inotify: fix race
[linux-2.6.22.y-op.git] / fs / ocfs2 / aops.c
blob3175288a10caee711cd4242325a8a66dab755840
1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
4 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
22 #include <linux/fs.h>
23 #include <linux/slab.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <asm/byteorder.h>
27 #include <linux/swap.h>
28 #include <linux/pipe_fs_i.h>
30 #define MLOG_MASK_PREFIX ML_FILE_IO
31 #include <cluster/masklog.h>
33 #include "ocfs2.h"
35 #include "alloc.h"
36 #include "aops.h"
37 #include "dlmglue.h"
38 #include "extent_map.h"
39 #include "file.h"
40 #include "inode.h"
41 #include "journal.h"
42 #include "suballoc.h"
43 #include "super.h"
44 #include "symlink.h"
46 #include "buffer_head_io.h"
48 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
49 struct buffer_head *bh_result, int create)
51 int err = -EIO;
52 int status;
53 struct ocfs2_dinode *fe = NULL;
54 struct buffer_head *bh = NULL;
55 struct buffer_head *buffer_cache_bh = NULL;
56 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
57 void *kaddr;
59 mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
60 (unsigned long long)iblock, bh_result, create);
62 BUG_ON(ocfs2_inode_is_fast_symlink(inode));
64 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
65 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
66 (unsigned long long)iblock);
67 goto bail;
70 status = ocfs2_read_block(OCFS2_SB(inode->i_sb),
71 OCFS2_I(inode)->ip_blkno,
72 &bh, OCFS2_BH_CACHED, inode);
73 if (status < 0) {
74 mlog_errno(status);
75 goto bail;
77 fe = (struct ocfs2_dinode *) bh->b_data;
79 if (!OCFS2_IS_VALID_DINODE(fe)) {
80 mlog(ML_ERROR, "Invalid dinode #%llu: signature = %.*s\n",
81 (unsigned long long)le64_to_cpu(fe->i_blkno), 7,
82 fe->i_signature);
83 goto bail;
86 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
87 le32_to_cpu(fe->i_clusters))) {
88 mlog(ML_ERROR, "block offset is outside the allocated size: "
89 "%llu\n", (unsigned long long)iblock);
90 goto bail;
93 /* We don't use the page cache to create symlink data, so if
94 * need be, copy it over from the buffer cache. */
95 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
96 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
97 iblock;
98 buffer_cache_bh = sb_getblk(osb->sb, blkno);
99 if (!buffer_cache_bh) {
100 mlog(ML_ERROR, "couldn't getblock for symlink!\n");
101 goto bail;
104 /* we haven't locked out transactions, so a commit
105 * could've happened. Since we've got a reference on
106 * the bh, even if it commits while we're doing the
107 * copy, the data is still good. */
108 if (buffer_jbd(buffer_cache_bh)
109 && ocfs2_inode_is_new(inode)) {
110 kaddr = kmap_atomic(bh_result->b_page, KM_USER0);
111 if (!kaddr) {
112 mlog(ML_ERROR, "couldn't kmap!\n");
113 goto bail;
115 memcpy(kaddr + (bh_result->b_size * iblock),
116 buffer_cache_bh->b_data,
117 bh_result->b_size);
118 kunmap_atomic(kaddr, KM_USER0);
119 set_buffer_uptodate(bh_result);
121 brelse(buffer_cache_bh);
124 map_bh(bh_result, inode->i_sb,
125 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
127 err = 0;
129 bail:
130 if (bh)
131 brelse(bh);
133 mlog_exit(err);
134 return err;
137 static int ocfs2_get_block(struct inode *inode, sector_t iblock,
138 struct buffer_head *bh_result, int create)
140 int err = 0;
141 unsigned int ext_flags;
142 u64 p_blkno, past_eof;
143 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
145 mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
146 (unsigned long long)iblock, bh_result, create);
148 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
149 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
150 inode, inode->i_ino);
152 if (S_ISLNK(inode->i_mode)) {
153 /* this always does I/O for some reason. */
154 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
155 goto bail;
158 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, NULL,
159 &ext_flags);
160 if (err) {
161 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
162 "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
163 (unsigned long long)p_blkno);
164 goto bail;
168 * ocfs2 never allocates in this function - the only time we
169 * need to use BH_New is when we're extending i_size on a file
170 * system which doesn't support holes, in which case BH_New
171 * allows block_prepare_write() to zero.
173 mlog_bug_on_msg(create && p_blkno == 0 && ocfs2_sparse_alloc(osb),
174 "ino %lu, iblock %llu\n", inode->i_ino,
175 (unsigned long long)iblock);
177 /* Treat the unwritten extent as a hole for zeroing purposes. */
178 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
179 map_bh(bh_result, inode->i_sb, p_blkno);
181 if (!ocfs2_sparse_alloc(osb)) {
182 if (p_blkno == 0) {
183 err = -EIO;
184 mlog(ML_ERROR,
185 "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
186 (unsigned long long)iblock,
187 (unsigned long long)p_blkno,
188 (unsigned long long)OCFS2_I(inode)->ip_blkno);
189 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
190 dump_stack();
193 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
194 mlog(0, "Inode %lu, past_eof = %llu\n", inode->i_ino,
195 (unsigned long long)past_eof);
197 if (create && (iblock >= past_eof))
198 set_buffer_new(bh_result);
201 bail:
202 if (err < 0)
203 err = -EIO;
205 mlog_exit(err);
206 return err;
209 static int ocfs2_readpage(struct file *file, struct page *page)
211 struct inode *inode = page->mapping->host;
212 loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
213 int ret, unlock = 1;
215 mlog_entry("(0x%p, %lu)\n", file, (page ? page->index : 0));
217 ret = ocfs2_meta_lock_with_page(inode, NULL, 0, page);
218 if (ret != 0) {
219 if (ret == AOP_TRUNCATED_PAGE)
220 unlock = 0;
221 mlog_errno(ret);
222 goto out;
225 if (down_read_trylock(&OCFS2_I(inode)->ip_alloc_sem) == 0) {
226 ret = AOP_TRUNCATED_PAGE;
227 goto out_meta_unlock;
231 * i_size might have just been updated as we grabed the meta lock. We
232 * might now be discovering a truncate that hit on another node.
233 * block_read_full_page->get_block freaks out if it is asked to read
234 * beyond the end of a file, so we check here. Callers
235 * (generic_file_read, fault->nopage) are clever enough to check i_size
236 * and notice that the page they just read isn't needed.
238 * XXX sys_readahead() seems to get that wrong?
240 if (start >= i_size_read(inode)) {
241 zero_user_page(page, 0, PAGE_SIZE, KM_USER0);
242 SetPageUptodate(page);
243 ret = 0;
244 goto out_alloc;
247 ret = ocfs2_data_lock_with_page(inode, 0, page);
248 if (ret != 0) {
249 if (ret == AOP_TRUNCATED_PAGE)
250 unlock = 0;
251 mlog_errno(ret);
252 goto out_alloc;
255 ret = block_read_full_page(page, ocfs2_get_block);
256 unlock = 0;
258 ocfs2_data_unlock(inode, 0);
259 out_alloc:
260 up_read(&OCFS2_I(inode)->ip_alloc_sem);
261 out_meta_unlock:
262 ocfs2_meta_unlock(inode, 0);
263 out:
264 if (unlock)
265 unlock_page(page);
266 mlog_exit(ret);
267 return ret;
270 /* Note: Because we don't support holes, our allocation has
271 * already happened (allocation writes zeros to the file data)
272 * so we don't have to worry about ordered writes in
273 * ocfs2_writepage.
275 * ->writepage is called during the process of invalidating the page cache
276 * during blocked lock processing. It can't block on any cluster locks
277 * to during block mapping. It's relying on the fact that the block
278 * mapping can't have disappeared under the dirty pages that it is
279 * being asked to write back.
281 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
283 int ret;
285 mlog_entry("(0x%p)\n", page);
287 ret = block_write_full_page(page, ocfs2_get_block, wbc);
289 mlog_exit(ret);
291 return ret;
295 * This is called from ocfs2_write_zero_page() which has handled it's
296 * own cluster locking and has ensured allocation exists for those
297 * blocks to be written.
299 int ocfs2_prepare_write_nolock(struct inode *inode, struct page *page,
300 unsigned from, unsigned to)
302 int ret;
304 down_read(&OCFS2_I(inode)->ip_alloc_sem);
306 ret = block_prepare_write(page, from, to, ocfs2_get_block);
308 up_read(&OCFS2_I(inode)->ip_alloc_sem);
310 return ret;
313 /* Taken from ext3. We don't necessarily need the full blown
314 * functionality yet, but IMHO it's better to cut and paste the whole
315 * thing so we can avoid introducing our own bugs (and easily pick up
316 * their fixes when they happen) --Mark */
317 int walk_page_buffers( handle_t *handle,
318 struct buffer_head *head,
319 unsigned from,
320 unsigned to,
321 int *partial,
322 int (*fn)( handle_t *handle,
323 struct buffer_head *bh))
325 struct buffer_head *bh;
326 unsigned block_start, block_end;
327 unsigned blocksize = head->b_size;
328 int err, ret = 0;
329 struct buffer_head *next;
331 for ( bh = head, block_start = 0;
332 ret == 0 && (bh != head || !block_start);
333 block_start = block_end, bh = next)
335 next = bh->b_this_page;
336 block_end = block_start + blocksize;
337 if (block_end <= from || block_start >= to) {
338 if (partial && !buffer_uptodate(bh))
339 *partial = 1;
340 continue;
342 err = (*fn)(handle, bh);
343 if (!ret)
344 ret = err;
346 return ret;
349 handle_t *ocfs2_start_walk_page_trans(struct inode *inode,
350 struct page *page,
351 unsigned from,
352 unsigned to)
354 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
355 handle_t *handle = NULL;
356 int ret = 0;
358 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
359 if (!handle) {
360 ret = -ENOMEM;
361 mlog_errno(ret);
362 goto out;
365 if (ocfs2_should_order_data(inode)) {
366 ret = walk_page_buffers(handle,
367 page_buffers(page),
368 from, to, NULL,
369 ocfs2_journal_dirty_data);
370 if (ret < 0)
371 mlog_errno(ret);
373 out:
374 if (ret) {
375 if (handle)
376 ocfs2_commit_trans(osb, handle);
377 handle = ERR_PTR(ret);
379 return handle;
382 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
384 sector_t status;
385 u64 p_blkno = 0;
386 int err = 0;
387 struct inode *inode = mapping->host;
389 mlog_entry("(block = %llu)\n", (unsigned long long)block);
391 /* We don't need to lock journal system files, since they aren't
392 * accessed concurrently from multiple nodes.
394 if (!INODE_JOURNAL(inode)) {
395 err = ocfs2_meta_lock(inode, NULL, 0);
396 if (err) {
397 if (err != -ENOENT)
398 mlog_errno(err);
399 goto bail;
401 down_read(&OCFS2_I(inode)->ip_alloc_sem);
404 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL, NULL);
406 if (!INODE_JOURNAL(inode)) {
407 up_read(&OCFS2_I(inode)->ip_alloc_sem);
408 ocfs2_meta_unlock(inode, 0);
411 if (err) {
412 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
413 (unsigned long long)block);
414 mlog_errno(err);
415 goto bail;
419 bail:
420 status = err ? 0 : p_blkno;
422 mlog_exit((int)status);
424 return status;
428 * TODO: Make this into a generic get_blocks function.
430 * From do_direct_io in direct-io.c:
431 * "So what we do is to permit the ->get_blocks function to populate
432 * bh.b_size with the size of IO which is permitted at this offset and
433 * this i_blkbits."
435 * This function is called directly from get_more_blocks in direct-io.c.
437 * called like this: dio->get_blocks(dio->inode, fs_startblk,
438 * fs_count, map_bh, dio->rw == WRITE);
440 static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
441 struct buffer_head *bh_result, int create)
443 int ret;
444 u64 p_blkno, inode_blocks, contig_blocks;
445 unsigned int ext_flags;
446 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
447 unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
449 /* This function won't even be called if the request isn't all
450 * nicely aligned and of the right size, so there's no need
451 * for us to check any of that. */
453 inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
456 * Any write past EOF is not allowed because we'd be extending.
458 if (create && (iblock + max_blocks) > inode_blocks) {
459 ret = -EIO;
460 goto bail;
463 /* This figures out the size of the next contiguous block, and
464 * our logical offset */
465 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
466 &contig_blocks, &ext_flags);
467 if (ret) {
468 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
469 (unsigned long long)iblock);
470 ret = -EIO;
471 goto bail;
474 if (!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)) && !p_blkno) {
475 ocfs2_error(inode->i_sb,
476 "Inode %llu has a hole at block %llu\n",
477 (unsigned long long)OCFS2_I(inode)->ip_blkno,
478 (unsigned long long)iblock);
479 ret = -EROFS;
480 goto bail;
484 * get_more_blocks() expects us to describe a hole by clearing
485 * the mapped bit on bh_result().
487 * Consider an unwritten extent as a hole.
489 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
490 map_bh(bh_result, inode->i_sb, p_blkno);
491 else {
493 * ocfs2_prepare_inode_for_write() should have caught
494 * the case where we'd be filling a hole and triggered
495 * a buffered write instead.
497 if (create) {
498 ret = -EIO;
499 mlog_errno(ret);
500 goto bail;
503 clear_buffer_mapped(bh_result);
506 /* make sure we don't map more than max_blocks blocks here as
507 that's all the kernel will handle at this point. */
508 if (max_blocks < contig_blocks)
509 contig_blocks = max_blocks;
510 bh_result->b_size = contig_blocks << blocksize_bits;
511 bail:
512 return ret;
516 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
517 * particularly interested in the aio/dio case. Like the core uses
518 * i_alloc_sem, we use the rw_lock DLM lock to protect io on one node from
519 * truncation on another.
521 static void ocfs2_dio_end_io(struct kiocb *iocb,
522 loff_t offset,
523 ssize_t bytes,
524 void *private)
526 struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
527 int level;
529 /* this io's submitter should not have unlocked this before we could */
530 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
532 ocfs2_iocb_clear_rw_locked(iocb);
534 level = ocfs2_iocb_rw_locked_level(iocb);
535 if (!level)
536 up_read(&inode->i_alloc_sem);
537 ocfs2_rw_unlock(inode, level);
541 * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
542 * from ext3. PageChecked() bits have been removed as OCFS2 does not
543 * do journalled data.
545 static void ocfs2_invalidatepage(struct page *page, unsigned long offset)
547 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
549 journal_invalidatepage(journal, page, offset);
552 static int ocfs2_releasepage(struct page *page, gfp_t wait)
554 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
556 if (!page_has_buffers(page))
557 return 0;
558 return journal_try_to_free_buffers(journal, page, wait);
561 static ssize_t ocfs2_direct_IO(int rw,
562 struct kiocb *iocb,
563 const struct iovec *iov,
564 loff_t offset,
565 unsigned long nr_segs)
567 struct file *file = iocb->ki_filp;
568 struct inode *inode = file->f_path.dentry->d_inode->i_mapping->host;
569 int ret;
571 mlog_entry_void();
573 if (!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) {
575 * We get PR data locks even for O_DIRECT. This
576 * allows concurrent O_DIRECT I/O but doesn't let
577 * O_DIRECT with extending and buffered zeroing writes
578 * race. If they did race then the buffered zeroing
579 * could be written back after the O_DIRECT I/O. It's
580 * one thing to tell people not to mix buffered and
581 * O_DIRECT writes, but expecting them to understand
582 * that file extension is also an implicit buffered
583 * write is too much. By getting the PR we force
584 * writeback of the buffered zeroing before
585 * proceeding.
587 ret = ocfs2_data_lock(inode, 0);
588 if (ret < 0) {
589 mlog_errno(ret);
590 goto out;
592 ocfs2_data_unlock(inode, 0);
595 ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
596 inode->i_sb->s_bdev, iov, offset,
597 nr_segs,
598 ocfs2_direct_IO_get_blocks,
599 ocfs2_dio_end_io);
600 out:
601 mlog_exit(ret);
602 return ret;
605 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
606 u32 cpos,
607 unsigned int *start,
608 unsigned int *end)
610 unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
612 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
613 unsigned int cpp;
615 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
617 cluster_start = cpos % cpp;
618 cluster_start = cluster_start << osb->s_clustersize_bits;
620 cluster_end = cluster_start + osb->s_clustersize;
623 BUG_ON(cluster_start > PAGE_SIZE);
624 BUG_ON(cluster_end > PAGE_SIZE);
626 if (start)
627 *start = cluster_start;
628 if (end)
629 *end = cluster_end;
633 * 'from' and 'to' are the region in the page to avoid zeroing.
635 * If pagesize > clustersize, this function will avoid zeroing outside
636 * of the cluster boundary.
638 * from == to == 0 is code for "zero the entire cluster region"
640 static void ocfs2_clear_page_regions(struct page *page,
641 struct ocfs2_super *osb, u32 cpos,
642 unsigned from, unsigned to)
644 void *kaddr;
645 unsigned int cluster_start, cluster_end;
647 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
649 kaddr = kmap_atomic(page, KM_USER0);
651 if (from || to) {
652 if (from > cluster_start)
653 memset(kaddr + cluster_start, 0, from - cluster_start);
654 if (to < cluster_end)
655 memset(kaddr + to, 0, cluster_end - to);
656 } else {
657 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
660 kunmap_atomic(kaddr, KM_USER0);
664 * Nonsparse file systems fully allocate before we get to the write
665 * code. This prevents ocfs2_write() from tagging the write as an
666 * allocating one, which means ocfs2_map_page_blocks() might try to
667 * read-in the blocks at the tail of our file. Avoid reading them by
668 * testing i_size against each block offset.
670 static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
671 unsigned int block_start)
673 u64 offset = page_offset(page) + block_start;
675 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
676 return 1;
678 if (i_size_read(inode) > offset)
679 return 1;
681 return 0;
685 * Some of this taken from block_prepare_write(). We already have our
686 * mapping by now though, and the entire write will be allocating or
687 * it won't, so not much need to use BH_New.
689 * This will also skip zeroing, which is handled externally.
691 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
692 struct inode *inode, unsigned int from,
693 unsigned int to, int new)
695 int ret = 0;
696 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
697 unsigned int block_end, block_start;
698 unsigned int bsize = 1 << inode->i_blkbits;
700 if (!page_has_buffers(page))
701 create_empty_buffers(page, bsize, 0);
703 head = page_buffers(page);
704 for (bh = head, block_start = 0; bh != head || !block_start;
705 bh = bh->b_this_page, block_start += bsize) {
706 block_end = block_start + bsize;
709 * Ignore blocks outside of our i/o range -
710 * they may belong to unallocated clusters.
712 if (block_start >= to || block_end <= from) {
713 if (PageUptodate(page))
714 set_buffer_uptodate(bh);
715 continue;
719 * For an allocating write with cluster size >= page
720 * size, we always write the entire page.
723 if (buffer_new(bh))
724 clear_buffer_new(bh);
726 if (!buffer_mapped(bh)) {
727 map_bh(bh, inode->i_sb, *p_blkno);
728 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
731 if (PageUptodate(page)) {
732 if (!buffer_uptodate(bh))
733 set_buffer_uptodate(bh);
734 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
735 ocfs2_should_read_blk(inode, page, block_start) &&
736 (block_start < from || block_end > to)) {
737 ll_rw_block(READ, 1, &bh);
738 *wait_bh++=bh;
741 *p_blkno = *p_blkno + 1;
745 * If we issued read requests - let them complete.
747 while(wait_bh > wait) {
748 wait_on_buffer(*--wait_bh);
749 if (!buffer_uptodate(*wait_bh))
750 ret = -EIO;
753 if (ret == 0 || !new)
754 return ret;
757 * If we get -EIO above, zero out any newly allocated blocks
758 * to avoid exposing stale data.
760 bh = head;
761 block_start = 0;
762 do {
763 void *kaddr;
765 block_end = block_start + bsize;
766 if (block_end <= from)
767 goto next_bh;
768 if (block_start >= to)
769 break;
771 kaddr = kmap_atomic(page, KM_USER0);
772 memset(kaddr+block_start, 0, bh->b_size);
773 flush_dcache_page(page);
774 kunmap_atomic(kaddr, KM_USER0);
775 set_buffer_uptodate(bh);
776 mark_buffer_dirty(bh);
778 next_bh:
779 block_start = block_end;
780 bh = bh->b_this_page;
781 } while (bh != head);
783 return ret;
787 * This will copy user data from the buffer page in the splice
788 * context.
790 * For now, we ignore SPLICE_F_MOVE as that would require some extra
791 * communication out all the way to ocfs2_write().
793 int ocfs2_map_and_write_splice_data(struct inode *inode,
794 struct ocfs2_write_ctxt *wc, u64 *p_blkno,
795 unsigned int *ret_from, unsigned int *ret_to)
797 int ret;
798 unsigned int to, from, cluster_start, cluster_end;
799 char *src, *dst;
800 struct ocfs2_splice_write_priv *sp = wc->w_private;
801 struct pipe_buffer *buf = sp->s_buf;
802 unsigned long bytes, src_from;
803 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
805 ocfs2_figure_cluster_boundaries(osb, wc->w_cpos, &cluster_start,
806 &cluster_end);
808 from = sp->s_offset;
809 src_from = sp->s_buf_offset;
810 bytes = wc->w_count;
812 if (wc->w_large_pages) {
814 * For cluster size < page size, we have to
815 * calculate pos within the cluster and obey
816 * the rightmost boundary.
818 bytes = min(bytes, (unsigned long)(osb->s_clustersize
819 - (wc->w_pos & (osb->s_clustersize - 1))));
821 to = from + bytes;
823 BUG_ON(from > PAGE_CACHE_SIZE);
824 BUG_ON(to > PAGE_CACHE_SIZE);
825 BUG_ON(from < cluster_start);
826 BUG_ON(to > cluster_end);
828 if (wc->w_this_page_new)
829 ret = ocfs2_map_page_blocks(wc->w_this_page, p_blkno, inode,
830 cluster_start, cluster_end, 1);
831 else
832 ret = ocfs2_map_page_blocks(wc->w_this_page, p_blkno, inode,
833 from, to, 0);
834 if (ret) {
835 mlog_errno(ret);
836 goto out;
839 src = buf->ops->map(sp->s_pipe, buf, 1);
840 dst = kmap_atomic(wc->w_this_page, KM_USER1);
841 memcpy(dst + from, src + src_from, bytes);
842 kunmap_atomic(wc->w_this_page, KM_USER1);
843 buf->ops->unmap(sp->s_pipe, buf, src);
845 wc->w_finished_copy = 1;
847 *ret_from = from;
848 *ret_to = to;
849 out:
851 return bytes ? (unsigned int)bytes : ret;
855 * This will copy user data from the iovec in the buffered write
856 * context.
858 int ocfs2_map_and_write_user_data(struct inode *inode,
859 struct ocfs2_write_ctxt *wc, u64 *p_blkno,
860 unsigned int *ret_from, unsigned int *ret_to)
862 int ret;
863 unsigned int to, from, cluster_start, cluster_end;
864 unsigned long bytes, src_from;
865 char *dst;
866 struct ocfs2_buffered_write_priv *bp = wc->w_private;
867 const struct iovec *cur_iov = bp->b_cur_iov;
868 char __user *buf;
869 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
871 ocfs2_figure_cluster_boundaries(osb, wc->w_cpos, &cluster_start,
872 &cluster_end);
874 buf = cur_iov->iov_base + bp->b_cur_off;
875 src_from = (unsigned long)buf & ~PAGE_CACHE_MASK;
877 from = wc->w_pos & (PAGE_CACHE_SIZE - 1);
880 * This is a lot of comparisons, but it reads quite
881 * easily, which is important here.
883 /* Stay within the src page */
884 bytes = PAGE_SIZE - src_from;
885 /* Stay within the vector */
886 bytes = min(bytes,
887 (unsigned long)(cur_iov->iov_len - bp->b_cur_off));
888 /* Stay within count */
889 bytes = min(bytes, (unsigned long)wc->w_count);
891 * For clustersize > page size, just stay within
892 * target page, otherwise we have to calculate pos
893 * within the cluster and obey the rightmost
894 * boundary.
896 if (wc->w_large_pages) {
898 * For cluster size < page size, we have to
899 * calculate pos within the cluster and obey
900 * the rightmost boundary.
902 bytes = min(bytes, (unsigned long)(osb->s_clustersize
903 - (wc->w_pos & (osb->s_clustersize - 1))));
904 } else {
906 * cluster size > page size is the most common
907 * case - we just stay within the target page
908 * boundary.
910 bytes = min(bytes, PAGE_CACHE_SIZE - from);
913 to = from + bytes;
915 BUG_ON(from > PAGE_CACHE_SIZE);
916 BUG_ON(to > PAGE_CACHE_SIZE);
917 BUG_ON(from < cluster_start);
918 BUG_ON(to > cluster_end);
920 if (wc->w_this_page_new)
921 ret = ocfs2_map_page_blocks(wc->w_this_page, p_blkno, inode,
922 cluster_start, cluster_end, 1);
923 else
924 ret = ocfs2_map_page_blocks(wc->w_this_page, p_blkno, inode,
925 from, to, 0);
926 if (ret) {
927 mlog_errno(ret);
928 goto out;
931 dst = kmap(wc->w_this_page);
932 memcpy(dst + from, bp->b_src_buf + src_from, bytes);
933 kunmap(wc->w_this_page);
936 * XXX: This is slow, but simple. The caller of
937 * ocfs2_buffered_write_cluster() is responsible for
938 * passing through the iovecs, so it's difficult to
939 * predict what our next step is in here after our
940 * initial write. A future version should be pushing
941 * that iovec manipulation further down.
943 * By setting this, we indicate that a copy from user
944 * data was done, and subsequent calls for this
945 * cluster will skip copying more data.
947 wc->w_finished_copy = 1;
949 *ret_from = from;
950 *ret_to = to;
951 out:
953 return bytes ? (unsigned int)bytes : ret;
957 * Map, fill and write a page to disk.
959 * The work of copying data is done via callback. Newly allocated
960 * pages which don't take user data will be zero'd (set 'new' to
961 * indicate an allocating write)
963 * Returns a negative error code or the number of bytes copied into
964 * the page.
966 static int ocfs2_write_data_page(struct inode *inode, handle_t *handle,
967 u64 *p_blkno, struct page *page,
968 struct ocfs2_write_ctxt *wc, int new)
970 int ret, copied = 0;
971 unsigned int from = 0, to = 0;
972 unsigned int cluster_start, cluster_end;
973 unsigned int zero_from = 0, zero_to = 0;
975 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), wc->w_cpos,
976 &cluster_start, &cluster_end);
978 if ((wc->w_pos >> PAGE_CACHE_SHIFT) == page->index
979 && !wc->w_finished_copy) {
981 wc->w_this_page = page;
982 wc->w_this_page_new = new;
983 ret = wc->w_write_data_page(inode, wc, p_blkno, &from, &to);
984 if (ret < 0) {
985 mlog_errno(ret);
986 goto out;
989 copied = ret;
991 zero_from = from;
992 zero_to = to;
993 if (new) {
994 from = cluster_start;
995 to = cluster_end;
997 } else {
999 * If we haven't allocated the new page yet, we
1000 * shouldn't be writing it out without copying user
1001 * data. This is likely a math error from the caller.
1003 BUG_ON(!new);
1005 from = cluster_start;
1006 to = cluster_end;
1008 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1009 cluster_start, cluster_end, 1);
1010 if (ret) {
1011 mlog_errno(ret);
1012 goto out;
1017 * Parts of newly allocated pages need to be zero'd.
1019 * Above, we have also rewritten 'to' and 'from' - as far as
1020 * the rest of the function is concerned, the entire cluster
1021 * range inside of a page needs to be written.
1023 * We can skip this if the page is up to date - it's already
1024 * been zero'd from being read in as a hole.
1026 if (new && !PageUptodate(page))
1027 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1028 wc->w_cpos, zero_from, zero_to);
1030 flush_dcache_page(page);
1032 if (ocfs2_should_order_data(inode)) {
1033 ret = walk_page_buffers(handle,
1034 page_buffers(page),
1035 from, to, NULL,
1036 ocfs2_journal_dirty_data);
1037 if (ret < 0)
1038 mlog_errno(ret);
1042 * We don't use generic_commit_write() because we need to
1043 * handle our own i_size update.
1045 ret = block_commit_write(page, from, to);
1046 if (ret)
1047 mlog_errno(ret);
1048 out:
1050 return copied ? copied : ret;
1054 * Do the actual write of some data into an inode. Optionally allocate
1055 * in order to fulfill the write.
1057 * cpos is the logical cluster offset within the file to write at
1059 * 'phys' is the physical mapping of that offset. a 'phys' value of
1060 * zero indicates that allocation is required. In this case, data_ac
1061 * and meta_ac should be valid (meta_ac can be null if metadata
1062 * allocation isn't required).
1064 static ssize_t ocfs2_write(struct file *file, u32 phys, handle_t *handle,
1065 struct buffer_head *di_bh,
1066 struct ocfs2_alloc_context *data_ac,
1067 struct ocfs2_alloc_context *meta_ac,
1068 struct ocfs2_write_ctxt *wc)
1070 int ret, i, numpages = 1, new;
1071 unsigned int copied = 0;
1072 u32 tmp_pos;
1073 u64 v_blkno, p_blkno;
1074 struct address_space *mapping = file->f_mapping;
1075 struct inode *inode = mapping->host;
1076 unsigned long index, start;
1077 struct page **cpages;
1079 new = phys == 0 ? 1 : 0;
1082 * Figure out how many pages we'll be manipulating here. For
1083 * non allocating write, we just change the one
1084 * page. Otherwise, we'll need a whole clusters worth.
1086 if (new)
1087 numpages = ocfs2_pages_per_cluster(inode->i_sb);
1089 cpages = kzalloc(sizeof(*cpages) * numpages, GFP_NOFS);
1090 if (!cpages) {
1091 ret = -ENOMEM;
1092 mlog_errno(ret);
1093 return ret;
1097 * Fill our page array first. That way we've grabbed enough so
1098 * that we can zero and flush if we error after adding the
1099 * extent.
1101 if (new) {
1102 start = ocfs2_align_clusters_to_page_index(inode->i_sb,
1103 wc->w_cpos);
1104 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, wc->w_cpos);
1105 } else {
1106 start = wc->w_pos >> PAGE_CACHE_SHIFT;
1107 v_blkno = wc->w_pos >> inode->i_sb->s_blocksize_bits;
1110 for(i = 0; i < numpages; i++) {
1111 index = start + i;
1113 cpages[i] = find_or_create_page(mapping, index, GFP_NOFS);
1114 if (!cpages[i]) {
1115 ret = -ENOMEM;
1116 mlog_errno(ret);
1117 goto out;
1121 if (new) {
1123 * This is safe to call with the page locks - it won't take
1124 * any additional semaphores or cluster locks.
1126 tmp_pos = wc->w_cpos;
1127 ret = ocfs2_do_extend_allocation(OCFS2_SB(inode->i_sb), inode,
1128 &tmp_pos, 1, di_bh, handle,
1129 data_ac, meta_ac, NULL);
1131 * This shouldn't happen because we must have already
1132 * calculated the correct meta data allocation required. The
1133 * internal tree allocation code should know how to increase
1134 * transaction credits itself.
1136 * If need be, we could handle -EAGAIN for a
1137 * RESTART_TRANS here.
1139 mlog_bug_on_msg(ret == -EAGAIN,
1140 "Inode %llu: EAGAIN return during allocation.\n",
1141 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1142 if (ret < 0) {
1143 mlog_errno(ret);
1144 goto out;
1148 ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1149 NULL);
1150 if (ret < 0) {
1153 * XXX: Should we go readonly here?
1156 mlog_errno(ret);
1157 goto out;
1160 BUG_ON(p_blkno == 0);
1162 for(i = 0; i < numpages; i++) {
1163 ret = ocfs2_write_data_page(inode, handle, &p_blkno, cpages[i],
1164 wc, new);
1165 if (ret < 0) {
1166 mlog_errno(ret);
1167 goto out;
1170 copied += ret;
1173 out:
1174 for(i = 0; i < numpages; i++) {
1175 unlock_page(cpages[i]);
1176 mark_page_accessed(cpages[i]);
1177 page_cache_release(cpages[i]);
1179 kfree(cpages);
1181 return copied ? copied : ret;
1184 static void ocfs2_write_ctxt_init(struct ocfs2_write_ctxt *wc,
1185 struct ocfs2_super *osb, loff_t pos,
1186 size_t count, ocfs2_page_writer *cb,
1187 void *cb_priv)
1189 wc->w_count = count;
1190 wc->w_pos = pos;
1191 wc->w_cpos = wc->w_pos >> osb->s_clustersize_bits;
1192 wc->w_finished_copy = 0;
1194 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
1195 wc->w_large_pages = 1;
1196 else
1197 wc->w_large_pages = 0;
1199 wc->w_write_data_page = cb;
1200 wc->w_private = cb_priv;
1204 * Write a cluster to an inode. The cluster may not be allocated yet,
1205 * in which case it will be. This only exists for buffered writes -
1206 * O_DIRECT takes a more "traditional" path through the kernel.
1208 * The caller is responsible for incrementing pos, written counts, etc
1210 * For file systems that don't support sparse files, pre-allocation
1211 * and page zeroing up until cpos should be done prior to this
1212 * function call.
1214 * Callers should be holding i_sem, and the rw cluster lock.
1216 * Returns the number of user bytes written, or less than zero for
1217 * error.
1219 ssize_t ocfs2_buffered_write_cluster(struct file *file, loff_t pos,
1220 size_t count, ocfs2_page_writer *actor,
1221 void *priv)
1223 int ret, credits = OCFS2_INODE_UPDATE_CREDITS;
1224 ssize_t written = 0;
1225 u32 phys;
1226 struct inode *inode = file->f_mapping->host;
1227 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1228 struct buffer_head *di_bh = NULL;
1229 struct ocfs2_dinode *di;
1230 struct ocfs2_alloc_context *data_ac = NULL;
1231 struct ocfs2_alloc_context *meta_ac = NULL;
1232 handle_t *handle;
1233 struct ocfs2_write_ctxt wc;
1235 ocfs2_write_ctxt_init(&wc, osb, pos, count, actor, priv);
1237 ret = ocfs2_meta_lock(inode, &di_bh, 1);
1238 if (ret) {
1239 mlog_errno(ret);
1240 goto out;
1242 di = (struct ocfs2_dinode *)di_bh->b_data;
1245 * Take alloc sem here to prevent concurrent lookups. That way
1246 * the mapping, zeroing and tree manipulation within
1247 * ocfs2_write() will be safe against ->readpage(). This
1248 * should also serve to lock out allocation from a shared
1249 * writeable region.
1251 down_write(&OCFS2_I(inode)->ip_alloc_sem);
1253 ret = ocfs2_get_clusters(inode, wc.w_cpos, &phys, NULL, NULL);
1254 if (ret) {
1255 mlog_errno(ret);
1256 goto out_meta;
1259 /* phys == 0 means that allocation is required. */
1260 if (phys == 0) {
1261 ret = ocfs2_lock_allocators(inode, di, 1, &data_ac, &meta_ac);
1262 if (ret) {
1263 mlog_errno(ret);
1264 goto out_meta;
1267 credits = ocfs2_calc_extend_credits(inode->i_sb, di, 1);
1270 ret = ocfs2_data_lock(inode, 1);
1271 if (ret) {
1272 mlog_errno(ret);
1273 goto out_meta;
1276 handle = ocfs2_start_trans(osb, credits);
1277 if (IS_ERR(handle)) {
1278 ret = PTR_ERR(handle);
1279 mlog_errno(ret);
1280 goto out_data;
1283 written = ocfs2_write(file, phys, handle, di_bh, data_ac,
1284 meta_ac, &wc);
1285 if (written < 0) {
1286 ret = written;
1287 mlog_errno(ret);
1288 goto out_commit;
1291 ret = ocfs2_journal_access(handle, inode, di_bh,
1292 OCFS2_JOURNAL_ACCESS_WRITE);
1293 if (ret) {
1294 mlog_errno(ret);
1295 goto out_commit;
1298 pos += written;
1299 if (pos > inode->i_size) {
1300 i_size_write(inode, pos);
1301 mark_inode_dirty(inode);
1303 inode->i_blocks = ocfs2_inode_sector_count(inode);
1304 di->i_size = cpu_to_le64((u64)i_size_read(inode));
1305 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1306 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
1307 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
1309 ret = ocfs2_journal_dirty(handle, di_bh);
1310 if (ret)
1311 mlog_errno(ret);
1313 out_commit:
1314 ocfs2_commit_trans(osb, handle);
1316 out_data:
1317 ocfs2_data_unlock(inode, 1);
1319 out_meta:
1320 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1321 ocfs2_meta_unlock(inode, 1);
1323 out:
1324 brelse(di_bh);
1325 if (data_ac)
1326 ocfs2_free_alloc_context(data_ac);
1327 if (meta_ac)
1328 ocfs2_free_alloc_context(meta_ac);
1330 return written ? written : ret;
1333 const struct address_space_operations ocfs2_aops = {
1334 .readpage = ocfs2_readpage,
1335 .writepage = ocfs2_writepage,
1336 .bmap = ocfs2_bmap,
1337 .sync_page = block_sync_page,
1338 .direct_IO = ocfs2_direct_IO,
1339 .invalidatepage = ocfs2_invalidatepage,
1340 .releasepage = ocfs2_releasepage,
1341 .migratepage = buffer_migrate_page,