Use codeclib version of the ffmpeg bitstream code for wma rather then ancient hacked...
[kugel-rb.git] / apps / codecs / libwma / wmadeci.c
blobcf95f9c2fa31c6fe5ac5d02e241120fc956678f7
1 /*
2 * WMA compatible decoder
3 * Copyright (c) 2002 The FFmpeg Project.
5 * This library is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU Lesser General Public
7 * License as published by the Free Software Foundation; either
8 * version 2 of the License, or (at your option) any later version.
10 * This library is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * Lesser General Public License for more details.
15 * You should have received a copy of the GNU Lesser General Public
16 * License along with this library; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 /**
21 * @file wmadec.c
22 * WMA compatible decoder.
25 #include <codecs.h>
26 #include <codecs/lib/codeclib.h>
27 #include <codecs/libasf/asf.h>
28 #include "wmadec.h"
29 #include "wmafixed.h"
30 #include "wmadata.h"
32 static void wma_lsp_to_curve_init(WMADecodeContext *s, int frame_len);
33 inline void vector_fmul_add_add(fixed32 *dst, const fixed32 *data,
34 const fixed32 *window, int n);
35 inline void vector_fmul_reverse(fixed32 *dst, const fixed32 *src0,
36 const fixed32 *src1, int len);
38 /*declarations of statically allocated variables used to remove malloc calls*/
40 fixed32 coefsarray[MAX_CHANNELS][BLOCK_MAX_SIZE] IBSS_ATTR;
41 /*decode and window into IRAM on targets with at least 80KB of codec IRAM*/
42 fixed32 frame_out_buf[MAX_CHANNELS][BLOCK_MAX_SIZE * 2] IBSS_ATTR_WMA_LARGE_IRAM;
44 /*MDCT reconstruction windows*/
45 fixed32 stat0[2048], stat1[1024], stat2[512], stat3[256], stat4[128];
47 /*VLC lookup tables*/
48 uint16_t *runtabarray[2], *levtabarray[2];
50 /*these could be made smaller since only one can be 1336*/
51 uint16_t runtab0[1336], runtab1[1336], levtab0[1336], levtab1[1336];
53 #define VLCBUF1SIZE 4598
54 #define VLCBUF2SIZE 3574
55 #define VLCBUF3SIZE 360
56 #define VLCBUF4SIZE 540
58 /*putting these in IRAM actually makes PP slower*/
60 VLC_TYPE vlcbuf1[VLCBUF1SIZE][2];
61 VLC_TYPE vlcbuf2[VLCBUF2SIZE][2];
62 VLC_TYPE vlcbuf3[VLCBUF3SIZE][2];
63 VLC_TYPE vlcbuf4[VLCBUF4SIZE][2];
68 /**
69 * Apply MDCT window and add into output.
71 * We ensure that when the windows overlap their squared sum
72 * is always 1 (MDCT reconstruction rule).
74 * The Vorbis I spec has a great diagram explaining this process.
75 * See section 1.3.2.3 of http://xiph.org/vorbis/doc/Vorbis_I_spec.html
77 static void wma_window(WMADecodeContext *s, fixed32 *in, fixed32 *out)
79 //float *in = s->output;
80 int block_len, bsize, n;
82 /* left part */
84 /* previous block was larger, so we'll use the size of the current
85 * block to set the window size*/
86 if (s->block_len_bits <= s->prev_block_len_bits) {
87 block_len = s->block_len;
88 bsize = s->frame_len_bits - s->block_len_bits;
90 vector_fmul_add_add(out, in, s->windows[bsize], block_len);
92 } else {
93 /*previous block was smaller or the same size, so use it's size to set the window length*/
94 block_len = 1 << s->prev_block_len_bits;
95 /*find the middle of the two overlapped blocks, this will be the first overlapped sample*/
96 n = (s->block_len - block_len) / 2;
97 bsize = s->frame_len_bits - s->prev_block_len_bits;
99 vector_fmul_add_add(out+n, in+n, s->windows[bsize], block_len);
101 memcpy(out+n+block_len, in+n+block_len, n*sizeof(fixed32));
103 /* Advance to the end of the current block and prepare to window it for the next block.
104 * Since the window function needs to be reversed, we do it backwards starting with the
105 * last sample and moving towards the first
107 out += s->block_len;
108 in += s->block_len;
110 /* right part */
111 if (s->block_len_bits <= s->next_block_len_bits) {
112 block_len = s->block_len;
113 bsize = s->frame_len_bits - s->block_len_bits;
115 vector_fmul_reverse(out, in, s->windows[bsize], block_len);
117 } else {
118 block_len = 1 << s->next_block_len_bits;
119 n = (s->block_len - block_len) / 2;
120 bsize = s->frame_len_bits - s->next_block_len_bits;
122 memcpy(out, in, n*sizeof(fixed32));
124 vector_fmul_reverse(out+n, in+n, s->windows[bsize], block_len);
126 memset(out+n+block_len, 0, n*sizeof(fixed32));
133 /* XXX: use same run/length optimization as mpeg decoders */
134 static void init_coef_vlc(VLC *vlc,
135 uint16_t **prun_table, uint16_t **plevel_table,
136 const CoefVLCTable *vlc_table, int tab)
138 int n = vlc_table->n;
139 const uint8_t *table_bits = vlc_table->huffbits;
140 const uint32_t *table_codes = vlc_table->huffcodes;
141 const uint16_t *levels_table = vlc_table->levels;
142 uint16_t *run_table, *level_table;
143 const uint16_t *p;
144 int i, l, j, level;
147 init_vlc(vlc, VLCBITS, n, table_bits, 1, 1, table_codes, 4, 4, INIT_VLC_USE_NEW_STATIC);
149 run_table = runtabarray[tab];
150 level_table= levtabarray[tab];
152 p = levels_table;
153 i = 2;
154 level = 1;
155 while (i < n)
157 l = *p++;
158 for(j=0;j<l;++j)
160 run_table[i] = j;
161 level_table[i] = level;
162 ++i;
164 ++level;
166 *prun_table = run_table;
167 *plevel_table = level_table;
170 int wma_decode_init(WMADecodeContext* s, asf_waveformatex_t *wfx)
173 int i, flags1, flags2;
174 fixed32 *window;
175 uint8_t *extradata;
176 fixed64 bps1;
177 fixed32 high_freq;
178 fixed64 bps;
179 int sample_rate1;
180 int coef_vlc_table;
181 // int filehandle;
182 #ifdef CPU_COLDFIRE
183 coldfire_set_macsr(EMAC_FRACTIONAL | EMAC_SATURATE);
184 #endif
186 /*clear stereo setting to avoid glitches when switching stereo->mono*/
187 s->channel_coded[0]=0;
188 s->channel_coded[1]=0;
189 s->ms_stereo=0;
191 s->sample_rate = wfx->rate;
192 s->nb_channels = wfx->channels;
193 s->bit_rate = wfx->bitrate;
194 s->block_align = wfx->blockalign;
196 s->coefs = &coefsarray;
197 s->frame_out = &frame_out_buf;
199 if (wfx->codec_id == ASF_CODEC_ID_WMAV1) {
200 s->version = 1;
201 } else if (wfx->codec_id == ASF_CODEC_ID_WMAV2 ) {
202 s->version = 2;
203 } else {
204 /*one of those other wma flavors that don't have GPLed decoders */
205 return -1;
208 /* extract flag infos */
209 flags1 = 0;
210 flags2 = 0;
211 extradata = wfx->data;
212 if (s->version == 1 && wfx->datalen >= 4) {
213 flags1 = extradata[0] | (extradata[1] << 8);
214 flags2 = extradata[2] | (extradata[3] << 8);
215 }else if (s->version == 2 && wfx->datalen >= 6){
216 flags1 = extradata[0] | (extradata[1] << 8) |
217 (extradata[2] << 16) | (extradata[3] << 24);
218 flags2 = extradata[4] | (extradata[5] << 8);
220 s->use_exp_vlc = flags2 & 0x0001;
221 s->use_bit_reservoir = flags2 & 0x0002;
222 s->use_variable_block_len = flags2 & 0x0004;
224 /* compute MDCT block size */
225 if (s->sample_rate <= 16000){
226 s->frame_len_bits = 9;
227 }else if (s->sample_rate <= 22050 ||
228 (s->sample_rate <= 32000 && s->version == 1)){
229 s->frame_len_bits = 10;
230 }else{
231 s->frame_len_bits = 11;
233 s->frame_len = 1 << s->frame_len_bits;
234 if (s-> use_variable_block_len)
236 int nb_max, nb;
237 nb = ((flags2 >> 3) & 3) + 1;
238 if ((s->bit_rate / s->nb_channels) >= 32000)
240 nb += 2;
242 nb_max = s->frame_len_bits - BLOCK_MIN_BITS; //max is 11-7
243 if (nb > nb_max)
244 nb = nb_max;
245 s->nb_block_sizes = nb + 1;
247 else
249 s->nb_block_sizes = 1;
252 /* init rate dependant parameters */
253 s->use_noise_coding = 1;
254 high_freq = itofix64(s->sample_rate) >> 1;
257 /* if version 2, then the rates are normalized */
258 sample_rate1 = s->sample_rate;
259 if (s->version == 2)
261 if (sample_rate1 >= 44100)
262 sample_rate1 = 44100;
263 else if (sample_rate1 >= 22050)
264 sample_rate1 = 22050;
265 else if (sample_rate1 >= 16000)
266 sample_rate1 = 16000;
267 else if (sample_rate1 >= 11025)
268 sample_rate1 = 11025;
269 else if (sample_rate1 >= 8000)
270 sample_rate1 = 8000;
273 fixed64 tmp = itofix64(s->bit_rate);
274 fixed64 tmp2 = itofix64(s->nb_channels * s->sample_rate);
275 bps = fixdiv64(tmp, tmp2);
276 fixed64 tim = bps * s->frame_len;
277 fixed64 tmpi = fixdiv64(tim,itofix64(8));
278 s->byte_offset_bits = av_log2(fixtoi64(tmpi+0x8000)) + 2;
280 /* compute high frequency value and choose if noise coding should
281 be activated */
282 bps1 = bps;
283 if (s->nb_channels == 2)
284 bps1 = fixmul32(bps,0x1999a);
285 if (sample_rate1 == 44100)
287 if (bps1 >= 0x9c29)
288 s->use_noise_coding = 0;
289 else
290 high_freq = fixmul32(high_freq,0x6666);
292 else if (sample_rate1 == 22050)
294 if (bps1 >= 0x128f6)
295 s->use_noise_coding = 0;
296 else if (bps1 >= 0xb852)
297 high_freq = fixmul32(high_freq,0xb333);
298 else
299 high_freq = fixmul32(high_freq,0x999a);
301 else if (sample_rate1 == 16000)
303 if (bps > 0x8000)
304 high_freq = fixmul32(high_freq,0x8000);
305 else
306 high_freq = fixmul32(high_freq,0x4ccd);
308 else if (sample_rate1 == 11025)
310 high_freq = fixmul32(high_freq,0xb333);
312 else if (sample_rate1 == 8000)
314 if (bps <= 0xa000)
316 high_freq = fixmul32(high_freq,0x8000);
318 else if (bps > 0xc000)
320 s->use_noise_coding = 0;
322 else
324 high_freq = fixmul32(high_freq,0xa666);
327 else
329 if (bps >= 0xcccd)
331 high_freq = fixmul32(high_freq,0xc000);
333 else if (bps >= 0x999a)
335 high_freq = fixmul32(high_freq,0x999a);
337 else
339 high_freq = fixmul32(high_freq,0x8000);
343 /* compute the scale factor band sizes for each MDCT block size */
345 int a, b, pos, lpos, k, block_len, i, j, n;
346 const uint8_t *table;
348 if (s->version == 1)
350 s->coefs_start = 3;
352 else
354 s->coefs_start = 0;
356 for(k = 0; k < s->nb_block_sizes; ++k)
358 block_len = s->frame_len >> k;
360 if (s->version == 1)
362 lpos = 0;
363 for(i=0;i<25;++i)
365 a = wma_critical_freqs[i];
366 b = s->sample_rate;
367 pos = ((block_len * 2 * a) + (b >> 1)) / b;
368 if (pos > block_len)
369 pos = block_len;
370 s->exponent_bands[0][i] = pos - lpos;
371 if (pos >= block_len)
373 ++i;
374 break;
376 lpos = pos;
378 s->exponent_sizes[0] = i;
380 else
382 /* hardcoded tables */
383 table = NULL;
384 a = s->frame_len_bits - BLOCK_MIN_BITS - k;
385 if (a < 3)
387 if (s->sample_rate >= 44100)
388 table = exponent_band_44100[a];
389 else if (s->sample_rate >= 32000)
390 table = exponent_band_32000[a];
391 else if (s->sample_rate >= 22050)
392 table = exponent_band_22050[a];
394 if (table)
396 n = *table++;
397 for(i=0;i<n;++i)
398 s->exponent_bands[k][i] = table[i];
399 s->exponent_sizes[k] = n;
401 else
403 j = 0;
404 lpos = 0;
405 for(i=0;i<25;++i)
407 a = wma_critical_freqs[i];
408 b = s->sample_rate;
409 pos = ((block_len * 2 * a) + (b << 1)) / (4 * b);
410 pos <<= 2;
411 if (pos > block_len)
412 pos = block_len;
413 if (pos > lpos)
414 s->exponent_bands[k][j++] = pos - lpos;
415 if (pos >= block_len)
416 break;
417 lpos = pos;
419 s->exponent_sizes[k] = j;
423 /* max number of coefs */
424 s->coefs_end[k] = (s->frame_len - ((s->frame_len * 9) / 100)) >> k;
425 /* high freq computation */
427 fixed32 tmp1 = high_freq*2; /* high_freq is a fixed32!*/
428 fixed32 tmp2=itofix32(s->sample_rate>>1);
429 s->high_band_start[k] = fixtoi32( fixdiv32(tmp1, tmp2) * (block_len>>1) +0x8000);
432 s->high_band_start[k] = (int)((block_len * 2 * high_freq) /
433 s->sample_rate + 0.5);*/
435 n = s->exponent_sizes[k];
436 j = 0;
437 pos = 0;
438 for(i=0;i<n;++i)
440 int start, end;
441 start = pos;
442 pos += s->exponent_bands[k][i];
443 end = pos;
444 if (start < s->high_band_start[k])
445 start = s->high_band_start[k];
446 if (end > s->coefs_end[k])
447 end = s->coefs_end[k];
448 if (end > start)
449 s->exponent_high_bands[k][j++] = end - start;
451 s->exponent_high_sizes[k] = j;
455 /* ffmpeg uses malloc to only allocate as many window sizes as needed.
456 * However, we're really only interested in the worst case memory usage.
457 * In the worst case you can have 5 window sizes, 128 doubling up 2048
458 * Smaller windows are handled differently.
459 * Since we don't have malloc, just statically allocate this
461 fixed32 *temp[5];
462 temp[0] = stat0;
463 temp[1] = stat1;
464 temp[2] = stat2;
465 temp[3] = stat3;
466 temp[4] = stat4;
468 /* init MDCT windows : simple sinus window */
469 for(i = 0; i < s->nb_block_sizes; i++)
471 int n, j;
472 fixed32 alpha;
473 n = 1 << (s->frame_len_bits - i);
474 window = temp[i];
476 /* this calculates 0.5/(2*n) */
477 alpha = (1<<15)>>(s->frame_len_bits - i+1);
478 for(j=0;j<n;++j)
480 fixed32 j2 = itofix32(j) + 0x8000;
481 /*alpha between 0 and pi/2*/
482 window[j] = fsincos(fixmul32(j2,alpha)<<16, 0);
484 s->windows[i] = window;
488 s->reset_block_lengths = 1;
490 if (s->use_noise_coding)
492 /* init the noise generator */
493 if (s->use_exp_vlc)
495 s->noise_mult = 0x51f;
496 s->noise_table = noisetable_exp;
498 else
500 s->noise_mult = 0xa3d;
501 /* LSP values are simply 2x the EXP values */
502 for (i=0;i<NOISE_TAB_SIZE;++i)
503 noisetable_exp[i] = noisetable_exp[i]<< 1;
504 s->noise_table = noisetable_exp;
506 #if 0
507 /* We use a lookup table computered in advance, so no need to do this*/
509 unsigned int seed;
510 fixed32 norm;
511 seed = 1;
512 norm = 0; // PJJ: near as makes any diff to 0!
513 for (i=0;i<NOISE_TAB_SIZE;++i)
515 seed = seed * 314159 + 1;
516 s->noise_table[i] = itofix32((int)seed) * norm;
519 #endif
521 s->hgain_vlc.table = vlcbuf4;
522 s->hgain_vlc.table_allocated = VLCBUF4SIZE;
523 init_vlc(&s->hgain_vlc, HGAINVLCBITS, sizeof(hgain_huffbits),
524 hgain_huffbits, 1, 1,
525 hgain_huffcodes, 2, 2, INIT_VLC_USE_NEW_STATIC);
528 if (s->use_exp_vlc)
531 s->exp_vlc.table = vlcbuf3;
532 s->exp_vlc.table_allocated = VLCBUF3SIZE;
534 init_vlc(&s->exp_vlc, EXPVLCBITS, sizeof(scale_huffbits),
535 scale_huffbits, 1, 1,
536 scale_huffcodes, 4, 4, INIT_VLC_USE_NEW_STATIC);
538 else
540 wma_lsp_to_curve_init(s, s->frame_len);
543 /* choose the VLC tables for the coefficients */
544 coef_vlc_table = 2;
545 if (s->sample_rate >= 32000)
547 if (bps1 < 0xb852)
548 coef_vlc_table = 0;
549 else if (bps1 < 0x128f6)
550 coef_vlc_table = 1;
553 runtabarray[0] = runtab0; runtabarray[1] = runtab1;
554 levtabarray[0] = levtab0; levtabarray[1] = levtab1;
556 s->coef_vlc[0].table = vlcbuf1;
557 s->coef_vlc[0].table_allocated = VLCBUF1SIZE;
558 s->coef_vlc[1].table = vlcbuf2;
559 s->coef_vlc[1].table_allocated = VLCBUF2SIZE;
562 init_coef_vlc(&s->coef_vlc[0], &s->run_table[0], &s->level_table[0],
563 &coef_vlcs[coef_vlc_table * 2], 0);
564 init_coef_vlc(&s->coef_vlc[1], &s->run_table[1], &s->level_table[1],
565 &coef_vlcs[coef_vlc_table * 2 + 1], 1);
567 s->last_superframe_len = 0;
568 s->last_bitoffset = 0;
570 return 0;
574 /* compute x^-0.25 with an exponent and mantissa table. We use linear
575 interpolation to reduce the mantissa table size at a small speed
576 expense (linear interpolation approximately doubles the number of
577 bits of precision). */
578 static inline fixed32 pow_m1_4(WMADecodeContext *s, fixed32 x)
580 union {
581 float f;
582 unsigned int v;
583 } u, t;
584 unsigned int e, m;
585 fixed32 a, b;
587 u.f = fixtof64(x);
588 e = u.v >> 23;
589 m = (u.v >> (23 - LSP_POW_BITS)) & ((1 << LSP_POW_BITS) - 1);
590 /* build interpolation scale: 1 <= t < 2. */
591 t.v = ((u.v << LSP_POW_BITS) & ((1 << 23) - 1)) | (127 << 23);
592 a = s->lsp_pow_m_table1[m];
593 b = s->lsp_pow_m_table2[m];
595 /* lsp_pow_e_table contains 32.32 format */
596 /* TODO: Since we're unlikely have value that cover the whole
597 * IEEE754 range, we probably don't need to have all possible exponents */
599 return (lsp_pow_e_table[e] * (a + fixmul32(b, ftofix32(t.f))) >>32);
602 static void wma_lsp_to_curve_init(WMADecodeContext *s, int frame_len)
604 fixed32 wdel, a, b, temp, temp2;
605 int i, m;
607 wdel = fixdiv32(M_PI_F, itofix32(frame_len));
608 temp = fixdiv32(itofix32(1), itofix32(frame_len));
609 for (i=0; i<frame_len; ++i)
611 /* TODO: can probably reuse the trig_init values here */
612 fsincos((temp*i)<<15, &temp2);
613 /* get 3 bits headroom + 1 bit from not doubleing the values */
614 s->lsp_cos_table[i] = temp2>>3;
617 /* NOTE: these two tables are needed to avoid two operations in
618 pow_m1_4 */
619 b = itofix32(1);
620 int ix = 0;
622 /*double check this later*/
623 for(i=(1 << LSP_POW_BITS) - 1;i>=0;i--)
625 m = (1 << LSP_POW_BITS) + i;
626 a = pow_a_table[ix++]<<4;
627 s->lsp_pow_m_table1[i] = 2 * a - b;
628 s->lsp_pow_m_table2[i] = b - a;
629 b = a;
634 /* NOTE: We use the same code as Vorbis here */
635 /* XXX: optimize it further with SSE/3Dnow */
636 static void wma_lsp_to_curve(WMADecodeContext *s,
637 fixed32 *out,
638 fixed32 *val_max_ptr,
639 int n,
640 fixed32 *lsp)
642 int i, j;
643 fixed32 p, q, w, v, val_max, temp, temp2;
645 val_max = 0;
646 for(i=0;i<n;++i)
648 /* shift by 2 now to reduce rounding error,
649 * we can renormalize right before pow_m1_4
652 p = 0x8000<<5;
653 q = 0x8000<<5;
654 w = s->lsp_cos_table[i];
656 for (j=1;j<NB_LSP_COEFS;j+=2)
658 /* w is 5.27 format, lsp is in 16.16, temp2 becomes 5.27 format */
659 temp2 = ((w - (lsp[j - 1]<<11)));
660 temp = q;
662 /* q is 16.16 format, temp2 is 5.27, q becomes 16.16 */
663 q = fixmul32b(q, temp2 )<<4;
664 p = fixmul32b(p, (w - (lsp[j]<<11)))<<4;
667 /* 2 in 5.27 format is 0x10000000 */
668 p = fixmul32(p, fixmul32b(p, (0x10000000 - w)))<<3;
669 q = fixmul32(q, fixmul32b(q, (0x10000000 + w)))<<3;
671 v = (p + q) >>9; /* p/q end up as 16.16 */
672 v = pow_m1_4(s, v);
673 if (v > val_max)
674 val_max = v;
675 out[i] = v;
678 *val_max_ptr = val_max;
681 /* decode exponents coded with LSP coefficients (same idea as Vorbis)
682 * only used for low bitrate (< 16kbps) files
684 static void decode_exp_lsp(WMADecodeContext *s, int ch)
686 fixed32 lsp_coefs[NB_LSP_COEFS];
687 int val, i;
689 for (i = 0; i < NB_LSP_COEFS; ++i)
691 if (i == 0 || i >= 8)
692 val = get_bits(&s->gb, 3);
693 else
694 val = get_bits(&s->gb, 4);
695 lsp_coefs[i] = lsp_codebook[i][val];
698 wma_lsp_to_curve(s,
699 s->exponents[ch],
700 &s->max_exponent[ch],
701 s->block_len,
702 lsp_coefs);
705 /* decode exponents coded with VLC codes - used for bitrate >= 32kbps*/
706 static int decode_exp_vlc(WMADecodeContext *s, int ch)
708 int last_exp, n, code;
709 const uint16_t *ptr, *band_ptr;
710 fixed32 v, max_scale;
711 fixed32 *q,*q_end;
713 /*accommodate the 60 negative indices */
714 const fixed32 *pow_10_to_yover16_ptr = &pow_10_to_yover16[61];
716 band_ptr = s->exponent_bands[s->frame_len_bits - s->block_len_bits];
717 ptr = band_ptr;
718 q = s->exponents[ch];
719 q_end = q + s->block_len;
720 max_scale = 0;
723 if (s->version == 1) //wmav1 only
725 last_exp = get_bits(&s->gb, 5) + 10;
727 v = pow_10_to_yover16_ptr[last_exp];
728 max_scale = v;
729 n = *ptr++;
730 switch (n & 3) do {
731 case 0: *q++ = v;
732 case 3: *q++ = v;
733 case 2: *q++ = v;
734 case 1: *q++ = v;
735 } while ((n -= 4) > 0);
736 } else {
737 last_exp = 36;
740 while (q < q_end)
742 code = get_vlc2(&s->gb, s->exp_vlc.table, EXPVLCBITS, EXPMAX);
743 if (code < 0)
745 return -1;
747 /* NOTE: this offset is the same as MPEG4 AAC ! */
748 last_exp += code - 60;
750 v = pow_10_to_yover16_ptr[last_exp];
751 if (v > max_scale)
753 max_scale = v;
755 n = *ptr++;
756 switch (n & 3) do {
757 case 0: *q++ = v;
758 case 3: *q++ = v;
759 case 2: *q++ = v;
760 case 1: *q++ = v;
761 } while ((n -= 4) > 0);
764 s->max_exponent[ch] = max_scale;
765 return 0;
768 /* return 0 if OK. return 1 if last block of frame. return -1 if
769 unrecorrable error. */
770 static int wma_decode_block(WMADecodeContext *s, int32_t *scratch_buffer)
772 int n, v, a, ch, code, bsize;
773 int coef_nb_bits, total_gain;
774 int nb_coefs[MAX_CHANNELS];
775 fixed32 mdct_norm;
777 /*DEBUGF("***decode_block: %d (%d samples of %d in frame)\n", s->block_num, s->block_len, s->frame_len);*/
779 /* compute current block length */
780 if (s->use_variable_block_len)
782 n = av_log2(s->nb_block_sizes - 1) + 1;
784 if (s->reset_block_lengths)
786 s->reset_block_lengths = 0;
787 v = get_bits(&s->gb, n);
788 if (v >= s->nb_block_sizes)
790 return -2;
792 s->prev_block_len_bits = s->frame_len_bits - v;
793 v = get_bits(&s->gb, n);
794 if (v >= s->nb_block_sizes)
796 return -3;
798 s->block_len_bits = s->frame_len_bits - v;
800 else
802 /* update block lengths */
803 s->prev_block_len_bits = s->block_len_bits;
804 s->block_len_bits = s->next_block_len_bits;
806 v = get_bits(&s->gb, n);
808 if (v >= s->nb_block_sizes)
810 // rb->splash(HZ*4, "v was %d", v); //5, 7
811 return -4; //this is it
813 else{
814 //rb->splash(HZ, "passed v block (%d)!", v);
816 s->next_block_len_bits = s->frame_len_bits - v;
818 else
820 /* fixed block len */
821 s->next_block_len_bits = s->frame_len_bits;
822 s->prev_block_len_bits = s->frame_len_bits;
823 s->block_len_bits = s->frame_len_bits;
825 /* now check if the block length is coherent with the frame length */
826 s->block_len = 1 << s->block_len_bits;
828 if ((s->block_pos + s->block_len) > s->frame_len)
830 return -5; //oddly 32k sample from tracker fails here
833 if (s->nb_channels == 2)
835 s->ms_stereo = get_bits1(&s->gb);
837 v = 0;
838 for (ch = 0; ch < s->nb_channels; ++ch)
840 a = get_bits1(&s->gb);
841 s->channel_coded[ch] = a;
842 v |= a;
844 /* if no channel coded, no need to go further */
845 /* XXX: fix potential framing problems */
846 if (!v)
848 goto next;
851 bsize = s->frame_len_bits - s->block_len_bits;
853 /* read total gain and extract corresponding number of bits for
854 coef escape coding */
855 total_gain = 1;
856 for(;;)
858 a = get_bits(&s->gb, 7);
859 total_gain += a;
860 if (a != 127)
862 break;
866 if (total_gain < 15)
867 coef_nb_bits = 13;
868 else if (total_gain < 32)
869 coef_nb_bits = 12;
870 else if (total_gain < 40)
871 coef_nb_bits = 11;
872 else if (total_gain < 45)
873 coef_nb_bits = 10;
874 else
875 coef_nb_bits = 9;
877 /* compute number of coefficients */
878 n = s->coefs_end[bsize] - s->coefs_start;
880 for(ch = 0; ch < s->nb_channels; ++ch)
882 nb_coefs[ch] = n;
884 /* complex coding */
885 if (s->use_noise_coding)
888 for(ch = 0; ch < s->nb_channels; ++ch)
890 if (s->channel_coded[ch])
892 int i, n, a;
893 n = s->exponent_high_sizes[bsize];
894 for(i=0;i<n;++i)
896 a = get_bits1(&s->gb);
897 s->high_band_coded[ch][i] = a;
898 /* if noise coding, the coefficients are not transmitted */
899 if (a)
900 nb_coefs[ch] -= s->exponent_high_bands[bsize][i];
904 for(ch = 0; ch < s->nb_channels; ++ch)
906 if (s->channel_coded[ch])
908 int i, n, val, code;
910 n = s->exponent_high_sizes[bsize];
911 val = (int)0x80000000;
912 for(i=0;i<n;++i)
914 if (s->high_band_coded[ch][i])
916 if (val == (int)0x80000000)
918 val = get_bits(&s->gb, 7) - 19;
920 else
922 //code = get_vlc(&s->gb, &s->hgain_vlc);
923 code = get_vlc2(&s->gb, s->hgain_vlc.table, HGAINVLCBITS, HGAINMAX);
924 if (code < 0)
926 return -6;
928 val += code - 18;
930 s->high_band_values[ch][i] = val;
937 /* exponents can be reused in short blocks. */
938 if ((s->block_len_bits == s->frame_len_bits) || get_bits1(&s->gb))
940 for(ch = 0; ch < s->nb_channels; ++ch)
942 if (s->channel_coded[ch])
944 if (s->use_exp_vlc)
946 if (decode_exp_vlc(s, ch) < 0)
948 return -7;
951 else
953 decode_exp_lsp(s, ch);
955 s->exponents_bsize[ch] = bsize;
960 /* parse spectral coefficients : just RLE encoding */
961 for(ch = 0; ch < s->nb_channels; ++ch)
963 if (s->channel_coded[ch])
965 VLC *coef_vlc;
966 int level, run, sign, tindex;
967 int16_t *ptr, *eptr;
968 const int16_t *level_table, *run_table;
970 /* special VLC tables are used for ms stereo because
971 there is potentially less energy there */
972 tindex = (ch == 1 && s->ms_stereo);
973 coef_vlc = &s->coef_vlc[tindex];
974 run_table = s->run_table[tindex];
975 level_table = s->level_table[tindex];
976 /* XXX: optimize */
977 ptr = &s->coefs1[ch][0];
978 eptr = ptr + nb_coefs[ch];
979 memset(ptr, 0, s->block_len * sizeof(int16_t));
981 for(;;)
983 code = get_vlc2(&s->gb, coef_vlc->table, VLCBITS, VLCMAX);
985 if (code < 0)
987 return -8;
989 if (code == 1)
991 /* EOB */
992 break;
994 else if (code == 0)
996 /* escape */
997 level = get_bits(&s->gb, coef_nb_bits);
998 /* NOTE: this is rather suboptimal. reading
999 block_len_bits would be better */
1000 run = get_bits(&s->gb, s->frame_len_bits);
1002 else
1004 /* normal code */
1005 run = run_table[code];
1006 level = level_table[code];
1008 sign = get_bits1(&s->gb);
1009 if (!sign)
1010 level = -level;
1011 ptr += run;
1012 if (ptr >= eptr)
1014 break;
1016 *ptr++ = level;
1019 /* NOTE: EOB can be omitted */
1020 if (ptr >= eptr)
1021 break;
1024 if (s->version == 1 && s->nb_channels >= 2)
1026 align_get_bits(&s->gb);
1031 int n4 = s->block_len >> 1;
1034 mdct_norm = 0x10000>>(s->block_len_bits-1);
1036 if (s->version == 1)
1038 mdct_norm *= fixtoi32(fixsqrt32(itofix32(n4)));
1043 /* finally compute the MDCT coefficients */
1044 for(ch = 0; ch < s->nb_channels; ++ch)
1046 if (s->channel_coded[ch])
1048 int16_t *coefs1;
1049 fixed32 *exponents;
1050 fixed32 *coefs, atemp;
1051 fixed64 mult;
1052 fixed64 mult1;
1053 fixed32 noise, temp1, temp2, mult2;
1054 int i, j, n, n1, last_high_band, esize;
1055 fixed32 exp_power[HIGH_BAND_MAX_SIZE];
1057 //total_gain, coefs1, mdctnorm are lossless
1059 coefs1 = s->coefs1[ch];
1060 exponents = s->exponents[ch];
1061 esize = s->exponents_bsize[ch];
1062 coefs = (*(s->coefs))[ch];
1063 n=0;
1066 * The calculation of coefs has a shift right by 2 built in. This
1067 * prepares samples for the Tremor IMDCT which uses a slightly
1068 * different fixed format then the ffmpeg one. If the old ffmpeg
1069 * imdct is used, each shift storing into coefs should be reduced
1070 * by 1.
1071 * See SVN logs for details.
1075 if (s->use_noise_coding)
1077 /*This case is only used for low bitrates (typically less then 32kbps)*/
1079 /*TODO: mult should be converted to 32 bit to speed up noise coding*/
1081 mult = fixdiv64(pow_table[total_gain+20],Fixed32To64(s->max_exponent[ch]));
1082 mult = mult* mdct_norm;
1083 mult1 = mult;
1085 /* very low freqs : noise */
1086 for(i = 0;i < s->coefs_start; ++i)
1088 *coefs++ = fixmul32( (fixmul32(s->noise_table[s->noise_index],
1089 exponents[i<<bsize>>esize])>>4),Fixed32From64(mult1)) >>2;
1090 s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
1093 n1 = s->exponent_high_sizes[bsize];
1095 /* compute power of high bands */
1096 exponents = s->exponents[ch] +(s->high_band_start[bsize]<<bsize);
1097 last_high_band = 0; /* avoid warning */
1098 for (j=0;j<n1;++j)
1100 n = s->exponent_high_bands[s->frame_len_bits -
1101 s->block_len_bits][j];
1102 if (s->high_band_coded[ch][j])
1104 fixed32 e2, v;
1105 e2 = 0;
1106 for(i = 0;i < n; ++i)
1108 /*v is normalized later on so its fixed format is irrelevant*/
1109 v = exponents[i<<bsize>>esize]>>4;
1110 e2 += fixmul32(v, v)>>3;
1112 exp_power[j] = e2/n; /*n is an int...*/
1113 last_high_band = j;
1115 exponents += n<<bsize;
1118 /* main freqs and high freqs */
1119 exponents = s->exponents[ch] + (s->coefs_start<<bsize);
1120 for(j=-1;j<n1;++j)
1122 if (j < 0)
1124 n = s->high_band_start[bsize] -
1125 s->coefs_start;
1127 else
1129 n = s->exponent_high_bands[s->frame_len_bits -
1130 s->block_len_bits][j];
1132 if (j >= 0 && s->high_band_coded[ch][j])
1134 /* use noise with specified power */
1135 fixed32 tmp = fixdiv32(exp_power[j],exp_power[last_high_band]);
1137 /*mult1 is 48.16, pow_table is 48.16*/
1138 mult1 = fixmul32(fixsqrt32(tmp),
1139 pow_table[s->high_band_values[ch][j]+20]) >> 16;
1141 /*this step has a fairly high degree of error for some reason*/
1142 mult1 = fixdiv64(mult1,fixmul32(s->max_exponent[ch],s->noise_mult));
1143 mult1 = mult1*mdct_norm>>PRECISION;
1144 for(i = 0;i < n; ++i)
1146 noise = s->noise_table[s->noise_index];
1147 s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
1148 *coefs++ = fixmul32((fixmul32(exponents[i<<bsize>>esize],noise)>>4),
1149 Fixed32From64(mult1)) >>2;
1152 exponents += n<<bsize;
1154 else
1156 /* coded values + small noise */
1157 for(i = 0;i < n; ++i)
1159 noise = s->noise_table[s->noise_index];
1160 s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
1162 /*don't forget to renormalize the noise*/
1163 temp1 = (((int32_t)*coefs1++)<<16) + (noise>>4);
1164 temp2 = fixmul32(exponents[i<<bsize>>esize], mult>>18);
1165 *coefs++ = fixmul32(temp1, temp2);
1167 exponents += n<<bsize;
1171 /* very high freqs : noise */
1172 n = s->block_len - s->coefs_end[bsize];
1173 mult2 = fixmul32(mult>>16,exponents[((-1<<bsize))>>esize]) ;
1174 for (i = 0; i < n; ++i)
1176 /*renormalize the noise product and then reduce to 14.18 precison*/
1177 *coefs++ = fixmul32(s->noise_table[s->noise_index],mult2) >>6;
1179 s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
1182 else
1184 /*Noise coding not used, simply convert from exp to fixed representation*/
1186 fixed32 mult3 = (fixed32)(fixdiv64(pow_table[total_gain+20],
1187 Fixed32To64(s->max_exponent[ch])));
1188 mult3 = fixmul32(mult3, mdct_norm);
1190 /*zero the first 3 coefficients for WMA V1, does nothing otherwise*/
1191 for(i=0; i<s->coefs_start; i++)
1192 *coefs++=0;
1194 n = nb_coefs[ch];
1196 /* XXX: optimize more, unrolling this loop in asm
1197 might be a good idea */
1199 for(i = 0;i < n; ++i)
1201 /*ffmpeg imdct needs 15.17, while tremor 14.18*/
1202 atemp = (coefs1[i] * mult3)>>2;
1203 *coefs++=fixmul32(atemp,exponents[i<<bsize>>esize]);
1205 n = s->block_len - s->coefs_end[bsize];
1206 memset(coefs, 0, n*sizeof(fixed32));
1213 if (s->ms_stereo && s->channel_coded[1])
1215 fixed32 a, b;
1216 int i;
1217 fixed32 (*coefs)[MAX_CHANNELS][BLOCK_MAX_SIZE] = (s->coefs);
1219 /* nominal case for ms stereo: we do it before mdct */
1220 /* no need to optimize this case because it should almost
1221 never happen */
1222 if (!s->channel_coded[0])
1224 memset((*(s->coefs))[0], 0, sizeof(fixed32) * s->block_len);
1225 s->channel_coded[0] = 1;
1228 for(i = 0; i < s->block_len; ++i)
1230 a = (*coefs)[0][i];
1231 b = (*coefs)[1][i];
1232 (*coefs)[0][i] = a + b;
1233 (*coefs)[1][i] = a - b;
1237 for(ch = 0; ch < s->nb_channels; ++ch)
1239 if (s->channel_coded[ch])
1241 int n4, index;
1243 n4 = s->block_len >>1;
1245 ff_imdct_calc( (s->frame_len_bits - bsize + 1),
1246 (int32_t*)scratch_buffer,
1247 (*(s->coefs))[ch]);
1249 /* add in the frame */
1250 index = (s->frame_len / 2) + s->block_pos - n4;
1251 wma_window(s, scratch_buffer, &((*s->frame_out)[ch][index]));
1255 /* specific fast case for ms-stereo : add to second
1256 channel if it is not coded */
1257 if (s->ms_stereo && !s->channel_coded[1])
1259 wma_window(s, scratch_buffer, &((*s->frame_out)[1][index]));
1263 next:
1264 /* update block number */
1265 ++s->block_num;
1266 s->block_pos += s->block_len;
1267 if (s->block_pos >= s->frame_len)
1269 return 1;
1271 else
1273 return 0;
1277 /* decode a frame of frame_len samples */
1278 static int wma_decode_frame(WMADecodeContext *s, int32_t *samples)
1280 int ret, i, n, ch, incr;
1281 int32_t *ptr;
1282 fixed32 *iptr;
1284 /* read each block */
1285 s->block_num = 0;
1286 s->block_pos = 0;
1289 for(;;)
1291 ret = wma_decode_block(s, samples);
1292 if (ret < 0)
1295 DEBUGF("wma_decode_block failed with code %d\n", ret);
1296 return -1;
1298 if (ret)
1300 break;
1304 /* return frame with full 30-bit precision */
1305 n = s->frame_len;
1306 incr = s->nb_channels;
1307 for(ch = 0; ch < s->nb_channels; ++ch)
1309 ptr = samples + ch;
1310 iptr = &((*s->frame_out)[ch][0]);
1312 for (i=0;i<n;++i)
1314 *ptr = (*iptr++);
1315 ptr += incr;
1318 memmove(&((*s->frame_out)[ch][0]), &((*s->frame_out)[ch][s->frame_len]),
1319 s->frame_len * sizeof(fixed32));
1322 return 0;
1325 /* Initialise the superframe decoding */
1327 int wma_decode_superframe_init(WMADecodeContext* s,
1328 const uint8_t *buf, /*input*/
1329 int buf_size)
1331 if (buf_size==0)
1333 s->last_superframe_len = 0;
1334 return 0;
1337 s->current_frame = 0;
1339 init_get_bits(&s->gb, buf, buf_size*8);
1341 if (s->use_bit_reservoir)
1343 /* read super frame header */
1344 skip_bits(&s->gb, 4); /* super frame index */
1345 s->nb_frames = get_bits(&s->gb, 4);
1347 if (s->last_superframe_len == 0)
1348 s->nb_frames --;
1349 else if (s->nb_frames == 0)
1350 s->nb_frames++;
1352 s->bit_offset = get_bits(&s->gb, s->byte_offset_bits + 3);
1353 } else {
1354 s->nb_frames = 1;
1357 return 1;
1361 /* Decode a single frame in the current superframe - return -1 if
1362 there was a decoding error, or the number of samples decoded.
1365 int wma_decode_superframe_frame(WMADecodeContext* s,
1366 int32_t* samples, /*output*/
1367 const uint8_t *buf, /*input*/
1368 int buf_size)
1370 int pos, len;
1371 uint8_t *q;
1372 int done = 0;
1373 if ((s->use_bit_reservoir) && (s->current_frame == 0))
1375 if (s->last_superframe_len > 0)
1377 /* add s->bit_offset bits to last frame */
1378 if ((s->last_superframe_len + ((s->bit_offset + 7) >> 3)) >
1379 MAX_CODED_SUPERFRAME_SIZE)
1381 DEBUGF("superframe size too large error\n");
1382 goto fail;
1384 q = s->last_superframe + s->last_superframe_len;
1385 len = s->bit_offset;
1386 while (len > 7)
1388 *q++ = (get_bits)(&s->gb, 8);
1389 len -= 8;
1391 if (len > 0)
1393 *q++ = (get_bits)(&s->gb, len) << (8 - len);
1396 /* XXX: s->bit_offset bits into last frame */
1397 init_get_bits(&s->gb, s->last_superframe, MAX_CODED_SUPERFRAME_SIZE*8);
1398 /* skip unused bits */
1399 if (s->last_bitoffset > 0)
1400 skip_bits(&s->gb, s->last_bitoffset);
1402 /* this frame is stored in the last superframe and in the
1403 current one */
1404 if (wma_decode_frame(s, samples) < 0)
1406 goto fail;
1408 done = 1;
1411 /* read each frame starting from s->bit_offset */
1412 pos = s->bit_offset + 4 + 4 + s->byte_offset_bits + 3;
1413 init_get_bits(&s->gb, buf + (pos >> 3), (MAX_CODED_SUPERFRAME_SIZE - (pos >> 3))*8);
1414 len = pos & 7;
1415 if (len > 0)
1416 skip_bits(&s->gb, len);
1418 s->reset_block_lengths = 1;
1421 /* If we haven't decoded a frame yet, do it now */
1422 if (!done)
1424 if (wma_decode_frame(s, samples) < 0)
1426 goto fail;
1430 s->current_frame++;
1432 if ((s->use_bit_reservoir) && (s->current_frame == s->nb_frames))
1434 /* we copy the end of the frame in the last frame buffer */
1435 pos = get_bits_count(&s->gb) + ((s->bit_offset + 4 + 4 + s->byte_offset_bits + 3) & ~7);
1436 s->last_bitoffset = pos & 7;
1437 pos >>= 3;
1438 len = buf_size - pos;
1439 if (len > MAX_CODED_SUPERFRAME_SIZE || len < 0)
1441 DEBUGF("superframe size too large error after decoding\n");
1442 goto fail;
1444 s->last_superframe_len = len;
1445 memcpy(s->last_superframe, buf + pos, len);
1448 return s->frame_len;
1450 fail:
1451 /* when error, we reset the bit reservoir */
1453 s->last_superframe_len = 0;
1454 return -1;