1 /***************************************************************************
3 * Open \______ \ ____ ____ | | _\_ |__ _______ ___
4 * Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
5 * Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
6 * Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
10 * Copyright (C) 2005 Miika Pekkarinen
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation; either version 2
15 * of the License, or (at your option) any later version.
17 * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
18 * KIND, either express or implied.
20 ****************************************************************************/
32 #include "replaygain.h"
38 /* 16-bit samples are scaled based on these constants. The shift should be
42 #define WORD_FRACBITS 27
44 #define NATIVE_DEPTH 16
45 /* If the small buffer size changes, check the assembly code! */
46 #define SMALL_SAMPLE_BUF_COUNT 256
47 #define DEFAULT_GAIN 0x01000000
49 /* enums to index conversion properly with stereo mode and other settings */
52 SAMPLE_INPUT_LE_NATIVE_I_STEREO
= STEREO_INTERLEAVED
,
53 SAMPLE_INPUT_LE_NATIVE_NI_STEREO
= STEREO_NONINTERLEAVED
,
54 SAMPLE_INPUT_LE_NATIVE_MONO
= STEREO_MONO
,
55 SAMPLE_INPUT_GT_NATIVE_I_STEREO
= STEREO_INTERLEAVED
+ STEREO_NUM_MODES
,
56 SAMPLE_INPUT_GT_NATIVE_NI_STEREO
= STEREO_NONINTERLEAVED
+ STEREO_NUM_MODES
,
57 SAMPLE_INPUT_GT_NATIVE_MONO
= STEREO_MONO
+ STEREO_NUM_MODES
,
58 SAMPLE_INPUT_GT_NATIVE_1ST_INDEX
= STEREO_NUM_MODES
63 SAMPLE_OUTPUT_MONO
= 0,
65 SAMPLE_OUTPUT_DITHERED_MONO
,
66 SAMPLE_OUTPUT_DITHERED_STEREO
69 /****************************************************************************
70 * NOTE: Any assembly routines that use these structures must be updated
71 * if current data members are moved or changed.
75 uint32_t delta
; /* 00h */
76 uint32_t phase
; /* 04h */
77 int32_t last_sample
[2]; /* 08h */
81 /* This is for passing needed data to assembly dsp routines. If another
82 * dsp parameter needs to be passed, add to the end of the structure
83 * and remove from dsp_config.
84 * If another function type becomes assembly optimized and requires dsp
85 * config info, add a pointer paramter of type "struct dsp_data *".
86 * If removing something from other than the end, reserve the spot or
87 * else update every implementation for every target.
88 * Be sure to add the offset of the new member for easy viewing as well. :)
89 * It is the first member of dsp_config and all members can be accessesed
90 * through the main aggregate but this is intended to make a safe haven
91 * for these items whereas the c part can be rearranged at will. dsp_data
92 * could even moved within dsp_config without disurbing the order.
96 int output_scale
; /* 00h */
97 int num_channels
; /* 04h */
98 struct resample_data resample_data
; /* 08h */
99 int32_t clip_min
; /* 18h */
100 int32_t clip_max
; /* 1ch */
101 int32_t gain
; /* 20h - Note that this is in S8.23 format. */
108 long error
[3]; /* 00h */
109 long random
; /* 0ch */
113 struct crossfeed_data
115 int32_t gain
; /* 00h - Direct path gain */
116 int32_t coefs
[3]; /* 04h - Coefficients for the shelving filter */
117 int32_t history
[4]; /* 10h - Format is x[n - 1], y[n - 1] for both channels */
118 int32_t delay
[13][2]; /* 20h */
119 int32_t *index
; /* 88h - Current pointer into the delay line */
123 /* Current setup is one lowshelf filters three peaking filters and one
124 * highshelf filter. Varying the number of shelving filters make no sense,
125 * but adding peaking filters is possible.
129 char enabled
[5]; /* 00h - Flags for active filters */
130 struct eqfilter filters
[5]; /* 08h - packing is 4? */
134 /* Include header with defines which functions are implemented in assembly
135 code for the target */
138 /* Typedefs keep things much neater in this case */
139 typedef void (*sample_input_fn_type
)(int count
, const char *src
[],
141 typedef int (*resample_fn_type
)(int count
, struct dsp_data
*data
,
142 const int32_t *src
[], int32_t *dst
[]);
143 typedef void (*sample_output_fn_type
)(int count
, struct dsp_data
*data
,
144 const int32_t *src
[], int16_t *dst
);
146 /* Single-DSP channel processing in place */
147 typedef void (*channels_process_fn_type
)(int count
, int32_t *buf
[]);
148 /* DSP local channel processing in place */
149 typedef void (*channels_process_dsp_fn_type
)(int count
, struct dsp_data
*data
,
154 ***************************************************************************/
158 struct dsp_data data
; /* Config members for use in asm routines */
159 long codec_frequency
; /* Sample rate of data coming from the codec */
160 long frequency
; /* Effective sample rate after pitch shift (if any) */
164 bool tdspeed_enabled
; /* User has enabled timestretch */
165 int tdspeed_percent
; /* Speed % */
166 bool tdspeed_active
; /* Timestretch is in use */
168 #ifdef HAVE_SW_TONE_CONTROLS
169 /* Filter struct for software bass/treble controls */
170 struct eqfilter tone_filter
;
172 /* Functions that change depending upon settings - NULL if stage is
174 sample_input_fn_type input_samples
;
175 resample_fn_type resample
;
176 sample_output_fn_type output_samples
;
177 /* These will be NULL for the voice codec and is more economical that
179 channels_process_dsp_fn_type apply_gain
;
180 channels_process_fn_type apply_crossfeed
;
181 channels_process_fn_type eq_process
;
182 channels_process_fn_type channels_process
;
185 /* General DSP config */
186 static struct dsp_config dsp_conf
[2] IBSS_ATTR
; /* 0=A, 1=V */
188 static struct dither_data dither_data
[2] IBSS_ATTR
; /* 0=left, 1=right */
189 static long dither_mask IBSS_ATTR
;
190 static long dither_bias IBSS_ATTR
;
192 struct crossfeed_data crossfeed_data IDATA_ATTR
= /* A */
194 .index
= (int32_t *)crossfeed_data
.delay
198 static struct eq_state eq_data
; /* A */
200 /* Software tone controls */
201 #ifdef HAVE_SW_TONE_CONTROLS
202 static int prescale
; /* A/V */
203 static int bass
; /* A/V */
204 static int treble
; /* A/V */
207 /* Settings applicable to audio codec only */
208 static int pitch_ratio
= 1000;
209 static int channels_mode
;
212 static bool dither_enabled
;
213 static long eq_precut
;
214 static long track_gain
;
215 static bool new_gain
;
216 static long album_gain
;
217 static long track_peak
;
218 static long album_peak
;
219 static long replaygain
;
220 static bool crossfeed_enabled
;
222 #define AUDIO_DSP (dsp_conf[CODEC_IDX_AUDIO])
223 #define VOICE_DSP (dsp_conf[CODEC_IDX_VOICE])
225 /* The internal format is 32-bit samples, non-interleaved, stereo. This
226 * format is similar to the raw output from several codecs, so the amount
227 * of copying needed is minimized for that case.
230 #define RESAMPLE_RATIO 4 /* Enough for 11,025 Hz -> 44,100 Hz */
232 static int32_t small_sample_buf
[SMALL_SAMPLE_BUF_COUNT
] IBSS_ATTR
;
233 static int32_t small_resample_buf
[SMALL_SAMPLE_BUF_COUNT
* RESAMPLE_RATIO
] IBSS_ATTR
;
235 static int32_t *big_sample_buf
= NULL
;
236 static int32_t *big_resample_buf
= NULL
;
237 static int big_sample_buf_count
= -1; /* -1=unknown, 0=not available */
239 static int sample_buf_count
;
240 static int32_t *sample_buf
;
241 static int32_t *resample_buf
;
243 #define SAMPLE_BUF_LEFT_CHANNEL 0
244 #define SAMPLE_BUF_RIGHT_CHANNEL (sample_buf_count/2)
245 #define RESAMPLE_BUF_LEFT_CHANNEL 0
246 #define RESAMPLE_BUF_RIGHT_CHANNEL (sample_buf_count/2 * RESAMPLE_RATIO)
249 /* Clip sample to signed 16 bit range */
250 static inline int32_t clip_sample_16(int32_t sample
)
252 if ((int16_t)sample
!= sample
)
253 sample
= 0x7fff ^ (sample
>> 31);
257 int sound_get_pitch(void)
262 void sound_set_pitch(int permille
)
264 pitch_ratio
= permille
;
265 dsp_configure(&AUDIO_DSP
, DSP_SWITCH_FREQUENCY
,
266 AUDIO_DSP
.codec_frequency
);
269 void tdspeed_setup(struct dsp_config
*dspc
)
271 dspc
->tdspeed_active
= false;
272 if (dspc
== &AUDIO_DSP
)
274 if (!dspc
->tdspeed_enabled
)
276 if (dspc
->tdspeed_percent
== 0)
277 dspc
->tdspeed_percent
= 100;
279 dspc
->codec_frequency
== 0 ? NATIVE_FREQUENCY
: dspc
->codec_frequency
,
280 dspc
->stereo_mode
!= STEREO_MONO
,
281 dspc
->tdspeed_percent
))
283 if (dspc
->tdspeed_percent
== 100 || big_sample_buf_count
<= 0)
285 dspc
->tdspeed_active
= true;
289 void dsp_timestretch_enable(bool enable
)
293 /* Set up timestretch buffers on first enable */
294 if (big_sample_buf_count
< 0)
296 big_sample_buf_count
= SMALL_SAMPLE_BUF_COUNT
* RESAMPLE_RATIO
;
297 big_sample_buf
= small_resample_buf
;
298 big_resample_buf
= (int32_t *) buffer_alloc(big_sample_buf_count
* RESAMPLE_RATIO
* sizeof(int32_t));
303 /* If not enabled at startup, buffers will never be available */
304 if (big_sample_buf_count
< 0)
305 big_sample_buf_count
= 0;
307 AUDIO_DSP
.tdspeed_enabled
= enable
;
308 tdspeed_setup(&AUDIO_DSP
);
311 void dsp_set_timestretch(int percent
)
313 AUDIO_DSP
.tdspeed_percent
= percent
;
314 tdspeed_setup(&AUDIO_DSP
);
317 int dsp_get_timestretch()
319 return AUDIO_DSP
.tdspeed_percent
;
322 bool dsp_timestretch_enabled()
324 return (AUDIO_DSP
.tdspeed_enabled
&& big_sample_buf_count
> 0);
327 /* Convert count samples to the internal format, if needed. Updates src
328 * to point past the samples "consumed" and dst is set to point to the
329 * samples to consume. Note that for mono, dst[0] equals dst[1], as there
330 * is no point in processing the same data twice.
333 /* convert count 16-bit mono to 32-bit mono */
334 static void sample_input_lte_native_mono(
335 int count
, const char *src
[], int32_t *dst
[])
337 const int16_t *s
= (int16_t *) src
[0];
338 const int16_t * const send
= s
+ count
;
339 int32_t *d
= dst
[0] = dst
[1] = &sample_buf
[SAMPLE_BUF_LEFT_CHANNEL
];
340 int scale
= WORD_SHIFT
;
344 *d
++ = *s
++ << scale
;
351 /* convert count 16-bit interleaved stereo to 32-bit noninterleaved */
352 static void sample_input_lte_native_i_stereo(
353 int count
, const char *src
[], int32_t *dst
[])
355 const int32_t *s
= (int32_t *) src
[0];
356 const int32_t * const send
= s
+ count
;
357 int32_t *dl
= dst
[0] = &sample_buf
[SAMPLE_BUF_LEFT_CHANNEL
];
358 int32_t *dr
= dst
[1] = &sample_buf
[SAMPLE_BUF_RIGHT_CHANNEL
];
359 int scale
= WORD_SHIFT
;
364 #ifdef ROCKBOX_LITTLE_ENDIAN
365 *dl
++ = (slr
>> 16) << scale
;
366 *dr
++ = (int32_t)(int16_t)slr
<< scale
;
367 #else /* ROCKBOX_BIG_ENDIAN */
368 *dl
++ = (int32_t)(int16_t)slr
<< scale
;
369 *dr
++ = (slr
>> 16) << scale
;
377 /* convert count 16-bit noninterleaved stereo to 32-bit noninterleaved */
378 static void sample_input_lte_native_ni_stereo(
379 int count
, const char *src
[], int32_t *dst
[])
381 const int16_t *sl
= (int16_t *) src
[0];
382 const int16_t *sr
= (int16_t *) src
[1];
383 const int16_t * const slend
= sl
+ count
;
384 int32_t *dl
= dst
[0] = &sample_buf
[SAMPLE_BUF_LEFT_CHANNEL
];
385 int32_t *dr
= dst
[1] = &sample_buf
[SAMPLE_BUF_RIGHT_CHANNEL
];
386 int scale
= WORD_SHIFT
;
390 *dl
++ = *sl
++ << scale
;
391 *dr
++ = *sr
++ << scale
;
399 /* convert count 32-bit mono to 32-bit mono */
400 static void sample_input_gt_native_mono(
401 int count
, const char *src
[], int32_t *dst
[])
403 dst
[0] = dst
[1] = (int32_t *)src
[0];
404 src
[0] = (char *)(dst
[0] + count
);
407 /* convert count 32-bit interleaved stereo to 32-bit noninterleaved stereo */
408 static void sample_input_gt_native_i_stereo(
409 int count
, const char *src
[], int32_t *dst
[])
411 const int32_t *s
= (int32_t *)src
[0];
412 const int32_t * const send
= s
+ 2*count
;
413 int32_t *dl
= dst
[0] = &sample_buf
[SAMPLE_BUF_LEFT_CHANNEL
];
414 int32_t *dr
= dst
[1] = &sample_buf
[SAMPLE_BUF_RIGHT_CHANNEL
];
423 src
[0] = (char *)send
;
426 /* convert 32 bit-noninterleaved stereo to 32-bit noninterleaved stereo */
427 static void sample_input_gt_native_ni_stereo(
428 int count
, const char *src
[], int32_t *dst
[])
430 dst
[0] = (int32_t *)src
[0];
431 dst
[1] = (int32_t *)src
[1];
432 src
[0] = (char *)(dst
[0] + count
);
433 src
[1] = (char *)(dst
[1] + count
);
437 * sample_input_new_format()
439 * set the to-native sample conversion function based on dsp sample parameters
442 * needs syncing with changes to the following dsp parameters:
443 * * dsp->stereo_mode (A/V)
444 * * dsp->sample_depth (A/V)
446 static void sample_input_new_format(struct dsp_config
*dsp
)
448 static const sample_input_fn_type sample_input_functions
[] =
450 [SAMPLE_INPUT_LE_NATIVE_MONO
] = sample_input_lte_native_mono
,
451 [SAMPLE_INPUT_LE_NATIVE_I_STEREO
] = sample_input_lte_native_i_stereo
,
452 [SAMPLE_INPUT_LE_NATIVE_NI_STEREO
] = sample_input_lte_native_ni_stereo
,
453 [SAMPLE_INPUT_GT_NATIVE_MONO
] = sample_input_gt_native_mono
,
454 [SAMPLE_INPUT_GT_NATIVE_I_STEREO
] = sample_input_gt_native_i_stereo
,
455 [SAMPLE_INPUT_GT_NATIVE_NI_STEREO
] = sample_input_gt_native_ni_stereo
,
458 int convert
= dsp
->stereo_mode
;
460 if (dsp
->sample_depth
> NATIVE_DEPTH
)
461 convert
+= SAMPLE_INPUT_GT_NATIVE_1ST_INDEX
;
463 dsp
->input_samples
= sample_input_functions
[convert
];
467 #ifndef DSP_HAVE_ASM_SAMPLE_OUTPUT_MONO
468 /* write mono internal format to output format */
469 static void sample_output_mono(int count
, struct dsp_data
*data
,
470 const int32_t *src
[], int16_t *dst
)
472 const int32_t *s0
= src
[0];
473 const int scale
= data
->output_scale
;
474 const int dc_bias
= 1 << (scale
- 1);
478 int32_t lr
= clip_sample_16((*s0
++ + dc_bias
) >> scale
);
484 #endif /* DSP_HAVE_ASM_SAMPLE_OUTPUT_MONO */
486 /* write stereo internal format to output format */
487 #ifndef DSP_HAVE_ASM_SAMPLE_OUTPUT_STEREO
488 static void sample_output_stereo(int count
, struct dsp_data
*data
,
489 const int32_t *src
[], int16_t *dst
)
491 const int32_t *s0
= src
[0];
492 const int32_t *s1
= src
[1];
493 const int scale
= data
->output_scale
;
494 const int dc_bias
= 1 << (scale
- 1);
498 *dst
++ = clip_sample_16((*s0
++ + dc_bias
) >> scale
);
499 *dst
++ = clip_sample_16((*s1
++ + dc_bias
) >> scale
);
503 #endif /* DSP_HAVE_ASM_SAMPLE_OUTPUT_STEREO */
506 * The "dither" code to convert the 24-bit samples produced by libmad was
507 * taken from the coolplayer project - coolplayer.sourceforge.net
509 * This function handles mono and stereo outputs.
511 static void sample_output_dithered(int count
, struct dsp_data
*data
,
512 const int32_t *src
[], int16_t *dst
)
514 const int32_t mask
= dither_mask
;
515 const int32_t bias
= dither_bias
;
516 const int scale
= data
->output_scale
;
517 const int32_t min
= data
->clip_min
;
518 const int32_t max
= data
->clip_max
;
519 const int32_t range
= max
- min
;
523 for (ch
= 0; ch
< data
->num_channels
; ch
++)
525 struct dither_data
* const dither
= &dither_data
[ch
];
526 const int32_t *s
= src
[ch
];
529 for (i
= 0, d
= &dst
[ch
]; i
< count
; i
++, s
++, d
+= 2)
531 int32_t output
, sample
;
534 /* Noise shape and bias (for correct rounding later) */
536 sample
+= dither
->error
[0] - dither
->error
[1] + dither
->error
[2];
537 dither
->error
[2] = dither
->error
[1];
538 dither
->error
[1] = dither
->error
[0]/2;
540 output
= sample
+ bias
;
542 /* Dither, highpass triangle PDF */
543 random
= dither
->random
*0x0019660dL
+ 0x3c6ef35fL
;
544 output
+= (random
& mask
) - (dither
->random
& mask
);
545 dither
->random
= random
;
547 /* Round sample to output range */
551 dither
->error
[0] = sample
- output
;
554 if ((uint32_t)(output
- min
) > (uint32_t)range
)
562 /* Quantize and store */
563 *d
= output
>> scale
;
567 if (data
->num_channels
== 2)
570 /* Have to duplicate left samples into the right channel since
571 pcm buffer and hardware is interleaved stereo */
583 * sample_output_new_format()
585 * set the from-native to ouput sample conversion routine
588 * needs syncing with changes to the following dsp parameters:
589 * * dsp->stereo_mode (A/V)
590 * * dither_enabled (A)
592 static void sample_output_new_format(struct dsp_config
*dsp
)
594 static const sample_output_fn_type sample_output_functions
[] =
597 sample_output_stereo
,
598 sample_output_dithered
,
599 sample_output_dithered
602 int out
= dsp
->data
.num_channels
- 1;
604 if (dsp
== &AUDIO_DSP
&& dither_enabled
)
607 dsp
->output_samples
= sample_output_functions
[out
];
611 * Linear interpolation resampling that introduces a one sample delay because
612 * of our inability to look into the future at the end of a frame.
614 #ifndef DSP_HAVE_ASM_RESAMPLING
615 static int dsp_downsample(int count
, struct dsp_data
*data
,
616 const int32_t *src
[], int32_t *dst
[])
618 int ch
= data
->num_channels
- 1;
619 uint32_t delta
= data
->resample_data
.delta
;
623 /* Rolled channel loop actually showed slightly faster. */
626 /* Just initialize things and not worry too much about the relatively
627 * uncommon case of not being able to spit out a sample for the frame.
629 const int32_t *s
= src
[ch
];
630 int32_t last
= data
->resample_data
.last_sample
[ch
];
632 data
->resample_data
.last_sample
[ch
] = s
[count
- 1];
634 phase
= data
->resample_data
.phase
;
637 /* Do we need last sample of previous frame for interpolation? */
641 while (pos
< (uint32_t)count
)
643 *d
++ = last
+ FRACMUL((phase
& 0xffff) << 15, s
[pos
] - last
);
651 /* Wrap phase accumulator back to start of next frame. */
652 data
->resample_data
.phase
= phase
- (count
<< 16);
656 static int dsp_upsample(int count
, struct dsp_data
*data
,
657 const int32_t *src
[], int32_t *dst
[])
659 int ch
= data
->num_channels
- 1;
660 uint32_t delta
= data
->resample_data
.delta
;
664 /* Rolled channel loop actually showed slightly faster. */
667 /* Should always be able to output a sample for a ratio up to RESAMPLE_RATIO */
668 const int32_t *s
= src
[ch
];
669 int32_t last
= data
->resample_data
.last_sample
[ch
];
671 data
->resample_data
.last_sample
[ch
] = s
[count
- 1];
673 phase
= data
->resample_data
.phase
;
678 *d
++ = last
+ FRACMUL((phase
& 0xffff) << 15, s
[0] - last
);
683 while (pos
< (uint32_t)count
)
686 *d
++ = last
+ FRACMUL((phase
& 0xffff) << 15, s
[pos
] - last
);
693 /* Wrap phase accumulator back to start of next frame. */
694 data
->resample_data
.phase
= phase
& 0xffff;
697 #endif /* DSP_HAVE_ASM_RESAMPLING */
699 static void resampler_new_delta(struct dsp_config
*dsp
)
701 dsp
->data
.resample_data
.delta
= (unsigned long)
702 dsp
->frequency
* 65536LL / NATIVE_FREQUENCY
;
704 if (dsp
->frequency
== NATIVE_FREQUENCY
)
706 /* NOTE: If fully glitch-free transistions from no resampling to
707 resampling are desired, last_sample history should be maintained
708 even when not resampling. */
709 dsp
->resample
= NULL
;
710 dsp
->data
.resample_data
.phase
= 0;
711 dsp
->data
.resample_data
.last_sample
[0] = 0;
712 dsp
->data
.resample_data
.last_sample
[1] = 0;
714 else if (dsp
->frequency
< NATIVE_FREQUENCY
)
715 dsp
->resample
= dsp_upsample
;
717 dsp
->resample
= dsp_downsample
;
720 /* Resample count stereo samples. Updates the src array, if resampling is
721 * done, to refer to the resampled data. Returns number of stereo samples
722 * for further processing.
724 static inline int resample(struct dsp_config
*dsp
, int count
, int32_t *src
[])
728 &resample_buf
[RESAMPLE_BUF_LEFT_CHANNEL
],
729 &resample_buf
[RESAMPLE_BUF_RIGHT_CHANNEL
],
732 count
= dsp
->resample(count
, &dsp
->data
, (const int32_t **)src
, dst
);
735 src
[1] = dst
[dsp
->data
.num_channels
- 1];
740 static void dither_init(struct dsp_config
*dsp
)
742 memset(dither_data
, 0, sizeof (dither_data
));
743 dither_bias
= (1L << (dsp
->frac_bits
- NATIVE_DEPTH
));
744 dither_mask
= (1L << (dsp
->frac_bits
+ 1 - NATIVE_DEPTH
)) - 1;
747 void dsp_dither_enable(bool enable
)
749 struct dsp_config
*dsp
= &AUDIO_DSP
;
750 dither_enabled
= enable
;
751 sample_output_new_format(dsp
);
754 /* Applies crossfeed to the stereo signal in src.
755 * Crossfeed is a process where listening over speakers is simulated. This
756 * is good for old hard panned stereo records, which might be quite fatiguing
757 * to listen to on headphones with no crossfeed.
759 #ifndef DSP_HAVE_ASM_CROSSFEED
760 static void apply_crossfeed(int count
, int32_t *buf
[])
762 int32_t *hist_l
= &crossfeed_data
.history
[0];
763 int32_t *hist_r
= &crossfeed_data
.history
[2];
764 int32_t *delay
= &crossfeed_data
.delay
[0][0];
765 int32_t *coefs
= &crossfeed_data
.coefs
[0];
766 int32_t gain
= crossfeed_data
.gain
;
767 int32_t *di
= crossfeed_data
.index
;
773 for (i
= 0; i
< count
; i
++)
778 /* Filter delayed sample from left speaker */
779 acc
= FRACMUL(*di
, coefs
[0]);
780 acc
+= FRACMUL(hist_l
[0], coefs
[1]);
781 acc
+= FRACMUL(hist_l
[1], coefs
[2]);
782 /* Save filter history for left speaker */
786 /* Filter delayed sample from right speaker */
787 acc
= FRACMUL(*di
, coefs
[0]);
788 acc
+= FRACMUL(hist_r
[0], coefs
[1]);
789 acc
+= FRACMUL(hist_r
[1], coefs
[2]);
790 /* Save filter history for right speaker */
794 /* Now add the attenuated direct sound and write to outputs */
795 buf
[0][i
] = FRACMUL(left
, gain
) + hist_r
[1];
796 buf
[1][i
] = FRACMUL(right
, gain
) + hist_l
[1];
798 /* Wrap delay line index if bigger than delay line size */
799 if (di
>= delay
+ 13*2)
802 /* Write back local copies of data we've modified */
803 crossfeed_data
.index
= di
;
805 #endif /* DSP_HAVE_ASM_CROSSFEED */
808 * dsp_set_crossfeed(bool enable)
811 * needs syncing with changes to the following dsp parameters:
812 * * dsp->stereo_mode (A)
814 void dsp_set_crossfeed(bool enable
)
816 crossfeed_enabled
= enable
;
817 AUDIO_DSP
.apply_crossfeed
= (enable
&& AUDIO_DSP
.data
.num_channels
> 1)
818 ? apply_crossfeed
: NULL
;
821 void dsp_set_crossfeed_direct_gain(int gain
)
823 crossfeed_data
.gain
= get_replaygain_int(gain
* 10) << 7;
824 /* If gain is negative, the calculation overflowed and we need to clamp */
825 if (crossfeed_data
.gain
< 0)
826 crossfeed_data
.gain
= 0x7fffffff;
829 /* Both gains should be below 0 dB */
830 void dsp_set_crossfeed_cross_params(long lf_gain
, long hf_gain
, long cutoff
)
832 int32_t *c
= crossfeed_data
.coefs
;
833 long scaler
= get_replaygain_int(lf_gain
* 10) << 7;
835 cutoff
= 0xffffffff/NATIVE_FREQUENCY
*cutoff
;
837 /* Divide cutoff by sqrt(10^(hf_gain/20)) to place cutoff at the -3 dB
838 * point instead of shelf midpoint. This is for compatibility with the old
839 * crossfeed shelf filter and should be removed if crossfeed settings are
840 * ever made incompatible for any other good reason.
842 cutoff
= DIV64(cutoff
, get_replaygain_int(hf_gain
*5), 24);
843 filter_shelf_coefs(cutoff
, hf_gain
, false, c
);
844 /* Scale coefs by LF gain and shift them to s0.31 format. We have no gains
845 * over 1 and can do this safely
847 c
[0] = FRACMUL_SHL(c
[0], scaler
, 4);
848 c
[1] = FRACMUL_SHL(c
[1], scaler
, 4);
852 /* Apply a constant gain to the samples (e.g., for ReplayGain).
853 * Note that this must be called before the resampler.
855 #ifndef DSP_HAVE_ASM_APPLY_GAIN
856 static void dsp_apply_gain(int count
, struct dsp_data
*data
, int32_t *buf
[])
858 const int32_t gain
= data
->gain
;
861 for (ch
= 0; ch
< data
->num_channels
; ch
++)
863 int32_t *d
= buf
[ch
];
866 for (i
= 0; i
< count
; i
++)
867 d
[i
] = FRACMUL_SHL(d
[i
], gain
, 8);
870 #endif /* DSP_HAVE_ASM_APPLY_GAIN */
872 /* Combine all gains to a global gain. */
873 static void set_gain(struct dsp_config
*dsp
)
875 dsp
->data
.gain
= DEFAULT_GAIN
;
877 /* Replay gain not relevant to voice */
878 if (dsp
== &AUDIO_DSP
&& replaygain
)
880 dsp
->data
.gain
= replaygain
;
883 if (dsp
->eq_process
&& eq_precut
)
886 (long) (((int64_t) dsp
->data
.gain
* eq_precut
) >> 24);
889 if (dsp
->data
.gain
== DEFAULT_GAIN
)
895 dsp
->data
.gain
>>= 1;
898 dsp
->apply_gain
= dsp
->data
.gain
!= 0 ? dsp_apply_gain
: NULL
;
902 * Update the amount to cut the audio before applying the equalizer.
904 * @param precut to apply in decibels (multiplied by 10)
906 void dsp_set_eq_precut(int precut
)
908 eq_precut
= get_replaygain_int(precut
* -10);
909 set_gain(&AUDIO_DSP
);
913 * Synchronize the equalizer filter coefficients with the global settings.
915 * @param band the equalizer band to synchronize
917 void dsp_set_eq_coefs(int band
)
921 unsigned long cutoff
, q
;
923 /* Adjust setting pointer to the band we actually want to change */
924 setting
= &global_settings
.eq_band0_cutoff
+ (band
* 3);
926 /* Convert user settings to format required by coef generator functions */
927 cutoff
= 0xffffffff / NATIVE_FREQUENCY
* (*setting
++);
934 /* NOTE: The coef functions assume the EMAC unit is in fractional mode,
935 which it should be, since we're executed from the main thread. */
937 /* Assume a band is disabled if the gain is zero */
940 eq_data
.enabled
[band
] = 0;
945 eq_ls_coefs(cutoff
, q
, gain
, eq_data
.filters
[band
].coefs
);
947 eq_hs_coefs(cutoff
, q
, gain
, eq_data
.filters
[band
].coefs
);
949 eq_pk_coefs(cutoff
, q
, gain
, eq_data
.filters
[band
].coefs
);
951 eq_data
.enabled
[band
] = 1;
955 /* Apply EQ filters to those bands that have got it switched on. */
956 static void eq_process(int count
, int32_t *buf
[])
958 static const int shifts
[] =
960 EQ_SHELF_SHIFT
, /* low shelf */
961 EQ_PEAK_SHIFT
, /* peaking */
962 EQ_PEAK_SHIFT
, /* peaking */
963 EQ_PEAK_SHIFT
, /* peaking */
964 EQ_SHELF_SHIFT
, /* high shelf */
966 unsigned int channels
= AUDIO_DSP
.data
.num_channels
;
969 /* filter configuration currently is 1 low shelf filter, 3 band peaking
970 filters and 1 high shelf filter, in that order. we need to know this
971 so we can choose the correct shift factor.
973 for (i
= 0; i
< 5; i
++)
975 if (!eq_data
.enabled
[i
])
977 eq_filter(buf
, &eq_data
.filters
[i
], count
, channels
, shifts
[i
]);
982 * Use to enable the equalizer.
984 * @param enable true to enable the equalizer
986 void dsp_set_eq(bool enable
)
988 AUDIO_DSP
.eq_process
= enable
? eq_process
: NULL
;
989 set_gain(&AUDIO_DSP
);
992 static void dsp_set_stereo_width(int value
)
994 long width
, straight
, cross
;
996 width
= value
* 0x7fffff / 100;
1000 straight
= (0x7fffff + width
) / 2;
1001 cross
= straight
- width
;
1005 /* straight = (1 + width) / (2 * width) */
1006 straight
= ((int64_t)(0x7fffff + width
) << 22) / width
;
1007 cross
= straight
- 0x7fffff;
1010 dsp_sw_gain
= straight
<< 8;
1011 dsp_sw_cross
= cross
<< 8;
1015 * Implements the different channel configurations and stereo width.
1018 /* SOUND_CHAN_STEREO mode is a noop so has no function - just outline one for
1021 static void channels_process_sound_chan_stereo(int count
, int32_t *buf
[])
1023 /* The channels are each just themselves */
1024 (void)count
; (void)buf
;
1028 #ifndef DSP_HAVE_ASM_SOUND_CHAN_MONO
1029 static void channels_process_sound_chan_mono(int count
, int32_t *buf
[])
1031 int32_t *sl
= buf
[0], *sr
= buf
[1];
1035 int32_t lr
= *sl
/2 + *sr
/2;
1039 while (--count
> 0);
1041 #endif /* DSP_HAVE_ASM_SOUND_CHAN_MONO */
1043 #ifndef DSP_HAVE_ASM_SOUND_CHAN_CUSTOM
1044 static void channels_process_sound_chan_custom(int count
, int32_t *buf
[])
1046 const int32_t gain
= dsp_sw_gain
;
1047 const int32_t cross
= dsp_sw_cross
;
1048 int32_t *sl
= buf
[0], *sr
= buf
[1];
1054 *sl
++ = FRACMUL(l
, gain
) + FRACMUL(r
, cross
);
1055 *sr
++ = FRACMUL(r
, gain
) + FRACMUL(l
, cross
);
1057 while (--count
> 0);
1059 #endif /* DSP_HAVE_ASM_SOUND_CHAN_CUSTOM */
1061 static void channels_process_sound_chan_mono_left(int count
, int32_t *buf
[])
1063 /* Just copy over the other channel */
1064 memcpy(buf
[1], buf
[0], count
* sizeof (*buf
));
1067 static void channels_process_sound_chan_mono_right(int count
, int32_t *buf
[])
1069 /* Just copy over the other channel */
1070 memcpy(buf
[0], buf
[1], count
* sizeof (*buf
));
1073 #ifndef DSP_HAVE_ASM_SOUND_CHAN_KARAOKE
1074 static void channels_process_sound_chan_karaoke(int count
, int32_t *buf
[])
1076 int32_t *sl
= buf
[0], *sr
= buf
[1];
1080 int32_t ch
= *sl
/2 - *sr
/2;
1084 while (--count
> 0);
1086 #endif /* DSP_HAVE_ASM_SOUND_CHAN_KARAOKE */
1088 static void dsp_set_channel_config(int value
)
1090 static const channels_process_fn_type channels_process_functions
[] =
1092 /* SOUND_CHAN_STEREO = All-purpose index for no channel processing */
1093 [SOUND_CHAN_STEREO
] = NULL
,
1094 [SOUND_CHAN_MONO
] = channels_process_sound_chan_mono
,
1095 [SOUND_CHAN_CUSTOM
] = channels_process_sound_chan_custom
,
1096 [SOUND_CHAN_MONO_LEFT
] = channels_process_sound_chan_mono_left
,
1097 [SOUND_CHAN_MONO_RIGHT
] = channels_process_sound_chan_mono_right
,
1098 [SOUND_CHAN_KARAOKE
] = channels_process_sound_chan_karaoke
,
1101 if ((unsigned)value
>= ARRAYLEN(channels_process_functions
) ||
1102 AUDIO_DSP
.stereo_mode
== STEREO_MONO
)
1104 value
= SOUND_CHAN_STEREO
;
1107 /* This doesn't apply to voice */
1108 channels_mode
= value
;
1109 AUDIO_DSP
.channels_process
= channels_process_functions
[value
];
1112 #if CONFIG_CODEC == SWCODEC
1114 #ifdef HAVE_SW_TONE_CONTROLS
1115 static void set_tone_controls(void)
1117 filter_bishelf_coefs(0xffffffff/NATIVE_FREQUENCY
*200,
1118 0xffffffff/NATIVE_FREQUENCY
*3500,
1119 bass
, treble
, -prescale
,
1120 AUDIO_DSP
.tone_filter
.coefs
);
1121 /* Sync the voice dsp coefficients */
1122 memcpy(&VOICE_DSP
.tone_filter
.coefs
, AUDIO_DSP
.tone_filter
.coefs
,
1123 sizeof (VOICE_DSP
.tone_filter
.coefs
));
1127 /* Hook back from firmware/ part of audio, which can't/shouldn't call apps/
1130 int dsp_callback(int msg
, intptr_t param
)
1134 #ifdef HAVE_SW_TONE_CONTROLS
1135 case DSP_CALLBACK_SET_PRESCALE
:
1137 set_tone_controls();
1139 /* prescaler is always set after calling any of these, so we wait with
1140 * calculating coefs until the above case is hit.
1142 case DSP_CALLBACK_SET_BASS
:
1145 case DSP_CALLBACK_SET_TREBLE
:
1149 case DSP_CALLBACK_SET_CHANNEL_CONFIG
:
1150 dsp_set_channel_config(param
);
1152 case DSP_CALLBACK_SET_STEREO_WIDTH
:
1153 dsp_set_stereo_width(param
);
1162 /* Process and convert src audio to dst based on the DSP configuration,
1163 * reading count number of audio samples. dst is assumed to be large
1164 * enough; use dsp_output_count() to get the required number. src is an
1165 * array of pointers; for mono and interleaved stereo, it contains one
1166 * pointer to the start of the audio data and the other is ignored; for
1167 * non-interleaved stereo, it contains two pointers, one for each audio
1168 * channel. Returns number of bytes written to dst.
1170 int dsp_process(struct dsp_config
*dsp
, char *dst
, const char *src
[], int count
)
1173 static long last_yield
;
1177 #if defined(CPU_COLDFIRE)
1178 /* set emac unit for dsp processing, and save old macsr, we're running in
1179 codec thread context at this point, so can't clobber it */
1180 unsigned long old_macsr
= coldfire_get_macsr();
1181 coldfire_set_macsr(EMAC_FRACTIONAL
| EMAC_SATURATE
);
1185 dsp_set_replaygain(); /* Gain has changed */
1187 /* Perform at least one yield before starting */
1188 last_yield
= current_tick
;
1191 /* Testing function pointers for NULL is preferred since the pointer
1192 will be preloaded to be used for the call if not. */
1195 int samples
= MIN(sample_buf_count
/2, count
);
1198 dsp
->input_samples(samples
, src
, tmp
);
1200 if (dsp
->tdspeed_active
)
1201 samples
= tdspeed_doit(tmp
, samples
);
1203 int chunk_offset
= 0;
1207 t2
[0] = tmp
[0]+chunk_offset
;
1208 t2
[1] = tmp
[1]+chunk_offset
;
1210 int chunk
= MIN(sample_buf_count
/2, samples
);
1211 chunk_offset
+= chunk
;
1214 if (dsp
->apply_gain
)
1215 dsp
->apply_gain(chunk
, &dsp
->data
, t2
);
1217 if (dsp
->resample
&& (chunk
= resample(dsp
, chunk
, t2
)) <= 0)
1218 break; /* I'm pretty sure we're downsampling here */
1220 if (dsp
->apply_crossfeed
)
1221 dsp
->apply_crossfeed(chunk
, t2
);
1223 if (dsp
->eq_process
)
1224 dsp
->eq_process(chunk
, t2
);
1226 #ifdef HAVE_SW_TONE_CONTROLS
1227 if ((bass
| treble
) != 0)
1228 eq_filter(t2
, &dsp
->tone_filter
, chunk
,
1229 dsp
->data
.num_channels
, FILTER_BISHELF_SHIFT
);
1232 if (dsp
->channels_process
)
1233 dsp
->channels_process(chunk
, t2
);
1235 dsp
->output_samples(chunk
, &dsp
->data
, (const int32_t **)t2
, (int16_t *)dst
);
1238 dst
+= chunk
* sizeof (int16_t) * 2;
1240 /* yield at least once each tick */
1241 tick
= current_tick
;
1242 if (TIME_AFTER(tick
, last_yield
))
1250 #if defined(CPU_COLDFIRE)
1251 /* set old macsr again */
1252 coldfire_set_macsr(old_macsr
);
1257 /* Given count number of input samples, calculate the maximum number of
1258 * samples of output data that would be generated (the calculation is not
1259 * entirely exact and rounds upwards to be on the safe side; during
1260 * resampling, the number of samples generated depends on the current state
1261 * of the resampler).
1263 /* dsp_input_size MUST be called afterwards */
1264 int dsp_output_count(struct dsp_config
*dsp
, int count
)
1266 if (dsp
->tdspeed_active
)
1267 count
= tdspeed_est_output_size();
1270 count
= (int)(((unsigned long)count
* NATIVE_FREQUENCY
1271 + (dsp
->frequency
- 1)) / dsp
->frequency
);
1274 /* Now we have the resampled sample count which must not exceed
1275 * RESAMPLE_BUF_RIGHT_CHANNEL to avoid resample buffer overflow. One
1276 * must call dsp_input_count() to get the correct input sample
1279 if (count
> RESAMPLE_BUF_RIGHT_CHANNEL
)
1280 count
= RESAMPLE_BUF_RIGHT_CHANNEL
;
1285 /* Given count output samples, calculate number of input samples
1286 * that would be consumed in order to fill the output buffer.
1288 int dsp_input_count(struct dsp_config
*dsp
, int count
)
1290 /* count is now the number of resampled input samples. Convert to
1291 original input samples. */
1294 /* Use the real resampling delta =
1295 * dsp->frequency * 65536 / NATIVE_FREQUENCY, and
1296 * round towards zero to avoid buffer overflows. */
1297 count
= (int)(((unsigned long)count
*
1298 dsp
->data
.resample_data
.delta
) >> 16);
1301 if (dsp
->tdspeed_active
)
1302 count
= tdspeed_est_input_size(count
);
1307 static void dsp_set_gain_var(long *var
, long value
)
1313 static void dsp_update_functions(struct dsp_config
*dsp
)
1315 sample_input_new_format(dsp
);
1316 sample_output_new_format(dsp
);
1317 if (dsp
== &AUDIO_DSP
)
1318 dsp_set_crossfeed(crossfeed_enabled
);
1321 intptr_t dsp_configure(struct dsp_config
*dsp
, int setting
, intptr_t value
)
1328 case CODEC_IDX_AUDIO
:
1329 return (intptr_t)&AUDIO_DSP
;
1330 case CODEC_IDX_VOICE
:
1331 return (intptr_t)&VOICE_DSP
;
1333 return (intptr_t)NULL
;
1336 case DSP_SET_FREQUENCY
:
1337 memset(&dsp
->data
.resample_data
, 0, sizeof (dsp
->data
.resample_data
));
1338 /* Fall through!!! */
1339 case DSP_SWITCH_FREQUENCY
:
1340 dsp
->codec_frequency
= (value
== 0) ? NATIVE_FREQUENCY
: value
;
1341 /* Account for playback speed adjustment when setting dsp->frequency
1342 if we're called from the main audio thread. Voice UI thread should
1343 not need this feature.
1345 if (dsp
== &AUDIO_DSP
)
1346 dsp
->frequency
= pitch_ratio
* dsp
->codec_frequency
/ 1000;
1348 dsp
->frequency
= dsp
->codec_frequency
;
1350 resampler_new_delta(dsp
);
1354 case DSP_SET_SAMPLE_DEPTH
:
1355 dsp
->sample_depth
= value
;
1357 if (dsp
->sample_depth
<= NATIVE_DEPTH
)
1359 dsp
->frac_bits
= WORD_FRACBITS
;
1360 dsp
->sample_bytes
= sizeof (int16_t); /* samples are 16 bits */
1361 dsp
->data
.clip_max
= ((1 << WORD_FRACBITS
) - 1);
1362 dsp
->data
.clip_min
= -((1 << WORD_FRACBITS
));
1366 dsp
->frac_bits
= value
;
1367 dsp
->sample_bytes
= sizeof (int32_t); /* samples are 32 bits */
1368 dsp
->data
.clip_max
= (1 << value
) - 1;
1369 dsp
->data
.clip_min
= -(1 << value
);
1372 dsp
->data
.output_scale
= dsp
->frac_bits
+ 1 - NATIVE_DEPTH
;
1373 sample_input_new_format(dsp
);
1377 case DSP_SET_STEREO_MODE
:
1378 dsp
->stereo_mode
= value
;
1379 dsp
->data
.num_channels
= value
== STEREO_MONO
? 1 : 2;
1380 dsp_update_functions(dsp
);
1385 dsp
->stereo_mode
= STEREO_NONINTERLEAVED
;
1386 dsp
->data
.num_channels
= 2;
1387 dsp
->sample_depth
= NATIVE_DEPTH
;
1388 dsp
->frac_bits
= WORD_FRACBITS
;
1389 dsp
->sample_bytes
= sizeof (int16_t);
1390 dsp
->data
.output_scale
= dsp
->frac_bits
+ 1 - NATIVE_DEPTH
;
1391 dsp
->data
.clip_max
= ((1 << WORD_FRACBITS
) - 1);
1392 dsp
->data
.clip_min
= -((1 << WORD_FRACBITS
));
1393 dsp
->codec_frequency
= dsp
->frequency
= NATIVE_FREQUENCY
;
1395 if (dsp
== &AUDIO_DSP
)
1404 dsp_update_functions(dsp
);
1405 resampler_new_delta(dsp
);
1410 memset(&dsp
->data
.resample_data
, 0,
1411 sizeof (dsp
->data
.resample_data
));
1412 resampler_new_delta(dsp
);
1417 case DSP_SET_TRACK_GAIN
:
1418 if (dsp
== &AUDIO_DSP
)
1419 dsp_set_gain_var(&track_gain
, value
);
1422 case DSP_SET_ALBUM_GAIN
:
1423 if (dsp
== &AUDIO_DSP
)
1424 dsp_set_gain_var(&album_gain
, value
);
1427 case DSP_SET_TRACK_PEAK
:
1428 if (dsp
== &AUDIO_DSP
)
1429 dsp_set_gain_var(&track_peak
, value
);
1432 case DSP_SET_ALBUM_PEAK
:
1433 if (dsp
== &AUDIO_DSP
)
1434 dsp_set_gain_var(&album_peak
, value
);
1441 if (!dsp
->tdspeed_active
)
1443 sample_buf
= small_sample_buf
;
1444 resample_buf
= small_resample_buf
;
1445 sample_buf_count
= SMALL_SAMPLE_BUF_COUNT
;
1449 sample_buf
= big_sample_buf
;
1450 sample_buf_count
= big_sample_buf_count
;
1451 resample_buf
= big_resample_buf
;
1457 void dsp_set_replaygain(void)
1463 if (global_settings
.replaygain
|| global_settings
.replaygain_noclip
)
1465 bool track_mode
= get_replaygain_mode(track_gain
!= 0,
1466 album_gain
!= 0) == REPLAYGAIN_TRACK
;
1467 long peak
= (track_mode
|| !album_peak
) ? track_peak
: album_peak
;
1469 if (global_settings
.replaygain
)
1471 gain
= (track_mode
|| !album_gain
) ? track_gain
: album_gain
;
1473 if (global_settings
.replaygain_preamp
)
1475 long preamp
= get_replaygain_int(
1476 global_settings
.replaygain_preamp
* 10);
1478 gain
= (long) (((int64_t) gain
* preamp
) >> 24);
1484 /* So that noclip can work even with no gain information. */
1485 gain
= DEFAULT_GAIN
;
1488 if (global_settings
.replaygain_noclip
&& (peak
!= 0)
1489 && ((((int64_t) gain
* peak
) >> 24) >= DEFAULT_GAIN
))
1491 gain
= (((int64_t) DEFAULT_GAIN
<< 24) / peak
);
1494 if (gain
== DEFAULT_GAIN
)
1496 /* Nothing to do, disable processing. */
1501 /* Store in S8.23 format to simplify calculations. */
1503 set_gain(&AUDIO_DSP
);