7 Mixed_qp::add_equality_cons(Vector
, double )
13 Mixed_qp::add_fixed_var(int i
, Real r
)
20 Ineq_constrained_qp::add_inequality_cons(Vector c
, double r
)
26 Ineq_constrained_qp::Ineq_constrained_qp(int novars
):
34 Ineq_constrained_qp::OK() const
37 assert(cons
.size() == consrhs
.size());
38 Matrix Qdif
= quad
- quad
.transposed();
39 assert(Qdif
.norm()/quad
.norm() < EPS
);
45 Ineq_constrained_qp::eval (Vector v
)
47 return v
* quad
* v
+ lin
* v
+ const_term
;
51 eliminate appropriate variables, until we have a Ineq_constrained_qp
55 cons should be ascending
58 Mixed_qp::solve(Vector start
) const
61 Ineq_constrained_qp
pure(*this);
63 for (int i
= eq_cons
.size()-1; i
>=0; i
--) {
64 pure
.eliminate_var(eq_cons
[i
], eq_consrhs
[i
]);
65 start
.del(eq_cons
[i
]);
67 Vector sol
= pure
.solve(start
);
68 for (int i
= 0; i
< eq_cons
.size(); i
++) {
69 sol
.insert( eq_consrhs
[i
],eq_cons
[i
]);
75 assume x(idx) == value, and adjust constraints, lin and quad accordingly
80 Ineq_constrained_qp::eliminate_var(int idx
, Real value
)
82 Vector
row(quad
.row(idx
));
87 quad
.delete_column(idx
);
93 for (int i
=0; i
< cons
.size(); i
++) {
94 consrhs
[i
] -= cons
[i
](idx
) *value
;
102 Ineq_constrained_qp::assert_solution(Vector sol
) const
105 for (int i
=0; i
< cons
.size(); i
++) {
106 Real R
=cons
[i
] * sol
- consrhs
[i
];
116 Ineq_constrained_qp::print() const
119 mtor
<< "Quad " << quad
;
120 mtor
<< "lin " << lin
<<"\n"
121 << "const " << const_term
<<"\n";
122 for (int i
=0; i
< cons
.size(); i
++) {
123 mtor
<< "constraint["<<i
<<"]: " << cons
[i
] << " >= " << consrhs
[i
];
129 /* *************** */
131 Mixed_qp::Mixed_qp(int n
)
132 : Ineq_constrained_qp(n
)
140 Ineq_constrained_qp::OK();
141 assert(eq_consrhs
.size() == eq_cons
.size());
146 Mixed_qp::print() const
149 Ineq_constrained_qp::print();
150 for (int i
=0; i
< eq_cons
.size(); i
++) {
151 mtor
<< "eq cons "<<i
<<": x["<<eq_cons
[i
]<<"] == " << eq_consrhs
[i
]<<"\n";