-Remove all dynamic allocations, hence remove cook_decode_close() which was basically
[kugel-rb.git] / apps / codecs / libcook / cook_fixpoint.h
blob0f12b1340a322a2fb636ac8458493a464e1ee88c
1 /*
2 * COOK compatible decoder, fixed point implementation.
3 * Copyright (c) 2007 Ian Braithwaite
5 * This file is part of FFmpeg.
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
23 /**
24 * @file cook_float.h
26 * Cook AKA RealAudio G2 fixed point functions.
28 * Fixed point values are represented as 32 bit signed integers,
29 * which can be added and subtracted directly in C (without checks for
30 * overflow/saturation.
31 * Two multiplication routines are provided:
32 * 1) Multiplication by powers of two (2^-31 .. 2^31), implemented
33 * with C's bit shift operations.
34 * 2) Multiplication by 16 bit fractions (0 <= x < 1), implemented
35 * in C using two 32 bit integer multiplications.
38 /* The following table is taken from libavutil/mathematics.c */
39 const uint8_t ff_log2_tab[256]={
40 0,0,1,1,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,
41 5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,
42 6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,
43 6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,
44 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
45 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
46 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
47 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7
50 /* cplscales was moved from cookdata_fixpoint.h since only *
51 * cook_fixpoint.h should see/use it. */
52 static const FIXPU* cplscales[5] = {
53 cplscale2, cplscale3, cplscale4, cplscale5, cplscale6
56 /**
57 * Initialise fixed point implementation.
58 * Nothing to do for fixed point.
60 * @param q pointer to the COOKContext
62 static inline int init_cook_math(COOKContext *q)
64 return 0;
67 /**
68 * Free resources used by floating point implementation.
69 * Nothing to do for fixed point.
71 * @param q pointer to the COOKContext
73 static inline void free_cook_math(COOKContext *q)
75 return;
79 /**
80 * Fixed point multiply by power of two.
82 * @param x fix point value
83 * @param i integer power-of-two, -31..+31
85 static inline FIXP fixp_pow2(FIXP x, int i)
87 if (i < 0)
88 return (x >> -i) + ((x >> (-i-1)) & 1);
89 else
90 return x << i; /* no check for overflow */
93 /**
94 * Fixed point multiply by fraction.
96 * @param a fix point value
97 * @param b fix point fraction, 0 <= b < 1
99 static inline FIXP fixp_mult_su(FIXP a, FIXPU b)
101 int32_t hb = (a >> 16) * b;
102 uint32_t lb = (a & 0xffff) * b;
104 return hb + (lb >> 16) + ((lb & 0x8000) >> 15);
107 /* math functions taken from libavutil/common.h */
109 static inline int av_log2(unsigned int v)
111 int n = 0;
112 if (v & 0xffff0000) {
113 v >>= 16;
114 n += 16;
116 if (v & 0xff00) {
117 v >>= 8;
118 n += 8;
120 n += ff_log2_tab[v];
122 return n;
126 * Clips a signed integer value into the amin-amax range.
127 * @param a value to clip
128 * @param amin minimum value of the clip range
129 * @param amax maximum value of the clip range
130 * @return clipped value
132 static inline int av_clip(int a, int amin, int amax)
134 if (a < amin) return amin;
135 else if (a > amax) return amax;
136 else return a;
140 * The real requantization of the mltcoefs
142 * @param q pointer to the COOKContext
143 * @param index index
144 * @param quant_index quantisation index for this band
145 * @param subband_coef_index array of indexes to quant_centroid_tab
146 * @param subband_coef_sign use random noise instead of predetermined value
147 * @param mlt_ptr pointer to the mlt coefficients
149 static void scalar_dequant_math(COOKContext *q, int index,
150 int quant_index, int* subband_coef_index,
151 int* subband_coef_sign, REAL_T *mlt_p)
153 /* Num. half bits to right shift */
154 const int s = 33 - quant_index + av_log2(q->samples_per_channel);
155 const FIXP *table = quant_tables[s & 1][index];
156 FIXP f;
157 int i;
159 for(i=0 ; i<SUBBAND_SIZE ; i++) {
160 f = table[subband_coef_index[i]];
161 /* noise coding if subband_coef_index[i] == 0 */
162 if (((subband_coef_index[i] == 0) && cook_random(q)) ||
163 ((subband_coef_index[i] != 0) && subband_coef_sign[i]))
164 f = -f;
166 mlt_p[i] = (s >= 64) ? 0 : fixp_pow2(f, -(s/2));
172 * The modulated lapped transform, this takes transform coefficients
173 * and transforms them into timedomain samples.
174 * A window step is also included.
176 * @param q pointer to the COOKContext
177 * @param inbuffer pointer to the mltcoefficients
178 * @param outbuffer pointer to the timedomain buffer
179 * @param mlt_tmp pointer to temporary storage space
181 #include "cook_fixp_mdct.h"
183 static inline void imlt_math(COOKContext *q, FIXP *in)
185 const int n = q->samples_per_channel;
186 const int step = 4 << (10 - av_log2(n));
187 int i = 0, j = step>>1;
189 cook_mdct_backward(2 * n, in, q->mono_mdct_output);
191 do {
192 FIXP tmp = q->mono_mdct_output[i];
194 q->mono_mdct_output[i] =
195 fixp_mult_su(-q->mono_mdct_output[n + i], sincos_lookup[j]);
196 q->mono_mdct_output[n + i] = fixp_mult_su(tmp, sincos_lookup[j+1]);
197 j += step;
198 } while (++i < n/2);
199 do {
200 FIXP tmp = q->mono_mdct_output[i];
202 j -= step;
203 q->mono_mdct_output[i] =
204 fixp_mult_su(-q->mono_mdct_output[n + i], sincos_lookup[j+1]);
205 q->mono_mdct_output[n + i] = fixp_mult_su(tmp, sincos_lookup[j]);
206 } while (++i < n);
211 * Perform buffer overlapping.
213 * @param q pointer to the COOKContext
214 * @param gain gain correction to apply first to output buffer
215 * @param buffer data to overlap
217 static inline void overlap_math(COOKContext *q, int gain, FIXP buffer[])
219 int i;
220 for(i=0 ; i<q->samples_per_channel ; i++) {
221 q->mono_mdct_output[i] =
222 fixp_pow2(q->mono_mdct_output[i], gain) + buffer[i];
228 * the actual requantization of the timedomain samples
230 * @param q pointer to the COOKContext
231 * @param buffer pointer to the timedomain buffer
232 * @param gain_index index for the block multiplier
233 * @param gain_index_next index for the next block multiplier
235 static inline void
236 interpolate_math(COOKContext *q, FIXP* buffer,
237 int gain_index, int gain_index_next)
239 int i;
240 int gain_size_factor = q->samples_per_channel / 8;
242 if(gain_index == gain_index_next){ //static gain
243 for(i = 0; i < gain_size_factor; i++) {
244 buffer[i] = fixp_pow2(buffer[i], gain_index);
246 } else { //smooth gain
247 int step = (gain_index_next - gain_index)
248 << (7 - av_log2(gain_size_factor));
249 int x = 0;
251 for(i = 0; i < gain_size_factor; i++) {
252 buffer[i] = fixp_mult_su(buffer[i], pow128_tab[x]);
253 buffer[i] = fixp_pow2(buffer[i], gain_index+1);
255 x += step;
256 gain_index += (x + 128) / 128 - 1;
257 x = (x + 128) % 128;
264 * Decoupling calculation for joint stereo coefficients.
266 * @param x mono coefficient
267 * @param table number of decoupling table
268 * @param i table index
270 static inline FIXP cplscale_math(FIXP x, int table, int i)
272 return fixp_mult_su(x, cplscales[table-2][i]);
277 * Final converion from floating point values to
278 * signed, 16 bit sound samples. Round and clip.
280 * @param q pointer to the COOKContext
281 * @param out pointer to the output buffer
282 * @param chan 0: left or single channel, 1: right channel
284 static inline void output_math(COOKContext *q, int16_t *out, int chan)
286 int j;
288 for (j = 0; j < q->samples_per_channel; j++) {
289 out[chan + q->nb_channels * j] =
290 av_clip(fixp_pow2(q->mono_mdct_output[j], -11), -32768, 32767);