lilypond-1.3.67
[lilypond.git] / lily / bezier.cc
blob02f2f055e38bbd83f4518640c9e1155787abc199
1 /*
2 bezier.cc -- implement Bezier and Bezier_bow
4 source file of the GNU LilyPond music typesetter
6 (c) 1998--2000 Jan Nieuwenhuizen <janneke@gnu.org>
7 */
9 #include <math.h>
10 #include "config.h"
12 #include "libc-extension.hh"
13 #include "bezier.hh"
14 #include "polynomial.hh"
16 Real
17 binomial_coefficient (Real over , int under)
19 Real x = 1.0;
21 while (under)
23 x *= over / Real (under);
25 over -= 1.0;
26 under --;
28 return x;
31 void
32 flip (Array<Offset>* arr_p, Axis a)
34 for (int i = 0; i < arr_p->size (); i++)
35 (*arr_p)[i][a] = - (*arr_p)[i][a];
38 void
39 rotate (Array<Offset>* arr_p, Real phi)
41 Offset rot (complex_exp (Offset (0, phi)));
42 for (int i = 0; i < arr_p->size (); i++)
43 (*arr_p)[i] = complex_multiply (rot, (*arr_p)[i]);
46 void
47 translate (Array<Offset>* arr_p, Offset o)
49 for (int i = 0; i < arr_p->size (); i++)
50 (*arr_p)[i] += o;
55 Formula of the bezier 3-spline
57 sum_{j=0}^3 (3 over j) z_j (1-t)^(3-j) t^j
60 Real
61 Bezier::get_other_coordinate (Axis a, Real x) const
63 Axis other = Axis ((a +1)%NO_AXES);
64 Array<Real> ts = solve_point (a, x);
66 Offset c = curve_point (ts[0]);
67 assert (fabs (c[a] - x) < 1e-8);
69 return c[other];
73 Offset
74 Bezier::curve_point (Real t)const
76 Real tj = 1;
77 Real one_min_tj = (1-t)*(1-t)*(1-t);
79 Offset o;
80 for (int j=0 ; j < 4; j++)
82 o += control_[j] * binomial_coefficient (3, j)
83 * pow (t,j) * pow (1-t, 3-j);
85 tj *= t;
86 if (1-t)
87 one_min_tj /= (1-t);
90 #ifdef PARANOID
91 assert (fabs (o[X_AXIS] - polynomial (X_AXIS).eval (t))< 1e-8);
92 assert (fabs (o[Y_AXIS] - polynomial (Y_AXIS).eval (t))< 1e-8);
93 #endif
95 return o;
99 Polynomial
100 Bezier::polynomial (Axis a)const
102 Polynomial p (0.0);
103 for (int j=0; j <= 3; j++)
105 p += control_[j][a]
106 * Polynomial::power (j , Polynomial (0,1))*
107 Polynomial::power (3 - j, Polynomial (1,-1))*
108 binomial_coefficient(3, j);
111 return p;
115 Remove all numbers outside [0,1] from SOL
117 Array<Real>
118 filter_solutions (Array<Real> sol)
120 for (int i = sol.size (); i--;)
121 if (sol[i] < 0 || sol[i] >1)
122 sol.del (i);
123 return sol;
127 find t such that derivative is proportional to DERIV
129 Array<Real>
130 Bezier::solve_derivative (Offset deriv)const
132 Polynomial xp=polynomial (X_AXIS);
133 Polynomial yp=polynomial (Y_AXIS);
134 xp.differentiate ();
135 yp.differentiate ();
137 Polynomial combine = xp * deriv[Y_AXIS] - yp * deriv [X_AXIS];
139 return filter_solutions (combine.solve ());
144 Find t such that curve_point (t)[AX] == COORDINATE
146 Array<Real>
147 Bezier::solve_point (Axis ax, Real coordinate) const
149 Polynomial p(polynomial (ax));
150 p.coefs_[0] -= coordinate;
152 Array<Real> sol (p.solve ());
153 return filter_solutions (sol);
157 Compute the bounding box dimensions in direction of A.
159 Interval
160 Bezier::extent (Axis a)const
162 int o = (a+1)%NO_AXES;
163 Offset d;
164 d[Axis (o)] =1.0;
165 Interval iv;
166 Array<Real> sols (solve_derivative (d));
167 sols.push (1.0);
168 sols.push (0.0);
169 for (int i= sols.size (); i--;)
171 Offset o (curve_point (sols[i]));
172 iv.unite (Interval (o[a],o[a]));
174 return iv;
178 Flip around axis A
181 void
182 Bezier::flip (Axis a)
184 for (int i = CONTROL_COUNT; i--;)
185 control_[i][a] = - control_[i][a];
188 void
189 Bezier::rotate (Real phi)
191 Offset rot (complex_exp (Offset (0, phi)));
192 for (int i = 0; i < CONTROL_COUNT; i++)
193 control_[i] = complex_multiply (rot, control_[i]);
196 void
197 Bezier::translate (Offset o)
199 for (int i = 0; i < CONTROL_COUNT; i++)
200 control_[i] += o;
203 void
204 Bezier::assert_sanity () const
206 for (int i=0; i < CONTROL_COUNT; i++)
207 assert (!isnan (control_[i].length ())
208 && !isinf (control_[i].length ()));
211 void
212 Bezier::reverse ()
214 Bezier b2;
215 for (int i =0; i < CONTROL_COUNT; i++)
216 b2.control_[CONTROL_COUNT-i-1] = control_[i];
217 *this = b2;