Add libwmapro to trunk.
[kugel-rb.git] / apps / codecs / libwmapro / mdct.c
blob9d0a59dc84a2569da1779127da6b381e29d1ee8a
1 /*
2 * MDCT/IMDCT transforms
3 * Copyright (c) 2002 Fabrice Bellard
5 * This file is part of FFmpeg.
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22 #include <stdlib.h>
23 #include <string.h>
24 #include "libavutil/common.h"
25 #include "libavutil/mathematics.h"
26 #include "fft.h"
28 /**
29 * @file libavcodec/mdct.c
30 * MDCT/IMDCT transforms.
33 // Generate a Kaiser-Bessel Derived Window.
34 #define BESSEL_I0_ITER 50 // default: 50 iterations of Bessel I0 approximation
35 av_cold void ff_kbd_window_init(float *window, float alpha, int n)
37 int i, j;
38 double sum = 0.0, bessel, tmp;
39 double local_window[n];
40 double alpha2 = (alpha * M_PI / n) * (alpha * M_PI / n);
42 for (i = 0; i < n; i++) {
43 tmp = i * (n - i) * alpha2;
44 bessel = 1.0;
45 for (j = BESSEL_I0_ITER; j > 0; j--)
46 bessel = bessel * tmp / (j * j) + 1;
47 sum += bessel;
48 local_window[i] = sum;
51 sum++;
52 for (i = 0; i < n; i++)
53 window[i] = sqrt(local_window[i] / sum);
56 #include "mdct_tablegen.h"
58 /**
59 * init MDCT or IMDCT computation.
61 av_cold int ff_mdct_init(FFTContext *s, int nbits, int inverse, double scale)
63 int n, n4, i;
64 double alpha, theta;
65 int tstep;
67 memset(s, 0, sizeof(*s));
68 n = 1 << nbits;
69 s->mdct_bits = nbits;
70 s->mdct_size = n;
71 n4 = n >> 2;
72 s->permutation = FF_MDCT_PERM_NONE;
74 if (ff_fft_init(s, s->mdct_bits - 2, inverse) < 0)
75 goto fail;
77 s->tcos = av_malloc(n/2 * sizeof(FFTSample));
78 if (!s->tcos)
79 goto fail;
81 switch (s->permutation) {
82 case FF_MDCT_PERM_NONE:
83 s->tsin = s->tcos + n4;
84 tstep = 1;
85 break;
86 case FF_MDCT_PERM_INTERLEAVE:
87 s->tsin = s->tcos + 1;
88 tstep = 2;
89 break;
90 default:
91 goto fail;
94 theta = 1.0 / 8.0 + (scale < 0 ? n4 : 0);
95 scale = sqrt(fabs(scale));
96 for(i=0;i<n4;i++) {
97 alpha = 2 * M_PI * (i + theta) / n;
98 s->tcos[i*tstep] = -cos(alpha) * scale;
99 s->tsin[i*tstep] = -sin(alpha) * scale;
101 return 0;
102 fail:
103 ff_mdct_end(s);
104 return -1;
107 /* complex multiplication: p = a * b */
108 #define CMUL(pre, pim, are, aim, bre, bim) \
110 FFTSample _are = (are);\
111 FFTSample _aim = (aim);\
112 FFTSample _bre = (bre);\
113 FFTSample _bim = (bim);\
114 (pre) = _are * _bre - _aim * _bim;\
115 (pim) = _are * _bim + _aim * _bre;\
119 * Compute the middle half of the inverse MDCT of size N = 2^nbits,
120 * thus excluding the parts that can be derived by symmetry
121 * @param output N/2 samples
122 * @param input N/2 samples
124 void ff_imdct_half_c(FFTContext *s, FFTSample *output, const FFTSample *input)
126 int k, n8, n4, n2, n, j;
127 const uint16_t *revtab = s->revtab;
128 const FFTSample *tcos = s->tcos;
129 const FFTSample *tsin = s->tsin;
130 const FFTSample *in1, *in2;
131 FFTComplex *z = (FFTComplex *)output;
133 n = 1 << s->mdct_bits;
134 n2 = n >> 1;
135 n4 = n >> 2;
136 n8 = n >> 3;
138 /* pre rotation */
139 in1 = input;
140 in2 = input + n2 - 1;
141 for(k = 0; k < n4; k++) {
142 j=revtab[k];
143 CMUL(z[j].re, z[j].im, *in2, *in1, tcos[k], tsin[k]);
144 in1 += 2;
145 in2 -= 2;
147 ff_fft_calc(s, z);
149 /* post rotation + reordering */
150 for(k = 0; k < n8; k++) {
151 FFTSample r0, i0, r1, i1;
152 CMUL(r0, i1, z[n8-k-1].im, z[n8-k-1].re, tsin[n8-k-1], tcos[n8-k-1]);
153 CMUL(r1, i0, z[n8+k ].im, z[n8+k ].re, tsin[n8+k ], tcos[n8+k ]);
154 z[n8-k-1].re = r0;
155 z[n8-k-1].im = i0;
156 z[n8+k ].re = r1;
157 z[n8+k ].im = i1;
162 * Compute inverse MDCT of size N = 2^nbits
163 * @param output N samples
164 * @param input N/2 samples
166 void ff_imdct_calc_c(FFTContext *s, FFTSample *output, const FFTSample *input)
168 int k;
169 int n = 1 << s->mdct_bits;
170 int n2 = n >> 1;
171 int n4 = n >> 2;
173 ff_imdct_half_c(s, output+n4, input);
175 for(k = 0; k < n4; k++) {
176 output[k] = -output[n2-k-1];
177 output[n-k-1] = output[n2+k];
182 * Compute MDCT of size N = 2^nbits
183 * @param input N samples
184 * @param out N/2 samples
186 void ff_mdct_calc_c(FFTContext *s, FFTSample *out, const FFTSample *input)
188 int i, j, n, n8, n4, n2, n3;
189 FFTSample re, im;
190 const uint16_t *revtab = s->revtab;
191 const FFTSample *tcos = s->tcos;
192 const FFTSample *tsin = s->tsin;
193 FFTComplex *x = (FFTComplex *)out;
195 n = 1 << s->mdct_bits;
196 n2 = n >> 1;
197 n4 = n >> 2;
198 n8 = n >> 3;
199 n3 = 3 * n4;
201 /* pre rotation */
202 for(i=0;i<n8;i++) {
203 re = -input[2*i+3*n4] - input[n3-1-2*i];
204 im = -input[n4+2*i] + input[n4-1-2*i];
205 j = revtab[i];
206 CMUL(x[j].re, x[j].im, re, im, -tcos[i], tsin[i]);
208 re = input[2*i] - input[n2-1-2*i];
209 im = -(input[n2+2*i] + input[n-1-2*i]);
210 j = revtab[n8 + i];
211 CMUL(x[j].re, x[j].im, re, im, -tcos[n8 + i], tsin[n8 + i]);
214 ff_fft_calc(s, x);
216 /* post rotation */
217 for(i=0;i<n8;i++) {
218 FFTSample r0, i0, r1, i1;
219 CMUL(i1, r0, x[n8-i-1].re, x[n8-i-1].im, -tsin[n8-i-1], -tcos[n8-i-1]);
220 CMUL(i0, r1, x[n8+i ].re, x[n8+i ].im, -tsin[n8+i ], -tcos[n8+i ]);
221 x[n8-i-1].re = r0;
222 x[n8-i-1].im = i0;
223 x[n8+i ].re = r1;
224 x[n8+i ].im = i1;
228 av_cold void ff_mdct_end(FFTContext *s)
230 av_freep(&s->tcos);
231 ff_fft_end(s);