Fix missing volta bracket edge when using new double repeats.
[lilypond.git] / flower / rational.cc
blobff32704f85eb0bd7167ae1b83327fb8ea07bca7f
1 /*
2 rational.cc -- implement Rational
4 source file of the Flower Library
6 (c) 1997--2007 Han-Wen Nienhuys <hanwen@xs4all.nl>
7 */
9 #include "rational.hh"
11 #include <cmath>
12 #include <cassert>
13 #include <cstdlib>
14 using namespace std;
16 #include "string-convert.hh"
17 #include "libc-extension.hh"
19 double
20 Rational::to_double () const
22 if (sign_ == -1 || sign_ == 1 || sign_ == 0)
23 return ((double)sign_) * num_ / den_;
24 if (sign_ == -2)
25 return -HUGE_VAL;
26 else if (sign_ == 2)
27 return HUGE_VAL;
28 else
29 assert (false);
31 return 0.0;
35 #ifdef STREAM_SUPPORT
36 ostream &
37 operator << (ostream &o, Rational r)
39 o << r.string ();
40 return o;
42 #endif
44 Rational
45 Rational::abs () const
47 return Rational (num_, den_);
50 Rational
51 Rational::trunc_rat () const
53 if (is_infinity())
54 return *this;
55 return Rational ((num_ - (num_ % den_)) * sign_, den_);
58 Rational::Rational ()
60 sign_ = 0;
61 num_ = den_ = 1;
64 Rational::Rational (I64 n, I64 d)
66 sign_ = ::sign (n) * ::sign (d);
67 num_ = ::abs (n);
68 den_ = ::abs (d);
69 normalize ();
72 Rational::Rational (I64 n)
74 sign_ = ::sign (n);
75 num_ = ::abs (n);
76 den_ = 1;
79 Rational::Rational (U64 n)
81 sign_ = 1;
82 num_ = n;
83 den_ = 1;
86 Rational::Rational (int n)
88 sign_ = ::sign (n);
89 num_ = ::abs (n);
90 den_ = 1;
94 void
95 Rational::set_infinite (int s)
97 sign_ = ::sign (s) * 2;
98 num_ = 1;
101 Rational
102 Rational::operator - () const
104 Rational r (*this);
105 r.negate ();
106 return r;
109 Rational
110 Rational::div_rat (Rational div) const
112 Rational r (*this);
113 r /= div;
114 return r.trunc_rat ();
117 Rational
118 Rational::mod_rat (Rational div) const
120 Rational r (*this);
121 r = (r / div - r.div_rat (div)) * div;
122 return r;
127 copy & paste from scm_gcd (GUILE).
129 static I64
130 gcd (I64 u, I64 v)
132 I64 result = 0;
133 if (u == 0)
134 result = v;
135 else if (v == 0)
136 result = u;
137 else
139 I64 k = 1;
140 I64 t;
141 /* Determine a common factor 2^k */
142 while (!(1 & (u | v)))
144 k <<= 1;
145 u >>= 1;
146 v >>= 1;
148 /* Now, any factor 2^n can be eliminated */
149 if (u & 1)
150 t = -v;
151 else
153 t = u;
155 t = t >> 1;
157 if (!(1 & t))
158 goto b3;
159 if (t > 0)
160 u = t;
161 else
162 v = -t;
163 t = u - v;
164 if (t != 0)
165 goto b3;
166 result = u * k;
169 return result;
173 void
174 Rational::normalize ()
176 if (!sign_)
178 den_ = 1;
179 num_ = 0;
181 else if (!den_)
183 sign_ = 2;
184 num_ = 1;
186 else if (!num_)
188 sign_ = 0;
189 den_ = 1;
191 else
193 I64 g = gcd (num_, den_);
195 num_ /= g;
196 den_ /= g;
200 Rational::sign () const
202 return ::sign (sign_);
206 Rational::compare (Rational const &r, Rational const &s)
208 if (r.sign_ < s.sign_)
209 return -1;
210 else if (r.sign_ > s.sign_)
211 return 1;
212 else if (r.is_infinity ())
213 return 0;
214 else if (r.sign_ == 0)
215 return 0;
216 return r.sign_ * ::sign ((I64) (r.num_ * s.den_) - (I64) (s.num_ * r.den_));
220 compare (Rational const &r, Rational const &s)
222 return Rational::compare (r, s);
225 Rational &
226 Rational::operator %= (Rational r)
228 *this = mod_rat (r);
229 return *this;
232 Rational &
233 Rational::operator += (Rational r)
235 if (is_infinity ())
237 else if (r.is_infinity ())
238 *this = r;
239 else
241 I64 lcm = (den_ / gcd (r.den_, den_)) * r.den_;
242 I64 n = sign_ * num_ * (lcm / den_) + r.sign_ * r.num_ * (lcm / r.den_);
243 I64 d = lcm;
244 sign_ = ::sign (n) * ::sign (d);
245 num_ = ::abs (n);
246 den_ = ::abs (d);
247 normalize ();
249 return *this;
253 copied from libg++ 2.8.0
255 Rational::Rational (double x)
257 if (x != 0.0)
259 sign_ = ::sign (x);
260 x *= sign_;
262 int expt;
263 double mantissa = frexp (x, &expt);
265 const int FACT = 1 << 20;
268 Thanks to Afie for this too simple idea.
270 do not blindly substitute by libg++ code, since that uses
271 arbitrary-size integers. The rationals would overflow too
272 easily.
275 num_ = (U64) (mantissa * FACT);
276 den_ = (U64) FACT;
277 normalize ();
278 if (expt < 0)
279 den_ <<= -expt;
280 else
281 num_ <<= expt;
282 normalize ();
284 else
286 num_ = 0;
287 den_ = 1;
288 sign_ = 0;
289 normalize ();
293 void
294 Rational::invert ()
296 I64 r (num_);
297 num_ = den_;
298 den_ = r;
301 Rational &
302 Rational::operator *= (Rational r)
304 sign_ *= ::sign (r.sign_);
305 if (r.is_infinity ())
307 sign_ = sign () * 2;
308 goto exit_func;
311 num_ *= r.num_;
312 den_ *= r.den_;
314 normalize ();
315 exit_func:
316 return *this;
319 Rational &
320 Rational::operator /= (Rational r)
322 r.invert ();
323 return (*this *= r);
326 void
327 Rational::negate ()
329 sign_ *= -1;
332 Rational &
333 Rational::operator -= (Rational r)
335 r.negate ();
336 return (*this += r);
339 string
340 Rational::to_string () const
342 if (is_infinity ())
344 string s (sign_ > 0 ? "" : "-");
345 return string (s + "infinity");
348 string s = ::to_string (num ());
349 if (den () != 1 && num ())
350 s += "/" + ::to_string (den ());
351 return s;
355 Rational::to_int () const
357 return (int) num () / den ();
361 sign (Rational r)
363 return r.sign ();
366 bool
367 Rational::is_infinity () const
369 return sign_ == 2 || sign_ == -2;