FS#10446: Bug defense in dsp.c, minor tweaks and comments
[kugel-rb.git] / apps / dsp.c
blob61fc027e4c3630118de78ea00bf9f570dc71ae43
1 /***************************************************************************
2 * __________ __ ___.
3 * Open \______ \ ____ ____ | | _\_ |__ _______ ___
4 * Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
5 * Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
6 * Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
7 * \/ \/ \/ \/ \/
8 * $Id$
10 * Copyright (C) 2005 Miika Pekkarinen
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation; either version 2
15 * of the License, or (at your option) any later version.
17 * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
18 * KIND, either express or implied.
20 ****************************************************************************/
21 #include "config.h"
22 #include <stdbool.h>
23 #include <inttypes.h>
24 #include <string.h>
25 #include <sound.h>
26 #include "dsp.h"
27 #include "eq.h"
28 #include "kernel.h"
29 #include "playback.h"
30 #include "system.h"
31 #include "settings.h"
32 #include "replaygain.h"
33 #include "misc.h"
34 #include "tdspeed.h"
35 #include "buffer.h"
36 #include "fixedpoint.h"
37 #include "fracmul.h"
39 /* 16-bit samples are scaled based on these constants. The shift should be
40 * no more than 15.
42 #define WORD_SHIFT 12
43 #define WORD_FRACBITS 27
45 #define NATIVE_DEPTH 16
46 /* If the small buffer size changes, check the assembly code! */
47 #define SMALL_SAMPLE_BUF_COUNT 256
48 #define DEFAULT_GAIN 0x01000000
50 /* enums to index conversion properly with stereo mode and other settings */
51 enum
53 SAMPLE_INPUT_LE_NATIVE_I_STEREO = STEREO_INTERLEAVED,
54 SAMPLE_INPUT_LE_NATIVE_NI_STEREO = STEREO_NONINTERLEAVED,
55 SAMPLE_INPUT_LE_NATIVE_MONO = STEREO_MONO,
56 SAMPLE_INPUT_GT_NATIVE_I_STEREO = STEREO_INTERLEAVED + STEREO_NUM_MODES,
57 SAMPLE_INPUT_GT_NATIVE_NI_STEREO = STEREO_NONINTERLEAVED + STEREO_NUM_MODES,
58 SAMPLE_INPUT_GT_NATIVE_MONO = STEREO_MONO + STEREO_NUM_MODES,
59 SAMPLE_INPUT_GT_NATIVE_1ST_INDEX = STEREO_NUM_MODES
62 enum
64 SAMPLE_OUTPUT_MONO = 0,
65 SAMPLE_OUTPUT_STEREO,
66 SAMPLE_OUTPUT_DITHERED_MONO,
67 SAMPLE_OUTPUT_DITHERED_STEREO
70 /****************************************************************************
71 * NOTE: Any assembly routines that use these structures must be updated
72 * if current data members are moved or changed.
74 struct resample_data
76 uint32_t delta; /* 00h */
77 uint32_t phase; /* 04h */
78 int32_t last_sample[2]; /* 08h */
79 /* 10h */
82 /* This is for passing needed data to assembly dsp routines. If another
83 * dsp parameter needs to be passed, add to the end of the structure
84 * and remove from dsp_config.
85 * If another function type becomes assembly optimized and requires dsp
86 * config info, add a pointer paramter of type "struct dsp_data *".
87 * If removing something from other than the end, reserve the spot or
88 * else update every implementation for every target.
89 * Be sure to add the offset of the new member for easy viewing as well. :)
90 * It is the first member of dsp_config and all members can be accessesed
91 * through the main aggregate but this is intended to make a safe haven
92 * for these items whereas the c part can be rearranged at will. dsp_data
93 * could even moved within dsp_config without disurbing the order.
95 struct dsp_data
97 int output_scale; /* 00h */
98 int num_channels; /* 04h */
99 struct resample_data resample_data; /* 08h */
100 int32_t clip_min; /* 18h */
101 int32_t clip_max; /* 1ch */
102 int32_t gain; /* 20h - Note that this is in S8.23 format. */
103 /* 24h */
106 /* No asm...yet */
107 struct dither_data
109 long error[3]; /* 00h */
110 long random; /* 0ch */
111 /* 10h */
114 struct crossfeed_data
116 int32_t gain; /* 00h - Direct path gain */
117 int32_t coefs[3]; /* 04h - Coefficients for the shelving filter */
118 int32_t history[4]; /* 10h - Format is x[n - 1], y[n - 1] for both channels */
119 int32_t delay[13][2]; /* 20h */
120 int32_t *index; /* 88h - Current pointer into the delay line */
121 /* 8ch */
124 /* Current setup is one lowshelf filters three peaking filters and one
125 * highshelf filter. Varying the number of shelving filters make no sense,
126 * but adding peaking filters is possible.
128 struct eq_state
130 char enabled[5]; /* 00h - Flags for active filters */
131 struct eqfilter filters[5]; /* 08h - packing is 4? */
132 /* 10ch */
135 /* Include header with defines which functions are implemented in assembly
136 code for the target */
137 #include <dsp_asm.h>
139 /* Typedefs keep things much neater in this case */
140 typedef void (*sample_input_fn_type)(int count, const char *src[],
141 int32_t *dst[]);
142 typedef int (*resample_fn_type)(int count, struct dsp_data *data,
143 const int32_t *src[], int32_t *dst[]);
144 typedef void (*sample_output_fn_type)(int count, struct dsp_data *data,
145 const int32_t *src[], int16_t *dst);
147 /* Single-DSP channel processing in place */
148 typedef void (*channels_process_fn_type)(int count, int32_t *buf[]);
149 /* DSP local channel processing in place */
150 typedef void (*channels_process_dsp_fn_type)(int count, struct dsp_data *data,
151 int32_t *buf[]);
155 ***************************************************************************/
157 struct dsp_config
159 struct dsp_data data; /* Config members for use in asm routines */
160 long codec_frequency; /* Sample rate of data coming from the codec */
161 long frequency; /* Effective sample rate after pitch shift (if any) */
162 int sample_depth;
163 int sample_bytes;
164 int stereo_mode;
165 int32_t tdspeed_percent; /* Speed% * PITCH_SPEED_PRECISION */
166 bool tdspeed_active; /* Timestretch is in use */
167 int frac_bits;
168 #ifdef HAVE_SW_TONE_CONTROLS
169 /* Filter struct for software bass/treble controls */
170 struct eqfilter tone_filter;
171 #endif
172 /* Functions that change depending upon settings - NULL if stage is
173 disabled */
174 sample_input_fn_type input_samples;
175 resample_fn_type resample;
176 sample_output_fn_type output_samples;
177 /* These will be NULL for the voice codec and is more economical that
178 way */
179 channels_process_dsp_fn_type apply_gain;
180 channels_process_fn_type apply_crossfeed;
181 channels_process_fn_type eq_process;
182 channels_process_fn_type channels_process;
185 /* General DSP config */
186 static struct dsp_config dsp_conf[2] IBSS_ATTR; /* 0=A, 1=V */
187 /* Dithering */
188 static struct dither_data dither_data[2] IBSS_ATTR; /* 0=left, 1=right */
189 static long dither_mask IBSS_ATTR;
190 static long dither_bias IBSS_ATTR;
191 /* Crossfeed */
192 struct crossfeed_data crossfeed_data IDATA_ATTR = /* A */
194 .index = (int32_t *)crossfeed_data.delay
197 /* Equalizer */
198 static struct eq_state eq_data; /* A */
200 /* Software tone controls */
201 #ifdef HAVE_SW_TONE_CONTROLS
202 static int prescale; /* A/V */
203 static int bass; /* A/V */
204 static int treble; /* A/V */
205 #endif
207 /* Settings applicable to audio codec only */
208 static int32_t pitch_ratio = PITCH_SPEED_100;
209 static int channels_mode;
210 long dsp_sw_gain;
211 long dsp_sw_cross;
212 static bool dither_enabled;
213 static long eq_precut;
214 static long track_gain;
215 static bool new_gain;
216 static long album_gain;
217 static long track_peak;
218 static long album_peak;
219 static long replaygain;
220 static bool crossfeed_enabled;
222 #define AUDIO_DSP (dsp_conf[CODEC_IDX_AUDIO])
223 #define VOICE_DSP (dsp_conf[CODEC_IDX_VOICE])
225 /* The internal format is 32-bit samples, non-interleaved, stereo. This
226 * format is similar to the raw output from several codecs, so the amount
227 * of copying needed is minimized for that case.
230 #define RESAMPLE_RATIO 4 /* Enough for 11,025 Hz -> 44,100 Hz */
232 static int32_t small_sample_buf[SMALL_SAMPLE_BUF_COUNT] IBSS_ATTR;
233 static int32_t small_resample_buf[SMALL_SAMPLE_BUF_COUNT * RESAMPLE_RATIO] IBSS_ATTR;
235 static int32_t *big_sample_buf = NULL;
236 static int32_t *big_resample_buf = NULL;
237 static int big_sample_buf_count = -1; /* -1=unknown, 0=not available */
239 static int sample_buf_count;
240 static int32_t *sample_buf;
241 static int32_t *resample_buf;
243 #define SAMPLE_BUF_LEFT_CHANNEL 0
244 #define SAMPLE_BUF_RIGHT_CHANNEL (sample_buf_count/2)
245 #define RESAMPLE_BUF_LEFT_CHANNEL 0
246 #define RESAMPLE_BUF_RIGHT_CHANNEL (sample_buf_count/2 * RESAMPLE_RATIO)
249 /* Clip sample to signed 16 bit range */
250 static inline int32_t clip_sample_16(int32_t sample)
252 if ((int16_t)sample != sample)
253 sample = 0x7fff ^ (sample >> 31);
254 return sample;
257 int32_t sound_get_pitch(void)
259 return pitch_ratio;
262 void sound_set_pitch(int32_t percent)
264 pitch_ratio = percent;
265 dsp_configure(&AUDIO_DSP, DSP_SWITCH_FREQUENCY,
266 AUDIO_DSP.codec_frequency);
269 static void tdspeed_setup(struct dsp_config *dspc)
271 /* Assume timestretch will not be used */
272 dspc->tdspeed_active = false;
273 sample_buf = small_sample_buf;
274 resample_buf = small_resample_buf;
275 sample_buf_count = SMALL_SAMPLE_BUF_COUNT;
277 if(!dsp_timestretch_available())
278 return; /* Timestretch not enabled or buffer not allocated */
279 if (dspc->tdspeed_percent == 0)
280 dspc->tdspeed_percent = PITCH_SPEED_100;
281 if (!tdspeed_config(
282 dspc->codec_frequency == 0 ? NATIVE_FREQUENCY : dspc->codec_frequency,
283 dspc->stereo_mode != STEREO_MONO,
284 dspc->tdspeed_percent))
285 return; /* Timestretch not possible or needed with these parameters */
287 /* Timestretch is to be used */
288 dspc->tdspeed_active = true;
289 sample_buf = big_sample_buf;
290 sample_buf_count = big_sample_buf_count;
291 resample_buf = big_resample_buf;
294 void dsp_timestretch_enable(bool enabled)
296 /* Hook to set up timestretch buffer on first call to settings_apply() */
297 if (big_sample_buf_count < 0) /* Only do something on first call */
299 if (enabled)
301 /* Set up timestretch buffers */
302 big_sample_buf_count = SMALL_SAMPLE_BUF_COUNT * RESAMPLE_RATIO;
303 big_sample_buf = small_resample_buf;
304 big_resample_buf = (int32_t *) buffer_alloc(big_sample_buf_count * RESAMPLE_RATIO * sizeof(int32_t));
306 else
308 /* Not enabled at startup, "big" buffers will never be available */
309 big_sample_buf_count = 0;
311 tdspeed_setup(&AUDIO_DSP);
315 void dsp_set_timestretch(int32_t percent)
317 AUDIO_DSP.tdspeed_percent = percent;
318 tdspeed_setup(&AUDIO_DSP);
321 int32_t dsp_get_timestretch()
323 return AUDIO_DSP.tdspeed_percent;
326 bool dsp_timestretch_available()
328 return (global_settings.timestretch_enabled && big_sample_buf_count > 0);
331 /* Convert count samples to the internal format, if needed. Updates src
332 * to point past the samples "consumed" and dst is set to point to the
333 * samples to consume. Note that for mono, dst[0] equals dst[1], as there
334 * is no point in processing the same data twice.
337 /* convert count 16-bit mono to 32-bit mono */
338 static void sample_input_lte_native_mono(
339 int count, const char *src[], int32_t *dst[])
341 const int16_t *s = (int16_t *) src[0];
342 const int16_t * const send = s + count;
343 int32_t *d = dst[0] = dst[1] = &sample_buf[SAMPLE_BUF_LEFT_CHANNEL];
344 int scale = WORD_SHIFT;
346 while (s < send)
348 *d++ = *s++ << scale;
351 src[0] = (char *)s;
354 /* convert count 16-bit interleaved stereo to 32-bit noninterleaved */
355 static void sample_input_lte_native_i_stereo(
356 int count, const char *src[], int32_t *dst[])
358 const int32_t *s = (int32_t *) src[0];
359 const int32_t * const send = s + count;
360 int32_t *dl = dst[0] = &sample_buf[SAMPLE_BUF_LEFT_CHANNEL];
361 int32_t *dr = dst[1] = &sample_buf[SAMPLE_BUF_RIGHT_CHANNEL];
362 int scale = WORD_SHIFT;
364 while (s < send)
366 int32_t slr = *s++;
367 #ifdef ROCKBOX_LITTLE_ENDIAN
368 *dl++ = (slr >> 16) << scale;
369 *dr++ = (int32_t)(int16_t)slr << scale;
370 #else /* ROCKBOX_BIG_ENDIAN */
371 *dl++ = (int32_t)(int16_t)slr << scale;
372 *dr++ = (slr >> 16) << scale;
373 #endif
376 src[0] = (char *)s;
379 /* convert count 16-bit noninterleaved stereo to 32-bit noninterleaved */
380 static void sample_input_lte_native_ni_stereo(
381 int count, const char *src[], int32_t *dst[])
383 const int16_t *sl = (int16_t *) src[0];
384 const int16_t *sr = (int16_t *) src[1];
385 const int16_t * const slend = sl + count;
386 int32_t *dl = dst[0] = &sample_buf[SAMPLE_BUF_LEFT_CHANNEL];
387 int32_t *dr = dst[1] = &sample_buf[SAMPLE_BUF_RIGHT_CHANNEL];
388 int scale = WORD_SHIFT;
390 while (sl < slend)
392 *dl++ = *sl++ << scale;
393 *dr++ = *sr++ << scale;
396 src[0] = (char *)sl;
397 src[1] = (char *)sr;
400 /* convert count 32-bit mono to 32-bit mono */
401 static void sample_input_gt_native_mono(
402 int count, const char *src[], int32_t *dst[])
404 dst[0] = dst[1] = (int32_t *)src[0];
405 src[0] = (char *)(dst[0] + count);
408 /* convert count 32-bit interleaved stereo to 32-bit noninterleaved stereo */
409 static void sample_input_gt_native_i_stereo(
410 int count, const char *src[], int32_t *dst[])
412 const int32_t *s = (int32_t *)src[0];
413 const int32_t * const send = s + 2*count;
414 int32_t *dl = dst[0] = &sample_buf[SAMPLE_BUF_LEFT_CHANNEL];
415 int32_t *dr = dst[1] = &sample_buf[SAMPLE_BUF_RIGHT_CHANNEL];
417 while (s < send)
419 *dl++ = *s++;
420 *dr++ = *s++;
423 src[0] = (char *)send;
426 /* convert 32 bit-noninterleaved stereo to 32-bit noninterleaved stereo */
427 static void sample_input_gt_native_ni_stereo(
428 int count, const char *src[], int32_t *dst[])
430 dst[0] = (int32_t *)src[0];
431 dst[1] = (int32_t *)src[1];
432 src[0] = (char *)(dst[0] + count);
433 src[1] = (char *)(dst[1] + count);
437 * sample_input_new_format()
439 * set the to-native sample conversion function based on dsp sample parameters
441 * !DSPPARAMSYNC
442 * needs syncing with changes to the following dsp parameters:
443 * * dsp->stereo_mode (A/V)
444 * * dsp->sample_depth (A/V)
446 static void sample_input_new_format(struct dsp_config *dsp)
448 static const sample_input_fn_type sample_input_functions[] =
450 [SAMPLE_INPUT_LE_NATIVE_I_STEREO] = sample_input_lte_native_i_stereo,
451 [SAMPLE_INPUT_LE_NATIVE_NI_STEREO] = sample_input_lte_native_ni_stereo,
452 [SAMPLE_INPUT_LE_NATIVE_MONO] = sample_input_lte_native_mono,
453 [SAMPLE_INPUT_GT_NATIVE_I_STEREO] = sample_input_gt_native_i_stereo,
454 [SAMPLE_INPUT_GT_NATIVE_NI_STEREO] = sample_input_gt_native_ni_stereo,
455 [SAMPLE_INPUT_GT_NATIVE_MONO] = sample_input_gt_native_mono,
458 int convert = dsp->stereo_mode;
460 if (dsp->sample_depth > NATIVE_DEPTH)
461 convert += SAMPLE_INPUT_GT_NATIVE_1ST_INDEX;
463 dsp->input_samples = sample_input_functions[convert];
467 #ifndef DSP_HAVE_ASM_SAMPLE_OUTPUT_MONO
468 /* write mono internal format to output format */
469 static void sample_output_mono(int count, struct dsp_data *data,
470 const int32_t *src[], int16_t *dst)
472 const int32_t *s0 = src[0];
473 const int scale = data->output_scale;
474 const int dc_bias = 1 << (scale - 1);
476 while (count-- > 0)
478 int32_t lr = clip_sample_16((*s0++ + dc_bias) >> scale);
479 *dst++ = lr;
480 *dst++ = lr;
483 #endif /* DSP_HAVE_ASM_SAMPLE_OUTPUT_MONO */
485 /* write stereo internal format to output format */
486 #ifndef DSP_HAVE_ASM_SAMPLE_OUTPUT_STEREO
487 static void sample_output_stereo(int count, struct dsp_data *data,
488 const int32_t *src[], int16_t *dst)
490 const int32_t *s0 = src[0];
491 const int32_t *s1 = src[1];
492 const int scale = data->output_scale;
493 const int dc_bias = 1 << (scale - 1);
495 while (count-- > 0)
497 *dst++ = clip_sample_16((*s0++ + dc_bias) >> scale);
498 *dst++ = clip_sample_16((*s1++ + dc_bias) >> scale);
501 #endif /* DSP_HAVE_ASM_SAMPLE_OUTPUT_STEREO */
504 * The "dither" code to convert the 24-bit samples produced by libmad was
505 * taken from the coolplayer project - coolplayer.sourceforge.net
507 * This function handles mono and stereo outputs.
509 static void sample_output_dithered(int count, struct dsp_data *data,
510 const int32_t *src[], int16_t *dst)
512 const int32_t mask = dither_mask;
513 const int32_t bias = dither_bias;
514 const int scale = data->output_scale;
515 const int32_t min = data->clip_min;
516 const int32_t max = data->clip_max;
517 const int32_t range = max - min;
518 int ch;
519 int16_t *d;
521 for (ch = 0; ch < data->num_channels; ch++)
523 struct dither_data * const dither = &dither_data[ch];
524 const int32_t *s = src[ch];
525 int i;
527 for (i = 0, d = &dst[ch]; i < count; i++, s++, d += 2)
529 int32_t output, sample;
530 int32_t random;
532 /* Noise shape and bias (for correct rounding later) */
533 sample = *s;
534 sample += dither->error[0] - dither->error[1] + dither->error[2];
535 dither->error[2] = dither->error[1];
536 dither->error[1] = dither->error[0]/2;
538 output = sample + bias;
540 /* Dither, highpass triangle PDF */
541 random = dither->random*0x0019660dL + 0x3c6ef35fL;
542 output += (random & mask) - (dither->random & mask);
543 dither->random = random;
545 /* Round sample to output range */
546 output &= ~mask;
548 /* Error feedback */
549 dither->error[0] = sample - output;
551 /* Clip */
552 if ((uint32_t)(output - min) > (uint32_t)range)
554 int32_t c = min;
555 if (output > min)
556 c += range;
557 output = c;
560 /* Quantize and store */
561 *d = output >> scale;
565 if (data->num_channels == 2)
566 return;
568 /* Have to duplicate left samples into the right channel since
569 pcm buffer and hardware is interleaved stereo */
570 d = &dst[0];
572 while (count-- > 0)
574 int16_t s = *d++;
575 *d++ = s;
580 * sample_output_new_format()
582 * set the from-native to ouput sample conversion routine
584 * !DSPPARAMSYNC
585 * needs syncing with changes to the following dsp parameters:
586 * * dsp->stereo_mode (A/V)
587 * * dither_enabled (A)
589 static void sample_output_new_format(struct dsp_config *dsp)
591 static const sample_output_fn_type sample_output_functions[] =
593 sample_output_mono,
594 sample_output_stereo,
595 sample_output_dithered,
596 sample_output_dithered
599 int out = dsp->data.num_channels - 1;
601 if (dsp == &AUDIO_DSP && dither_enabled)
602 out += 2;
604 dsp->output_samples = sample_output_functions[out];
608 * Linear interpolation resampling that introduces a one sample delay because
609 * of our inability to look into the future at the end of a frame.
611 #ifndef DSP_HAVE_ASM_RESAMPLING
612 static int dsp_downsample(int count, struct dsp_data *data,
613 const int32_t *src[], int32_t *dst[])
615 int ch = data->num_channels - 1;
616 uint32_t delta = data->resample_data.delta;
617 uint32_t phase, pos;
618 int32_t *d;
620 /* Rolled channel loop actually showed slightly faster. */
623 /* Just initialize things and not worry too much about the relatively
624 * uncommon case of not being able to spit out a sample for the frame.
626 const int32_t *s = src[ch];
627 int32_t last = data->resample_data.last_sample[ch];
629 data->resample_data.last_sample[ch] = s[count - 1];
630 d = dst[ch];
631 phase = data->resample_data.phase;
632 pos = phase >> 16;
634 /* Do we need last sample of previous frame for interpolation? */
635 if (pos > 0)
636 last = s[pos - 1];
638 while (pos < (uint32_t)count)
640 *d++ = last + FRACMUL((phase & 0xffff) << 15, s[pos] - last);
641 phase += delta;
642 pos = phase >> 16;
643 last = s[pos - 1];
646 while (--ch >= 0);
648 /* Wrap phase accumulator back to start of next frame. */
649 data->resample_data.phase = phase - (count << 16);
650 return d - dst[0];
653 static int dsp_upsample(int count, struct dsp_data *data,
654 const int32_t *src[], int32_t *dst[])
656 int ch = data->num_channels - 1;
657 uint32_t delta = data->resample_data.delta;
658 uint32_t phase, pos;
659 int32_t *d;
661 /* Rolled channel loop actually showed slightly faster. */
664 /* Should always be able to output a sample for a ratio up to RESAMPLE_RATIO */
665 const int32_t *s = src[ch];
666 int32_t last = data->resample_data.last_sample[ch];
668 data->resample_data.last_sample[ch] = s[count - 1];
669 d = dst[ch];
670 phase = data->resample_data.phase;
671 pos = phase >> 16;
673 while (pos == 0)
675 *d++ = last + FRACMUL((phase & 0xffff) << 15, s[0] - last);
676 phase += delta;
677 pos = phase >> 16;
680 while (pos < (uint32_t)count)
682 last = s[pos - 1];
683 *d++ = last + FRACMUL((phase & 0xffff) << 15, s[pos] - last);
684 phase += delta;
685 pos = phase >> 16;
688 while (--ch >= 0);
690 /* Wrap phase accumulator back to start of next frame. */
691 data->resample_data.phase = phase & 0xffff;
692 return d - dst[0];
694 #endif /* DSP_HAVE_ASM_RESAMPLING */
696 static void resampler_new_delta(struct dsp_config *dsp)
698 dsp->data.resample_data.delta = (unsigned long)
699 dsp->frequency * 65536LL / NATIVE_FREQUENCY;
701 if (dsp->frequency == NATIVE_FREQUENCY)
703 /* NOTE: If fully glitch-free transistions from no resampling to
704 resampling are desired, last_sample history should be maintained
705 even when not resampling. */
706 dsp->resample = NULL;
707 dsp->data.resample_data.phase = 0;
708 dsp->data.resample_data.last_sample[0] = 0;
709 dsp->data.resample_data.last_sample[1] = 0;
711 else if (dsp->frequency < NATIVE_FREQUENCY)
712 dsp->resample = dsp_upsample;
713 else
714 dsp->resample = dsp_downsample;
717 /* Resample count stereo samples. Updates the src array, if resampling is
718 * done, to refer to the resampled data. Returns number of stereo samples
719 * for further processing.
721 static inline int resample(struct dsp_config *dsp, int count, int32_t *src[])
723 int32_t *dst[2] =
725 &resample_buf[RESAMPLE_BUF_LEFT_CHANNEL],
726 &resample_buf[RESAMPLE_BUF_RIGHT_CHANNEL],
729 count = dsp->resample(count, &dsp->data, (const int32_t **)src, dst);
731 src[0] = dst[0];
732 src[1] = dst[dsp->data.num_channels - 1];
734 return count;
737 static void dither_init(struct dsp_config *dsp)
739 memset(dither_data, 0, sizeof (dither_data));
740 dither_bias = (1L << (dsp->frac_bits - NATIVE_DEPTH));
741 dither_mask = (1L << (dsp->frac_bits + 1 - NATIVE_DEPTH)) - 1;
744 void dsp_dither_enable(bool enable)
746 struct dsp_config *dsp = &AUDIO_DSP;
747 dither_enabled = enable;
748 sample_output_new_format(dsp);
751 /* Applies crossfeed to the stereo signal in src.
752 * Crossfeed is a process where listening over speakers is simulated. This
753 * is good for old hard panned stereo records, which might be quite fatiguing
754 * to listen to on headphones with no crossfeed.
756 #ifndef DSP_HAVE_ASM_CROSSFEED
757 static void apply_crossfeed(int count, int32_t *buf[])
759 int32_t *hist_l = &crossfeed_data.history[0];
760 int32_t *hist_r = &crossfeed_data.history[2];
761 int32_t *delay = &crossfeed_data.delay[0][0];
762 int32_t *coefs = &crossfeed_data.coefs[0];
763 int32_t gain = crossfeed_data.gain;
764 int32_t *di = crossfeed_data.index;
766 int32_t acc;
767 int32_t left, right;
768 int i;
770 for (i = 0; i < count; i++)
772 left = buf[0][i];
773 right = buf[1][i];
775 /* Filter delayed sample from left speaker */
776 acc = FRACMUL(*di, coefs[0]);
777 acc += FRACMUL(hist_l[0], coefs[1]);
778 acc += FRACMUL(hist_l[1], coefs[2]);
779 /* Save filter history for left speaker */
780 hist_l[1] = acc;
781 hist_l[0] = *di;
782 *di++ = left;
783 /* Filter delayed sample from right speaker */
784 acc = FRACMUL(*di, coefs[0]);
785 acc += FRACMUL(hist_r[0], coefs[1]);
786 acc += FRACMUL(hist_r[1], coefs[2]);
787 /* Save filter history for right speaker */
788 hist_r[1] = acc;
789 hist_r[0] = *di;
790 *di++ = right;
791 /* Now add the attenuated direct sound and write to outputs */
792 buf[0][i] = FRACMUL(left, gain) + hist_r[1];
793 buf[1][i] = FRACMUL(right, gain) + hist_l[1];
795 /* Wrap delay line index if bigger than delay line size */
796 if (di >= delay + 13*2)
797 di = delay;
799 /* Write back local copies of data we've modified */
800 crossfeed_data.index = di;
802 #endif /* DSP_HAVE_ASM_CROSSFEED */
805 * dsp_set_crossfeed(bool enable)
807 * !DSPPARAMSYNC
808 * needs syncing with changes to the following dsp parameters:
809 * * dsp->stereo_mode (A)
811 void dsp_set_crossfeed(bool enable)
813 crossfeed_enabled = enable;
814 AUDIO_DSP.apply_crossfeed = (enable && AUDIO_DSP.data.num_channels > 1)
815 ? apply_crossfeed : NULL;
818 void dsp_set_crossfeed_direct_gain(int gain)
820 crossfeed_data.gain = get_replaygain_int(gain * 10) << 7;
821 /* If gain is negative, the calculation overflowed and we need to clamp */
822 if (crossfeed_data.gain < 0)
823 crossfeed_data.gain = 0x7fffffff;
826 /* Both gains should be below 0 dB */
827 void dsp_set_crossfeed_cross_params(long lf_gain, long hf_gain, long cutoff)
829 int32_t *c = crossfeed_data.coefs;
830 long scaler = get_replaygain_int(lf_gain * 10) << 7;
832 cutoff = 0xffffffff/NATIVE_FREQUENCY*cutoff;
833 hf_gain -= lf_gain;
834 /* Divide cutoff by sqrt(10^(hf_gain/20)) to place cutoff at the -3 dB
835 * point instead of shelf midpoint. This is for compatibility with the old
836 * crossfeed shelf filter and should be removed if crossfeed settings are
837 * ever made incompatible for any other good reason.
839 cutoff = fp_div(cutoff, get_replaygain_int(hf_gain*5), 24);
840 filter_shelf_coefs(cutoff, hf_gain, false, c);
841 /* Scale coefs by LF gain and shift them to s0.31 format. We have no gains
842 * over 1 and can do this safely
844 c[0] = FRACMUL_SHL(c[0], scaler, 4);
845 c[1] = FRACMUL_SHL(c[1], scaler, 4);
846 c[2] <<= 4;
849 /* Apply a constant gain to the samples (e.g., for ReplayGain).
850 * Note that this must be called before the resampler.
852 #ifndef DSP_HAVE_ASM_APPLY_GAIN
853 static void dsp_apply_gain(int count, struct dsp_data *data, int32_t *buf[])
855 const int32_t gain = data->gain;
856 int ch;
858 for (ch = 0; ch < data->num_channels; ch++)
860 int32_t *d = buf[ch];
861 int i;
863 for (i = 0; i < count; i++)
864 d[i] = FRACMUL_SHL(d[i], gain, 8);
867 #endif /* DSP_HAVE_ASM_APPLY_GAIN */
869 /* Combine all gains to a global gain. */
870 static void set_gain(struct dsp_config *dsp)
872 dsp->data.gain = DEFAULT_GAIN;
874 /* Replay gain not relevant to voice */
875 if (dsp == &AUDIO_DSP && replaygain)
877 dsp->data.gain = replaygain;
880 if (dsp->eq_process && eq_precut)
882 dsp->data.gain =
883 (long) (((int64_t) dsp->data.gain * eq_precut) >> 24);
886 #ifdef HAVE_SW_VOLUME_CONTROL
887 if (global_settings.volume < SW_VOLUME_MAX ||
888 global_settings.volume > SW_VOLUME_MIN)
890 int vol_gain = get_replaygain_int(global_settings.volume * 100);
891 dsp->data.gain = (long) (((int64_t) dsp->data.gain * vol_gain) >> 24);
893 #endif
895 if (dsp->data.gain == DEFAULT_GAIN)
897 dsp->data.gain = 0;
899 else
901 dsp->data.gain >>= 1;
904 dsp->apply_gain = dsp->data.gain != 0 ? dsp_apply_gain : NULL;
908 * Update the amount to cut the audio before applying the equalizer.
910 * @param precut to apply in decibels (multiplied by 10)
912 void dsp_set_eq_precut(int precut)
914 eq_precut = get_replaygain_int(precut * -10);
915 set_gain(&AUDIO_DSP);
919 * Synchronize the equalizer filter coefficients with the global settings.
921 * @param band the equalizer band to synchronize
923 void dsp_set_eq_coefs(int band)
925 const int *setting;
926 long gain;
927 unsigned long cutoff, q;
929 /* Adjust setting pointer to the band we actually want to change */
930 setting = &global_settings.eq_band0_cutoff + (band * 3);
932 /* Convert user settings to format required by coef generator functions */
933 cutoff = 0xffffffff / NATIVE_FREQUENCY * (*setting++);
934 q = *setting++;
935 gain = *setting++;
937 if (q == 0)
938 q = 1;
940 /* NOTE: The coef functions assume the EMAC unit is in fractional mode,
941 which it should be, since we're executed from the main thread. */
943 /* Assume a band is disabled if the gain is zero */
944 if (gain == 0)
946 eq_data.enabled[band] = 0;
948 else
950 if (band == 0)
951 eq_ls_coefs(cutoff, q, gain, eq_data.filters[band].coefs);
952 else if (band == 4)
953 eq_hs_coefs(cutoff, q, gain, eq_data.filters[band].coefs);
954 else
955 eq_pk_coefs(cutoff, q, gain, eq_data.filters[band].coefs);
957 eq_data.enabled[band] = 1;
961 /* Apply EQ filters to those bands that have got it switched on. */
962 static void eq_process(int count, int32_t *buf[])
964 static const int shifts[] =
966 EQ_SHELF_SHIFT, /* low shelf */
967 EQ_PEAK_SHIFT, /* peaking */
968 EQ_PEAK_SHIFT, /* peaking */
969 EQ_PEAK_SHIFT, /* peaking */
970 EQ_SHELF_SHIFT, /* high shelf */
972 unsigned int channels = AUDIO_DSP.data.num_channels;
973 int i;
975 /* filter configuration currently is 1 low shelf filter, 3 band peaking
976 filters and 1 high shelf filter, in that order. we need to know this
977 so we can choose the correct shift factor.
979 for (i = 0; i < 5; i++)
981 if (!eq_data.enabled[i])
982 continue;
983 eq_filter(buf, &eq_data.filters[i], count, channels, shifts[i]);
988 * Use to enable the equalizer.
990 * @param enable true to enable the equalizer
992 void dsp_set_eq(bool enable)
994 AUDIO_DSP.eq_process = enable ? eq_process : NULL;
995 set_gain(&AUDIO_DSP);
998 static void dsp_set_stereo_width(int value)
1000 long width, straight, cross;
1002 width = value * 0x7fffff / 100;
1004 if (value <= 100)
1006 straight = (0x7fffff + width) / 2;
1007 cross = straight - width;
1009 else
1011 /* straight = (1 + width) / (2 * width) */
1012 straight = ((int64_t)(0x7fffff + width) << 22) / width;
1013 cross = straight - 0x7fffff;
1016 dsp_sw_gain = straight << 8;
1017 dsp_sw_cross = cross << 8;
1021 * Implements the different channel configurations and stereo width.
1024 /* SOUND_CHAN_STEREO mode is a noop so has no function - just outline one for
1025 * completeness. */
1026 #if 0
1027 static void channels_process_sound_chan_stereo(int count, int32_t *buf[])
1029 /* The channels are each just themselves */
1030 (void)count; (void)buf;
1032 #endif
1034 #ifndef DSP_HAVE_ASM_SOUND_CHAN_MONO
1035 static void channels_process_sound_chan_mono(int count, int32_t *buf[])
1037 int32_t *sl = buf[0], *sr = buf[1];
1039 while (count-- > 0)
1041 int32_t lr = *sl/2 + *sr/2;
1042 *sl++ = lr;
1043 *sr++ = lr;
1046 #endif /* DSP_HAVE_ASM_SOUND_CHAN_MONO */
1048 #ifndef DSP_HAVE_ASM_SOUND_CHAN_CUSTOM
1049 static void channels_process_sound_chan_custom(int count, int32_t *buf[])
1051 const int32_t gain = dsp_sw_gain;
1052 const int32_t cross = dsp_sw_cross;
1053 int32_t *sl = buf[0], *sr = buf[1];
1055 while (count-- > 0)
1057 int32_t l = *sl;
1058 int32_t r = *sr;
1059 *sl++ = FRACMUL(l, gain) + FRACMUL(r, cross);
1060 *sr++ = FRACMUL(r, gain) + FRACMUL(l, cross);
1063 #endif /* DSP_HAVE_ASM_SOUND_CHAN_CUSTOM */
1065 static void channels_process_sound_chan_mono_left(int count, int32_t *buf[])
1067 /* Just copy over the other channel */
1068 memcpy(buf[1], buf[0], count * sizeof (*buf));
1071 static void channels_process_sound_chan_mono_right(int count, int32_t *buf[])
1073 /* Just copy over the other channel */
1074 memcpy(buf[0], buf[1], count * sizeof (*buf));
1077 #ifndef DSP_HAVE_ASM_SOUND_CHAN_KARAOKE
1078 static void channels_process_sound_chan_karaoke(int count, int32_t *buf[])
1080 int32_t *sl = buf[0], *sr = buf[1];
1082 while (count-- > 0)
1084 int32_t ch = *sl/2 - *sr/2;
1085 *sl++ = ch;
1086 *sr++ = -ch;
1089 #endif /* DSP_HAVE_ASM_SOUND_CHAN_KARAOKE */
1091 static void dsp_set_channel_config(int value)
1093 static const channels_process_fn_type channels_process_functions[] =
1095 /* SOUND_CHAN_STEREO = All-purpose index for no channel processing */
1096 [SOUND_CHAN_STEREO] = NULL,
1097 [SOUND_CHAN_MONO] = channels_process_sound_chan_mono,
1098 [SOUND_CHAN_CUSTOM] = channels_process_sound_chan_custom,
1099 [SOUND_CHAN_MONO_LEFT] = channels_process_sound_chan_mono_left,
1100 [SOUND_CHAN_MONO_RIGHT] = channels_process_sound_chan_mono_right,
1101 [SOUND_CHAN_KARAOKE] = channels_process_sound_chan_karaoke,
1104 if ((unsigned)value >= ARRAYLEN(channels_process_functions) ||
1105 AUDIO_DSP.stereo_mode == STEREO_MONO)
1107 value = SOUND_CHAN_STEREO;
1110 /* This doesn't apply to voice */
1111 channels_mode = value;
1112 AUDIO_DSP.channels_process = channels_process_functions[value];
1115 #if CONFIG_CODEC == SWCODEC
1117 #ifdef HAVE_SW_TONE_CONTROLS
1118 static void set_tone_controls(void)
1120 filter_bishelf_coefs(0xffffffff/NATIVE_FREQUENCY*200,
1121 0xffffffff/NATIVE_FREQUENCY*3500,
1122 bass, treble, -prescale,
1123 AUDIO_DSP.tone_filter.coefs);
1124 /* Sync the voice dsp coefficients */
1125 memcpy(&VOICE_DSP.tone_filter.coefs, AUDIO_DSP.tone_filter.coefs,
1126 sizeof (VOICE_DSP.tone_filter.coefs));
1128 #endif
1130 /* Hook back from firmware/ part of audio, which can't/shouldn't call apps/
1131 * code directly.
1133 int dsp_callback(int msg, intptr_t param)
1135 switch (msg)
1137 #ifdef HAVE_SW_TONE_CONTROLS
1138 case DSP_CALLBACK_SET_PRESCALE:
1139 prescale = param;
1140 set_tone_controls();
1141 break;
1142 /* prescaler is always set after calling any of these, so we wait with
1143 * calculating coefs until the above case is hit.
1145 case DSP_CALLBACK_SET_BASS:
1146 bass = param;
1147 break;
1148 case DSP_CALLBACK_SET_TREBLE:
1149 treble = param;
1150 break;
1151 #ifdef HAVE_SW_VOLUME_CONTROL
1152 case DSP_CALLBACK_SET_SW_VOLUME:
1153 set_gain(&AUDIO_DSP);
1154 break;
1155 #endif
1156 #endif
1157 case DSP_CALLBACK_SET_CHANNEL_CONFIG:
1158 dsp_set_channel_config(param);
1159 break;
1160 case DSP_CALLBACK_SET_STEREO_WIDTH:
1161 dsp_set_stereo_width(param);
1162 break;
1163 default:
1164 break;
1166 return 0;
1168 #endif
1170 /* Process and convert src audio to dst based on the DSP configuration,
1171 * reading count number of audio samples. dst is assumed to be large
1172 * enough; use dsp_output_count() to get the required number. src is an
1173 * array of pointers; for mono and interleaved stereo, it contains one
1174 * pointer to the start of the audio data and the other is ignored; for
1175 * non-interleaved stereo, it contains two pointers, one for each audio
1176 * channel. Returns number of bytes written to dst.
1178 int dsp_process(struct dsp_config *dsp, char *dst, const char *src[], int count)
1180 int32_t *tmp[2];
1181 static long last_yield;
1182 long tick;
1183 int written = 0;
1185 #if defined(CPU_COLDFIRE)
1186 /* set emac unit for dsp processing, and save old macsr, we're running in
1187 codec thread context at this point, so can't clobber it */
1188 unsigned long old_macsr = coldfire_get_macsr();
1189 coldfire_set_macsr(EMAC_FRACTIONAL | EMAC_SATURATE);
1190 #endif
1192 if (new_gain)
1193 dsp_set_replaygain(); /* Gain has changed */
1195 /* Perform at least one yield before starting */
1196 last_yield = current_tick;
1197 yield();
1199 /* Testing function pointers for NULL is preferred since the pointer
1200 will be preloaded to be used for the call if not. */
1201 while (count > 0)
1203 int samples = MIN(sample_buf_count/2, count);
1204 count -= samples;
1206 dsp->input_samples(samples, src, tmp);
1208 if (dsp->tdspeed_active)
1209 samples = tdspeed_doit(tmp, samples);
1211 int chunk_offset = 0;
1212 while (samples > 0)
1214 int32_t *t2[2];
1215 t2[0] = tmp[0]+chunk_offset;
1216 t2[1] = tmp[1]+chunk_offset;
1218 int chunk = MIN(sample_buf_count/2, samples);
1219 chunk_offset += chunk;
1220 samples -= chunk;
1222 if (dsp->apply_gain)
1223 dsp->apply_gain(chunk, &dsp->data, t2);
1225 if (dsp->resample && (chunk = resample(dsp, chunk, t2)) <= 0)
1226 break; /* I'm pretty sure we're downsampling here */
1228 if (dsp->apply_crossfeed)
1229 dsp->apply_crossfeed(chunk, t2);
1231 if (dsp->eq_process)
1232 dsp->eq_process(chunk, t2);
1234 #ifdef HAVE_SW_TONE_CONTROLS
1235 if ((bass | treble) != 0)
1236 eq_filter(t2, &dsp->tone_filter, chunk,
1237 dsp->data.num_channels, FILTER_BISHELF_SHIFT);
1238 #endif
1240 if (dsp->channels_process)
1241 dsp->channels_process(chunk, t2);
1243 dsp->output_samples(chunk, &dsp->data, (const int32_t **)t2, (int16_t *)dst);
1245 written += chunk;
1246 dst += chunk * sizeof (int16_t) * 2;
1248 /* yield at least once each tick */
1249 tick = current_tick;
1250 if (TIME_AFTER(tick, last_yield))
1252 last_yield = tick;
1253 yield();
1258 #if defined(CPU_COLDFIRE)
1259 /* set old macsr again */
1260 coldfire_set_macsr(old_macsr);
1261 #endif
1262 return written;
1265 /* Given count number of input samples, calculate the maximum number of
1266 * samples of output data that would be generated (the calculation is not
1267 * entirely exact and rounds upwards to be on the safe side; during
1268 * resampling, the number of samples generated depends on the current state
1269 * of the resampler).
1271 /* dsp_input_size MUST be called afterwards */
1272 int dsp_output_count(struct dsp_config *dsp, int count)
1274 if (dsp->tdspeed_active)
1275 count = tdspeed_est_output_size();
1276 if (dsp->resample)
1278 count = (int)(((unsigned long)count * NATIVE_FREQUENCY
1279 + (dsp->frequency - 1)) / dsp->frequency);
1282 /* Now we have the resampled sample count which must not exceed
1283 * RESAMPLE_BUF_RIGHT_CHANNEL to avoid resample buffer overflow. One
1284 * must call dsp_input_count() to get the correct input sample
1285 * count.
1287 if (count > RESAMPLE_BUF_RIGHT_CHANNEL)
1288 count = RESAMPLE_BUF_RIGHT_CHANNEL;
1290 return count;
1293 /* Given count output samples, calculate number of input samples
1294 * that would be consumed in order to fill the output buffer.
1296 int dsp_input_count(struct dsp_config *dsp, int count)
1298 /* count is now the number of resampled input samples. Convert to
1299 original input samples. */
1300 if (dsp->resample)
1302 /* Use the real resampling delta =
1303 * dsp->frequency * 65536 / NATIVE_FREQUENCY, and
1304 * round towards zero to avoid buffer overflows. */
1305 count = (int)(((unsigned long)count *
1306 dsp->data.resample_data.delta) >> 16);
1309 if (dsp->tdspeed_active)
1310 count = tdspeed_est_input_size(count);
1312 return count;
1315 static void dsp_set_gain_var(long *var, long value)
1317 *var = value;
1318 new_gain = true;
1321 static void dsp_update_functions(struct dsp_config *dsp)
1323 sample_input_new_format(dsp);
1324 sample_output_new_format(dsp);
1325 if (dsp == &AUDIO_DSP)
1326 dsp_set_crossfeed(crossfeed_enabled);
1329 intptr_t dsp_configure(struct dsp_config *dsp, int setting, intptr_t value)
1331 switch (setting)
1333 case DSP_MYDSP:
1334 switch (value)
1336 case CODEC_IDX_AUDIO:
1337 return (intptr_t)&AUDIO_DSP;
1338 case CODEC_IDX_VOICE:
1339 return (intptr_t)&VOICE_DSP;
1340 default:
1341 return (intptr_t)NULL;
1344 case DSP_SET_FREQUENCY:
1345 memset(&dsp->data.resample_data, 0, sizeof (dsp->data.resample_data));
1346 /* Fall through!!! */
1347 case DSP_SWITCH_FREQUENCY:
1348 dsp->codec_frequency = (value == 0) ? NATIVE_FREQUENCY : value;
1349 /* Account for playback speed adjustment when setting dsp->frequency
1350 if we're called from the main audio thread. Voice UI thread should
1351 not need this feature.
1353 if (dsp == &AUDIO_DSP)
1354 dsp->frequency = pitch_ratio * dsp->codec_frequency / PITCH_SPEED_100;
1355 else
1356 dsp->frequency = dsp->codec_frequency;
1358 resampler_new_delta(dsp);
1359 tdspeed_setup(dsp);
1360 break;
1362 case DSP_SET_SAMPLE_DEPTH:
1363 dsp->sample_depth = value;
1365 if (dsp->sample_depth <= NATIVE_DEPTH)
1367 dsp->frac_bits = WORD_FRACBITS;
1368 dsp->sample_bytes = sizeof (int16_t); /* samples are 16 bits */
1369 dsp->data.clip_max = ((1 << WORD_FRACBITS) - 1);
1370 dsp->data.clip_min = -((1 << WORD_FRACBITS));
1372 else
1374 dsp->frac_bits = value;
1375 dsp->sample_bytes = sizeof (int32_t); /* samples are 32 bits */
1376 dsp->data.clip_max = (1 << value) - 1;
1377 dsp->data.clip_min = -(1 << value);
1380 dsp->data.output_scale = dsp->frac_bits + 1 - NATIVE_DEPTH;
1381 sample_input_new_format(dsp);
1382 dither_init(dsp);
1383 break;
1385 case DSP_SET_STEREO_MODE:
1386 dsp->stereo_mode = value;
1387 dsp->data.num_channels = value == STEREO_MONO ? 1 : 2;
1388 dsp_update_functions(dsp);
1389 tdspeed_setup(dsp);
1390 break;
1392 case DSP_RESET:
1393 dsp->stereo_mode = STEREO_NONINTERLEAVED;
1394 dsp->data.num_channels = 2;
1395 dsp->sample_depth = NATIVE_DEPTH;
1396 dsp->frac_bits = WORD_FRACBITS;
1397 dsp->sample_bytes = sizeof (int16_t);
1398 dsp->data.output_scale = dsp->frac_bits + 1 - NATIVE_DEPTH;
1399 dsp->data.clip_max = ((1 << WORD_FRACBITS) - 1);
1400 dsp->data.clip_min = -((1 << WORD_FRACBITS));
1401 dsp->codec_frequency = dsp->frequency = NATIVE_FREQUENCY;
1403 if (dsp == &AUDIO_DSP)
1405 track_gain = 0;
1406 album_gain = 0;
1407 track_peak = 0;
1408 album_peak = 0;
1409 new_gain = true;
1412 dsp_update_functions(dsp);
1413 resampler_new_delta(dsp);
1414 tdspeed_setup(dsp);
1415 break;
1417 case DSP_FLUSH:
1418 memset(&dsp->data.resample_data, 0,
1419 sizeof (dsp->data.resample_data));
1420 resampler_new_delta(dsp);
1421 dither_init(dsp);
1422 tdspeed_setup(dsp);
1423 break;
1425 case DSP_SET_TRACK_GAIN:
1426 if (dsp == &AUDIO_DSP)
1427 dsp_set_gain_var(&track_gain, value);
1428 break;
1430 case DSP_SET_ALBUM_GAIN:
1431 if (dsp == &AUDIO_DSP)
1432 dsp_set_gain_var(&album_gain, value);
1433 break;
1435 case DSP_SET_TRACK_PEAK:
1436 if (dsp == &AUDIO_DSP)
1437 dsp_set_gain_var(&track_peak, value);
1438 break;
1440 case DSP_SET_ALBUM_PEAK:
1441 if (dsp == &AUDIO_DSP)
1442 dsp_set_gain_var(&album_peak, value);
1443 break;
1445 default:
1446 return 0;
1449 return 1;
1452 void dsp_set_replaygain(void)
1454 long gain = 0;
1456 new_gain = false;
1458 if ((global_settings.replaygain_type != REPLAYGAIN_OFF) ||
1459 global_settings.replaygain_noclip)
1461 bool track_mode = get_replaygain_mode(track_gain != 0,
1462 album_gain != 0) == REPLAYGAIN_TRACK;
1463 long peak = (track_mode || !album_peak) ? track_peak : album_peak;
1465 if (global_settings.replaygain_type != REPLAYGAIN_OFF)
1467 gain = (track_mode || !album_gain) ? track_gain : album_gain;
1469 if (global_settings.replaygain_preamp)
1471 long preamp = get_replaygain_int(
1472 global_settings.replaygain_preamp * 10);
1474 gain = (long) (((int64_t) gain * preamp) >> 24);
1478 if (gain == 0)
1480 /* So that noclip can work even with no gain information. */
1481 gain = DEFAULT_GAIN;
1484 if (global_settings.replaygain_noclip && (peak != 0)
1485 && ((((int64_t) gain * peak) >> 24) >= DEFAULT_GAIN))
1487 gain = (((int64_t) DEFAULT_GAIN << 24) / peak);
1490 if (gain == DEFAULT_GAIN)
1492 /* Nothing to do, disable processing. */
1493 gain = 0;
1497 /* Store in S7.24 format to simplify calculations. */
1498 replaygain = gain;
1499 set_gain(&AUDIO_DSP);