Document the sorting setting in the Config file options appendix.
[kugel-rb.git] / apps / buffering.c
blob06e672773ccbdeca57829f50ba7fce3188c2b86d
1 /***************************************************************************
2 * __________ __ ___.
3 * Open \______ \ ____ ____ | | _\_ |__ _______ ___
4 * Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
5 * Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
6 * Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
7 * \/ \/ \/ \/ \/
8 * $Id$
10 * Copyright (C) 2007 Nicolas Pennequin
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation; either version 2
15 * of the License, or (at your option) any later version.
17 * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
18 * KIND, either express or implied.
20 ****************************************************************************/
22 #include "config.h"
23 #include <stdio.h>
24 #include <string.h>
25 #include <stdlib.h>
26 #include <ctype.h>
27 #include "buffering.h"
29 #include "storage.h"
30 #include "system.h"
31 #include "thread.h"
32 #include "file.h"
33 #include "panic.h"
34 #include "memory.h"
35 #include "lcd.h"
36 #include "font.h"
37 #include "button.h"
38 #include "kernel.h"
39 #include "tree.h"
40 #include "debug.h"
41 #include "sprintf.h"
42 #include "settings.h"
43 #include "codecs.h"
44 #include "audio.h"
45 #include "mp3_playback.h"
46 #include "usb.h"
47 #include "status.h"
48 #include "screens.h"
49 #include "playlist.h"
50 #include "pcmbuf.h"
51 #include "buffer.h"
52 #include "bmp.h"
53 #include "appevents.h"
54 #include "metadata.h"
55 #ifdef HAVE_ALBUMART
56 #include "albumart.h"
57 #endif
59 #define GUARD_BUFSIZE (32*1024)
61 /* Define LOGF_ENABLE to enable logf output in this file */
62 /*#define LOGF_ENABLE*/
63 #include "logf.h"
65 /* macros to enable logf for queues
66 logging on SYS_TIMEOUT can be disabled */
67 #ifdef SIMULATOR
68 /* Define this for logf output of all queuing except SYS_TIMEOUT */
69 #define BUFFERING_LOGQUEUES
70 /* Define this to logf SYS_TIMEOUT messages */
71 /* #define BUFFERING_LOGQUEUES_SYS_TIMEOUT */
72 #endif
74 #ifdef BUFFERING_LOGQUEUES
75 #define LOGFQUEUE logf
76 #else
77 #define LOGFQUEUE(...)
78 #endif
80 #ifdef BUFFERING_LOGQUEUES_SYS_TIMEOUT
81 #define LOGFQUEUE_SYS_TIMEOUT logf
82 #else
83 #define LOGFQUEUE_SYS_TIMEOUT(...)
84 #endif
86 /* default point to start buffer refill */
87 #define BUFFERING_DEFAULT_WATERMARK (1024*128)
88 /* amount of data to read in one read() call */
89 #define BUFFERING_DEFAULT_FILECHUNK (1024*32)
91 #define BUF_HANDLE_MASK 0x7FFFFFFF
94 /* Ring buffer helper macros */
95 /* Buffer pointer (p) plus value (v), wrapped if necessary */
96 #define RINGBUF_ADD(p,v) (((p)+(v))<buffer_len ? (p)+(v) : (p)+(v)-buffer_len)
97 /* Buffer pointer (p) minus value (v), wrapped if necessary */
98 #define RINGBUF_SUB(p,v) ((p>=v) ? (p)-(v) : (p)+buffer_len-(v))
99 /* How far value (v) plus buffer pointer (p1) will cross buffer pointer (p2) */
100 #define RINGBUF_ADD_CROSS(p1,v,p2) \
101 ((p1<p2) ? (int)((p1)+(v))-(int)(p2) : (int)((p1)+(v)-(p2))-(int)buffer_len)
102 /* Bytes available in the buffer */
103 #define BUF_USED RINGBUF_SUB(buf_widx, buf_ridx)
105 /* assert(sizeof(struct memory_handle)%4==0) */
106 struct memory_handle {
107 int id; /* A unique ID for the handle */
108 enum data_type type; /* Type of data buffered with this handle */
109 char path[MAX_PATH]; /* Path if data originated in a file */
110 int fd; /* File descriptor to path (-1 if closed) */
111 size_t data; /* Start index of the handle's data buffer */
112 volatile size_t ridx; /* Read pointer, relative to the main buffer */
113 size_t widx; /* Write pointer */
114 size_t filesize; /* File total length */
115 size_t filerem; /* Remaining bytes of file NOT in buffer */
116 volatile size_t available; /* Available bytes to read from buffer */
117 size_t offset; /* Offset at which we started reading the file */
118 struct memory_handle *next;
120 /* invariant: filesize == offset + available + filerem */
122 static char *buffer;
123 static char *guard_buffer;
125 static size_t buffer_len;
127 static volatile size_t buf_widx; /* current writing position */
128 static volatile size_t buf_ridx; /* current reading position */
129 /* buf_*idx are values relative to the buffer, not real pointers. */
131 /* Configuration */
132 static size_t conf_watermark = 0; /* Level to trigger filebuf fill */
133 #if MEM > 8
134 static size_t high_watermark = 0; /* High watermark for rebuffer */
135 #endif
137 /* current memory handle in the linked list. NULL when the list is empty. */
138 static struct memory_handle *cur_handle;
139 /* first memory handle in the linked list. NULL when the list is empty. */
140 static struct memory_handle *first_handle;
142 static int num_handles; /* number of handles in the list */
144 static int base_handle_id;
146 static struct mutex llist_mutex;
148 /* Handle cache (makes find_handle faster).
149 This is global so that move_handle and rm_handle can invalidate it. */
150 static struct memory_handle *cached_handle = NULL;
152 static struct {
153 size_t remaining; /* Amount of data needing to be buffered */
154 size_t wasted; /* Amount of space available for freeing */
155 size_t buffered; /* Amount of data currently in the buffer */
156 size_t useful; /* Amount of data still useful to the user */
157 } data_counters;
160 /* Messages available to communicate with the buffering thread */
161 enum {
162 Q_BUFFER_HANDLE = 1, /* Request buffering of a handle, this should not be
163 used in a low buffer situation. */
164 Q_RESET_HANDLE, /* (internal) Request resetting of a handle to its
165 offset (the offset has to be set beforehand) */
166 Q_CLOSE_HANDLE, /* Request closing a handle */
167 Q_BASE_HANDLE, /* Set the reference handle for buf_useful_data */
169 /* Configuration: */
170 Q_START_FILL, /* Request that the buffering thread initiate a buffer
171 fill at its earliest convenience */
172 Q_HANDLE_ADDED, /* Inform the buffering thread that a handle was added,
173 (which means the disk is spinning) */
176 /* Buffering thread */
177 static void buffering_thread(void);
178 static long buffering_stack[(DEFAULT_STACK_SIZE + 0x2000)/sizeof(long)];
179 static const char buffering_thread_name[] = "buffering";
180 static unsigned int buffering_thread_id = 0;
181 static struct event_queue buffering_queue;
182 static struct queue_sender_list buffering_queue_sender_list;
187 LINKED LIST MANAGEMENT
188 ======================
190 add_handle : Add a handle to the list
191 rm_handle : Remove a handle from the list
192 find_handle : Get a handle pointer from an ID
193 move_handle : Move a handle in the buffer (with or without its data)
195 These functions only handle the linked list structure. They don't touch the
196 contents of the struct memory_handle headers. They also change the buf_*idx
197 pointers when necessary and manage the handle IDs.
199 The first and current (== last) handle are kept track of.
200 A new handle is added at buf_widx and becomes the current one.
201 buf_widx always points to the current writing position for the current handle
202 buf_ridx always points to the location of the first handle.
203 buf_ridx == buf_widx means the buffer is empty.
207 /* Add a new handle to the linked list and return it. It will have become the
208 new current handle.
209 data_size must contain the size of what will be in the handle.
210 can_wrap tells us whether this type of data may wrap on buffer
211 alloc_all tells us if we must immediately be able to allocate data_size
212 returns a valid memory handle if all conditions for allocation are met.
213 NULL if there memory_handle itself cannot be allocated or if the
214 data_size cannot be allocated and alloc_all is set. This function's
215 only potential side effect is to allocate space for the cur_handle
216 if it returns NULL.
218 static struct memory_handle *add_handle(size_t data_size, bool can_wrap,
219 bool alloc_all)
221 /* gives each handle a unique id */
222 static int cur_handle_id = 0;
223 size_t shift;
224 size_t new_widx;
225 size_t len;
226 int overlap;
228 if (num_handles >= BUF_MAX_HANDLES)
229 return NULL;
231 mutex_lock(&llist_mutex);
233 if (cur_handle && cur_handle->filerem > 0) {
234 /* the current handle hasn't finished buffering. We can only add
235 a new one if there is already enough free space to finish
236 the buffering. */
237 size_t req = cur_handle->filerem + sizeof(struct memory_handle);
238 if (RINGBUF_ADD_CROSS(cur_handle->widx, req, buf_ridx) >= 0) {
239 /* Not enough space */
240 mutex_unlock(&llist_mutex);
241 return NULL;
242 } else {
243 /* Allocate the remainder of the space for the current handle */
244 buf_widx = RINGBUF_ADD(cur_handle->widx, cur_handle->filerem);
248 /* align to 4 bytes up */
249 new_widx = RINGBUF_ADD(buf_widx, 3) & ~3;
251 len = data_size + sizeof(struct memory_handle);
253 /* First, will the handle wrap? */
254 /* If the handle would wrap, move to the beginning of the buffer,
255 * or if the data must not but would wrap, move it to the beginning */
256 if( (new_widx + sizeof(struct memory_handle) > buffer_len) ||
257 (!can_wrap && (new_widx + len > buffer_len)) ) {
258 new_widx = 0;
261 /* How far we shifted buf_widx to align things, must be < buffer_len */
262 shift = RINGBUF_SUB(new_widx, buf_widx);
264 /* How much space are we short in the actual ring buffer? */
265 overlap = RINGBUF_ADD_CROSS(buf_widx, shift + len, buf_ridx);
266 if (overlap >= 0 && (alloc_all || (unsigned)overlap > data_size)) {
267 /* Not enough space for required allocations */
268 mutex_unlock(&llist_mutex);
269 return NULL;
272 /* There is enough space for the required data, advance the buf_widx and
273 * initialize the struct */
274 buf_widx = new_widx;
276 struct memory_handle *new_handle =
277 (struct memory_handle *)(&buffer[buf_widx]);
279 /* only advance the buffer write index of the size of the struct */
280 buf_widx = RINGBUF_ADD(buf_widx, sizeof(struct memory_handle));
282 new_handle->id = cur_handle_id;
283 /* Wrap signed int is safe and 0 doesn't happen */
284 cur_handle_id = (cur_handle_id + 1) & BUF_HANDLE_MASK;
285 new_handle->next = NULL;
286 num_handles++;
288 if (!first_handle)
289 /* the new handle is the first one */
290 first_handle = new_handle;
292 if (cur_handle)
293 cur_handle->next = new_handle;
295 cur_handle = new_handle;
297 mutex_unlock(&llist_mutex);
298 return new_handle;
301 /* Delete a given memory handle from the linked list
302 and return true for success. Nothing is actually erased from memory. */
303 static bool rm_handle(const struct memory_handle *h)
305 if (h == NULL)
306 return true;
308 mutex_lock(&llist_mutex);
310 if (h == first_handle) {
311 first_handle = h->next;
312 if (h == cur_handle) {
313 /* h was the first and last handle: the buffer is now empty */
314 cur_handle = NULL;
315 buf_ridx = buf_widx = 0;
316 } else {
317 /* update buf_ridx to point to the new first handle */
318 buf_ridx = (void *)first_handle - (void *)buffer;
320 } else {
321 struct memory_handle *m = first_handle;
322 /* Find the previous handle */
323 while (m && m->next != h) {
324 m = m->next;
326 if (m && m->next == h) {
327 m->next = h->next;
328 if (h == cur_handle) {
329 cur_handle = m;
330 buf_widx = cur_handle->widx;
332 } else {
333 mutex_unlock(&llist_mutex);
334 return false;
338 /* Invalidate the cache to prevent it from keeping the old location of h */
339 if (h == cached_handle)
340 cached_handle = NULL;
342 num_handles--;
344 mutex_unlock(&llist_mutex);
345 return true;
348 /* Return a pointer to the memory handle of given ID.
349 NULL if the handle wasn't found */
350 static struct memory_handle *find_handle(int handle_id)
352 if (handle_id < 0)
353 return NULL;
355 mutex_lock(&llist_mutex);
357 /* simple caching because most of the time the requested handle
358 will either be the same as the last, or the one after the last */
359 if (cached_handle)
361 if (cached_handle->id == handle_id) {
362 mutex_unlock(&llist_mutex);
363 return cached_handle;
364 } else if (cached_handle->next &&
365 (cached_handle->next->id == handle_id)) {
366 cached_handle = cached_handle->next;
367 mutex_unlock(&llist_mutex);
368 return cached_handle;
372 struct memory_handle *m = first_handle;
373 while (m && m->id != handle_id) {
374 m = m->next;
376 /* This condition can only be reached with !m or m->id == handle_id */
377 if (m)
378 cached_handle = m;
380 mutex_unlock(&llist_mutex);
381 return m;
384 /* Move a memory handle and data_size of its data delta bytes along the buffer.
385 delta maximum bytes available to move the handle. If the move is performed
386 it is set to the actual distance moved.
387 data_size is the amount of data to move along with the struct.
388 returns a valid memory_handle if the move is successful
389 NULL if the handle is NULL, the move would be less than the size of
390 a memory_handle after correcting for wraps or if the handle is not
391 found in the linked list for adjustment. This function has no side
392 effects if NULL is returned. */
393 static bool move_handle(struct memory_handle **h, size_t *delta,
394 size_t data_size, bool can_wrap)
396 struct memory_handle *dest;
397 const struct memory_handle *src;
398 size_t newpos;
399 size_t size_to_move;
400 size_t final_delta = *delta;
401 int overlap;
403 if (h == NULL || (src = *h) == NULL)
404 return false;
406 size_to_move = sizeof(struct memory_handle) + data_size;
408 /* Align to four bytes, down */
409 final_delta &= ~3;
410 if (final_delta < sizeof(struct memory_handle)) {
411 /* It's not legal to move less than the size of the struct */
412 return false;
415 mutex_lock(&llist_mutex);
417 newpos = RINGBUF_ADD((void *)src - (void *)buffer, final_delta);
418 overlap = RINGBUF_ADD_CROSS(newpos, size_to_move, buffer_len - 1);
420 if (overlap > 0) {
421 /* Some part of the struct + data would wrap, maybe ok */
422 size_t correction = 0;
423 /* If the overlap lands inside the memory_handle */
424 if ((unsigned)overlap > data_size) {
425 /* Correct the position and real delta to prevent the struct from
426 * wrapping, this guarantees an aligned delta, I think */
427 correction = overlap - data_size;
428 } else if (!can_wrap) {
429 /* Otherwise the overlap falls in the data area and must all be
430 * backed out. This may become conditional if ever we move
431 * data that is allowed to wrap (ie audio) */
432 correction = overlap;
433 /* Align correction to four bytes, up */
434 correction = (correction+3) & ~3;
436 if (correction) {
437 if (final_delta < correction + sizeof(struct memory_handle)) {
438 /* Delta cannot end up less than the size of the struct */
439 mutex_unlock(&llist_mutex);
440 return false;
443 newpos -= correction;
444 overlap -= correction;/* Used below to know how to split the data */
445 final_delta -= correction;
449 dest = (struct memory_handle *)(&buffer[newpos]);
451 if (src == first_handle) {
452 first_handle = dest;
453 buf_ridx = newpos;
454 } else {
455 struct memory_handle *m = first_handle;
456 while (m && m->next != src) {
457 m = m->next;
459 if (m && m->next == src) {
460 m->next = dest;
461 } else {
462 mutex_unlock(&llist_mutex);
463 return false;
468 /* Update the cache to prevent it from keeping the old location of h */
469 if (src == cached_handle)
470 cached_handle = dest;
472 /* the cur_handle pointer might need updating */
473 if (src == cur_handle)
474 cur_handle = dest;
476 if (overlap > 0) {
477 size_t first_part = size_to_move - overlap;
478 memmove(dest, src, first_part);
479 memmove(buffer, (const char *)src + first_part, overlap);
480 } else {
481 memmove(dest, src, size_to_move);
484 /* Update the caller with the new location of h and the distance moved */
485 *h = dest;
486 *delta = final_delta;
487 mutex_unlock(&llist_mutex);
488 return dest;
493 BUFFER SPACE MANAGEMENT
494 =======================
496 update_data_counters: Updates the values in data_counters
497 buffer_is_low : Returns true if the amount of useful data in the buffer is low
498 buffer_handle : Buffer data for a handle
499 reset_handle : Reset write position and data buffer of a handle to its offset
500 rebuffer_handle : Seek to a nonbuffered part of a handle by rebuffering the data
501 shrink_handle : Free buffer space by moving a handle
502 fill_buffer : Call buffer_handle for all handles that have data to buffer
504 These functions are used by the buffering thread to manage buffer space.
507 static void update_data_counters(void)
509 struct memory_handle *m = find_handle(base_handle_id);
510 bool is_useful = m==NULL;
512 size_t buffered = 0;
513 size_t wasted = 0;
514 size_t remaining = 0;
515 size_t useful = 0;
517 mutex_lock(&llist_mutex);
519 m = first_handle;
520 while (m) {
521 buffered += m->available;
522 wasted += RINGBUF_SUB(m->ridx, m->data);
523 remaining += m->filerem;
525 if (m->id == base_handle_id)
526 is_useful = true;
528 if (is_useful)
529 useful += RINGBUF_SUB(m->widx, m->ridx);
531 m = m->next;
534 mutex_unlock(&llist_mutex);
536 data_counters.buffered = buffered;
537 data_counters.wasted = wasted;
538 data_counters.remaining = remaining;
539 data_counters.useful = useful;
542 static inline bool buffer_is_low(void)
544 update_data_counters();
545 return data_counters.useful < (conf_watermark / 2);
548 /* Buffer data for the given handle.
549 Return whether or not the buffering should continue explicitly. */
550 static bool buffer_handle(int handle_id)
552 logf("buffer_handle(%d)", handle_id);
553 struct memory_handle *h = find_handle(handle_id);
554 if (!h)
555 return true;
557 if (h->filerem == 0) {
558 /* nothing left to buffer */
559 return true;
562 if (h->fd < 0) /* file closed, reopen */
564 if (*h->path)
565 h->fd = open(h->path, O_RDONLY);
567 if (h->fd < 0)
569 /* could not open the file, truncate it where it is */
570 h->filesize -= h->filerem;
571 h->filerem = 0;
572 return true;
575 if (h->offset)
576 lseek(h->fd, h->offset, SEEK_SET);
579 trigger_cpu_boost();
581 if (h->type == TYPE_ID3)
583 if (!get_metadata((struct mp3entry *)(buffer + h->data), h->fd, h->path))
585 /* metadata parsing failed: clear the buffer. */
586 memset(buffer + h->data, 0, sizeof(struct mp3entry));
588 close(h->fd);
589 h->fd = -1;
590 h->filerem = 0;
591 h->available = sizeof(struct mp3entry);
592 h->widx += sizeof(struct mp3entry);
593 send_event(BUFFER_EVENT_FINISHED, &h->id);
594 return true;
597 while (h->filerem > 0)
599 /* max amount to copy */
600 size_t copy_n = MIN( MIN(h->filerem, BUFFERING_DEFAULT_FILECHUNK),
601 buffer_len - h->widx);
603 /* stop copying if it would overwrite the reading position */
604 if (RINGBUF_ADD_CROSS(h->widx, copy_n, buf_ridx) >= 0)
605 return false;
607 /* This would read into the next handle, this is broken */
608 if (h->next && RINGBUF_ADD_CROSS(h->widx, copy_n,
609 (unsigned)((void *)h->next - (void *)buffer)) > 0) {
610 /* Try to recover by truncating this file */
611 copy_n = RINGBUF_ADD_CROSS(h->widx, copy_n,
612 (unsigned)((void *)h->next - (void *)buffer));
613 h->filerem -= copy_n;
614 h->filesize -= copy_n;
615 logf("buf alloc short %ld", (long)copy_n);
616 if (h->filerem)
617 continue;
618 else
619 break;
622 /* rc is the actual amount read */
623 int rc = read(h->fd, &buffer[h->widx], copy_n);
625 if (rc < 0)
627 /* Some kind of filesystem error, maybe recoverable if not codec */
628 if (h->type == TYPE_CODEC) {
629 logf("Partial codec");
630 break;
633 DEBUGF("File ended %ld bytes early\n", (long)h->filerem);
634 h->filesize -= h->filerem;
635 h->filerem = 0;
636 break;
639 /* Advance buffer */
640 h->widx = RINGBUF_ADD(h->widx, rc);
641 if (h == cur_handle)
642 buf_widx = h->widx;
643 h->available += rc;
644 h->filerem -= rc;
646 /* If this is a large file, see if we need to break or give the codec
647 * more time */
648 if (h->type == TYPE_PACKET_AUDIO &&
649 pcmbuf_is_lowdata() && !buffer_is_low())
651 sleep(1);
653 else
655 yield();
658 if (!queue_empty(&buffering_queue))
659 break;
662 if (h->filerem == 0) {
663 /* finished buffering the file */
664 close(h->fd);
665 h->fd = -1;
666 send_event(BUFFER_EVENT_FINISHED, &h->id);
669 return true;
672 /* Reset writing position and data buffer of a handle to its current offset.
673 Use this after having set the new offset to use. */
674 static void reset_handle(int handle_id)
676 logf("reset_handle(%d)", handle_id);
678 struct memory_handle *h = find_handle(handle_id);
679 if (!h)
680 return;
682 h->ridx = h->widx = h->data;
683 if (h == cur_handle)
684 buf_widx = h->widx;
685 h->available = 0;
686 h->filerem = h->filesize - h->offset;
688 if (h->fd >= 0) {
689 lseek(h->fd, h->offset, SEEK_SET);
693 /* Seek to a nonbuffered part of a handle by rebuffering the data. */
694 static void rebuffer_handle(int handle_id, size_t newpos)
696 struct memory_handle *h = find_handle(handle_id);
697 if (!h)
698 return;
700 /* When seeking foward off of the buffer, if it is a short seek don't
701 rebuffer the whole track, just read enough to satisfy */
702 if (newpos > h->offset && newpos - h->offset < BUFFERING_DEFAULT_FILECHUNK)
704 LOGFQUEUE("buffering >| Q_BUFFER_HANDLE %d", handle_id);
705 queue_send(&buffering_queue, Q_BUFFER_HANDLE, handle_id);
706 h->ridx = h->data + newpos;
707 return;
710 h->offset = newpos;
712 /* Reset the handle to its new offset */
713 LOGFQUEUE("buffering >| Q_RESET_HANDLE %d", handle_id);
714 queue_send(&buffering_queue, Q_RESET_HANDLE, handle_id);
716 size_t next = (unsigned)((void *)h->next - (void *)buffer);
717 if (RINGBUF_SUB(next, h->data) < h->filesize - newpos)
719 /* There isn't enough space to rebuffer all of the track from its new
720 offset, so we ask the user to free some */
721 DEBUGF("rebuffer_handle: space is needed\n");
722 send_event(BUFFER_EVENT_REBUFFER, &handle_id);
725 /* Now we ask for a rebuffer */
726 LOGFQUEUE("buffering >| Q_BUFFER_HANDLE %d", handle_id);
727 queue_send(&buffering_queue, Q_BUFFER_HANDLE, handle_id);
730 static bool close_handle(int handle_id)
732 struct memory_handle *h = find_handle(handle_id);
734 /* If the handle is not found, it is closed */
735 if (!h)
736 return true;
738 if (h->fd >= 0) {
739 close(h->fd);
740 h->fd = -1;
743 /* rm_handle returns true unless the handle somehow persists after exit */
744 return rm_handle(h);
747 /* Free buffer space by moving the handle struct right before the useful
748 part of its data buffer or by moving all the data. */
749 static void shrink_handle(struct memory_handle *h)
751 size_t delta;
753 if (!h)
754 return;
756 if (h->next && h->filerem == 0 &&
757 (h->type == TYPE_ID3 || h->type == TYPE_CUESHEET ||
758 h->type == TYPE_BITMAP || h->type == TYPE_CODEC ||
759 h->type == TYPE_ATOMIC_AUDIO))
761 /* metadata handle: we can move all of it */
762 size_t handle_distance =
763 RINGBUF_SUB((unsigned)((void *)h->next - (void*)buffer), h->data);
764 delta = handle_distance - h->available;
766 /* The value of delta might change for alignment reasons */
767 if (!move_handle(&h, &delta, h->available, h->type==TYPE_CODEC))
768 return;
770 size_t olddata = h->data;
771 h->data = RINGBUF_ADD(h->data, delta);
772 h->ridx = RINGBUF_ADD(h->ridx, delta);
773 h->widx = RINGBUF_ADD(h->widx, delta);
775 if (h->type == TYPE_ID3 && h->filesize == sizeof(struct mp3entry)) {
776 /* when moving an mp3entry we need to readjust its pointers. */
777 adjust_mp3entry((struct mp3entry *)&buffer[h->data],
778 (void *)&buffer[h->data],
779 (const void *)&buffer[olddata]);
780 } else if (h->type == TYPE_BITMAP) {
781 /* adjust the bitmap's pointer */
782 struct bitmap *bmp = (struct bitmap *)&buffer[h->data];
783 bmp->data = &buffer[h->data + sizeof(struct bitmap)];
786 else
788 /* only move the handle struct */
789 delta = RINGBUF_SUB(h->ridx, h->data);
790 if (!move_handle(&h, &delta, 0, true))
791 return;
793 h->data = RINGBUF_ADD(h->data, delta);
794 h->available -= delta;
795 h->offset += delta;
799 /* Fill the buffer by buffering as much data as possible for handles that still
800 have data left to buffer
801 Return whether or not to continue filling after this */
802 static bool fill_buffer(void)
804 logf("fill_buffer()");
805 struct memory_handle *m;
806 shrink_handle(first_handle);
807 m = first_handle;
808 while (queue_empty(&buffering_queue) && m) {
809 if (m->filerem > 0) {
810 if (!buffer_handle(m->id)) {
811 m = NULL;
812 break;
815 m = m->next;
818 if (m) {
819 return true;
821 else
823 /* only spin the disk down if the filling wasn't interrupted by an
824 event arriving in the queue. */
825 storage_sleep();
826 return false;
830 #ifdef HAVE_ALBUMART
831 /* Given a file descriptor to a bitmap file, write the bitmap data to the
832 buffer, with a struct bitmap and the actual data immediately following.
833 Return value is the total size (struct + data). */
834 static int load_bitmap(int fd)
836 int rc;
837 struct bitmap *bmp = (struct bitmap *)&buffer[buf_widx];
838 /* FIXME: alignment may be needed for the data buffer. */
839 bmp->data = &buffer[buf_widx + sizeof(struct bitmap)];
841 #if (LCD_DEPTH > 1) || defined(HAVE_REMOTE_LCD) && (LCD_REMOTE_DEPTH > 1)
842 bmp->maskdata = NULL;
843 #endif
845 int free = (int)MIN(buffer_len - BUF_USED, buffer_len - buf_widx)
846 - sizeof(struct bitmap);
848 get_albumart_size(bmp);
850 rc = read_bmp_fd(fd, bmp, free, FORMAT_NATIVE|FORMAT_DITHER|
851 FORMAT_RESIZE|FORMAT_KEEP_ASPECT, NULL);
852 return rc + (rc > 0 ? sizeof(struct bitmap) : 0);
854 #endif
858 MAIN BUFFERING API CALLS
859 ========================
861 bufopen : Request the opening of a new handle for a file
862 bufalloc : Open a new handle for data other than a file.
863 bufclose : Close an open handle
864 bufseek : Set the read pointer in a handle
865 bufadvance : Move the read pointer in a handle
866 bufread : Copy data from a handle into a given buffer
867 bufgetdata : Give a pointer to the handle's data
869 These functions are exported, to allow interaction with the buffer.
870 They take care of the content of the structs, and rely on the linked list
871 management functions for all the actual handle management work.
875 /* Reserve space in the buffer for a file.
876 filename: name of the file to open
877 offset: offset at which to start buffering the file, useful when the first
878 (offset-1) bytes of the file aren't needed.
879 return value: <0 if the file cannot be opened, or one file already
880 queued to be opened, otherwise the handle for the file in the buffer
882 int bufopen(const char *file, size_t offset, enum data_type type)
884 if (type == TYPE_ID3)
886 /* ID3 case: allocate space, init the handle and return. */
888 struct memory_handle *h = add_handle(sizeof(struct mp3entry), false, true);
889 if (!h)
890 return ERR_BUFFER_FULL;
892 h->fd = -1;
893 h->filesize = sizeof(struct mp3entry);
894 h->filerem = sizeof(struct mp3entry);
895 h->offset = 0;
896 h->data = buf_widx;
897 h->ridx = buf_widx;
898 h->widx = buf_widx;
899 h->available = 0;
900 h->type = type;
901 strncpy(h->path, file, MAX_PATH);
903 buf_widx += sizeof(struct mp3entry); /* safe because the handle
904 can't wrap */
906 /* Inform the buffering thread that we added a handle */
907 LOGFQUEUE("buffering > Q_HANDLE_ADDED %d", h->id);
908 queue_post(&buffering_queue, Q_HANDLE_ADDED, h->id);
910 return h->id;
913 /* Other cases: there is a little more work. */
915 int fd = open(file, O_RDONLY);
916 if (fd < 0)
917 return ERR_FILE_ERROR;
919 size_t size = filesize(fd);
920 bool can_wrap = type==TYPE_PACKET_AUDIO || type==TYPE_CODEC;
922 size_t adjusted_offset = offset;
923 if (adjusted_offset > size)
924 adjusted_offset = 0;
926 struct memory_handle *h = add_handle(size-adjusted_offset, can_wrap, false);
927 if (!h)
929 DEBUGF("bufopen: failed to add handle\n");
930 close(fd);
931 return ERR_BUFFER_FULL;
934 strncpy(h->path, file, MAX_PATH);
935 h->offset = adjusted_offset;
936 h->ridx = buf_widx;
937 h->data = buf_widx;
938 h->type = type;
940 #ifdef HAVE_ALBUMART
941 if (type == TYPE_BITMAP)
943 /* Bitmap file: we load the data instead of the file */
944 int rc;
945 mutex_lock(&llist_mutex); /* Lock because load_bitmap yields */
946 rc = load_bitmap(fd);
947 mutex_unlock(&llist_mutex);
948 if (rc <= 0)
950 rm_handle(h);
951 close(fd);
952 return ERR_FILE_ERROR;
954 h->filerem = 0;
955 h->filesize = rc;
956 h->available = rc;
957 h->widx = buf_widx + rc; /* safe because the data doesn't wrap */
958 buf_widx += rc; /* safe too */
960 else
961 #endif
963 h->filerem = size - adjusted_offset;
964 h->filesize = size;
965 h->available = 0;
966 h->widx = buf_widx;
969 if (type == TYPE_CUESHEET) {
970 h->fd = fd;
971 /* Immediately start buffering those */
972 LOGFQUEUE("buffering >| Q_BUFFER_HANDLE %d", h->id);
973 queue_send(&buffering_queue, Q_BUFFER_HANDLE, h->id);
974 } else {
975 /* Other types will get buffered in the course of normal operations */
976 h->fd = -1;
977 close(fd);
979 /* Inform the buffering thread that we added a handle */
980 LOGFQUEUE("buffering > Q_HANDLE_ADDED %d", h->id);
981 queue_post(&buffering_queue, Q_HANDLE_ADDED, h->id);
984 logf("bufopen: new hdl %d", h->id);
985 return h->id;
988 /* Open a new handle from data that needs to be copied from memory.
989 src is the source buffer from which to copy data. It can be NULL to simply
990 reserve buffer space.
991 size is the requested size. The call will only be successful if the
992 requested amount of data can entirely fit in the buffer without wrapping.
993 Return value is the handle id for success or <0 for failure.
995 int bufalloc(const void *src, size_t size, enum data_type type)
997 struct memory_handle *h = add_handle(size, false, true);
999 if (!h)
1000 return ERR_BUFFER_FULL;
1002 if (src) {
1003 if (type == TYPE_ID3 && size == sizeof(struct mp3entry)) {
1004 /* specially take care of struct mp3entry */
1005 copy_mp3entry((struct mp3entry *)&buffer[buf_widx],
1006 (const struct mp3entry *)src);
1007 } else {
1008 memcpy(&buffer[buf_widx], src, size);
1012 h->fd = -1;
1013 *h->path = 0;
1014 h->filesize = size;
1015 h->filerem = 0;
1016 h->offset = 0;
1017 h->ridx = buf_widx;
1018 h->widx = buf_widx + size; /* this is safe because the data doesn't wrap */
1019 h->data = buf_widx;
1020 h->available = size;
1021 h->type = type;
1023 buf_widx += size; /* safe too */
1025 logf("bufalloc: new hdl %d", h->id);
1026 return h->id;
1029 /* Close the handle. Return true for success and false for failure */
1030 bool bufclose(int handle_id)
1032 logf("bufclose(%d)", handle_id);
1034 LOGFQUEUE("buffering >| Q_CLOSE_HANDLE %d", handle_id);
1035 return queue_send(&buffering_queue, Q_CLOSE_HANDLE, handle_id);
1038 /* Set reading index in handle (relatively to the start of the file).
1039 Access before the available data will trigger a rebuffer.
1040 Return 0 for success and < 0 for failure:
1041 -1 if the handle wasn't found
1042 -2 if the new requested position was beyond the end of the file
1044 int bufseek(int handle_id, size_t newpos)
1046 struct memory_handle *h = find_handle(handle_id);
1047 if (!h)
1048 return ERR_HANDLE_NOT_FOUND;
1050 if (newpos > h->filesize) {
1051 /* access beyond the end of the file */
1052 return ERR_INVALID_VALUE;
1054 else if (newpos < h->offset || h->offset + h->available < newpos) {
1055 /* access before or after buffered data. A rebuffer is needed. */
1056 rebuffer_handle(handle_id, newpos);
1058 else {
1059 h->ridx = RINGBUF_ADD(h->data, newpos - h->offset);
1061 return 0;
1064 /* Advance the reading index in a handle (relatively to its current position).
1065 Return 0 for success and < 0 for failure */
1066 int bufadvance(int handle_id, off_t offset)
1068 const struct memory_handle *h = find_handle(handle_id);
1069 if (!h)
1070 return ERR_HANDLE_NOT_FOUND;
1072 size_t newpos = h->offset + RINGBUF_SUB(h->ridx, h->data) + offset;
1073 return bufseek(handle_id, newpos);
1076 /* Used by bufread and bufgetdata to prepare the buffer and retrieve the
1077 * actual amount of data available for reading. This function explicitly
1078 * does not check the validity of the input handle. It does do range checks
1079 * on size and returns a valid (and explicit) amount of data for reading */
1080 static struct memory_handle *prep_bufdata(int handle_id, size_t *size,
1081 bool guardbuf_limit)
1083 struct memory_handle *h = find_handle(handle_id);
1084 if (!h)
1085 return NULL;
1087 size_t avail = RINGBUF_SUB(h->widx, h->ridx);
1089 if (avail == 0 && h->filerem == 0)
1091 /* File is finished reading */
1092 *size = 0;
1093 return h;
1096 if (*size == 0 || *size > avail + h->filerem)
1097 *size = avail + h->filerem;
1099 if (guardbuf_limit && h->type == TYPE_PACKET_AUDIO && *size > GUARD_BUFSIZE)
1101 logf("data request > guardbuf");
1102 /* If more than the size of the guardbuf is requested and this is a
1103 * bufgetdata, limit to guard_bufsize over the end of the buffer */
1104 *size = MIN(*size, buffer_len - h->ridx + GUARD_BUFSIZE);
1105 /* this ensures *size <= buffer_len - h->ridx + GUARD_BUFSIZE */
1108 if (h->filerem > 0 && avail < *size)
1110 /* Data isn't ready. Request buffering */
1111 buf_request_buffer_handle(handle_id);
1112 /* Wait for the data to be ready */
1115 sleep(1);
1116 /* it is not safe for a non-buffering thread to sleep while
1117 * holding a handle */
1118 h = find_handle(handle_id);
1119 if (!h)
1120 return NULL;
1121 avail = RINGBUF_SUB(h->widx, h->ridx);
1123 while (h->filerem > 0 && avail < *size);
1126 *size = MIN(*size,avail);
1127 return h;
1130 /* Copy data from the given handle to the dest buffer.
1131 Return the number of bytes copied or < 0 for failure (handle not found).
1132 The caller is blocked until the requested amount of data is available.
1134 ssize_t bufread(int handle_id, size_t size, void *dest)
1136 const struct memory_handle *h;
1137 size_t adjusted_size = size;
1139 h = prep_bufdata(handle_id, &adjusted_size, false);
1140 if (!h)
1141 return ERR_HANDLE_NOT_FOUND;
1143 if (h->ridx + adjusted_size > buffer_len)
1145 /* the data wraps around the end of the buffer */
1146 size_t read = buffer_len - h->ridx;
1147 memcpy(dest, &buffer[h->ridx], read);
1148 memcpy(dest+read, buffer, adjusted_size - read);
1150 else
1152 memcpy(dest, &buffer[h->ridx], adjusted_size);
1155 return adjusted_size;
1158 /* Update the "data" pointer to make the handle's data available to the caller.
1159 Return the length of the available linear data or < 0 for failure (handle
1160 not found).
1161 The caller is blocked until the requested amount of data is available.
1162 size is the amount of linear data requested. it can be 0 to get as
1163 much as possible.
1164 The guard buffer may be used to provide the requested size. This means it's
1165 unsafe to request more than the size of the guard buffer.
1167 ssize_t bufgetdata(int handle_id, size_t size, void **data)
1169 const struct memory_handle *h;
1170 size_t adjusted_size = size;
1172 h = prep_bufdata(handle_id, &adjusted_size, true);
1173 if (!h)
1174 return ERR_HANDLE_NOT_FOUND;
1176 if (h->ridx + adjusted_size > buffer_len)
1178 /* the data wraps around the end of the buffer :
1179 use the guard buffer to provide the requested amount of data. */
1180 size_t copy_n = h->ridx + adjusted_size - buffer_len;
1181 /* prep_bufdata ensures adjusted_size <= buffer_len - h->ridx + GUARD_BUFSIZE,
1182 so copy_n <= GUARD_BUFSIZE */
1183 memcpy(guard_buffer, (const unsigned char *)buffer, copy_n);
1186 if (data)
1187 *data = &buffer[h->ridx];
1189 return adjusted_size;
1192 ssize_t bufgettail(int handle_id, size_t size, void **data)
1194 size_t tidx;
1196 const struct memory_handle *h;
1198 h = find_handle(handle_id);
1200 if (!h)
1201 return ERR_HANDLE_NOT_FOUND;
1203 if (h->filerem)
1204 return ERR_HANDLE_NOT_DONE;
1206 /* We don't support tail requests of > guardbuf_size, for simplicity */
1207 if (size > GUARD_BUFSIZE)
1208 return ERR_INVALID_VALUE;
1210 tidx = RINGBUF_SUB(h->widx, size);
1212 if (tidx + size > buffer_len)
1214 size_t copy_n = tidx + size - buffer_len;
1215 memcpy(guard_buffer, (const unsigned char *)buffer, copy_n);
1218 *data = &buffer[tidx];
1219 return size;
1222 ssize_t bufcuttail(int handle_id, size_t size)
1224 struct memory_handle *h;
1225 size_t adjusted_size = size;
1227 h = find_handle(handle_id);
1229 if (!h)
1230 return ERR_HANDLE_NOT_FOUND;
1232 if (h->filerem)
1233 return ERR_HANDLE_NOT_DONE;
1235 if (h->available < adjusted_size)
1236 adjusted_size = h->available;
1238 h->available -= adjusted_size;
1239 h->filesize -= adjusted_size;
1240 h->widx = RINGBUF_SUB(h->widx, adjusted_size);
1241 if (h == cur_handle)
1242 buf_widx = h->widx;
1244 return adjusted_size;
1249 SECONDARY EXPORTED FUNCTIONS
1250 ============================
1252 buf_get_offset
1253 buf_handle_offset
1254 buf_request_buffer_handle
1255 buf_set_base_handle
1256 buf_used
1257 register_buffering_callback
1258 unregister_buffering_callback
1260 These functions are exported, to allow interaction with the buffer.
1261 They take care of the content of the structs, and rely on the linked list
1262 management functions for all the actual handle management work.
1265 /* Get a handle offset from a pointer */
1266 ssize_t buf_get_offset(int handle_id, void *ptr)
1268 const struct memory_handle *h = find_handle(handle_id);
1269 if (!h)
1270 return ERR_HANDLE_NOT_FOUND;
1272 return (size_t)ptr - (size_t)&buffer[h->ridx];
1275 ssize_t buf_handle_offset(int handle_id)
1277 const struct memory_handle *h = find_handle(handle_id);
1278 if (!h)
1279 return ERR_HANDLE_NOT_FOUND;
1280 return h->offset;
1283 void buf_request_buffer_handle(int handle_id)
1285 LOGFQUEUE("buffering >| Q_START_FILL %d",handle_id);
1286 queue_send(&buffering_queue, Q_START_FILL, handle_id);
1289 void buf_set_base_handle(int handle_id)
1291 LOGFQUEUE("buffering > Q_BASE_HANDLE %d", handle_id);
1292 queue_post(&buffering_queue, Q_BASE_HANDLE, handle_id);
1295 /* Return the amount of buffer space used */
1296 size_t buf_used(void)
1298 return BUF_USED;
1301 void buf_set_watermark(size_t bytes)
1303 conf_watermark = bytes;
1306 static void shrink_buffer_inner(struct memory_handle *h)
1308 if (h == NULL)
1309 return;
1311 shrink_buffer_inner(h->next);
1313 shrink_handle(h);
1316 static void shrink_buffer(void)
1318 logf("shrink_buffer()");
1319 shrink_buffer_inner(first_handle);
1322 void buffering_thread(void)
1324 bool filling = false;
1325 struct queue_event ev;
1327 while (true)
1329 if (!filling) {
1330 cancel_cpu_boost();
1333 queue_wait_w_tmo(&buffering_queue, &ev, filling ? 5 : HZ/2);
1335 switch (ev.id)
1337 case Q_START_FILL:
1338 LOGFQUEUE("buffering < Q_START_FILL %d", (int)ev.data);
1339 /* Call buffer callbacks here because this is one of two ways
1340 * to begin a full buffer fill */
1341 send_event(BUFFER_EVENT_BUFFER_LOW, 0);
1342 shrink_buffer();
1343 queue_reply(&buffering_queue, 1);
1344 filling |= buffer_handle((int)ev.data);
1345 break;
1347 case Q_BUFFER_HANDLE:
1348 LOGFQUEUE("buffering < Q_BUFFER_HANDLE %d", (int)ev.data);
1349 queue_reply(&buffering_queue, 1);
1350 buffer_handle((int)ev.data);
1351 break;
1353 case Q_RESET_HANDLE:
1354 LOGFQUEUE("buffering < Q_RESET_HANDLE %d", (int)ev.data);
1355 queue_reply(&buffering_queue, 1);
1356 reset_handle((int)ev.data);
1357 break;
1359 case Q_CLOSE_HANDLE:
1360 LOGFQUEUE("buffering < Q_CLOSE_HANDLE %d", (int)ev.data);
1361 queue_reply(&buffering_queue, close_handle((int)ev.data));
1362 break;
1364 case Q_HANDLE_ADDED:
1365 LOGFQUEUE("buffering < Q_HANDLE_ADDED %d", (int)ev.data);
1366 /* A handle was added: the disk is spinning, so we can fill */
1367 filling = true;
1368 break;
1370 case Q_BASE_HANDLE:
1371 LOGFQUEUE("buffering < Q_BASE_HANDLE %d", (int)ev.data);
1372 base_handle_id = (int)ev.data;
1373 break;
1375 #ifndef SIMULATOR
1376 case SYS_USB_CONNECTED:
1377 LOGFQUEUE("buffering < SYS_USB_CONNECTED");
1378 usb_acknowledge(SYS_USB_CONNECTED_ACK);
1379 usb_wait_for_disconnect(&buffering_queue);
1380 break;
1381 #endif
1383 case SYS_TIMEOUT:
1384 LOGFQUEUE_SYS_TIMEOUT("buffering < SYS_TIMEOUT");
1385 break;
1388 update_data_counters();
1390 /* If the buffer is low, call the callbacks to get new data */
1391 if (num_handles > 0 && data_counters.useful <= conf_watermark)
1392 send_event(BUFFER_EVENT_BUFFER_LOW, 0);
1394 #if 0
1395 /* TODO: This needs to be fixed to use the idle callback, disable it
1396 * for simplicity until its done right */
1397 #if MEM > 8
1398 /* If the disk is spinning, take advantage by filling the buffer */
1399 else if (storage_disk_is_active() && queue_empty(&buffering_queue))
1401 if (num_handles > 0 && data_counters.useful <= high_watermark)
1402 send_event(BUFFER_EVENT_BUFFER_LOW, 0);
1404 if (data_counters.remaining > 0 && BUF_USED <= high_watermark)
1406 /* This is a new fill, shrink the buffer up first */
1407 if (!filling)
1408 shrink_buffer();
1409 filling = fill_buffer();
1410 update_data_counters();
1413 #endif
1414 #endif
1416 if (queue_empty(&buffering_queue)) {
1417 if (filling) {
1418 if (data_counters.remaining > 0 && BUF_USED < buffer_len)
1419 filling = fill_buffer();
1420 else if (data_counters.remaining == 0)
1421 filling = false;
1423 else if (ev.id == SYS_TIMEOUT)
1425 if (data_counters.remaining > 0 &&
1426 data_counters.useful <= conf_watermark) {
1427 shrink_buffer();
1428 filling = fill_buffer();
1435 void buffering_init(void)
1437 mutex_init(&llist_mutex);
1438 #ifdef HAVE_PRIORITY_SCHEDULING
1439 /* This behavior not safe atm */
1440 mutex_set_preempt(&llist_mutex, false);
1441 #endif
1443 conf_watermark = BUFFERING_DEFAULT_WATERMARK;
1445 queue_init(&buffering_queue, true);
1446 buffering_thread_id = create_thread( buffering_thread, buffering_stack,
1447 sizeof(buffering_stack), CREATE_THREAD_FROZEN,
1448 buffering_thread_name IF_PRIO(, PRIORITY_BUFFERING)
1449 IF_COP(, CPU));
1451 queue_enable_queue_send(&buffering_queue, &buffering_queue_sender_list,
1452 buffering_thread_id);
1455 /* Initialise the buffering subsystem */
1456 bool buffering_reset(char *buf, size_t buflen)
1458 if (!buf || !buflen)
1459 return false;
1461 buffer = buf;
1462 buffer_len = buflen;
1463 guard_buffer = buf + buflen;
1465 buf_widx = 0;
1466 buf_ridx = 0;
1468 first_handle = NULL;
1469 cur_handle = NULL;
1470 cached_handle = NULL;
1471 num_handles = 0;
1472 base_handle_id = -1;
1474 /* Set the high watermark as 75% full...or 25% empty :) */
1475 #if MEM > 8
1476 high_watermark = 3*buflen / 4;
1477 #endif
1479 thread_thaw(buffering_thread_id);
1481 return true;
1484 void buffering_get_debugdata(struct buffering_debug *dbgdata)
1486 update_data_counters();
1487 dbgdata->num_handles = num_handles;
1488 dbgdata->data_rem = data_counters.remaining;
1489 dbgdata->wasted_space = data_counters.wasted;
1490 dbgdata->buffered_data = data_counters.buffered;
1491 dbgdata->useful_data = data_counters.useful;
1492 dbgdata->watermark = conf_watermark;