Fix misleading debug statement.
[kugel-rb.git] / apps / codecs / libwma / wmadeci.c
blob66b30398693501d711795b5b2938985aa95b4ccd
1 /*
2 * WMA compatible decoder
3 * Copyright (c) 2002 The FFmpeg Project.
5 * This library is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU Lesser General Public
7 * License as published by the Free Software Foundation; either
8 * version 2 of the License, or (at your option) any later version.
10 * This library is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * Lesser General Public License for more details.
15 * You should have received a copy of the GNU Lesser General Public
16 * License along with this library; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 /**
21 * @file wmadec.c
22 * WMA compatible decoder.
25 #include <codecs.h>
26 #include <codecs/lib/codeclib.h>
27 #include "asf.h"
28 #include "wmadec.h"
29 #include "wmafixed.h"
30 #include "bitstream.h"
33 #define VLCBITS 7 /*7 is the lowest without glitching*/
34 #define VLCMAX ((22+VLCBITS-1)/VLCBITS)
36 #define EXPVLCBITS 7
37 #define EXPMAX ((19+EXPVLCBITS-1)/EXPVLCBITS)
39 #define HGAINVLCBITS 9
40 #define HGAINMAX ((13+HGAINVLCBITS-1)/HGAINVLCBITS)
43 typedef struct CoefVLCTable
45 int n; /* total number of codes */
46 const uint32_t *huffcodes; /* VLC bit values */
47 const uint8_t *huffbits; /* VLC bit size */
48 const uint16_t *levels; /* table to build run/level tables */
50 CoefVLCTable;
52 static void wma_lsp_to_curve_init(WMADecodeContext *s, int frame_len);
54 fixed32 coefsarray[MAX_CHANNELS][BLOCK_MAX_SIZE] IBSS_ATTR;
56 //static variables that replace malloced stuff
57 fixed32 stat0[2048], stat1[1024], stat2[512], stat3[256], stat4[128]; //these are the MDCT reconstruction windows
59 uint16_t *runtabarray[2], *levtabarray[2]; //these are VLC lookup tables
61 uint16_t runtab0[1336], runtab1[1336], levtab0[1336], levtab1[1336]; //these could be made smaller since only one can be 1336
63 /*putting these in IRAM actually makes PP slower*/
64 VLC_TYPE vlcbuf1[2550][2];
65 VLC_TYPE vlcbuf2[2550][2];
66 VLC_TYPE vlcbuf3[360][2];
67 VLC_TYPE vlcbuf4[540][2];
71 #include "wmadata.h" // PJJ
76 * Helper functions for wma_window.
81 #ifdef CPU_ARM
82 static inline
83 void vector_fmul_add_add(fixed32 *dst, const fixed32 *data,
84 const fixed32 *window, int n)
86 /* Block sizes are always power of two */
87 asm volatile (
88 "0:"
89 "ldmia %[d]!, {r0, r1};"
90 "ldmia %[w]!, {r4, r5};"
91 /* consume the first data and window value so we can use those
92 * registers again */
93 "smull r8, r9, r0, r4;"
94 "ldmia %[dst], {r0, r4};"
95 "add r0, r0, r9, lsl #1;" /* *dst=*dst+(r9<<1)*/
96 "smull r8, r9, r1, r5;"
97 "add r1, r4, r9, lsl #1;"
98 "stmia %[dst]!, {r0, r1};"
99 "subs %[n], %[n], #2;"
100 "bne 0b;"
101 : [d] "+r" (data), [w] "+r" (window), [dst] "+r" (dst), [n] "+r" (n)
102 : : "r0", "r1", "r4", "r5", "r8", "r9", "memory", "cc");
105 static inline
106 void vector_fmul_reverse(fixed32 *dst, const fixed32 *src0, const fixed32 *src1,
107 int len)
109 /* Block sizes are always power of two */
110 asm volatile (
111 "add %[s1], %[s1], %[n], lsl #2;"
112 "0:"
113 "ldmia %[s0]!, {r0, r1};"
114 "ldmdb %[s1]!, {r4, r5};"
115 "smull r8, r9, r0, r5;"
116 "mov r0, r9, lsl #1;"
117 "smull r8, r9, r1, r4;"
118 "mov r1, r9, lsl #1;"
119 "stmia %[dst]!, {r0, r1};"
120 "subs %[n], %[n], #2;"
121 "bne 0b;"
122 : [s0] "+r" (src0), [s1] "+r" (src1), [dst] "+r" (dst), [n] "+r" (len)
123 : : "r0", "r1", "r4", "r5", "r8", "r9", "memory", "cc");
126 #elif defined(CPU_COLDFIRE)
128 static inline
129 void vector_fmul_add_add(fixed32 *dst, const fixed32 *data,
130 const fixed32 *window, int n)
132 /* Block sizes are always power of two. Smallest block is always way bigger
133 * than four too.*/
134 asm volatile (
135 "0:"
136 "movem.l (%[d]), %%d0-%%d3;"
137 "movem.l (%[w]), %%d4-%%d5/%%a0-%%a1;"
138 "mac.l %%d0, %%d4, %%acc0;"
139 "mac.l %%d1, %%d5, %%acc1;"
140 "mac.l %%d2, %%a0, %%acc2;"
141 "mac.l %%d3, %%a1, %%acc3;"
142 "lea.l (16, %[d]), %[d];"
143 "lea.l (16, %[w]), %[w];"
144 "movclr.l %%acc0, %%d0;"
145 "movclr.l %%acc1, %%d1;"
146 "movclr.l %%acc2, %%d2;"
147 "movclr.l %%acc3, %%d3;"
148 "add.l %%d0, (%[dst])+;"
149 "add.l %%d1, (%[dst])+;"
150 "add.l %%d2, (%[dst])+;"
151 "add.l %%d3, (%[dst])+;"
152 "subq.l #4, %[n];"
153 "jne 0b;"
154 : [d] "+a" (data), [w] "+a" (window), [dst] "+a" (dst), [n] "+d" (n)
155 : : "d0", "d1", "d2", "d3", "d4", "d5", "a0", "a1", "memory", "cc");
158 static inline
159 void vector_fmul_reverse(fixed32 *dst, const fixed32 *src0, const fixed32 *src1,
160 int len)
162 /* Block sizes are always power of two. Smallest block is always way bigger
163 * than four too.*/
164 asm volatile (
165 "lea.l (-16, %[s1], %[n]*4), %[s1];"
166 "0:"
167 "movem.l (%[s0]), %%d0-%%d3;"
168 "movem.l (%[s1]), %%d4-%%d5/%%a0-%%a1;"
169 "mac.l %%d0, %%a1, %%acc0;"
170 "mac.l %%d1, %%a0, %%acc1;"
171 "mac.l %%d2, %%d5, %%acc2;"
172 "mac.l %%d3, %%d4, %%acc3;"
173 "lea.l (16, %[s0]), %[s0];"
174 "lea.l (-16, %[s1]), %[s1];"
175 "movclr.l %%acc0, %%d0;"
176 "movclr.l %%acc1, %%d1;"
177 "movclr.l %%acc2, %%d2;"
178 "movclr.l %%acc3, %%d3;"
179 "movem.l %%d0-%%d3, (%[dst]);"
180 "lea.l (16, %[dst]), %[dst];"
181 "subq.l #4, %[n];"
182 "jne 0b;"
183 : [s0] "+a" (src0), [s1] "+a" (src1), [dst] "+a" (dst), [n] "+d" (len)
184 : : "d0", "d1", "d2", "d3", "d4", "d5", "a0", "a1", "memory", "cc");
187 #else
189 static inline void vector_fmul_add_add(fixed32 *dst, const fixed32 *src0, const fixed32 *src1, int len){
190 int i;
191 for(i=0; i<len; i++)
192 dst[i] = fixmul32b(src0[i], src1[i]) + dst[i];
195 static inline void vector_fmul_reverse(fixed32 *dst, const fixed32 *src0, const fixed32 *src1, int len){
196 int i;
197 src1 += len-1;
198 for(i=0; i<len; i++)
199 dst[i] = fixmul32b(src0[i], src1[-i]);
202 #endif
205 * Apply MDCT window and add into output.
207 * We ensure that when the windows overlap their squared sum
208 * is always 1 (MDCT reconstruction rule).
210 * The Vorbis I spec has a great diagram explaining this process.
211 * See section 1.3.2.3 of http://xiph.org/vorbis/doc/Vorbis_I_spec.html
213 static void wma_window(WMADecodeContext *s, fixed32 *in, fixed32 *out)
215 //float *in = s->output;
216 int block_len, bsize, n;
218 /* left part */
219 /*previous block was larger, so we'll use the size of the current block to set the window size*/
220 if (s->block_len_bits <= s->prev_block_len_bits) {
221 block_len = s->block_len;
222 bsize = s->frame_len_bits - s->block_len_bits;
224 vector_fmul_add_add(out, in, s->windows[bsize], block_len);
226 } else {
227 /*previous block was smaller or the same size, so use it's size to set the window length*/
228 block_len = 1 << s->prev_block_len_bits;
229 /*find the middle of the two overlapped blocks, this will be the first overlapped sample*/
230 n = (s->block_len - block_len) / 2;
231 bsize = s->frame_len_bits - s->prev_block_len_bits;
233 vector_fmul_add_add(out+n, in+n, s->windows[bsize], block_len);
235 memcpy(out+n+block_len, in+n+block_len, n*sizeof(fixed32));
237 /* Advance to the end of the current block and prepare to window it for the next block.
238 * Since the window function needs to be reversed, we do it backwards starting with the
239 * last sample and moving towards the first
241 out += s->block_len;
242 in += s->block_len;
244 /* right part */
245 if (s->block_len_bits <= s->next_block_len_bits) {
246 block_len = s->block_len;
247 bsize = s->frame_len_bits - s->block_len_bits;
249 vector_fmul_reverse(out, in, s->windows[bsize], block_len);
251 } else {
252 block_len = 1 << s->next_block_len_bits;
253 n = (s->block_len - block_len) / 2;
254 bsize = s->frame_len_bits - s->next_block_len_bits;
256 memcpy(out, in, n*sizeof(fixed32));
258 vector_fmul_reverse(out+n, in+n, s->windows[bsize], block_len);
260 memset(out+n+block_len, 0, n*sizeof(fixed32));
267 /* XXX: use same run/length optimization as mpeg decoders */
268 static void init_coef_vlc(VLC *vlc,
269 uint16_t **prun_table, uint16_t **plevel_table,
270 const CoefVLCTable *vlc_table, int tab)
272 int n = vlc_table->n;
273 const uint8_t *table_bits = vlc_table->huffbits;
274 const uint32_t *table_codes = vlc_table->huffcodes;
275 const uint16_t *levels_table = vlc_table->levels;
276 uint16_t *run_table, *level_table;
277 const uint16_t *p;
278 int i, l, j, level;
281 init_vlc(vlc, VLCBITS, n, table_bits, 1, 1, table_codes, 4, 4, 0);
283 run_table = runtabarray[tab];
284 level_table= levtabarray[tab];
286 p = levels_table;
287 i = 2;
288 level = 1;
289 while (i < n)
291 l = *p++;
292 for(j=0;j<l;++j)
294 run_table[i] = j;
295 level_table[i] = level;
296 ++i;
298 ++level;
300 *prun_table = run_table;
301 *plevel_table = level_table;
304 int wma_decode_init(WMADecodeContext* s, asf_waveformatex_t *wfx)
306 //WMADecodeContext *s = avctx->priv_data;
307 int i, flags1, flags2;
308 fixed32 *window;
309 uint8_t *extradata;
310 fixed64 bps1;
311 fixed32 high_freq;
312 fixed64 bps;
313 int sample_rate1;
314 int coef_vlc_table;
315 // int filehandle;
316 #ifdef CPU_COLDFIRE
317 coldfire_set_macsr(EMAC_FRACTIONAL | EMAC_SATURATE);
318 #endif
320 s->sample_rate = wfx->rate;
321 s->nb_channels = wfx->channels;
322 s->bit_rate = wfx->bitrate;
323 s->block_align = wfx->blockalign;
325 s->coefs = &coefsarray;
327 if (wfx->codec_id == ASF_CODEC_ID_WMAV1) {
328 s->version = 1;
329 } else if (wfx->codec_id == ASF_CODEC_ID_WMAV2 ) {
330 s->version = 2;
331 } else {
332 /*one of those other wma flavors that don't have GPLed decoders */
333 return -1;
336 /* extract flag infos */
337 flags1 = 0;
338 flags2 = 0;
339 extradata = wfx->data;
340 if (s->version == 1 && wfx->datalen >= 4) {
341 flags1 = extradata[0] | (extradata[1] << 8);
342 flags2 = extradata[2] | (extradata[3] << 8);
343 }else if (s->version == 2 && wfx->datalen >= 6){
344 flags1 = extradata[0] | (extradata[1] << 8) |
345 (extradata[2] << 16) | (extradata[3] << 24);
346 flags2 = extradata[4] | (extradata[5] << 8);
348 s->use_exp_vlc = flags2 & 0x0001;
349 s->use_bit_reservoir = flags2 & 0x0002;
350 s->use_variable_block_len = flags2 & 0x0004;
352 /* compute MDCT block size */
353 if (s->sample_rate <= 16000){
354 s->frame_len_bits = 9;
355 }else if (s->sample_rate <= 22050 ||
356 (s->sample_rate <= 32000 && s->version == 1)){
357 s->frame_len_bits = 10;
358 }else{
359 s->frame_len_bits = 11;
361 s->frame_len = 1 << s->frame_len_bits;
362 if (s-> use_variable_block_len)
364 int nb_max, nb;
365 nb = ((flags2 >> 3) & 3) + 1;
366 if ((s->bit_rate / s->nb_channels) >= 32000)
368 nb += 2;
370 nb_max = s->frame_len_bits - BLOCK_MIN_BITS; //max is 11-7
371 if (nb > nb_max)
372 nb = nb_max;
373 s->nb_block_sizes = nb + 1;
375 else
377 s->nb_block_sizes = 1;
380 /* init rate dependant parameters */
381 s->use_noise_coding = 1;
382 high_freq = itofix64(s->sample_rate) >> 1;
385 /* if version 2, then the rates are normalized */
386 sample_rate1 = s->sample_rate;
387 if (s->version == 2)
389 if (sample_rate1 >= 44100)
390 sample_rate1 = 44100;
391 else if (sample_rate1 >= 22050)
392 sample_rate1 = 22050;
393 else if (sample_rate1 >= 16000)
394 sample_rate1 = 16000;
395 else if (sample_rate1 >= 11025)
396 sample_rate1 = 11025;
397 else if (sample_rate1 >= 8000)
398 sample_rate1 = 8000;
401 fixed64 tmp = itofix64(s->bit_rate);
402 fixed64 tmp2 = itofix64(s->nb_channels * s->sample_rate);
403 bps = fixdiv64(tmp, tmp2);
404 fixed64 tim = bps * s->frame_len;
405 fixed64 tmpi = fixdiv64(tim,itofix64(8));
406 s->byte_offset_bits = av_log2(fixtoi64(tmpi+0x8000)) + 2;
408 /* compute high frequency value and choose if noise coding should
409 be activated */
410 bps1 = bps;
411 if (s->nb_channels == 2)
412 bps1 = fixmul32(bps,0x1999a);
413 if (sample_rate1 == 44100)
415 if (bps1 >= 0x9c29)
416 s->use_noise_coding = 0;
417 else
418 high_freq = fixmul32(high_freq,0x6666);
420 else if (sample_rate1 == 22050)
422 if (bps1 >= 0x128f6)
423 s->use_noise_coding = 0;
424 else if (bps1 >= 0xb852)
425 high_freq = fixmul32(high_freq,0xb333);
426 else
427 high_freq = fixmul32(high_freq,0x999a);
429 else if (sample_rate1 == 16000)
431 if (bps > 0x8000)
432 high_freq = fixmul32(high_freq,0x8000);
433 else
434 high_freq = fixmul32(high_freq,0x4ccd);
436 else if (sample_rate1 == 11025)
438 high_freq = fixmul32(high_freq,0xb333);
440 else if (sample_rate1 == 8000)
442 if (bps <= 0xa000)
444 high_freq = fixmul32(high_freq,0x8000);
446 else if (bps > 0xc000)
448 s->use_noise_coding = 0;
450 else
452 high_freq = fixmul32(high_freq,0xa666);
455 else
457 if (bps >= 0xcccd)
459 high_freq = fixmul32(high_freq,0xc000);
461 else if (bps >= 0x999a)
463 high_freq = fixmul32(high_freq,0x999a);
465 else
467 high_freq = fixmul32(high_freq,0x8000);
471 /* compute the scale factor band sizes for each MDCT block size */
473 int a, b, pos, lpos, k, block_len, i, j, n;
474 const uint8_t *table;
476 if (s->version == 1)
478 s->coefs_start = 3;
480 else
482 s->coefs_start = 0;
484 for(k = 0; k < s->nb_block_sizes; ++k)
486 block_len = s->frame_len >> k;
488 if (s->version == 1)
490 lpos = 0;
491 for(i=0;i<25;++i)
493 a = wma_critical_freqs[i];
494 b = s->sample_rate;
495 pos = ((block_len * 2 * a) + (b >> 1)) / b;
496 if (pos > block_len)
497 pos = block_len;
498 s->exponent_bands[0][i] = pos - lpos;
499 if (pos >= block_len)
501 ++i;
502 break;
504 lpos = pos;
506 s->exponent_sizes[0] = i;
508 else
510 /* hardcoded tables */
511 table = NULL;
512 a = s->frame_len_bits - BLOCK_MIN_BITS - k;
513 if (a < 3)
515 if (s->sample_rate >= 44100)
516 table = exponent_band_44100[a];
517 else if (s->sample_rate >= 32000)
518 table = exponent_band_32000[a];
519 else if (s->sample_rate >= 22050)
520 table = exponent_band_22050[a];
522 if (table)
524 n = *table++;
525 for(i=0;i<n;++i)
526 s->exponent_bands[k][i] = table[i];
527 s->exponent_sizes[k] = n;
529 else
531 j = 0;
532 lpos = 0;
533 for(i=0;i<25;++i)
535 a = wma_critical_freqs[i];
536 b = s->sample_rate;
537 pos = ((block_len * 2 * a) + (b << 1)) / (4 * b);
538 pos <<= 2;
539 if (pos > block_len)
540 pos = block_len;
541 if (pos > lpos)
542 s->exponent_bands[k][j++] = pos - lpos;
543 if (pos >= block_len)
544 break;
545 lpos = pos;
547 s->exponent_sizes[k] = j;
551 /* max number of coefs */
552 s->coefs_end[k] = (s->frame_len - ((s->frame_len * 9) / 100)) >> k;
553 /* high freq computation */
555 fixed32 tmp1 = high_freq*2; /* high_freq is a fixed32!*/
556 fixed32 tmp2=itofix32(s->sample_rate>>1);
557 s->high_band_start[k] = fixtoi32( fixdiv32(tmp1, tmp2) * (block_len>>1) +0x8000);
560 s->high_band_start[k] = (int)((block_len * 2 * high_freq) /
561 s->sample_rate + 0.5);*/
563 n = s->exponent_sizes[k];
564 j = 0;
565 pos = 0;
566 for(i=0;i<n;++i)
568 int start, end;
569 start = pos;
570 pos += s->exponent_bands[k][i];
571 end = pos;
572 if (start < s->high_band_start[k])
573 start = s->high_band_start[k];
574 if (end > s->coefs_end[k])
575 end = s->coefs_end[k];
576 if (end > start)
577 s->exponent_high_bands[k][j++] = end - start;
579 s->exponent_high_sizes[k] = j;
583 mdct_init_global();
585 for(i = 0; i < s->nb_block_sizes; ++i)
587 ff_mdct_init(&s->mdct_ctx[i], s->frame_len_bits - i + 1, 1);
590 /*ffmpeg uses malloc to only allocate as many window sizes as needed. However, we're really only interested in the worst case memory usage.
591 * In the worst case you can have 5 window sizes, 128 doubling up 2048
592 * Smaller windows are handled differently.
593 * Since we don't have malloc, just statically allocate this
595 fixed32 *temp[5];
596 temp[0] = stat0;
597 temp[1] = stat1;
598 temp[2] = stat2;
599 temp[3] = stat3;
600 temp[4] = stat4;
602 /* init MDCT windows : simple sinus window */
603 for(i = 0; i < s->nb_block_sizes; i++)
605 int n, j;
606 fixed32 alpha;
607 n = 1 << (s->frame_len_bits - i);
608 //window = av_malloc(sizeof(fixed32) * n);
609 window = temp[i];
611 //fixed32 n2 = itofix32(n<<1); //2x the window length
612 //alpha = fixdiv32(M_PI_F, n2); //PI / (2x Window length) == PI<<(s->frame_len_bits - i+1)
614 //alpha = M_PI_F>>(s->frame_len_bits - i+1);
615 alpha = (1<<15)>>(s->frame_len_bits - i+1); /* this calculates 0.5/(2*n) */
616 for(j=0;j<n;++j)
618 fixed32 j2 = itofix32(j) + 0x8000;
619 window[j] = fsincos(fixmul32(j2,alpha)<<16, 0); //alpha between 0 and pi/2
622 //printf("created window\n");
623 s->windows[i] = window;
624 //printf("assigned window\n");
627 s->reset_block_lengths = 1;
629 if (s->use_noise_coding)
631 /* init the noise generator */
632 if (s->use_exp_vlc)
634 s->noise_mult = 0x51f;
635 s->noise_table = noisetable_exp;
637 else
639 s->noise_mult = 0xa3d;
640 /* LSP values are simply 2x the EXP values */
641 for (i=0;i<NOISE_TAB_SIZE;++i)
642 noisetable_exp[i] = noisetable_exp[i]<< 1;
643 s->noise_table = noisetable_exp;
645 #if 0
647 unsigned int seed;
648 fixed32 norm;
649 seed = 1;
650 norm = 0; // PJJ: near as makes any diff to 0!
651 for (i=0;i<NOISE_TAB_SIZE;++i)
653 seed = seed * 314159 + 1;
654 s->noise_table[i] = itofix32((int)seed) * norm;
657 #endif
659 s->hgain_vlc.table = vlcbuf4;
660 init_vlc(&s->hgain_vlc, HGAINVLCBITS, sizeof(hgain_huffbits),
661 hgain_huffbits, 1, 1,
662 hgain_huffcodes, 2, 2, 0);
665 if (s->use_exp_vlc)
668 s->exp_vlc.table = vlcbuf3;
670 init_vlc(&s->exp_vlc, EXPVLCBITS, sizeof(scale_huffbits),
671 scale_huffbits, 1, 1,
672 scale_huffcodes, 4, 4, 0);
674 else
676 wma_lsp_to_curve_init(s, s->frame_len);
679 /* choose the VLC tables for the coefficients */
680 coef_vlc_table = 2;
681 if (s->sample_rate >= 32000)
683 if (bps1 < 0xb852)
684 coef_vlc_table = 0;
685 else if (bps1 < 0x128f6)
686 coef_vlc_table = 1;
689 runtabarray[0] = runtab0; runtabarray[1] = runtab1;
690 levtabarray[0] = levtab0; levtabarray[1] = levtab1;
692 s->coef_vlc[0].table = vlcbuf1;
693 s->coef_vlc[0].table_allocated = 24576/4;
694 s->coef_vlc[1].table = vlcbuf2;
695 s->coef_vlc[1].table_allocated = 14336/4;
698 init_coef_vlc(&s->coef_vlc[0], &s->run_table[0], &s->level_table[0],
699 &coef_vlcs[coef_vlc_table * 2], 0);
700 init_coef_vlc(&s->coef_vlc[1], &s->run_table[1], &s->level_table[1],
701 &coef_vlcs[coef_vlc_table * 2 + 1], 1);
703 s->last_superframe_len = 0;
704 s->last_bitoffset = 0;
706 return 0;
710 /* compute x^-0.25 with an exponent and mantissa table. We use linear
711 interpolation to reduce the mantissa table size at a small speed
712 expense (linear interpolation approximately doubles the number of
713 bits of precision). */
714 static inline fixed32 pow_m1_4(WMADecodeContext *s, fixed32 x)
716 union {
717 float f;
718 unsigned int v;
719 } u, t;
720 unsigned int e, m;
721 fixed32 a, b;
723 u.f = fixtof64(x);
724 e = u.v >> 23;
725 m = (u.v >> (23 - LSP_POW_BITS)) & ((1 << LSP_POW_BITS) - 1);
726 /* build interpolation scale: 1 <= t < 2. */
727 t.v = ((u.v << LSP_POW_BITS) & ((1 << 23) - 1)) | (127 << 23);
728 a = s->lsp_pow_m_table1[m];
729 b = s->lsp_pow_m_table2[m];
731 /* lsp_pow_e_table contains 32.32 format */
732 /* TODO: Since we're unlikely have value that cover the whole
733 * IEEE754 range, we probably don't need to have all possible exponents */
735 return (lsp_pow_e_table[e] * (a + fixmul32(b, ftofix32(t.f))) >>32);
738 static void wma_lsp_to_curve_init(WMADecodeContext *s, int frame_len)
740 fixed32 wdel, a, b, temp, temp2;
741 int i, m;
743 wdel = fixdiv32(M_PI_F, itofix32(frame_len));
744 temp = fixdiv32(itofix32(1), itofix32(frame_len));
745 for (i=0; i<frame_len; ++i)
747 /* TODO: can probably reuse the trig_init values here */
748 fsincos((temp*i)<<15, &temp2);
749 /* get 3 bits headroom + 1 bit from not doubleing the values */
750 s->lsp_cos_table[i] = temp2>>3;
753 /* NOTE: these two tables are needed to avoid two operations in
754 pow_m1_4 */
755 b = itofix32(1);
756 int ix = 0;
758 /*double check this later*/
759 for(i=(1 << LSP_POW_BITS) - 1;i>=0;i--)
761 m = (1 << LSP_POW_BITS) + i;
762 a = pow_a_table[ix++]<<4;
763 s->lsp_pow_m_table1[i] = 2 * a - b;
764 s->lsp_pow_m_table2[i] = b - a;
765 b = a;
770 /* NOTE: We use the same code as Vorbis here */
771 /* XXX: optimize it further with SSE/3Dnow */
772 static void wma_lsp_to_curve(WMADecodeContext *s,
773 fixed32 *out,
774 fixed32 *val_max_ptr,
775 int n,
776 fixed32 *lsp)
778 int i, j;
779 fixed32 p, q, w, v, val_max, temp, temp2;
781 val_max = 0;
782 for(i=0;i<n;++i)
784 /* shift by 2 now to reduce rounding error,
785 * we can renormalize right before pow_m1_4
788 p = 0x8000<<5;
789 q = 0x8000<<5;
790 w = s->lsp_cos_table[i];
792 for (j=1;j<NB_LSP_COEFS;j+=2)
794 /* w is 5.27 format, lsp is in 16.16, temp2 becomes 5.27 format */
795 temp2 = ((w - (lsp[j - 1]<<11)));
796 temp = q;
798 /* q is 16.16 format, temp2 is 5.27, q becomes 16.16 */
799 q = fixmul32b(q, temp2 )<<4;
800 p = fixmul32b(p, (w - (lsp[j]<<11)))<<4;
803 /* 2 in 5.27 format is 0x10000000 */
804 p = fixmul32(p, fixmul32b(p, (0x10000000 - w)))<<3;
805 q = fixmul32(q, fixmul32b(q, (0x10000000 + w)))<<3;
807 v = (p + q) >>9; /* p/q end up as 16.16 */
808 v = pow_m1_4(s, v);
809 if (v > val_max)
810 val_max = v;
811 out[i] = v;
814 *val_max_ptr = val_max;
817 /* decode exponents coded with LSP coefficients (same idea as Vorbis) */
818 static void decode_exp_lsp(WMADecodeContext *s, int ch)
820 fixed32 lsp_coefs[NB_LSP_COEFS];
821 int val, i;
823 for (i = 0; i < NB_LSP_COEFS; ++i)
825 if (i == 0 || i >= 8)
826 val = get_bits(&s->gb, 3);
827 else
828 val = get_bits(&s->gb, 4);
829 lsp_coefs[i] = lsp_codebook[i][val];
832 wma_lsp_to_curve(s,
833 s->exponents[ch],
834 &s->max_exponent[ch],
835 s->block_len,
836 lsp_coefs);
839 /* decode exponents coded with VLC codes */
840 static int decode_exp_vlc(WMADecodeContext *s, int ch)
842 int last_exp, n, code;
843 const uint16_t *ptr, *band_ptr;
844 fixed32 v, max_scale;
845 fixed32 *q,*q_end;
847 /*accommodate the 16 negative indices */
848 const fixed32 *pow_10_to_yover16_ptr = &pow_10_to_yover16[16];
850 band_ptr = s->exponent_bands[s->frame_len_bits - s->block_len_bits];
851 ptr = band_ptr;
852 q = s->exponents[ch];
853 q_end = q + s->block_len;
854 max_scale = 0;
857 if (s->version == 1) //wmav1 only
859 last_exp = get_bits(&s->gb, 5) + 10;
860 /* XXX: use a table */
861 v = pow_10_to_yover16_ptr[last_exp];
862 max_scale = v;
863 n = *ptr++;
866 *q++ = v;
868 while (--n);
870 last_exp = 36;
872 while (q < q_end)
874 code = get_vlc2(&s->gb, s->exp_vlc.table, EXPVLCBITS, EXPMAX);
875 if (code < 0)
877 return -1;
879 /* NOTE: this offset is the same as MPEG4 AAC ! */
880 last_exp += code - 60;
881 /* XXX: use a table */
882 v = pow_10_to_yover16_ptr[last_exp];
883 if (v > max_scale)
885 max_scale = v;
887 n = *ptr++;
890 *q++ = v;
893 while (--n);
896 s->max_exponent[ch] = max_scale;
897 return 0;
900 /* return 0 if OK. return 1 if last block of frame. return -1 if
901 unrecorrable error. */
902 static int wma_decode_block(WMADecodeContext *s)
904 int n, v, a, ch, code, bsize;
905 int coef_nb_bits, total_gain;
906 int nb_coefs[MAX_CHANNELS];
907 fixed32 mdct_norm;
909 DEBUGF("***decode_block: %d (%d samples of %d in frame)\n", s->block_num, s->block_len, s->frame_len);
911 /* compute current block length */
912 if (s->use_variable_block_len)
914 n = av_log2(s->nb_block_sizes - 1) + 1;
916 if (s->reset_block_lengths)
918 s->reset_block_lengths = 0;
919 v = get_bits(&s->gb, n);
920 if (v >= s->nb_block_sizes)
922 return -2;
924 s->prev_block_len_bits = s->frame_len_bits - v;
925 v = get_bits(&s->gb, n);
926 if (v >= s->nb_block_sizes)
928 return -3;
930 s->block_len_bits = s->frame_len_bits - v;
932 else
934 /* update block lengths */
935 s->prev_block_len_bits = s->block_len_bits;
936 s->block_len_bits = s->next_block_len_bits;
938 v = get_bits(&s->gb, n);
940 if (v >= s->nb_block_sizes)
942 // rb->splash(HZ*4, "v was %d", v); //5, 7
943 return -4; //this is it
945 else{
946 //rb->splash(HZ, "passed v block (%d)!", v);
948 s->next_block_len_bits = s->frame_len_bits - v;
950 else
952 /* fixed block len */
953 s->next_block_len_bits = s->frame_len_bits;
954 s->prev_block_len_bits = s->frame_len_bits;
955 s->block_len_bits = s->frame_len_bits;
957 /* now check if the block length is coherent with the frame length */
958 s->block_len = 1 << s->block_len_bits;
960 if ((s->block_pos + s->block_len) > s->frame_len)
962 return -5; //oddly 32k sample from tracker fails here
965 if (s->nb_channels == 2)
967 s->ms_stereo = get_bits(&s->gb, 1);
969 v = 0;
970 for (ch = 0; ch < s->nb_channels; ++ch)
972 a = get_bits(&s->gb, 1);
973 s->channel_coded[ch] = a;
974 v |= a;
976 /* if no channel coded, no need to go further */
977 /* XXX: fix potential framing problems */
978 if (!v)
980 goto next;
983 bsize = s->frame_len_bits - s->block_len_bits;
985 /* read total gain and extract corresponding number of bits for
986 coef escape coding */
987 total_gain = 1;
988 for(;;)
990 a = get_bits(&s->gb, 7);
991 total_gain += a;
992 if (a != 127)
994 break;
998 if (total_gain < 15)
999 coef_nb_bits = 13;
1000 else if (total_gain < 32)
1001 coef_nb_bits = 12;
1002 else if (total_gain < 40)
1003 coef_nb_bits = 11;
1004 else if (total_gain < 45)
1005 coef_nb_bits = 10;
1006 else
1007 coef_nb_bits = 9;
1009 /* compute number of coefficients */
1010 n = s->coefs_end[bsize] - s->coefs_start;
1012 for(ch = 0; ch < s->nb_channels; ++ch)
1014 nb_coefs[ch] = n;
1016 /* complex coding */
1017 if (s->use_noise_coding)
1020 for(ch = 0; ch < s->nb_channels; ++ch)
1022 if (s->channel_coded[ch])
1024 int i, n, a;
1025 n = s->exponent_high_sizes[bsize];
1026 for(i=0;i<n;++i)
1028 a = get_bits(&s->gb, 1);
1029 s->high_band_coded[ch][i] = a;
1030 /* if noise coding, the coefficients are not transmitted */
1031 if (a)
1032 nb_coefs[ch] -= s->exponent_high_bands[bsize][i];
1036 for(ch = 0; ch < s->nb_channels; ++ch)
1038 if (s->channel_coded[ch])
1040 int i, n, val, code;
1042 n = s->exponent_high_sizes[bsize];
1043 val = (int)0x80000000;
1044 for(i=0;i<n;++i)
1046 if (s->high_band_coded[ch][i])
1048 if (val == (int)0x80000000)
1050 val = get_bits(&s->gb, 7) - 19;
1052 else
1054 //code = get_vlc(&s->gb, &s->hgain_vlc);
1055 code = get_vlc2(&s->gb, s->hgain_vlc.table, HGAINVLCBITS, HGAINMAX);
1056 if (code < 0)
1058 return -6;
1060 val += code - 18;
1062 s->high_band_values[ch][i] = val;
1069 /* exponents can be reused in short blocks. */
1070 if ((s->block_len_bits == s->frame_len_bits) || get_bits(&s->gb, 1))
1072 for(ch = 0; ch < s->nb_channels; ++ch)
1074 if (s->channel_coded[ch])
1076 if (s->use_exp_vlc)
1078 if (decode_exp_vlc(s, ch) < 0)
1080 return -7;
1083 else
1085 decode_exp_lsp(s, ch);
1087 s->exponents_bsize[ch] = bsize;
1092 /* parse spectral coefficients : just RLE encoding */
1093 for(ch = 0; ch < s->nb_channels; ++ch)
1095 if (s->channel_coded[ch])
1097 VLC *coef_vlc;
1098 int level, run, sign, tindex;
1099 int16_t *ptr, *eptr;
1100 const int16_t *level_table, *run_table;
1102 /* special VLC tables are used for ms stereo because
1103 there is potentially less energy there */
1104 tindex = (ch == 1 && s->ms_stereo);
1105 coef_vlc = &s->coef_vlc[tindex];
1106 run_table = s->run_table[tindex];
1107 level_table = s->level_table[tindex];
1108 /* XXX: optimize */
1109 ptr = &s->coefs1[ch][0];
1110 eptr = ptr + nb_coefs[ch];
1111 memset(ptr, 0, s->block_len * sizeof(int16_t));
1113 for(;;)
1115 code = get_vlc2(&s->gb, coef_vlc->table, VLCBITS, VLCMAX);
1116 //code = get_vlc(&s->gb, coef_vlc);
1117 if (code < 0)
1119 return -8;
1121 if (code == 1)
1123 /* EOB */
1124 break;
1126 else if (code == 0)
1128 /* escape */
1129 level = get_bits(&s->gb, coef_nb_bits);
1130 /* NOTE: this is rather suboptimal. reading
1131 block_len_bits would be better */
1132 run = get_bits(&s->gb, s->frame_len_bits);
1134 else
1136 /* normal code */
1137 run = run_table[code];
1138 level = level_table[code];
1140 sign = get_bits(&s->gb, 1);
1141 if (!sign)
1142 level = -level;
1143 ptr += run;
1144 if (ptr >= eptr)
1146 break;
1148 *ptr++ = level;
1151 /* NOTE: EOB can be omitted */
1152 if (ptr >= eptr)
1153 break;
1156 if (s->version == 1 && s->nb_channels >= 2)
1158 align_get_bits(&s->gb);
1163 int n4 = s->block_len >> 1;
1164 //mdct_norm = 0x10000;
1165 //mdct_norm = fixdiv32(mdct_norm,itofix32(n4));
1167 mdct_norm = 0x10000>>(s->block_len_bits-1); //theres no reason to do a divide by two in fixed precision ...
1169 if (s->version == 1)
1171 fixed32 tmp = fixsqrt32(itofix32(n4));
1172 mdct_norm *= tmp; // PJJ : exercise this path
1177 /* finally compute the MDCT coefficients */
1178 for(ch = 0; ch < s->nb_channels; ++ch)
1180 if (s->channel_coded[ch])
1182 int16_t *coefs1;
1183 fixed32 *exponents, *exp_ptr;
1184 fixed32 *coefs, atemp;
1185 fixed64 mult;
1186 fixed64 mult1;
1187 fixed32 noise, temp1, temp2, mult2;
1188 int i, j, n, n1, last_high_band, esize;
1189 fixed32 exp_power[HIGH_BAND_MAX_SIZE];
1191 //total_gain, coefs1, mdctnorm are lossless
1193 coefs1 = s->coefs1[ch];
1194 exponents = s->exponents[ch];
1195 esize = s->exponents_bsize[ch];
1196 coefs = (*(s->coefs))[ch];
1198 n=0;
1201 * Previously the IMDCT was run in 17.15 precision to avoid overflow. However rare files could
1202 * overflow here as well, so switch to 17.15 during coefs calculation.
1206 if (s->use_noise_coding)
1208 /*TODO: mult should be converted to 32 bit to speed up noise coding*/
1210 mult = fixdiv64(pow_table[total_gain+20],Fixed32To64(s->max_exponent[ch]));
1211 mult = mult* mdct_norm; //what the hell? This is actually fixed64*2^16!
1212 mult1 = mult;
1214 /* very low freqs : noise */
1215 for(i = 0;i < s->coefs_start; ++i)
1217 *coefs++ = fixmul32( (fixmul32(s->noise_table[s->noise_index],(*exponents++))>>4),Fixed32From64(mult1)) >>1;
1218 s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
1221 n1 = s->exponent_high_sizes[bsize];
1223 /* compute power of high bands */
1224 exp_ptr = exponents +
1225 s->high_band_start[bsize] -
1226 s->coefs_start;
1227 last_high_band = 0; /* avoid warning */
1228 for (j=0;j<n1;++j)
1230 n = s->exponent_high_bands[s->frame_len_bits -
1231 s->block_len_bits][j];
1232 if (s->high_band_coded[ch][j])
1234 fixed32 e2, v;
1235 e2 = 0;
1236 for(i = 0;i < n; ++i)
1238 /*v is noramlized later on so its fixed format is irrelevant*/
1239 v = exp_ptr[i]>>4;
1240 e2 += fixmul32(v, v)>>3;
1242 exp_power[j] = e2/n; /*n is an int...*/
1243 last_high_band = j;
1245 exp_ptr += n;
1248 /* main freqs and high freqs */
1249 for(j=-1;j<n1;++j)
1251 if (j < 0)
1253 n = s->high_band_start[bsize] -
1254 s->coefs_start;
1256 else
1258 n = s->exponent_high_bands[s->frame_len_bits -
1259 s->block_len_bits][j];
1261 if (j >= 0 && s->high_band_coded[ch][j])
1263 /* use noise with specified power */
1264 fixed32 tmp = fixdiv32(exp_power[j],exp_power[last_high_band]);
1265 mult1 = (fixed64)fixsqrt32(tmp);
1266 /* XXX: use a table */
1267 /*mult1 is 48.16, pow_table is 48.16*/
1268 mult1 = mult1 * pow_table[s->high_band_values[ch][j]+20] >> PRECISION;
1270 /*this step has a fairly high degree of error for some reason*/
1271 mult1 = fixdiv64(mult1,fixmul32(s->max_exponent[ch],s->noise_mult));
1273 mult1 = mult1*mdct_norm>>PRECISION;
1274 for(i = 0;i < n; ++i)
1276 noise = s->noise_table[s->noise_index];
1277 s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
1278 *coefs++ = fixmul32((fixmul32(*exponents,noise)>>4),Fixed32From64(mult1)) >>1;
1279 ++exponents;
1282 else
1284 /* coded values + small noise */
1285 for(i = 0;i < n; ++i)
1287 // PJJ: check code path
1288 noise = s->noise_table[s->noise_index];
1289 s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
1291 /*don't forget to renormalize the noise*/
1292 temp1 = (((int32_t)*coefs1++)<<16) + (noise>>4);
1293 temp2 = fixmul32(*exponents, mult>>17);
1294 *coefs++ = fixmul32(temp1, temp2);
1295 ++exponents;
1300 /* very high freqs : noise */
1301 n = s->block_len - s->coefs_end[bsize];
1302 mult2 = fixmul32(mult>>16,exponents[-1]) ; /*the work around for 32.32 vars are getting stupid*/
1303 for (i = 0; i < n; ++i)
1305 /*renormalize the noise product and then reduce to 17.15 precison*/
1306 *coefs++ = fixmul32(s->noise_table[s->noise_index],mult2) >>5;
1308 s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
1311 else
1313 /*Noise coding not used, simply convert from exp to fixed representation*/
1316 fixed32 mult3 = (fixed32)(fixdiv64(pow_table[total_gain+20],Fixed32To64(s->max_exponent[ch])));
1317 mult3 = fixmul32(mult3, mdct_norm);
1319 n = nb_coefs[ch];
1321 /* XXX: optimize more, unrolling this loop in asm might be a good idea */
1323 for(i = 0;i < n; ++i)
1325 atemp = (coefs1[i] * mult3)>>1;
1326 *coefs++=fixmul32(atemp,exponents[i<<bsize>>esize]);
1328 n = s->block_len - s->coefs_end[bsize];
1329 memset(coefs, 0, n*sizeof(fixed32));
1336 if (s->ms_stereo && s->channel_coded[1])
1338 fixed32 a, b;
1339 int i;
1340 fixed32 (*coefs)[MAX_CHANNELS][BLOCK_MAX_SIZE] = (s->coefs);
1342 /* nominal case for ms stereo: we do it before mdct */
1343 /* no need to optimize this case because it should almost
1344 never happen */
1345 if (!s->channel_coded[0])
1347 memset((*(s->coefs))[0], 0, sizeof(fixed32) * s->block_len);
1348 s->channel_coded[0] = 1;
1351 for(i = 0; i < s->block_len; ++i)
1353 a = (*coefs)[0][i];
1354 b = (*coefs)[1][i];
1355 (*coefs)[0][i] = a + b;
1356 (*coefs)[1][i] = a - b;
1360 for(ch = 0; ch < s->nb_channels; ++ch)
1362 if (s->channel_coded[ch])
1364 static fixed32 output[BLOCK_MAX_SIZE * 2] IBSS_ATTR;
1366 int n4, index, n;
1368 n = s->block_len;
1369 n4 = s->block_len >>1;
1371 ff_imdct_calc(&s->mdct_ctx[bsize],
1372 output,
1373 (*(s->coefs))[ch]);
1376 /* add in the frame */
1377 index = (s->frame_len / 2) + s->block_pos - n4;
1379 wma_window(s, output, &s->frame_out[ch][index]);
1383 /* specific fast case for ms-stereo : add to second
1384 channel if it is not coded */
1385 if (s->ms_stereo && !s->channel_coded[1])
1387 wma_window(s, output, &s->frame_out[1][index]);
1391 next:
1392 /* update block number */
1393 ++s->block_num;
1394 s->block_pos += s->block_len;
1395 if (s->block_pos >= s->frame_len)
1397 return 1;
1399 else
1401 return 0;
1405 /* decode a frame of frame_len samples */
1406 static int wma_decode_frame(WMADecodeContext *s, int32_t *samples)
1408 int ret, i, n, ch, incr;
1409 int32_t *ptr;
1410 fixed32 *iptr;
1411 // rb->splash(HZ, "in wma_decode_frame");
1413 /* read each block */
1414 s->block_num = 0;
1415 s->block_pos = 0;
1418 for(;;)
1420 ret = wma_decode_block(s);
1421 if (ret < 0)
1424 DEBUGF("wma_decode_block failed with code %d\n", ret);
1425 return -1;
1427 if (ret)
1429 break;
1433 /* return frame with full 30-bit precision */
1434 n = s->frame_len;
1435 incr = s->nb_channels;
1436 for(ch = 0; ch < s->nb_channels; ++ch)
1438 ptr = samples + ch;
1439 iptr = s->frame_out[ch];
1441 for (i=0;i<n;++i)
1443 *ptr = (*iptr++);
1444 ptr += incr;
1446 /* prepare for next block */
1447 memmove(&s->frame_out[ch][0], &s->frame_out[ch][s->frame_len],
1448 s->frame_len * sizeof(fixed32));
1452 return 0;
1455 /* Initialise the superframe decoding */
1457 int wma_decode_superframe_init(WMADecodeContext* s,
1458 uint8_t *buf, /*input*/
1459 int buf_size)
1461 if (buf_size==0)
1463 s->last_superframe_len = 0;
1464 return 0;
1467 s->current_frame = 0;
1469 init_get_bits(&s->gb, buf, buf_size*8);
1471 if (s->use_bit_reservoir)
1473 /* read super frame header */
1474 get_bits(&s->gb, 4); /* super frame index */
1475 s->nb_frames = get_bits(&s->gb, 4);
1477 if (s->last_superframe_len == 0)
1478 s->nb_frames --;
1479 else if (s->nb_frames == 0)
1480 s->nb_frames++;
1482 s->bit_offset = get_bits(&s->gb, s->byte_offset_bits + 3);
1483 } else {
1484 s->nb_frames = 1;
1487 return 1;
1491 /* Decode a single frame in the current superframe - return -1 if
1492 there was a decoding error, or the number of samples decoded.
1495 int wma_decode_superframe_frame(WMADecodeContext* s,
1496 int32_t* samples, /*output*/
1497 uint8_t *buf, /*input*/
1498 int buf_size)
1500 int pos, len;
1501 uint8_t *q;
1502 int done = 0;
1503 if ((s->use_bit_reservoir) && (s->current_frame == 0))
1505 if (s->last_superframe_len > 0)
1507 /* add s->bit_offset bits to last frame */
1508 if ((s->last_superframe_len + ((s->bit_offset + 7) >> 3)) >
1509 MAX_CODED_SUPERFRAME_SIZE)
1511 DEBUGF("superframe size too large error\n");
1512 goto fail;
1514 q = s->last_superframe + s->last_superframe_len;
1515 len = s->bit_offset;
1516 while (len > 0)
1518 *q++ = (get_bits)(&s->gb, 8);
1519 len -= 8;
1521 if (len > 0)
1523 *q++ = (get_bits)(&s->gb, len) << (8 - len);
1526 /* XXX: s->bit_offset bits into last frame */
1527 init_get_bits(&s->gb, s->last_superframe, MAX_CODED_SUPERFRAME_SIZE*8);
1528 /* skip unused bits */
1529 if (s->last_bitoffset > 0)
1530 skip_bits(&s->gb, s->last_bitoffset);
1532 /* this frame is stored in the last superframe and in the
1533 current one */
1534 if (wma_decode_frame(s, samples) < 0)
1536 goto fail;
1538 done = 1;
1541 /* read each frame starting from s->bit_offset */
1542 pos = s->bit_offset + 4 + 4 + s->byte_offset_bits + 3;
1543 init_get_bits(&s->gb, buf + (pos >> 3), (MAX_CODED_SUPERFRAME_SIZE - (pos >> 3))*8);
1544 len = pos & 7;
1545 if (len > 0)
1546 skip_bits(&s->gb, len);
1548 s->reset_block_lengths = 1;
1551 /* If we haven't decoded a frame yet, do it now */
1552 if (!done)
1554 if (wma_decode_frame(s, samples) < 0)
1556 goto fail;
1560 s->current_frame++;
1562 if ((s->use_bit_reservoir) && (s->current_frame == s->nb_frames))
1564 /* we copy the end of the frame in the last frame buffer */
1565 pos = get_bits_count(&s->gb) + ((s->bit_offset + 4 + 4 + s->byte_offset_bits + 3) & ~7);
1566 s->last_bitoffset = pos & 7;
1567 pos >>= 3;
1568 len = buf_size - pos;
1569 if (len > MAX_CODED_SUPERFRAME_SIZE || len < 0)
1571 DEBUGF("superframe size too large error after decodeing\n");
1572 goto fail;
1574 s->last_superframe_len = len;
1575 memcpy(s->last_superframe, buf + pos, len);
1578 return s->frame_len;
1580 fail:
1581 /* when error, we reset the bit reservoir */
1583 s->last_superframe_len = 0;
1584 return -1;