7 Mixed_qp::add_equality_cons(Vector v
, double r
)
13 Mixed_qp::add_fixed_var(int i
, Real r
)
20 Ineq_constrained_qp::add_inequality_cons(Vector c
, double r
)
26 Ineq_constrained_qp::Ineq_constrained_qp(int novars
):
33 Ineq_constrained_qp::OK() const
36 assert(cons
.sz() == consrhs
.sz());
37 Matrix Qdif
= quad
- quad
.transposed();
38 assert(Qdif
.norm()/quad
.norm() < EPS
);
44 Ineq_constrained_qp::eval (Vector v
)
46 return v
* quad
* v
+ lin
* v
+ const_term
;
49 eliminate appropriate variables, until we have a Ineq_constrained_qp
53 cons should be ascending
56 Mixed_qp::solve(Vector start
) const
59 Ineq_constrained_qp
pure(*this);
61 for (int i
= eq_cons
.sz()-1; i
>=0; i
--) {
62 pure
.eliminate_var(eq_cons
[i
], eq_consrhs
[i
]);
63 start
.del(eq_cons
[i
]);
65 Vector sol
= pure
.solve(start
);
66 for (int i
= 0; i
< eq_cons
.sz(); i
++) {
67 sol
.insert( eq_consrhs
[i
],eq_cons
[i
]);
73 assume x(idx) == value, and adjust constraints, lin and quad accordingly
76 Ineq_constrained_qp::eliminate_var(int idx
, Real value
)
78 Vector
row(quad
.row(idx
));
83 quad
.delete_column(idx
);
89 for (int i
=0; i
< cons
.sz(); i
++) {
90 consrhs
[i
] -= cons
[i
](idx
) *value
;
98 Mixed_qp::Mixed_qp(int n
)
99 : Ineq_constrained_qp(n
)
107 Ineq_constrained_qp::OK();
108 assert(eq_consrhs
.sz() == eq_cons
.sz());
112 Ineq_constrained_qp::print() const
115 mtor
<< "Quad " << quad
;
116 mtor
<< "lin " << lin
<<"\n";
117 for (int i
=0; i
< cons
.sz(); i
++) {
118 mtor
<< "constraint["<<i
<<"]: " << cons
[i
] << " >= " << consrhs
[i
];
124 Mixed_qp::print() const
127 Ineq_constrained_qp::print();
128 for (int i
=0; i
< eq_cons
.sz(); i
++) {
129 mtor
<< "eq cons "<<i
<<": x["<<eq_cons
[i
]<<"] == " << eq_consrhs
[i
]<<"\n";
136 Ineq_constrained_qp::assert_solution(Vector sol
) const
139 for (int i
=0; i
< cons
.sz(); i
++) {
140 Real R
=cons
[i
] * sol
- consrhs
[i
];