
445 size = LATENCY_LIMIT;
446 freed += shmem_free_swp(ptr+offset, ptr+offset+size,
447 punch_lock);
448 if (need_resched()) {
449 shmem_swp_unmap(ptr);
450 if (*dir) {
451 shmem_dir_unmap(*dir);
452 *dir = NULL;
454 cond_resched();
455 ptr = shmem_swp_map(subdir);
458 shmem_swp_unmap(ptr);
459 return freed;
462 static void shmem_free_pages(struct list_head *next)
464 struct page *page;
465 int freed = 0;
467 do {
468 page = container_of(next, struct page, lru);
469 next = next->next;
470 shmem_dir_free(page);
471 freed++;
472 if (freed >= LATENCY_LIMIT) {
473 cond_resched();
474 freed = 0;
476 } while (next);
479 static void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end)
481 struct shmem_inode_info *info = SHMEM_I(inode);
482 unsigned long idx;
483 unsigned long size;
484 unsigned long limit;
485 unsigned long stage;
486 unsigned long diroff;
487 struct page **dir;
488 struct page *topdir;
489 struct page *middir;
490 struct page *subdir;
491 swp_entry_t *ptr;
492 LIST_HEAD(pages_to_free);
493 long nr_pages_to_free = 0;
494 long nr_swaps_freed = 0;
495 int offset;
496 int freed;
497 int punch_hole;
498 spinlock_t *needs_lock;
499 spinlock_t *punch_lock;
500 unsigned long upper_limit;
502 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
503 idx = (start + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
504 if (idx >= info->next_index)
505 return;
507 spin_lock(&info->lock);
508 info->flags |= SHMEM_TRUNCATE;
509 if (likely(end == (loff_t) -1)) {
510 limit = info->next_index;
511 upper_limit = SHMEM_MAX_INDEX;
512 info->next_index = idx;
513 needs_lock = NULL;
514 punch_hole = 0;
515 } else {
516 if (end + 1 >= inode->i_size) { /* we may free a little more */
517 limit = (inode->i_size + PAGE_CACHE_SIZE - 1) >>
518 PAGE_CACHE_SHIFT;
519 upper_limit = SHMEM_MAX_INDEX;
520 } else {
521 limit = (end + 1) >> PAGE_CACHE_SHIFT;
522 upper_limit = limit;
524 needs_lock = &info->lock;
525 punch_hole = 1;
528 topdir = info->i_indirect;
529 if (topdir && idx <= SHMEM_NR_DIRECT && !punch_hole) {
530 info->i_indirect = NULL;
531 nr_pages_to_free++;
532 list_add(&topdir->lru, &pages_to_free);
534 spin_unlock(&info->lock);
536 if (info->swapped && idx < SHMEM_NR_DIRECT) {
537 ptr = info->i_direct;
538 size = limit;
539 if (size > SHMEM_NR_DIRECT)
540 size = SHMEM_NR_DIRECT;
541 nr_swaps_freed = shmem_free_swp(ptr+idx, ptr+size, needs_lock);
545 * If there are no indirect blocks or we are punching a hole
546 * below indirect blocks, nothing to be done.
548 if (!topdir || limit <= SHMEM_NR_DIRECT)
549 goto done2;
552 * The truncation case has already dropped info->lock, and we're safe
553 * because i_size and next_index have already been lowered, preventing
554 * access beyond. But in the punch_hole case, we still need to take
555 * the lock when updating the swap directory, because there might be
556 * racing accesses by shmem_getpage(SGP_CACHE), shmem_unuse_inode or
557 * shmem_writepage. However, whenever we find we can remove a whole
558 * directory page (not at the misaligned start or end of the range),
559 * we first NULLify its pointer in the level above, and then have no
560 * need to take the lock when updating its contents: needs_lock and
561 * punch_lock (either pointing to info->lock or NULL) manage this.
564 upper_limit -= SHMEM_NR_DIRECT;
565 limit -= SHMEM_NR_DIRECT;
566 idx = (idx > SHMEM_NR_DIRECT)? (idx - SHMEM_NR_DIRECT): 0;
567 offset = idx % ENTRIES_PER_PAGE;
568 idx -= offset;
570 dir = shmem_dir_map(topdir);
571 stage = ENTRIES_PER_PAGEPAGE/2;
572 if (idx < ENTRIES_PER_PAGEPAGE/2) {
573 middir = topdir;
574 diroff = idx/ENTRIES_PER_PAGE;
575 } else {
576 dir += ENTRIES_PER_PAGE/2;
577 dir += (idx - ENTRIES_PER_PAGEPAGE/2)/ENTRIES_PER_PAGEPAGE;
578 while (stage <= idx)
579 stage += ENTRIES_PER_PAGEPAGE;
580 middir = *dir;
581 if (*dir) {
582 diroff = ((idx - ENTRIES_PER_PAGEPAGE/2) %
583 ENTRIES_PER_PAGEPAGE) / ENTRIES_PER_PAGE;
584 if (!diroff && !offset && upper_limit >= stage) {
585 if (needs_lock) {
586 spin_lock(needs_lock);
587 *dir = NULL;
588 spin_unlock(needs_lock);
589 needs_lock = NULL;
590 } else
591 *dir = NULL;
592 nr_pages_to_free++;
593 list_add(&middir->lru, &pages_to_free);
595 shmem_dir_unmap(dir);
596 dir = shmem_dir_map(middir);
597 } else {
598 diroff = 0;
599 offset = 0;
600 idx = stage;
604 for (; idx < limit; idx += ENTRIES_PER_PAGE, diroff++) {
605 if (unlikely(idx == stage)) {
606 shmem_dir_unmap(dir);
607 dir = shmem_dir_map(topdir) +
608 ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
609 while (!*dir) {
610 dir++;
611 idx += ENTRIES_PER_PAGEPAGE;
612 if (idx >= limit)
613 goto done1;
615 stage = idx + ENTRIES_PER_PAGEPAGE;
616 middir = *dir;
617 if (punch_hole)
618 needs_lock = &info->lock;
619 if (upper_limit >= stage) {
620 if (needs_lock) {
621 spin_lock(needs_lock);
622 *dir = NULL;
623 spin_unlock(needs_lock);
624 needs_lock = NULL;
625 } else
626 *dir = NULL;
627 nr_pages_to_free++;
628 list_add(&middir->lru, &pages_to_free);
630 shmem_dir_unmap(dir);
631 cond_resched();
632 dir = shmem_dir_map(middir);
633 diroff = 0;
635 punch_lock = needs_lock;
636 subdir = dir[diroff];
637 if (subdir && !offset && upper_limit-idx >= ENTRIES_PER_PAGE) {
638 if (needs_lock) {
639 spin_lock(needs_lock);
640 dir[diroff] = NULL;
641 spin_unlock(needs_lock);
642 punch_lock = NULL;
643 } else
644 dir[diroff] = NULL;
645 nr_pages_to_free++;
646 list_add(&subdir->lru, &pages_to_free);
648 if (subdir && page_private(subdir) /* has swap entries */) {
649 size = limit - idx;
650 if (size > ENTRIES_PER_PAGE)
651 size = ENTRIES_PER_PAGE;
652 freed = shmem_map_and_free_swp(subdir,
653 offset, size, &dir, punch_lock);
654 if (!dir)
655 dir = shmem_dir_map(middir);
656 nr_swaps_freed += freed;
657 if (offset || punch_lock) {
658 spin_lock(&info->lock);
659 set_page_private(subdir,
660 page_private(subdir) - freed);
661 spin_unlock(&info->lock);
662 } else
663 BUG_ON(page_private(subdir) != freed);
665 offset = 0;
667 done1:
668 shmem_dir_unmap(dir);
669 done2:
670 if (inode->i_mapping->nrpages && (info->flags & SHMEM_PAGEIN)) {
672 * Call truncate_inode_pages again: racing shmem_unuse_inode
673 * may have swizzled a page in from swap since vmtruncate or
674 * generic_delete_inode did it, before we lowered next_index.
675 * Also, though shmem_getpage checks i_size before adding to
676 * cache, no recheck after: so fix the narrow window there too.
678 * Recalling truncate_inode_pages_range and unmap_mapping_range
679 * every time for punch_hole (which never got a chance to clear
680 * SHMEM_PAGEIN at the start of vmtruncate_range) is expensive,
681 * yet hardly ever necessary: try to optimize them out later.
683 truncate_inode_pages_range(inode->i_mapping, start, end);
684 if (punch_hole)
685 unmap_mapping_range(inode->i_mapping, start,
686 end - start, 1);
689 spin_lock(&info->lock);
690 info->flags &= ~SHMEM_TRUNCATE;
691 info->swapped -= nr_swaps_freed;
692 if (nr_pages_to_free)
693 shmem_free_blocks(inode, nr_pages_to_free);
694 shmem_recalc_inode(inode);
695 spin_unlock(&info->lock);
698 * Empty swap vector directory pages to be freed?
700 if (!list_empty(&pages_to_free)) {
701 pages_to_free.prev->next = NULL;
702 shmem_free_pages(pages_to_free.next);
706 static void shmem_truncate(struct inode *inode)
708 shmem_truncate_range(inode, inode->i_size, (loff_t)-1);
711 static int shmem_notify_change(struct dentry *dentry, struct iattr *attr)
713 struct inode *inode = dentry->d_inode;
714 struct page *page = NULL;
715 int error;
717 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
718 if (attr->ia_size < inode->i_size) {
720 * If truncating down to a partial page, then
721 * if that page is already allocated, hold it
722 * in memory until the truncation is over, so
723 * truncate_partial_page cannnot miss it were
724 * it assigned to swap.
726 if (attr->ia_size & (PAGE_CACHE_SIZE-1)) {
727 (void) shmem_getpage(inode,
728 attr->ia_size>>PAGE_CACHE_SHIFT,
729 &page, SGP_READ, NULL);
732 * Reset SHMEM_PAGEIN flag so that shmem_truncate can
733 * detect if any pages might have been added to cache
734 * after truncate_inode_pages. But we needn't bother
735 * if it's being fully truncated to zero-length: the
736 * nrpages check is efficient enough in that case.
738 if (attr->ia_size) {
739 struct shmem_inode_info *info = SHMEM_I(inode);
740 spin_lock(&info->lock);
741 info->flags &= ~SHMEM_PAGEIN;
742 spin_unlock(&info->lock);
747 error = inode_change_ok(inode, attr);
748 if (!error)
749 error = inode_setattr(inode, attr);
750 #ifdef CONFIG_TMPFS_POSIX_ACL
751 if (!error && (attr->ia_valid & ATTR_MODE))
752 error = generic_acl_chmod(inode, &shmem_acl_ops);
753 #endif
754 if (page)
755 page_cache_release(page);
756 return error;
759 static void shmem_delete_inode(struct inode *inode)
761 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
762 struct shmem_inode_info *info = SHMEM_I(inode);
764 if (inode->i_op->truncate == shmem_truncate) {
765 truncate_inode_pages(inode->i_mapping, 0);
766 shmem_unacct_size(info->flags, inode->i_size);
767 inode->i_size = 0;
768 shmem_truncate(inode);
769 if (!list_empty(&info->swaplist)) {
770 spin_lock(&shmem_swaplist_lock);
771 list_del_init(&info->swaplist);
772 spin_unlock(&shmem_swaplist_lock);
775 BUG_ON(inode->i_blocks);
776 if (sbinfo->max_inodes) {
777 spin_lock(&sbinfo->stat_lock);
778 sbinfo->free_inodes++;
779 spin_unlock(&sbinfo->stat_lock);
781 clear_inode(inode);
784 static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir)
786 swp_entry_t *ptr;
788 for (ptr = dir; ptr < edir; ptr++) {
789 if (ptr->val == entry.val)
790 return ptr - dir;
792 return -1;
795 static int shmem_unuse_inode(struct shmem_inode_info *info, swp_entry_t entry, struct page *page)
797 struct inode *inode;
798 unsigned long idx;
799 unsigned long size;
800 unsigned long limit;
801 unsigned long stage;
802 struct page **dir;
803 struct page *subdir;
804 swp_entry_t *ptr;
805 int offset;
807 idx = 0;
808 ptr = info->i_direct;
809 spin_lock(&info->lock);
810 limit = info->next_index;
811 size = limit;
812 if (size > SHMEM_NR_DIRECT)
813 size = SHMEM_NR_DIRECT;
814 offset = shmem_find_swp(entry, ptr, ptr+size);
815 if (offset >= 0) {
816 shmem_swp_balance_unmap();
817 goto found;
819 if (!info->i_indirect)
820 goto lost2;
822 dir = shmem_dir_map(info->i_indirect);
823 stage = SHMEM_NR_DIRECT + ENTRIES_PER_PAGEPAGE/2;
825 for (idx = SHMEM_NR_DIRECT; idx < limit; idx += ENTRIES_PER_PAGE, dir++) {
826 if (unlikely(idx == stage)) {
827 shmem_dir_unmap(dir-1);
828 dir = shmem_dir_map(info->i_indirect) +
829 ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
830 while (!*dir) {
831 dir++;
832 idx += ENTRIES_PER_PAGEPAGE;
833 if (idx >= limit)
834 goto lost1;
836 stage = idx + ENTRIES_PER_PAGEPAGE;
837 subdir = *dir;
838 shmem_dir_unmap(dir);
839 dir = shmem_dir_map(subdir);
841 subdir = *dir;
842 if (subdir && page_private(subdir)) {
843 ptr = shmem_swp_map(subdir);
844 size = limit - idx;
845 if (size > ENTRIES_PER_PAGE)
846 size = ENTRIES_PER_PAGE;
847 offset = shmem_find_swp(entry, ptr, ptr+size);
848 if (offset >= 0) {
849 shmem_dir_unmap(dir);
850 goto found;
852 shmem_swp_unmap(ptr);
855 lost1:
856 shmem_dir_unmap(dir-1);
857 lost2:
858 spin_unlock(&info->lock);
859 return 0;
860 found:
861 idx += offset;
862 inode = &info->vfs_inode;
863 if (move_from_swap_cache(page, idx, inode->i_mapping) == 0) {
864 info->flags |= SHMEM_PAGEIN;
865 shmem_swp_set(info, ptr + offset, 0);
867 shmem_swp_unmap(ptr);
868 spin_unlock(&info->lock);
870 * Decrement swap count even when the entry is left behind:
871 * try_to_unuse will skip over mms, then reincrement count.
873 swap_free(entry);
874 return 1;
878 * shmem_unuse() search for an eventually swapped out shmem page.
880 int shmem_unuse(swp_entry_t entry, struct page *page)
882 struct list_head *p, *next;
883 struct shmem_inode_info *info;
884 int found = 0;
886 spin_lock(&shmem_swaplist_lock);
887 list_for_each_safe(p, next, &shmem_swaplist) {
888 info = list_entry(p, struct shmem_inode_info, swaplist);
889 if (!info->swapped)
890 list_del_init(&info->swaplist);
891 else if (shmem_unuse_inode(info, entry, page)) {
892 /* move head to start search for next from here */
893 list_move_tail(&shmem_swaplist, &info->swaplist);
894 found = 1;
895 break;
898 spin_unlock(&shmem_swaplist_lock);
899 return found;
903 * Move the page from the page cache to the swap cache.
905 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
907 struct shmem_inode_info *info;
908 swp_entry_t *entry, swap;
909 struct address_space *mapping;
910 unsigned long index;
911 struct inode *inode;
913 BUG_ON(!PageLocked(page));
915 * shmem_backing_dev_info's capabilities prevent regular writeback or
916 * sync from ever calling shmem_writepage; but a stacking filesystem
917 * may use the ->writepage of its underlying filesystem, in which case
918 * we want to do nothing when that underlying filesystem is tmpfs
919 * (writing out to swap is useful as a response to memory pressure, but
920 * of no use to stabilize the data) - just redirty the page, unlock it
921 * and claim success in this case. AOP_WRITEPAGE_ACTIVATE, and the
922 * page_mapped check below, must be avoided unless we're in reclaim.
924 if (!wbc->for_reclaim) {
925 set_page_dirty(page);
926 unlock_page(page);
927 return 0;
929 BUG_ON(page_mapped(page));
931 mapping = page->mapping;
932 index = page->index;
933 inode = mapping->host;
934 info = SHMEM_I(inode);
935 if (info->flags & VM_LOCKED)
936 goto redirty;
937 swap = get_swap_page();
938 if (!swap.val)
939 goto redirty;
941 spin_lock(&info->lock);
942 shmem_recalc_inode(inode);
943 if (index >= info->next_index) {
944 BUG_ON(!(info->flags & SHMEM_TRUNCATE));
945 goto unlock;
947 entry = shmem_swp_entry(info, index, NULL);
948 BUG_ON(!entry);
949 BUG_ON(entry->val);
951 if (move_to_swap_cache(page, swap) == 0) {
952 shmem_swp_set(info, entry, swap.val);
953 shmem_swp_unmap(entry);
954 spin_unlock(&info->lock);
955 if (list_empty(&info->swaplist)) {
956 spin_lock(&shmem_swaplist_lock);
957 /* move instead of add in case we're racing */
958 list_move_tail(&info->swaplist, &shmem_swaplist);
959 spin_unlock(&shmem_swaplist_lock);
961 unlock_page(page);
962 return 0;
965 shmem_swp_unmap(entry);
966 unlock:
967 spin_unlock(&info->lock);
968 swap_free(swap);
969 redirty:
970 set_page_dirty(page);
971 return AOP_WRITEPAGE_ACTIVATE; /* Return with the page locked */
974 #ifdef CONFIG_NUMA
975 static inline int shmem_parse_mpol(char *value, int *policy, nodemask_t *policy_nodes)
977 char *nodelist = strchr(value, ':');
978 int err = 1;
980 if (nodelist) {
981 /* NUL-terminate policy string */
982 *nodelist++ = '\0';
983 if (nodelist_parse(nodelist, *policy_nodes))
984 goto out;
985 if (!nodes_subset(*policy_nodes, node_online_map))
986 goto out;
988 if (!strcmp(value, "default")) {
989 *policy = MPOL_DEFAULT;
990 /* Don't allow a nodelist */
991 if (!nodelist)
992 err = 0;
993 } else if (!strcmp(value, "prefer")) {
994 *policy = MPOL_PREFERRED;
995 /* Insist on a nodelist of one node only */
996 if (nodelist) {
997 char *rest = nodelist;
998 while (isdigit(*rest))
999 rest++;
1000 if (!*rest)
1001 err = 0;
1003 } else if (!strcmp(value, "bind")) {
1004 *policy = MPOL_BIND;
1005 /* Insist on a nodelist */
1006 if (nodelist)
1007 err = 0;
1008 } else if (!strcmp(value, "interleave")) {
1009 *policy = MPOL_INTERLEAVE;
1010 /* Default to nodes online if no nodelist */
1011 if (!nodelist)
1012 *policy_nodes = node_online_map;
1013 err = 0;
1015 out:
1016 /* Restore string for error message */
1017 if (nodelist)
1018 *--nodelist = ':';
1019 return err;
1022 static struct page *shmem_swapin_async(struct shared_policy *p,
1023 swp_entry_t entry, unsigned long idx)
1025 struct page *page;
1026 struct vm_area_struct pvma;
1028 /* Create a pseudo vma that just contains the policy */
1029 memset(&pvma, 0, sizeof(struct vm_area_struct));
1030 pvma.vm_end = PAGE_SIZE;
1031 pvma.vm_pgoff = idx;
1032 pvma.vm_policy = mpol_shared_policy_lookup(p, idx);
1033 page = read_swap_cache_async(entry, &pvma, 0);
1034 mpol_free(pvma.vm_policy);
1035 return page;
1038 struct page *shmem_swapin(struct shmem_inode_info *info, swp_entry_t entry,
1039 unsigned long idx)
1041 struct shared_policy *p = &info->policy;
1042 int i, num;
1043 struct page *page;
1044 unsigned long offset;
1046 num = valid_swaphandles(entry, &offset);
1047 for (i = 0; i < num; offset++, i++) {
1048 page = shmem_swapin_async(p,
1049 swp_entry(swp_type(entry), offset), idx);
1050 if (!page)
1051 break;
1052 page_cache_release(page);
1054 lru_add_drain(); /* Push any new pages onto the LRU now */
1055 return shmem_swapin_async(p, entry, idx);
1058 static struct page *
1059 shmem_alloc_page(gfp_t gfp, struct shmem_inode_info *info,
1060 unsigned long idx)
1062 struct vm_area_struct pvma;
1063 struct page *page;
1065 memset(&pvma, 0, sizeof(struct vm_area_struct));
1066 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
1067 pvma.vm_pgoff = idx;
1068 pvma.vm_end = PAGE_SIZE;
1069 page = alloc_page_vma(gfp, &pvma, 0);
1070 mpol_free(pvma.vm_policy);
1071 return page;
1073 #else
1074 static inline int shmem_parse_mpol(char *value, int *policy, nodemask_t *policy_nodes)
1076 return 1;
1079 static inline struct page *
1080 shmem_swapin(struct shmem_inode_info *info,swp_entry_t entry,unsigned long idx)
1082 swapin_readahead(entry, 0, NULL);
1083 return read_swap_cache_async(entry, NULL, 0);
1086 static inline struct page *
1087 shmem_alloc_page(gfp_t gfp,struct shmem_inode_info *info, unsigned long idx)
1089 return alloc_page(gfp);
1091 #endif
1094 * shmem_getpage - either get the page from swap or allocate a new one
1096 * If we allocate a new one we do not mark it dirty. That's up to the
1097 * vm. If we swap it in we mark it dirty since we also free the swap
1098 * entry since a page cannot live in both the swap and page cache
1100 static int shmem_getpage(struct inode *inode, unsigned long idx,
1101 struct page **pagep, enum sgp_type sgp, int *type)
1103 struct address_space *mapping = inode->i_mapping;
1104 struct shmem_inode_info *info = SHMEM_I(inode);
1105 struct shmem_sb_info *sbinfo;
1106 struct page *filepage = *pagep;
1107 struct page *swappage;
1108 swp_entry_t *entry;
1109 swp_entry_t swap;
1110 int error;
1112 if (idx >= SHMEM_MAX_INDEX)
1113 return -EFBIG;
1115 * Normally, filepage is NULL on entry, and either found
1116 * uptodate immediately, or allocated and zeroed, or read
1117 * in under swappage, which is then assigned to filepage.
1118 * But shmem_prepare_write passes in a locked filepage,
1119 * which may be found not uptodate by other callers too,
1120 * and may need to be copied from the swappage read in.
1122 repeat:
1123 if (!filepage)
1124 filepage = find_lock_page(mapping, idx);
1125 if (filepage && PageUptodate(filepage))
1126 goto done;
1127 error = 0;
1128 if (sgp == SGP_QUICK)
1129 goto failed;
1131 spin_lock(&info->lock);
1132 shmem_recalc_inode(inode);
1133 entry = shmem_swp_alloc(info, idx, sgp);
1134 if (IS_ERR(entry)) {
1135 spin_unlock(&info->lock);
1136 error = PTR_ERR(entry);
1137 goto failed;
1139 swap = *entry;
1141 if (swap.val) {
1142 /* Look it up and read it in.. */
1143 swappage = lookup_swap_cache(swap);
1144 if (!swappage) {
1145 shmem_swp_unmap(entry);
1146 /* here we actually do the io */
1147 if (type && *type == VM_FAULT_MINOR) {
1148 __count_vm_event(PGMAJFAULT);
1149 *type = VM_FAULT_MAJOR;
1151 spin_unlock(&info->lock);
1152 swappage = shmem_swapin(info, swap, idx);
1153 if (!swappage) {
1154 spin_lock(&info->lock);
1155 entry = shmem_swp_alloc(info, idx, sgp);
1156 if (IS_ERR(entry))
1157 error = PTR_ERR(entry);
1158 else {
1159 if (entry->val == swap.val)
1160 error = -ENOMEM;
1161 shmem_swp_unmap(entry);
1163 spin_unlock(&info->lock);
1164 if (error)
1165 goto failed;
1166 goto repeat;
1168 wait_on_page_locked(swappage);
1169 page_cache_release(swappage);
1170 goto repeat;
1173 /* We have to do this with page locked to prevent races */
1174 if (TestSetPageLocked(swappage)) {
1175 shmem_swp_unmap(entry);
1176 spin_unlock(&info->lock);
1177 wait_on_page_locked(swappage);
1178 page_cache_release(swappage);
1179 goto repeat;
1181 if (PageWriteback(swappage)) {
1182 shmem_swp_unmap(entry);
1183 spin_unlock(&info->lock);
1184 wait_on_page_writeback(swappage);
1185 unlock_page(swappage);
1186 page_cache_release(swappage);
1187 goto repeat;
1189 if (!PageUptodate(swappage)) {
1190 shmem_swp_unmap(entry);
1191 spin_unlock(&info->lock);
1192 unlock_page(swappage);
1193 page_cache_release(swappage);
1194 error = -EIO;
1195 goto failed;
1198 if (filepage) {
1199 shmem_swp_set(info, entry, 0);
1200 shmem_swp_unmap(entry);
1201 delete_from_swap_cache(swappage);
1202 spin_unlock(&info->lock);
1203 copy_highpage(filepage, swappage);
1204 unlock_page(swappage);
1205 page_cache_release(swappage);
1206 flush_dcache_page(filepage);
1207 SetPageUptodate(filepage);
1208 set_page_dirty(filepage);
1209 swap_free(swap);
1210 } else if (!(error = move_from_swap_cache(
1211 swappage, idx, mapping))) {
1212 info->flags |= SHMEM_PAGEIN;
1213 shmem_swp_set(info, entry, 0);
1214 shmem_swp_unmap(entry);
1215 spin_unlock(&info->lock);
1216 filepage = swappage;
1217 swap_free(swap);
1218 } else {
1219 shmem_swp_unmap(entry);
1220 spin_unlock(&info->lock);
1221 unlock_page(swappage);
1222 page_cache_release(swappage);
1223 if (error == -ENOMEM) {
1224 /* let kswapd refresh zone for GFP_ATOMICs */
1225 congestion_wait(WRITE, HZ/50);
1227 goto repeat;
1229 } else if (sgp == SGP_READ && !filepage) {
1230 shmem_swp_unmap(entry);
1231 filepage = find_get_page(mapping, idx);
1232 if (filepage &&
1233 (!PageUptodate(filepage) || TestSetPageLocked(filepage))) {
1234 spin_unlock(&info->lock);
1235 wait_on_page_locked(filepage);
1236 page_cache_release(filepage);
1237 filepage = NULL;
1238 goto repeat;
1240 spin_unlock(&info->lock);
1241 } else {
1242 shmem_swp_unmap(entry);
1243 sbinfo = SHMEM_SB(inode->i_sb);
1244 if (sbinfo->max_blocks) {
1245 spin_lock(&sbinfo->stat_lock);
1246 if (sbinfo->free_blocks == 0 ||
1247 shmem_acct_block(info->flags)) {
1248 spin_unlock(&sbinfo->stat_lock);
1249 spin_unlock(&info->lock);
1250 error = -ENOSPC;
1251 goto failed;
1253 sbinfo->free_blocks--;
1254 inode->i_blocks += BLOCKS_PER_PAGE;
1255 spin_unlock(&sbinfo->stat_lock);
1256 } else if (shmem_acct_block(info->flags)) {
1257 spin_unlock(&info->lock);
1258 error = -ENOSPC;
1259 goto failed;
1262 if (!filepage) {
1263 spin_unlock(&info->lock);
1264 filepage = shmem_alloc_page(mapping_gfp_mask(mapping),
1265 info,
1266 idx);
1267 if (!filepage) {
1268 shmem_unacct_blocks(info->flags, 1);
1269 shmem_free_blocks(inode, 1);
1270 error = -ENOMEM;
1271 goto failed;
1274 spin_lock(&info->lock);
1275 entry = shmem_swp_alloc(info, idx, sgp);
1276 if (IS_ERR(entry))
1277 error = PTR_ERR(entry);
1278 else {
1279 swap = *entry;
1280 shmem_swp_unmap(entry);
1282 if (error || swap.val || 0 != add_to_page_cache_lru(
1283 filepage, mapping, idx, GFP_ATOMIC)) {
1284 spin_unlock(&info->lock);
1285 page_cache_release(filepage);
1286 shmem_unacct_blocks(info->flags, 1);
1287 shmem_free_blocks(inode, 1);
1288 filepage = NULL;
1289 if (error)
1290 goto failed;
1291 goto repeat;
1293 info->flags |= SHMEM_PAGEIN;
1296 info->alloced++;
1297 spin_unlock(&info->lock);
1298 clear_highpage(filepage);
1299 flush_dcache_page(filepage);
1300 SetPageUptodate(filepage);
1302 done:
1303 if (*pagep != filepage) {
1304 unlock_page(filepage);
1305 *pagep = filepage;
1307 return 0;
1309 failed:
1310 if (*pagep != filepage) {
1311 unlock_page(filepage);
1312 page_cache_release(filepage);
1314 return error;
1317 static struct page *shmem_nopage(struct vm_area_struct *vma,
1318 unsigned long address, int *type)
1320 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1321 struct page *page = NULL;
1322 unsigned long idx;
1323 int error;
1325 idx = (address - vma->vm_start) >> PAGE_SHIFT;
1326 idx += vma->vm_pgoff;
1327 idx >>= PAGE_CACHE_SHIFT - PAGE_SHIFT;
1328 if (((loff_t) idx << PAGE_CACHE_SHIFT) >= i_size_read(inode))
1329 return NOPAGE_SIGBUS;
1331 error = shmem_getpage(inode, idx, &page, SGP_CACHE, type);
1332 if (error)
1333 return (error == -ENOMEM)? NOPAGE_OOM: NOPAGE_SIGBUS;
1335 mark_page_accessed(page);
1336 return page;
1339 static int shmem_populate(struct vm_area_struct *vma,
1340 unsigned long addr, unsigned long len,
1341 pgprot_t prot, unsigned long pgoff, int nonblock)
1343 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1344 struct mm_struct *mm = vma->vm_mm;
1345 enum sgp_type sgp = nonblock? SGP_QUICK: SGP_CACHE;
1346 unsigned long size;
1348 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1349 if (pgoff >= size || pgoff + (len >> PAGE_SHIFT) > size)
1350 return -EINVAL;
1352 while ((long) len > 0) {
1353 struct page *page = NULL;
1354 int err;
1356 * Will need changing if PAGE_CACHE_SIZE != PAGE_SIZE
1358 err = shmem_getpage(inode, pgoff, &page, sgp, NULL);
1359 if (err)
1360 return err;
1361 /* Page may still be null, but only if nonblock was set. */
1362 if (page) {
1363 mark_page_accessed(page);
1364 err = install_page(mm, vma, addr, page, prot);
1365 if (err) {
1366 page_cache_release(page);
1367 return err;
1369 } else if (vma->vm_flags & VM_NONLINEAR) {
1370 /* No page was found just because we can't read it in
1371 * now (being here implies nonblock != 0), but the page
1372 * may exist, so set the PTE to fault it in later. */
1373 err = install_file_pte(mm, vma, addr, pgoff, prot);
1374 if (err)
1375 return err;
1378 len -= PAGE_SIZE;
1379 addr += PAGE_SIZE;
1380 pgoff++;
1382 return 0;
1385 #ifdef CONFIG_NUMA
1386 int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new)
1388 struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1389 return mpol_set_shared_policy(&SHMEM_I(i)->policy, vma, new);
1392 struct mempolicy *
1393 shmem_get_policy(struct vm_area_struct *vma, unsigned long addr)
1395 struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1396 unsigned long idx;
1398 idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1399 return mpol_shared_policy_lookup(&SHMEM_I(i)->policy, idx);
1401 #endif
1403 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1405 struct inode *inode = file->f_path.dentry->d_inode;
1406 struct shmem_inode_info *info = SHMEM_I(inode);
1407 int retval = -ENOMEM;
1409 spin_lock(&info->lock);
1410 if (lock && !(info->flags & VM_LOCKED)) {
1411 if (!user_shm_lock(inode->i_size, user))
1412 goto out_nomem;
1413 info->flags |= VM_LOCKED;
1415 if (!lock && (info->flags & VM_LOCKED) && user) {
1416 user_shm_unlock(inode->i_size, user);
1417 info->flags &= ~VM_LOCKED;
1419 retval = 0;
1420 out_nomem:
1421 spin_unlock(&info->lock);
1422 return retval;
1425 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1427 file_accessed(file);
1428 vma->vm_ops = &shmem_vm_ops;
1429 return 0;
1432 static struct inode *
1433 shmem_get_inode(struct super_block *sb, int mode, dev_t dev)
1435 struct inode *inode;
1436 struct shmem_inode_info *info;
1437 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1439 if (sbinfo->max_inodes) {
1440 spin_lock(&sbinfo->stat_lock);
1441 if (!sbinfo->free_inodes) {
1442 spin_unlock(&sbinfo->stat_lock);
1443 return NULL;
1445 sbinfo->free_inodes--;
1446 spin_unlock(&sbinfo->stat_lock);
1449 inode = new_inode(sb);
1450 if (inode) {
1451 inode->i_mode = mode;
1452 inode->i_uid = current->fsuid;
1453 inode->i_gid = current->fsgid;
1454 inode->i_blocks = 0;
1455 inode->i_mapping->a_ops = &shmem_aops;
1456 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1457 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1458 inode->i_generation = get_seconds();
1459 info = SHMEM_I(inode);
1460 memset(info, 0, (char *)inode - (char *)info);
1461 spin_lock_init(&info->lock);
1462 INIT_LIST_HEAD(&info->swaplist);
1464 switch (mode & S_IFMT) {
1465 default:
1466 inode->i_op = &shmem_special_inode_operations;
1467 init_special_inode(inode, mode, dev);
1468 break;
1469 case S_IFREG:
1470 inode->i_op = &shmem_inode_operations;
1471 inode->i_fop = &shmem_file_operations;
1472 mpol_shared_policy_init(&info->policy, sbinfo->policy,
1473 &sbinfo->policy_nodes);
1474 break;
1475 case S_IFDIR:
1476 inc_nlink(inode);
1477 /* Some things misbehave if size == 0 on a directory */
1478 inode->i_size = 2 * BOGO_DIRENT_SIZE;
1479 inode->i_op = &shmem_dir_inode_operations;
1480 inode->i_fop = &simple_dir_operations;
1481 break;
1482 case S_IFLNK:
1484 * Must not load anything in the rbtree,
1485 * mpol_free_shared_policy will not be called.
1487 mpol_shared_policy_init(&info->policy, MPOL_DEFAULT,
1488 NULL);
1489 break;
1491 } else if (sbinfo->max_inodes) {
1492 spin_lock(&sbinfo->stat_lock);
1493 sbinfo->free_inodes++;
1494 spin_unlock(&sbinfo->stat_lock);
1496 return inode;
1499 #ifdef CONFIG_TMPFS
1500 static const struct inode_operations shmem_symlink_inode_operations;
1501 static const struct inode_operations shmem_symlink_inline_operations;
1504 * Normally tmpfs makes no use of shmem_prepare_write, but it
1505 * lets a tmpfs file be used read-write below the loop driver.
1507 static int
1508 shmem_prepare_write(struct file *file, struct page *page, unsigned offset, unsigned to)
1510 struct inode *inode = page->mapping->host;
1511 return shmem_getpage(inode, page->index, &page, SGP_WRITE, NULL);
1514 static ssize_t
1515 shmem_file_write(struct file *file, const char __user *buf, size_t count, loff_t *ppos)
1517 struct inode *inode = file->f_path.dentry->d_inode;
1518 loff_t pos;
1519 unsigned long written;
1520 ssize_t err;
1522 if ((ssize_t) count < 0)
1523 return -EINVAL;
1525 if (!access_ok(VERIFY_READ, buf, count))
1526 return -EFAULT;
1528 mutex_lock(&inode->i_mutex);
1530 pos = *ppos;
1531 written = 0;
1533 err = generic_write_checks(file, &pos, &count, 0);
1534 if (err || !count)
1535 goto out;
1537 err = remove_suid(file->f_path.dentry);
1538 if (err)
1539 goto out;
1541 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
1543 do {
1544 struct page *page = NULL;
1545 unsigned long bytes, index, offset;
1546 char *kaddr;
1547 int left;
1549 offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
1550 index = pos >> PAGE_CACHE_SHIFT;
1551 bytes = PAGE_CACHE_SIZE - offset;
1552 if (bytes > count)
1553 bytes = count;
1556 * We don't hold page lock across copy from user -
1557 * what would it guard against? - so no deadlock here.
1558 * But it still may be a good idea to prefault below.
1561 err = shmem_getpage(inode, index, &page, SGP_WRITE, NULL);
1562 if (err)
1563 break;
1565 left = bytes;
1566 if (PageHighMem(page)) {
1567 volatile unsigned char dummy;
1568 __get_user(dummy, buf);
1569 __get_user(dummy, buf + bytes - 1);
1571 kaddr = kmap_atomic(page, KM_USER0);
1572 left = __copy_from_user_inatomic(kaddr + offset,
1573 buf, bytes);
1574 kunmap_atomic(kaddr, KM_USER0);
1576 if (left) {
1577 kaddr = kmap(page);
1578 left = __copy_from_user(kaddr + offset, buf, bytes);
1579 kunmap(page);
1582 written += bytes;
1583 count -= bytes;
1584 pos += bytes;
1585 buf += bytes;
1586 if (pos > inode->i_size)
1587 i_size_write(inode, pos);
1589 flush_dcache_page(page);
1590 set_page_dirty(page);
1591 mark_page_accessed(page);
1592 page_cache_release(page);
1594 if (left) {
1595 pos -= left;
1596 written -= left;
1597 err = -EFAULT;
1598 break;
1602 * Our dirty pages are not counted in nr_dirty,
1603 * and we do not attempt to balance dirty pages.
1606 cond_resched();
1607 } while (count);
1609 *ppos = pos;
1610 if (written)
1611 err = written;
1612 out:
1613 mutex_unlock(&inode->i_mutex);
1614 return err;
1617 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1619 struct inode *inode = filp->f_path.dentry->d_inode;
1620 struct address_space *mapping = inode->i_mapping;
1621 unsigned long index, offset;
1623 index = *ppos >> PAGE_CACHE_SHIFT;
1624 offset = *ppos & ~PAGE_CACHE_MASK;
1626 for (;;) {
1627 struct page *page = NULL;
1628 unsigned long end_index, nr, ret;
1629 loff_t i_size = i_size_read(inode);
1631 end_index = i_size >> PAGE_CACHE_SHIFT;
1632 if (index > end_index)
1633 break;
1634 if (index == end_index) {
1635 nr = i_size & ~PAGE_CACHE_MASK;
1636 if (nr <= offset)
1637 break;
1640 desc->error = shmem_getpage(inode, index, &page, SGP_READ, NULL);
1641 if (desc->error) {
1642 if (desc->error == -EINVAL)
1643 desc->error = 0;
1644 break;
1648 * We must evaluate after, since reads (unlike writes)
1649 * are called without i_mutex protection against truncate
1651 nr = PAGE_CACHE_SIZE;
1652 i_size = i_size_read(inode);
1653 end_index = i_size >> PAGE_CACHE_SHIFT;
1654 if (index == end_index) {
1655 nr = i_size & ~PAGE_CACHE_MASK;
1656 if (nr <= offset) {
1657 if (page)
1658 page_cache_release(page);
1659 break;
1662 nr -= offset;
1664 if (page) {
1666 * If users can be writing to this page using arbitrary
1667 * virtual addresses, take care about potential aliasing
1668 * before reading the page on the kernel side.
1670 if (mapping_writably_mapped(mapping))
1671 flush_dcache_page(page);
1673 * Mark the page accessed if we read the beginning.
1675 if (!offset)
1676 mark_page_accessed(page);
1677 } else {
1678 page = ZERO_PAGE(0);
1679 page_cache_get(page);
1683 * Ok, we have the page, and it's up-to-date, so
1684 * now we can copy it to user space...
1686 * The actor routine returns how many bytes were actually used..
1687 * NOTE! This may not be the same as how much of a user buffer
1688 * we filled up (we may be padding etc), so we can only update
1689 * "pos" here (the actor routine has to update the user buffer
1690 * pointers and the remaining count).
1692 ret = actor(desc, page, offset, nr);
1693 offset += ret;
1694 index += offset >> PAGE_CACHE_SHIFT;
1695 offset &= ~PAGE_CACHE_MASK;
1697 page_cache_release(page);
1698 if (ret != nr || !desc->count)
1699 break;
1701 cond_resched();
1704 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1705 file_accessed(filp);
1708 static ssize_t shmem_file_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
1710 read_descriptor_t desc;
1712 if ((ssize_t) count < 0)
1713 return -EINVAL;
1714 if (!access_ok(VERIFY_WRITE, buf, count))
1715 return -EFAULT;
1716 if (!count)
1717 return 0;
1719 desc.written = 0;
1720 desc.count = count;
1721 desc.arg.buf = buf;
1722 desc.error = 0;
1724 do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1725 if (desc.written)
1726 return desc.written;
1727 return desc.error;
1730 static ssize_t shmem_file_sendfile(struct file *in_file, loff_t *ppos,
1731 size_t count, read_actor_t actor, void *target)
1733 read_descriptor_t desc;
1735 if (!count)
1736 return 0;
1738 desc.written = 0;
1739 desc.count = count;
1740 desc.arg.data = target;
1741 desc.error = 0;
1743 do_shmem_file_read(in_file, ppos, &desc, actor);
1744 if (desc.written)
1745 return desc.written;
1746 return desc.error;
1749 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1751 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1753 buf->f_type = TMPFS_MAGIC;
1754 buf->f_bsize = PAGE_CACHE_SIZE;
1755 buf->f_namelen = NAME_MAX;
1756 spin_lock(&sbinfo->stat_lock);
1757 if (sbinfo->max_blocks) {
1758 buf->f_blocks = sbinfo->max_blocks;
1759 buf->f_bavail = buf->f_bfree = sbinfo->free_blocks;
1761 if (sbinfo->max_inodes) {
1762 buf->f_files = sbinfo->max_inodes;
1763 buf->f_ffree = sbinfo->free_inodes;
1765 /* else leave those fields 0 like simple_statfs */
1766 spin_unlock(&sbinfo->stat_lock);
1767 return 0;
1771 * File creation. Allocate an inode, and we're done..
1773 static int
1774 shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1776 struct inode *inode = shmem_get_inode(dir->i_sb, mode, dev);
1777 int error = -ENOSPC;
1779 if (inode) {
1780 error = security_inode_init_security(inode, dir, NULL, NULL,
1781 NULL);
1782 if (error) {
1783 if (error != -EOPNOTSUPP) {
1784 iput(inode);
1785 return error;
1788 error = shmem_acl_init(inode, dir);
1789 if (error) {
1790 iput(inode);
1791 return error;
1793 if (dir->i_mode & S_ISGID) {
1794 inode->i_gid = dir->i_gid;
1795 if (S_ISDIR(mode))
1796 inode->i_mode |= S_ISGID;
1798 dir->i_size += BOGO_DIRENT_SIZE;
1799 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1800 d_instantiate(dentry, inode);
1801 dget(dentry); /* Extra count - pin the dentry in core */
1803 return error;
1806 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1808 int error;
1810 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1811 return error;
1812 inc_nlink(dir);
1813 return 0;
1816 static int shmem_create(struct inode *dir, struct dentry *dentry, int mode,
1817 struct nameidata *nd)
1819 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1823 * Link a file..
1825 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1827 struct inode *inode = old_dentry->d_inode;
1828 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1831 * No ordinary (disk based) filesystem counts links as inodes;
1832 * but each new link needs a new dentry, pinning lowmem, and
1833 * tmpfs dentries cannot be pruned until they are unlinked.
1835 if (sbinfo->max_inodes) {
1836 spin_lock(&sbinfo->stat_lock);
1837 if (!sbinfo->free_inodes) {
1838 spin_unlock(&sbinfo->stat_lock);
1839 return -ENOSPC;
1841 sbinfo->free_inodes--;
1842 spin_unlock(&sbinfo->stat_lock);
1845 dir->i_size += BOGO_DIRENT_SIZE;
1846 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1847 inc_nlink(inode);
1848 atomic_inc(&inode->i_count); /* New dentry reference */
1849 dget(dentry); /* Extra pinning count for the created dentry */
1850 d_instantiate(dentry, inode);
1851 return 0;
1854 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1856 struct inode *inode = dentry->d_inode;
1858 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) {
1859 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1860 if (sbinfo->max_inodes) {
1861 spin_lock(&sbinfo->stat_lock);
1862 sbinfo->free_inodes++;
1863 spin_unlock(&sbinfo->stat_lock);
1867 dir->i_size -= BOGO_DIRENT_SIZE;
1868 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1869 drop_nlink(inode);
1870 dput(dentry); /* Undo the count from "create" - this does all the work */
1871 return 0;
1874 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1876 if (!simple_empty(dentry))
1877 return -ENOTEMPTY;
1879 drop_nlink(dentry->d_inode);
1880 drop_nlink(dir);
1881 return shmem_unlink(dir, dentry);
1885 * The VFS layer already does all the dentry stuff for rename,
1886 * we just have to decrement the usage count for the target if
1887 * it exists so that the VFS layer correctly free's it when it
1888 * gets overwritten.
1890 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1892 struct inode *inode = old_dentry->d_inode;
1893 int they_are_dirs = S_ISDIR(inode->i_mode);
1895 if (!simple_empty(new_dentry))
1896 return -ENOTEMPTY;
1898 if (new_dentry->d_inode) {
1899 (void) shmem_unlink(new_dir, new_dentry);
1900 if (they_are_dirs)
1901 drop_nlink(old_dir);
1902 } else if (they_are_dirs) {
1903 drop_nlink(old_dir);
1904 inc_nlink(new_dir);
1907 old_dir->i_size -= BOGO_DIRENT_SIZE;
1908 new_dir->i_size += BOGO_DIRENT_SIZE;
1909 old_dir->i_ctime = old_dir->i_mtime =
1910 new_dir->i_ctime = new_dir->i_mtime =
1911 inode->i_ctime = CURRENT_TIME;
1912 return 0;
1915 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1917 int error;
1918 int len;
1919 struct inode *inode;
1920 struct page *page = NULL;
1921 char *kaddr;
1922 struct shmem_inode_info *info;
1924 len = strlen(symname) + 1;
1925 if (len > PAGE_CACHE_SIZE)
1926 return -ENAMETOOLONG;
1928 inode = shmem_get_inode(dir->i_sb, S_IFLNK|S_IRWXUGO, 0);
1929 if (!inode)
1930 return -ENOSPC;
1932 error = security_inode_init_security(inode, dir, NULL, NULL,
1933 NULL);
1934 if (error) {
1935 if (error != -EOPNOTSUPP) {
1936 iput(inode);
1937 return error;
1939 error = 0;
1942 info = SHMEM_I(inode);
1943 inode->i_size = len-1;
1944 if (len <= (char *)inode - (char *)info) {
1945 /* do it inline */
1946 memcpy(info, symname, len);
1947 inode->i_op = &shmem_symlink_inline_operations;
1948 } else {
1949 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
1950 if (error) {
1951 iput(inode);
1952 return error;
1954 inode->i_op = &shmem_symlink_inode_operations;
1955 kaddr = kmap_atomic(page, KM_USER0);
1956 memcpy(kaddr, symname, len);
1957 kunmap_atomic(kaddr, KM_USER0);
1958 set_page_dirty(page);
1959 page_cache_release(page);
1961 if (dir->i_mode & S_ISGID)
1962 inode->i_gid = dir->i_gid;
1963 dir->i_size += BOGO_DIRENT_SIZE;
1964 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1965 d_instantiate(dentry, inode);
1966 dget(dentry);
1967 return 0;
1970 static void *shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd)
1972 nd_set_link(nd, (char *)SHMEM_I(dentry->d_inode));
1973 return NULL;
1976 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
1978 struct page *page = NULL;
1979 int res = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
1980 nd_set_link(nd, res ? ERR_PTR(res) : kmap(page));
1981 return page;
1984 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
1986 if (!IS_ERR(nd_get_link(nd))) {
1987 struct page *page = cookie;
1988 kunmap(page);
1989 mark_page_accessed(page);
1990 page_cache_release(page);
1994 static const struct inode_operations shmem_symlink_inline_operations = {
1995 .readlink = generic_readlink,
1996 .follow_link = shmem_follow_link_inline,
1999 static const struct inode_operations shmem_symlink_inode_operations = {
2000 .truncate = shmem_truncate,
2001 .readlink = generic_readlink,
2002 .follow_link = shmem_follow_link,
2003 .put_link = shmem_put_link,
2006 #ifdef CONFIG_TMPFS_POSIX_ACL
2008 * Superblocks without xattr inode operations will get security.* xattr
2009 * support from the VFS "for free". As soon as we have any other xattrs
2010 * like ACLs, we also need to implement the security.* handlers at
2011 * filesystem level, though.
2014 static size_t shmem_xattr_security_list(struct inode *inode, char *list,
2015 size_t list_len, const char *name,
2016 size_t name_len)
2018 return security_inode_listsecurity(inode, list, list_len);
2021 static int shmem_xattr_security_get(struct inode *inode, const char *name,
2022 void *buffer, size_t size)
2024 if (strcmp(name, "") == 0)
2025 return -EINVAL;
2026 return security_inode_getsecurity(inode, name, buffer, size,
2027 -EOPNOTSUPP);
2030 static int shmem_xattr_security_set(struct inode *inode, const char *name,
2031 const void *value, size_t size, int flags)
2033 if (strcmp(name, "") == 0)
2034 return -EINVAL;
2035 return security_inode_setsecurity(inode, name, value, size, flags);
2038 static struct xattr_handler shmem_xattr_security_handler = {
2039 .prefix = XATTR_SECURITY_PREFIX,
2040 .list = shmem_xattr_security_list,
2041 .get = shmem_xattr_security_get,
2042 .set = shmem_xattr_security_set,
2045 static struct xattr_handler *shmem_xattr_handlers[] = {
2046 &shmem_xattr_acl_access_handler,
2047 &shmem_xattr_acl_default_handler,
2048 &shmem_xattr_security_handler,
2049 NULL
2051 #endif
2053 static struct dentry *shmem_get_parent(struct dentry *child)
2055 return ERR_PTR(-ESTALE);
2058 static int shmem_match(struct inode *ino, void *vfh)
2060 __u32 *fh = vfh;
2061 __u64 inum = fh[2];
2062 inum = (inum << 32) | fh[1];
2063 return ino->i_ino == inum && fh[0] == ino->i_generation;
2066 static struct dentry *shmem_get_dentry(struct super_block *sb, void *vfh)
2068 struct dentry *de = NULL;
2069 struct inode *inode;
2070 __u32 *fh = vfh;
2071 __u64 inum = fh[2];
2072 inum = (inum << 32) | fh[1];
2074 inode = ilookup5(sb, (unsigned long)(inum+fh[0]), shmem_match, vfh);
2075 if (inode) {
2076 de = d_find_alias(inode);
2077 iput(inode);
2080 return de? de: ERR_PTR(-ESTALE);
2083 static struct dentry *shmem_decode_fh(struct super_block *sb, __u32 *fh,
2084 int len, int type,
2085 int (*acceptable)(void *context, struct dentry *de),
2086 void *context)
2088 if (len < 3)
2089 return ERR_PTR(-ESTALE);
2091 return sb->s_export_op->find_exported_dentry(sb, fh, NULL, acceptable,
2092 context);
2095 static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len,
2096 int connectable)
2098 struct inode *inode = dentry->d_inode;
2100 if (*len < 3)
2101 return 255;
2103 if (hlist_unhashed(&inode->i_hash)) {
2104 /* Unfortunately insert_inode_hash is not idempotent,
2105 * so as we hash inodes here rather than at creation
2106 * time, we need a lock to ensure we only try
2107 * to do it once
2109 static DEFINE_SPINLOCK(lock);
2110 spin_lock(&lock);
2111 if (hlist_unhashed(&inode->i_hash))
2112 __insert_inode_hash(inode,
2113 inode->i_ino + inode->i_generation);
2114 spin_unlock(&lock);
2117 fh[0] = inode->i_generation;
2118 fh[1] = inode->i_ino;
2119 fh[2] = ((__u64)inode->i_ino) >> 32;
2121 *len = 3;
2122 return 1;
2125 static struct export_operations shmem_export_ops = {
2126 .get_parent = shmem_get_parent,
2127 .get_dentry = shmem_get_dentry,
2128 .encode_fh = shmem_encode_fh,
2129 .decode_fh = shmem_decode_fh,
2132 static int shmem_parse_options(char *options, int *mode, uid_t *uid,
2133 gid_t *gid, unsigned long *blocks, unsigned long *inodes,
2134 int *policy, nodemask_t *policy_nodes)
2136 char *this_char, *value, *rest;
2138 while (options != NULL) {
2139 this_char = options;
2140 for (;;) {
2142 * NUL-terminate this option: unfortunately,
2143 * mount options form a comma-separated list,
2144 * but mpol's nodelist may also contain commas.
2146 options = strchr(options, ',');
2147 if (options == NULL)
2148 break;
2149 options++;
2150 if (!isdigit(*options)) {
2151 options[-1] = '\0';
2152 break;
2155 if (!*this_char)
2156 continue;
2157 if ((value = strchr(this_char,'=')) != NULL) {
2158 *value++ = 0;
2159 } else {
2160 printk(KERN_ERR
2161 "tmpfs: No value for mount option '%s'\n",
2162 this_char);
2163 return 1;
2166 if (!strcmp(this_char,"size")) {
2167 unsigned long long size;
2168 size = memparse(value,&rest);
2169 if (*rest == '%') {
2170 size <<= PAGE_SHIFT;
2171 size *= totalram_pages;
2172 do_div(size, 100);
2173 rest++;
2175 if (*rest)
2176 goto bad_val;
2177 *blocks = size >> PAGE_CACHE_SHIFT;
2178 } else if (!strcmp(this_char,"nr_blocks")) {
2179 *blocks = memparse(value,&rest);
2180 if (*rest)
2181 goto bad_val;
2182 } else if (!strcmp(this_char,"nr_inodes")) {
2183 *inodes = memparse(value,&rest);
2184 if (*rest)
2185 goto bad_val;
2186 } else if (!strcmp(this_char,"mode")) {
2187 if (!mode)
2188 continue;
2189 *mode = simple_strtoul(value,&rest,8);
2190 if (*rest)
2191 goto bad_val;
2192 } else if (!strcmp(this_char,"uid")) {
2193 if (!uid)
2194 continue;
2195 *uid = simple_strtoul(value,&rest,0);
2196 if (*rest)
2197 goto bad_val;
2198 } else if (!strcmp(this_char,"gid")) {
2199 if (!gid)
2200 continue;
2201 *gid = simple_strtoul(value,&rest,0);
2202 if (*rest)
2203 goto bad_val;
2204 } else if (!strcmp(this_char,"mpol")) {
2205 if (shmem_parse_mpol(value,policy,policy_nodes))
2206 goto bad_val;
2207 } else {
2208 printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2209 this_char);
2210 return 1;
2213 return 0;
2215 bad_val:
2216 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2217 value, this_char);
2218 return 1;
2222 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2224 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2225 unsigned long max_blocks = sbinfo->max_blocks;
2226 unsigned long max_inodes = sbinfo->max_inodes;
2227 int policy = sbinfo->policy;
2228 nodemask_t policy_nodes = sbinfo->policy_nodes;
2229 unsigned long blocks;
2230 unsigned long inodes;
2231 int error = -EINVAL;
2233 if (shmem_parse_options(data, NULL, NULL, NULL, &max_blocks,
2234 &max_inodes, &policy, &policy_nodes))
2235 return error;
2237 spin_lock(&sbinfo->stat_lock);
2238 blocks = sbinfo->max_blocks - sbinfo->free_blocks;
2239 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2240 if (max_blocks < blocks)
2241 goto out;
2242 if (max_inodes < inodes)
2243 goto out;
2245 * Those tests also disallow limited->unlimited while any are in
2246 * use, so i_blocks will always be zero when max_blocks is zero;
2247 * but we must separately disallow unlimited->limited, because
2248 * in that case we have no record of how much is already in use.
2250 if (max_blocks && !sbinfo->max_blocks)
2251 goto out;
2252 if (max_inodes && !sbinfo->max_inodes)
2253 goto out;
2255 error = 0;
2256 sbinfo->max_blocks = max_blocks;
2257 sbinfo->free_blocks = max_blocks - blocks;
2258 sbinfo->max_inodes = max_inodes;
2259 sbinfo->free_inodes = max_inodes - inodes;
2260 sbinfo->policy = policy;
2261 sbinfo->policy_nodes = policy_nodes;
2262 out:
2263 spin_unlock(&sbinfo->stat_lock);
2264 return error;
2266 #endif
2268 static void shmem_put_super(struct super_block *sb)
2270 kfree(sb->s_fs_info);
2271 sb->s_fs_info = NULL;
2274 static int shmem_fill_super(struct super_block *sb,
2275 void *data, int silent)
2277 struct inode *inode;
2278 struct dentry *root;
2279 int mode = S_IRWXUGO | S_ISVTX;
2280 uid_t uid = current->fsuid;
2281 gid_t gid = current->fsgid;
2282 int err = -ENOMEM;
2283 struct shmem_sb_info *sbinfo;
2284 unsigned long blocks = 0;
2285 unsigned long inodes = 0;
2286 int policy = MPOL_DEFAULT;
2287 nodemask_t policy_nodes = node_online_map;
2289 #ifdef CONFIG_TMPFS
2291 * Per default we only allow half of the physical ram per
2292 * tmpfs instance, limiting inodes to one per page of lowmem;
2293 * but the internal instance is left unlimited.
2295 if (!(sb->s_flags & MS_NOUSER)) {
2296 blocks = totalram_pages / 2;
2297 inodes = totalram_pages - totalhigh_pages;
2298 if (inodes > blocks)
2299 inodes = blocks;
2300 if (shmem_parse_options(data, &mode, &uid, &gid, &blocks,
2301 &inodes, &policy, &policy_nodes))
2302 return -EINVAL;
2304 sb->s_export_op = &shmem_export_ops;
2305 #else
2306 sb->s_flags |= MS_NOUSER;
2307 #endif
2309 /* Round up to L1_CACHE_BYTES to resist false sharing */
2310 sbinfo = kmalloc(max((int)sizeof(struct shmem_sb_info),
2311 L1_CACHE_BYTES), GFP_KERNEL);
2312 if (!sbinfo)
2313 return -ENOMEM;
2315 spin_lock_init(&sbinfo->stat_lock);
2316 sbinfo->max_blocks = blocks;
2317 sbinfo->free_blocks = blocks;
2318 sbinfo->max_inodes = inodes;
2319 sbinfo->free_inodes = inodes;
2320 sbinfo->policy = policy;
2321 sbinfo->policy_nodes = policy_nodes;
2323 sb->s_fs_info = sbinfo;
2324 sb->s_maxbytes = SHMEM_MAX_BYTES;
2325 sb->s_blocksize = PAGE_CACHE_SIZE;
2326 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2327 sb->s_magic = TMPFS_MAGIC;
2328 sb->s_op = &shmem_ops;
2329 sb->s_time_gran = 1;
2330 #ifdef CONFIG_TMPFS_POSIX_ACL
2331 sb->s_xattr = shmem_xattr_handlers;
2332 sb->s_flags |= MS_POSIXACL;
2333 #endif
2335 inode = shmem_get_inode(sb, S_IFDIR | mode, 0);
2336 if (!inode)
2337 goto failed;
2338 inode->i_uid = uid;
2339 inode->i_gid = gid;
2340 root = d_alloc_root(inode);
2341 if (!root)
2342 goto failed_iput;
2343 sb->s_root = root;
2344 return 0;
2346 failed_iput:
2347 iput(inode);
2348 failed:
2349 shmem_put_super(sb);
2350 return err;
2353 static struct kmem_cache *shmem_inode_cachep;
2355 static struct inode *shmem_alloc_inode(struct super_block *sb)
2357 struct shmem_inode_info *p;
2358 p = (struct shmem_inode_info *)kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2359 if (!p)
2360 return NULL;
2361 return &p->vfs_inode;
2364 static void shmem_destroy_inode(struct inode *inode)
2366 if ((inode->i_mode & S_IFMT) == S_IFREG) {
2367 /* only struct inode is valid if it's an inline symlink */
2368 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2370 shmem_acl_destroy_inode(inode);
2371 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2374 static void init_once(void *foo, struct kmem_cache *cachep,
2375 unsigned long flags)
2377 struct shmem_inode_info *p = (struct shmem_inode_info *) foo;
2379 inode_init_once(&p->vfs_inode);
2380 #ifdef CONFIG_TMPFS_POSIX_ACL
2381 p->i_acl = NULL;
2382 p->i_default_acl = NULL;
2383 #endif
2386 static int init_inodecache(void)
2388 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2389 sizeof(struct shmem_inode_info),
2390 0, 0, init_once, NULL);
2391 if (shmem_inode_cachep == NULL)
2392 return -ENOMEM;
2393 return 0;
2396 static void destroy_inodecache(void)
2398 kmem_cache_destroy(shmem_inode_cachep);
2401 static const struct address_space_operations shmem_aops = {
2402 .writepage = shmem_writepage,
2403 .set_page_dirty = __set_page_dirty_no_writeback,
2404 #ifdef CONFIG_TMPFS
2405 .prepare_write = shmem_prepare_write,
2406 .commit_write = simple_commit_write,
2407 #endif
2408 .migratepage = migrate_page,
2411 static const struct file_operations shmem_file_operations = {
2412 .mmap = shmem_mmap,
2413 #ifdef CONFIG_TMPFS
2414 .llseek = generic_file_llseek,
2415 .read = shmem_file_read,
2416 .write = shmem_file_write,
2417 .fsync = simple_sync_file,
2418 .sendfile = shmem_file_sendfile,
2419 #endif
2422 static const struct inode_operations shmem_inode_operations = {
2423 .truncate = shmem_truncate,
2424 .setattr = shmem_notify_change,
2425 .truncate_range = shmem_truncate_range,
2426 #ifdef CONFIG_TMPFS_POSIX_ACL
2427 .setxattr = generic_setxattr,
2428 .getxattr = generic_getxattr,
2429 .listxattr = generic_listxattr,
2430 .removexattr = generic_removexattr,
2431 .permission = shmem_permission,
2432 #endif
2436 static const struct inode_operations shmem_dir_inode_operations = {
2437 #ifdef CONFIG_TMPFS
2438 .create = shmem_create,
2439 .lookup = simple_lookup,
2440 .link = shmem_link,
2441 .unlink = shmem_unlink,
2442 .symlink = shmem_symlink,
2443 .mkdir = shmem_mkdir,
2444 .rmdir = shmem_rmdir,
2445 .mknod = shmem_mknod,
2446 .rename = shmem_rename,
2447 #endif
2448 #ifdef CONFIG_TMPFS_POSIX_ACL
2449 .setattr = shmem_notify_change,
2450 .setxattr = generic_setxattr,
2451 .getxattr = generic_getxattr,
2452 .listxattr = generic_listxattr,
2453 .removexattr = generic_removexattr,
2454 .permission = shmem_permission,
2455 #endif
2458 static const struct inode_operations shmem_special_inode_operations = {
2459 #ifdef CONFIG_TMPFS_POSIX_ACL
2460 .setattr = shmem_notify_change,
2461 .setxattr = generic_setxattr,
2462 .getxattr = generic_getxattr,
2463 .listxattr = generic_listxattr,
2464 .removexattr = generic_removexattr,
2465 .permission = shmem_permission,
2466 #endif
2469 static const struct super_operations shmem_ops = {
2470 .alloc_inode = shmem_alloc_inode,
2471 .destroy_inode = shmem_destroy_inode,
2472 #ifdef CONFIG_TMPFS
2473 .statfs = shmem_statfs,
2474 .remount_fs = shmem_remount_fs,
2475 #endif
2476 .delete_inode = shmem_delete_inode,
2477 .drop_inode = generic_delete_inode,
2478 .put_super = shmem_put_super,
2481 static struct vm_operations_struct shmem_vm_ops = {
2482 .nopage = shmem_nopage,
2483 .populate = shmem_populate,
2484 #ifdef CONFIG_NUMA
2485 .set_policy = shmem_set_policy,
2486 .get_policy = shmem_get_policy,
2487 #endif
2491 static int shmem_get_sb(struct file_system_type *fs_type,
2492 int flags, const char *dev_name, void *data, struct vfsmount *mnt)
2494 return get_sb_nodev(fs_type, flags, data, shmem_fill_super, mnt);
2497 static struct file_system_type tmpfs_fs_type = {
2498 .owner = THIS_MODULE,
2499 .name = "tmpfs",
2500 .get_sb = shmem_get_sb,
2501 .kill_sb = kill_litter_super,
2503 static struct vfsmount *shm_mnt;
2505 static int __init init_tmpfs(void)
2507 int error;
2509 error = init_inodecache();
2510 if (error)
2511 goto out3;
2513 error = register_filesystem(&tmpfs_fs_type);
2514 if (error) {
2515 printk(KERN_ERR "Could not register tmpfs\n");
2516 goto out2;
2519 shm_mnt = vfs_kern_mount(&tmpfs_fs_type, MS_NOUSER,
2520 tmpfs_fs_type.name, NULL);
2521 if (IS_ERR(shm_mnt)) {
2522 error = PTR_ERR(shm_mnt);
2523 printk(KERN_ERR "Could not kern_mount tmpfs\n");
2524 goto out1;
2526 return 0;
2528 out1:
2529 unregister_filesystem(&tmpfs_fs_type);
2530 out2:
2531 destroy_inodecache();
2532 out3:
2533 shm_mnt = ERR_PTR(error);
2534 return error;
2536 module_init(init_tmpfs)
2539 * shmem_file_setup - get an unlinked file living in tmpfs
2541 * @name: name for dentry (to be seen in /proc/<pid>/maps
2542 * @size: size to be set for the file
2545 struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags)
2547 int error;
2548 struct file *file;
2549 struct inode *inode;
2550 struct dentry *dentry, *root;
2551 struct qstr this;
2553 if (IS_ERR(shm_mnt))
2554 return (void *)shm_mnt;
2556 if (size < 0 || size > SHMEM_MAX_BYTES)
2557 return ERR_PTR(-EINVAL);
2559 if (shmem_acct_size(flags, size))
2560 return ERR_PTR(-ENOMEM);
2562 error = -ENOMEM;
2563 this.name = name;
2564 this.len = strlen(name);
2565 this.hash = 0; /* will go */
2566 root = shm_mnt->mnt_root;
2567 dentry = d_alloc(root, &this);
2568 if (!dentry)
2569 goto put_memory;
2571 error = -ENFILE;
2572 file = get_empty_filp();
2573 if (!file)
2574 goto put_dentry;
2576 error = -ENOSPC;
2577 inode = shmem_get_inode(root->d_sb, S_IFREG | S_IRWXUGO, 0);
2578 if (!inode)
2579 goto close_file;
2581 SHMEM_I(inode)->flags = flags & VM_ACCOUNT;
2582 d_instantiate(dentry, inode);
2583 inode->i_size = size;
2584 inode->i_nlink = 0; /* It is unlinked */
2585 file->f_path.mnt = mntget(shm_mnt);
2586 file->f_path.dentry = dentry;
2587 file->f_mapping = inode->i_mapping;
2588 file->f_op = &shmem_file_operations;
2589 file->f_mode = FMODE_WRITE | FMODE_READ;
2590 return file;
2592 close_file:
2593 put_filp(file);
2594 put_dentry:
2595 dput(dentry);
2596 put_memory:
2597 shmem_unacct_size(flags, size);
2598 return ERR_PTR(error);
2602 * shmem_zero_setup - setup a shared anonymous mapping
2604 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2606 int shmem_zero_setup(struct vm_area_struct *vma)
2608 struct file *file;
2609 loff_t size = vma->vm_end - vma->vm_start;
2611 file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2612 if (IS_ERR(file))
2613 return PTR_ERR(file);
2615 if (vma->vm_file)
2616 fput(vma->vm_file);
2617 vma->vm_file = file;
2618 vma->vm_ops = &shmem_vm_ops;
2619 return 0;