1 /***************************************************************************
3 * Open \______ \ ____ ____ | | _\_ |__ _______ ___
4 * Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
5 * Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
6 * Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
10 * Copyright (C) 2005 Miika Pekkarinen
12 * All files in this archive are subject to the GNU General Public License.
13 * See the file COPYING in the source tree root for full license agreement.
15 * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
16 * KIND, either express or implied.
18 ****************************************************************************/
30 #include "replaygain.h"
34 /* 16-bit samples are scaled based on these constants. The shift should be
38 #define WORD_FRACBITS 27
40 #define NATIVE_DEPTH 16
41 /* If the buffer sizes change, check the assembly code! */
42 #define SAMPLE_BUF_COUNT 256
43 #define RESAMPLE_BUF_COUNT (256 * 4) /* Enough for 11,025 Hz -> 44,100 Hz*/
44 #define DEFAULT_GAIN 0x01000000
45 #define SAMPLE_BUF_LEFT_CHANNEL 0
46 #define SAMPLE_BUF_RIGHT_CHANNEL (SAMPLE_BUF_COUNT/2)
47 #define RESAMPLE_BUF_LEFT_CHANNEL 0
48 #define RESAMPLE_BUF_RIGHT_CHANNEL (RESAMPLE_BUF_COUNT/2)
50 /* enums to index conversion properly with stereo mode and other settings */
53 SAMPLE_INPUT_LE_NATIVE_I_STEREO
= STEREO_INTERLEAVED
,
54 SAMPLE_INPUT_LE_NATIVE_NI_STEREO
= STEREO_NONINTERLEAVED
,
55 SAMPLE_INPUT_LE_NATIVE_MONO
= STEREO_MONO
,
56 SAMPLE_INPUT_GT_NATIVE_I_STEREO
= STEREO_INTERLEAVED
+ STEREO_NUM_MODES
,
57 SAMPLE_INPUT_GT_NATIVE_NI_STEREO
= STEREO_NONINTERLEAVED
+ STEREO_NUM_MODES
,
58 SAMPLE_INPUT_GT_NATIVE_MONO
= STEREO_MONO
+ STEREO_NUM_MODES
,
59 SAMPLE_INPUT_GT_NATIVE_1ST_INDEX
= STEREO_NUM_MODES
64 SAMPLE_OUTPUT_MONO
= 0,
66 SAMPLE_OUTPUT_DITHERED_MONO
,
67 SAMPLE_OUTPUT_DITHERED_STEREO
70 /****************************************************************************
71 * NOTE: Any assembly routines that use these structures must be updated
72 * if current data members are moved or changed.
76 uint32_t delta
; /* 00h */
77 uint32_t phase
; /* 04h */
78 int32_t last_sample
[2]; /* 08h */
82 /* This is for passing needed data to assembly dsp routines. If another
83 * dsp parameter needs to be passed, add to the end of the structure
84 * and remove from dsp_config.
85 * If another function type becomes assembly optimized and requires dsp
86 * config info, add a pointer paramter of type "struct dsp_data *".
87 * If removing something from other than the end, reserve the spot or
88 * else update every implementation for every target.
89 * Be sure to add the offset of the new member for easy viewing as well. :)
90 * It is the first member of dsp_config and all members can be accessesed
91 * through the main aggregate but this is intended to make a safe haven
92 * for these items whereas the c part can be rearranged at will. dsp_data
93 * could even moved within dsp_config without disurbing the order.
97 int output_scale
; /* 00h */
98 int num_channels
; /* 04h */
99 struct resample_data resample_data
; /* 08h */
100 int32_t clip_min
; /* 18h */
101 int32_t clip_max
; /* 1ch */
102 int32_t gain
; /* 20h - Note that this is in S8.23 format. */
109 long error
[3]; /* 00h */
110 long random
; /* 0ch */
114 struct crossfeed_data
116 int32_t gain
; /* 00h - Direct path gain */
117 int32_t coefs
[3]; /* 04h - Coefficients for the shelving filter */
118 int32_t history
[4]; /* 10h - Format is x[n - 1], y[n - 1] for both channels */
119 int32_t delay
[13][2]; /* 20h */
120 int32_t *index
; /* 88h - Current pointer into the delay line */
124 /* Current setup is one lowshelf filters three peaking filters and one
125 * highshelf filter. Varying the number of shelving filters make no sense,
126 * but adding peaking filters is possible.
130 char enabled
[5]; /* 00h - Flags for active filters */
131 struct eqfilter filters
[5]; /* 08h - packing is 4? */
135 /* Include header with defines which functions are implemented in assembly
136 code for the target */
139 /* Typedefs keep things much neater in this case */
140 typedef void (*sample_input_fn_type
)(int count
, const char *src
[],
142 typedef int (*resample_fn_type
)(int count
, struct dsp_data
*data
,
143 int32_t *src
[], int32_t *dst
[]);
144 typedef void (*sample_output_fn_type
)(int count
, struct dsp_data
*data
,
145 int32_t *src
[], int16_t *dst
);
146 /* Single-DSP channel processing in place */
147 typedef void (*channels_process_fn_type
)(int count
, int32_t *buf
[]);
148 /* DSP local channel processing in place */
149 typedef void (*channels_process_dsp_fn_type
)(int count
, struct dsp_data
*data
,
154 ***************************************************************************/
158 struct dsp_data data
; /* Config members for use in asm routines */
159 long codec_frequency
; /* Sample rate of data coming from the codec */
160 long frequency
; /* Effective sample rate after pitch shift (if any) */
165 #ifdef HAVE_SW_TONE_CONTROLS
166 /* Filter struct for software bass/treble controls */
167 struct eqfilter tone_filter
;
169 /* Functions that change depending upon settings - NULL if stage is
171 sample_input_fn_type input_samples
;
172 resample_fn_type resample
;
173 sample_output_fn_type output_samples
;
174 /* These will be NULL for the voice codec and is more economical that
176 channels_process_dsp_fn_type apply_gain
;
177 channels_process_fn_type apply_crossfeed
;
178 channels_process_fn_type eq_process
;
179 channels_process_fn_type channels_process
;
182 /* General DSP config */
183 static struct dsp_config dsp_conf
[2] IBSS_ATTR
; /* 0=A, 1=V */
185 static struct dither_data dither_data
[2] IBSS_ATTR
; /* 0=left, 1=right */
186 static long dither_mask IBSS_ATTR
;
187 static long dither_bias IBSS_ATTR
;
189 struct crossfeed_data crossfeed_data IDATA_ATTR
= /* A */
191 .index
= (int32_t *)crossfeed_data
.delay
195 static struct eq_state eq_data
; /* A */
197 /* Software tone controls */
198 #ifdef HAVE_SW_TONE_CONTROLS
199 static int prescale
; /* A/V */
200 static int bass
; /* A/V */
201 static int treble
; /* A/V */
204 /* Settings applicable to audio codec only */
205 static int pitch_ratio
= 1000;
206 static int channels_mode
;
209 static bool dither_enabled
;
210 static long eq_precut
;
211 static long track_gain
;
212 static bool new_gain
;
213 static long album_gain
;
214 static long track_peak
;
215 static long album_peak
;
216 static long replaygain
;
217 static bool crossfeed_enabled
;
219 #define audio_dsp (dsp_conf[CODEC_IDX_AUDIO])
220 #define voice_dsp (dsp_conf[CODEC_IDX_VOICE])
222 /* The internal format is 32-bit samples, non-interleaved, stereo. This
223 * format is similar to the raw output from several codecs, so the amount
224 * of copying needed is minimized for that case.
227 int32_t sample_buf
[SAMPLE_BUF_COUNT
] IBSS_ATTR
;
228 static int32_t resample_buf
[RESAMPLE_BUF_COUNT
] IBSS_ATTR
;
231 /* Clip sample to arbitrary limits where range > 0 and min + range = max */
232 static inline long clip_sample(int32_t sample
, int32_t min
, int32_t range
)
234 if ((uint32_t)(sample
- min
) > (uint32_t)range
)
245 /* Clip sample to signed 16 bit range */
246 static inline int32_t clip_sample_16(int32_t sample
)
248 if ((int16_t)sample
!= sample
)
249 sample
= 0x7fff ^ (sample
>> 31);
253 int sound_get_pitch(void)
258 void sound_set_pitch(int permille
)
260 pitch_ratio
= permille
;
261 dsp_configure(&audio_dsp
, DSP_SWITCH_FREQUENCY
,
262 audio_dsp
.codec_frequency
);
265 /* Convert count samples to the internal format, if needed. Updates src
266 * to point past the samples "consumed" and dst is set to point to the
267 * samples to consume. Note that for mono, dst[0] equals dst[1], as there
268 * is no point in processing the same data twice.
271 /* convert count 16-bit mono to 32-bit mono */
272 static void sample_input_lte_native_mono(
273 int count
, const char *src
[], int32_t *dst
[])
275 const int16_t *s
= (int16_t *) src
[0];
276 const int16_t * const send
= s
+ count
;
277 int32_t *d
= dst
[0] = dst
[1] = &sample_buf
[SAMPLE_BUF_LEFT_CHANNEL
];
278 int scale
= WORD_SHIFT
;
282 *d
++ = *s
++ << scale
;
289 /* convert count 16-bit interleaved stereo to 32-bit noninterleaved */
290 static void sample_input_lte_native_i_stereo(
291 int count
, const char *src
[], int32_t *dst
[])
293 const int32_t *s
= (int32_t *) src
[0];
294 const int32_t * const send
= s
+ count
;
295 int32_t *dl
= dst
[0] = &sample_buf
[SAMPLE_BUF_LEFT_CHANNEL
];
296 int32_t *dr
= dst
[1] = &sample_buf
[SAMPLE_BUF_RIGHT_CHANNEL
];
297 int scale
= WORD_SHIFT
;
302 #ifdef ROCKBOX_LITTLE_ENDIAN
303 *dl
++ = (slr
>> 16) << scale
;
304 *dr
++ = (int32_t)(int16_t)slr
<< scale
;
305 #else /* ROCKBOX_BIG_ENDIAN */
306 *dl
++ = (int32_t)(int16_t)slr
<< scale
;
307 *dr
++ = (slr
>> 16) << scale
;
315 /* convert count 16-bit noninterleaved stereo to 32-bit noninterleaved */
316 static void sample_input_lte_native_ni_stereo(
317 int count
, const char *src
[], int32_t *dst
[])
319 const int16_t *sl
= (int16_t *) src
[0];
320 const int16_t *sr
= (int16_t *) src
[1];
321 const int16_t * const slend
= sl
+ count
;
322 int32_t *dl
= dst
[0] = &sample_buf
[SAMPLE_BUF_LEFT_CHANNEL
];
323 int32_t *dr
= dst
[1] = &sample_buf
[SAMPLE_BUF_RIGHT_CHANNEL
];
324 int scale
= WORD_SHIFT
;
328 *dl
++ = *sl
++ << scale
;
329 *dr
++ = *sr
++ << scale
;
337 /* convert count 32-bit mono to 32-bit mono */
338 static void sample_input_gt_native_mono(
339 int count
, const char *src
[], int32_t *dst
[])
341 dst
[0] = dst
[1] = (int32_t *)src
[0];
342 src
[0] = (char *)(dst
[0] + count
);
345 /* convert count 32-bit interleaved stereo to 32-bit noninterleaved stereo */
346 static void sample_input_gt_native_i_stereo(
347 int count
, const char *src
[], int32_t *dst
[])
349 const int32_t *s
= (int32_t *)src
[0];
350 const int32_t * const send
= s
+ 2*count
;
351 int32_t *dl
= dst
[0] = &sample_buf
[SAMPLE_BUF_LEFT_CHANNEL
];
352 int32_t *dr
= dst
[1] = &sample_buf
[SAMPLE_BUF_RIGHT_CHANNEL
];
361 src
[0] = (char *)send
;
364 /* convert 32 bit-noninterleaved stereo to 32-bit noninterleaved stereo */
365 static void sample_input_gt_native_ni_stereo(
366 int count
, const char *src
[], int32_t *dst
[])
368 dst
[0] = (int32_t *)src
[0];
369 dst
[1] = (int32_t *)src
[1];
370 src
[0] = (char *)(dst
[0] + count
);
371 src
[1] = (char *)(dst
[1] + count
);
375 * sample_input_new_format()
377 * set the to-native sample conversion function based on dsp sample parameters
380 * needs syncing with changes to the following dsp parameters:
381 * * dsp->stereo_mode (A/V)
382 * * dsp->sample_depth (A/V)
384 static void sample_input_new_format(struct dsp_config
*dsp
)
386 static const sample_input_fn_type sample_input_functions
[] =
388 [SAMPLE_INPUT_LE_NATIVE_MONO
] = sample_input_lte_native_mono
,
389 [SAMPLE_INPUT_LE_NATIVE_I_STEREO
] = sample_input_lte_native_i_stereo
,
390 [SAMPLE_INPUT_LE_NATIVE_NI_STEREO
] = sample_input_lte_native_ni_stereo
,
391 [SAMPLE_INPUT_GT_NATIVE_MONO
] = sample_input_gt_native_mono
,
392 [SAMPLE_INPUT_GT_NATIVE_I_STEREO
] = sample_input_gt_native_i_stereo
,
393 [SAMPLE_INPUT_GT_NATIVE_NI_STEREO
] = sample_input_gt_native_ni_stereo
,
396 int convert
= dsp
->stereo_mode
;
398 if (dsp
->sample_depth
> NATIVE_DEPTH
)
399 convert
+= SAMPLE_INPUT_GT_NATIVE_1ST_INDEX
;
401 dsp
->input_samples
= sample_input_functions
[convert
];
404 #ifndef DSP_HAVE_ASM_SAMPLE_OUTPUT_MONO
405 /* write mono internal format to output format */
406 static void sample_output_mono(int count
, struct dsp_data
*data
,
407 int32_t *src
[], int16_t *dst
)
409 const int32_t *s0
= src
[0];
410 const int scale
= data
->output_scale
;
411 const int dc_bias
= 1 << (scale
- 1);
415 int32_t lr
= clip_sample_16((*s0
++ + dc_bias
) >> scale
);
421 #endif /* DSP_HAVE_ASM_SAMPLE_OUTPUT_MONO */
423 /* write stereo internal format to output format */
424 #ifndef DSP_HAVE_ASM_SAMPLE_OUTPUT_STEREO
425 static void sample_output_stereo(int count
, struct dsp_data
*data
,
426 int32_t *src
[], int16_t *dst
)
428 const int32_t *s0
= src
[0];
429 const int32_t *s1
= src
[1];
430 const int scale
= data
->output_scale
;
431 const int dc_bias
= 1 << (scale
- 1);
435 *dst
++ = clip_sample_16((*s0
++ + dc_bias
) >> scale
);
436 *dst
++ = clip_sample_16((*s1
++ + dc_bias
) >> scale
);
440 #endif /* DSP_HAVE_ASM_SAMPLE_OUTPUT_STEREO */
443 * The "dither" code to convert the 24-bit samples produced by libmad was
444 * taken from the coolplayer project - coolplayer.sourceforge.net
446 * This function handles mono and stereo outputs.
448 static void sample_output_dithered(int count
, struct dsp_data
*data
,
449 int32_t *src
[], int16_t *dst
)
451 const int32_t mask
= dither_mask
;
452 const int32_t bias
= dither_bias
;
453 const int scale
= data
->output_scale
;
454 const int32_t min
= data
->clip_min
;
455 const int32_t max
= data
->clip_max
;
456 const int32_t range
= max
- min
;
460 for (ch
= 0; ch
< data
->num_channels
; ch
++)
462 struct dither_data
* const dither
= &dither_data
[ch
];
463 int32_t *s
= src
[ch
];
466 for (i
= 0, d
= &dst
[ch
]; i
< count
; i
++, s
++, d
+= 2)
468 int32_t output
, sample
;
471 /* Noise shape and bias (for correct rounding later) */
473 sample
+= dither
->error
[0] - dither
->error
[1] + dither
->error
[2];
474 dither
->error
[2] = dither
->error
[1];
475 dither
->error
[1] = dither
->error
[0]/2;
477 output
= sample
+ bias
;
479 /* Dither, highpass triangle PDF */
480 random
= dither
->random
*0x0019660dL
+ 0x3c6ef35fL
;
481 output
+= (random
& mask
) - (dither
->random
& mask
);
482 dither
->random
= random
;
484 /* Round sample to output range */
488 dither
->error
[0] = sample
- output
;
491 if ((uint32_t)(output
- min
) > (uint32_t)range
)
499 /* Quantize and store */
500 *d
= output
>> scale
;
504 if (data
->num_channels
== 2)
507 /* Have to duplicate left samples into the right channel since
508 pcm buffer and hardware is interleaved stereo */
520 * sample_output_new_format()
522 * set the from-native to ouput sample conversion routine
525 * needs syncing with changes to the following dsp parameters:
526 * * dsp->stereo_mode (A/V)
527 * * dither_enabled (A)
529 static void sample_output_new_format(struct dsp_config
*dsp
)
531 static const sample_output_fn_type sample_output_functions
[] =
534 sample_output_stereo
,
535 sample_output_dithered
,
536 sample_output_dithered
539 int out
= dsp
->data
.num_channels
- 1;
541 if (dsp
== &audio_dsp
&& dither_enabled
)
544 dsp
->output_samples
= sample_output_functions
[out
];
548 * Linear interpolation resampling that introduces a one sample delay because
549 * of our inability to look into the future at the end of a frame.
551 #ifndef DSP_HAVE_ASM_RESAMPLING
552 static int dsp_downsample(int count
, struct dsp_data
*data
,
553 int32_t *src
[], int32_t *dst
[])
555 int ch
= data
->num_channels
- 1;
556 uint32_t delta
= data
->resample_data
.delta
;
560 /* Rolled channel loop actually showed slightly faster. */
563 /* Just initialize things and not worry too much about the relatively
564 * uncommon case of not being able to spit out a sample for the frame.
566 int32_t *s
= src
[ch
];
567 int32_t last
= data
->resample_data
.last_sample
[ch
];
569 data
->resample_data
.last_sample
[ch
] = s
[count
- 1];
571 phase
= data
->resample_data
.phase
;
574 /* Do we need last sample of previous frame for interpolation? */
578 while (pos
< (uint32_t)count
)
580 *d
++ = last
+ FRACMUL((phase
& 0xffff) << 15, s
[pos
] - last
);
588 /* Wrap phase accumulator back to start of next frame. */
589 data
->resample_data
.phase
= phase
- (count
<< 16);
593 static int dsp_upsample(int count
, struct dsp_data
*data
,
594 int32_t *src
[], int32_t *dst
[])
596 int ch
= data
->num_channels
- 1;
597 uint32_t delta
= data
->resample_data
.delta
;
601 /* Rolled channel loop actually showed slightly faster. */
604 /* Should always be able to output a sample for a ratio up to
605 RESAMPLE_BUF_COUNT / SAMPLE_BUF_COUNT. */
606 int32_t *s
= src
[ch
];
607 int32_t last
= data
->resample_data
.last_sample
[ch
];
609 data
->resample_data
.last_sample
[ch
] = s
[count
- 1];
611 phase
= data
->resample_data
.phase
;
616 *d
++ = last
+ FRACMUL((phase
& 0xffff) << 15, s
[0] - last
);
621 while (pos
< (uint32_t)count
)
624 *d
++ = last
+ FRACMUL((phase
& 0xffff) << 15, s
[pos
] - last
);
631 /* Wrap phase accumulator back to start of next frame. */
632 data
->resample_data
.phase
= phase
& 0xffff;
635 #endif /* DSP_HAVE_ASM_RESAMPLING */
637 static void resampler_new_delta(struct dsp_config
*dsp
)
639 dsp
->data
.resample_data
.delta
= (unsigned long)
640 dsp
->frequency
* 65536LL / NATIVE_FREQUENCY
;
642 if (dsp
->frequency
== NATIVE_FREQUENCY
)
644 /* NOTE: If fully glitch-free transistions from no resampling to
645 resampling are desired, last_sample history should be maintained
646 even when not resampling. */
647 dsp
->resample
= NULL
;
648 dsp
->data
.resample_data
.phase
= 0;
649 dsp
->data
.resample_data
.last_sample
[0] = 0;
650 dsp
->data
.resample_data
.last_sample
[1] = 0;
652 else if (dsp
->frequency
< NATIVE_FREQUENCY
)
653 dsp
->resample
= dsp_upsample
;
655 dsp
->resample
= dsp_downsample
;
658 /* Resample count stereo samples. Updates the src array, if resampling is
659 * done, to refer to the resampled data. Returns number of stereo samples
660 * for further processing.
662 static inline int resample(struct dsp_config
*dsp
, int count
, int32_t *src
[])
666 &resample_buf
[RESAMPLE_BUF_LEFT_CHANNEL
],
667 &resample_buf
[RESAMPLE_BUF_RIGHT_CHANNEL
],
670 count
= dsp
->resample(count
, &dsp
->data
, src
, dst
);
673 src
[1] = dst
[dsp
->data
.num_channels
- 1];
678 static void dither_init(struct dsp_config
*dsp
)
680 memset(dither_data
, 0, sizeof (dither_data
));
681 dither_bias
= (1L << (dsp
->frac_bits
- NATIVE_DEPTH
));
682 dither_mask
= (1L << (dsp
->frac_bits
+ 1 - NATIVE_DEPTH
)) - 1;
685 void dsp_dither_enable(bool enable
)
687 struct dsp_config
*dsp
= &audio_dsp
;
688 dither_enabled
= enable
;
689 sample_output_new_format(dsp
);
692 /* Applies crossfeed to the stereo signal in src.
693 * Crossfeed is a process where listening over speakers is simulated. This
694 * is good for old hard panned stereo records, which might be quite fatiguing
695 * to listen to on headphones with no crossfeed.
697 #ifndef DSP_HAVE_ASM_CROSSFEED
698 static void apply_crossfeed(int count
, int32_t *buf
[])
700 int32_t *hist_l
= &crossfeed_data
.history
[0];
701 int32_t *hist_r
= &crossfeed_data
.history
[2];
702 int32_t *delay
= &crossfeed_data
.delay
[0][0];
703 int32_t *coefs
= &crossfeed_data
.coefs
[0];
704 int32_t gain
= crossfeed_data
.gain
;
705 int32_t *di
= crossfeed_data
.index
;
711 for (i
= 0; i
< count
; i
++)
716 /* Filter delayed sample from left speaker */
717 acc
= FRACMUL(*di
, coefs
[0]);
718 acc
+= FRACMUL(hist_l
[0], coefs
[1]);
719 acc
+= FRACMUL(hist_l
[1], coefs
[2]);
720 /* Save filter history for left speaker */
724 /* Filter delayed sample from right speaker */
725 acc
= FRACMUL(*di
, coefs
[0]);
726 acc
+= FRACMUL(hist_r
[0], coefs
[1]);
727 acc
+= FRACMUL(hist_r
[1], coefs
[2]);
728 /* Save filter history for right speaker */
732 /* Now add the attenuated direct sound and write to outputs */
733 buf
[0][i
] = FRACMUL(left
, gain
) + hist_r
[1];
734 buf
[1][i
] = FRACMUL(right
, gain
) + hist_l
[1];
736 /* Wrap delay line index if bigger than delay line size */
737 if (di
>= delay
+ 13*2)
740 /* Write back local copies of data we've modified */
741 crossfeed_data
.index
= di
;
743 #endif /* DSP_HAVE_ASM_CROSSFEED */
746 * dsp_set_crossfeed(bool enable)
749 * needs syncing with changes to the following dsp parameters:
750 * * dsp->stereo_mode (A)
752 void dsp_set_crossfeed(bool enable
)
754 crossfeed_enabled
= enable
;
755 audio_dsp
.apply_crossfeed
= (enable
&& audio_dsp
.data
.num_channels
> 1)
756 ? apply_crossfeed
: NULL
;
759 void dsp_set_crossfeed_direct_gain(int gain
)
761 crossfeed_data
.gain
= get_replaygain_int(gain
* 10) << 7;
762 /* If gain is negative, the calculation overflowed and we need to clamp */
763 if (crossfeed_data
.gain
< 0)
764 crossfeed_data
.gain
= 0x7fffffff;
767 /* Both gains should be below 0 dB */
768 void dsp_set_crossfeed_cross_params(long lf_gain
, long hf_gain
, long cutoff
)
770 int32_t *c
= crossfeed_data
.coefs
;
771 long scaler
= get_replaygain_int(lf_gain
* 10) << 7;
773 cutoff
= 0xffffffff/NATIVE_FREQUENCY
*cutoff
;
775 /* Divide cutoff by sqrt(10^(hf_gain/20)) to place cutoff at the -3 dB
776 * point instead of shelf midpoint. This is for compatibility with the old
777 * crossfeed shelf filter and should be removed if crossfeed settings are
778 * ever made incompatible for any other good reason.
780 cutoff
= DIV64(cutoff
, get_replaygain_int(hf_gain
*5), 24);
781 filter_shelf_coefs(cutoff
, hf_gain
, false, c
);
782 /* Scale coefs by LF gain and shift them to s0.31 format. We have no gains
783 * over 1 and can do this safely
785 c
[0] = FRACMUL_SHL(c
[0], scaler
, 4);
786 c
[1] = FRACMUL_SHL(c
[1], scaler
, 4);
790 /* Apply a constant gain to the samples (e.g., for ReplayGain).
791 * Note that this must be called before the resampler.
793 #ifndef DSP_HAVE_ASM_APPLY_GAIN
794 static void dsp_apply_gain(int count
, struct dsp_data
*data
, int32_t *buf
[])
796 const int32_t gain
= data
->gain
;
799 for (ch
= 0; ch
< data
->num_channels
; ch
++)
801 int32_t *d
= buf
[ch
];
804 for (i
= 0; i
< count
; i
++)
805 d
[i
] = FRACMUL_SHL(d
[i
], gain
, 8);
808 #endif /* DSP_HAVE_ASM_APPLY_GAIN */
810 /* Combine all gains to a global gain. */
811 static void set_gain(struct dsp_config
*dsp
)
813 dsp
->data
.gain
= DEFAULT_GAIN
;
815 /* Replay gain not relevant to voice */
816 if (dsp
== &audio_dsp
&& replaygain
)
818 dsp
->data
.gain
= replaygain
;
821 if (dsp
->eq_process
&& eq_precut
)
824 (long) (((int64_t) dsp
->data
.gain
* eq_precut
) >> 24);
827 if (dsp
->data
.gain
== DEFAULT_GAIN
)
833 dsp
->data
.gain
>>= 1;
836 dsp
->apply_gain
= dsp
->data
.gain
!= 0 ? dsp_apply_gain
: NULL
;
840 * Update the amount to cut the audio before applying the equalizer.
842 * @param precut to apply in decibels (multiplied by 10)
844 void dsp_set_eq_precut(int precut
)
846 eq_precut
= get_replaygain_int(precut
* -10);
847 set_gain(&audio_dsp
);
851 * Synchronize the equalizer filter coefficients with the global settings.
853 * @param band the equalizer band to synchronize
855 void dsp_set_eq_coefs(int band
)
859 unsigned long cutoff
, q
;
861 /* Adjust setting pointer to the band we actually want to change */
862 setting
= &global_settings
.eq_band0_cutoff
+ (band
* 3);
864 /* Convert user settings to format required by coef generator functions */
865 cutoff
= 0xffffffff / NATIVE_FREQUENCY
* (*setting
++);
872 /* NOTE: The coef functions assume the EMAC unit is in fractional mode,
873 which it should be, since we're executed from the main thread. */
875 /* Assume a band is disabled if the gain is zero */
878 eq_data
.enabled
[band
] = 0;
883 eq_ls_coefs(cutoff
, q
, gain
, eq_data
.filters
[band
].coefs
);
885 eq_hs_coefs(cutoff
, q
, gain
, eq_data
.filters
[band
].coefs
);
887 eq_pk_coefs(cutoff
, q
, gain
, eq_data
.filters
[band
].coefs
);
889 eq_data
.enabled
[band
] = 1;
893 /* Apply EQ filters to those bands that have got it switched on. */
894 static void eq_process(int count
, int32_t *buf
[])
896 static const int shifts
[] =
898 EQ_SHELF_SHIFT
, /* low shelf */
899 EQ_PEAK_SHIFT
, /* peaking */
900 EQ_PEAK_SHIFT
, /* peaking */
901 EQ_PEAK_SHIFT
, /* peaking */
902 EQ_SHELF_SHIFT
, /* high shelf */
904 unsigned int channels
= audio_dsp
.data
.num_channels
;
907 /* filter configuration currently is 1 low shelf filter, 3 band peaking
908 filters and 1 high shelf filter, in that order. we need to know this
909 so we can choose the correct shift factor.
911 for (i
= 0; i
< 5; i
++)
913 if (!eq_data
.enabled
[i
])
915 eq_filter(buf
, &eq_data
.filters
[i
], count
, channels
, shifts
[i
]);
920 * Use to enable the equalizer.
922 * @param enable true to enable the equalizer
924 void dsp_set_eq(bool enable
)
926 audio_dsp
.eq_process
= enable
? eq_process
: NULL
;
927 set_gain(&audio_dsp
);
930 static void dsp_set_stereo_width(int value
)
932 long width
, straight
, cross
;
934 width
= value
* 0x7fffff / 100;
938 straight
= (0x7fffff + width
) / 2;
939 cross
= straight
- width
;
943 /* straight = (1 + width) / (2 * width) */
944 straight
= ((int64_t)(0x7fffff + width
) << 22) / width
;
945 cross
= straight
- 0x7fffff;
948 dsp_sw_gain
= straight
<< 8;
949 dsp_sw_cross
= cross
<< 8;
953 * Implements the different channel configurations and stereo width.
956 /* SOUND_CHAN_STEREO mode is a noop so has no function - just outline one for
959 static void channels_process_sound_chan_stereo(int count
, int32_t *buf
[])
961 /* The channels are each just themselves */
962 (void)count
; (void)buf
;
966 #ifndef DSP_HAVE_ASM_SOUND_CHAN_MONO
967 static void channels_process_sound_chan_mono(int count
, int32_t *buf
[])
969 int32_t *sl
= buf
[0], *sr
= buf
[1];
973 int32_t lr
= *sl
/2 + *sr
/2;
979 #endif /* DSP_HAVE_ASM_SOUND_CHAN_MONO */
981 #ifndef DSP_HAVE_ASM_SOUND_CHAN_CUSTOM
982 static void channels_process_sound_chan_custom(int count
, int32_t *buf
[])
984 const int32_t gain
= dsp_sw_gain
;
985 const int32_t cross
= dsp_sw_cross
;
986 int32_t *sl
= buf
[0], *sr
= buf
[1];
992 *sl
++ = FRACMUL(l
, gain
) + FRACMUL(r
, cross
);
993 *sr
++ = FRACMUL(r
, gain
) + FRACMUL(l
, cross
);
997 #endif /* DSP_HAVE_ASM_SOUND_CHAN_CUSTOM */
999 static void channels_process_sound_chan_mono_left(int count
, int32_t *buf
[])
1001 /* Just copy over the other channel */
1002 memcpy(buf
[1], buf
[0], count
* sizeof (*buf
));
1005 static void channels_process_sound_chan_mono_right(int count
, int32_t *buf
[])
1007 /* Just copy over the other channel */
1008 memcpy(buf
[0], buf
[1], count
* sizeof (*buf
));
1011 #ifndef DSP_HAVE_ASM_SOUND_CHAN_KARAOKE
1012 static void channels_process_sound_chan_karaoke(int count
, int32_t *buf
[])
1014 int32_t *sl
= buf
[0], *sr
= buf
[1];
1018 int32_t ch
= *sl
/2 - *sr
/2;
1022 while (--count
> 0);
1024 #endif /* DSP_HAVE_ASM_SOUND_CHAN_KARAOKE */
1026 static void dsp_set_channel_config(int value
)
1028 static const channels_process_fn_type channels_process_functions
[] =
1030 /* SOUND_CHAN_STEREO = All-purpose index for no channel processing */
1031 [SOUND_CHAN_STEREO
] = NULL
,
1032 [SOUND_CHAN_MONO
] = channels_process_sound_chan_mono
,
1033 [SOUND_CHAN_CUSTOM
] = channels_process_sound_chan_custom
,
1034 [SOUND_CHAN_MONO_LEFT
] = channels_process_sound_chan_mono_left
,
1035 [SOUND_CHAN_MONO_RIGHT
] = channels_process_sound_chan_mono_right
,
1036 [SOUND_CHAN_KARAOKE
] = channels_process_sound_chan_karaoke
,
1039 if ((unsigned)value
>= ARRAYLEN(channels_process_functions
) ||
1040 audio_dsp
.stereo_mode
== STEREO_MONO
)
1042 value
= SOUND_CHAN_STEREO
;
1045 /* This doesn't apply to voice */
1046 channels_mode
= value
;
1047 audio_dsp
.channels_process
= channels_process_functions
[value
];
1050 #if CONFIG_CODEC == SWCODEC
1052 #ifdef HAVE_SW_TONE_CONTROLS
1053 static void set_tone_controls(void)
1055 filter_bishelf_coefs(0xffffffff/NATIVE_FREQUENCY
*200,
1056 0xffffffff/NATIVE_FREQUENCY
*3500,
1057 bass
, treble
, -prescale
,
1058 audio_dsp
.tone_filter
.coefs
);
1059 /* Sync the voice dsp coefficients */
1060 memcpy(&voice_dsp
.tone_filter
.coefs
, audio_dsp
.tone_filter
.coefs
,
1061 sizeof (voice_dsp
.tone_filter
.coefs
));
1065 /* Hook back from firmware/ part of audio, which can't/shouldn't call apps/
1068 int dsp_callback(int msg
, intptr_t param
)
1071 #ifdef HAVE_SW_TONE_CONTROLS
1072 case DSP_CALLBACK_SET_PRESCALE
:
1074 set_tone_controls();
1076 /* prescaler is always set after calling any of these, so we wait with
1077 * calculating coefs until the above case is hit.
1079 case DSP_CALLBACK_SET_BASS
:
1082 case DSP_CALLBACK_SET_TREBLE
:
1085 case DSP_CALLBACK_SET_CHANNEL_CONFIG
:
1086 dsp_set_channel_config(param
);
1088 case DSP_CALLBACK_SET_STEREO_WIDTH
:
1089 dsp_set_stereo_width(param
);
1098 /* Process and convert src audio to dst based on the DSP configuration,
1099 * reading count number of audio samples. dst is assumed to be large
1100 * enough; use dsp_output_count() to get the required number. src is an
1101 * array of pointers; for mono and interleaved stereo, it contains one
1102 * pointer to the start of the audio data and the other is ignored; for
1103 * non-interleaved stereo, it contains two pointers, one for each audio
1104 * channel. Returns number of bytes written to dst.
1106 int dsp_process(struct dsp_config
*dsp
, char *dst
, const char *src
[], int count
)
1109 static long last_yield
;
1114 #if defined(CPU_COLDFIRE)
1115 /* set emac unit for dsp processing, and save old macsr, we're running in
1116 codec thread context at this point, so can't clobber it */
1117 unsigned long old_macsr
= coldfire_get_macsr();
1118 coldfire_set_macsr(EMAC_FRACTIONAL
| EMAC_SATURATE
);
1122 dsp_set_replaygain(); /* Gain has changed */
1124 /* Perform at least one yield before starting */
1125 last_yield
= current_tick
;
1128 /* Testing function pointers for NULL is preferred since the pointer
1129 will be preloaded to be used for the call if not. */
1132 samples
= MIN(SAMPLE_BUF_COUNT
/2, count
);
1135 dsp
->input_samples(samples
, src
, tmp
);
1137 if (dsp
->apply_gain
)
1138 dsp
->apply_gain(samples
, &dsp
->data
, tmp
);
1140 if (dsp
->resample
&& (samples
= resample(dsp
, samples
, tmp
)) <= 0)
1141 break; /* I'm pretty sure we're downsampling here */
1143 if (dsp
->apply_crossfeed
)
1144 dsp
->apply_crossfeed(samples
, tmp
);
1146 if (dsp
->eq_process
)
1147 dsp
->eq_process(samples
, tmp
);
1149 #ifdef HAVE_SW_TONE_CONTROLS
1150 if ((bass
| treble
) != 0)
1151 eq_filter(tmp
, &dsp
->tone_filter
, samples
,
1152 dsp
->data
.num_channels
, FILTER_BISHELF_SHIFT
);
1155 if (dsp
->channels_process
)
1156 dsp
->channels_process(samples
, tmp
);
1158 dsp
->output_samples(samples
, &dsp
->data
, tmp
, (int16_t *)dst
);
1161 dst
+= samples
* sizeof (int16_t) * 2;
1163 /* yield at least once each tick */
1164 tick
= current_tick
;
1165 if (TIME_AFTER(tick
, last_yield
))
1172 #if defined(CPU_COLDFIRE)
1173 /* set old macsr again */
1174 coldfire_set_macsr(old_macsr
);
1179 /* Given count number of input samples, calculate the maximum number of
1180 * samples of output data that would be generated (the calculation is not
1181 * entirely exact and rounds upwards to be on the safe side; during
1182 * resampling, the number of samples generated depends on the current state
1183 * of the resampler).
1185 /* dsp_input_size MUST be called afterwards */
1186 int dsp_output_count(struct dsp_config
*dsp
, int count
)
1190 count
= (int)(((unsigned long)count
* NATIVE_FREQUENCY
1191 + (dsp
->frequency
- 1)) / dsp
->frequency
);
1194 /* Now we have the resampled sample count which must not exceed
1195 * RESAMPLE_BUF_COUNT/2 to avoid resample buffer overflow. One
1196 * must call dsp_input_count() to get the correct input sample
1199 if (count
> RESAMPLE_BUF_COUNT
/2)
1200 count
= RESAMPLE_BUF_COUNT
/2;
1205 /* Given count output samples, calculate number of input samples
1206 * that would be consumed in order to fill the output buffer.
1208 int dsp_input_count(struct dsp_config
*dsp
, int count
)
1210 /* count is now the number of resampled input samples. Convert to
1211 original input samples. */
1214 /* Use the real resampling delta =
1215 * dsp->frequency * 65536 / NATIVE_FREQUENCY, and
1216 * round towards zero to avoid buffer overflows. */
1217 count
= (int)(((unsigned long)count
*
1218 dsp
->data
.resample_data
.delta
) >> 16);
1224 static void dsp_set_gain_var(long *var
, long value
)
1230 static void dsp_update_functions(struct dsp_config
*dsp
)
1232 sample_input_new_format(dsp
);
1233 sample_output_new_format(dsp
);
1234 if (dsp
== &audio_dsp
)
1235 dsp_set_crossfeed(crossfeed_enabled
);
1238 intptr_t dsp_configure(struct dsp_config
*dsp
, int setting
, intptr_t value
)
1245 case CODEC_IDX_AUDIO
:
1246 return (intptr_t)&audio_dsp
;
1247 case CODEC_IDX_VOICE
:
1248 return (intptr_t)&voice_dsp
;
1250 return (intptr_t)NULL
;
1253 case DSP_SET_FREQUENCY
:
1254 memset(&dsp
->data
.resample_data
, 0, sizeof (dsp
->data
.resample_data
));
1255 /* Fall through!!! */
1256 case DSP_SWITCH_FREQUENCY
:
1257 dsp
->codec_frequency
= (value
== 0) ? NATIVE_FREQUENCY
: value
;
1258 /* Account for playback speed adjustment when setting dsp->frequency
1259 if we're called from the main audio thread. Voice UI thread should
1260 not need this feature.
1262 if (dsp
== &audio_dsp
)
1263 dsp
->frequency
= pitch_ratio
* dsp
->codec_frequency
/ 1000;
1265 dsp
->frequency
= dsp
->codec_frequency
;
1267 resampler_new_delta(dsp
);
1270 case DSP_SET_SAMPLE_DEPTH
:
1271 dsp
->sample_depth
= value
;
1273 if (dsp
->sample_depth
<= NATIVE_DEPTH
)
1275 dsp
->frac_bits
= WORD_FRACBITS
;
1276 dsp
->sample_bytes
= sizeof (int16_t); /* samples are 16 bits */
1277 dsp
->data
.clip_max
= ((1 << WORD_FRACBITS
) - 1);
1278 dsp
->data
.clip_min
= -((1 << WORD_FRACBITS
));
1282 dsp
->frac_bits
= value
;
1283 dsp
->sample_bytes
= sizeof (int32_t); /* samples are 32 bits */
1284 dsp
->data
.clip_max
= (1 << value
) - 1;
1285 dsp
->data
.clip_min
= -(1 << value
);
1288 dsp
->data
.output_scale
= dsp
->frac_bits
+ 1 - NATIVE_DEPTH
;
1289 sample_input_new_format(dsp
);
1293 case DSP_SET_STEREO_MODE
:
1294 dsp
->stereo_mode
= value
;
1295 dsp
->data
.num_channels
= value
== STEREO_MONO
? 1 : 2;
1296 dsp_update_functions(dsp
);
1300 dsp
->stereo_mode
= STEREO_NONINTERLEAVED
;
1301 dsp
->data
.num_channels
= 2;
1302 dsp
->sample_depth
= NATIVE_DEPTH
;
1303 dsp
->frac_bits
= WORD_FRACBITS
;
1304 dsp
->sample_bytes
= sizeof (int16_t);
1305 dsp
->data
.output_scale
= dsp
->frac_bits
+ 1 - NATIVE_DEPTH
;
1306 dsp
->data
.clip_max
= ((1 << WORD_FRACBITS
) - 1);
1307 dsp
->data
.clip_min
= -((1 << WORD_FRACBITS
));
1308 dsp
->codec_frequency
= dsp
->frequency
= NATIVE_FREQUENCY
;
1310 if (dsp
== &audio_dsp
)
1319 dsp_update_functions(dsp
);
1320 resampler_new_delta(dsp
);
1324 memset(&dsp
->data
.resample_data
, 0,
1325 sizeof (dsp
->data
.resample_data
));
1326 resampler_new_delta(dsp
);
1330 case DSP_SET_TRACK_GAIN
:
1331 if (dsp
== &audio_dsp
)
1332 dsp_set_gain_var(&track_gain
, value
);
1335 case DSP_SET_ALBUM_GAIN
:
1336 if (dsp
== &audio_dsp
)
1337 dsp_set_gain_var(&album_gain
, value
);
1340 case DSP_SET_TRACK_PEAK
:
1341 if (dsp
== &audio_dsp
)
1342 dsp_set_gain_var(&track_peak
, value
);
1345 case DSP_SET_ALBUM_PEAK
:
1346 if (dsp
== &audio_dsp
)
1347 dsp_set_gain_var(&album_peak
, value
);
1357 void dsp_set_replaygain(void)
1363 if (global_settings
.replaygain
|| global_settings
.replaygain_noclip
)
1365 bool track_mode
= get_replaygain_mode(track_gain
!= 0,
1366 album_gain
!= 0) == REPLAYGAIN_TRACK
;
1367 long peak
= (track_mode
|| !album_peak
) ? track_peak
: album_peak
;
1369 if (global_settings
.replaygain
)
1371 gain
= (track_mode
|| !album_gain
) ? track_gain
: album_gain
;
1373 if (global_settings
.replaygain_preamp
)
1375 long preamp
= get_replaygain_int(
1376 global_settings
.replaygain_preamp
* 10);
1378 gain
= (long) (((int64_t) gain
* preamp
) >> 24);
1384 /* So that noclip can work even with no gain information. */
1385 gain
= DEFAULT_GAIN
;
1388 if (global_settings
.replaygain_noclip
&& (peak
!= 0)
1389 && ((((int64_t) gain
* peak
) >> 24) >= DEFAULT_GAIN
))
1391 gain
= (((int64_t) DEFAULT_GAIN
<< 24) / peak
);
1394 if (gain
== DEFAULT_GAIN
)
1396 /* Nothing to do, disable processing. */
1401 /* Store in S8.23 format to simplify calculations. */
1403 set_gain(&audio_dsp
);