1 /***************************************************************************
3 * Open \______ \ ____ ____ | | _\_ |__ _______ ___
4 * Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
5 * Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
6 * Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
10 * Copyright (C) 2006 Jens Arnold
12 * Fixed point library for plugins
14 * This program is free software; you can redistribute it and/or
15 * modify it under the terms of the GNU General Public License
16 * as published by the Free Software Foundation; either version 2
17 * of the License, or (at your option) any later version.
19 * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
20 * KIND, either express or implied.
22 ****************************************************************************/
24 #include "fixedpoint.h"
30 #define BIT_N(n) (1U << (n))
33 /** TAKEN FROM ORIGINAL fixedpoint.h */
34 /* Inverse gain of circular cordic rotation in s0.31 format. */
35 static const long cordic_circular_gain
= 0xb2458939; /* 0.607252929 */
37 /* Table of values of atan(2^-i) in 0.32 format fractions of pi where pi = 0xffffffff / 2 */
38 static const unsigned long atan_table
[] = {
39 0x1fffffff, /* +0.785398163 (or pi/4) */
40 0x12e4051d, /* +0.463647609 */
41 0x09fb385b, /* +0.244978663 */
42 0x051111d4, /* +0.124354995 */
43 0x028b0d43, /* +0.062418810 */
44 0x0145d7e1, /* +0.031239833 */
45 0x00a2f61e, /* +0.015623729 */
46 0x00517c55, /* +0.007812341 */
47 0x0028be53, /* +0.003906230 */
48 0x00145f2e, /* +0.001953123 */
49 0x000a2f98, /* +0.000976562 */
50 0x000517cc, /* +0.000488281 */
51 0x00028be6, /* +0.000244141 */
52 0x000145f3, /* +0.000122070 */
53 0x0000a2f9, /* +0.000061035 */
54 0x0000517c, /* +0.000030518 */
55 0x000028be, /* +0.000015259 */
56 0x0000145f, /* +0.000007629 */
57 0x00000a2f, /* +0.000003815 */
58 0x00000517, /* +0.000001907 */
59 0x0000028b, /* +0.000000954 */
60 0x00000145, /* +0.000000477 */
61 0x000000a2, /* +0.000000238 */
62 0x00000051, /* +0.000000119 */
63 0x00000028, /* +0.000000060 */
64 0x00000014, /* +0.000000030 */
65 0x0000000a, /* +0.000000015 */
66 0x00000005, /* +0.000000007 */
67 0x00000002, /* +0.000000004 */
68 0x00000001, /* +0.000000002 */
69 0x00000000, /* +0.000000001 */
70 0x00000000, /* +0.000000000 */
73 /* Precalculated sine and cosine * 16384 (2^14) (fixed point 18.14) */
74 static const short sin_table
[91] =
76 0, 285, 571, 857, 1142, 1427, 1712, 1996, 2280, 2563,
77 2845, 3126, 3406, 3685, 3963, 4240, 4516, 4790, 5062, 5334,
78 5603, 5871, 6137, 6401, 6663, 6924, 7182, 7438, 7691, 7943,
79 8191, 8438, 8682, 8923, 9161, 9397, 9630, 9860, 10086, 10310,
80 10531, 10748, 10963, 11173, 11381, 11585, 11785, 11982, 12175, 12365,
81 12550, 12732, 12910, 13084, 13254, 13420, 13582, 13740, 13894, 14043,
82 14188, 14329, 14466, 14598, 14725, 14848, 14967, 15081, 15190, 15295,
83 15395, 15491, 15582, 15668, 15749, 15825, 15897, 15964, 16025, 16082,
84 16135, 16182, 16224, 16261, 16294, 16321, 16344, 16361, 16374, 16381,
89 * Implements sin and cos using CORDIC rotation.
91 * @param phase has range from 0 to 0xffffffff, representing 0 and
93 * @param cos return address for cos
94 * @return sin of phase, value is a signed value from LONG_MIN to LONG_MAX,
95 * representing -1 and 1 respectively.
97 long fp_sincos(unsigned long phase
, long *cos
)
103 /* Setup initial vector */
104 x
= cordic_circular_gain
;
108 /* The phase has to be somewhere between 0..pi for this to work right */
109 if (z
< 0xffffffff / 4) {
110 /* z in first quadrant, z += pi/2 to correct */
113 } else if (z
< 3 * (0xffffffff / 4)) {
114 /* z in third quadrant, z -= pi/2 to correct */
117 /* z in fourth quadrant, z -= 3pi/2 to correct */
119 z
-= 3 * (0xffffffff / 4);
122 /* Each iteration adds roughly 1-bit of extra precision */
123 for (i
= 0; i
< 31; i
++) {
128 /* Decided which direction to rotate vector. Pivot point is pi/2 */
129 if (z
>= 0xffffffff / 4) {
147 #if defined(PLUGIN) || defined(CODEC)
149 * Fixed point square root via Newton-Raphson.
150 * @param x square root argument.
151 * @param fracbits specifies number of fractional bits in argument.
152 * @return Square root of argument in same fixed point format as input.
154 * This routine has been modified to run longer for greater precision,
155 * but cuts calculation short if the answer is reached sooner. In
156 * general, the closer x is to 1, the quicker the calculation.
158 long fp_sqrt(long x
, unsigned int fracbits
)
160 long b
= x
/2 + BIT_N(fracbits
); /* initial approximation */
163 const unsigned iterations
= 8;
165 for (n
= 0; n
< iterations
; ++n
)
167 c
= fp_div(x
, b
, fracbits
);
175 /* Accurate int sqrt with only elementary operations. (the above
176 * routine fails badly without enough iterations, more iterations
177 * than this requires -- [give that one a FIXME]).
179 * http://www.devmaster.net/articles/fixed-point-optimizations/ */
180 unsigned long isqrt(unsigned long x
)
182 /* Adding CLZ could optimize this further */
185 unsigned long b
= 1ul << bshift
;
189 unsigned long temp
= (g
+ g
+ b
) << bshift
;
203 #endif /* PLUGIN or CODEC */
208 * Fixed point sinus using a lookup table
209 * don't forget to divide the result by 16384 to get the actual sinus value
210 * @param val sinus argument in degree
211 * @return sin(val)*16384
213 long fp14_sin(int val
)
218 if (val
< 91)/* phase 0-90 degree */
219 return (long)sin_table
[val
];
220 else/* phase 91-180 degree */
221 return (long)sin_table
[180-val
];
225 if (val
< 271)/* phase 181-270 degree */
226 return -(long)sin_table
[val
-180];
227 else/* phase 270-359 degree */
228 return -(long)sin_table
[360-val
];
234 * Fixed point cosinus using a lookup table
235 * don't forget to divide the result by 16384 to get the actual cosinus value
236 * @param val sinus argument in degree
237 * @return cos(val)*16384
239 long fp14_cos(int val
)
244 if (val
< 91)/* phase 0-90 degree */
245 return (long)sin_table
[90-val
];
246 else/* phase 91-180 degree */
247 return -(long)sin_table
[val
-90];
251 if (val
< 271)/* phase 181-270 degree */
252 return -(long)sin_table
[270-val
];
253 else/* phase 270-359 degree */
254 return (long)sin_table
[val
-270];
260 * Fixed-point natural log
261 * taken from http://www.quinapalus.com/efunc.html
262 * "The code assumes integers are at least 32 bits long. The (positive)
263 * argument and the result of the function are both expressed as fixed-point
264 * values with 16 fractional bits, although intermediates are kept with 28
265 * bits of precision to avoid loss of accuracy during shifts."
268 long fp16_log(int x
) {
272 if(x
<0x00008000) x
<<=16, y
-=0xb1721;
273 if(x
<0x00800000) x
<<= 8, y
-=0x58b91;
274 if(x
<0x08000000) x
<<= 4, y
-=0x2c5c8;
275 if(x
<0x20000000) x
<<= 2, y
-=0x162e4;
276 if(x
<0x40000000) x
<<= 1, y
-=0x0b172;
277 t
=x
+(x
>>1); if((t
&0x80000000)==0) x
=t
,y
-=0x067cd;
278 t
=x
+(x
>>2); if((t
&0x80000000)==0) x
=t
,y
-=0x03920;
279 t
=x
+(x
>>3); if((t
&0x80000000)==0) x
=t
,y
-=0x01e27;
280 t
=x
+(x
>>4); if((t
&0x80000000)==0) x
=t
,y
-=0x00f85;
281 t
=x
+(x
>>5); if((t
&0x80000000)==0) x
=t
,y
-=0x007e1;
282 t
=x
+(x
>>6); if((t
&0x80000000)==0) x
=t
,y
-=0x003f8;
283 t
=x
+(x
>>7); if((t
&0x80000000)==0) x
=t
,y
-=0x001fe;
290 * Fixed-point exponential
291 * taken from http://www.quinapalus.com/efunc.html
292 * "The code assumes integers are at least 32 bits long. The (non-negative)
293 * argument and the result of the function are both expressed as fixed-point
294 * values with 16 fractional bits. Notice that after 11 steps of the
295 * algorithm the constants involved become such that the code is simply
296 * doing a multiplication: this is explained in the note below.
297 * The extension to negative arguments is left as an exercise."
304 t
=x
-0x58b91; if(t
>=0) x
=t
,y
<<=8;
305 t
=x
-0x2c5c8; if(t
>=0) x
=t
,y
<<=4;
306 t
=x
-0x162e4; if(t
>=0) x
=t
,y
<<=2;
307 t
=x
-0x0b172; if(t
>=0) x
=t
,y
<<=1;
308 t
=x
-0x067cd; if(t
>=0) x
=t
,y
+=y
>>1;
309 t
=x
-0x03920; if(t
>=0) x
=t
,y
+=y
>>2;
310 t
=x
-0x01e27; if(t
>=0) x
=t
,y
+=y
>>3;
311 t
=x
-0x00f85; if(t
>=0) x
=t
,y
+=y
>>4;
312 t
=x
-0x007e1; if(t
>=0) x
=t
,y
+=y
>>5;
313 t
=x
-0x003f8; if(t
>=0) x
=t
,y
+=y
>>6;
314 t
=x
-0x001fe; if(t
>=0) x
=t
,y
+=y
>>7;
317 if(x
&0x040) y
+=y
>>10;
318 if(x
&0x020) y
+=y
>>11;
319 if(x
&0x010) y
+=y
>>12;
320 if(x
&0x008) y
+=y
>>13;
321 if(x
&0x004) y
+=y
>>14;
322 if(x
&0x002) y
+=y
>>15;
323 if(x
&0x001) y
+=y
>>16;
329 #if (!defined(PLUGIN) && !defined(CODEC))
330 /** MODIFIED FROM replaygain.c */
332 #define FP_MUL_FRAC(x, y) fp_mul(x, y, fracbits)
333 #define FP_DIV_FRAC(x, y) fp_div(x, y, fracbits)
335 /* constants in fixed point format, 28 fractional bits */
336 #define FP28_LN2 (186065279L) /* ln(2) */
337 #define FP28_LN2_INV (387270501L) /* 1/ln(2) */
338 #define FP28_EXP_ZERO (44739243L) /* 1/6 */
339 #define FP28_EXP_ONE (-745654L) /* -1/360 */
340 #define FP28_EXP_TWO (12428L) /* 1/21600 */
341 #define FP28_LN10 (618095479L) /* ln(10) */
342 #define FP28_LOG10OF2 (80807124L) /* log10(2) */
344 #define TOL_BITS 2 /* log calculation tolerance */
347 /* The fpexp10 fixed point math routine is based
348 * on oMathFP by Dan Carter (http://orbisstudios.com).
351 /** FIXED POINT EXP10
352 * Return 10^x as FP integer. Argument is FP integer.
354 static long fp_exp10(long x
, unsigned int fracbits
)
361 /* scale constants */
362 const long fp_one
= (1 << fracbits
);
363 const long fp_half
= (1 << (fracbits
- 1));
364 const long fp_two
= (2 << fracbits
);
365 const long fp_mask
= (fp_one
- 1);
366 const long fp_ln2_inv
= (FP28_LN2_INV
>> (28 - fracbits
));
367 const long fp_ln2
= (FP28_LN2
>> (28 - fracbits
));
368 const long fp_ln10
= (FP28_LN10
>> (28 - fracbits
));
369 const long fp_exp_zero
= (FP28_EXP_ZERO
>> (28 - fracbits
));
370 const long fp_exp_one
= (FP28_EXP_ONE
>> (28 - fracbits
));
371 const long fp_exp_two
= (FP28_EXP_TWO
>> (28 - fracbits
));
379 /* convert from base 10 to base e */
380 x
= FP_MUL_FRAC(x
, fp_ln10
);
382 /* calculate exp(x) */
383 k
= (FP_MUL_FRAC(abs(x
), fp_ln2_inv
) + fp_half
) & ~fp_mask
;
390 x
-= FP_MUL_FRAC(k
, fp_ln2
);
391 z
= FP_MUL_FRAC(x
, x
);
392 R
= fp_two
+ FP_MUL_FRAC(z
, fp_exp_zero
+ FP_MUL_FRAC(z
, fp_exp_one
393 + FP_MUL_FRAC(z
, fp_exp_two
)));
394 xp
= fp_one
+ FP_DIV_FRAC(FP_MUL_FRAC(fp_two
, x
), R
- x
);
398 k
= fp_one
>> (-k
>> fracbits
);
402 k
= fp_one
<< (k
>> fracbits
);
405 return FP_MUL_FRAC(k
, xp
);
409 #if 0 /* useful code, but not currently used */
410 /** FIXED POINT LOG10
411 * Return log10(x) as FP integer. Argument is FP integer.
413 static long fp_log10(long n
, unsigned int fracbits
)
415 /* Calculate log2 of argument */
418 const long fp_one
= (1 << fracbits
);
419 const long fp_two
= (2 << fracbits
);
420 const long tolerance
= (1 << ((fracbits
/ 2) + 2));
422 if (n
<=0) return FP_NEGINF
;
437 /* fractional part */
439 while (frac
> tolerance
)
442 n
= FP_MUL_FRAC(n
, n
);
450 /* convert log2 to log10 */
451 return FP_MUL_FRAC(log2
, (FP28_LOG10OF2
>> (28 - fracbits
)));
455 /** CONVERT FACTOR TO DECIBELS */
456 long fp_decibels(unsigned long factor
, unsigned int fracbits
)
458 /* decibels = 20 * log10(factor) */
459 return FP_MUL_FRAC((20L << fracbits
), fp_log10(factor
, fracbits
));
461 #endif /* unused code */
464 /** CONVERT DECIBELS TO FACTOR */
465 long fp_factor(long decibels
, unsigned int fracbits
)
467 /* factor = 10 ^ (decibels / 20) */
468 return fp_exp10(FP_DIV_FRAC(decibels
, (20L << fracbits
)), fracbits
);
470 #endif /* !PLUGIN and !CODEC */