2 * COOK compatible decoder
3 * Copyright (c) 2003 Sascha Sommer
4 * Copyright (c) 2005 Benjamin Larsson
6 * This file is part of FFmpeg.
8 * FFmpeg is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
13 * FFmpeg is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with FFmpeg; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
25 * Cook compatible decoder. Bastardization of the G.722.1 standard.
26 * This decoder handles RealNetworks, RealAudio G2 data.
27 * Cook is identified by the codec name cook in RM files.
29 * To use this decoder, a calling application must supply the extradata
30 * bytes provided from the RM container; 8+ bytes for mono streams and
31 * 16+ for stereo streams (maybe more).
33 * Codec technicalities (all this assume a buffer length of 1024):
34 * Cook works with several different techniques to achieve its compression.
35 * In the timedomain the buffer is divided into 8 pieces and quantized. If
36 * two neighboring pieces have different quantization index a smooth
37 * quantization curve is used to get a smooth overlap between the different
39 * To get to the transformdomain Cook uses a modulated lapped transform.
40 * The transform domain has 50 subbands with 20 elements each. This
41 * means only a maximum of 50*20=1000 coefficients are used out of the 1024
55 /* the different Cook versions */
56 #define MONO 0x1000001
57 #define STEREO 0x1000002
58 #define JOINT_STEREO 0x1000003
59 #define MC_COOK 0x2000000 //multichannel Cook, not supported
61 #define SUBBAND_SIZE 20
62 #define MAX_SUBPACKETS 5
70 * Random bit stream generator.
72 static inline int cook_random(COOKContext
*q
)
75 q
->random_state
* 214013 + 2531011; /* typical RNG numbers */
77 return (q
->random_state
/0x1000000)&1; /*>>31*/
79 #include "cook_fixpoint.h"
84 static void dump_int_table(int* table
, int size
, int delimiter
) {
87 for (i
=0 ; i
<size
; i
++) {
88 DEBUGF("%d, ", table
[i
]);
89 if ((i
+1)%delimiter
== 0) DEBUGF("\n[%d]: ",i
+1);
93 static void dump_short_table(short* table
, int size
, int delimiter
) {
96 for (i
=0 ; i
<size
; i
++) {
97 DEBUGF("%d, ", table
[i
]);
98 if ((i
+1)%delimiter
== 0) DEBUGF("\n[%d]: ",i
+1);
104 /*************** init functions ***************/
105 #define VLCBUFSIZE 1500
106 VLC_TYPE vlcbuf
[21][VLCBUFSIZE
][2];
108 static int init_cook_vlc_tables(COOKContext
*q
) {
112 for (i
=0 ; i
<13 ; i
++) {
113 q
->envelope_quant_index
[i
].table
= vlcbuf
[i
];
114 q
->envelope_quant_index
[i
].table_allocated
= VLCBUFSIZE
;
115 result
|= init_vlc (&q
->envelope_quant_index
[i
], 9, 24,
116 envelope_quant_index_huffbits
[i
], 1, 1,
117 envelope_quant_index_huffcodes
[i
], 2, 2, INIT_VLC_USE_NEW_STATIC
);
119 DEBUGF("sqvh VLC init\n");
120 for (i
=0 ; i
<7 ; i
++) {
121 q
->sqvh
[i
].table
= vlcbuf
[i
+13];
122 q
->sqvh
[i
].table_allocated
= VLCBUFSIZE
;
123 result
|= init_vlc (&q
->sqvh
[i
], vhvlcsize_tab
[i
], vhsize_tab
[i
],
124 cvh_huffbits
[i
], 1, 1,
125 cvh_huffcodes
[i
], 2, 2, INIT_VLC_USE_NEW_STATIC
);
128 if (q
->nb_channels
==2 && q
->joint_stereo
==1){
129 q
->ccpl
.table
= vlcbuf
[20];
130 q
->ccpl
.table_allocated
= VLCBUFSIZE
;
131 result
|= init_vlc (&q
->ccpl
, 6, (1<<q
->js_vlc_bits
)-1,
132 ccpl_huffbits
[q
->js_vlc_bits
-2], 1, 1,
133 ccpl_huffcodes
[q
->js_vlc_bits
-2], 2, 2, INIT_VLC_USE_NEW_STATIC
);
134 DEBUGF("Joint-stereo VLC used.\n");
137 DEBUGF("VLC tables initialized. Result = %d\n",result
);
140 /*************** init functions end ***********/
143 * Cook indata decoding, every 32 bits are XORed with 0x37c511f2.
144 * Why? No idea, some checksum/error detection method maybe.
146 * Out buffer size: extra bytes are needed to cope with
147 * padding/misalignment.
148 * Subpackets passed to the decoder can contain two, consecutive
149 * half-subpackets, of identical but arbitrary size.
150 * 1234 1234 1234 1234 extraA extraB
151 * Case 1: AAAA BBBB 0 0
152 * Case 2: AAAA ABBB BB-- 3 3
153 * Case 3: AAAA AABB BBBB 2 2
154 * Case 4: AAAA AAAB BBBB BB-- 1 5
156 * Nice way to waste CPU cycles.
158 * @param inbuffer pointer to byte array of indata
159 * @param out pointer to byte array of outdata
160 * @param bytes number of bytes
162 #define DECODE_BYTES_PAD1(bytes) (3 - ((bytes)+3) % 4)
163 #define DECODE_BYTES_PAD2(bytes) ((bytes) % 4 + DECODE_BYTES_PAD1(2 * (bytes)))
165 static inline int decode_bytes(const uint8_t* inbuffer
, uint8_t* out
, int bytes
){
169 uint32_t* obuf
= (uint32_t*) out
;
170 /* FIXME: 64 bit platforms would be able to do 64 bits at a time.
171 * I'm too lazy though, should be something like
172 * for(i=0 ; i<bitamount/64 ; i++)
173 * (int64_t)out[i] = 0x37c511f237c511f2^be2me_64(int64_t)in[i]);
174 * Buffer alignment needs to be checked. */
176 off
= (intptr_t)inbuffer
& 3;
177 buf
= (const uint32_t*) (inbuffer
- off
);
178 c
= be2me_32((0x37c511f2 >> (off
*8)) | (0x37c511f2 << (32-(off
*8))));
180 for (i
= 0; i
< bytes
/4; i
++)
181 obuf
[i
] = c
^ buf
[i
];
187 * Fill the gain array for the timedomain quantization.
189 * @param q pointer to the COOKContext
190 * @param gaininfo[9] array of gain indexes
193 static void decode_gain_info(GetBitContext
*gb
, int *gaininfo
)
197 while (get_bits1(gb
)) {}
198 n
= get_bits_count(gb
) - 1; //amount of elements*2 to update
202 int index
= get_bits(gb
, 3);
203 int gain
= get_bits1(gb
) ? (int)get_bits(gb
, 4) - 7 : -1;
205 while (i
<= index
) gaininfo
[i
++] = gain
;
207 while (i
<= 8) gaininfo
[i
++] = 0;
211 * Create the quant index table needed for the envelope.
213 * @param q pointer to the COOKContext
214 * @param quant_index_table pointer to the array
217 static void decode_envelope(COOKContext
*q
, int* quant_index_table
) {
220 quant_index_table
[0]= get_bits(&q
->gb
,6) - 6; //This is used later in categorize
222 for (i
=1 ; i
< q
->total_subbands
; i
++){
224 if (i
>= q
->js_subband_start
* 2) {
225 vlc_index
-=q
->js_subband_start
;
228 if(vlc_index
< 1) vlc_index
= 1;
230 if (vlc_index
>13) vlc_index
= 13; //the VLC tables >13 are identical to No. 13
232 j
= get_vlc2(&q
->gb
, q
->envelope_quant_index
[vlc_index
-1].table
,
233 q
->envelope_quant_index
[vlc_index
-1].bits
,2);
234 quant_index_table
[i
] = quant_index_table
[i
-1] + j
- 12; //differential encoding
239 * Calculate the category and category_index vector.
241 * @param q pointer to the COOKContext
242 * @param quant_index_table pointer to the array
243 * @param category pointer to the category array
244 * @param category_index pointer to the category_index array
247 static void categorize(COOKContext
*q
, int* quant_index_table
,
248 int* category
, int* category_index
){
249 int exp_idx
, bias
, tmpbias1
, tmpbias2
, bits_left
, num_bits
, index
, v
, i
, j
;
253 int tmp_categorize_array
[128*2];
254 int tmp_categorize_array1_idx
=q
->numvector_size
;
255 int tmp_categorize_array2_idx
=q
->numvector_size
;
257 bits_left
= q
->bits_per_subpacket
- get_bits_count(&q
->gb
);
259 if(bits_left
> q
->samples_per_channel
) {
260 bits_left
= q
->samples_per_channel
+
261 ((bits_left
- q
->samples_per_channel
)*5)/8;
262 //av_log(q->avctx, AV_LOG_ERROR, "bits_left = %d\n",bits_left);
265 memset(&exp_index1
,0,102*sizeof(int));
266 memset(&exp_index2
,0,102*sizeof(int));
267 memset(&tmp_categorize_array
,0,128*2*sizeof(int));
272 for (i
=32 ; i
>0 ; i
=i
/2){
275 for (j
=q
->total_subbands
; j
>0 ; j
--){
276 exp_idx
= av_clip((i
- quant_index_table
[index
] + bias
) / 2, 0, 7);
278 num_bits
+=expbits_tab
[exp_idx
];
280 if(num_bits
>= bits_left
- 32){
285 /* Calculate total number of bits. */
287 for (i
=0 ; i
<q
->total_subbands
; i
++) {
288 exp_idx
= av_clip((bias
- quant_index_table
[i
]) / 2, 0, 7);
289 num_bits
+= expbits_tab
[exp_idx
];
290 exp_index1
[i
] = exp_idx
;
291 exp_index2
[i
] = exp_idx
;
293 tmpbias1
= tmpbias2
= num_bits
;
295 for (j
= 1 ; j
< q
->numvector_size
; j
++) {
296 if (tmpbias1
+ tmpbias2
> 2*bits_left
) { /* ---> */
299 for (i
=0 ; i
<q
->total_subbands
; i
++){
300 if (exp_index1
[i
] < 7) {
301 v
= (-2*exp_index1
[i
]) - quant_index_table
[i
] + bias
;
309 tmp_categorize_array
[tmp_categorize_array1_idx
++] = index
;
310 tmpbias1
-= expbits_tab
[exp_index1
[index
]] -
311 expbits_tab
[exp_index1
[index
]+1];
316 for (i
=0 ; i
<q
->total_subbands
; i
++){
317 if(exp_index2
[i
] > 0){
318 v
= (-2*exp_index2
[i
])-quant_index_table
[i
]+bias
;
325 if(index
== -1)break;
326 tmp_categorize_array
[--tmp_categorize_array2_idx
] = index
;
327 tmpbias2
-= expbits_tab
[exp_index2
[index
]] -
328 expbits_tab
[exp_index2
[index
]-1];
332 memcpy(category
, exp_index2
, sizeof(int) * q
->total_subbands
);
333 memcpy(category_index
, tmp_categorize_array
+tmp_categorize_array2_idx
, sizeof(int) * (q
->numvector_size
-1) );
338 * Expand the category vector.
340 * @param q pointer to the COOKContext
341 * @param category pointer to the category array
342 * @param category_index pointer to the category_index array
345 static inline void expand_category(COOKContext
*q
, int* category
,
346 int* category_index
){
348 for(i
=0 ; i
<q
->num_vectors
; i
++){
349 ++category
[category_index
[i
]];
354 * Unpack the subband_coef_index and subband_coef_sign vectors.
356 * @param q pointer to the COOKContext
357 * @param category pointer to the category array
358 * @param subband_coef_index array of indexes to quant_centroid_tab
359 * @param subband_coef_sign signs of coefficients
362 static int unpack_SQVH(COOKContext
*q
, int category
, int* subband_coef_index
,
363 int* subband_coef_sign
) {
365 int vlc
, vd
,tmp
, result
;
367 vd
= vd_tab
[category
];
369 for(i
=0 ; i
<vpr_tab
[category
] ; i
++)
371 vlc
= get_vlc2(&q
->gb
, q
->sqvh
[category
].table
, q
->sqvh
[category
].bits
, 3);
372 if (q
->bits_per_subpacket
< get_bits_count(&q
->gb
))
376 memset(subband_coef_index
, 0, sizeof(int)*vd
);
377 memset(subband_coef_sign
, 0, sizeof(int)*vd
);
378 subband_coef_index
+=vd
;
379 subband_coef_sign
+=vd
;
383 for(j
=vd
-1 ; j
>=0 ; j
--){
384 tmp
= (vlc
* invradix_tab
[category
])/0x100000;
385 subband_coef_index
[j
] = vlc
- tmp
* (kmax_tab
[category
]+1);
389 for(j
=0 ; j
<vd
; j
++)
391 if (*subband_coef_index
++) {
392 if(get_bits_count(&q
->gb
) < q
->bits_per_subpacket
) {
393 *subband_coef_sign
++ = get_bits1(&q
->gb
);
396 *subband_coef_sign
++=0;
399 *subband_coef_sign
++=0;
409 * Fill the mlt_buffer with mlt coefficients.
411 * @param q pointer to the COOKContext
412 * @param category pointer to the category array
413 * @param quant_index_table pointer to the array
414 * @param mlt_buffer pointer to mlt coefficients
418 static void decode_vectors(COOKContext
* q
, int* category
,
419 int *quant_index_table
, REAL_T
* mlt_buffer
){
420 /* A zero in this table means that the subband coefficient is
421 random noise coded. */
422 int subband_coef_index
[SUBBAND_SIZE
];
423 /* A zero in this table means that the subband coefficient is a
424 positive multiplicator. */
425 int subband_coef_sign
[SUBBAND_SIZE
];
429 for(band
=0 ; band
<q
->total_subbands
; band
++){
430 index
= category
[band
];
431 if(category
[band
] < 7){
432 if(unpack_SQVH(q
, category
[band
], subband_coef_index
, subband_coef_sign
)){
434 for(j
=0 ; j
<q
->total_subbands
; j
++) category
[band
+j
]=7;
438 memset(subband_coef_index
, 0, sizeof(subband_coef_index
));
439 memset(subband_coef_sign
, 0, sizeof(subband_coef_sign
));
441 q
->scalar_dequant(q
, index
, quant_index_table
[band
],
442 subband_coef_index
, subband_coef_sign
,
443 &mlt_buffer
[band
* SUBBAND_SIZE
]);
446 if(q
->total_subbands
*SUBBAND_SIZE
>= q
->samples_per_channel
){
448 } /* FIXME: should this be removed, or moved into loop above? */
453 * function for decoding mono data
455 * @param q pointer to the COOKContext
456 * @param mlt_buffer pointer to mlt coefficients
459 static void mono_decode(COOKContext
*q
, REAL_T
* mlt_buffer
) {
461 int category_index
[128];
462 int quant_index_table
[102];
465 memset(&category
, 0, 128*sizeof(int));
466 memset(&category_index
, 0, 128*sizeof(int));
468 decode_envelope(q
, quant_index_table
);
469 q
->num_vectors
= get_bits(&q
->gb
,q
->log2_numvector_size
);
470 categorize(q
, quant_index_table
, category
, category_index
);
471 expand_category(q
, category
, category_index
);
472 decode_vectors(q
, category
, quant_index_table
, mlt_buffer
);
476 * function for getting the jointstereo coupling information
478 * @param q pointer to the COOKContext
479 * @param decouple_tab decoupling array
483 static void decouple_info(COOKContext
*q
, int* decouple_tab
){
486 if(get_bits1(&q
->gb
)) {
487 if(cplband
[q
->js_subband_start
] > cplband
[q
->subbands
-1]) return;
489 length
= cplband
[q
->subbands
-1] - cplband
[q
->js_subband_start
] + 1;
490 for (i
=0 ; i
<length
; i
++) {
491 decouple_tab
[cplband
[q
->js_subband_start
] + i
] = get_vlc2(&q
->gb
, q
->ccpl
.table
, q
->ccpl
.bits
, 2);
496 if(cplband
[q
->js_subband_start
] > cplband
[q
->subbands
-1]) return;
498 length
= cplband
[q
->subbands
-1] - cplband
[q
->js_subband_start
] + 1;
499 for (i
=0 ; i
<length
; i
++) {
500 decouple_tab
[cplband
[q
->js_subband_start
] + i
] = get_bits(&q
->gb
, q
->js_vlc_bits
);
506 * function for decoding joint stereo data
508 * @param q pointer to the COOKContext
509 * @param mlt_buffer1 pointer to left channel mlt coefficients
510 * @param mlt_buffer2 pointer to right channel mlt coefficients
513 static void joint_decode(COOKContext
*q
, REAL_T
* mlt_buffer1
,
514 REAL_T
* mlt_buffer2
) {
516 int decouple_tab
[SUBBAND_SIZE
];
517 REAL_T
*decode_buffer
= q
->decode_buffer_0
;
520 memset(decouple_tab
, 0, sizeof(decouple_tab
));
521 memset(decode_buffer
, 0, sizeof(decode_buffer
));
523 /* Make sure the buffers are zeroed out. */
524 memset(mlt_buffer1
,0, 1024*sizeof(REAL_T
));
525 memset(mlt_buffer2
,0, 1024*sizeof(REAL_T
));
526 decouple_info(q
, decouple_tab
);
527 mono_decode(q
, decode_buffer
);
529 /* The two channels are stored interleaved in decode_buffer. */
530 REAL_T
* mlt_buffer1_end
= mlt_buffer1
+ (q
->js_subband_start
*SUBBAND_SIZE
);
531 while(mlt_buffer1
< mlt_buffer1_end
)
533 memcpy(mlt_buffer1
,decode_buffer
,sizeof(REAL_T
)*SUBBAND_SIZE
);
534 memcpy(mlt_buffer2
,decode_buffer
+20,sizeof(REAL_T
)*SUBBAND_SIZE
);
540 /* When we reach js_subband_start (the higher frequencies)
541 the coefficients are stored in a coupling scheme. */
542 idx
= (1 << q
->js_vlc_bits
) - 1;
543 for (i
=q
->js_subband_start
; i
<q
->subbands
; i
++) {
544 int i1
= decouple_tab
[cplband
[i
]];
545 int i2
= idx
- i1
- 1;
546 mlt_buffer1_end
= mlt_buffer1
+ SUBBAND_SIZE
;
547 while(mlt_buffer1
< mlt_buffer1_end
)
549 *mlt_buffer1
++ = cplscale_math(*decode_buffer
, q
->js_vlc_bits
, i1
);
550 *mlt_buffer2
++ = cplscale_math(*decode_buffer
++, q
->js_vlc_bits
, i2
);
552 mlt_buffer1
+= (20-SUBBAND_SIZE
);
553 mlt_buffer2
+= (20-SUBBAND_SIZE
);
554 decode_buffer
+= (20-SUBBAND_SIZE
);
559 * First part of subpacket decoding:
560 * decode raw stream bytes and read gain info.
562 * @param q pointer to the COOKContext
563 * @param inbuffer pointer to raw stream data
564 * @param gain_ptr array of current/prev gain pointers
567 #define FFSWAP(type,a,b) do{type SWAP_tmp= b; b= a; a= SWAP_tmp;}while(0)
570 decode_bytes_and_gain(COOKContext
*q
, const uint8_t *inbuffer
,
571 cook_gains
*gains_ptr
)
575 offset
= decode_bytes(inbuffer
, q
->decoded_bytes_buffer
,
576 q
->bits_per_subpacket
/8);
577 init_get_bits(&q
->gb
, q
->decoded_bytes_buffer
+ offset
,
578 q
->bits_per_subpacket
);
579 decode_gain_info(&q
->gb
, gains_ptr
->now
);
581 /* Swap current and previous gains */
582 FFSWAP(int *, gains_ptr
->now
, gains_ptr
->previous
);
586 * Final part of subpacket decoding:
587 * Apply modulated lapped transform, gain compensation,
588 * clip and convert to integer.
590 * @param q pointer to the COOKContext
591 * @param decode_buffer pointer to the mlt coefficients
592 * @param gain_ptr array of current/prev gain pointers
593 * @param previous_buffer pointer to the previous buffer to be used for overlapping
594 * @param out pointer to the output buffer
595 * @param chan 0: left or single channel, 1: right channel
599 mlt_compensate_output(COOKContext
*q
, REAL_T
*decode_buffer
,
600 cook_gains
*gains
, REAL_T
*previous_buffer
,
601 int32_t *out
, int chan
)
603 REAL_T
*buffer
= q
->mono_mdct_output
;
605 imlt_math(q
, decode_buffer
);
607 /* Overlap with the previous block. */
608 overlap_math(q
, gains
->previous
[0], previous_buffer
);
610 /* Apply gain profile */
611 for (i
= 0; i
< 8; i
++) {
612 if (gains
->now
[i
] || gains
->now
[i
+ 1])
613 interpolate_math(q
, &buffer
[q
->samples_per_channel
/8 * i
],
614 gains
->now
[i
], gains
->now
[i
+ 1]);
617 /* Save away the current to be previous block. */
618 memcpy(previous_buffer
, buffer
+q
->samples_per_channel
,
619 sizeof(REAL_T
)*q
->samples_per_channel
);
621 /* Copy output to non-interleaved sample buffer */
622 memcpy(out
+ (chan
* q
->samples_per_channel
), buffer
,
623 sizeof(REAL_T
)*q
->samples_per_channel
);
628 * Cook subpacket decoding. This function returns one decoded subpacket,
629 * usually 1024 samples per channel.
631 * @param q pointer to the COOKContext
632 * @param inbuffer pointer to the inbuffer
633 * @param sub_packet_size subpacket size
634 * @param outbuffer pointer to the outbuffer
638 static int decode_subpacket(COOKContext
*q
, const uint8_t *inbuffer
,
639 int sub_packet_size
, int32_t *outbuffer
) {
641 // for (i=0 ; i<sub_packet_size ; i++) {
642 // DEBUGF("%02x", inbuffer[i]);
646 decode_bytes_and_gain(q
, inbuffer
, &q
->gains1
);
648 if (q
->joint_stereo
) {
649 joint_decode(q
, q
->decode_buffer_1
, q
->decode_buffer_2
);
651 mono_decode(q
, q
->decode_buffer_1
);
653 if (q
->nb_channels
== 2) {
654 decode_bytes_and_gain(q
, inbuffer
+ sub_packet_size
/2, &q
->gains2
);
655 mono_decode(q
, q
->decode_buffer_2
);
659 mlt_compensate_output(q
, q
->decode_buffer_1
, &q
->gains1
,
660 q
->mono_previous_buffer1
, outbuffer
, 0);
662 if (q
->nb_channels
== 2) {
663 if (q
->joint_stereo
) {
664 mlt_compensate_output(q
, q
->decode_buffer_2
, &q
->gains1
,
665 q
->mono_previous_buffer2
, outbuffer
, 1);
667 mlt_compensate_output(q
, q
->decode_buffer_2
, &q
->gains2
,
668 q
->mono_previous_buffer2
, outbuffer
, 1);
671 return q
->samples_per_frame
* sizeof(int32_t);
676 * Cook frame decoding
678 * @param rmctx pointer to the RMContext
681 int cook_decode_frame(RMContext
*rmctx
,COOKContext
*q
,
682 int32_t *outbuffer
, int *data_size
,
683 const uint8_t *inbuffer
, int buf_size
) {
684 //COOKContext *q = avctx->priv_data;
687 if (buf_size
< rmctx
->block_align
)
690 *data_size
= decode_subpacket(q
, inbuffer
, rmctx
->block_align
, outbuffer
);
692 /* Discard the first two frames: no valid audio. */
693 if (rmctx
->frame_number
< 2) *data_size
= 0;
695 return rmctx
->block_align
;
699 static void dump_cook_context(COOKContext
*q
)
702 #define PRINT(a,b) DEBUGF(" %s = %d\n", a, b);
703 DEBUGF("COOKextradata\n");
704 DEBUGF("cookversion=%x\n",q
->cookversion
);
705 if (q
->cookversion
> STEREO
) {
706 PRINT("js_subband_start",q
->js_subband_start
);
707 PRINT("js_vlc_bits",q
->js_vlc_bits
);
709 PRINT("nb_channels",q
->nb_channels
);
710 PRINT("bit_rate",q
->bit_rate
);
711 PRINT("sample_rate",q
->sample_rate
);
712 PRINT("samples_per_channel",q
->samples_per_channel
);
713 PRINT("samples_per_frame",q
->samples_per_frame
);
714 PRINT("subbands",q
->subbands
);
715 PRINT("random_state",q
->random_state
);
716 PRINT("js_subband_start",q
->js_subband_start
);
717 PRINT("log2_numvector_size",q
->log2_numvector_size
);
718 PRINT("numvector_size",q
->numvector_size
);
719 PRINT("total_subbands",q
->total_subbands
);
724 * Cook initialization
727 int cook_decode_init(RMContext
*rmctx
, COOKContext
*q
)
731 q
->cookversion
= rm_get_uint32be(rmctx
->codec_extradata
);
732 q
->samples_per_frame
= rm_get_uint16be(&rmctx
->codec_extradata
[4]);
733 q
->subbands
= rm_get_uint16be(&rmctx
->codec_extradata
[6]);
734 q
->extradata_size
= rmctx
->extradata_size
;
735 if (q
->extradata_size
>= 16){
736 q
->js_subband_start
= rm_get_uint16be(&rmctx
->codec_extradata
[12]);
737 q
->js_vlc_bits
= rm_get_uint16be(&rmctx
->codec_extradata
[14]);
740 /* Take data from the RMContext (RM container). */
741 q
->sample_rate
= rmctx
->sample_rate
;
742 q
->nb_channels
= rmctx
->nb_channels
;
743 q
->bit_rate
= rmctx
->bit_rate
;
745 /* Initialize RNG. */
748 /* Initialize extradata related variables. */
749 q
->samples_per_channel
= q
->samples_per_frame
>> (q
->nb_channels
-1);
750 q
->bits_per_subpacket
= rmctx
->block_align
* 8;
752 /* Initialize default data states. */
753 q
->log2_numvector_size
= 5;
754 q
->total_subbands
= q
->subbands
;
756 /* Initialize version-dependent variables */
757 DEBUGF("q->cookversion=%x\n",q
->cookversion
);
759 switch (q
->cookversion
) {
761 if (q
->nb_channels
!= 1) {
762 DEBUGF("Container channels != 1, report sample!\n");
768 if (q
->nb_channels
!= 1) {
769 q
->bits_per_subpacket
= q
->bits_per_subpacket
/2;
774 if (q
->nb_channels
!= 2) {
775 DEBUGF("Container channels != 2, report sample!\n");
778 DEBUGF("JOINT_STEREO\n");
779 if (q
->extradata_size
>= 16){
780 q
->total_subbands
= q
->subbands
+ q
->js_subband_start
;
783 if (q
->samples_per_channel
> 256) {
784 q
->log2_numvector_size
= 6;
786 if (q
->samples_per_channel
> 512) {
787 q
->log2_numvector_size
= 7;
791 DEBUGF("MC_COOK not supported!\n");
795 DEBUGF("Unknown Cook version, report sample!\n");
800 /* Initialize variable relations */
801 q
->numvector_size
= (1 << q
->log2_numvector_size
);
802 q
->mdct_nbits
= av_log2(q
->samples_per_channel
)+1;
804 /* Generate tables */
805 if (init_cook_vlc_tables(q
) != 0)
809 if(rmctx
->block_align
>= UINT16_MAX
/2)
812 q
->gains1
.now
= q
->gain_1
;
813 q
->gains1
.previous
= q
->gain_2
;
814 q
->gains2
.now
= q
->gain_3
;
815 q
->gains2
.previous
= q
->gain_4
;
818 /* Initialize COOK signal arithmetic handling */
820 q
->scalar_dequant
= scalar_dequant_math
;
821 q
->interpolate
= interpolate_math
;
824 /* Try to catch some obviously faulty streams, othervise it might be exploitable */
825 if (q
->total_subbands
> 53) {
826 DEBUGF("total_subbands > 53, report sample!\n");
829 if (q
->subbands
> 50) {
830 DEBUGF("subbands > 50, report sample!\n");
833 if ((q
->samples_per_channel
== 256) || (q
->samples_per_channel
== 512) || (q
->samples_per_channel
== 1024)) {
835 DEBUGF("unknown amount of samples_per_channel = %d, report sample!\n",q
->samples_per_channel
);
838 if ((q
->js_vlc_bits
> 6) || (q
->js_vlc_bits
< 0)) {
839 DEBUGF("q->js_vlc_bits = %d, only >= 0 and <= 6 allowed!\n",q
->js_vlc_bits
);
845 dump_cook_context(q
);