2 * libmad - MPEG audio decoder library
3 * Copyright (C) 2000-2004 Underbit Technologies, Inc.
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
34 * DESCRIPTION: initialize synth struct
36 void mad_synth_init(struct mad_synth
*synth
)
38 mad_synth_mute(synth
);
42 synth
->pcm
.samplerate
= 0;
43 synth
->pcm
.channels
= 0;
44 synth
->pcm
.length
= 0;
45 #if defined(CPU_COLDFIRE)
46 /* init the emac unit here, since this function should always be called
47 before using libmad */
48 coldfire_set_macsr(EMAC_FRACTIONAL
| EMAC_SATURATE
| EMAC_ROUND
);
54 * DESCRIPTION: zero all polyphase filterbank values, resetting synthesis
56 void mad_synth_mute(struct mad_synth
*synth
)
58 memset(synth
->filter
, 0, sizeof(synth
->filter
));
61 #if 0 /* dct32 asm implementation is slower on current arm systems */
64 void dct32(mad_fixed_t
const in
[32], unsigned int slot
,
65 mad_fixed_t lo
[16][8], mad_fixed_t hi
[16][8]);
70 * An optional optimization called here the Subband Synthesis Optimization
71 * (SSO) improves the performance of subband synthesis at the expense of
74 * The idea is to simplify 32x32->64-bit multiplication to 32x32->32 such
75 * that extra scaling and rounding are not necessary. This often allows the
76 * compiler to use faster 32-bit multiply-accumulate instructions instead of
77 * explicit 64-bit multiply, shift, and add instructions.
79 * SSO works like this: a full 32x32->64-bit multiply of two mad_fixed_t
80 * values requires the result to be right-shifted 28 bits to be properly
81 * scaled to the same fixed-point format. Right shifts can be applied at any
82 * time to either operand or to the result, so the optimization involves
83 * careful placement of these shifts to minimize the loss of accuracy.
85 * First, a 14-bit shift is applied with rounding at compile-time to the D[]
86 * table of coefficients for the subband synthesis window. This only loses 2
87 * bits of accuracy because the lower 12 bits are always zero. A second
88 * 12-bit shift occurs after the DCT calculation. This loses 12 bits of
89 * accuracy. Finally, a third 2-bit shift occurs just before the sample is
90 * saved in the PCM buffer. 14 + 12 + 2 == 28 bits.
93 /* FPM_DEFAULT without OPT_SSO will actually lose accuracy and performance */
95 # if defined(FPM_DEFAULT) && !defined(OPT_SSO)
99 /* second SSO shift, with rounding */
101 # if defined(OPT_SSO)
102 # define SHIFT(x) (((x) + (1L << 11)) >> 12)
104 # define SHIFT(x) (x)
107 /* possible DCT speed optimization */
109 /* This is a Coldfire version of the OPT_SPEED optimisation below, but in the
110 case of Coldfire it doesn't lose any more precision than we would ordinarily
112 # ifdef FPM_COLDFIRE_EMAC
116 mad_fixed64hi_t hi; \
117 asm volatile("mac.l %[a], %[b], %%acc0\n\t" \
118 "movclr.l %%acc0, %[hi]" \
120 : [a] "r" ((x)), [b] "r" ((y))); \
123 # elif defined(OPT_SPEED) && defined(MAD_F_MLX)
126 ({ mad_fixed64hi_t hi; \
127 mad_fixed64lo_t lo; \
128 MAD_F_MLX(hi, lo, (x), (y)); \
129 hi << (32 - MAD_F_SCALEBITS - 3); \
133 # define MUL(x, y) mad_f_mul((x), (y))
138 * DESCRIPTION: perform fast in[32]->out[32] DCT
141 void dct32(mad_fixed_t
const in
[32], unsigned int slot
,
142 mad_fixed_t lo
[16][8], mad_fixed_t hi
[16][8])
144 mad_fixed_t t0
, t1
, t2
, t3
, t4
, t5
, t6
, t7
;
145 mad_fixed_t t8
, t9
, t10
, t11
, t12
, t13
, t14
, t15
;
146 mad_fixed_t t16
, t17
, t18
, t19
, t20
, t21
, t22
, t23
;
147 mad_fixed_t t24
, t25
, t26
, t27
, t28
, t29
, t30
, t31
;
148 mad_fixed_t t32
, t33
, t34
, t35
, t36
, t37
, t38
, t39
;
149 mad_fixed_t t40
, t41
, t42
, t43
, t44
, t45
, t46
, t47
;
150 mad_fixed_t t48
, t49
, t50
, t51
, t52
, t53
, t54
, t55
;
151 mad_fixed_t t56
, t57
, t58
, t59
, t60
, t61
, t62
, t63
;
152 mad_fixed_t t64
, t65
, t66
, t67
, t68
, t69
, t70
, t71
;
153 mad_fixed_t t72
, t73
, t74
, t75
, t76
, t77
, t78
, t79
;
154 mad_fixed_t t80
, t81
, t82
, t83
, t84
, t85
, t86
, t87
;
155 mad_fixed_t t88
, t89
, t90
, t91
, t92
, t93
, t94
, t95
;
156 mad_fixed_t t96
, t97
, t98
, t99
, t100
, t101
, t102
, t103
;
157 mad_fixed_t t104
, t105
, t106
, t107
, t108
, t109
, t110
, t111
;
158 mad_fixed_t t112
, t113
, t114
, t115
, t116
, t117
, t118
, t119
;
159 mad_fixed_t t120
, t121
, t122
, t123
, t124
, t125
, t126
, t127
;
160 mad_fixed_t t128
, t129
, t130
, t131
, t132
, t133
, t134
, t135
;
161 mad_fixed_t t136
, t137
, t138
, t139
, t140
, t141
, t142
, t143
;
162 mad_fixed_t t144
, t145
, t146
, t147
, t148
, t149
, t150
, t151
;
163 mad_fixed_t t152
, t153
, t154
, t155
, t156
, t157
, t158
, t159
;
164 mad_fixed_t t160
, t161
, t162
, t163
, t164
, t165
, t166
, t167
;
165 mad_fixed_t t168
, t169
, t170
, t171
, t172
, t173
, t174
, t175
;
168 /* costab[i] = cos(PI / (2 * 32) * i) */
170 # if defined(OPT_DCTO)
171 # define costab1 MAD_F(0x7fd8878e)
172 # define costab2 MAD_F(0x7f62368f)
173 # define costab3 MAD_F(0x7e9d55fc)
174 # define costab4 MAD_F(0x7d8a5f40)
175 # define costab5 MAD_F(0x7c29fbee)
176 # define costab6 MAD_F(0x7a7d055b)
177 # define costab7 MAD_F(0x78848414)
178 # define costab8 MAD_F(0x7641af3d)
179 # define costab9 MAD_F(0x73b5ebd1)
180 # define costab10 MAD_F(0x70e2cbc6)
181 # define costab11 MAD_F(0x6dca0d14)
182 # define costab12 MAD_F(0x6a5d98a4)
183 # define costab13 MAD_F(0x66cf8120)
184 # define costab14 MAD_F(0x62f201ac)
185 # define costab15 MAD_F(0x5ed77c8a)
186 # define costab16 MAD_F(0x5a82799a)
187 # define costab17 MAD_F(0x55f5a4d2)
188 # define costab18 MAD_F(0x5133cc94)
189 # define costab19 MAD_F(0x4c3fdff4)
190 # define costab20 MAD_F(0x471cece7)
191 # define costab21 MAD_F(0x41ce1e65)
192 # define costab22 MAD_F(0x3c56ba70)
193 # define costab23 MAD_F(0x36ba2014)
194 # define costab24 MAD_F(0x30fbc54d)
195 # define costab25 MAD_F(0x2b1f34eb)
196 # define costab26 MAD_F(0x25280c5e)
197 # define costab27 MAD_F(0x1f19f97b)
198 # define costab28 MAD_F(0x18f8b83c)
199 # define costab29 MAD_F(0x12c8106f)
200 # define costab30 MAD_F(0x0c8bd35e)
201 # define costab31 MAD_F(0x0647d97c)
203 # define costab1 MAD_F(0x0ffb10f2) /* 0.998795456 */
204 # define costab2 MAD_F(0x0fec46d2) /* 0.995184727 */
205 # define costab3 MAD_F(0x0fd3aac0) /* 0.989176510 */
206 # define costab4 MAD_F(0x0fb14be8) /* 0.980785280 */
207 # define costab5 MAD_F(0x0f853f7e) /* 0.970031253 */
208 # define costab6 MAD_F(0x0f4fa0ab) /* 0.956940336 */
209 # define costab7 MAD_F(0x0f109082) /* 0.941544065 */
210 # define costab8 MAD_F(0x0ec835e8) /* 0.923879533 */
211 # define costab9 MAD_F(0x0e76bd7a) /* 0.903989293 */
212 # define costab10 MAD_F(0x0e1c5979) /* 0.881921264 */
213 # define costab11 MAD_F(0x0db941a3) /* 0.857728610 */
214 # define costab12 MAD_F(0x0d4db315) /* 0.831469612 */
215 # define costab13 MAD_F(0x0cd9f024) /* 0.803207531 */
216 # define costab14 MAD_F(0x0c5e4036) /* 0.773010453 */
217 # define costab15 MAD_F(0x0bdaef91) /* 0.740951125 */
218 # define costab16 MAD_F(0x0b504f33) /* 0.707106781 */
219 # define costab17 MAD_F(0x0abeb49a) /* 0.671558955 */
220 # define costab18 MAD_F(0x0a267993) /* 0.634393284 */
221 # define costab19 MAD_F(0x0987fbfe) /* 0.595699304 */
222 # define costab20 MAD_F(0x08e39d9d) /* 0.555570233 */
223 # define costab21 MAD_F(0x0839c3cd) /* 0.514102744 */
224 # define costab22 MAD_F(0x078ad74e) /* 0.471396737 */
225 # define costab23 MAD_F(0x06d74402) /* 0.427555093 */
226 # define costab24 MAD_F(0x061f78aa) /* 0.382683432 */
227 # define costab25 MAD_F(0x0563e69d) /* 0.336889853 */
228 # define costab26 MAD_F(0x04a5018c) /* 0.290284677 */
229 # define costab27 MAD_F(0x03e33f2f) /* 0.242980180 */
230 # define costab28 MAD_F(0x031f1708) /* 0.195090322 */
231 # define costab29 MAD_F(0x0259020e) /* 0.146730474 */
232 # define costab30 MAD_F(0x01917a5c) /* 0.098017140 */
233 # define costab31 MAD_F(0x00c8fb30) /* 0.049067674 */
236 t0
= in
[0] + in
[31]; t16
= MUL(in
[0] - in
[31], costab1
);
237 t1
= in
[15] + in
[16]; t17
= MUL(in
[15] - in
[16], costab31
);
240 t59
= MUL(t16
- t17
, costab2
);
242 t50
= MUL(t0
- t1
, costab2
);
244 t2
= in
[7] + in
[24]; t18
= MUL(in
[7] - in
[24], costab15
);
245 t3
= in
[8] + in
[23]; t19
= MUL(in
[8] - in
[23], costab17
);
248 t60
= MUL(t18
- t19
, costab30
);
250 t51
= MUL(t2
- t3
, costab30
);
252 t4
= in
[3] + in
[28]; t20
= MUL(in
[3] - in
[28], costab7
);
253 t5
= in
[12] + in
[19]; t21
= MUL(in
[12] - in
[19], costab25
);
256 t61
= MUL(t20
- t21
, costab14
);
258 t52
= MUL(t4
- t5
, costab14
);
260 t6
= in
[4] + in
[27]; t22
= MUL(in
[4] - in
[27], costab9
);
261 t7
= in
[11] + in
[20]; t23
= MUL(in
[11] - in
[20], costab23
);
264 t62
= MUL(t22
- t23
, costab18
);
266 t53
= MUL(t6
- t7
, costab18
);
268 t8
= in
[1] + in
[30]; t24
= MUL(in
[1] - in
[30], costab3
);
269 t9
= in
[14] + in
[17]; t25
= MUL(in
[14] - in
[17], costab29
);
272 t63
= MUL(t24
- t25
, costab6
);
274 t54
= MUL(t8
- t9
, costab6
);
276 t10
= in
[6] + in
[25]; t26
= MUL(in
[6] - in
[25], costab13
);
277 t11
= in
[9] + in
[22]; t27
= MUL(in
[9] - in
[22], costab19
);
280 t64
= MUL(t26
- t27
, costab26
);
282 t55
= MUL(t10
- t11
, costab26
);
284 t12
= in
[2] + in
[29]; t28
= MUL(in
[2] - in
[29], costab5
);
285 t13
= in
[13] + in
[18]; t29
= MUL(in
[13] - in
[18], costab27
);
288 t65
= MUL(t28
- t29
, costab10
);
290 t56
= MUL(t12
- t13
, costab10
);
292 t14
= in
[5] + in
[26]; t30
= MUL(in
[5] - in
[26], costab11
);
293 t15
= in
[10] + in
[21]; t31
= MUL(in
[10] - in
[21], costab21
);
296 t66
= MUL(t30
- t31
, costab22
);
298 t57
= MUL(t14
- t15
, costab22
);
300 t69
= t33
+ t34
; t89
= MUL(t33
- t34
, costab4
);
301 t70
= t35
+ t36
; t90
= MUL(t35
- t36
, costab28
);
302 t71
= t37
+ t38
; t91
= MUL(t37
- t38
, costab12
);
303 t72
= t39
+ t40
; t92
= MUL(t39
- t40
, costab20
);
304 t73
= t41
+ t42
; t94
= MUL(t41
- t42
, costab4
);
305 t74
= t43
+ t44
; t95
= MUL(t43
- t44
, costab28
);
306 t75
= t45
+ t46
; t96
= MUL(t45
- t46
, costab12
);
307 t76
= t47
+ t48
; t97
= MUL(t47
- t48
, costab20
);
309 t78
= t50
+ t51
; t100
= MUL(t50
- t51
, costab4
);
310 t79
= t52
+ t53
; t101
= MUL(t52
- t53
, costab28
);
311 t80
= t54
+ t55
; t102
= MUL(t54
- t55
, costab12
);
312 t81
= t56
+ t57
; t103
= MUL(t56
- t57
, costab20
);
314 t83
= t59
+ t60
; t106
= MUL(t59
- t60
, costab4
);
315 t84
= t61
+ t62
; t107
= MUL(t61
- t62
, costab28
);
316 t85
= t63
+ t64
; t108
= MUL(t63
- t64
, costab12
);
317 t86
= t65
+ t66
; t109
= MUL(t65
- t66
, costab20
);
322 /* 0 */ hi
[15][slot
] = SHIFT(t113
+ t114
);
323 /* 16 */ lo
[ 0][slot
] = SHIFT(MUL(t113
- t114
, costab16
));
330 /* 1 */ hi
[14][slot
] = SHIFT(t32
);
337 /* 2 */ hi
[13][slot
] = SHIFT(t58
);
344 t49
= (t67
* 2) - t32
;
346 /* 3 */ hi
[12][slot
] = SHIFT(t49
);
353 /* 4 */ hi
[11][slot
] = SHIFT(t93
);
360 t68
= (t98
* 2) - t49
;
362 /* 5 */ hi
[10][slot
] = SHIFT(t68
);
369 t82
= (t104
* 2) - t58
;
371 /* 6 */ hi
[ 9][slot
] = SHIFT(t82
);
378 t87
= (t110
* 2) - t67
;
380 t77
= (t87
* 2) - t68
;
382 /* 7 */ hi
[ 8][slot
] = SHIFT(t77
);
384 t141
= MUL(t69
- t70
, costab8
);
385 t142
= MUL(t71
- t72
, costab24
);
388 /* 8 */ hi
[ 7][slot
] = SHIFT(t143
);
389 /* 24 */ lo
[ 8][slot
] =
390 SHIFT((MUL(t141
- t142
, costab16
) * 2) - t143
);
392 t144
= MUL(t73
- t74
, costab8
);
393 t145
= MUL(t75
- t76
, costab24
);
396 t88
= (t146
* 2) - t77
;
398 /* 9 */ hi
[ 6][slot
] = SHIFT(t88
);
400 t148
= MUL(t78
- t79
, costab8
);
401 t149
= MUL(t80
- t81
, costab24
);
404 t105
= (t150
* 2) - t82
;
406 /* 10 */ hi
[ 5][slot
] = SHIFT(t105
);
408 t152
= MUL(t83
- t84
, costab8
);
409 t153
= MUL(t85
- t86
, costab24
);
412 t111
= (t154
* 2) - t87
;
414 t99
= (t111
* 2) - t88
;
416 /* 11 */ hi
[ 4][slot
] = SHIFT(t99
);
418 t157
= MUL(t89
- t90
, costab8
);
419 t158
= MUL(t91
- t92
, costab24
);
422 t127
= (t159
* 2) - t93
;
424 /* 12 */ hi
[ 3][slot
] = SHIFT(t127
);
426 t160
= (MUL(t125
- t126
, costab16
) * 2) - t127
;
428 /* 20 */ lo
[ 4][slot
] = SHIFT(t160
);
429 /* 28 */ lo
[12][slot
] =
430 SHIFT((((MUL(t157
- t158
, costab16
) * 2) - t159
) * 2) - t160
);
432 t161
= MUL(t94
- t95
, costab8
);
433 t162
= MUL(t96
- t97
, costab24
);
436 t130
= (t163
* 2) - t98
;
438 t112
= (t130
* 2) - t99
;
440 /* 13 */ hi
[ 2][slot
] = SHIFT(t112
);
442 t164
= (MUL(t128
- t129
, costab16
) * 2) - t130
;
444 t166
= MUL(t100
- t101
, costab8
);
445 t167
= MUL(t102
- t103
, costab24
);
448 t134
= (t168
* 2) - t104
;
450 t120
= (t134
* 2) - t105
;
452 /* 14 */ hi
[ 1][slot
] = SHIFT(t120
);
454 t135
= (MUL(t118
- t119
, costab16
) * 2) - t120
;
456 /* 18 */ lo
[ 2][slot
] = SHIFT(t135
);
458 t169
= (MUL(t132
- t133
, costab16
) * 2) - t134
;
460 t151
= (t169
* 2) - t135
;
462 /* 22 */ lo
[ 6][slot
] = SHIFT(t151
);
464 t170
= (((MUL(t148
- t149
, costab16
) * 2) - t150
) * 2) - t151
;
466 /* 26 */ lo
[10][slot
] = SHIFT(t170
);
467 /* 30 */ lo
[14][slot
] =
468 SHIFT((((((MUL(t166
- t167
, costab16
) * 2) -
469 t168
) * 2) - t169
) * 2) - t170
);
471 t171
= MUL(t106
- t107
, costab8
);
472 t172
= MUL(t108
- t109
, costab24
);
475 t138
= (t173
* 2) - t110
;
477 t123
= (t138
* 2) - t111
;
479 t139
= (MUL(t121
- t122
, costab16
) * 2) - t123
;
481 t117
= (t123
* 2) - t112
;
483 /* 15 */ hi
[ 0][slot
] = SHIFT(t117
);
485 t124
= (MUL(t115
- t116
, costab16
) * 2) - t117
;
487 /* 17 */ lo
[ 1][slot
] = SHIFT(t124
);
489 t131
= (t139
* 2) - t124
;
491 /* 19 */ lo
[ 3][slot
] = SHIFT(t131
);
493 t140
= (t164
* 2) - t131
;
495 /* 21 */ lo
[ 5][slot
] = SHIFT(t140
);
497 t174
= (MUL(t136
- t137
, costab16
) * 2) - t138
;
499 t155
= (t174
* 2) - t139
;
501 t147
= (t155
* 2) - t140
;
503 /* 23 */ lo
[ 7][slot
] = SHIFT(t147
);
505 t156
= (((MUL(t144
- t145
, costab16
) * 2) - t146
) * 2) - t147
;
507 /* 25 */ lo
[ 9][slot
] = SHIFT(t156
);
509 t175
= (((MUL(t152
- t153
, costab16
) * 2) - t154
) * 2) - t155
;
511 t165
= (t175
* 2) - t156
;
513 /* 27 */ lo
[11][slot
] = SHIFT(t165
);
515 t176
= (((((MUL(t161
- t162
, costab16
) * 2) -
516 t163
) * 2) - t164
) * 2) - t165
;
518 /* 29 */ lo
[13][slot
] = SHIFT(t176
);
519 /* 31 */ lo
[15][slot
] =
520 SHIFT((((((((MUL(t171
- t172
, costab16
) * 2) -
521 t173
) * 2) - t174
) * 2) - t175
) * 2) - t176
);
528 * 49 shifts (not counting SSO)
537 /* third SSO shift and/or D[] optimization preshift */
539 # if defined(OPT_SSO)
540 # if MAD_F_FRACBITS != 28
541 # error "MAD_F_FRACBITS must be 28 to use OPT_SSO"
543 # define ML0(hi, lo, x, y) ((lo) = (x) * (y))
544 # define MLA(hi, lo, x, y) ((lo) += (x) * (y))
545 # define MLN(hi, lo) ((lo) = -(lo))
546 # define MLZ(hi, lo) ((void) (hi), (mad_fixed_t) (lo))
547 # define SHIFT(x) ((x) >> 2)
548 # define PRESHIFT(x) ((MAD_F(x) + (1L << 13)) >> 14)
550 # define ML0(hi, lo, x, y) MAD_F_ML0((hi), (lo), (x), (y))
551 # define MLA(hi, lo, x, y) MAD_F_MLA((hi), (lo), (x), (y))
552 # define MLN(hi, lo) MAD_F_MLN((hi), (lo))
553 # define MLZ(hi, lo) MAD_F_MLZ((hi), (lo))
554 # define SHIFT(x) (x)
555 # if defined(MAD_F_SCALEBITS)
556 # undef MAD_F_SCALEBITS
557 # define MAD_F_SCALEBITS (MAD_F_FRACBITS - 12)
558 # define PRESHIFT(x) (MAD_F(x) >> 12)
560 # define PRESHIFT(x) MAD_F(x)
565 mad_fixed_t
const D
[17][32] ICONST_ATTR
= {
569 # if defined(ASO_SYNTH)
570 void synth_full(struct mad_synth
*, struct mad_frame
const *,
571 unsigned int, unsigned int);
574 * NAME: synth->full()
575 * DESCRIPTION: perform full frequency PCM synthesis
578 /* optimised version of synth_full */
579 # ifdef FPM_COLDFIRE_EMAC
581 #define SYNTH_EMAC1(res, f1, pD) \
583 "movem.l (%0), %%d0-%%d7 \n\t" \
584 "move.l (%1), %%a5 \n\t" \
585 "mac.l %%d0, %%a5, 56(%1), %%a5, %%acc0\n\t" \
586 "mac.l %%d1, %%a5, 48(%1), %%a5, %%acc0\n\t" \
587 "mac.l %%d2, %%a5, 40(%1), %%a5, %%acc0\n\t" \
588 "mac.l %%d3, %%a5, 32(%1), %%a5, %%acc0\n\t" \
589 "mac.l %%d4, %%a5, 24(%1), %%a5, %%acc0\n\t" \
590 "mac.l %%d5, %%a5, 16(%1), %%a5, %%acc0\n\t" \
591 "mac.l %%d6, %%a5, 8(%1), %%a5, %%acc0\n\t" \
592 "mac.l %%d7, %%a5, %%acc0\n\t" \
594 : "a" (*f1), "a" (*pD) \
595 : "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7", "a5"); \
597 "movclr.l %%acc0, %0 \n\t" \
600 #define SYNTH_EMAC2(res, f1, f2, pD) \
602 "movem.l (%0), %%d0-%%d7 \n\t" \
603 "move.l 4(%1), %%a5 \n\t" \
604 "msac.l %%d0, %%a5, 60(%1), %%a5, %%acc0\n\t" \
605 "msac.l %%d1, %%a5, 52(%1), %%a5, %%acc0\n\t" \
606 "msac.l %%d2, %%a5, 44(%1), %%a5, %%acc0\n\t" \
607 "msac.l %%d3, %%a5, 36(%1), %%a5, %%acc0\n\t" \
608 "msac.l %%d4, %%a5, 28(%1), %%a5, %%acc0\n\t" \
609 "msac.l %%d5, %%a5, 20(%1), %%a5, %%acc0\n\t" \
610 "msac.l %%d6, %%a5, 12(%1), %%a5, %%acc0\n\t" \
611 "msac.l %%d7, %%a5, (%1), %%a5, %%acc0\n\t" \
612 "movem.l (%2), %%d0-%%d7 \n\t" \
613 "mac.l %%d0, %%a5, 56(%1), %%a5, %%acc0\n\t" \
614 "mac.l %%d1, %%a5, 48(%1), %%a5, %%acc0\n\t" \
615 "mac.l %%d2, %%a5, 40(%1), %%a5, %%acc0\n\t" \
616 "mac.l %%d3, %%a5, 32(%1), %%a5, %%acc0\n\t" \
617 "mac.l %%d4, %%a5, 24(%1), %%a5, %%acc0\n\t" \
618 "mac.l %%d5, %%a5, 16(%1), %%a5, %%acc0\n\t" \
619 "mac.l %%d6, %%a5, 8(%1), %%a5, %%acc0\n\t" \
620 "mac.l %%d7, %%a5, %%acc0\n\t" \
622 : "a" (*f1), "a" (*pD), "a" (*f2) \
623 : "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7", "a5", "memory"); \
625 "movclr.l %%acc0, %0 \n\t" \
628 #define SYNTH_EMAC_ODD_SBSAMPLE(f1, f2, pD1, pD2, res1, res2) \
630 "movem.l (%0), %%d0-%%d7 \n\t" \
631 "move.l 4(%2), %%a5 \n\t" \
632 "msac.l %%d0, %%a5, 60(%2), %%a5, %%acc0\n\t" \
633 "msac.l %%d1, %%a5, 52(%2), %%a5, %%acc0\n\t" \
634 "msac.l %%d2, %%a5, 44(%2), %%a5, %%acc0\n\t" \
635 "msac.l %%d3, %%a5, 36(%2), %%a5, %%acc0\n\t" \
636 "msac.l %%d4, %%a5, 28(%2), %%a5, %%acc0\n\t" \
637 "msac.l %%d5, %%a5, 20(%2), %%a5, %%acc0\n\t" \
638 "msac.l %%d6, %%a5, 12(%2), %%a5, %%acc0\n\t" \
639 "msac.l %%d7, %%a5, 112(%3), %%a5, %%acc0\n\t" \
640 "mac.l %%d7, %%a5, 104(%3), %%a5, %%acc1\n\t" \
641 "mac.l %%d6, %%a5, 96(%3), %%a5, %%acc1\n\t" \
642 "mac.l %%d5, %%a5, 88(%3), %%a5, %%acc1\n\t" \
643 "mac.l %%d4, %%a5, 80(%3), %%a5, %%acc1\n\t" \
644 "mac.l %%d3, %%a5, 72(%3), %%a5, %%acc1\n\t" \
645 "mac.l %%d2, %%a5, 64(%3), %%a5, %%acc1\n\t" \
646 "mac.l %%d1, %%a5, 120(%3), %%a5, %%acc1\n\t" \
647 "mac.l %%d0, %%a5, 8(%2), %%a5, %%acc1\n\t" \
648 "movem.l (%1), %%d0-%%d7 \n\t" \
649 "mac.l %%d7, %%a5, 16(%2), %%a5, %%acc0\n\t" \
650 "mac.l %%d6, %%a5, 24(%2), %%a5, %%acc0\n\t" \
651 "mac.l %%d5, %%a5, 32(%2), %%a5, %%acc0\n\t" \
652 "mac.l %%d4, %%a5, 40(%2), %%a5, %%acc0\n\t" \
653 "mac.l %%d3, %%a5, 48(%2), %%a5, %%acc0\n\t" \
654 "mac.l %%d2, %%a5, 56(%2), %%a5, %%acc0\n\t" \
655 "mac.l %%d1, %%a5, (%2), %%a5, %%acc0\n\t" \
656 "mac.l %%d0, %%a5, 60(%3), %%a5, %%acc0\n\t" \
657 "mac.l %%d0, %%a5, 68(%3), %%a5, %%acc1\n\t" \
658 "mac.l %%d1, %%a5, 76(%3), %%a5, %%acc1\n\t" \
659 "mac.l %%d2, %%a5, 84(%3), %%a5, %%acc1\n\t" \
660 "mac.l %%d3, %%a5, 92(%3), %%a5, %%acc1\n\t" \
661 "mac.l %%d4, %%a5, 100(%3), %%a5, %%acc1\n\t" \
662 "mac.l %%d5, %%a5, 108(%3), %%a5, %%acc1\n\t" \
663 "mac.l %%d6, %%a5, 116(%3), %%a5, %%acc1\n\t" \
664 "mac.l %%d7, %%a5, %%acc1\n\t" \
666 : "a" (*f1), "a" (*f2), "a" (*pD1), "a" (*pD2) \
667 : "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7", "a5", "memory"); \
669 "movclr.l %%acc0, %0\n\t" \
670 "movclr.l %%acc1, %1\n\t" \
671 : "=d" (res1), "=d" (res2) );
673 #define SYNTH_EMAC_EVEN_SBSAMPLE(f1, f2, pD1, pD2, res1, res2) \
675 "movem.l (%0), %%d0-%%d7 \n\t" \
676 "move.l (%2), %%a5 \n\t" \
677 "msac.l %%d0, %%a5, 56(%2), %%a5, %%acc0\n\t" \
678 "msac.l %%d1, %%a5, 48(%2), %%a5, %%acc0\n\t" \
679 "msac.l %%d2, %%a5, 40(%2), %%a5, %%acc0\n\t" \
680 "msac.l %%d3, %%a5, 32(%2), %%a5, %%acc0\n\t" \
681 "msac.l %%d4, %%a5, 24(%2), %%a5, %%acc0\n\t" \
682 "msac.l %%d5, %%a5, 16(%2), %%a5, %%acc0\n\t" \
683 "msac.l %%d6, %%a5, 8(%2), %%a5, %%acc0\n\t" \
684 "msac.l %%d7, %%a5, 116(%3), %%a5, %%acc0\n\t" \
685 "mac.l %%d7, %%a5, 108(%3), %%a5, %%acc1\n\t" \
686 "mac.l %%d6, %%a5, 100(%3), %%a5, %%acc1\n\t" \
687 "mac.l %%d5, %%a5, 92(%3), %%a5, %%acc1\n\t" \
688 "mac.l %%d4, %%a5, 84(%3), %%a5, %%acc1\n\t" \
689 "mac.l %%d3, %%a5, 76(%3), %%a5, %%acc1\n\t" \
690 "mac.l %%d2, %%a5, 68(%3), %%a5, %%acc1\n\t" \
691 "mac.l %%d1, %%a5, 60(%3), %%a5, %%acc1\n\t" \
692 "mac.l %%d0, %%a5, 12(%2), %%a5, %%acc1\n\t" \
693 "movem.l (%1), %%d0-%%d7 \n\t" \
694 "mac.l %%d7, %%a5, 20(%2), %%a5, %%acc0\n\t" \
695 "mac.l %%d6, %%a5, 28(%2), %%a5, %%acc0\n\t" \
696 "mac.l %%d5, %%a5, 36(%2), %%a5, %%acc0\n\t" \
697 "mac.l %%d4, %%a5, 44(%2), %%a5, %%acc0\n\t" \
698 "mac.l %%d3, %%a5, 52(%2), %%a5, %%acc0\n\t" \
699 "mac.l %%d2, %%a5, 60(%2), %%a5, %%acc0\n\t" \
700 "mac.l %%d1, %%a5, 4(%2), %%a5, %%acc0\n\t" \
701 "mac.l %%d0, %%a5, 120(%3), %%a5, %%acc0\n\t" \
702 "mac.l %%d0, %%a5, 64(%3), %%a5, %%acc1\n\t" \
703 "mac.l %%d1, %%a5, 72(%3), %%a5, %%acc1\n\t" \
704 "mac.l %%d2, %%a5, 80(%3), %%a5, %%acc1\n\t" \
705 "mac.l %%d3, %%a5, 88(%3), %%a5, %%acc1\n\t" \
706 "mac.l %%d4, %%a5, 96(%3), %%a5, %%acc1\n\t" \
707 "mac.l %%d5, %%a5, 104(%3), %%a5, %%acc1\n\t" \
708 "mac.l %%d6, %%a5, 112(%3), %%a5, %%acc1\n\t" \
709 "mac.l %%d7, %%a5, %%acc1\n\t" \
711 : "a" (*f1), "a" (*f2), "a" (*pD1), "a" (*pD2) \
712 : "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7", "a5", "memory"); \
714 "movclr.l %%acc0, %0\n\t" \
715 "movclr.l %%acc1, %1\n\t" \
716 : "=d" (res1), "=d" (res2) );
719 void synth_full(struct mad_synth
*synth
, struct mad_frame
const *frame
,
720 unsigned int nch
, unsigned int ns
)
723 unsigned int phase
, ch
, s
, p
;
724 mad_fixed_t
*pcm
, (*filter
)[2][2][16][8];
725 mad_fixed_t (*sbsample
)[36][32];
726 mad_fixed_t (*fe
)[8], (*fx
)[8], (*fo
)[8];
727 mad_fixed_t
const (*D0ptr
)[32];
728 mad_fixed_t
const (*D1ptr
)[32];
729 mad_fixed64hi_t hi0
, hi1
;
731 for (ch
= 0; ch
< nch
; ++ch
) {
732 sbsample
= &(*frame
->sbsample_prev
)[ch
];
733 filter
= &synth
->filter
[ch
];
734 phase
= synth
->phase
;
735 pcm
= synth
->pcm
.samples
[ch
];
737 for (s
= 0; s
< ns
; ++s
) {
738 dct32((*sbsample
)[s
], phase
>> 1,
739 (*filter
)[0][phase
& 1], (*filter
)[1][phase
& 1]);
741 p
= (phase
- 1) & 0xf;
743 /* calculate 32 samples */
744 fe
= &(*filter
)[0][ phase
& 1][0];
745 fx
= &(*filter
)[0][~phase
& 1][0];
746 fo
= &(*filter
)[1][~phase
& 1][0];
748 D0ptr
= (void*)&D
[0][ p
];
749 D1ptr
= (void*)&D
[0][-p
];
753 SYNTH_EMAC2(hi0
, fx
, fe
, D0ptr
);
754 pcm
[0] = hi0
<< 3; /* shift result to libmad's fixed point format */
757 for (sb
= 15; sb
; sb
--, fo
++) {
762 /* D[32 - sb][i] == -D[sb][31 - i] */
763 SYNTH_EMAC_ODD_SBSAMPLE(fo
, fe
, D0ptr
, D1ptr
, hi0
, hi1
);
769 SYNTH_EMAC1(hi0
, fo
, D0ptr
+1);
770 pcm
[0] = -(hi0
<< 3);
774 SYNTH_EMAC2(hi0
, fe
, fx
, D0ptr
);
775 pcm
[0] = -(hi0
<< 3); /* shift result to libmad's fixed point format */
778 for (sb
= 15; sb
; sb
--, fo
++) {
783 /* D[32 - sb][i] == -D[sb][31 - i] */
784 SYNTH_EMAC_EVEN_SBSAMPLE(fo
, fe
, D0ptr
, D1ptr
, hi0
, hi1
);
790 SYNTH_EMAC1(hi0
, fo
, D0ptr
);
791 pcm
[0] = -(hi0
<< 3);
794 phase
= (phase
+ 1) % 16;
799 #elif defined(FPM_ARM)
801 #define PROD_O(hi, lo, f, ptr) \
803 mad_fixed_t *__p = (f); \
805 "ldmia %2!, {r0, r1, r2, r3} \n\t" \
806 "ldr r4, [%3, #0] \n\t" \
807 "smull %0, %1, r0, r4 \n\t" \
808 "ldr r4, [%3, #56] \n\t" \
809 "smlal %0, %1, r1, r4 \n\t" \
810 "ldr r4, [%3, #48] \n\t" \
811 "smlal %0, %1, r2, r4 \n\t" \
812 "ldr r4, [%3, #40] \n\t" \
813 "smlal %0, %1, r3, r4 \n\t" \
814 "ldmia %2, {r0, r1, r2, r3} \n\t" \
815 "ldr r4, [%3, #32] \n\t" \
816 "smlal %0, %1, r0, r4 \n\t" \
817 "ldr r4, [%3, #24] \n\t" \
818 "smlal %0, %1, r1, r4 \n\t" \
819 "ldr r4, [%3, #16] \n\t" \
820 "smlal %0, %1, r2, r4 \n\t" \
821 "ldr r4, [%3, #8] \n\t" \
822 "smlal %0, %1, r3, r4 \n\t" \
823 : "=&r" (lo), "=&r" (hi), "+r" (__p) \
825 : "r0", "r1", "r2", "r3", "r4", "memory"); \
828 #define PROD_A(hi, lo, f, ptr) \
830 mad_fixed_t *__p = (f); \
832 "ldmia %2!, {r0, r1, r2, r3} \n\t" \
833 "ldr r4, [%3, #0] \n\t" \
834 "smlal %0, %1, r0, r4 \n\t" \
835 "ldr r4, [%3, #56] \n\t" \
836 "smlal %0, %1, r1, r4 \n\t" \
837 "ldr r4, [%3, #48] \n\t" \
838 "smlal %0, %1, r2, r4 \n\t" \
839 "ldr r4, [%3, #40] \n\t" \
840 "smlal %0, %1, r3, r4 \n\t" \
841 "ldmia %2, {r0, r1, r2, r3} \n\t" \
842 "ldr r4, [%3, #32] \n\t" \
843 "smlal %0, %1, r0, r4 \n\t" \
844 "ldr r4, [%3, #24] \n\t" \
845 "smlal %0, %1, r1, r4 \n\t" \
846 "ldr r4, [%3, #16] \n\t" \
847 "smlal %0, %1, r2, r4 \n\t" \
848 "ldr r4, [%3, #8] \n\t" \
849 "smlal %0, %1, r3, r4 \n\t" \
850 : "+r" (lo), "+r" (hi), "+r" (__p) \
852 : "r0", "r1", "r2", "r3", "r4", "memory"); \
855 void synth_full_odd_sbsample (mad_fixed_t
*pcm
,
856 mad_fixed_t (*fo
)[8],
857 mad_fixed_t (*fe
)[8],
858 mad_fixed_t
const (*D0ptr
)[32],
859 mad_fixed_t
const (*D1ptr
)[32]);
860 void synth_full_even_sbsample(mad_fixed_t
*pcm
,
861 mad_fixed_t (*fo
)[8],
862 mad_fixed_t (*fe
)[8],
863 mad_fixed_t
const (*D0ptr
)[32],
864 mad_fixed_t
const (*D1ptr
)[32]);
867 void synth_full(struct mad_synth
*synth
, struct mad_frame
const *frame
,
868 unsigned int nch
, unsigned int ns
) ICODE_ATTR_MPA_SYNTH
;
870 void synth_full(struct mad_synth
*synth
, struct mad_frame
const *frame
,
871 unsigned int nch
, unsigned int ns
)
874 unsigned int phase
, ch
, s
;
875 mad_fixed_t
*pcm
, (*filter
)[2][2][16][8];
876 mad_fixed_t (*sbsample
)[36][32];
877 mad_fixed_t (*fe
)[8], (*fx
)[8], (*fo
)[8];
878 mad_fixed_t
const (*D0ptr
)[32], *ptr
;
879 mad_fixed_t
const (*D1ptr
)[32];
883 for (ch
= 0; ch
< nch
; ++ch
) {
884 sbsample
= &(*frame
->sbsample_prev
)[ch
];
885 filter
= &synth
->filter
[ch
];
886 phase
= synth
->phase
;
887 pcm
= synth
->pcm
.samples
[ch
];
889 for (s
= 0; s
< ns
; ++s
) {
890 dct32((*sbsample
)[s
], phase
>> 1,
891 (*filter
)[0][phase
& 1], (*filter
)[1][phase
& 1]);
893 p
= (phase
- 1) & 0xf;
895 /* calculate 32 samples */
896 fe
= &(*filter
)[0][ phase
& 1][0];
897 fx
= &(*filter
)[0][~phase
& 1][0];
898 fo
= &(*filter
)[1][~phase
& 1][0];
900 D0ptr
= (void*)&D
[0][ p
];
901 D1ptr
= (void*)&D
[0][-p
];
906 PROD_O(hi
, lo
, *fx
, ptr
+1);
908 PROD_A(hi
, lo
, *fe
, ptr
);
909 pcm
[0] = SHIFT(MLZ(hi
, lo
));
912 synth_full_odd_sbsample(pcm
, fo
, fe
, D0ptr
, D1ptr
);
919 PROD_O(hi
, lo
, *fo
, ptr
+1);
920 pcm
[0] = SHIFT(-MLZ(hi
, lo
));
925 PROD_O(hi
, lo
, *fx
, ptr
);
927 PROD_A(hi
, lo
, *fe
, ptr
+1);
928 pcm
[0] = SHIFT(MLZ(hi
, lo
));
931 synth_full_even_sbsample(pcm
, fo
, fe
, D0ptr
, D1ptr
);
938 PROD_O(hi
, lo
, *fo
, ptr
);
939 pcm
[0] = SHIFT(-MLZ(hi
, lo
));
943 phase
= (phase
+ 1) % 16;
948 # else /* not FPM_COLDFIRE_EMAC and not FPM_ARM */
950 #define PROD_O(hi, lo, f, ptr, offset) \
951 ML0(hi, lo, (*f)[0], ptr[ 0+offset]); \
952 MLA(hi, lo, (*f)[1], ptr[14+offset]); \
953 MLA(hi, lo, (*f)[2], ptr[12+offset]); \
954 MLA(hi, lo, (*f)[3], ptr[10+offset]); \
955 MLA(hi, lo, (*f)[4], ptr[ 8+offset]); \
956 MLA(hi, lo, (*f)[5], ptr[ 6+offset]); \
957 MLA(hi, lo, (*f)[6], ptr[ 4+offset]); \
958 MLA(hi, lo, (*f)[7], ptr[ 2+offset]);
960 #define PROD_A(hi, lo, f, ptr, offset) \
961 MLA(hi, lo, (*f)[0], ptr[ 0+offset]); \
962 MLA(hi, lo, (*f)[1], ptr[14+offset]); \
963 MLA(hi, lo, (*f)[2], ptr[12+offset]); \
964 MLA(hi, lo, (*f)[3], ptr[10+offset]); \
965 MLA(hi, lo, (*f)[4], ptr[ 8+offset]); \
966 MLA(hi, lo, (*f)[5], ptr[ 6+offset]); \
967 MLA(hi, lo, (*f)[6], ptr[ 4+offset]); \
968 MLA(hi, lo, (*f)[7], ptr[ 2+offset]);
970 #define PROD_SB(hi, lo, ptr, offset, first_idx, last_idx) \
971 ML0(hi, lo, (*fe)[0], ptr[first_idx]); \
972 MLA(hi, lo, (*fe)[1], ptr[16+offset]); \
973 MLA(hi, lo, (*fe)[2], ptr[18+offset]); \
974 MLA(hi, lo, (*fe)[3], ptr[20+offset]); \
975 MLA(hi, lo, (*fe)[4], ptr[22+offset]); \
976 MLA(hi, lo, (*fe)[5], ptr[24+offset]); \
977 MLA(hi, lo, (*fe)[6], ptr[26+offset]); \
978 MLA(hi, lo, (*fe)[7], ptr[28+offset]); \
979 MLA(hi, lo, (*fo)[7], ptr[29-offset]); \
980 MLA(hi, lo, (*fo)[6], ptr[27-offset]); \
981 MLA(hi, lo, (*fo)[5], ptr[25-offset]); \
982 MLA(hi, lo, (*fo)[4], ptr[23-offset]); \
983 MLA(hi, lo, (*fo)[3], ptr[21-offset]); \
984 MLA(hi, lo, (*fo)[2], ptr[19-offset]); \
985 MLA(hi, lo, (*fo)[1], ptr[17-offset]); \
986 MLA(hi, lo, (*fo)[0], ptr[last_idx ]);
989 void synth_full(struct mad_synth
*synth
, struct mad_frame
const *frame
,
990 unsigned int nch
, unsigned int ns
)
993 unsigned int phase
, ch
, s
;
994 mad_fixed_t
*pcm
, (*filter
)[2][2][16][8];
995 mad_fixed_t (*sbsample
)[36][32];
996 mad_fixed_t (*fe
)[8], (*fx
)[8], (*fo
)[8];
997 mad_fixed_t
const (*D0ptr
)[32], *ptr
;
998 mad_fixed_t
const (*D1ptr
)[32];
1002 for (ch
= 0; ch
< nch
; ++ch
) {
1003 sbsample
= &(*frame
->sbsample_prev
)[ch
];
1004 filter
= &synth
->filter
[ch
];
1005 phase
= synth
->phase
;
1006 pcm
= synth
->pcm
.samples
[ch
];
1008 for (s
= 0; s
< ns
; ++s
) {
1009 dct32((*sbsample
)[s
], phase
>> 1,
1010 (*filter
)[0][phase
& 1], (*filter
)[1][phase
& 1]);
1012 p
= (phase
- 1) & 0xf;
1014 /* calculate 32 samples */
1015 fe
= &(*filter
)[0][ phase
& 1][0];
1016 fx
= &(*filter
)[0][~phase
& 1][0];
1017 fo
= &(*filter
)[1][~phase
& 1][0];
1019 D0ptr
= (void*)&D
[0][ p
];
1020 D1ptr
= (void*)&D
[0][-p
];
1025 PROD_O(hi
, lo
, fx
, ptr
, 1)
1027 PROD_A(hi
, lo
, fe
, ptr
, 0)
1028 pcm
[0] = SHIFT(MLZ(hi
, lo
));
1031 for (sb
= 15; sb
; sb
--, fo
++)
1037 /* D[32 - sb][i] == -D[sb][31 - i] */
1039 PROD_O(hi
, lo
, fo
, ptr
, 1)
1041 PROD_A(hi
, lo
, fe
, ptr
, 0)
1042 pcm
[-sb
] = SHIFT(MLZ(hi
, lo
));
1045 PROD_SB(hi
, lo
, ptr
, 1, 15, 30)
1046 pcm
[sb
] = SHIFT(MLZ(hi
, lo
));
1050 PROD_O(hi
, lo
, fo
, ptr
, 1)
1051 pcm
[0] = SHIFT(-MLZ(hi
, lo
));
1056 PROD_O(hi
, lo
, fx
, ptr
, 0)
1058 PROD_A(hi
, lo
, fe
, ptr
, 1)
1059 pcm
[0] = SHIFT(MLZ(hi
, lo
));
1062 for (sb
= 15; sb
; sb
--, fo
++)
1068 /* D[32 - sb][i] == -D[sb][31 - i] */
1070 PROD_O(hi
, lo
, fo
, ptr
, 0)
1072 PROD_A(hi
, lo
, fe
, ptr
, 1)
1073 pcm
[-sb
] = SHIFT(MLZ(hi
, lo
));
1076 PROD_SB(hi
, lo
, ptr
, 0, 30, 15)
1077 pcm
[sb
] = SHIFT(MLZ(hi
, lo
));
1081 PROD_O(hi
, lo
, fo
, ptr
, 0)
1082 pcm
[0] = SHIFT(-MLZ(hi
, lo
));
1086 phase
= (phase
+ 1) % 16;
1094 #if 0 /* rockbox: unused */
1096 * NAME: synth->half()
1097 * DESCRIPTION: perform half frequency PCM synthesis
1100 void synth_half(struct mad_synth
*synth
, struct mad_frame
const *frame
,
1101 unsigned int nch
, unsigned int ns
)
1103 unsigned int phase
, ch
, s
, sb
, pe
, po
;
1104 mad_fixed_t
*pcm1
, *pcm2
, (*filter
)[2][2][16][8];
1105 mad_fixed_t (*sbsample
)[36][32];
1106 register mad_fixed_t (*fe
)[8], (*fx
)[8], (*fo
)[8];
1107 register mad_fixed_t
const (*Dptr
)[32], *ptr
;
1108 register mad_fixed64hi_t hi
;
1109 register mad_fixed64lo_t lo
;
1111 for (ch
= 0; ch
< nch
; ++ch
) {
1112 sbsample
= &(*frame
->sbsample_prev
)[ch
];
1113 filter
= &synth
->filter
[ch
];
1114 phase
= synth
->phase
;
1115 pcm1
= synth
->pcm
.samples
[ch
];
1117 for (s
= 0; s
< ns
; ++s
) {
1118 dct32((*sbsample
)[s
], phase
>> 1,
1119 (*filter
)[0][phase
& 1], (*filter
)[1][phase
& 1]);
1122 po
= ((phase
- 1) & 0xf) | 1;
1124 /* calculate 16 samples */
1126 fe
= &(*filter
)[0][ phase
& 1][0];
1127 fx
= &(*filter
)[0][~phase
& 1][0];
1128 fo
= &(*filter
)[1][~phase
& 1][0];
1133 ML0(hi
, lo
, (*fx
)[0], ptr
[ 0]);
1134 MLA(hi
, lo
, (*fx
)[1], ptr
[14]);
1135 MLA(hi
, lo
, (*fx
)[2], ptr
[12]);
1136 MLA(hi
, lo
, (*fx
)[3], ptr
[10]);
1137 MLA(hi
, lo
, (*fx
)[4], ptr
[ 8]);
1138 MLA(hi
, lo
, (*fx
)[5], ptr
[ 6]);
1139 MLA(hi
, lo
, (*fx
)[6], ptr
[ 4]);
1140 MLA(hi
, lo
, (*fx
)[7], ptr
[ 2]);
1144 MLA(hi
, lo
, (*fe
)[0], ptr
[ 0]);
1145 MLA(hi
, lo
, (*fe
)[1], ptr
[14]);
1146 MLA(hi
, lo
, (*fe
)[2], ptr
[12]);
1147 MLA(hi
, lo
, (*fe
)[3], ptr
[10]);
1148 MLA(hi
, lo
, (*fe
)[4], ptr
[ 8]);
1149 MLA(hi
, lo
, (*fe
)[5], ptr
[ 6]);
1150 MLA(hi
, lo
, (*fe
)[6], ptr
[ 4]);
1151 MLA(hi
, lo
, (*fe
)[7], ptr
[ 2]);
1153 *pcm1
++ = SHIFT(MLZ(hi
, lo
));
1157 for (sb
= 1; sb
< 16; ++sb
) {
1161 /* D[32 - sb][i] == -D[sb][31 - i] */
1165 ML0(hi
, lo
, (*fo
)[0], ptr
[ 0]);
1166 MLA(hi
, lo
, (*fo
)[1], ptr
[14]);
1167 MLA(hi
, lo
, (*fo
)[2], ptr
[12]);
1168 MLA(hi
, lo
, (*fo
)[3], ptr
[10]);
1169 MLA(hi
, lo
, (*fo
)[4], ptr
[ 8]);
1170 MLA(hi
, lo
, (*fo
)[5], ptr
[ 6]);
1171 MLA(hi
, lo
, (*fo
)[6], ptr
[ 4]);
1172 MLA(hi
, lo
, (*fo
)[7], ptr
[ 2]);
1176 MLA(hi
, lo
, (*fe
)[7], ptr
[ 2]);
1177 MLA(hi
, lo
, (*fe
)[6], ptr
[ 4]);
1178 MLA(hi
, lo
, (*fe
)[5], ptr
[ 6]);
1179 MLA(hi
, lo
, (*fe
)[4], ptr
[ 8]);
1180 MLA(hi
, lo
, (*fe
)[3], ptr
[10]);
1181 MLA(hi
, lo
, (*fe
)[2], ptr
[12]);
1182 MLA(hi
, lo
, (*fe
)[1], ptr
[14]);
1183 MLA(hi
, lo
, (*fe
)[0], ptr
[ 0]);
1185 *pcm1
++ = SHIFT(MLZ(hi
, lo
));
1188 ML0(hi
, lo
, (*fo
)[7], ptr
[31 - 2]);
1189 MLA(hi
, lo
, (*fo
)[6], ptr
[31 - 4]);
1190 MLA(hi
, lo
, (*fo
)[5], ptr
[31 - 6]);
1191 MLA(hi
, lo
, (*fo
)[4], ptr
[31 - 8]);
1192 MLA(hi
, lo
, (*fo
)[3], ptr
[31 - 10]);
1193 MLA(hi
, lo
, (*fo
)[2], ptr
[31 - 12]);
1194 MLA(hi
, lo
, (*fo
)[1], ptr
[31 - 14]);
1195 MLA(hi
, lo
, (*fo
)[0], ptr
[31 - 16]);
1198 MLA(hi
, lo
, (*fe
)[0], ptr
[31 - 16]);
1199 MLA(hi
, lo
, (*fe
)[1], ptr
[31 - 14]);
1200 MLA(hi
, lo
, (*fe
)[2], ptr
[31 - 12]);
1201 MLA(hi
, lo
, (*fe
)[3], ptr
[31 - 10]);
1202 MLA(hi
, lo
, (*fe
)[4], ptr
[31 - 8]);
1203 MLA(hi
, lo
, (*fe
)[5], ptr
[31 - 6]);
1204 MLA(hi
, lo
, (*fe
)[6], ptr
[31 - 4]);
1205 MLA(hi
, lo
, (*fe
)[7], ptr
[31 - 2]);
1207 *pcm2
-- = SHIFT(MLZ(hi
, lo
));
1216 ML0(hi
, lo
, (*fo
)[0], ptr
[ 0]);
1217 MLA(hi
, lo
, (*fo
)[1], ptr
[14]);
1218 MLA(hi
, lo
, (*fo
)[2], ptr
[12]);
1219 MLA(hi
, lo
, (*fo
)[3], ptr
[10]);
1220 MLA(hi
, lo
, (*fo
)[4], ptr
[ 8]);
1221 MLA(hi
, lo
, (*fo
)[5], ptr
[ 6]);
1222 MLA(hi
, lo
, (*fo
)[6], ptr
[ 4]);
1223 MLA(hi
, lo
, (*fo
)[7], ptr
[ 2]);
1225 *pcm1
= SHIFT(-MLZ(hi
, lo
));
1228 phase
= (phase
+ 1) % 16;
1235 * NAME: synth->frame()
1236 * DESCRIPTION: perform PCM synthesis of frame subband samples
1238 void mad_synth_frame(struct mad_synth
*synth
, struct mad_frame
const *frame
)
1240 unsigned int nch
, ns
;
1241 #if 0 /* rockbox: unused */
1242 void (*synth_frame
)(struct mad_synth
*, struct mad_frame
const *,
1243 unsigned int, unsigned int);
1246 nch
= MAD_NCHANNELS(&frame
->header
);
1247 ns
= MAD_NSBSAMPLES(&frame
->header
);
1249 synth
->pcm
.samplerate
= frame
->header
.samplerate
;
1250 synth
->pcm
.channels
= nch
;
1251 synth
->pcm
.length
= 32 * ns
;
1253 #if 0 /* rockbox: unused */
1254 synth_frame
= synth_full
;
1256 if (frame
->options
& MAD_OPTION_HALFSAMPLERATE
) {
1257 synth
->pcm
.samplerate
/= 2;
1258 synth
->pcm
.length
/= 2;
1260 synth_frame
= synth_half
;
1263 synth_frame(synth
, frame
, nch
, ns
);
1265 synth_full(synth
, frame
, nch
, ns
);
1268 synth
->phase
= (synth
->phase
+ ns
) % 16;